1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/time.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/backing-dev.h> 26 #include <linux/mpage.h> 27 #include <linux/falloc.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/statfs.h> 31 #include <linux/compat.h> 32 #include <linux/slab.h> 33 #include <linux/btrfs.h> 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "transaction.h" 37 #include "btrfs_inode.h" 38 #include "print-tree.h" 39 #include "tree-log.h" 40 #include "locking.h" 41 #include "compat.h" 42 #include "volumes.h" 43 44 static struct kmem_cache *btrfs_inode_defrag_cachep; 45 /* 46 * when auto defrag is enabled we 47 * queue up these defrag structs to remember which 48 * inodes need defragging passes 49 */ 50 struct inode_defrag { 51 struct rb_node rb_node; 52 /* objectid */ 53 u64 ino; 54 /* 55 * transid where the defrag was added, we search for 56 * extents newer than this 57 */ 58 u64 transid; 59 60 /* root objectid */ 61 u64 root; 62 63 /* last offset we were able to defrag */ 64 u64 last_offset; 65 66 /* if we've wrapped around back to zero once already */ 67 int cycled; 68 }; 69 70 static int __compare_inode_defrag(struct inode_defrag *defrag1, 71 struct inode_defrag *defrag2) 72 { 73 if (defrag1->root > defrag2->root) 74 return 1; 75 else if (defrag1->root < defrag2->root) 76 return -1; 77 else if (defrag1->ino > defrag2->ino) 78 return 1; 79 else if (defrag1->ino < defrag2->ino) 80 return -1; 81 else 82 return 0; 83 } 84 85 /* pop a record for an inode into the defrag tree. The lock 86 * must be held already 87 * 88 * If you're inserting a record for an older transid than an 89 * existing record, the transid already in the tree is lowered 90 * 91 * If an existing record is found the defrag item you 92 * pass in is freed 93 */ 94 static int __btrfs_add_inode_defrag(struct inode *inode, 95 struct inode_defrag *defrag) 96 { 97 struct btrfs_root *root = BTRFS_I(inode)->root; 98 struct inode_defrag *entry; 99 struct rb_node **p; 100 struct rb_node *parent = NULL; 101 int ret; 102 103 p = &root->fs_info->defrag_inodes.rb_node; 104 while (*p) { 105 parent = *p; 106 entry = rb_entry(parent, struct inode_defrag, rb_node); 107 108 ret = __compare_inode_defrag(defrag, entry); 109 if (ret < 0) 110 p = &parent->rb_left; 111 else if (ret > 0) 112 p = &parent->rb_right; 113 else { 114 /* if we're reinserting an entry for 115 * an old defrag run, make sure to 116 * lower the transid of our existing record 117 */ 118 if (defrag->transid < entry->transid) 119 entry->transid = defrag->transid; 120 if (defrag->last_offset > entry->last_offset) 121 entry->last_offset = defrag->last_offset; 122 return -EEXIST; 123 } 124 } 125 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 126 rb_link_node(&defrag->rb_node, parent, p); 127 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes); 128 return 0; 129 } 130 131 static inline int __need_auto_defrag(struct btrfs_root *root) 132 { 133 if (!btrfs_test_opt(root, AUTO_DEFRAG)) 134 return 0; 135 136 if (btrfs_fs_closing(root->fs_info)) 137 return 0; 138 139 return 1; 140 } 141 142 /* 143 * insert a defrag record for this inode if auto defrag is 144 * enabled 145 */ 146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 147 struct inode *inode) 148 { 149 struct btrfs_root *root = BTRFS_I(inode)->root; 150 struct inode_defrag *defrag; 151 u64 transid; 152 int ret; 153 154 if (!__need_auto_defrag(root)) 155 return 0; 156 157 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) 158 return 0; 159 160 if (trans) 161 transid = trans->transid; 162 else 163 transid = BTRFS_I(inode)->root->last_trans; 164 165 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 166 if (!defrag) 167 return -ENOMEM; 168 169 defrag->ino = btrfs_ino(inode); 170 defrag->transid = transid; 171 defrag->root = root->root_key.objectid; 172 173 spin_lock(&root->fs_info->defrag_inodes_lock); 174 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) { 175 /* 176 * If we set IN_DEFRAG flag and evict the inode from memory, 177 * and then re-read this inode, this new inode doesn't have 178 * IN_DEFRAG flag. At the case, we may find the existed defrag. 179 */ 180 ret = __btrfs_add_inode_defrag(inode, defrag); 181 if (ret) 182 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 183 } else { 184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 185 } 186 spin_unlock(&root->fs_info->defrag_inodes_lock); 187 return 0; 188 } 189 190 /* 191 * Requeue the defrag object. If there is a defrag object that points to 192 * the same inode in the tree, we will merge them together (by 193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 194 */ 195 void btrfs_requeue_inode_defrag(struct inode *inode, 196 struct inode_defrag *defrag) 197 { 198 struct btrfs_root *root = BTRFS_I(inode)->root; 199 int ret; 200 201 if (!__need_auto_defrag(root)) 202 goto out; 203 204 /* 205 * Here we don't check the IN_DEFRAG flag, because we need merge 206 * them together. 207 */ 208 spin_lock(&root->fs_info->defrag_inodes_lock); 209 ret = __btrfs_add_inode_defrag(inode, defrag); 210 spin_unlock(&root->fs_info->defrag_inodes_lock); 211 if (ret) 212 goto out; 213 return; 214 out: 215 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 216 } 217 218 /* 219 * pick the defragable inode that we want, if it doesn't exist, we will get 220 * the next one. 221 */ 222 static struct inode_defrag * 223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 224 { 225 struct inode_defrag *entry = NULL; 226 struct inode_defrag tmp; 227 struct rb_node *p; 228 struct rb_node *parent = NULL; 229 int ret; 230 231 tmp.ino = ino; 232 tmp.root = root; 233 234 spin_lock(&fs_info->defrag_inodes_lock); 235 p = fs_info->defrag_inodes.rb_node; 236 while (p) { 237 parent = p; 238 entry = rb_entry(parent, struct inode_defrag, rb_node); 239 240 ret = __compare_inode_defrag(&tmp, entry); 241 if (ret < 0) 242 p = parent->rb_left; 243 else if (ret > 0) 244 p = parent->rb_right; 245 else 246 goto out; 247 } 248 249 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 250 parent = rb_next(parent); 251 if (parent) 252 entry = rb_entry(parent, struct inode_defrag, rb_node); 253 else 254 entry = NULL; 255 } 256 out: 257 if (entry) 258 rb_erase(parent, &fs_info->defrag_inodes); 259 spin_unlock(&fs_info->defrag_inodes_lock); 260 return entry; 261 } 262 263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 264 { 265 struct inode_defrag *defrag; 266 struct rb_node *node; 267 268 spin_lock(&fs_info->defrag_inodes_lock); 269 node = rb_first(&fs_info->defrag_inodes); 270 while (node) { 271 rb_erase(node, &fs_info->defrag_inodes); 272 defrag = rb_entry(node, struct inode_defrag, rb_node); 273 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 274 275 if (need_resched()) { 276 spin_unlock(&fs_info->defrag_inodes_lock); 277 cond_resched(); 278 spin_lock(&fs_info->defrag_inodes_lock); 279 } 280 281 node = rb_first(&fs_info->defrag_inodes); 282 } 283 spin_unlock(&fs_info->defrag_inodes_lock); 284 } 285 286 #define BTRFS_DEFRAG_BATCH 1024 287 288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 289 struct inode_defrag *defrag) 290 { 291 struct btrfs_root *inode_root; 292 struct inode *inode; 293 struct btrfs_key key; 294 struct btrfs_ioctl_defrag_range_args range; 295 int num_defrag; 296 int index; 297 int ret; 298 299 /* get the inode */ 300 key.objectid = defrag->root; 301 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 302 key.offset = (u64)-1; 303 304 index = srcu_read_lock(&fs_info->subvol_srcu); 305 306 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 307 if (IS_ERR(inode_root)) { 308 ret = PTR_ERR(inode_root); 309 goto cleanup; 310 } 311 if (btrfs_root_refs(&inode_root->root_item) == 0) { 312 ret = -ENOENT; 313 goto cleanup; 314 } 315 316 key.objectid = defrag->ino; 317 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 318 key.offset = 0; 319 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 320 if (IS_ERR(inode)) { 321 ret = PTR_ERR(inode); 322 goto cleanup; 323 } 324 srcu_read_unlock(&fs_info->subvol_srcu, index); 325 326 /* do a chunk of defrag */ 327 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 328 memset(&range, 0, sizeof(range)); 329 range.len = (u64)-1; 330 range.start = defrag->last_offset; 331 332 sb_start_write(fs_info->sb); 333 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 334 BTRFS_DEFRAG_BATCH); 335 sb_end_write(fs_info->sb); 336 /* 337 * if we filled the whole defrag batch, there 338 * must be more work to do. Queue this defrag 339 * again 340 */ 341 if (num_defrag == BTRFS_DEFRAG_BATCH) { 342 defrag->last_offset = range.start; 343 btrfs_requeue_inode_defrag(inode, defrag); 344 } else if (defrag->last_offset && !defrag->cycled) { 345 /* 346 * we didn't fill our defrag batch, but 347 * we didn't start at zero. Make sure we loop 348 * around to the start of the file. 349 */ 350 defrag->last_offset = 0; 351 defrag->cycled = 1; 352 btrfs_requeue_inode_defrag(inode, defrag); 353 } else { 354 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 355 } 356 357 iput(inode); 358 return 0; 359 cleanup: 360 srcu_read_unlock(&fs_info->subvol_srcu, index); 361 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 362 return ret; 363 } 364 365 /* 366 * run through the list of inodes in the FS that need 367 * defragging 368 */ 369 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 370 { 371 struct inode_defrag *defrag; 372 u64 first_ino = 0; 373 u64 root_objectid = 0; 374 375 atomic_inc(&fs_info->defrag_running); 376 while(1) { 377 /* Pause the auto defragger. */ 378 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 379 &fs_info->fs_state)) 380 break; 381 382 if (!__need_auto_defrag(fs_info->tree_root)) 383 break; 384 385 /* find an inode to defrag */ 386 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 387 first_ino); 388 if (!defrag) { 389 if (root_objectid || first_ino) { 390 root_objectid = 0; 391 first_ino = 0; 392 continue; 393 } else { 394 break; 395 } 396 } 397 398 first_ino = defrag->ino + 1; 399 root_objectid = defrag->root; 400 401 __btrfs_run_defrag_inode(fs_info, defrag); 402 } 403 atomic_dec(&fs_info->defrag_running); 404 405 /* 406 * during unmount, we use the transaction_wait queue to 407 * wait for the defragger to stop 408 */ 409 wake_up(&fs_info->transaction_wait); 410 return 0; 411 } 412 413 /* simple helper to fault in pages and copy. This should go away 414 * and be replaced with calls into generic code. 415 */ 416 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages, 417 size_t write_bytes, 418 struct page **prepared_pages, 419 struct iov_iter *i) 420 { 421 size_t copied = 0; 422 size_t total_copied = 0; 423 int pg = 0; 424 int offset = pos & (PAGE_CACHE_SIZE - 1); 425 426 while (write_bytes > 0) { 427 size_t count = min_t(size_t, 428 PAGE_CACHE_SIZE - offset, write_bytes); 429 struct page *page = prepared_pages[pg]; 430 /* 431 * Copy data from userspace to the current page 432 * 433 * Disable pagefault to avoid recursive lock since 434 * the pages are already locked 435 */ 436 pagefault_disable(); 437 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 438 pagefault_enable(); 439 440 /* Flush processor's dcache for this page */ 441 flush_dcache_page(page); 442 443 /* 444 * if we get a partial write, we can end up with 445 * partially up to date pages. These add 446 * a lot of complexity, so make sure they don't 447 * happen by forcing this copy to be retried. 448 * 449 * The rest of the btrfs_file_write code will fall 450 * back to page at a time copies after we return 0. 451 */ 452 if (!PageUptodate(page) && copied < count) 453 copied = 0; 454 455 iov_iter_advance(i, copied); 456 write_bytes -= copied; 457 total_copied += copied; 458 459 /* Return to btrfs_file_aio_write to fault page */ 460 if (unlikely(copied == 0)) 461 break; 462 463 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) { 464 offset += copied; 465 } else { 466 pg++; 467 offset = 0; 468 } 469 } 470 return total_copied; 471 } 472 473 /* 474 * unlocks pages after btrfs_file_write is done with them 475 */ 476 void btrfs_drop_pages(struct page **pages, size_t num_pages) 477 { 478 size_t i; 479 for (i = 0; i < num_pages; i++) { 480 /* page checked is some magic around finding pages that 481 * have been modified without going through btrfs_set_page_dirty 482 * clear it here 483 */ 484 ClearPageChecked(pages[i]); 485 unlock_page(pages[i]); 486 mark_page_accessed(pages[i]); 487 page_cache_release(pages[i]); 488 } 489 } 490 491 /* 492 * after copy_from_user, pages need to be dirtied and we need to make 493 * sure holes are created between the current EOF and the start of 494 * any next extents (if required). 495 * 496 * this also makes the decision about creating an inline extent vs 497 * doing real data extents, marking pages dirty and delalloc as required. 498 */ 499 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, 500 struct page **pages, size_t num_pages, 501 loff_t pos, size_t write_bytes, 502 struct extent_state **cached) 503 { 504 int err = 0; 505 int i; 506 u64 num_bytes; 507 u64 start_pos; 508 u64 end_of_last_block; 509 u64 end_pos = pos + write_bytes; 510 loff_t isize = i_size_read(inode); 511 512 start_pos = pos & ~((u64)root->sectorsize - 1); 513 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize); 514 515 end_of_last_block = start_pos + num_bytes - 1; 516 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 517 cached); 518 if (err) 519 return err; 520 521 for (i = 0; i < num_pages; i++) { 522 struct page *p = pages[i]; 523 SetPageUptodate(p); 524 ClearPageChecked(p); 525 set_page_dirty(p); 526 } 527 528 /* 529 * we've only changed i_size in ram, and we haven't updated 530 * the disk i_size. There is no need to log the inode 531 * at this time. 532 */ 533 if (end_pos > isize) 534 i_size_write(inode, end_pos); 535 return 0; 536 } 537 538 /* 539 * this drops all the extents in the cache that intersect the range 540 * [start, end]. Existing extents are split as required. 541 */ 542 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, 543 int skip_pinned) 544 { 545 struct extent_map *em; 546 struct extent_map *split = NULL; 547 struct extent_map *split2 = NULL; 548 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 549 u64 len = end - start + 1; 550 u64 gen; 551 int ret; 552 int testend = 1; 553 unsigned long flags; 554 int compressed = 0; 555 556 WARN_ON(end < start); 557 if (end == (u64)-1) { 558 len = (u64)-1; 559 testend = 0; 560 } 561 while (1) { 562 int no_splits = 0; 563 564 if (!split) 565 split = alloc_extent_map(); 566 if (!split2) 567 split2 = alloc_extent_map(); 568 if (!split || !split2) 569 no_splits = 1; 570 571 write_lock(&em_tree->lock); 572 em = lookup_extent_mapping(em_tree, start, len); 573 if (!em) { 574 write_unlock(&em_tree->lock); 575 break; 576 } 577 flags = em->flags; 578 gen = em->generation; 579 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 580 if (testend && em->start + em->len >= start + len) { 581 free_extent_map(em); 582 write_unlock(&em_tree->lock); 583 break; 584 } 585 start = em->start + em->len; 586 if (testend) 587 len = start + len - (em->start + em->len); 588 free_extent_map(em); 589 write_unlock(&em_tree->lock); 590 continue; 591 } 592 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 593 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 594 clear_bit(EXTENT_FLAG_LOGGING, &flags); 595 remove_extent_mapping(em_tree, em); 596 if (no_splits) 597 goto next; 598 599 if (em->block_start < EXTENT_MAP_LAST_BYTE && 600 em->start < start) { 601 split->start = em->start; 602 split->len = start - em->start; 603 split->orig_start = em->orig_start; 604 split->block_start = em->block_start; 605 606 if (compressed) 607 split->block_len = em->block_len; 608 else 609 split->block_len = split->len; 610 split->orig_block_len = max(split->block_len, 611 em->orig_block_len); 612 split->generation = gen; 613 split->bdev = em->bdev; 614 split->flags = flags; 615 split->compress_type = em->compress_type; 616 ret = add_extent_mapping(em_tree, split); 617 BUG_ON(ret); /* Logic error */ 618 list_move(&split->list, &em_tree->modified_extents); 619 free_extent_map(split); 620 split = split2; 621 split2 = NULL; 622 } 623 if (em->block_start < EXTENT_MAP_LAST_BYTE && 624 testend && em->start + em->len > start + len) { 625 u64 diff = start + len - em->start; 626 627 split->start = start + len; 628 split->len = em->start + em->len - (start + len); 629 split->bdev = em->bdev; 630 split->flags = flags; 631 split->compress_type = em->compress_type; 632 split->generation = gen; 633 split->orig_block_len = max(em->block_len, 634 em->orig_block_len); 635 636 if (compressed) { 637 split->block_len = em->block_len; 638 split->block_start = em->block_start; 639 split->orig_start = em->orig_start; 640 } else { 641 split->block_len = split->len; 642 split->block_start = em->block_start + diff; 643 split->orig_start = em->orig_start; 644 } 645 646 ret = add_extent_mapping(em_tree, split); 647 BUG_ON(ret); /* Logic error */ 648 list_move(&split->list, &em_tree->modified_extents); 649 free_extent_map(split); 650 split = NULL; 651 } 652 next: 653 write_unlock(&em_tree->lock); 654 655 /* once for us */ 656 free_extent_map(em); 657 /* once for the tree*/ 658 free_extent_map(em); 659 } 660 if (split) 661 free_extent_map(split); 662 if (split2) 663 free_extent_map(split2); 664 } 665 666 /* 667 * this is very complex, but the basic idea is to drop all extents 668 * in the range start - end. hint_block is filled in with a block number 669 * that would be a good hint to the block allocator for this file. 670 * 671 * If an extent intersects the range but is not entirely inside the range 672 * it is either truncated or split. Anything entirely inside the range 673 * is deleted from the tree. 674 */ 675 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 676 struct btrfs_root *root, struct inode *inode, 677 struct btrfs_path *path, u64 start, u64 end, 678 u64 *drop_end, int drop_cache) 679 { 680 struct extent_buffer *leaf; 681 struct btrfs_file_extent_item *fi; 682 struct btrfs_key key; 683 struct btrfs_key new_key; 684 u64 ino = btrfs_ino(inode); 685 u64 search_start = start; 686 u64 disk_bytenr = 0; 687 u64 num_bytes = 0; 688 u64 extent_offset = 0; 689 u64 extent_end = 0; 690 int del_nr = 0; 691 int del_slot = 0; 692 int extent_type; 693 int recow; 694 int ret; 695 int modify_tree = -1; 696 int update_refs = (root->ref_cows || root == root->fs_info->tree_root); 697 int found = 0; 698 699 if (drop_cache) 700 btrfs_drop_extent_cache(inode, start, end - 1, 0); 701 702 if (start >= BTRFS_I(inode)->disk_i_size) 703 modify_tree = 0; 704 705 while (1) { 706 recow = 0; 707 ret = btrfs_lookup_file_extent(trans, root, path, ino, 708 search_start, modify_tree); 709 if (ret < 0) 710 break; 711 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 712 leaf = path->nodes[0]; 713 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 714 if (key.objectid == ino && 715 key.type == BTRFS_EXTENT_DATA_KEY) 716 path->slots[0]--; 717 } 718 ret = 0; 719 next_slot: 720 leaf = path->nodes[0]; 721 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 722 BUG_ON(del_nr > 0); 723 ret = btrfs_next_leaf(root, path); 724 if (ret < 0) 725 break; 726 if (ret > 0) { 727 ret = 0; 728 break; 729 } 730 leaf = path->nodes[0]; 731 recow = 1; 732 } 733 734 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 735 if (key.objectid > ino || 736 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 737 break; 738 739 fi = btrfs_item_ptr(leaf, path->slots[0], 740 struct btrfs_file_extent_item); 741 extent_type = btrfs_file_extent_type(leaf, fi); 742 743 if (extent_type == BTRFS_FILE_EXTENT_REG || 744 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 745 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 746 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 747 extent_offset = btrfs_file_extent_offset(leaf, fi); 748 extent_end = key.offset + 749 btrfs_file_extent_num_bytes(leaf, fi); 750 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 751 extent_end = key.offset + 752 btrfs_file_extent_inline_len(leaf, fi); 753 } else { 754 WARN_ON(1); 755 extent_end = search_start; 756 } 757 758 if (extent_end <= search_start) { 759 path->slots[0]++; 760 goto next_slot; 761 } 762 763 found = 1; 764 search_start = max(key.offset, start); 765 if (recow || !modify_tree) { 766 modify_tree = -1; 767 btrfs_release_path(path); 768 continue; 769 } 770 771 /* 772 * | - range to drop - | 773 * | -------- extent -------- | 774 */ 775 if (start > key.offset && end < extent_end) { 776 BUG_ON(del_nr > 0); 777 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); 778 779 memcpy(&new_key, &key, sizeof(new_key)); 780 new_key.offset = start; 781 ret = btrfs_duplicate_item(trans, root, path, 782 &new_key); 783 if (ret == -EAGAIN) { 784 btrfs_release_path(path); 785 continue; 786 } 787 if (ret < 0) 788 break; 789 790 leaf = path->nodes[0]; 791 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 792 struct btrfs_file_extent_item); 793 btrfs_set_file_extent_num_bytes(leaf, fi, 794 start - key.offset); 795 796 fi = btrfs_item_ptr(leaf, path->slots[0], 797 struct btrfs_file_extent_item); 798 799 extent_offset += start - key.offset; 800 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 801 btrfs_set_file_extent_num_bytes(leaf, fi, 802 extent_end - start); 803 btrfs_mark_buffer_dirty(leaf); 804 805 if (update_refs && disk_bytenr > 0) { 806 ret = btrfs_inc_extent_ref(trans, root, 807 disk_bytenr, num_bytes, 0, 808 root->root_key.objectid, 809 new_key.objectid, 810 start - extent_offset, 0); 811 BUG_ON(ret); /* -ENOMEM */ 812 } 813 key.offset = start; 814 } 815 /* 816 * | ---- range to drop ----- | 817 * | -------- extent -------- | 818 */ 819 if (start <= key.offset && end < extent_end) { 820 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); 821 822 memcpy(&new_key, &key, sizeof(new_key)); 823 new_key.offset = end; 824 btrfs_set_item_key_safe(trans, root, path, &new_key); 825 826 extent_offset += end - key.offset; 827 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 828 btrfs_set_file_extent_num_bytes(leaf, fi, 829 extent_end - end); 830 btrfs_mark_buffer_dirty(leaf); 831 if (update_refs && disk_bytenr > 0) 832 inode_sub_bytes(inode, end - key.offset); 833 break; 834 } 835 836 search_start = extent_end; 837 /* 838 * | ---- range to drop ----- | 839 * | -------- extent -------- | 840 */ 841 if (start > key.offset && end >= extent_end) { 842 BUG_ON(del_nr > 0); 843 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); 844 845 btrfs_set_file_extent_num_bytes(leaf, fi, 846 start - key.offset); 847 btrfs_mark_buffer_dirty(leaf); 848 if (update_refs && disk_bytenr > 0) 849 inode_sub_bytes(inode, extent_end - start); 850 if (end == extent_end) 851 break; 852 853 path->slots[0]++; 854 goto next_slot; 855 } 856 857 /* 858 * | ---- range to drop ----- | 859 * | ------ extent ------ | 860 */ 861 if (start <= key.offset && end >= extent_end) { 862 if (del_nr == 0) { 863 del_slot = path->slots[0]; 864 del_nr = 1; 865 } else { 866 BUG_ON(del_slot + del_nr != path->slots[0]); 867 del_nr++; 868 } 869 870 if (update_refs && 871 extent_type == BTRFS_FILE_EXTENT_INLINE) { 872 inode_sub_bytes(inode, 873 extent_end - key.offset); 874 extent_end = ALIGN(extent_end, 875 root->sectorsize); 876 } else if (update_refs && disk_bytenr > 0) { 877 ret = btrfs_free_extent(trans, root, 878 disk_bytenr, num_bytes, 0, 879 root->root_key.objectid, 880 key.objectid, key.offset - 881 extent_offset, 0); 882 BUG_ON(ret); /* -ENOMEM */ 883 inode_sub_bytes(inode, 884 extent_end - key.offset); 885 } 886 887 if (end == extent_end) 888 break; 889 890 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 891 path->slots[0]++; 892 goto next_slot; 893 } 894 895 ret = btrfs_del_items(trans, root, path, del_slot, 896 del_nr); 897 if (ret) { 898 btrfs_abort_transaction(trans, root, ret); 899 break; 900 } 901 902 del_nr = 0; 903 del_slot = 0; 904 905 btrfs_release_path(path); 906 continue; 907 } 908 909 BUG_ON(1); 910 } 911 912 if (!ret && del_nr > 0) { 913 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 914 if (ret) 915 btrfs_abort_transaction(trans, root, ret); 916 } 917 918 if (drop_end) 919 *drop_end = found ? min(end, extent_end) : end; 920 btrfs_release_path(path); 921 return ret; 922 } 923 924 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 925 struct btrfs_root *root, struct inode *inode, u64 start, 926 u64 end, int drop_cache) 927 { 928 struct btrfs_path *path; 929 int ret; 930 931 path = btrfs_alloc_path(); 932 if (!path) 933 return -ENOMEM; 934 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 935 drop_cache); 936 btrfs_free_path(path); 937 return ret; 938 } 939 940 static int extent_mergeable(struct extent_buffer *leaf, int slot, 941 u64 objectid, u64 bytenr, u64 orig_offset, 942 u64 *start, u64 *end) 943 { 944 struct btrfs_file_extent_item *fi; 945 struct btrfs_key key; 946 u64 extent_end; 947 948 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 949 return 0; 950 951 btrfs_item_key_to_cpu(leaf, &key, slot); 952 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 953 return 0; 954 955 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 956 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 957 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 958 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 959 btrfs_file_extent_compression(leaf, fi) || 960 btrfs_file_extent_encryption(leaf, fi) || 961 btrfs_file_extent_other_encoding(leaf, fi)) 962 return 0; 963 964 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 965 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 966 return 0; 967 968 *start = key.offset; 969 *end = extent_end; 970 return 1; 971 } 972 973 /* 974 * Mark extent in the range start - end as written. 975 * 976 * This changes extent type from 'pre-allocated' to 'regular'. If only 977 * part of extent is marked as written, the extent will be split into 978 * two or three. 979 */ 980 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 981 struct inode *inode, u64 start, u64 end) 982 { 983 struct btrfs_root *root = BTRFS_I(inode)->root; 984 struct extent_buffer *leaf; 985 struct btrfs_path *path; 986 struct btrfs_file_extent_item *fi; 987 struct btrfs_key key; 988 struct btrfs_key new_key; 989 u64 bytenr; 990 u64 num_bytes; 991 u64 extent_end; 992 u64 orig_offset; 993 u64 other_start; 994 u64 other_end; 995 u64 split; 996 int del_nr = 0; 997 int del_slot = 0; 998 int recow; 999 int ret; 1000 u64 ino = btrfs_ino(inode); 1001 1002 path = btrfs_alloc_path(); 1003 if (!path) 1004 return -ENOMEM; 1005 again: 1006 recow = 0; 1007 split = start; 1008 key.objectid = ino; 1009 key.type = BTRFS_EXTENT_DATA_KEY; 1010 key.offset = split; 1011 1012 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1013 if (ret < 0) 1014 goto out; 1015 if (ret > 0 && path->slots[0] > 0) 1016 path->slots[0]--; 1017 1018 leaf = path->nodes[0]; 1019 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1020 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY); 1021 fi = btrfs_item_ptr(leaf, path->slots[0], 1022 struct btrfs_file_extent_item); 1023 BUG_ON(btrfs_file_extent_type(leaf, fi) != 1024 BTRFS_FILE_EXTENT_PREALLOC); 1025 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1026 BUG_ON(key.offset > start || extent_end < end); 1027 1028 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1029 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1030 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1031 memcpy(&new_key, &key, sizeof(new_key)); 1032 1033 if (start == key.offset && end < extent_end) { 1034 other_start = 0; 1035 other_end = start; 1036 if (extent_mergeable(leaf, path->slots[0] - 1, 1037 ino, bytenr, orig_offset, 1038 &other_start, &other_end)) { 1039 new_key.offset = end; 1040 btrfs_set_item_key_safe(trans, root, path, &new_key); 1041 fi = btrfs_item_ptr(leaf, path->slots[0], 1042 struct btrfs_file_extent_item); 1043 btrfs_set_file_extent_generation(leaf, fi, 1044 trans->transid); 1045 btrfs_set_file_extent_num_bytes(leaf, fi, 1046 extent_end - end); 1047 btrfs_set_file_extent_offset(leaf, fi, 1048 end - orig_offset); 1049 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1050 struct btrfs_file_extent_item); 1051 btrfs_set_file_extent_generation(leaf, fi, 1052 trans->transid); 1053 btrfs_set_file_extent_num_bytes(leaf, fi, 1054 end - other_start); 1055 btrfs_mark_buffer_dirty(leaf); 1056 goto out; 1057 } 1058 } 1059 1060 if (start > key.offset && end == extent_end) { 1061 other_start = end; 1062 other_end = 0; 1063 if (extent_mergeable(leaf, path->slots[0] + 1, 1064 ino, bytenr, orig_offset, 1065 &other_start, &other_end)) { 1066 fi = btrfs_item_ptr(leaf, path->slots[0], 1067 struct btrfs_file_extent_item); 1068 btrfs_set_file_extent_num_bytes(leaf, fi, 1069 start - key.offset); 1070 btrfs_set_file_extent_generation(leaf, fi, 1071 trans->transid); 1072 path->slots[0]++; 1073 new_key.offset = start; 1074 btrfs_set_item_key_safe(trans, root, path, &new_key); 1075 1076 fi = btrfs_item_ptr(leaf, path->slots[0], 1077 struct btrfs_file_extent_item); 1078 btrfs_set_file_extent_generation(leaf, fi, 1079 trans->transid); 1080 btrfs_set_file_extent_num_bytes(leaf, fi, 1081 other_end - start); 1082 btrfs_set_file_extent_offset(leaf, fi, 1083 start - orig_offset); 1084 btrfs_mark_buffer_dirty(leaf); 1085 goto out; 1086 } 1087 } 1088 1089 while (start > key.offset || end < extent_end) { 1090 if (key.offset == start) 1091 split = end; 1092 1093 new_key.offset = split; 1094 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1095 if (ret == -EAGAIN) { 1096 btrfs_release_path(path); 1097 goto again; 1098 } 1099 if (ret < 0) { 1100 btrfs_abort_transaction(trans, root, ret); 1101 goto out; 1102 } 1103 1104 leaf = path->nodes[0]; 1105 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1106 struct btrfs_file_extent_item); 1107 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1108 btrfs_set_file_extent_num_bytes(leaf, fi, 1109 split - key.offset); 1110 1111 fi = btrfs_item_ptr(leaf, path->slots[0], 1112 struct btrfs_file_extent_item); 1113 1114 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1115 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1116 btrfs_set_file_extent_num_bytes(leaf, fi, 1117 extent_end - split); 1118 btrfs_mark_buffer_dirty(leaf); 1119 1120 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, 1121 root->root_key.objectid, 1122 ino, orig_offset, 0); 1123 BUG_ON(ret); /* -ENOMEM */ 1124 1125 if (split == start) { 1126 key.offset = start; 1127 } else { 1128 BUG_ON(start != key.offset); 1129 path->slots[0]--; 1130 extent_end = end; 1131 } 1132 recow = 1; 1133 } 1134 1135 other_start = end; 1136 other_end = 0; 1137 if (extent_mergeable(leaf, path->slots[0] + 1, 1138 ino, bytenr, orig_offset, 1139 &other_start, &other_end)) { 1140 if (recow) { 1141 btrfs_release_path(path); 1142 goto again; 1143 } 1144 extent_end = other_end; 1145 del_slot = path->slots[0] + 1; 1146 del_nr++; 1147 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1148 0, root->root_key.objectid, 1149 ino, orig_offset, 0); 1150 BUG_ON(ret); /* -ENOMEM */ 1151 } 1152 other_start = 0; 1153 other_end = start; 1154 if (extent_mergeable(leaf, path->slots[0] - 1, 1155 ino, bytenr, orig_offset, 1156 &other_start, &other_end)) { 1157 if (recow) { 1158 btrfs_release_path(path); 1159 goto again; 1160 } 1161 key.offset = other_start; 1162 del_slot = path->slots[0]; 1163 del_nr++; 1164 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1165 0, root->root_key.objectid, 1166 ino, orig_offset, 0); 1167 BUG_ON(ret); /* -ENOMEM */ 1168 } 1169 if (del_nr == 0) { 1170 fi = btrfs_item_ptr(leaf, path->slots[0], 1171 struct btrfs_file_extent_item); 1172 btrfs_set_file_extent_type(leaf, fi, 1173 BTRFS_FILE_EXTENT_REG); 1174 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1175 btrfs_mark_buffer_dirty(leaf); 1176 } else { 1177 fi = btrfs_item_ptr(leaf, del_slot - 1, 1178 struct btrfs_file_extent_item); 1179 btrfs_set_file_extent_type(leaf, fi, 1180 BTRFS_FILE_EXTENT_REG); 1181 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1182 btrfs_set_file_extent_num_bytes(leaf, fi, 1183 extent_end - key.offset); 1184 btrfs_mark_buffer_dirty(leaf); 1185 1186 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1187 if (ret < 0) { 1188 btrfs_abort_transaction(trans, root, ret); 1189 goto out; 1190 } 1191 } 1192 out: 1193 btrfs_free_path(path); 1194 return 0; 1195 } 1196 1197 /* 1198 * on error we return an unlocked page and the error value 1199 * on success we return a locked page and 0 1200 */ 1201 static int prepare_uptodate_page(struct page *page, u64 pos, 1202 bool force_uptodate) 1203 { 1204 int ret = 0; 1205 1206 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) && 1207 !PageUptodate(page)) { 1208 ret = btrfs_readpage(NULL, page); 1209 if (ret) 1210 return ret; 1211 lock_page(page); 1212 if (!PageUptodate(page)) { 1213 unlock_page(page); 1214 return -EIO; 1215 } 1216 } 1217 return 0; 1218 } 1219 1220 /* 1221 * this gets pages into the page cache and locks them down, it also properly 1222 * waits for data=ordered extents to finish before allowing the pages to be 1223 * modified. 1224 */ 1225 static noinline int prepare_pages(struct btrfs_root *root, struct file *file, 1226 struct page **pages, size_t num_pages, 1227 loff_t pos, unsigned long first_index, 1228 size_t write_bytes, bool force_uptodate) 1229 { 1230 struct extent_state *cached_state = NULL; 1231 int i; 1232 unsigned long index = pos >> PAGE_CACHE_SHIFT; 1233 struct inode *inode = file_inode(file); 1234 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1235 int err = 0; 1236 int faili = 0; 1237 u64 start_pos; 1238 u64 last_pos; 1239 1240 start_pos = pos & ~((u64)root->sectorsize - 1); 1241 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT; 1242 1243 again: 1244 for (i = 0; i < num_pages; i++) { 1245 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1246 mask | __GFP_WRITE); 1247 if (!pages[i]) { 1248 faili = i - 1; 1249 err = -ENOMEM; 1250 goto fail; 1251 } 1252 1253 if (i == 0) 1254 err = prepare_uptodate_page(pages[i], pos, 1255 force_uptodate); 1256 if (i == num_pages - 1) 1257 err = prepare_uptodate_page(pages[i], 1258 pos + write_bytes, false); 1259 if (err) { 1260 page_cache_release(pages[i]); 1261 faili = i - 1; 1262 goto fail; 1263 } 1264 wait_on_page_writeback(pages[i]); 1265 } 1266 err = 0; 1267 if (start_pos < inode->i_size) { 1268 struct btrfs_ordered_extent *ordered; 1269 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1270 start_pos, last_pos - 1, 0, &cached_state); 1271 ordered = btrfs_lookup_first_ordered_extent(inode, 1272 last_pos - 1); 1273 if (ordered && 1274 ordered->file_offset + ordered->len > start_pos && 1275 ordered->file_offset < last_pos) { 1276 btrfs_put_ordered_extent(ordered); 1277 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1278 start_pos, last_pos - 1, 1279 &cached_state, GFP_NOFS); 1280 for (i = 0; i < num_pages; i++) { 1281 unlock_page(pages[i]); 1282 page_cache_release(pages[i]); 1283 } 1284 btrfs_wait_ordered_range(inode, start_pos, 1285 last_pos - start_pos); 1286 goto again; 1287 } 1288 if (ordered) 1289 btrfs_put_ordered_extent(ordered); 1290 1291 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, 1292 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1293 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1294 0, 0, &cached_state, GFP_NOFS); 1295 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1296 start_pos, last_pos - 1, &cached_state, 1297 GFP_NOFS); 1298 } 1299 for (i = 0; i < num_pages; i++) { 1300 if (clear_page_dirty_for_io(pages[i])) 1301 account_page_redirty(pages[i]); 1302 set_page_extent_mapped(pages[i]); 1303 WARN_ON(!PageLocked(pages[i])); 1304 } 1305 return 0; 1306 fail: 1307 while (faili >= 0) { 1308 unlock_page(pages[faili]); 1309 page_cache_release(pages[faili]); 1310 faili--; 1311 } 1312 return err; 1313 1314 } 1315 1316 static noinline ssize_t __btrfs_buffered_write(struct file *file, 1317 struct iov_iter *i, 1318 loff_t pos) 1319 { 1320 struct inode *inode = file_inode(file); 1321 struct btrfs_root *root = BTRFS_I(inode)->root; 1322 struct page **pages = NULL; 1323 unsigned long first_index; 1324 size_t num_written = 0; 1325 int nrptrs; 1326 int ret = 0; 1327 bool force_page_uptodate = false; 1328 1329 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) / 1330 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE / 1331 (sizeof(struct page *))); 1332 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1333 nrptrs = max(nrptrs, 8); 1334 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL); 1335 if (!pages) 1336 return -ENOMEM; 1337 1338 first_index = pos >> PAGE_CACHE_SHIFT; 1339 1340 while (iov_iter_count(i) > 0) { 1341 size_t offset = pos & (PAGE_CACHE_SIZE - 1); 1342 size_t write_bytes = min(iov_iter_count(i), 1343 nrptrs * (size_t)PAGE_CACHE_SIZE - 1344 offset); 1345 size_t num_pages = (write_bytes + offset + 1346 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1347 size_t dirty_pages; 1348 size_t copied; 1349 1350 WARN_ON(num_pages > nrptrs); 1351 1352 /* 1353 * Fault pages before locking them in prepare_pages 1354 * to avoid recursive lock 1355 */ 1356 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1357 ret = -EFAULT; 1358 break; 1359 } 1360 1361 ret = btrfs_delalloc_reserve_space(inode, 1362 num_pages << PAGE_CACHE_SHIFT); 1363 if (ret) 1364 break; 1365 1366 /* 1367 * This is going to setup the pages array with the number of 1368 * pages we want, so we don't really need to worry about the 1369 * contents of pages from loop to loop 1370 */ 1371 ret = prepare_pages(root, file, pages, num_pages, 1372 pos, first_index, write_bytes, 1373 force_page_uptodate); 1374 if (ret) { 1375 btrfs_delalloc_release_space(inode, 1376 num_pages << PAGE_CACHE_SHIFT); 1377 break; 1378 } 1379 1380 copied = btrfs_copy_from_user(pos, num_pages, 1381 write_bytes, pages, i); 1382 1383 /* 1384 * if we have trouble faulting in the pages, fall 1385 * back to one page at a time 1386 */ 1387 if (copied < write_bytes) 1388 nrptrs = 1; 1389 1390 if (copied == 0) { 1391 force_page_uptodate = true; 1392 dirty_pages = 0; 1393 } else { 1394 force_page_uptodate = false; 1395 dirty_pages = (copied + offset + 1396 PAGE_CACHE_SIZE - 1) >> 1397 PAGE_CACHE_SHIFT; 1398 } 1399 1400 /* 1401 * If we had a short copy we need to release the excess delaloc 1402 * bytes we reserved. We need to increment outstanding_extents 1403 * because btrfs_delalloc_release_space will decrement it, but 1404 * we still have an outstanding extent for the chunk we actually 1405 * managed to copy. 1406 */ 1407 if (num_pages > dirty_pages) { 1408 if (copied > 0) { 1409 spin_lock(&BTRFS_I(inode)->lock); 1410 BTRFS_I(inode)->outstanding_extents++; 1411 spin_unlock(&BTRFS_I(inode)->lock); 1412 } 1413 btrfs_delalloc_release_space(inode, 1414 (num_pages - dirty_pages) << 1415 PAGE_CACHE_SHIFT); 1416 } 1417 1418 if (copied > 0) { 1419 ret = btrfs_dirty_pages(root, inode, pages, 1420 dirty_pages, pos, copied, 1421 NULL); 1422 if (ret) { 1423 btrfs_delalloc_release_space(inode, 1424 dirty_pages << PAGE_CACHE_SHIFT); 1425 btrfs_drop_pages(pages, num_pages); 1426 break; 1427 } 1428 } 1429 1430 btrfs_drop_pages(pages, num_pages); 1431 1432 cond_resched(); 1433 1434 balance_dirty_pages_ratelimited(inode->i_mapping); 1435 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1) 1436 btrfs_btree_balance_dirty(root); 1437 1438 pos += copied; 1439 num_written += copied; 1440 } 1441 1442 kfree(pages); 1443 1444 return num_written ? num_written : ret; 1445 } 1446 1447 static ssize_t __btrfs_direct_write(struct kiocb *iocb, 1448 const struct iovec *iov, 1449 unsigned long nr_segs, loff_t pos, 1450 loff_t *ppos, size_t count, size_t ocount) 1451 { 1452 struct file *file = iocb->ki_filp; 1453 struct iov_iter i; 1454 ssize_t written; 1455 ssize_t written_buffered; 1456 loff_t endbyte; 1457 int err; 1458 1459 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos, 1460 count, ocount); 1461 1462 if (written < 0 || written == count) 1463 return written; 1464 1465 pos += written; 1466 count -= written; 1467 iov_iter_init(&i, iov, nr_segs, count, written); 1468 written_buffered = __btrfs_buffered_write(file, &i, pos); 1469 if (written_buffered < 0) { 1470 err = written_buffered; 1471 goto out; 1472 } 1473 endbyte = pos + written_buffered - 1; 1474 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 1475 if (err) 1476 goto out; 1477 written += written_buffered; 1478 *ppos = pos + written_buffered; 1479 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT, 1480 endbyte >> PAGE_CACHE_SHIFT); 1481 out: 1482 return written ? written : err; 1483 } 1484 1485 static void update_time_for_write(struct inode *inode) 1486 { 1487 struct timespec now; 1488 1489 if (IS_NOCMTIME(inode)) 1490 return; 1491 1492 now = current_fs_time(inode->i_sb); 1493 if (!timespec_equal(&inode->i_mtime, &now)) 1494 inode->i_mtime = now; 1495 1496 if (!timespec_equal(&inode->i_ctime, &now)) 1497 inode->i_ctime = now; 1498 1499 if (IS_I_VERSION(inode)) 1500 inode_inc_iversion(inode); 1501 } 1502 1503 static ssize_t btrfs_file_aio_write(struct kiocb *iocb, 1504 const struct iovec *iov, 1505 unsigned long nr_segs, loff_t pos) 1506 { 1507 struct file *file = iocb->ki_filp; 1508 struct inode *inode = file_inode(file); 1509 struct btrfs_root *root = BTRFS_I(inode)->root; 1510 loff_t *ppos = &iocb->ki_pos; 1511 u64 start_pos; 1512 ssize_t num_written = 0; 1513 ssize_t err = 0; 1514 size_t count, ocount; 1515 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1516 1517 sb_start_write(inode->i_sb); 1518 1519 mutex_lock(&inode->i_mutex); 1520 1521 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 1522 if (err) { 1523 mutex_unlock(&inode->i_mutex); 1524 goto out; 1525 } 1526 count = ocount; 1527 1528 current->backing_dev_info = inode->i_mapping->backing_dev_info; 1529 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 1530 if (err) { 1531 mutex_unlock(&inode->i_mutex); 1532 goto out; 1533 } 1534 1535 if (count == 0) { 1536 mutex_unlock(&inode->i_mutex); 1537 goto out; 1538 } 1539 1540 err = file_remove_suid(file); 1541 if (err) { 1542 mutex_unlock(&inode->i_mutex); 1543 goto out; 1544 } 1545 1546 /* 1547 * If BTRFS flips readonly due to some impossible error 1548 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1549 * although we have opened a file as writable, we have 1550 * to stop this write operation to ensure FS consistency. 1551 */ 1552 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1553 mutex_unlock(&inode->i_mutex); 1554 err = -EROFS; 1555 goto out; 1556 } 1557 1558 /* 1559 * We reserve space for updating the inode when we reserve space for the 1560 * extent we are going to write, so we will enospc out there. We don't 1561 * need to start yet another transaction to update the inode as we will 1562 * update the inode when we finish writing whatever data we write. 1563 */ 1564 update_time_for_write(inode); 1565 1566 start_pos = round_down(pos, root->sectorsize); 1567 if (start_pos > i_size_read(inode)) { 1568 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos); 1569 if (err) { 1570 mutex_unlock(&inode->i_mutex); 1571 goto out; 1572 } 1573 } 1574 1575 if (sync) 1576 atomic_inc(&BTRFS_I(inode)->sync_writers); 1577 1578 if (unlikely(file->f_flags & O_DIRECT)) { 1579 num_written = __btrfs_direct_write(iocb, iov, nr_segs, 1580 pos, ppos, count, ocount); 1581 } else { 1582 struct iov_iter i; 1583 1584 iov_iter_init(&i, iov, nr_segs, count, num_written); 1585 1586 num_written = __btrfs_buffered_write(file, &i, pos); 1587 if (num_written > 0) 1588 *ppos = pos + num_written; 1589 } 1590 1591 mutex_unlock(&inode->i_mutex); 1592 1593 /* 1594 * we want to make sure fsync finds this change 1595 * but we haven't joined a transaction running right now. 1596 * 1597 * Later on, someone is sure to update the inode and get the 1598 * real transid recorded. 1599 * 1600 * We set last_trans now to the fs_info generation + 1, 1601 * this will either be one more than the running transaction 1602 * or the generation used for the next transaction if there isn't 1603 * one running right now. 1604 * 1605 * We also have to set last_sub_trans to the current log transid, 1606 * otherwise subsequent syncs to a file that's been synced in this 1607 * transaction will appear to have already occured. 1608 */ 1609 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1; 1610 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1611 if (num_written > 0 || num_written == -EIOCBQUEUED) { 1612 err = generic_write_sync(file, pos, num_written); 1613 if (err < 0 && num_written > 0) 1614 num_written = err; 1615 } 1616 1617 if (sync) 1618 atomic_dec(&BTRFS_I(inode)->sync_writers); 1619 out: 1620 sb_end_write(inode->i_sb); 1621 current->backing_dev_info = NULL; 1622 return num_written ? num_written : err; 1623 } 1624 1625 int btrfs_release_file(struct inode *inode, struct file *filp) 1626 { 1627 /* 1628 * ordered_data_close is set by settattr when we are about to truncate 1629 * a file from a non-zero size to a zero size. This tries to 1630 * flush down new bytes that may have been written if the 1631 * application were using truncate to replace a file in place. 1632 */ 1633 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 1634 &BTRFS_I(inode)->runtime_flags)) { 1635 struct btrfs_trans_handle *trans; 1636 struct btrfs_root *root = BTRFS_I(inode)->root; 1637 1638 /* 1639 * We need to block on a committing transaction to keep us from 1640 * throwing a ordered operation on to the list and causing 1641 * something like sync to deadlock trying to flush out this 1642 * inode. 1643 */ 1644 trans = btrfs_start_transaction(root, 0); 1645 if (IS_ERR(trans)) 1646 return PTR_ERR(trans); 1647 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode); 1648 btrfs_end_transaction(trans, root); 1649 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 1650 filemap_flush(inode->i_mapping); 1651 } 1652 if (filp->private_data) 1653 btrfs_ioctl_trans_end(filp); 1654 return 0; 1655 } 1656 1657 /* 1658 * fsync call for both files and directories. This logs the inode into 1659 * the tree log instead of forcing full commits whenever possible. 1660 * 1661 * It needs to call filemap_fdatawait so that all ordered extent updates are 1662 * in the metadata btree are up to date for copying to the log. 1663 * 1664 * It drops the inode mutex before doing the tree log commit. This is an 1665 * important optimization for directories because holding the mutex prevents 1666 * new operations on the dir while we write to disk. 1667 */ 1668 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1669 { 1670 struct dentry *dentry = file->f_path.dentry; 1671 struct inode *inode = dentry->d_inode; 1672 struct btrfs_root *root = BTRFS_I(inode)->root; 1673 int ret = 0; 1674 struct btrfs_trans_handle *trans; 1675 bool full_sync = 0; 1676 1677 trace_btrfs_sync_file(file, datasync); 1678 1679 /* 1680 * We write the dirty pages in the range and wait until they complete 1681 * out of the ->i_mutex. If so, we can flush the dirty pages by 1682 * multi-task, and make the performance up. See 1683 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1684 */ 1685 atomic_inc(&BTRFS_I(inode)->sync_writers); 1686 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 1687 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1688 &BTRFS_I(inode)->runtime_flags)) 1689 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 1690 atomic_dec(&BTRFS_I(inode)->sync_writers); 1691 if (ret) 1692 return ret; 1693 1694 mutex_lock(&inode->i_mutex); 1695 1696 /* 1697 * We flush the dirty pages again to avoid some dirty pages in the 1698 * range being left. 1699 */ 1700 atomic_inc(&root->log_batch); 1701 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1702 &BTRFS_I(inode)->runtime_flags); 1703 if (full_sync) 1704 btrfs_wait_ordered_range(inode, start, end - start + 1); 1705 atomic_inc(&root->log_batch); 1706 1707 /* 1708 * check the transaction that last modified this inode 1709 * and see if its already been committed 1710 */ 1711 if (!BTRFS_I(inode)->last_trans) { 1712 mutex_unlock(&inode->i_mutex); 1713 goto out; 1714 } 1715 1716 /* 1717 * if the last transaction that changed this file was before 1718 * the current transaction, we can bail out now without any 1719 * syncing 1720 */ 1721 smp_mb(); 1722 if (btrfs_inode_in_log(inode, root->fs_info->generation) || 1723 BTRFS_I(inode)->last_trans <= 1724 root->fs_info->last_trans_committed) { 1725 BTRFS_I(inode)->last_trans = 0; 1726 1727 /* 1728 * We'v had everything committed since the last time we were 1729 * modified so clear this flag in case it was set for whatever 1730 * reason, it's no longer relevant. 1731 */ 1732 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1733 &BTRFS_I(inode)->runtime_flags); 1734 mutex_unlock(&inode->i_mutex); 1735 goto out; 1736 } 1737 1738 /* 1739 * ok we haven't committed the transaction yet, lets do a commit 1740 */ 1741 if (file->private_data) 1742 btrfs_ioctl_trans_end(file); 1743 1744 trans = btrfs_start_transaction(root, 0); 1745 if (IS_ERR(trans)) { 1746 ret = PTR_ERR(trans); 1747 mutex_unlock(&inode->i_mutex); 1748 goto out; 1749 } 1750 1751 ret = btrfs_log_dentry_safe(trans, root, dentry); 1752 if (ret < 0) { 1753 mutex_unlock(&inode->i_mutex); 1754 goto out; 1755 } 1756 1757 /* we've logged all the items and now have a consistent 1758 * version of the file in the log. It is possible that 1759 * someone will come in and modify the file, but that's 1760 * fine because the log is consistent on disk, and we 1761 * have references to all of the file's extents 1762 * 1763 * It is possible that someone will come in and log the 1764 * file again, but that will end up using the synchronization 1765 * inside btrfs_sync_log to keep things safe. 1766 */ 1767 mutex_unlock(&inode->i_mutex); 1768 1769 if (ret != BTRFS_NO_LOG_SYNC) { 1770 if (ret > 0) { 1771 /* 1772 * If we didn't already wait for ordered extents we need 1773 * to do that now. 1774 */ 1775 if (!full_sync) 1776 btrfs_wait_ordered_range(inode, start, 1777 end - start + 1); 1778 ret = btrfs_commit_transaction(trans, root); 1779 } else { 1780 ret = btrfs_sync_log(trans, root); 1781 if (ret == 0) { 1782 ret = btrfs_end_transaction(trans, root); 1783 } else { 1784 if (!full_sync) 1785 btrfs_wait_ordered_range(inode, start, 1786 end - 1787 start + 1); 1788 ret = btrfs_commit_transaction(trans, root); 1789 } 1790 } 1791 } else { 1792 ret = btrfs_end_transaction(trans, root); 1793 } 1794 out: 1795 return ret > 0 ? -EIO : ret; 1796 } 1797 1798 static const struct vm_operations_struct btrfs_file_vm_ops = { 1799 .fault = filemap_fault, 1800 .page_mkwrite = btrfs_page_mkwrite, 1801 .remap_pages = generic_file_remap_pages, 1802 }; 1803 1804 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 1805 { 1806 struct address_space *mapping = filp->f_mapping; 1807 1808 if (!mapping->a_ops->readpage) 1809 return -ENOEXEC; 1810 1811 file_accessed(filp); 1812 vma->vm_ops = &btrfs_file_vm_ops; 1813 1814 return 0; 1815 } 1816 1817 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf, 1818 int slot, u64 start, u64 end) 1819 { 1820 struct btrfs_file_extent_item *fi; 1821 struct btrfs_key key; 1822 1823 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1824 return 0; 1825 1826 btrfs_item_key_to_cpu(leaf, &key, slot); 1827 if (key.objectid != btrfs_ino(inode) || 1828 key.type != BTRFS_EXTENT_DATA_KEY) 1829 return 0; 1830 1831 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1832 1833 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 1834 return 0; 1835 1836 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 1837 return 0; 1838 1839 if (key.offset == end) 1840 return 1; 1841 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 1842 return 1; 1843 return 0; 1844 } 1845 1846 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode, 1847 struct btrfs_path *path, u64 offset, u64 end) 1848 { 1849 struct btrfs_root *root = BTRFS_I(inode)->root; 1850 struct extent_buffer *leaf; 1851 struct btrfs_file_extent_item *fi; 1852 struct extent_map *hole_em; 1853 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1854 struct btrfs_key key; 1855 int ret; 1856 1857 key.objectid = btrfs_ino(inode); 1858 key.type = BTRFS_EXTENT_DATA_KEY; 1859 key.offset = offset; 1860 1861 1862 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1863 if (ret < 0) 1864 return ret; 1865 BUG_ON(!ret); 1866 1867 leaf = path->nodes[0]; 1868 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) { 1869 u64 num_bytes; 1870 1871 path->slots[0]--; 1872 fi = btrfs_item_ptr(leaf, path->slots[0], 1873 struct btrfs_file_extent_item); 1874 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 1875 end - offset; 1876 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1877 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 1878 btrfs_set_file_extent_offset(leaf, fi, 0); 1879 btrfs_mark_buffer_dirty(leaf); 1880 goto out; 1881 } 1882 1883 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) { 1884 u64 num_bytes; 1885 1886 path->slots[0]++; 1887 key.offset = offset; 1888 btrfs_set_item_key_safe(trans, root, path, &key); 1889 fi = btrfs_item_ptr(leaf, path->slots[0], 1890 struct btrfs_file_extent_item); 1891 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 1892 offset; 1893 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1894 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 1895 btrfs_set_file_extent_offset(leaf, fi, 0); 1896 btrfs_mark_buffer_dirty(leaf); 1897 goto out; 1898 } 1899 btrfs_release_path(path); 1900 1901 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 1902 0, 0, end - offset, 0, end - offset, 1903 0, 0, 0); 1904 if (ret) 1905 return ret; 1906 1907 out: 1908 btrfs_release_path(path); 1909 1910 hole_em = alloc_extent_map(); 1911 if (!hole_em) { 1912 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 1913 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1914 &BTRFS_I(inode)->runtime_flags); 1915 } else { 1916 hole_em->start = offset; 1917 hole_em->len = end - offset; 1918 hole_em->orig_start = offset; 1919 1920 hole_em->block_start = EXTENT_MAP_HOLE; 1921 hole_em->block_len = 0; 1922 hole_em->orig_block_len = 0; 1923 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 1924 hole_em->compress_type = BTRFS_COMPRESS_NONE; 1925 hole_em->generation = trans->transid; 1926 1927 do { 1928 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 1929 write_lock(&em_tree->lock); 1930 ret = add_extent_mapping(em_tree, hole_em); 1931 if (!ret) 1932 list_move(&hole_em->list, 1933 &em_tree->modified_extents); 1934 write_unlock(&em_tree->lock); 1935 } while (ret == -EEXIST); 1936 free_extent_map(hole_em); 1937 if (ret) 1938 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1939 &BTRFS_I(inode)->runtime_flags); 1940 } 1941 1942 return 0; 1943 } 1944 1945 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 1946 { 1947 struct btrfs_root *root = BTRFS_I(inode)->root; 1948 struct extent_state *cached_state = NULL; 1949 struct btrfs_path *path; 1950 struct btrfs_block_rsv *rsv; 1951 struct btrfs_trans_handle *trans; 1952 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize); 1953 u64 lockend = round_down(offset + len, 1954 BTRFS_I(inode)->root->sectorsize) - 1; 1955 u64 cur_offset = lockstart; 1956 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 1957 u64 drop_end; 1958 int ret = 0; 1959 int err = 0; 1960 bool same_page = ((offset >> PAGE_CACHE_SHIFT) == 1961 ((offset + len - 1) >> PAGE_CACHE_SHIFT)); 1962 1963 btrfs_wait_ordered_range(inode, offset, len); 1964 1965 mutex_lock(&inode->i_mutex); 1966 /* 1967 * We needn't truncate any page which is beyond the end of the file 1968 * because we are sure there is no data there. 1969 */ 1970 /* 1971 * Only do this if we are in the same page and we aren't doing the 1972 * entire page. 1973 */ 1974 if (same_page && len < PAGE_CACHE_SIZE) { 1975 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) 1976 ret = btrfs_truncate_page(inode, offset, len, 0); 1977 mutex_unlock(&inode->i_mutex); 1978 return ret; 1979 } 1980 1981 /* zero back part of the first page */ 1982 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) { 1983 ret = btrfs_truncate_page(inode, offset, 0, 0); 1984 if (ret) { 1985 mutex_unlock(&inode->i_mutex); 1986 return ret; 1987 } 1988 } 1989 1990 /* zero the front end of the last page */ 1991 if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) { 1992 ret = btrfs_truncate_page(inode, offset + len, 0, 1); 1993 if (ret) { 1994 mutex_unlock(&inode->i_mutex); 1995 return ret; 1996 } 1997 } 1998 1999 if (lockend < lockstart) { 2000 mutex_unlock(&inode->i_mutex); 2001 return 0; 2002 } 2003 2004 while (1) { 2005 struct btrfs_ordered_extent *ordered; 2006 2007 truncate_pagecache_range(inode, lockstart, lockend); 2008 2009 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2010 0, &cached_state); 2011 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2012 2013 /* 2014 * We need to make sure we have no ordered extents in this range 2015 * and nobody raced in and read a page in this range, if we did 2016 * we need to try again. 2017 */ 2018 if ((!ordered || 2019 (ordered->file_offset + ordered->len < lockstart || 2020 ordered->file_offset > lockend)) && 2021 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart, 2022 lockend, EXTENT_UPTODATE, 0, 2023 cached_state)) { 2024 if (ordered) 2025 btrfs_put_ordered_extent(ordered); 2026 break; 2027 } 2028 if (ordered) 2029 btrfs_put_ordered_extent(ordered); 2030 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2031 lockend, &cached_state, GFP_NOFS); 2032 btrfs_wait_ordered_range(inode, lockstart, 2033 lockend - lockstart + 1); 2034 } 2035 2036 path = btrfs_alloc_path(); 2037 if (!path) { 2038 ret = -ENOMEM; 2039 goto out; 2040 } 2041 2042 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2043 if (!rsv) { 2044 ret = -ENOMEM; 2045 goto out_free; 2046 } 2047 rsv->size = btrfs_calc_trunc_metadata_size(root, 1); 2048 rsv->failfast = 1; 2049 2050 /* 2051 * 1 - update the inode 2052 * 1 - removing the extents in the range 2053 * 1 - adding the hole extent 2054 */ 2055 trans = btrfs_start_transaction(root, 3); 2056 if (IS_ERR(trans)) { 2057 err = PTR_ERR(trans); 2058 goto out_free; 2059 } 2060 2061 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 2062 min_size); 2063 BUG_ON(ret); 2064 trans->block_rsv = rsv; 2065 2066 while (cur_offset < lockend) { 2067 ret = __btrfs_drop_extents(trans, root, inode, path, 2068 cur_offset, lockend + 1, 2069 &drop_end, 1); 2070 if (ret != -ENOSPC) 2071 break; 2072 2073 trans->block_rsv = &root->fs_info->trans_block_rsv; 2074 2075 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2076 if (ret) { 2077 err = ret; 2078 break; 2079 } 2080 2081 cur_offset = drop_end; 2082 2083 ret = btrfs_update_inode(trans, root, inode); 2084 if (ret) { 2085 err = ret; 2086 break; 2087 } 2088 2089 btrfs_end_transaction(trans, root); 2090 btrfs_btree_balance_dirty(root); 2091 2092 trans = btrfs_start_transaction(root, 3); 2093 if (IS_ERR(trans)) { 2094 ret = PTR_ERR(trans); 2095 trans = NULL; 2096 break; 2097 } 2098 2099 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 2100 rsv, min_size); 2101 BUG_ON(ret); /* shouldn't happen */ 2102 trans->block_rsv = rsv; 2103 } 2104 2105 if (ret) { 2106 err = ret; 2107 goto out_trans; 2108 } 2109 2110 trans->block_rsv = &root->fs_info->trans_block_rsv; 2111 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2112 if (ret) { 2113 err = ret; 2114 goto out_trans; 2115 } 2116 2117 out_trans: 2118 if (!trans) 2119 goto out_free; 2120 2121 inode_inc_iversion(inode); 2122 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2123 2124 trans->block_rsv = &root->fs_info->trans_block_rsv; 2125 ret = btrfs_update_inode(trans, root, inode); 2126 btrfs_end_transaction(trans, root); 2127 btrfs_btree_balance_dirty(root); 2128 out_free: 2129 btrfs_free_path(path); 2130 btrfs_free_block_rsv(root, rsv); 2131 out: 2132 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2133 &cached_state, GFP_NOFS); 2134 mutex_unlock(&inode->i_mutex); 2135 if (ret && !err) 2136 err = ret; 2137 return err; 2138 } 2139 2140 static long btrfs_fallocate(struct file *file, int mode, 2141 loff_t offset, loff_t len) 2142 { 2143 struct inode *inode = file_inode(file); 2144 struct extent_state *cached_state = NULL; 2145 struct btrfs_root *root = BTRFS_I(inode)->root; 2146 u64 cur_offset; 2147 u64 last_byte; 2148 u64 alloc_start; 2149 u64 alloc_end; 2150 u64 alloc_hint = 0; 2151 u64 locked_end; 2152 struct extent_map *em; 2153 int blocksize = BTRFS_I(inode)->root->sectorsize; 2154 int ret; 2155 2156 alloc_start = round_down(offset, blocksize); 2157 alloc_end = round_up(offset + len, blocksize); 2158 2159 /* Make sure we aren't being give some crap mode */ 2160 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2161 return -EOPNOTSUPP; 2162 2163 if (mode & FALLOC_FL_PUNCH_HOLE) 2164 return btrfs_punch_hole(inode, offset, len); 2165 2166 /* 2167 * Make sure we have enough space before we do the 2168 * allocation. 2169 */ 2170 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start); 2171 if (ret) 2172 return ret; 2173 if (root->fs_info->quota_enabled) { 2174 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start); 2175 if (ret) 2176 goto out_reserve_fail; 2177 } 2178 2179 /* 2180 * wait for ordered IO before we have any locks. We'll loop again 2181 * below with the locks held. 2182 */ 2183 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start); 2184 2185 mutex_lock(&inode->i_mutex); 2186 ret = inode_newsize_ok(inode, alloc_end); 2187 if (ret) 2188 goto out; 2189 2190 if (alloc_start > inode->i_size) { 2191 ret = btrfs_cont_expand(inode, i_size_read(inode), 2192 alloc_start); 2193 if (ret) 2194 goto out; 2195 } 2196 2197 locked_end = alloc_end - 1; 2198 while (1) { 2199 struct btrfs_ordered_extent *ordered; 2200 2201 /* the extent lock is ordered inside the running 2202 * transaction 2203 */ 2204 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 2205 locked_end, 0, &cached_state); 2206 ordered = btrfs_lookup_first_ordered_extent(inode, 2207 alloc_end - 1); 2208 if (ordered && 2209 ordered->file_offset + ordered->len > alloc_start && 2210 ordered->file_offset < alloc_end) { 2211 btrfs_put_ordered_extent(ordered); 2212 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 2213 alloc_start, locked_end, 2214 &cached_state, GFP_NOFS); 2215 /* 2216 * we can't wait on the range with the transaction 2217 * running or with the extent lock held 2218 */ 2219 btrfs_wait_ordered_range(inode, alloc_start, 2220 alloc_end - alloc_start); 2221 } else { 2222 if (ordered) 2223 btrfs_put_ordered_extent(ordered); 2224 break; 2225 } 2226 } 2227 2228 cur_offset = alloc_start; 2229 while (1) { 2230 u64 actual_end; 2231 2232 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2233 alloc_end - cur_offset, 0); 2234 if (IS_ERR_OR_NULL(em)) { 2235 if (!em) 2236 ret = -ENOMEM; 2237 else 2238 ret = PTR_ERR(em); 2239 break; 2240 } 2241 last_byte = min(extent_map_end(em), alloc_end); 2242 actual_end = min_t(u64, extent_map_end(em), offset + len); 2243 last_byte = ALIGN(last_byte, blocksize); 2244 2245 if (em->block_start == EXTENT_MAP_HOLE || 2246 (cur_offset >= inode->i_size && 2247 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 2248 ret = btrfs_prealloc_file_range(inode, mode, cur_offset, 2249 last_byte - cur_offset, 2250 1 << inode->i_blkbits, 2251 offset + len, 2252 &alloc_hint); 2253 2254 if (ret < 0) { 2255 free_extent_map(em); 2256 break; 2257 } 2258 } else if (actual_end > inode->i_size && 2259 !(mode & FALLOC_FL_KEEP_SIZE)) { 2260 /* 2261 * We didn't need to allocate any more space, but we 2262 * still extended the size of the file so we need to 2263 * update i_size. 2264 */ 2265 inode->i_ctime = CURRENT_TIME; 2266 i_size_write(inode, actual_end); 2267 btrfs_ordered_update_i_size(inode, actual_end, NULL); 2268 } 2269 free_extent_map(em); 2270 2271 cur_offset = last_byte; 2272 if (cur_offset >= alloc_end) { 2273 ret = 0; 2274 break; 2275 } 2276 } 2277 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 2278 &cached_state, GFP_NOFS); 2279 out: 2280 mutex_unlock(&inode->i_mutex); 2281 if (root->fs_info->quota_enabled) 2282 btrfs_qgroup_free(root, alloc_end - alloc_start); 2283 out_reserve_fail: 2284 /* Let go of our reservation. */ 2285 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start); 2286 return ret; 2287 } 2288 2289 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 2290 { 2291 struct btrfs_root *root = BTRFS_I(inode)->root; 2292 struct extent_map *em; 2293 struct extent_state *cached_state = NULL; 2294 u64 lockstart = *offset; 2295 u64 lockend = i_size_read(inode); 2296 u64 start = *offset; 2297 u64 orig_start = *offset; 2298 u64 len = i_size_read(inode); 2299 u64 last_end = 0; 2300 int ret = 0; 2301 2302 lockend = max_t(u64, root->sectorsize, lockend); 2303 if (lockend <= lockstart) 2304 lockend = lockstart + root->sectorsize; 2305 2306 lockend--; 2307 len = lockend - lockstart + 1; 2308 2309 len = max_t(u64, len, root->sectorsize); 2310 if (inode->i_size == 0) 2311 return -ENXIO; 2312 2313 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0, 2314 &cached_state); 2315 2316 /* 2317 * Delalloc is such a pain. If we have a hole and we have pending 2318 * delalloc for a portion of the hole we will get back a hole that 2319 * exists for the entire range since it hasn't been actually written 2320 * yet. So to take care of this case we need to look for an extent just 2321 * before the position we want in case there is outstanding delalloc 2322 * going on here. 2323 */ 2324 if (whence == SEEK_HOLE && start != 0) { 2325 if (start <= root->sectorsize) 2326 em = btrfs_get_extent_fiemap(inode, NULL, 0, 0, 2327 root->sectorsize, 0); 2328 else 2329 em = btrfs_get_extent_fiemap(inode, NULL, 0, 2330 start - root->sectorsize, 2331 root->sectorsize, 0); 2332 if (IS_ERR(em)) { 2333 ret = PTR_ERR(em); 2334 goto out; 2335 } 2336 last_end = em->start + em->len; 2337 if (em->block_start == EXTENT_MAP_DELALLOC) 2338 last_end = min_t(u64, last_end, inode->i_size); 2339 free_extent_map(em); 2340 } 2341 2342 while (1) { 2343 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0); 2344 if (IS_ERR(em)) { 2345 ret = PTR_ERR(em); 2346 break; 2347 } 2348 2349 if (em->block_start == EXTENT_MAP_HOLE) { 2350 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { 2351 if (last_end <= orig_start) { 2352 free_extent_map(em); 2353 ret = -ENXIO; 2354 break; 2355 } 2356 } 2357 2358 if (whence == SEEK_HOLE) { 2359 *offset = start; 2360 free_extent_map(em); 2361 break; 2362 } 2363 } else { 2364 if (whence == SEEK_DATA) { 2365 if (em->block_start == EXTENT_MAP_DELALLOC) { 2366 if (start >= inode->i_size) { 2367 free_extent_map(em); 2368 ret = -ENXIO; 2369 break; 2370 } 2371 } 2372 2373 if (!test_bit(EXTENT_FLAG_PREALLOC, 2374 &em->flags)) { 2375 *offset = start; 2376 free_extent_map(em); 2377 break; 2378 } 2379 } 2380 } 2381 2382 start = em->start + em->len; 2383 last_end = em->start + em->len; 2384 2385 if (em->block_start == EXTENT_MAP_DELALLOC) 2386 last_end = min_t(u64, last_end, inode->i_size); 2387 2388 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { 2389 free_extent_map(em); 2390 ret = -ENXIO; 2391 break; 2392 } 2393 free_extent_map(em); 2394 cond_resched(); 2395 } 2396 if (!ret) 2397 *offset = min(*offset, inode->i_size); 2398 out: 2399 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2400 &cached_state, GFP_NOFS); 2401 return ret; 2402 } 2403 2404 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 2405 { 2406 struct inode *inode = file->f_mapping->host; 2407 int ret; 2408 2409 mutex_lock(&inode->i_mutex); 2410 switch (whence) { 2411 case SEEK_END: 2412 case SEEK_CUR: 2413 offset = generic_file_llseek(file, offset, whence); 2414 goto out; 2415 case SEEK_DATA: 2416 case SEEK_HOLE: 2417 if (offset >= i_size_read(inode)) { 2418 mutex_unlock(&inode->i_mutex); 2419 return -ENXIO; 2420 } 2421 2422 ret = find_desired_extent(inode, &offset, whence); 2423 if (ret) { 2424 mutex_unlock(&inode->i_mutex); 2425 return ret; 2426 } 2427 } 2428 2429 if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) { 2430 offset = -EINVAL; 2431 goto out; 2432 } 2433 if (offset > inode->i_sb->s_maxbytes) { 2434 offset = -EINVAL; 2435 goto out; 2436 } 2437 2438 /* Special lock needed here? */ 2439 if (offset != file->f_pos) { 2440 file->f_pos = offset; 2441 file->f_version = 0; 2442 } 2443 out: 2444 mutex_unlock(&inode->i_mutex); 2445 return offset; 2446 } 2447 2448 const struct file_operations btrfs_file_operations = { 2449 .llseek = btrfs_file_llseek, 2450 .read = do_sync_read, 2451 .write = do_sync_write, 2452 .aio_read = generic_file_aio_read, 2453 .splice_read = generic_file_splice_read, 2454 .aio_write = btrfs_file_aio_write, 2455 .mmap = btrfs_file_mmap, 2456 .open = generic_file_open, 2457 .release = btrfs_release_file, 2458 .fsync = btrfs_sync_file, 2459 .fallocate = btrfs_fallocate, 2460 .unlocked_ioctl = btrfs_ioctl, 2461 #ifdef CONFIG_COMPAT 2462 .compat_ioctl = btrfs_ioctl, 2463 #endif 2464 }; 2465 2466 void btrfs_auto_defrag_exit(void) 2467 { 2468 if (btrfs_inode_defrag_cachep) 2469 kmem_cache_destroy(btrfs_inode_defrag_cachep); 2470 } 2471 2472 int btrfs_auto_defrag_init(void) 2473 { 2474 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 2475 sizeof(struct inode_defrag), 0, 2476 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 2477 NULL); 2478 if (!btrfs_inode_defrag_cachep) 2479 return -ENOMEM; 2480 2481 return 0; 2482 } 2483