xref: /linux/fs/btrfs/file.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "compat.h"
42 #include "volumes.h"
43 
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
45 /*
46  * when auto defrag is enabled we
47  * queue up these defrag structs to remember which
48  * inodes need defragging passes
49  */
50 struct inode_defrag {
51 	struct rb_node rb_node;
52 	/* objectid */
53 	u64 ino;
54 	/*
55 	 * transid where the defrag was added, we search for
56 	 * extents newer than this
57 	 */
58 	u64 transid;
59 
60 	/* root objectid */
61 	u64 root;
62 
63 	/* last offset we were able to defrag */
64 	u64 last_offset;
65 
66 	/* if we've wrapped around back to zero once already */
67 	int cycled;
68 };
69 
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 				  struct inode_defrag *defrag2)
72 {
73 	if (defrag1->root > defrag2->root)
74 		return 1;
75 	else if (defrag1->root < defrag2->root)
76 		return -1;
77 	else if (defrag1->ino > defrag2->ino)
78 		return 1;
79 	else if (defrag1->ino < defrag2->ino)
80 		return -1;
81 	else
82 		return 0;
83 }
84 
85 /* pop a record for an inode into the defrag tree.  The lock
86  * must be held already
87  *
88  * If you're inserting a record for an older transid than an
89  * existing record, the transid already in the tree is lowered
90  *
91  * If an existing record is found the defrag item you
92  * pass in is freed
93  */
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95 				    struct inode_defrag *defrag)
96 {
97 	struct btrfs_root *root = BTRFS_I(inode)->root;
98 	struct inode_defrag *entry;
99 	struct rb_node **p;
100 	struct rb_node *parent = NULL;
101 	int ret;
102 
103 	p = &root->fs_info->defrag_inodes.rb_node;
104 	while (*p) {
105 		parent = *p;
106 		entry = rb_entry(parent, struct inode_defrag, rb_node);
107 
108 		ret = __compare_inode_defrag(defrag, entry);
109 		if (ret < 0)
110 			p = &parent->rb_left;
111 		else if (ret > 0)
112 			p = &parent->rb_right;
113 		else {
114 			/* if we're reinserting an entry for
115 			 * an old defrag run, make sure to
116 			 * lower the transid of our existing record
117 			 */
118 			if (defrag->transid < entry->transid)
119 				entry->transid = defrag->transid;
120 			if (defrag->last_offset > entry->last_offset)
121 				entry->last_offset = defrag->last_offset;
122 			return -EEXIST;
123 		}
124 	}
125 	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126 	rb_link_node(&defrag->rb_node, parent, p);
127 	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
128 	return 0;
129 }
130 
131 static inline int __need_auto_defrag(struct btrfs_root *root)
132 {
133 	if (!btrfs_test_opt(root, AUTO_DEFRAG))
134 		return 0;
135 
136 	if (btrfs_fs_closing(root->fs_info))
137 		return 0;
138 
139 	return 1;
140 }
141 
142 /*
143  * insert a defrag record for this inode if auto defrag is
144  * enabled
145  */
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147 			   struct inode *inode)
148 {
149 	struct btrfs_root *root = BTRFS_I(inode)->root;
150 	struct inode_defrag *defrag;
151 	u64 transid;
152 	int ret;
153 
154 	if (!__need_auto_defrag(root))
155 		return 0;
156 
157 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
158 		return 0;
159 
160 	if (trans)
161 		transid = trans->transid;
162 	else
163 		transid = BTRFS_I(inode)->root->last_trans;
164 
165 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
166 	if (!defrag)
167 		return -ENOMEM;
168 
169 	defrag->ino = btrfs_ino(inode);
170 	defrag->transid = transid;
171 	defrag->root = root->root_key.objectid;
172 
173 	spin_lock(&root->fs_info->defrag_inodes_lock);
174 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175 		/*
176 		 * If we set IN_DEFRAG flag and evict the inode from memory,
177 		 * and then re-read this inode, this new inode doesn't have
178 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
179 		 */
180 		ret = __btrfs_add_inode_defrag(inode, defrag);
181 		if (ret)
182 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183 	} else {
184 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 	}
186 	spin_unlock(&root->fs_info->defrag_inodes_lock);
187 	return 0;
188 }
189 
190 /*
191  * Requeue the defrag object. If there is a defrag object that points to
192  * the same inode in the tree, we will merge them together (by
193  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
194  */
195 void btrfs_requeue_inode_defrag(struct inode *inode,
196 				struct inode_defrag *defrag)
197 {
198 	struct btrfs_root *root = BTRFS_I(inode)->root;
199 	int ret;
200 
201 	if (!__need_auto_defrag(root))
202 		goto out;
203 
204 	/*
205 	 * Here we don't check the IN_DEFRAG flag, because we need merge
206 	 * them together.
207 	 */
208 	spin_lock(&root->fs_info->defrag_inodes_lock);
209 	ret = __btrfs_add_inode_defrag(inode, defrag);
210 	spin_unlock(&root->fs_info->defrag_inodes_lock);
211 	if (ret)
212 		goto out;
213 	return;
214 out:
215 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216 }
217 
218 /*
219  * pick the defragable inode that we want, if it doesn't exist, we will get
220  * the next one.
221  */
222 static struct inode_defrag *
223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
224 {
225 	struct inode_defrag *entry = NULL;
226 	struct inode_defrag tmp;
227 	struct rb_node *p;
228 	struct rb_node *parent = NULL;
229 	int ret;
230 
231 	tmp.ino = ino;
232 	tmp.root = root;
233 
234 	spin_lock(&fs_info->defrag_inodes_lock);
235 	p = fs_info->defrag_inodes.rb_node;
236 	while (p) {
237 		parent = p;
238 		entry = rb_entry(parent, struct inode_defrag, rb_node);
239 
240 		ret = __compare_inode_defrag(&tmp, entry);
241 		if (ret < 0)
242 			p = parent->rb_left;
243 		else if (ret > 0)
244 			p = parent->rb_right;
245 		else
246 			goto out;
247 	}
248 
249 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 		parent = rb_next(parent);
251 		if (parent)
252 			entry = rb_entry(parent, struct inode_defrag, rb_node);
253 		else
254 			entry = NULL;
255 	}
256 out:
257 	if (entry)
258 		rb_erase(parent, &fs_info->defrag_inodes);
259 	spin_unlock(&fs_info->defrag_inodes_lock);
260 	return entry;
261 }
262 
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
264 {
265 	struct inode_defrag *defrag;
266 	struct rb_node *node;
267 
268 	spin_lock(&fs_info->defrag_inodes_lock);
269 	node = rb_first(&fs_info->defrag_inodes);
270 	while (node) {
271 		rb_erase(node, &fs_info->defrag_inodes);
272 		defrag = rb_entry(node, struct inode_defrag, rb_node);
273 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274 
275 		if (need_resched()) {
276 			spin_unlock(&fs_info->defrag_inodes_lock);
277 			cond_resched();
278 			spin_lock(&fs_info->defrag_inodes_lock);
279 		}
280 
281 		node = rb_first(&fs_info->defrag_inodes);
282 	}
283 	spin_unlock(&fs_info->defrag_inodes_lock);
284 }
285 
286 #define BTRFS_DEFRAG_BATCH	1024
287 
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 				    struct inode_defrag *defrag)
290 {
291 	struct btrfs_root *inode_root;
292 	struct inode *inode;
293 	struct btrfs_key key;
294 	struct btrfs_ioctl_defrag_range_args range;
295 	int num_defrag;
296 	int index;
297 	int ret;
298 
299 	/* get the inode */
300 	key.objectid = defrag->root;
301 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302 	key.offset = (u64)-1;
303 
304 	index = srcu_read_lock(&fs_info->subvol_srcu);
305 
306 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307 	if (IS_ERR(inode_root)) {
308 		ret = PTR_ERR(inode_root);
309 		goto cleanup;
310 	}
311 	if (btrfs_root_refs(&inode_root->root_item) == 0) {
312 		ret = -ENOENT;
313 		goto cleanup;
314 	}
315 
316 	key.objectid = defrag->ino;
317 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
318 	key.offset = 0;
319 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
320 	if (IS_ERR(inode)) {
321 		ret = PTR_ERR(inode);
322 		goto cleanup;
323 	}
324 	srcu_read_unlock(&fs_info->subvol_srcu, index);
325 
326 	/* do a chunk of defrag */
327 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
328 	memset(&range, 0, sizeof(range));
329 	range.len = (u64)-1;
330 	range.start = defrag->last_offset;
331 
332 	sb_start_write(fs_info->sb);
333 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
334 				       BTRFS_DEFRAG_BATCH);
335 	sb_end_write(fs_info->sb);
336 	/*
337 	 * if we filled the whole defrag batch, there
338 	 * must be more work to do.  Queue this defrag
339 	 * again
340 	 */
341 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
342 		defrag->last_offset = range.start;
343 		btrfs_requeue_inode_defrag(inode, defrag);
344 	} else if (defrag->last_offset && !defrag->cycled) {
345 		/*
346 		 * we didn't fill our defrag batch, but
347 		 * we didn't start at zero.  Make sure we loop
348 		 * around to the start of the file.
349 		 */
350 		defrag->last_offset = 0;
351 		defrag->cycled = 1;
352 		btrfs_requeue_inode_defrag(inode, defrag);
353 	} else {
354 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
355 	}
356 
357 	iput(inode);
358 	return 0;
359 cleanup:
360 	srcu_read_unlock(&fs_info->subvol_srcu, index);
361 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
362 	return ret;
363 }
364 
365 /*
366  * run through the list of inodes in the FS that need
367  * defragging
368  */
369 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
370 {
371 	struct inode_defrag *defrag;
372 	u64 first_ino = 0;
373 	u64 root_objectid = 0;
374 
375 	atomic_inc(&fs_info->defrag_running);
376 	while(1) {
377 		/* Pause the auto defragger. */
378 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
379 			     &fs_info->fs_state))
380 			break;
381 
382 		if (!__need_auto_defrag(fs_info->tree_root))
383 			break;
384 
385 		/* find an inode to defrag */
386 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
387 						 first_ino);
388 		if (!defrag) {
389 			if (root_objectid || first_ino) {
390 				root_objectid = 0;
391 				first_ino = 0;
392 				continue;
393 			} else {
394 				break;
395 			}
396 		}
397 
398 		first_ino = defrag->ino + 1;
399 		root_objectid = defrag->root;
400 
401 		__btrfs_run_defrag_inode(fs_info, defrag);
402 	}
403 	atomic_dec(&fs_info->defrag_running);
404 
405 	/*
406 	 * during unmount, we use the transaction_wait queue to
407 	 * wait for the defragger to stop
408 	 */
409 	wake_up(&fs_info->transaction_wait);
410 	return 0;
411 }
412 
413 /* simple helper to fault in pages and copy.  This should go away
414  * and be replaced with calls into generic code.
415  */
416 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
417 					 size_t write_bytes,
418 					 struct page **prepared_pages,
419 					 struct iov_iter *i)
420 {
421 	size_t copied = 0;
422 	size_t total_copied = 0;
423 	int pg = 0;
424 	int offset = pos & (PAGE_CACHE_SIZE - 1);
425 
426 	while (write_bytes > 0) {
427 		size_t count = min_t(size_t,
428 				     PAGE_CACHE_SIZE - offset, write_bytes);
429 		struct page *page = prepared_pages[pg];
430 		/*
431 		 * Copy data from userspace to the current page
432 		 *
433 		 * Disable pagefault to avoid recursive lock since
434 		 * the pages are already locked
435 		 */
436 		pagefault_disable();
437 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
438 		pagefault_enable();
439 
440 		/* Flush processor's dcache for this page */
441 		flush_dcache_page(page);
442 
443 		/*
444 		 * if we get a partial write, we can end up with
445 		 * partially up to date pages.  These add
446 		 * a lot of complexity, so make sure they don't
447 		 * happen by forcing this copy to be retried.
448 		 *
449 		 * The rest of the btrfs_file_write code will fall
450 		 * back to page at a time copies after we return 0.
451 		 */
452 		if (!PageUptodate(page) && copied < count)
453 			copied = 0;
454 
455 		iov_iter_advance(i, copied);
456 		write_bytes -= copied;
457 		total_copied += copied;
458 
459 		/* Return to btrfs_file_aio_write to fault page */
460 		if (unlikely(copied == 0))
461 			break;
462 
463 		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
464 			offset += copied;
465 		} else {
466 			pg++;
467 			offset = 0;
468 		}
469 	}
470 	return total_copied;
471 }
472 
473 /*
474  * unlocks pages after btrfs_file_write is done with them
475  */
476 void btrfs_drop_pages(struct page **pages, size_t num_pages)
477 {
478 	size_t i;
479 	for (i = 0; i < num_pages; i++) {
480 		/* page checked is some magic around finding pages that
481 		 * have been modified without going through btrfs_set_page_dirty
482 		 * clear it here
483 		 */
484 		ClearPageChecked(pages[i]);
485 		unlock_page(pages[i]);
486 		mark_page_accessed(pages[i]);
487 		page_cache_release(pages[i]);
488 	}
489 }
490 
491 /*
492  * after copy_from_user, pages need to be dirtied and we need to make
493  * sure holes are created between the current EOF and the start of
494  * any next extents (if required).
495  *
496  * this also makes the decision about creating an inline extent vs
497  * doing real data extents, marking pages dirty and delalloc as required.
498  */
499 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
500 		      struct page **pages, size_t num_pages,
501 		      loff_t pos, size_t write_bytes,
502 		      struct extent_state **cached)
503 {
504 	int err = 0;
505 	int i;
506 	u64 num_bytes;
507 	u64 start_pos;
508 	u64 end_of_last_block;
509 	u64 end_pos = pos + write_bytes;
510 	loff_t isize = i_size_read(inode);
511 
512 	start_pos = pos & ~((u64)root->sectorsize - 1);
513 	num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
514 
515 	end_of_last_block = start_pos + num_bytes - 1;
516 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
517 					cached);
518 	if (err)
519 		return err;
520 
521 	for (i = 0; i < num_pages; i++) {
522 		struct page *p = pages[i];
523 		SetPageUptodate(p);
524 		ClearPageChecked(p);
525 		set_page_dirty(p);
526 	}
527 
528 	/*
529 	 * we've only changed i_size in ram, and we haven't updated
530 	 * the disk i_size.  There is no need to log the inode
531 	 * at this time.
532 	 */
533 	if (end_pos > isize)
534 		i_size_write(inode, end_pos);
535 	return 0;
536 }
537 
538 /*
539  * this drops all the extents in the cache that intersect the range
540  * [start, end].  Existing extents are split as required.
541  */
542 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
543 			     int skip_pinned)
544 {
545 	struct extent_map *em;
546 	struct extent_map *split = NULL;
547 	struct extent_map *split2 = NULL;
548 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
549 	u64 len = end - start + 1;
550 	u64 gen;
551 	int ret;
552 	int testend = 1;
553 	unsigned long flags;
554 	int compressed = 0;
555 
556 	WARN_ON(end < start);
557 	if (end == (u64)-1) {
558 		len = (u64)-1;
559 		testend = 0;
560 	}
561 	while (1) {
562 		int no_splits = 0;
563 
564 		if (!split)
565 			split = alloc_extent_map();
566 		if (!split2)
567 			split2 = alloc_extent_map();
568 		if (!split || !split2)
569 			no_splits = 1;
570 
571 		write_lock(&em_tree->lock);
572 		em = lookup_extent_mapping(em_tree, start, len);
573 		if (!em) {
574 			write_unlock(&em_tree->lock);
575 			break;
576 		}
577 		flags = em->flags;
578 		gen = em->generation;
579 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
580 			if (testend && em->start + em->len >= start + len) {
581 				free_extent_map(em);
582 				write_unlock(&em_tree->lock);
583 				break;
584 			}
585 			start = em->start + em->len;
586 			if (testend)
587 				len = start + len - (em->start + em->len);
588 			free_extent_map(em);
589 			write_unlock(&em_tree->lock);
590 			continue;
591 		}
592 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
593 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
594 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
595 		remove_extent_mapping(em_tree, em);
596 		if (no_splits)
597 			goto next;
598 
599 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
600 		    em->start < start) {
601 			split->start = em->start;
602 			split->len = start - em->start;
603 			split->orig_start = em->orig_start;
604 			split->block_start = em->block_start;
605 
606 			if (compressed)
607 				split->block_len = em->block_len;
608 			else
609 				split->block_len = split->len;
610 			split->orig_block_len = max(split->block_len,
611 						    em->orig_block_len);
612 			split->generation = gen;
613 			split->bdev = em->bdev;
614 			split->flags = flags;
615 			split->compress_type = em->compress_type;
616 			ret = add_extent_mapping(em_tree, split);
617 			BUG_ON(ret); /* Logic error */
618 			list_move(&split->list, &em_tree->modified_extents);
619 			free_extent_map(split);
620 			split = split2;
621 			split2 = NULL;
622 		}
623 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
624 		    testend && em->start + em->len > start + len) {
625 			u64 diff = start + len - em->start;
626 
627 			split->start = start + len;
628 			split->len = em->start + em->len - (start + len);
629 			split->bdev = em->bdev;
630 			split->flags = flags;
631 			split->compress_type = em->compress_type;
632 			split->generation = gen;
633 			split->orig_block_len = max(em->block_len,
634 						    em->orig_block_len);
635 
636 			if (compressed) {
637 				split->block_len = em->block_len;
638 				split->block_start = em->block_start;
639 				split->orig_start = em->orig_start;
640 			} else {
641 				split->block_len = split->len;
642 				split->block_start = em->block_start + diff;
643 				split->orig_start = em->orig_start;
644 			}
645 
646 			ret = add_extent_mapping(em_tree, split);
647 			BUG_ON(ret); /* Logic error */
648 			list_move(&split->list, &em_tree->modified_extents);
649 			free_extent_map(split);
650 			split = NULL;
651 		}
652 next:
653 		write_unlock(&em_tree->lock);
654 
655 		/* once for us */
656 		free_extent_map(em);
657 		/* once for the tree*/
658 		free_extent_map(em);
659 	}
660 	if (split)
661 		free_extent_map(split);
662 	if (split2)
663 		free_extent_map(split2);
664 }
665 
666 /*
667  * this is very complex, but the basic idea is to drop all extents
668  * in the range start - end.  hint_block is filled in with a block number
669  * that would be a good hint to the block allocator for this file.
670  *
671  * If an extent intersects the range but is not entirely inside the range
672  * it is either truncated or split.  Anything entirely inside the range
673  * is deleted from the tree.
674  */
675 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
676 			 struct btrfs_root *root, struct inode *inode,
677 			 struct btrfs_path *path, u64 start, u64 end,
678 			 u64 *drop_end, int drop_cache)
679 {
680 	struct extent_buffer *leaf;
681 	struct btrfs_file_extent_item *fi;
682 	struct btrfs_key key;
683 	struct btrfs_key new_key;
684 	u64 ino = btrfs_ino(inode);
685 	u64 search_start = start;
686 	u64 disk_bytenr = 0;
687 	u64 num_bytes = 0;
688 	u64 extent_offset = 0;
689 	u64 extent_end = 0;
690 	int del_nr = 0;
691 	int del_slot = 0;
692 	int extent_type;
693 	int recow;
694 	int ret;
695 	int modify_tree = -1;
696 	int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
697 	int found = 0;
698 
699 	if (drop_cache)
700 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
701 
702 	if (start >= BTRFS_I(inode)->disk_i_size)
703 		modify_tree = 0;
704 
705 	while (1) {
706 		recow = 0;
707 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
708 					       search_start, modify_tree);
709 		if (ret < 0)
710 			break;
711 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
712 			leaf = path->nodes[0];
713 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
714 			if (key.objectid == ino &&
715 			    key.type == BTRFS_EXTENT_DATA_KEY)
716 				path->slots[0]--;
717 		}
718 		ret = 0;
719 next_slot:
720 		leaf = path->nodes[0];
721 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
722 			BUG_ON(del_nr > 0);
723 			ret = btrfs_next_leaf(root, path);
724 			if (ret < 0)
725 				break;
726 			if (ret > 0) {
727 				ret = 0;
728 				break;
729 			}
730 			leaf = path->nodes[0];
731 			recow = 1;
732 		}
733 
734 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
735 		if (key.objectid > ino ||
736 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
737 			break;
738 
739 		fi = btrfs_item_ptr(leaf, path->slots[0],
740 				    struct btrfs_file_extent_item);
741 		extent_type = btrfs_file_extent_type(leaf, fi);
742 
743 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
744 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
745 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
746 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
747 			extent_offset = btrfs_file_extent_offset(leaf, fi);
748 			extent_end = key.offset +
749 				btrfs_file_extent_num_bytes(leaf, fi);
750 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
751 			extent_end = key.offset +
752 				btrfs_file_extent_inline_len(leaf, fi);
753 		} else {
754 			WARN_ON(1);
755 			extent_end = search_start;
756 		}
757 
758 		if (extent_end <= search_start) {
759 			path->slots[0]++;
760 			goto next_slot;
761 		}
762 
763 		found = 1;
764 		search_start = max(key.offset, start);
765 		if (recow || !modify_tree) {
766 			modify_tree = -1;
767 			btrfs_release_path(path);
768 			continue;
769 		}
770 
771 		/*
772 		 *     | - range to drop - |
773 		 *  | -------- extent -------- |
774 		 */
775 		if (start > key.offset && end < extent_end) {
776 			BUG_ON(del_nr > 0);
777 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
778 
779 			memcpy(&new_key, &key, sizeof(new_key));
780 			new_key.offset = start;
781 			ret = btrfs_duplicate_item(trans, root, path,
782 						   &new_key);
783 			if (ret == -EAGAIN) {
784 				btrfs_release_path(path);
785 				continue;
786 			}
787 			if (ret < 0)
788 				break;
789 
790 			leaf = path->nodes[0];
791 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
792 					    struct btrfs_file_extent_item);
793 			btrfs_set_file_extent_num_bytes(leaf, fi,
794 							start - key.offset);
795 
796 			fi = btrfs_item_ptr(leaf, path->slots[0],
797 					    struct btrfs_file_extent_item);
798 
799 			extent_offset += start - key.offset;
800 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
801 			btrfs_set_file_extent_num_bytes(leaf, fi,
802 							extent_end - start);
803 			btrfs_mark_buffer_dirty(leaf);
804 
805 			if (update_refs && disk_bytenr > 0) {
806 				ret = btrfs_inc_extent_ref(trans, root,
807 						disk_bytenr, num_bytes, 0,
808 						root->root_key.objectid,
809 						new_key.objectid,
810 						start - extent_offset, 0);
811 				BUG_ON(ret); /* -ENOMEM */
812 			}
813 			key.offset = start;
814 		}
815 		/*
816 		 *  | ---- range to drop ----- |
817 		 *      | -------- extent -------- |
818 		 */
819 		if (start <= key.offset && end < extent_end) {
820 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
821 
822 			memcpy(&new_key, &key, sizeof(new_key));
823 			new_key.offset = end;
824 			btrfs_set_item_key_safe(trans, root, path, &new_key);
825 
826 			extent_offset += end - key.offset;
827 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
828 			btrfs_set_file_extent_num_bytes(leaf, fi,
829 							extent_end - end);
830 			btrfs_mark_buffer_dirty(leaf);
831 			if (update_refs && disk_bytenr > 0)
832 				inode_sub_bytes(inode, end - key.offset);
833 			break;
834 		}
835 
836 		search_start = extent_end;
837 		/*
838 		 *       | ---- range to drop ----- |
839 		 *  | -------- extent -------- |
840 		 */
841 		if (start > key.offset && end >= extent_end) {
842 			BUG_ON(del_nr > 0);
843 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
844 
845 			btrfs_set_file_extent_num_bytes(leaf, fi,
846 							start - key.offset);
847 			btrfs_mark_buffer_dirty(leaf);
848 			if (update_refs && disk_bytenr > 0)
849 				inode_sub_bytes(inode, extent_end - start);
850 			if (end == extent_end)
851 				break;
852 
853 			path->slots[0]++;
854 			goto next_slot;
855 		}
856 
857 		/*
858 		 *  | ---- range to drop ----- |
859 		 *    | ------ extent ------ |
860 		 */
861 		if (start <= key.offset && end >= extent_end) {
862 			if (del_nr == 0) {
863 				del_slot = path->slots[0];
864 				del_nr = 1;
865 			} else {
866 				BUG_ON(del_slot + del_nr != path->slots[0]);
867 				del_nr++;
868 			}
869 
870 			if (update_refs &&
871 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
872 				inode_sub_bytes(inode,
873 						extent_end - key.offset);
874 				extent_end = ALIGN(extent_end,
875 						   root->sectorsize);
876 			} else if (update_refs && disk_bytenr > 0) {
877 				ret = btrfs_free_extent(trans, root,
878 						disk_bytenr, num_bytes, 0,
879 						root->root_key.objectid,
880 						key.objectid, key.offset -
881 						extent_offset, 0);
882 				BUG_ON(ret); /* -ENOMEM */
883 				inode_sub_bytes(inode,
884 						extent_end - key.offset);
885 			}
886 
887 			if (end == extent_end)
888 				break;
889 
890 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
891 				path->slots[0]++;
892 				goto next_slot;
893 			}
894 
895 			ret = btrfs_del_items(trans, root, path, del_slot,
896 					      del_nr);
897 			if (ret) {
898 				btrfs_abort_transaction(trans, root, ret);
899 				break;
900 			}
901 
902 			del_nr = 0;
903 			del_slot = 0;
904 
905 			btrfs_release_path(path);
906 			continue;
907 		}
908 
909 		BUG_ON(1);
910 	}
911 
912 	if (!ret && del_nr > 0) {
913 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
914 		if (ret)
915 			btrfs_abort_transaction(trans, root, ret);
916 	}
917 
918 	if (drop_end)
919 		*drop_end = found ? min(end, extent_end) : end;
920 	btrfs_release_path(path);
921 	return ret;
922 }
923 
924 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
925 		       struct btrfs_root *root, struct inode *inode, u64 start,
926 		       u64 end, int drop_cache)
927 {
928 	struct btrfs_path *path;
929 	int ret;
930 
931 	path = btrfs_alloc_path();
932 	if (!path)
933 		return -ENOMEM;
934 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
935 				   drop_cache);
936 	btrfs_free_path(path);
937 	return ret;
938 }
939 
940 static int extent_mergeable(struct extent_buffer *leaf, int slot,
941 			    u64 objectid, u64 bytenr, u64 orig_offset,
942 			    u64 *start, u64 *end)
943 {
944 	struct btrfs_file_extent_item *fi;
945 	struct btrfs_key key;
946 	u64 extent_end;
947 
948 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
949 		return 0;
950 
951 	btrfs_item_key_to_cpu(leaf, &key, slot);
952 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
953 		return 0;
954 
955 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
956 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
957 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
958 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
959 	    btrfs_file_extent_compression(leaf, fi) ||
960 	    btrfs_file_extent_encryption(leaf, fi) ||
961 	    btrfs_file_extent_other_encoding(leaf, fi))
962 		return 0;
963 
964 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
965 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
966 		return 0;
967 
968 	*start = key.offset;
969 	*end = extent_end;
970 	return 1;
971 }
972 
973 /*
974  * Mark extent in the range start - end as written.
975  *
976  * This changes extent type from 'pre-allocated' to 'regular'. If only
977  * part of extent is marked as written, the extent will be split into
978  * two or three.
979  */
980 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
981 			      struct inode *inode, u64 start, u64 end)
982 {
983 	struct btrfs_root *root = BTRFS_I(inode)->root;
984 	struct extent_buffer *leaf;
985 	struct btrfs_path *path;
986 	struct btrfs_file_extent_item *fi;
987 	struct btrfs_key key;
988 	struct btrfs_key new_key;
989 	u64 bytenr;
990 	u64 num_bytes;
991 	u64 extent_end;
992 	u64 orig_offset;
993 	u64 other_start;
994 	u64 other_end;
995 	u64 split;
996 	int del_nr = 0;
997 	int del_slot = 0;
998 	int recow;
999 	int ret;
1000 	u64 ino = btrfs_ino(inode);
1001 
1002 	path = btrfs_alloc_path();
1003 	if (!path)
1004 		return -ENOMEM;
1005 again:
1006 	recow = 0;
1007 	split = start;
1008 	key.objectid = ino;
1009 	key.type = BTRFS_EXTENT_DATA_KEY;
1010 	key.offset = split;
1011 
1012 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1013 	if (ret < 0)
1014 		goto out;
1015 	if (ret > 0 && path->slots[0] > 0)
1016 		path->slots[0]--;
1017 
1018 	leaf = path->nodes[0];
1019 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1020 	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1021 	fi = btrfs_item_ptr(leaf, path->slots[0],
1022 			    struct btrfs_file_extent_item);
1023 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1024 	       BTRFS_FILE_EXTENT_PREALLOC);
1025 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1026 	BUG_ON(key.offset > start || extent_end < end);
1027 
1028 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1029 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1030 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1031 	memcpy(&new_key, &key, sizeof(new_key));
1032 
1033 	if (start == key.offset && end < extent_end) {
1034 		other_start = 0;
1035 		other_end = start;
1036 		if (extent_mergeable(leaf, path->slots[0] - 1,
1037 				     ino, bytenr, orig_offset,
1038 				     &other_start, &other_end)) {
1039 			new_key.offset = end;
1040 			btrfs_set_item_key_safe(trans, root, path, &new_key);
1041 			fi = btrfs_item_ptr(leaf, path->slots[0],
1042 					    struct btrfs_file_extent_item);
1043 			btrfs_set_file_extent_generation(leaf, fi,
1044 							 trans->transid);
1045 			btrfs_set_file_extent_num_bytes(leaf, fi,
1046 							extent_end - end);
1047 			btrfs_set_file_extent_offset(leaf, fi,
1048 						     end - orig_offset);
1049 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1050 					    struct btrfs_file_extent_item);
1051 			btrfs_set_file_extent_generation(leaf, fi,
1052 							 trans->transid);
1053 			btrfs_set_file_extent_num_bytes(leaf, fi,
1054 							end - other_start);
1055 			btrfs_mark_buffer_dirty(leaf);
1056 			goto out;
1057 		}
1058 	}
1059 
1060 	if (start > key.offset && end == extent_end) {
1061 		other_start = end;
1062 		other_end = 0;
1063 		if (extent_mergeable(leaf, path->slots[0] + 1,
1064 				     ino, bytenr, orig_offset,
1065 				     &other_start, &other_end)) {
1066 			fi = btrfs_item_ptr(leaf, path->slots[0],
1067 					    struct btrfs_file_extent_item);
1068 			btrfs_set_file_extent_num_bytes(leaf, fi,
1069 							start - key.offset);
1070 			btrfs_set_file_extent_generation(leaf, fi,
1071 							 trans->transid);
1072 			path->slots[0]++;
1073 			new_key.offset = start;
1074 			btrfs_set_item_key_safe(trans, root, path, &new_key);
1075 
1076 			fi = btrfs_item_ptr(leaf, path->slots[0],
1077 					    struct btrfs_file_extent_item);
1078 			btrfs_set_file_extent_generation(leaf, fi,
1079 							 trans->transid);
1080 			btrfs_set_file_extent_num_bytes(leaf, fi,
1081 							other_end - start);
1082 			btrfs_set_file_extent_offset(leaf, fi,
1083 						     start - orig_offset);
1084 			btrfs_mark_buffer_dirty(leaf);
1085 			goto out;
1086 		}
1087 	}
1088 
1089 	while (start > key.offset || end < extent_end) {
1090 		if (key.offset == start)
1091 			split = end;
1092 
1093 		new_key.offset = split;
1094 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1095 		if (ret == -EAGAIN) {
1096 			btrfs_release_path(path);
1097 			goto again;
1098 		}
1099 		if (ret < 0) {
1100 			btrfs_abort_transaction(trans, root, ret);
1101 			goto out;
1102 		}
1103 
1104 		leaf = path->nodes[0];
1105 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1106 				    struct btrfs_file_extent_item);
1107 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1108 		btrfs_set_file_extent_num_bytes(leaf, fi,
1109 						split - key.offset);
1110 
1111 		fi = btrfs_item_ptr(leaf, path->slots[0],
1112 				    struct btrfs_file_extent_item);
1113 
1114 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1115 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1116 		btrfs_set_file_extent_num_bytes(leaf, fi,
1117 						extent_end - split);
1118 		btrfs_mark_buffer_dirty(leaf);
1119 
1120 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1121 					   root->root_key.objectid,
1122 					   ino, orig_offset, 0);
1123 		BUG_ON(ret); /* -ENOMEM */
1124 
1125 		if (split == start) {
1126 			key.offset = start;
1127 		} else {
1128 			BUG_ON(start != key.offset);
1129 			path->slots[0]--;
1130 			extent_end = end;
1131 		}
1132 		recow = 1;
1133 	}
1134 
1135 	other_start = end;
1136 	other_end = 0;
1137 	if (extent_mergeable(leaf, path->slots[0] + 1,
1138 			     ino, bytenr, orig_offset,
1139 			     &other_start, &other_end)) {
1140 		if (recow) {
1141 			btrfs_release_path(path);
1142 			goto again;
1143 		}
1144 		extent_end = other_end;
1145 		del_slot = path->slots[0] + 1;
1146 		del_nr++;
1147 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1148 					0, root->root_key.objectid,
1149 					ino, orig_offset, 0);
1150 		BUG_ON(ret); /* -ENOMEM */
1151 	}
1152 	other_start = 0;
1153 	other_end = start;
1154 	if (extent_mergeable(leaf, path->slots[0] - 1,
1155 			     ino, bytenr, orig_offset,
1156 			     &other_start, &other_end)) {
1157 		if (recow) {
1158 			btrfs_release_path(path);
1159 			goto again;
1160 		}
1161 		key.offset = other_start;
1162 		del_slot = path->slots[0];
1163 		del_nr++;
1164 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1165 					0, root->root_key.objectid,
1166 					ino, orig_offset, 0);
1167 		BUG_ON(ret); /* -ENOMEM */
1168 	}
1169 	if (del_nr == 0) {
1170 		fi = btrfs_item_ptr(leaf, path->slots[0],
1171 			   struct btrfs_file_extent_item);
1172 		btrfs_set_file_extent_type(leaf, fi,
1173 					   BTRFS_FILE_EXTENT_REG);
1174 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1175 		btrfs_mark_buffer_dirty(leaf);
1176 	} else {
1177 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1178 			   struct btrfs_file_extent_item);
1179 		btrfs_set_file_extent_type(leaf, fi,
1180 					   BTRFS_FILE_EXTENT_REG);
1181 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1182 		btrfs_set_file_extent_num_bytes(leaf, fi,
1183 						extent_end - key.offset);
1184 		btrfs_mark_buffer_dirty(leaf);
1185 
1186 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1187 		if (ret < 0) {
1188 			btrfs_abort_transaction(trans, root, ret);
1189 			goto out;
1190 		}
1191 	}
1192 out:
1193 	btrfs_free_path(path);
1194 	return 0;
1195 }
1196 
1197 /*
1198  * on error we return an unlocked page and the error value
1199  * on success we return a locked page and 0
1200  */
1201 static int prepare_uptodate_page(struct page *page, u64 pos,
1202 				 bool force_uptodate)
1203 {
1204 	int ret = 0;
1205 
1206 	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1207 	    !PageUptodate(page)) {
1208 		ret = btrfs_readpage(NULL, page);
1209 		if (ret)
1210 			return ret;
1211 		lock_page(page);
1212 		if (!PageUptodate(page)) {
1213 			unlock_page(page);
1214 			return -EIO;
1215 		}
1216 	}
1217 	return 0;
1218 }
1219 
1220 /*
1221  * this gets pages into the page cache and locks them down, it also properly
1222  * waits for data=ordered extents to finish before allowing the pages to be
1223  * modified.
1224  */
1225 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1226 			 struct page **pages, size_t num_pages,
1227 			 loff_t pos, unsigned long first_index,
1228 			 size_t write_bytes, bool force_uptodate)
1229 {
1230 	struct extent_state *cached_state = NULL;
1231 	int i;
1232 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
1233 	struct inode *inode = file_inode(file);
1234 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1235 	int err = 0;
1236 	int faili = 0;
1237 	u64 start_pos;
1238 	u64 last_pos;
1239 
1240 	start_pos = pos & ~((u64)root->sectorsize - 1);
1241 	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1242 
1243 again:
1244 	for (i = 0; i < num_pages; i++) {
1245 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1246 					       mask | __GFP_WRITE);
1247 		if (!pages[i]) {
1248 			faili = i - 1;
1249 			err = -ENOMEM;
1250 			goto fail;
1251 		}
1252 
1253 		if (i == 0)
1254 			err = prepare_uptodate_page(pages[i], pos,
1255 						    force_uptodate);
1256 		if (i == num_pages - 1)
1257 			err = prepare_uptodate_page(pages[i],
1258 						    pos + write_bytes, false);
1259 		if (err) {
1260 			page_cache_release(pages[i]);
1261 			faili = i - 1;
1262 			goto fail;
1263 		}
1264 		wait_on_page_writeback(pages[i]);
1265 	}
1266 	err = 0;
1267 	if (start_pos < inode->i_size) {
1268 		struct btrfs_ordered_extent *ordered;
1269 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1270 				 start_pos, last_pos - 1, 0, &cached_state);
1271 		ordered = btrfs_lookup_first_ordered_extent(inode,
1272 							    last_pos - 1);
1273 		if (ordered &&
1274 		    ordered->file_offset + ordered->len > start_pos &&
1275 		    ordered->file_offset < last_pos) {
1276 			btrfs_put_ordered_extent(ordered);
1277 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1278 					     start_pos, last_pos - 1,
1279 					     &cached_state, GFP_NOFS);
1280 			for (i = 0; i < num_pages; i++) {
1281 				unlock_page(pages[i]);
1282 				page_cache_release(pages[i]);
1283 			}
1284 			btrfs_wait_ordered_range(inode, start_pos,
1285 						 last_pos - start_pos);
1286 			goto again;
1287 		}
1288 		if (ordered)
1289 			btrfs_put_ordered_extent(ordered);
1290 
1291 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1292 				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1293 				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1294 				  0, 0, &cached_state, GFP_NOFS);
1295 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1296 				     start_pos, last_pos - 1, &cached_state,
1297 				     GFP_NOFS);
1298 	}
1299 	for (i = 0; i < num_pages; i++) {
1300 		if (clear_page_dirty_for_io(pages[i]))
1301 			account_page_redirty(pages[i]);
1302 		set_page_extent_mapped(pages[i]);
1303 		WARN_ON(!PageLocked(pages[i]));
1304 	}
1305 	return 0;
1306 fail:
1307 	while (faili >= 0) {
1308 		unlock_page(pages[faili]);
1309 		page_cache_release(pages[faili]);
1310 		faili--;
1311 	}
1312 	return err;
1313 
1314 }
1315 
1316 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1317 					       struct iov_iter *i,
1318 					       loff_t pos)
1319 {
1320 	struct inode *inode = file_inode(file);
1321 	struct btrfs_root *root = BTRFS_I(inode)->root;
1322 	struct page **pages = NULL;
1323 	unsigned long first_index;
1324 	size_t num_written = 0;
1325 	int nrptrs;
1326 	int ret = 0;
1327 	bool force_page_uptodate = false;
1328 
1329 	nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1330 		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1331 		     (sizeof(struct page *)));
1332 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1333 	nrptrs = max(nrptrs, 8);
1334 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1335 	if (!pages)
1336 		return -ENOMEM;
1337 
1338 	first_index = pos >> PAGE_CACHE_SHIFT;
1339 
1340 	while (iov_iter_count(i) > 0) {
1341 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1342 		size_t write_bytes = min(iov_iter_count(i),
1343 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1344 					 offset);
1345 		size_t num_pages = (write_bytes + offset +
1346 				    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1347 		size_t dirty_pages;
1348 		size_t copied;
1349 
1350 		WARN_ON(num_pages > nrptrs);
1351 
1352 		/*
1353 		 * Fault pages before locking them in prepare_pages
1354 		 * to avoid recursive lock
1355 		 */
1356 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1357 			ret = -EFAULT;
1358 			break;
1359 		}
1360 
1361 		ret = btrfs_delalloc_reserve_space(inode,
1362 					num_pages << PAGE_CACHE_SHIFT);
1363 		if (ret)
1364 			break;
1365 
1366 		/*
1367 		 * This is going to setup the pages array with the number of
1368 		 * pages we want, so we don't really need to worry about the
1369 		 * contents of pages from loop to loop
1370 		 */
1371 		ret = prepare_pages(root, file, pages, num_pages,
1372 				    pos, first_index, write_bytes,
1373 				    force_page_uptodate);
1374 		if (ret) {
1375 			btrfs_delalloc_release_space(inode,
1376 					num_pages << PAGE_CACHE_SHIFT);
1377 			break;
1378 		}
1379 
1380 		copied = btrfs_copy_from_user(pos, num_pages,
1381 					   write_bytes, pages, i);
1382 
1383 		/*
1384 		 * if we have trouble faulting in the pages, fall
1385 		 * back to one page at a time
1386 		 */
1387 		if (copied < write_bytes)
1388 			nrptrs = 1;
1389 
1390 		if (copied == 0) {
1391 			force_page_uptodate = true;
1392 			dirty_pages = 0;
1393 		} else {
1394 			force_page_uptodate = false;
1395 			dirty_pages = (copied + offset +
1396 				       PAGE_CACHE_SIZE - 1) >>
1397 				       PAGE_CACHE_SHIFT;
1398 		}
1399 
1400 		/*
1401 		 * If we had a short copy we need to release the excess delaloc
1402 		 * bytes we reserved.  We need to increment outstanding_extents
1403 		 * because btrfs_delalloc_release_space will decrement it, but
1404 		 * we still have an outstanding extent for the chunk we actually
1405 		 * managed to copy.
1406 		 */
1407 		if (num_pages > dirty_pages) {
1408 			if (copied > 0) {
1409 				spin_lock(&BTRFS_I(inode)->lock);
1410 				BTRFS_I(inode)->outstanding_extents++;
1411 				spin_unlock(&BTRFS_I(inode)->lock);
1412 			}
1413 			btrfs_delalloc_release_space(inode,
1414 					(num_pages - dirty_pages) <<
1415 					PAGE_CACHE_SHIFT);
1416 		}
1417 
1418 		if (copied > 0) {
1419 			ret = btrfs_dirty_pages(root, inode, pages,
1420 						dirty_pages, pos, copied,
1421 						NULL);
1422 			if (ret) {
1423 				btrfs_delalloc_release_space(inode,
1424 					dirty_pages << PAGE_CACHE_SHIFT);
1425 				btrfs_drop_pages(pages, num_pages);
1426 				break;
1427 			}
1428 		}
1429 
1430 		btrfs_drop_pages(pages, num_pages);
1431 
1432 		cond_resched();
1433 
1434 		balance_dirty_pages_ratelimited(inode->i_mapping);
1435 		if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1436 			btrfs_btree_balance_dirty(root);
1437 
1438 		pos += copied;
1439 		num_written += copied;
1440 	}
1441 
1442 	kfree(pages);
1443 
1444 	return num_written ? num_written : ret;
1445 }
1446 
1447 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1448 				    const struct iovec *iov,
1449 				    unsigned long nr_segs, loff_t pos,
1450 				    loff_t *ppos, size_t count, size_t ocount)
1451 {
1452 	struct file *file = iocb->ki_filp;
1453 	struct iov_iter i;
1454 	ssize_t written;
1455 	ssize_t written_buffered;
1456 	loff_t endbyte;
1457 	int err;
1458 
1459 	written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1460 					    count, ocount);
1461 
1462 	if (written < 0 || written == count)
1463 		return written;
1464 
1465 	pos += written;
1466 	count -= written;
1467 	iov_iter_init(&i, iov, nr_segs, count, written);
1468 	written_buffered = __btrfs_buffered_write(file, &i, pos);
1469 	if (written_buffered < 0) {
1470 		err = written_buffered;
1471 		goto out;
1472 	}
1473 	endbyte = pos + written_buffered - 1;
1474 	err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1475 	if (err)
1476 		goto out;
1477 	written += written_buffered;
1478 	*ppos = pos + written_buffered;
1479 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1480 				 endbyte >> PAGE_CACHE_SHIFT);
1481 out:
1482 	return written ? written : err;
1483 }
1484 
1485 static void update_time_for_write(struct inode *inode)
1486 {
1487 	struct timespec now;
1488 
1489 	if (IS_NOCMTIME(inode))
1490 		return;
1491 
1492 	now = current_fs_time(inode->i_sb);
1493 	if (!timespec_equal(&inode->i_mtime, &now))
1494 		inode->i_mtime = now;
1495 
1496 	if (!timespec_equal(&inode->i_ctime, &now))
1497 		inode->i_ctime = now;
1498 
1499 	if (IS_I_VERSION(inode))
1500 		inode_inc_iversion(inode);
1501 }
1502 
1503 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1504 				    const struct iovec *iov,
1505 				    unsigned long nr_segs, loff_t pos)
1506 {
1507 	struct file *file = iocb->ki_filp;
1508 	struct inode *inode = file_inode(file);
1509 	struct btrfs_root *root = BTRFS_I(inode)->root;
1510 	loff_t *ppos = &iocb->ki_pos;
1511 	u64 start_pos;
1512 	ssize_t num_written = 0;
1513 	ssize_t err = 0;
1514 	size_t count, ocount;
1515 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1516 
1517 	sb_start_write(inode->i_sb);
1518 
1519 	mutex_lock(&inode->i_mutex);
1520 
1521 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1522 	if (err) {
1523 		mutex_unlock(&inode->i_mutex);
1524 		goto out;
1525 	}
1526 	count = ocount;
1527 
1528 	current->backing_dev_info = inode->i_mapping->backing_dev_info;
1529 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1530 	if (err) {
1531 		mutex_unlock(&inode->i_mutex);
1532 		goto out;
1533 	}
1534 
1535 	if (count == 0) {
1536 		mutex_unlock(&inode->i_mutex);
1537 		goto out;
1538 	}
1539 
1540 	err = file_remove_suid(file);
1541 	if (err) {
1542 		mutex_unlock(&inode->i_mutex);
1543 		goto out;
1544 	}
1545 
1546 	/*
1547 	 * If BTRFS flips readonly due to some impossible error
1548 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1549 	 * although we have opened a file as writable, we have
1550 	 * to stop this write operation to ensure FS consistency.
1551 	 */
1552 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1553 		mutex_unlock(&inode->i_mutex);
1554 		err = -EROFS;
1555 		goto out;
1556 	}
1557 
1558 	/*
1559 	 * We reserve space for updating the inode when we reserve space for the
1560 	 * extent we are going to write, so we will enospc out there.  We don't
1561 	 * need to start yet another transaction to update the inode as we will
1562 	 * update the inode when we finish writing whatever data we write.
1563 	 */
1564 	update_time_for_write(inode);
1565 
1566 	start_pos = round_down(pos, root->sectorsize);
1567 	if (start_pos > i_size_read(inode)) {
1568 		err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1569 		if (err) {
1570 			mutex_unlock(&inode->i_mutex);
1571 			goto out;
1572 		}
1573 	}
1574 
1575 	if (sync)
1576 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1577 
1578 	if (unlikely(file->f_flags & O_DIRECT)) {
1579 		num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1580 						   pos, ppos, count, ocount);
1581 	} else {
1582 		struct iov_iter i;
1583 
1584 		iov_iter_init(&i, iov, nr_segs, count, num_written);
1585 
1586 		num_written = __btrfs_buffered_write(file, &i, pos);
1587 		if (num_written > 0)
1588 			*ppos = pos + num_written;
1589 	}
1590 
1591 	mutex_unlock(&inode->i_mutex);
1592 
1593 	/*
1594 	 * we want to make sure fsync finds this change
1595 	 * but we haven't joined a transaction running right now.
1596 	 *
1597 	 * Later on, someone is sure to update the inode and get the
1598 	 * real transid recorded.
1599 	 *
1600 	 * We set last_trans now to the fs_info generation + 1,
1601 	 * this will either be one more than the running transaction
1602 	 * or the generation used for the next transaction if there isn't
1603 	 * one running right now.
1604 	 *
1605 	 * We also have to set last_sub_trans to the current log transid,
1606 	 * otherwise subsequent syncs to a file that's been synced in this
1607 	 * transaction will appear to have already occured.
1608 	 */
1609 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1610 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1611 	if (num_written > 0 || num_written == -EIOCBQUEUED) {
1612 		err = generic_write_sync(file, pos, num_written);
1613 		if (err < 0 && num_written > 0)
1614 			num_written = err;
1615 	}
1616 
1617 	if (sync)
1618 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1619 out:
1620 	sb_end_write(inode->i_sb);
1621 	current->backing_dev_info = NULL;
1622 	return num_written ? num_written : err;
1623 }
1624 
1625 int btrfs_release_file(struct inode *inode, struct file *filp)
1626 {
1627 	/*
1628 	 * ordered_data_close is set by settattr when we are about to truncate
1629 	 * a file from a non-zero size to a zero size.  This tries to
1630 	 * flush down new bytes that may have been written if the
1631 	 * application were using truncate to replace a file in place.
1632 	 */
1633 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1634 			       &BTRFS_I(inode)->runtime_flags)) {
1635 		struct btrfs_trans_handle *trans;
1636 		struct btrfs_root *root = BTRFS_I(inode)->root;
1637 
1638 		/*
1639 		 * We need to block on a committing transaction to keep us from
1640 		 * throwing a ordered operation on to the list and causing
1641 		 * something like sync to deadlock trying to flush out this
1642 		 * inode.
1643 		 */
1644 		trans = btrfs_start_transaction(root, 0);
1645 		if (IS_ERR(trans))
1646 			return PTR_ERR(trans);
1647 		btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1648 		btrfs_end_transaction(trans, root);
1649 		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1650 			filemap_flush(inode->i_mapping);
1651 	}
1652 	if (filp->private_data)
1653 		btrfs_ioctl_trans_end(filp);
1654 	return 0;
1655 }
1656 
1657 /*
1658  * fsync call for both files and directories.  This logs the inode into
1659  * the tree log instead of forcing full commits whenever possible.
1660  *
1661  * It needs to call filemap_fdatawait so that all ordered extent updates are
1662  * in the metadata btree are up to date for copying to the log.
1663  *
1664  * It drops the inode mutex before doing the tree log commit.  This is an
1665  * important optimization for directories because holding the mutex prevents
1666  * new operations on the dir while we write to disk.
1667  */
1668 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1669 {
1670 	struct dentry *dentry = file->f_path.dentry;
1671 	struct inode *inode = dentry->d_inode;
1672 	struct btrfs_root *root = BTRFS_I(inode)->root;
1673 	int ret = 0;
1674 	struct btrfs_trans_handle *trans;
1675 	bool full_sync = 0;
1676 
1677 	trace_btrfs_sync_file(file, datasync);
1678 
1679 	/*
1680 	 * We write the dirty pages in the range and wait until they complete
1681 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1682 	 * multi-task, and make the performance up.  See
1683 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1684 	 */
1685 	atomic_inc(&BTRFS_I(inode)->sync_writers);
1686 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1687 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1688 			     &BTRFS_I(inode)->runtime_flags))
1689 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1690 	atomic_dec(&BTRFS_I(inode)->sync_writers);
1691 	if (ret)
1692 		return ret;
1693 
1694 	mutex_lock(&inode->i_mutex);
1695 
1696 	/*
1697 	 * We flush the dirty pages again to avoid some dirty pages in the
1698 	 * range being left.
1699 	 */
1700 	atomic_inc(&root->log_batch);
1701 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1702 			     &BTRFS_I(inode)->runtime_flags);
1703 	if (full_sync)
1704 		btrfs_wait_ordered_range(inode, start, end - start + 1);
1705 	atomic_inc(&root->log_batch);
1706 
1707 	/*
1708 	 * check the transaction that last modified this inode
1709 	 * and see if its already been committed
1710 	 */
1711 	if (!BTRFS_I(inode)->last_trans) {
1712 		mutex_unlock(&inode->i_mutex);
1713 		goto out;
1714 	}
1715 
1716 	/*
1717 	 * if the last transaction that changed this file was before
1718 	 * the current transaction, we can bail out now without any
1719 	 * syncing
1720 	 */
1721 	smp_mb();
1722 	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1723 	    BTRFS_I(inode)->last_trans <=
1724 	    root->fs_info->last_trans_committed) {
1725 		BTRFS_I(inode)->last_trans = 0;
1726 
1727 		/*
1728 		 * We'v had everything committed since the last time we were
1729 		 * modified so clear this flag in case it was set for whatever
1730 		 * reason, it's no longer relevant.
1731 		 */
1732 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1733 			  &BTRFS_I(inode)->runtime_flags);
1734 		mutex_unlock(&inode->i_mutex);
1735 		goto out;
1736 	}
1737 
1738 	/*
1739 	 * ok we haven't committed the transaction yet, lets do a commit
1740 	 */
1741 	if (file->private_data)
1742 		btrfs_ioctl_trans_end(file);
1743 
1744 	trans = btrfs_start_transaction(root, 0);
1745 	if (IS_ERR(trans)) {
1746 		ret = PTR_ERR(trans);
1747 		mutex_unlock(&inode->i_mutex);
1748 		goto out;
1749 	}
1750 
1751 	ret = btrfs_log_dentry_safe(trans, root, dentry);
1752 	if (ret < 0) {
1753 		mutex_unlock(&inode->i_mutex);
1754 		goto out;
1755 	}
1756 
1757 	/* we've logged all the items and now have a consistent
1758 	 * version of the file in the log.  It is possible that
1759 	 * someone will come in and modify the file, but that's
1760 	 * fine because the log is consistent on disk, and we
1761 	 * have references to all of the file's extents
1762 	 *
1763 	 * It is possible that someone will come in and log the
1764 	 * file again, but that will end up using the synchronization
1765 	 * inside btrfs_sync_log to keep things safe.
1766 	 */
1767 	mutex_unlock(&inode->i_mutex);
1768 
1769 	if (ret != BTRFS_NO_LOG_SYNC) {
1770 		if (ret > 0) {
1771 			/*
1772 			 * If we didn't already wait for ordered extents we need
1773 			 * to do that now.
1774 			 */
1775 			if (!full_sync)
1776 				btrfs_wait_ordered_range(inode, start,
1777 							 end - start + 1);
1778 			ret = btrfs_commit_transaction(trans, root);
1779 		} else {
1780 			ret = btrfs_sync_log(trans, root);
1781 			if (ret == 0) {
1782 				ret = btrfs_end_transaction(trans, root);
1783 			} else {
1784 				if (!full_sync)
1785 					btrfs_wait_ordered_range(inode, start,
1786 								 end -
1787 								 start + 1);
1788 				ret = btrfs_commit_transaction(trans, root);
1789 			}
1790 		}
1791 	} else {
1792 		ret = btrfs_end_transaction(trans, root);
1793 	}
1794 out:
1795 	return ret > 0 ? -EIO : ret;
1796 }
1797 
1798 static const struct vm_operations_struct btrfs_file_vm_ops = {
1799 	.fault		= filemap_fault,
1800 	.page_mkwrite	= btrfs_page_mkwrite,
1801 	.remap_pages	= generic_file_remap_pages,
1802 };
1803 
1804 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1805 {
1806 	struct address_space *mapping = filp->f_mapping;
1807 
1808 	if (!mapping->a_ops->readpage)
1809 		return -ENOEXEC;
1810 
1811 	file_accessed(filp);
1812 	vma->vm_ops = &btrfs_file_vm_ops;
1813 
1814 	return 0;
1815 }
1816 
1817 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
1818 			  int slot, u64 start, u64 end)
1819 {
1820 	struct btrfs_file_extent_item *fi;
1821 	struct btrfs_key key;
1822 
1823 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1824 		return 0;
1825 
1826 	btrfs_item_key_to_cpu(leaf, &key, slot);
1827 	if (key.objectid != btrfs_ino(inode) ||
1828 	    key.type != BTRFS_EXTENT_DATA_KEY)
1829 		return 0;
1830 
1831 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1832 
1833 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1834 		return 0;
1835 
1836 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
1837 		return 0;
1838 
1839 	if (key.offset == end)
1840 		return 1;
1841 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1842 		return 1;
1843 	return 0;
1844 }
1845 
1846 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
1847 		      struct btrfs_path *path, u64 offset, u64 end)
1848 {
1849 	struct btrfs_root *root = BTRFS_I(inode)->root;
1850 	struct extent_buffer *leaf;
1851 	struct btrfs_file_extent_item *fi;
1852 	struct extent_map *hole_em;
1853 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1854 	struct btrfs_key key;
1855 	int ret;
1856 
1857 	key.objectid = btrfs_ino(inode);
1858 	key.type = BTRFS_EXTENT_DATA_KEY;
1859 	key.offset = offset;
1860 
1861 
1862 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1863 	if (ret < 0)
1864 		return ret;
1865 	BUG_ON(!ret);
1866 
1867 	leaf = path->nodes[0];
1868 	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
1869 		u64 num_bytes;
1870 
1871 		path->slots[0]--;
1872 		fi = btrfs_item_ptr(leaf, path->slots[0],
1873 				    struct btrfs_file_extent_item);
1874 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
1875 			end - offset;
1876 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1877 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1878 		btrfs_set_file_extent_offset(leaf, fi, 0);
1879 		btrfs_mark_buffer_dirty(leaf);
1880 		goto out;
1881 	}
1882 
1883 	if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
1884 		u64 num_bytes;
1885 
1886 		path->slots[0]++;
1887 		key.offset = offset;
1888 		btrfs_set_item_key_safe(trans, root, path, &key);
1889 		fi = btrfs_item_ptr(leaf, path->slots[0],
1890 				    struct btrfs_file_extent_item);
1891 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
1892 			offset;
1893 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1894 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1895 		btrfs_set_file_extent_offset(leaf, fi, 0);
1896 		btrfs_mark_buffer_dirty(leaf);
1897 		goto out;
1898 	}
1899 	btrfs_release_path(path);
1900 
1901 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
1902 				       0, 0, end - offset, 0, end - offset,
1903 				       0, 0, 0);
1904 	if (ret)
1905 		return ret;
1906 
1907 out:
1908 	btrfs_release_path(path);
1909 
1910 	hole_em = alloc_extent_map();
1911 	if (!hole_em) {
1912 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1913 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1914 			&BTRFS_I(inode)->runtime_flags);
1915 	} else {
1916 		hole_em->start = offset;
1917 		hole_em->len = end - offset;
1918 		hole_em->orig_start = offset;
1919 
1920 		hole_em->block_start = EXTENT_MAP_HOLE;
1921 		hole_em->block_len = 0;
1922 		hole_em->orig_block_len = 0;
1923 		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
1924 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
1925 		hole_em->generation = trans->transid;
1926 
1927 		do {
1928 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1929 			write_lock(&em_tree->lock);
1930 			ret = add_extent_mapping(em_tree, hole_em);
1931 			if (!ret)
1932 				list_move(&hole_em->list,
1933 					  &em_tree->modified_extents);
1934 			write_unlock(&em_tree->lock);
1935 		} while (ret == -EEXIST);
1936 		free_extent_map(hole_em);
1937 		if (ret)
1938 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1939 				&BTRFS_I(inode)->runtime_flags);
1940 	}
1941 
1942 	return 0;
1943 }
1944 
1945 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1946 {
1947 	struct btrfs_root *root = BTRFS_I(inode)->root;
1948 	struct extent_state *cached_state = NULL;
1949 	struct btrfs_path *path;
1950 	struct btrfs_block_rsv *rsv;
1951 	struct btrfs_trans_handle *trans;
1952 	u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
1953 	u64 lockend = round_down(offset + len,
1954 				 BTRFS_I(inode)->root->sectorsize) - 1;
1955 	u64 cur_offset = lockstart;
1956 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
1957 	u64 drop_end;
1958 	int ret = 0;
1959 	int err = 0;
1960 	bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
1961 			  ((offset + len - 1) >> PAGE_CACHE_SHIFT));
1962 
1963 	btrfs_wait_ordered_range(inode, offset, len);
1964 
1965 	mutex_lock(&inode->i_mutex);
1966 	/*
1967 	 * We needn't truncate any page which is beyond the end of the file
1968 	 * because we are sure there is no data there.
1969 	 */
1970 	/*
1971 	 * Only do this if we are in the same page and we aren't doing the
1972 	 * entire page.
1973 	 */
1974 	if (same_page && len < PAGE_CACHE_SIZE) {
1975 		if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
1976 			ret = btrfs_truncate_page(inode, offset, len, 0);
1977 		mutex_unlock(&inode->i_mutex);
1978 		return ret;
1979 	}
1980 
1981 	/* zero back part of the first page */
1982 	if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
1983 		ret = btrfs_truncate_page(inode, offset, 0, 0);
1984 		if (ret) {
1985 			mutex_unlock(&inode->i_mutex);
1986 			return ret;
1987 		}
1988 	}
1989 
1990 	/* zero the front end of the last page */
1991 	if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
1992 		ret = btrfs_truncate_page(inode, offset + len, 0, 1);
1993 		if (ret) {
1994 			mutex_unlock(&inode->i_mutex);
1995 			return ret;
1996 		}
1997 	}
1998 
1999 	if (lockend < lockstart) {
2000 		mutex_unlock(&inode->i_mutex);
2001 		return 0;
2002 	}
2003 
2004 	while (1) {
2005 		struct btrfs_ordered_extent *ordered;
2006 
2007 		truncate_pagecache_range(inode, lockstart, lockend);
2008 
2009 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2010 				 0, &cached_state);
2011 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2012 
2013 		/*
2014 		 * We need to make sure we have no ordered extents in this range
2015 		 * and nobody raced in and read a page in this range, if we did
2016 		 * we need to try again.
2017 		 */
2018 		if ((!ordered ||
2019 		    (ordered->file_offset + ordered->len < lockstart ||
2020 		     ordered->file_offset > lockend)) &&
2021 		     !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2022 				     lockend, EXTENT_UPTODATE, 0,
2023 				     cached_state)) {
2024 			if (ordered)
2025 				btrfs_put_ordered_extent(ordered);
2026 			break;
2027 		}
2028 		if (ordered)
2029 			btrfs_put_ordered_extent(ordered);
2030 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2031 				     lockend, &cached_state, GFP_NOFS);
2032 		btrfs_wait_ordered_range(inode, lockstart,
2033 					 lockend - lockstart + 1);
2034 	}
2035 
2036 	path = btrfs_alloc_path();
2037 	if (!path) {
2038 		ret = -ENOMEM;
2039 		goto out;
2040 	}
2041 
2042 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2043 	if (!rsv) {
2044 		ret = -ENOMEM;
2045 		goto out_free;
2046 	}
2047 	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2048 	rsv->failfast = 1;
2049 
2050 	/*
2051 	 * 1 - update the inode
2052 	 * 1 - removing the extents in the range
2053 	 * 1 - adding the hole extent
2054 	 */
2055 	trans = btrfs_start_transaction(root, 3);
2056 	if (IS_ERR(trans)) {
2057 		err = PTR_ERR(trans);
2058 		goto out_free;
2059 	}
2060 
2061 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2062 				      min_size);
2063 	BUG_ON(ret);
2064 	trans->block_rsv = rsv;
2065 
2066 	while (cur_offset < lockend) {
2067 		ret = __btrfs_drop_extents(trans, root, inode, path,
2068 					   cur_offset, lockend + 1,
2069 					   &drop_end, 1);
2070 		if (ret != -ENOSPC)
2071 			break;
2072 
2073 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2074 
2075 		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2076 		if (ret) {
2077 			err = ret;
2078 			break;
2079 		}
2080 
2081 		cur_offset = drop_end;
2082 
2083 		ret = btrfs_update_inode(trans, root, inode);
2084 		if (ret) {
2085 			err = ret;
2086 			break;
2087 		}
2088 
2089 		btrfs_end_transaction(trans, root);
2090 		btrfs_btree_balance_dirty(root);
2091 
2092 		trans = btrfs_start_transaction(root, 3);
2093 		if (IS_ERR(trans)) {
2094 			ret = PTR_ERR(trans);
2095 			trans = NULL;
2096 			break;
2097 		}
2098 
2099 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2100 					      rsv, min_size);
2101 		BUG_ON(ret);	/* shouldn't happen */
2102 		trans->block_rsv = rsv;
2103 	}
2104 
2105 	if (ret) {
2106 		err = ret;
2107 		goto out_trans;
2108 	}
2109 
2110 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2111 	ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2112 	if (ret) {
2113 		err = ret;
2114 		goto out_trans;
2115 	}
2116 
2117 out_trans:
2118 	if (!trans)
2119 		goto out_free;
2120 
2121 	inode_inc_iversion(inode);
2122 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2123 
2124 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2125 	ret = btrfs_update_inode(trans, root, inode);
2126 	btrfs_end_transaction(trans, root);
2127 	btrfs_btree_balance_dirty(root);
2128 out_free:
2129 	btrfs_free_path(path);
2130 	btrfs_free_block_rsv(root, rsv);
2131 out:
2132 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2133 			     &cached_state, GFP_NOFS);
2134 	mutex_unlock(&inode->i_mutex);
2135 	if (ret && !err)
2136 		err = ret;
2137 	return err;
2138 }
2139 
2140 static long btrfs_fallocate(struct file *file, int mode,
2141 			    loff_t offset, loff_t len)
2142 {
2143 	struct inode *inode = file_inode(file);
2144 	struct extent_state *cached_state = NULL;
2145 	struct btrfs_root *root = BTRFS_I(inode)->root;
2146 	u64 cur_offset;
2147 	u64 last_byte;
2148 	u64 alloc_start;
2149 	u64 alloc_end;
2150 	u64 alloc_hint = 0;
2151 	u64 locked_end;
2152 	struct extent_map *em;
2153 	int blocksize = BTRFS_I(inode)->root->sectorsize;
2154 	int ret;
2155 
2156 	alloc_start = round_down(offset, blocksize);
2157 	alloc_end = round_up(offset + len, blocksize);
2158 
2159 	/* Make sure we aren't being give some crap mode */
2160 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2161 		return -EOPNOTSUPP;
2162 
2163 	if (mode & FALLOC_FL_PUNCH_HOLE)
2164 		return btrfs_punch_hole(inode, offset, len);
2165 
2166 	/*
2167 	 * Make sure we have enough space before we do the
2168 	 * allocation.
2169 	 */
2170 	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2171 	if (ret)
2172 		return ret;
2173 	if (root->fs_info->quota_enabled) {
2174 		ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2175 		if (ret)
2176 			goto out_reserve_fail;
2177 	}
2178 
2179 	/*
2180 	 * wait for ordered IO before we have any locks.  We'll loop again
2181 	 * below with the locks held.
2182 	 */
2183 	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
2184 
2185 	mutex_lock(&inode->i_mutex);
2186 	ret = inode_newsize_ok(inode, alloc_end);
2187 	if (ret)
2188 		goto out;
2189 
2190 	if (alloc_start > inode->i_size) {
2191 		ret = btrfs_cont_expand(inode, i_size_read(inode),
2192 					alloc_start);
2193 		if (ret)
2194 			goto out;
2195 	}
2196 
2197 	locked_end = alloc_end - 1;
2198 	while (1) {
2199 		struct btrfs_ordered_extent *ordered;
2200 
2201 		/* the extent lock is ordered inside the running
2202 		 * transaction
2203 		 */
2204 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2205 				 locked_end, 0, &cached_state);
2206 		ordered = btrfs_lookup_first_ordered_extent(inode,
2207 							    alloc_end - 1);
2208 		if (ordered &&
2209 		    ordered->file_offset + ordered->len > alloc_start &&
2210 		    ordered->file_offset < alloc_end) {
2211 			btrfs_put_ordered_extent(ordered);
2212 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2213 					     alloc_start, locked_end,
2214 					     &cached_state, GFP_NOFS);
2215 			/*
2216 			 * we can't wait on the range with the transaction
2217 			 * running or with the extent lock held
2218 			 */
2219 			btrfs_wait_ordered_range(inode, alloc_start,
2220 						 alloc_end - alloc_start);
2221 		} else {
2222 			if (ordered)
2223 				btrfs_put_ordered_extent(ordered);
2224 			break;
2225 		}
2226 	}
2227 
2228 	cur_offset = alloc_start;
2229 	while (1) {
2230 		u64 actual_end;
2231 
2232 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2233 				      alloc_end - cur_offset, 0);
2234 		if (IS_ERR_OR_NULL(em)) {
2235 			if (!em)
2236 				ret = -ENOMEM;
2237 			else
2238 				ret = PTR_ERR(em);
2239 			break;
2240 		}
2241 		last_byte = min(extent_map_end(em), alloc_end);
2242 		actual_end = min_t(u64, extent_map_end(em), offset + len);
2243 		last_byte = ALIGN(last_byte, blocksize);
2244 
2245 		if (em->block_start == EXTENT_MAP_HOLE ||
2246 		    (cur_offset >= inode->i_size &&
2247 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2248 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2249 							last_byte - cur_offset,
2250 							1 << inode->i_blkbits,
2251 							offset + len,
2252 							&alloc_hint);
2253 
2254 			if (ret < 0) {
2255 				free_extent_map(em);
2256 				break;
2257 			}
2258 		} else if (actual_end > inode->i_size &&
2259 			   !(mode & FALLOC_FL_KEEP_SIZE)) {
2260 			/*
2261 			 * We didn't need to allocate any more space, but we
2262 			 * still extended the size of the file so we need to
2263 			 * update i_size.
2264 			 */
2265 			inode->i_ctime = CURRENT_TIME;
2266 			i_size_write(inode, actual_end);
2267 			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2268 		}
2269 		free_extent_map(em);
2270 
2271 		cur_offset = last_byte;
2272 		if (cur_offset >= alloc_end) {
2273 			ret = 0;
2274 			break;
2275 		}
2276 	}
2277 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2278 			     &cached_state, GFP_NOFS);
2279 out:
2280 	mutex_unlock(&inode->i_mutex);
2281 	if (root->fs_info->quota_enabled)
2282 		btrfs_qgroup_free(root, alloc_end - alloc_start);
2283 out_reserve_fail:
2284 	/* Let go of our reservation. */
2285 	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2286 	return ret;
2287 }
2288 
2289 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2290 {
2291 	struct btrfs_root *root = BTRFS_I(inode)->root;
2292 	struct extent_map *em;
2293 	struct extent_state *cached_state = NULL;
2294 	u64 lockstart = *offset;
2295 	u64 lockend = i_size_read(inode);
2296 	u64 start = *offset;
2297 	u64 orig_start = *offset;
2298 	u64 len = i_size_read(inode);
2299 	u64 last_end = 0;
2300 	int ret = 0;
2301 
2302 	lockend = max_t(u64, root->sectorsize, lockend);
2303 	if (lockend <= lockstart)
2304 		lockend = lockstart + root->sectorsize;
2305 
2306 	lockend--;
2307 	len = lockend - lockstart + 1;
2308 
2309 	len = max_t(u64, len, root->sectorsize);
2310 	if (inode->i_size == 0)
2311 		return -ENXIO;
2312 
2313 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2314 			 &cached_state);
2315 
2316 	/*
2317 	 * Delalloc is such a pain.  If we have a hole and we have pending
2318 	 * delalloc for a portion of the hole we will get back a hole that
2319 	 * exists for the entire range since it hasn't been actually written
2320 	 * yet.  So to take care of this case we need to look for an extent just
2321 	 * before the position we want in case there is outstanding delalloc
2322 	 * going on here.
2323 	 */
2324 	if (whence == SEEK_HOLE && start != 0) {
2325 		if (start <= root->sectorsize)
2326 			em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
2327 						     root->sectorsize, 0);
2328 		else
2329 			em = btrfs_get_extent_fiemap(inode, NULL, 0,
2330 						     start - root->sectorsize,
2331 						     root->sectorsize, 0);
2332 		if (IS_ERR(em)) {
2333 			ret = PTR_ERR(em);
2334 			goto out;
2335 		}
2336 		last_end = em->start + em->len;
2337 		if (em->block_start == EXTENT_MAP_DELALLOC)
2338 			last_end = min_t(u64, last_end, inode->i_size);
2339 		free_extent_map(em);
2340 	}
2341 
2342 	while (1) {
2343 		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2344 		if (IS_ERR(em)) {
2345 			ret = PTR_ERR(em);
2346 			break;
2347 		}
2348 
2349 		if (em->block_start == EXTENT_MAP_HOLE) {
2350 			if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2351 				if (last_end <= orig_start) {
2352 					free_extent_map(em);
2353 					ret = -ENXIO;
2354 					break;
2355 				}
2356 			}
2357 
2358 			if (whence == SEEK_HOLE) {
2359 				*offset = start;
2360 				free_extent_map(em);
2361 				break;
2362 			}
2363 		} else {
2364 			if (whence == SEEK_DATA) {
2365 				if (em->block_start == EXTENT_MAP_DELALLOC) {
2366 					if (start >= inode->i_size) {
2367 						free_extent_map(em);
2368 						ret = -ENXIO;
2369 						break;
2370 					}
2371 				}
2372 
2373 				if (!test_bit(EXTENT_FLAG_PREALLOC,
2374 					      &em->flags)) {
2375 					*offset = start;
2376 					free_extent_map(em);
2377 					break;
2378 				}
2379 			}
2380 		}
2381 
2382 		start = em->start + em->len;
2383 		last_end = em->start + em->len;
2384 
2385 		if (em->block_start == EXTENT_MAP_DELALLOC)
2386 			last_end = min_t(u64, last_end, inode->i_size);
2387 
2388 		if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2389 			free_extent_map(em);
2390 			ret = -ENXIO;
2391 			break;
2392 		}
2393 		free_extent_map(em);
2394 		cond_resched();
2395 	}
2396 	if (!ret)
2397 		*offset = min(*offset, inode->i_size);
2398 out:
2399 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2400 			     &cached_state, GFP_NOFS);
2401 	return ret;
2402 }
2403 
2404 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2405 {
2406 	struct inode *inode = file->f_mapping->host;
2407 	int ret;
2408 
2409 	mutex_lock(&inode->i_mutex);
2410 	switch (whence) {
2411 	case SEEK_END:
2412 	case SEEK_CUR:
2413 		offset = generic_file_llseek(file, offset, whence);
2414 		goto out;
2415 	case SEEK_DATA:
2416 	case SEEK_HOLE:
2417 		if (offset >= i_size_read(inode)) {
2418 			mutex_unlock(&inode->i_mutex);
2419 			return -ENXIO;
2420 		}
2421 
2422 		ret = find_desired_extent(inode, &offset, whence);
2423 		if (ret) {
2424 			mutex_unlock(&inode->i_mutex);
2425 			return ret;
2426 		}
2427 	}
2428 
2429 	if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
2430 		offset = -EINVAL;
2431 		goto out;
2432 	}
2433 	if (offset > inode->i_sb->s_maxbytes) {
2434 		offset = -EINVAL;
2435 		goto out;
2436 	}
2437 
2438 	/* Special lock needed here? */
2439 	if (offset != file->f_pos) {
2440 		file->f_pos = offset;
2441 		file->f_version = 0;
2442 	}
2443 out:
2444 	mutex_unlock(&inode->i_mutex);
2445 	return offset;
2446 }
2447 
2448 const struct file_operations btrfs_file_operations = {
2449 	.llseek		= btrfs_file_llseek,
2450 	.read		= do_sync_read,
2451 	.write		= do_sync_write,
2452 	.aio_read       = generic_file_aio_read,
2453 	.splice_read	= generic_file_splice_read,
2454 	.aio_write	= btrfs_file_aio_write,
2455 	.mmap		= btrfs_file_mmap,
2456 	.open		= generic_file_open,
2457 	.release	= btrfs_release_file,
2458 	.fsync		= btrfs_sync_file,
2459 	.fallocate	= btrfs_fallocate,
2460 	.unlocked_ioctl	= btrfs_ioctl,
2461 #ifdef CONFIG_COMPAT
2462 	.compat_ioctl	= btrfs_ioctl,
2463 #endif
2464 };
2465 
2466 void btrfs_auto_defrag_exit(void)
2467 {
2468 	if (btrfs_inode_defrag_cachep)
2469 		kmem_cache_destroy(btrfs_inode_defrag_cachep);
2470 }
2471 
2472 int btrfs_auto_defrag_init(void)
2473 {
2474 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2475 					sizeof(struct inode_defrag), 0,
2476 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2477 					NULL);
2478 	if (!btrfs_inode_defrag_cachep)
2479 		return -ENOMEM;
2480 
2481 	return 0;
2482 }
2483