xref: /linux/fs/btrfs/file.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
45 /*
46  * when auto defrag is enabled we
47  * queue up these defrag structs to remember which
48  * inodes need defragging passes
49  */
50 struct inode_defrag {
51 	struct rb_node rb_node;
52 	/* objectid */
53 	u64 ino;
54 	/*
55 	 * transid where the defrag was added, we search for
56 	 * extents newer than this
57 	 */
58 	u64 transid;
59 
60 	/* root objectid */
61 	u64 root;
62 
63 	/* last offset we were able to defrag */
64 	u64 last_offset;
65 
66 	/* if we've wrapped around back to zero once already */
67 	int cycled;
68 };
69 
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 				  struct inode_defrag *defrag2)
72 {
73 	if (defrag1->root > defrag2->root)
74 		return 1;
75 	else if (defrag1->root < defrag2->root)
76 		return -1;
77 	else if (defrag1->ino > defrag2->ino)
78 		return 1;
79 	else if (defrag1->ino < defrag2->ino)
80 		return -1;
81 	else
82 		return 0;
83 }
84 
85 /* pop a record for an inode into the defrag tree.  The lock
86  * must be held already
87  *
88  * If you're inserting a record for an older transid than an
89  * existing record, the transid already in the tree is lowered
90  *
91  * If an existing record is found the defrag item you
92  * pass in is freed
93  */
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95 				    struct inode_defrag *defrag)
96 {
97 	struct btrfs_root *root = BTRFS_I(inode)->root;
98 	struct inode_defrag *entry;
99 	struct rb_node **p;
100 	struct rb_node *parent = NULL;
101 	int ret;
102 
103 	p = &root->fs_info->defrag_inodes.rb_node;
104 	while (*p) {
105 		parent = *p;
106 		entry = rb_entry(parent, struct inode_defrag, rb_node);
107 
108 		ret = __compare_inode_defrag(defrag, entry);
109 		if (ret < 0)
110 			p = &parent->rb_left;
111 		else if (ret > 0)
112 			p = &parent->rb_right;
113 		else {
114 			/* if we're reinserting an entry for
115 			 * an old defrag run, make sure to
116 			 * lower the transid of our existing record
117 			 */
118 			if (defrag->transid < entry->transid)
119 				entry->transid = defrag->transid;
120 			if (defrag->last_offset > entry->last_offset)
121 				entry->last_offset = defrag->last_offset;
122 			return -EEXIST;
123 		}
124 	}
125 	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126 	rb_link_node(&defrag->rb_node, parent, p);
127 	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
128 	return 0;
129 }
130 
131 static inline int __need_auto_defrag(struct btrfs_root *root)
132 {
133 	if (!btrfs_test_opt(root, AUTO_DEFRAG))
134 		return 0;
135 
136 	if (btrfs_fs_closing(root->fs_info))
137 		return 0;
138 
139 	return 1;
140 }
141 
142 /*
143  * insert a defrag record for this inode if auto defrag is
144  * enabled
145  */
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147 			   struct inode *inode)
148 {
149 	struct btrfs_root *root = BTRFS_I(inode)->root;
150 	struct inode_defrag *defrag;
151 	u64 transid;
152 	int ret;
153 
154 	if (!__need_auto_defrag(root))
155 		return 0;
156 
157 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
158 		return 0;
159 
160 	if (trans)
161 		transid = trans->transid;
162 	else
163 		transid = BTRFS_I(inode)->root->last_trans;
164 
165 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
166 	if (!defrag)
167 		return -ENOMEM;
168 
169 	defrag->ino = btrfs_ino(inode);
170 	defrag->transid = transid;
171 	defrag->root = root->root_key.objectid;
172 
173 	spin_lock(&root->fs_info->defrag_inodes_lock);
174 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175 		/*
176 		 * If we set IN_DEFRAG flag and evict the inode from memory,
177 		 * and then re-read this inode, this new inode doesn't have
178 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
179 		 */
180 		ret = __btrfs_add_inode_defrag(inode, defrag);
181 		if (ret)
182 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183 	} else {
184 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 	}
186 	spin_unlock(&root->fs_info->defrag_inodes_lock);
187 	return 0;
188 }
189 
190 /*
191  * Requeue the defrag object. If there is a defrag object that points to
192  * the same inode in the tree, we will merge them together (by
193  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
194  */
195 static void btrfs_requeue_inode_defrag(struct inode *inode,
196 				       struct inode_defrag *defrag)
197 {
198 	struct btrfs_root *root = BTRFS_I(inode)->root;
199 	int ret;
200 
201 	if (!__need_auto_defrag(root))
202 		goto out;
203 
204 	/*
205 	 * Here we don't check the IN_DEFRAG flag, because we need merge
206 	 * them together.
207 	 */
208 	spin_lock(&root->fs_info->defrag_inodes_lock);
209 	ret = __btrfs_add_inode_defrag(inode, defrag);
210 	spin_unlock(&root->fs_info->defrag_inodes_lock);
211 	if (ret)
212 		goto out;
213 	return;
214 out:
215 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216 }
217 
218 /*
219  * pick the defragable inode that we want, if it doesn't exist, we will get
220  * the next one.
221  */
222 static struct inode_defrag *
223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
224 {
225 	struct inode_defrag *entry = NULL;
226 	struct inode_defrag tmp;
227 	struct rb_node *p;
228 	struct rb_node *parent = NULL;
229 	int ret;
230 
231 	tmp.ino = ino;
232 	tmp.root = root;
233 
234 	spin_lock(&fs_info->defrag_inodes_lock);
235 	p = fs_info->defrag_inodes.rb_node;
236 	while (p) {
237 		parent = p;
238 		entry = rb_entry(parent, struct inode_defrag, rb_node);
239 
240 		ret = __compare_inode_defrag(&tmp, entry);
241 		if (ret < 0)
242 			p = parent->rb_left;
243 		else if (ret > 0)
244 			p = parent->rb_right;
245 		else
246 			goto out;
247 	}
248 
249 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 		parent = rb_next(parent);
251 		if (parent)
252 			entry = rb_entry(parent, struct inode_defrag, rb_node);
253 		else
254 			entry = NULL;
255 	}
256 out:
257 	if (entry)
258 		rb_erase(parent, &fs_info->defrag_inodes);
259 	spin_unlock(&fs_info->defrag_inodes_lock);
260 	return entry;
261 }
262 
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
264 {
265 	struct inode_defrag *defrag;
266 	struct rb_node *node;
267 
268 	spin_lock(&fs_info->defrag_inodes_lock);
269 	node = rb_first(&fs_info->defrag_inodes);
270 	while (node) {
271 		rb_erase(node, &fs_info->defrag_inodes);
272 		defrag = rb_entry(node, struct inode_defrag, rb_node);
273 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274 
275 		if (need_resched()) {
276 			spin_unlock(&fs_info->defrag_inodes_lock);
277 			cond_resched();
278 			spin_lock(&fs_info->defrag_inodes_lock);
279 		}
280 
281 		node = rb_first(&fs_info->defrag_inodes);
282 	}
283 	spin_unlock(&fs_info->defrag_inodes_lock);
284 }
285 
286 #define BTRFS_DEFRAG_BATCH	1024
287 
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 				    struct inode_defrag *defrag)
290 {
291 	struct btrfs_root *inode_root;
292 	struct inode *inode;
293 	struct btrfs_key key;
294 	struct btrfs_ioctl_defrag_range_args range;
295 	int num_defrag;
296 	int index;
297 	int ret;
298 
299 	/* get the inode */
300 	key.objectid = defrag->root;
301 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302 	key.offset = (u64)-1;
303 
304 	index = srcu_read_lock(&fs_info->subvol_srcu);
305 
306 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307 	if (IS_ERR(inode_root)) {
308 		ret = PTR_ERR(inode_root);
309 		goto cleanup;
310 	}
311 
312 	key.objectid = defrag->ino;
313 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
314 	key.offset = 0;
315 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
316 	if (IS_ERR(inode)) {
317 		ret = PTR_ERR(inode);
318 		goto cleanup;
319 	}
320 	srcu_read_unlock(&fs_info->subvol_srcu, index);
321 
322 	/* do a chunk of defrag */
323 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
324 	memset(&range, 0, sizeof(range));
325 	range.len = (u64)-1;
326 	range.start = defrag->last_offset;
327 
328 	sb_start_write(fs_info->sb);
329 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
330 				       BTRFS_DEFRAG_BATCH);
331 	sb_end_write(fs_info->sb);
332 	/*
333 	 * if we filled the whole defrag batch, there
334 	 * must be more work to do.  Queue this defrag
335 	 * again
336 	 */
337 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
338 		defrag->last_offset = range.start;
339 		btrfs_requeue_inode_defrag(inode, defrag);
340 	} else if (defrag->last_offset && !defrag->cycled) {
341 		/*
342 		 * we didn't fill our defrag batch, but
343 		 * we didn't start at zero.  Make sure we loop
344 		 * around to the start of the file.
345 		 */
346 		defrag->last_offset = 0;
347 		defrag->cycled = 1;
348 		btrfs_requeue_inode_defrag(inode, defrag);
349 	} else {
350 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
351 	}
352 
353 	iput(inode);
354 	return 0;
355 cleanup:
356 	srcu_read_unlock(&fs_info->subvol_srcu, index);
357 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
358 	return ret;
359 }
360 
361 /*
362  * run through the list of inodes in the FS that need
363  * defragging
364  */
365 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
366 {
367 	struct inode_defrag *defrag;
368 	u64 first_ino = 0;
369 	u64 root_objectid = 0;
370 
371 	atomic_inc(&fs_info->defrag_running);
372 	while (1) {
373 		/* Pause the auto defragger. */
374 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
375 			     &fs_info->fs_state))
376 			break;
377 
378 		if (!__need_auto_defrag(fs_info->tree_root))
379 			break;
380 
381 		/* find an inode to defrag */
382 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
383 						 first_ino);
384 		if (!defrag) {
385 			if (root_objectid || first_ino) {
386 				root_objectid = 0;
387 				first_ino = 0;
388 				continue;
389 			} else {
390 				break;
391 			}
392 		}
393 
394 		first_ino = defrag->ino + 1;
395 		root_objectid = defrag->root;
396 
397 		__btrfs_run_defrag_inode(fs_info, defrag);
398 	}
399 	atomic_dec(&fs_info->defrag_running);
400 
401 	/*
402 	 * during unmount, we use the transaction_wait queue to
403 	 * wait for the defragger to stop
404 	 */
405 	wake_up(&fs_info->transaction_wait);
406 	return 0;
407 }
408 
409 /* simple helper to fault in pages and copy.  This should go away
410  * and be replaced with calls into generic code.
411  */
412 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
413 					 size_t write_bytes,
414 					 struct page **prepared_pages,
415 					 struct iov_iter *i)
416 {
417 	size_t copied = 0;
418 	size_t total_copied = 0;
419 	int pg = 0;
420 	int offset = pos & (PAGE_CACHE_SIZE - 1);
421 
422 	while (write_bytes > 0) {
423 		size_t count = min_t(size_t,
424 				     PAGE_CACHE_SIZE - offset, write_bytes);
425 		struct page *page = prepared_pages[pg];
426 		/*
427 		 * Copy data from userspace to the current page
428 		 *
429 		 * Disable pagefault to avoid recursive lock since
430 		 * the pages are already locked
431 		 */
432 		pagefault_disable();
433 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
434 		pagefault_enable();
435 
436 		/* Flush processor's dcache for this page */
437 		flush_dcache_page(page);
438 
439 		/*
440 		 * if we get a partial write, we can end up with
441 		 * partially up to date pages.  These add
442 		 * a lot of complexity, so make sure they don't
443 		 * happen by forcing this copy to be retried.
444 		 *
445 		 * The rest of the btrfs_file_write code will fall
446 		 * back to page at a time copies after we return 0.
447 		 */
448 		if (!PageUptodate(page) && copied < count)
449 			copied = 0;
450 
451 		iov_iter_advance(i, copied);
452 		write_bytes -= copied;
453 		total_copied += copied;
454 
455 		/* Return to btrfs_file_aio_write to fault page */
456 		if (unlikely(copied == 0))
457 			break;
458 
459 		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
460 			offset += copied;
461 		} else {
462 			pg++;
463 			offset = 0;
464 		}
465 	}
466 	return total_copied;
467 }
468 
469 /*
470  * unlocks pages after btrfs_file_write is done with them
471  */
472 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
473 {
474 	size_t i;
475 	for (i = 0; i < num_pages; i++) {
476 		/* page checked is some magic around finding pages that
477 		 * have been modified without going through btrfs_set_page_dirty
478 		 * clear it here
479 		 */
480 		ClearPageChecked(pages[i]);
481 		unlock_page(pages[i]);
482 		mark_page_accessed(pages[i]);
483 		page_cache_release(pages[i]);
484 	}
485 }
486 
487 /*
488  * after copy_from_user, pages need to be dirtied and we need to make
489  * sure holes are created between the current EOF and the start of
490  * any next extents (if required).
491  *
492  * this also makes the decision about creating an inline extent vs
493  * doing real data extents, marking pages dirty and delalloc as required.
494  */
495 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
496 			     struct page **pages, size_t num_pages,
497 			     loff_t pos, size_t write_bytes,
498 			     struct extent_state **cached)
499 {
500 	int err = 0;
501 	int i;
502 	u64 num_bytes;
503 	u64 start_pos;
504 	u64 end_of_last_block;
505 	u64 end_pos = pos + write_bytes;
506 	loff_t isize = i_size_read(inode);
507 
508 	start_pos = pos & ~((u64)root->sectorsize - 1);
509 	num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
510 
511 	end_of_last_block = start_pos + num_bytes - 1;
512 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
513 					cached);
514 	if (err)
515 		return err;
516 
517 	for (i = 0; i < num_pages; i++) {
518 		struct page *p = pages[i];
519 		SetPageUptodate(p);
520 		ClearPageChecked(p);
521 		set_page_dirty(p);
522 	}
523 
524 	/*
525 	 * we've only changed i_size in ram, and we haven't updated
526 	 * the disk i_size.  There is no need to log the inode
527 	 * at this time.
528 	 */
529 	if (end_pos > isize)
530 		i_size_write(inode, end_pos);
531 	return 0;
532 }
533 
534 /*
535  * this drops all the extents in the cache that intersect the range
536  * [start, end].  Existing extents are split as required.
537  */
538 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
539 			     int skip_pinned)
540 {
541 	struct extent_map *em;
542 	struct extent_map *split = NULL;
543 	struct extent_map *split2 = NULL;
544 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
545 	u64 len = end - start + 1;
546 	u64 gen;
547 	int ret;
548 	int testend = 1;
549 	unsigned long flags;
550 	int compressed = 0;
551 	bool modified;
552 
553 	WARN_ON(end < start);
554 	if (end == (u64)-1) {
555 		len = (u64)-1;
556 		testend = 0;
557 	}
558 	while (1) {
559 		int no_splits = 0;
560 
561 		modified = false;
562 		if (!split)
563 			split = alloc_extent_map();
564 		if (!split2)
565 			split2 = alloc_extent_map();
566 		if (!split || !split2)
567 			no_splits = 1;
568 
569 		write_lock(&em_tree->lock);
570 		em = lookup_extent_mapping(em_tree, start, len);
571 		if (!em) {
572 			write_unlock(&em_tree->lock);
573 			break;
574 		}
575 		flags = em->flags;
576 		gen = em->generation;
577 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
578 			if (testend && em->start + em->len >= start + len) {
579 				free_extent_map(em);
580 				write_unlock(&em_tree->lock);
581 				break;
582 			}
583 			start = em->start + em->len;
584 			if (testend)
585 				len = start + len - (em->start + em->len);
586 			free_extent_map(em);
587 			write_unlock(&em_tree->lock);
588 			continue;
589 		}
590 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
591 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
592 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
593 		modified = !list_empty(&em->list);
594 		remove_extent_mapping(em_tree, em);
595 		if (no_splits)
596 			goto next;
597 
598 		if (em->start < start) {
599 			split->start = em->start;
600 			split->len = start - em->start;
601 
602 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
603 				split->orig_start = em->orig_start;
604 				split->block_start = em->block_start;
605 
606 				if (compressed)
607 					split->block_len = em->block_len;
608 				else
609 					split->block_len = split->len;
610 				split->orig_block_len = max(split->block_len,
611 						em->orig_block_len);
612 				split->ram_bytes = em->ram_bytes;
613 			} else {
614 				split->orig_start = split->start;
615 				split->block_len = 0;
616 				split->block_start = em->block_start;
617 				split->orig_block_len = 0;
618 				split->ram_bytes = split->len;
619 			}
620 
621 			split->generation = gen;
622 			split->bdev = em->bdev;
623 			split->flags = flags;
624 			split->compress_type = em->compress_type;
625 			ret = add_extent_mapping(em_tree, split, modified);
626 			BUG_ON(ret); /* Logic error */
627 			free_extent_map(split);
628 			split = split2;
629 			split2 = NULL;
630 		}
631 		if (testend && em->start + em->len > start + len) {
632 			u64 diff = start + len - em->start;
633 
634 			split->start = start + len;
635 			split->len = em->start + em->len - (start + len);
636 			split->bdev = em->bdev;
637 			split->flags = flags;
638 			split->compress_type = em->compress_type;
639 			split->generation = gen;
640 
641 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
642 				split->orig_block_len = max(em->block_len,
643 						    em->orig_block_len);
644 
645 				split->ram_bytes = em->ram_bytes;
646 				if (compressed) {
647 					split->block_len = em->block_len;
648 					split->block_start = em->block_start;
649 					split->orig_start = em->orig_start;
650 				} else {
651 					split->block_len = split->len;
652 					split->block_start = em->block_start
653 						+ diff;
654 					split->orig_start = em->orig_start;
655 				}
656 			} else {
657 				split->ram_bytes = split->len;
658 				split->orig_start = split->start;
659 				split->block_len = 0;
660 				split->block_start = em->block_start;
661 				split->orig_block_len = 0;
662 			}
663 
664 			ret = add_extent_mapping(em_tree, split, modified);
665 			BUG_ON(ret); /* Logic error */
666 			free_extent_map(split);
667 			split = NULL;
668 		}
669 next:
670 		write_unlock(&em_tree->lock);
671 
672 		/* once for us */
673 		free_extent_map(em);
674 		/* once for the tree*/
675 		free_extent_map(em);
676 	}
677 	if (split)
678 		free_extent_map(split);
679 	if (split2)
680 		free_extent_map(split2);
681 }
682 
683 /*
684  * this is very complex, but the basic idea is to drop all extents
685  * in the range start - end.  hint_block is filled in with a block number
686  * that would be a good hint to the block allocator for this file.
687  *
688  * If an extent intersects the range but is not entirely inside the range
689  * it is either truncated or split.  Anything entirely inside the range
690  * is deleted from the tree.
691  */
692 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
693 			 struct btrfs_root *root, struct inode *inode,
694 			 struct btrfs_path *path, u64 start, u64 end,
695 			 u64 *drop_end, int drop_cache)
696 {
697 	struct extent_buffer *leaf;
698 	struct btrfs_file_extent_item *fi;
699 	struct btrfs_key key;
700 	struct btrfs_key new_key;
701 	u64 ino = btrfs_ino(inode);
702 	u64 search_start = start;
703 	u64 disk_bytenr = 0;
704 	u64 num_bytes = 0;
705 	u64 extent_offset = 0;
706 	u64 extent_end = 0;
707 	int del_nr = 0;
708 	int del_slot = 0;
709 	int extent_type;
710 	int recow;
711 	int ret;
712 	int modify_tree = -1;
713 	int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
714 	int found = 0;
715 
716 	if (drop_cache)
717 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
718 
719 	if (start >= BTRFS_I(inode)->disk_i_size)
720 		modify_tree = 0;
721 
722 	while (1) {
723 		recow = 0;
724 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
725 					       search_start, modify_tree);
726 		if (ret < 0)
727 			break;
728 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
729 			leaf = path->nodes[0];
730 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
731 			if (key.objectid == ino &&
732 			    key.type == BTRFS_EXTENT_DATA_KEY)
733 				path->slots[0]--;
734 		}
735 		ret = 0;
736 next_slot:
737 		leaf = path->nodes[0];
738 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
739 			BUG_ON(del_nr > 0);
740 			ret = btrfs_next_leaf(root, path);
741 			if (ret < 0)
742 				break;
743 			if (ret > 0) {
744 				ret = 0;
745 				break;
746 			}
747 			leaf = path->nodes[0];
748 			recow = 1;
749 		}
750 
751 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
752 		if (key.objectid > ino ||
753 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
754 			break;
755 
756 		fi = btrfs_item_ptr(leaf, path->slots[0],
757 				    struct btrfs_file_extent_item);
758 		extent_type = btrfs_file_extent_type(leaf, fi);
759 
760 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
761 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
762 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
763 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
764 			extent_offset = btrfs_file_extent_offset(leaf, fi);
765 			extent_end = key.offset +
766 				btrfs_file_extent_num_bytes(leaf, fi);
767 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
768 			extent_end = key.offset +
769 				btrfs_file_extent_inline_len(leaf, fi);
770 		} else {
771 			WARN_ON(1);
772 			extent_end = search_start;
773 		}
774 
775 		if (extent_end <= search_start) {
776 			path->slots[0]++;
777 			goto next_slot;
778 		}
779 
780 		found = 1;
781 		search_start = max(key.offset, start);
782 		if (recow || !modify_tree) {
783 			modify_tree = -1;
784 			btrfs_release_path(path);
785 			continue;
786 		}
787 
788 		/*
789 		 *     | - range to drop - |
790 		 *  | -------- extent -------- |
791 		 */
792 		if (start > key.offset && end < extent_end) {
793 			BUG_ON(del_nr > 0);
794 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
795 
796 			memcpy(&new_key, &key, sizeof(new_key));
797 			new_key.offset = start;
798 			ret = btrfs_duplicate_item(trans, root, path,
799 						   &new_key);
800 			if (ret == -EAGAIN) {
801 				btrfs_release_path(path);
802 				continue;
803 			}
804 			if (ret < 0)
805 				break;
806 
807 			leaf = path->nodes[0];
808 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
809 					    struct btrfs_file_extent_item);
810 			btrfs_set_file_extent_num_bytes(leaf, fi,
811 							start - key.offset);
812 
813 			fi = btrfs_item_ptr(leaf, path->slots[0],
814 					    struct btrfs_file_extent_item);
815 
816 			extent_offset += start - key.offset;
817 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
818 			btrfs_set_file_extent_num_bytes(leaf, fi,
819 							extent_end - start);
820 			btrfs_mark_buffer_dirty(leaf);
821 
822 			if (update_refs && disk_bytenr > 0) {
823 				ret = btrfs_inc_extent_ref(trans, root,
824 						disk_bytenr, num_bytes, 0,
825 						root->root_key.objectid,
826 						new_key.objectid,
827 						start - extent_offset, 0);
828 				BUG_ON(ret); /* -ENOMEM */
829 			}
830 			key.offset = start;
831 		}
832 		/*
833 		 *  | ---- range to drop ----- |
834 		 *      | -------- extent -------- |
835 		 */
836 		if (start <= key.offset && end < extent_end) {
837 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
838 
839 			memcpy(&new_key, &key, sizeof(new_key));
840 			new_key.offset = end;
841 			btrfs_set_item_key_safe(root, path, &new_key);
842 
843 			extent_offset += end - key.offset;
844 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
845 			btrfs_set_file_extent_num_bytes(leaf, fi,
846 							extent_end - end);
847 			btrfs_mark_buffer_dirty(leaf);
848 			if (update_refs && disk_bytenr > 0)
849 				inode_sub_bytes(inode, end - key.offset);
850 			break;
851 		}
852 
853 		search_start = extent_end;
854 		/*
855 		 *       | ---- range to drop ----- |
856 		 *  | -------- extent -------- |
857 		 */
858 		if (start > key.offset && end >= extent_end) {
859 			BUG_ON(del_nr > 0);
860 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
861 
862 			btrfs_set_file_extent_num_bytes(leaf, fi,
863 							start - key.offset);
864 			btrfs_mark_buffer_dirty(leaf);
865 			if (update_refs && disk_bytenr > 0)
866 				inode_sub_bytes(inode, extent_end - start);
867 			if (end == extent_end)
868 				break;
869 
870 			path->slots[0]++;
871 			goto next_slot;
872 		}
873 
874 		/*
875 		 *  | ---- range to drop ----- |
876 		 *    | ------ extent ------ |
877 		 */
878 		if (start <= key.offset && end >= extent_end) {
879 			if (del_nr == 0) {
880 				del_slot = path->slots[0];
881 				del_nr = 1;
882 			} else {
883 				BUG_ON(del_slot + del_nr != path->slots[0]);
884 				del_nr++;
885 			}
886 
887 			if (update_refs &&
888 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
889 				inode_sub_bytes(inode,
890 						extent_end - key.offset);
891 				extent_end = ALIGN(extent_end,
892 						   root->sectorsize);
893 			} else if (update_refs && disk_bytenr > 0) {
894 				ret = btrfs_free_extent(trans, root,
895 						disk_bytenr, num_bytes, 0,
896 						root->root_key.objectid,
897 						key.objectid, key.offset -
898 						extent_offset, 0);
899 				BUG_ON(ret); /* -ENOMEM */
900 				inode_sub_bytes(inode,
901 						extent_end - key.offset);
902 			}
903 
904 			if (end == extent_end)
905 				break;
906 
907 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
908 				path->slots[0]++;
909 				goto next_slot;
910 			}
911 
912 			ret = btrfs_del_items(trans, root, path, del_slot,
913 					      del_nr);
914 			if (ret) {
915 				btrfs_abort_transaction(trans, root, ret);
916 				break;
917 			}
918 
919 			del_nr = 0;
920 			del_slot = 0;
921 
922 			btrfs_release_path(path);
923 			continue;
924 		}
925 
926 		BUG_ON(1);
927 	}
928 
929 	if (!ret && del_nr > 0) {
930 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
931 		if (ret)
932 			btrfs_abort_transaction(trans, root, ret);
933 	}
934 
935 	if (drop_end)
936 		*drop_end = found ? min(end, extent_end) : end;
937 	btrfs_release_path(path);
938 	return ret;
939 }
940 
941 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
942 		       struct btrfs_root *root, struct inode *inode, u64 start,
943 		       u64 end, int drop_cache)
944 {
945 	struct btrfs_path *path;
946 	int ret;
947 
948 	path = btrfs_alloc_path();
949 	if (!path)
950 		return -ENOMEM;
951 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
952 				   drop_cache);
953 	btrfs_free_path(path);
954 	return ret;
955 }
956 
957 static int extent_mergeable(struct extent_buffer *leaf, int slot,
958 			    u64 objectid, u64 bytenr, u64 orig_offset,
959 			    u64 *start, u64 *end)
960 {
961 	struct btrfs_file_extent_item *fi;
962 	struct btrfs_key key;
963 	u64 extent_end;
964 
965 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
966 		return 0;
967 
968 	btrfs_item_key_to_cpu(leaf, &key, slot);
969 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
970 		return 0;
971 
972 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
973 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
974 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
975 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
976 	    btrfs_file_extent_compression(leaf, fi) ||
977 	    btrfs_file_extent_encryption(leaf, fi) ||
978 	    btrfs_file_extent_other_encoding(leaf, fi))
979 		return 0;
980 
981 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
982 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
983 		return 0;
984 
985 	*start = key.offset;
986 	*end = extent_end;
987 	return 1;
988 }
989 
990 /*
991  * Mark extent in the range start - end as written.
992  *
993  * This changes extent type from 'pre-allocated' to 'regular'. If only
994  * part of extent is marked as written, the extent will be split into
995  * two or three.
996  */
997 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
998 			      struct inode *inode, u64 start, u64 end)
999 {
1000 	struct btrfs_root *root = BTRFS_I(inode)->root;
1001 	struct extent_buffer *leaf;
1002 	struct btrfs_path *path;
1003 	struct btrfs_file_extent_item *fi;
1004 	struct btrfs_key key;
1005 	struct btrfs_key new_key;
1006 	u64 bytenr;
1007 	u64 num_bytes;
1008 	u64 extent_end;
1009 	u64 orig_offset;
1010 	u64 other_start;
1011 	u64 other_end;
1012 	u64 split;
1013 	int del_nr = 0;
1014 	int del_slot = 0;
1015 	int recow;
1016 	int ret;
1017 	u64 ino = btrfs_ino(inode);
1018 
1019 	path = btrfs_alloc_path();
1020 	if (!path)
1021 		return -ENOMEM;
1022 again:
1023 	recow = 0;
1024 	split = start;
1025 	key.objectid = ino;
1026 	key.type = BTRFS_EXTENT_DATA_KEY;
1027 	key.offset = split;
1028 
1029 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1030 	if (ret < 0)
1031 		goto out;
1032 	if (ret > 0 && path->slots[0] > 0)
1033 		path->slots[0]--;
1034 
1035 	leaf = path->nodes[0];
1036 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1037 	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1038 	fi = btrfs_item_ptr(leaf, path->slots[0],
1039 			    struct btrfs_file_extent_item);
1040 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1041 	       BTRFS_FILE_EXTENT_PREALLOC);
1042 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1043 	BUG_ON(key.offset > start || extent_end < end);
1044 
1045 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1046 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1047 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1048 	memcpy(&new_key, &key, sizeof(new_key));
1049 
1050 	if (start == key.offset && end < extent_end) {
1051 		other_start = 0;
1052 		other_end = start;
1053 		if (extent_mergeable(leaf, path->slots[0] - 1,
1054 				     ino, bytenr, orig_offset,
1055 				     &other_start, &other_end)) {
1056 			new_key.offset = end;
1057 			btrfs_set_item_key_safe(root, path, &new_key);
1058 			fi = btrfs_item_ptr(leaf, path->slots[0],
1059 					    struct btrfs_file_extent_item);
1060 			btrfs_set_file_extent_generation(leaf, fi,
1061 							 trans->transid);
1062 			btrfs_set_file_extent_num_bytes(leaf, fi,
1063 							extent_end - end);
1064 			btrfs_set_file_extent_offset(leaf, fi,
1065 						     end - orig_offset);
1066 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1067 					    struct btrfs_file_extent_item);
1068 			btrfs_set_file_extent_generation(leaf, fi,
1069 							 trans->transid);
1070 			btrfs_set_file_extent_num_bytes(leaf, fi,
1071 							end - other_start);
1072 			btrfs_mark_buffer_dirty(leaf);
1073 			goto out;
1074 		}
1075 	}
1076 
1077 	if (start > key.offset && end == extent_end) {
1078 		other_start = end;
1079 		other_end = 0;
1080 		if (extent_mergeable(leaf, path->slots[0] + 1,
1081 				     ino, bytenr, orig_offset,
1082 				     &other_start, &other_end)) {
1083 			fi = btrfs_item_ptr(leaf, path->slots[0],
1084 					    struct btrfs_file_extent_item);
1085 			btrfs_set_file_extent_num_bytes(leaf, fi,
1086 							start - key.offset);
1087 			btrfs_set_file_extent_generation(leaf, fi,
1088 							 trans->transid);
1089 			path->slots[0]++;
1090 			new_key.offset = start;
1091 			btrfs_set_item_key_safe(root, path, &new_key);
1092 
1093 			fi = btrfs_item_ptr(leaf, path->slots[0],
1094 					    struct btrfs_file_extent_item);
1095 			btrfs_set_file_extent_generation(leaf, fi,
1096 							 trans->transid);
1097 			btrfs_set_file_extent_num_bytes(leaf, fi,
1098 							other_end - start);
1099 			btrfs_set_file_extent_offset(leaf, fi,
1100 						     start - orig_offset);
1101 			btrfs_mark_buffer_dirty(leaf);
1102 			goto out;
1103 		}
1104 	}
1105 
1106 	while (start > key.offset || end < extent_end) {
1107 		if (key.offset == start)
1108 			split = end;
1109 
1110 		new_key.offset = split;
1111 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1112 		if (ret == -EAGAIN) {
1113 			btrfs_release_path(path);
1114 			goto again;
1115 		}
1116 		if (ret < 0) {
1117 			btrfs_abort_transaction(trans, root, ret);
1118 			goto out;
1119 		}
1120 
1121 		leaf = path->nodes[0];
1122 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1123 				    struct btrfs_file_extent_item);
1124 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1125 		btrfs_set_file_extent_num_bytes(leaf, fi,
1126 						split - key.offset);
1127 
1128 		fi = btrfs_item_ptr(leaf, path->slots[0],
1129 				    struct btrfs_file_extent_item);
1130 
1131 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1132 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1133 		btrfs_set_file_extent_num_bytes(leaf, fi,
1134 						extent_end - split);
1135 		btrfs_mark_buffer_dirty(leaf);
1136 
1137 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1138 					   root->root_key.objectid,
1139 					   ino, orig_offset, 0);
1140 		BUG_ON(ret); /* -ENOMEM */
1141 
1142 		if (split == start) {
1143 			key.offset = start;
1144 		} else {
1145 			BUG_ON(start != key.offset);
1146 			path->slots[0]--;
1147 			extent_end = end;
1148 		}
1149 		recow = 1;
1150 	}
1151 
1152 	other_start = end;
1153 	other_end = 0;
1154 	if (extent_mergeable(leaf, path->slots[0] + 1,
1155 			     ino, bytenr, orig_offset,
1156 			     &other_start, &other_end)) {
1157 		if (recow) {
1158 			btrfs_release_path(path);
1159 			goto again;
1160 		}
1161 		extent_end = other_end;
1162 		del_slot = path->slots[0] + 1;
1163 		del_nr++;
1164 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1165 					0, root->root_key.objectid,
1166 					ino, orig_offset, 0);
1167 		BUG_ON(ret); /* -ENOMEM */
1168 	}
1169 	other_start = 0;
1170 	other_end = start;
1171 	if (extent_mergeable(leaf, path->slots[0] - 1,
1172 			     ino, bytenr, orig_offset,
1173 			     &other_start, &other_end)) {
1174 		if (recow) {
1175 			btrfs_release_path(path);
1176 			goto again;
1177 		}
1178 		key.offset = other_start;
1179 		del_slot = path->slots[0];
1180 		del_nr++;
1181 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1182 					0, root->root_key.objectid,
1183 					ino, orig_offset, 0);
1184 		BUG_ON(ret); /* -ENOMEM */
1185 	}
1186 	if (del_nr == 0) {
1187 		fi = btrfs_item_ptr(leaf, path->slots[0],
1188 			   struct btrfs_file_extent_item);
1189 		btrfs_set_file_extent_type(leaf, fi,
1190 					   BTRFS_FILE_EXTENT_REG);
1191 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1192 		btrfs_mark_buffer_dirty(leaf);
1193 	} else {
1194 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1195 			   struct btrfs_file_extent_item);
1196 		btrfs_set_file_extent_type(leaf, fi,
1197 					   BTRFS_FILE_EXTENT_REG);
1198 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1199 		btrfs_set_file_extent_num_bytes(leaf, fi,
1200 						extent_end - key.offset);
1201 		btrfs_mark_buffer_dirty(leaf);
1202 
1203 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1204 		if (ret < 0) {
1205 			btrfs_abort_transaction(trans, root, ret);
1206 			goto out;
1207 		}
1208 	}
1209 out:
1210 	btrfs_free_path(path);
1211 	return 0;
1212 }
1213 
1214 /*
1215  * on error we return an unlocked page and the error value
1216  * on success we return a locked page and 0
1217  */
1218 static int prepare_uptodate_page(struct page *page, u64 pos,
1219 				 bool force_uptodate)
1220 {
1221 	int ret = 0;
1222 
1223 	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1224 	    !PageUptodate(page)) {
1225 		ret = btrfs_readpage(NULL, page);
1226 		if (ret)
1227 			return ret;
1228 		lock_page(page);
1229 		if (!PageUptodate(page)) {
1230 			unlock_page(page);
1231 			return -EIO;
1232 		}
1233 	}
1234 	return 0;
1235 }
1236 
1237 /*
1238  * this gets pages into the page cache and locks them down, it also properly
1239  * waits for data=ordered extents to finish before allowing the pages to be
1240  * modified.
1241  */
1242 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1243 			 struct page **pages, size_t num_pages,
1244 			 loff_t pos, unsigned long first_index,
1245 			 size_t write_bytes, bool force_uptodate)
1246 {
1247 	struct extent_state *cached_state = NULL;
1248 	int i;
1249 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
1250 	struct inode *inode = file_inode(file);
1251 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1252 	int err = 0;
1253 	int faili = 0;
1254 	u64 start_pos;
1255 	u64 last_pos;
1256 
1257 	start_pos = pos & ~((u64)root->sectorsize - 1);
1258 	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1259 
1260 again:
1261 	for (i = 0; i < num_pages; i++) {
1262 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1263 					       mask | __GFP_WRITE);
1264 		if (!pages[i]) {
1265 			faili = i - 1;
1266 			err = -ENOMEM;
1267 			goto fail;
1268 		}
1269 
1270 		if (i == 0)
1271 			err = prepare_uptodate_page(pages[i], pos,
1272 						    force_uptodate);
1273 		if (i == num_pages - 1)
1274 			err = prepare_uptodate_page(pages[i],
1275 						    pos + write_bytes, false);
1276 		if (err) {
1277 			page_cache_release(pages[i]);
1278 			faili = i - 1;
1279 			goto fail;
1280 		}
1281 		wait_on_page_writeback(pages[i]);
1282 	}
1283 	faili = num_pages - 1;
1284 	err = 0;
1285 	if (start_pos < inode->i_size) {
1286 		struct btrfs_ordered_extent *ordered;
1287 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1288 				 start_pos, last_pos - 1, 0, &cached_state);
1289 		ordered = btrfs_lookup_first_ordered_extent(inode,
1290 							    last_pos - 1);
1291 		if (ordered &&
1292 		    ordered->file_offset + ordered->len > start_pos &&
1293 		    ordered->file_offset < last_pos) {
1294 			btrfs_put_ordered_extent(ordered);
1295 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1296 					     start_pos, last_pos - 1,
1297 					     &cached_state, GFP_NOFS);
1298 			for (i = 0; i < num_pages; i++) {
1299 				unlock_page(pages[i]);
1300 				page_cache_release(pages[i]);
1301 			}
1302 			err = btrfs_wait_ordered_range(inode, start_pos,
1303 						       last_pos - start_pos);
1304 			if (err)
1305 				goto fail;
1306 			goto again;
1307 		}
1308 		if (ordered)
1309 			btrfs_put_ordered_extent(ordered);
1310 
1311 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1312 				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1313 				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1314 				  0, 0, &cached_state, GFP_NOFS);
1315 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1316 				     start_pos, last_pos - 1, &cached_state,
1317 				     GFP_NOFS);
1318 	}
1319 	for (i = 0; i < num_pages; i++) {
1320 		if (clear_page_dirty_for_io(pages[i]))
1321 			account_page_redirty(pages[i]);
1322 		set_page_extent_mapped(pages[i]);
1323 		WARN_ON(!PageLocked(pages[i]));
1324 	}
1325 	return 0;
1326 fail:
1327 	while (faili >= 0) {
1328 		unlock_page(pages[faili]);
1329 		page_cache_release(pages[faili]);
1330 		faili--;
1331 	}
1332 	return err;
1333 
1334 }
1335 
1336 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1337 				    size_t *write_bytes)
1338 {
1339 	struct btrfs_root *root = BTRFS_I(inode)->root;
1340 	struct btrfs_ordered_extent *ordered;
1341 	u64 lockstart, lockend;
1342 	u64 num_bytes;
1343 	int ret;
1344 
1345 	lockstart = round_down(pos, root->sectorsize);
1346 	lockend = lockstart + round_up(*write_bytes, root->sectorsize) - 1;
1347 
1348 	while (1) {
1349 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1350 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1351 						     lockend - lockstart + 1);
1352 		if (!ordered) {
1353 			break;
1354 		}
1355 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1356 		btrfs_start_ordered_extent(inode, ordered, 1);
1357 		btrfs_put_ordered_extent(ordered);
1358 	}
1359 
1360 	num_bytes = lockend - lockstart + 1;
1361 	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1362 	if (ret <= 0) {
1363 		ret = 0;
1364 	} else {
1365 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1366 				 EXTENT_DIRTY | EXTENT_DELALLOC |
1367 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1368 				 NULL, GFP_NOFS);
1369 		*write_bytes = min_t(size_t, *write_bytes, num_bytes);
1370 	}
1371 
1372 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1373 
1374 	return ret;
1375 }
1376 
1377 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1378 					       struct iov_iter *i,
1379 					       loff_t pos)
1380 {
1381 	struct inode *inode = file_inode(file);
1382 	struct btrfs_root *root = BTRFS_I(inode)->root;
1383 	struct page **pages = NULL;
1384 	u64 release_bytes = 0;
1385 	unsigned long first_index;
1386 	size_t num_written = 0;
1387 	int nrptrs;
1388 	int ret = 0;
1389 	bool only_release_metadata = false;
1390 	bool force_page_uptodate = false;
1391 
1392 	nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1393 		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1394 		     (sizeof(struct page *)));
1395 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1396 	nrptrs = max(nrptrs, 8);
1397 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1398 	if (!pages)
1399 		return -ENOMEM;
1400 
1401 	first_index = pos >> PAGE_CACHE_SHIFT;
1402 
1403 	while (iov_iter_count(i) > 0) {
1404 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1405 		size_t write_bytes = min(iov_iter_count(i),
1406 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1407 					 offset);
1408 		size_t num_pages = (write_bytes + offset +
1409 				    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1410 		size_t reserve_bytes;
1411 		size_t dirty_pages;
1412 		size_t copied;
1413 
1414 		WARN_ON(num_pages > nrptrs);
1415 
1416 		/*
1417 		 * Fault pages before locking them in prepare_pages
1418 		 * to avoid recursive lock
1419 		 */
1420 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1421 			ret = -EFAULT;
1422 			break;
1423 		}
1424 
1425 		reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1426 		ret = btrfs_check_data_free_space(inode, reserve_bytes);
1427 		if (ret == -ENOSPC &&
1428 		    (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1429 					      BTRFS_INODE_PREALLOC))) {
1430 			ret = check_can_nocow(inode, pos, &write_bytes);
1431 			if (ret > 0) {
1432 				only_release_metadata = true;
1433 				/*
1434 				 * our prealloc extent may be smaller than
1435 				 * write_bytes, so scale down.
1436 				 */
1437 				num_pages = (write_bytes + offset +
1438 					     PAGE_CACHE_SIZE - 1) >>
1439 					PAGE_CACHE_SHIFT;
1440 				reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1441 				ret = 0;
1442 			} else {
1443 				ret = -ENOSPC;
1444 			}
1445 		}
1446 
1447 		if (ret)
1448 			break;
1449 
1450 		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1451 		if (ret) {
1452 			if (!only_release_metadata)
1453 				btrfs_free_reserved_data_space(inode,
1454 							       reserve_bytes);
1455 			break;
1456 		}
1457 
1458 		release_bytes = reserve_bytes;
1459 
1460 		/*
1461 		 * This is going to setup the pages array with the number of
1462 		 * pages we want, so we don't really need to worry about the
1463 		 * contents of pages from loop to loop
1464 		 */
1465 		ret = prepare_pages(root, file, pages, num_pages,
1466 				    pos, first_index, write_bytes,
1467 				    force_page_uptodate);
1468 		if (ret)
1469 			break;
1470 
1471 		copied = btrfs_copy_from_user(pos, num_pages,
1472 					   write_bytes, pages, i);
1473 
1474 		/*
1475 		 * if we have trouble faulting in the pages, fall
1476 		 * back to one page at a time
1477 		 */
1478 		if (copied < write_bytes)
1479 			nrptrs = 1;
1480 
1481 		if (copied == 0) {
1482 			force_page_uptodate = true;
1483 			dirty_pages = 0;
1484 		} else {
1485 			force_page_uptodate = false;
1486 			dirty_pages = (copied + offset +
1487 				       PAGE_CACHE_SIZE - 1) >>
1488 				       PAGE_CACHE_SHIFT;
1489 		}
1490 
1491 		/*
1492 		 * If we had a short copy we need to release the excess delaloc
1493 		 * bytes we reserved.  We need to increment outstanding_extents
1494 		 * because btrfs_delalloc_release_space will decrement it, but
1495 		 * we still have an outstanding extent for the chunk we actually
1496 		 * managed to copy.
1497 		 */
1498 		if (num_pages > dirty_pages) {
1499 			release_bytes = (num_pages - dirty_pages) <<
1500 				PAGE_CACHE_SHIFT;
1501 			if (copied > 0) {
1502 				spin_lock(&BTRFS_I(inode)->lock);
1503 				BTRFS_I(inode)->outstanding_extents++;
1504 				spin_unlock(&BTRFS_I(inode)->lock);
1505 			}
1506 			if (only_release_metadata)
1507 				btrfs_delalloc_release_metadata(inode,
1508 								release_bytes);
1509 			else
1510 				btrfs_delalloc_release_space(inode,
1511 							     release_bytes);
1512 		}
1513 
1514 		release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1515 		if (copied > 0) {
1516 			ret = btrfs_dirty_pages(root, inode, pages,
1517 						dirty_pages, pos, copied,
1518 						NULL);
1519 			if (ret) {
1520 				btrfs_drop_pages(pages, num_pages);
1521 				break;
1522 			}
1523 		}
1524 
1525 		release_bytes = 0;
1526 		btrfs_drop_pages(pages, num_pages);
1527 
1528 		if (only_release_metadata && copied > 0) {
1529 			u64 lockstart = round_down(pos, root->sectorsize);
1530 			u64 lockend = lockstart +
1531 				(dirty_pages << PAGE_CACHE_SHIFT) - 1;
1532 
1533 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1534 				       lockend, EXTENT_NORESERVE, NULL,
1535 				       NULL, GFP_NOFS);
1536 			only_release_metadata = false;
1537 		}
1538 
1539 		cond_resched();
1540 
1541 		balance_dirty_pages_ratelimited(inode->i_mapping);
1542 		if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1543 			btrfs_btree_balance_dirty(root);
1544 
1545 		pos += copied;
1546 		num_written += copied;
1547 	}
1548 
1549 	kfree(pages);
1550 
1551 	if (release_bytes) {
1552 		if (only_release_metadata)
1553 			btrfs_delalloc_release_metadata(inode, release_bytes);
1554 		else
1555 			btrfs_delalloc_release_space(inode, release_bytes);
1556 	}
1557 
1558 	return num_written ? num_written : ret;
1559 }
1560 
1561 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1562 				    const struct iovec *iov,
1563 				    unsigned long nr_segs, loff_t pos,
1564 				    loff_t *ppos, size_t count, size_t ocount)
1565 {
1566 	struct file *file = iocb->ki_filp;
1567 	struct iov_iter i;
1568 	ssize_t written;
1569 	ssize_t written_buffered;
1570 	loff_t endbyte;
1571 	int err;
1572 
1573 	written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1574 					    count, ocount);
1575 
1576 	if (written < 0 || written == count)
1577 		return written;
1578 
1579 	pos += written;
1580 	count -= written;
1581 	iov_iter_init(&i, iov, nr_segs, count, written);
1582 	written_buffered = __btrfs_buffered_write(file, &i, pos);
1583 	if (written_buffered < 0) {
1584 		err = written_buffered;
1585 		goto out;
1586 	}
1587 	endbyte = pos + written_buffered - 1;
1588 	err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1589 	if (err)
1590 		goto out;
1591 	written += written_buffered;
1592 	*ppos = pos + written_buffered;
1593 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1594 				 endbyte >> PAGE_CACHE_SHIFT);
1595 out:
1596 	return written ? written : err;
1597 }
1598 
1599 static void update_time_for_write(struct inode *inode)
1600 {
1601 	struct timespec now;
1602 
1603 	if (IS_NOCMTIME(inode))
1604 		return;
1605 
1606 	now = current_fs_time(inode->i_sb);
1607 	if (!timespec_equal(&inode->i_mtime, &now))
1608 		inode->i_mtime = now;
1609 
1610 	if (!timespec_equal(&inode->i_ctime, &now))
1611 		inode->i_ctime = now;
1612 
1613 	if (IS_I_VERSION(inode))
1614 		inode_inc_iversion(inode);
1615 }
1616 
1617 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1618 				    const struct iovec *iov,
1619 				    unsigned long nr_segs, loff_t pos)
1620 {
1621 	struct file *file = iocb->ki_filp;
1622 	struct inode *inode = file_inode(file);
1623 	struct btrfs_root *root = BTRFS_I(inode)->root;
1624 	loff_t *ppos = &iocb->ki_pos;
1625 	u64 start_pos;
1626 	ssize_t num_written = 0;
1627 	ssize_t err = 0;
1628 	size_t count, ocount;
1629 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1630 
1631 	mutex_lock(&inode->i_mutex);
1632 
1633 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1634 	if (err) {
1635 		mutex_unlock(&inode->i_mutex);
1636 		goto out;
1637 	}
1638 	count = ocount;
1639 
1640 	current->backing_dev_info = inode->i_mapping->backing_dev_info;
1641 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1642 	if (err) {
1643 		mutex_unlock(&inode->i_mutex);
1644 		goto out;
1645 	}
1646 
1647 	if (count == 0) {
1648 		mutex_unlock(&inode->i_mutex);
1649 		goto out;
1650 	}
1651 
1652 	err = file_remove_suid(file);
1653 	if (err) {
1654 		mutex_unlock(&inode->i_mutex);
1655 		goto out;
1656 	}
1657 
1658 	/*
1659 	 * If BTRFS flips readonly due to some impossible error
1660 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1661 	 * although we have opened a file as writable, we have
1662 	 * to stop this write operation to ensure FS consistency.
1663 	 */
1664 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1665 		mutex_unlock(&inode->i_mutex);
1666 		err = -EROFS;
1667 		goto out;
1668 	}
1669 
1670 	/*
1671 	 * We reserve space for updating the inode when we reserve space for the
1672 	 * extent we are going to write, so we will enospc out there.  We don't
1673 	 * need to start yet another transaction to update the inode as we will
1674 	 * update the inode when we finish writing whatever data we write.
1675 	 */
1676 	update_time_for_write(inode);
1677 
1678 	start_pos = round_down(pos, root->sectorsize);
1679 	if (start_pos > i_size_read(inode)) {
1680 		err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1681 		if (err) {
1682 			mutex_unlock(&inode->i_mutex);
1683 			goto out;
1684 		}
1685 	}
1686 
1687 	if (sync)
1688 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1689 
1690 	if (unlikely(file->f_flags & O_DIRECT)) {
1691 		num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1692 						   pos, ppos, count, ocount);
1693 	} else {
1694 		struct iov_iter i;
1695 
1696 		iov_iter_init(&i, iov, nr_segs, count, num_written);
1697 
1698 		num_written = __btrfs_buffered_write(file, &i, pos);
1699 		if (num_written > 0)
1700 			*ppos = pos + num_written;
1701 	}
1702 
1703 	mutex_unlock(&inode->i_mutex);
1704 
1705 	/*
1706 	 * we want to make sure fsync finds this change
1707 	 * but we haven't joined a transaction running right now.
1708 	 *
1709 	 * Later on, someone is sure to update the inode and get the
1710 	 * real transid recorded.
1711 	 *
1712 	 * We set last_trans now to the fs_info generation + 1,
1713 	 * this will either be one more than the running transaction
1714 	 * or the generation used for the next transaction if there isn't
1715 	 * one running right now.
1716 	 *
1717 	 * We also have to set last_sub_trans to the current log transid,
1718 	 * otherwise subsequent syncs to a file that's been synced in this
1719 	 * transaction will appear to have already occured.
1720 	 */
1721 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1722 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1723 	if (num_written > 0) {
1724 		err = generic_write_sync(file, pos, num_written);
1725 		if (err < 0 && num_written > 0)
1726 			num_written = err;
1727 	}
1728 
1729 	if (sync)
1730 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1731 out:
1732 	current->backing_dev_info = NULL;
1733 	return num_written ? num_written : err;
1734 }
1735 
1736 int btrfs_release_file(struct inode *inode, struct file *filp)
1737 {
1738 	/*
1739 	 * ordered_data_close is set by settattr when we are about to truncate
1740 	 * a file from a non-zero size to a zero size.  This tries to
1741 	 * flush down new bytes that may have been written if the
1742 	 * application were using truncate to replace a file in place.
1743 	 */
1744 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1745 			       &BTRFS_I(inode)->runtime_flags)) {
1746 		struct btrfs_trans_handle *trans;
1747 		struct btrfs_root *root = BTRFS_I(inode)->root;
1748 
1749 		/*
1750 		 * We need to block on a committing transaction to keep us from
1751 		 * throwing a ordered operation on to the list and causing
1752 		 * something like sync to deadlock trying to flush out this
1753 		 * inode.
1754 		 */
1755 		trans = btrfs_start_transaction(root, 0);
1756 		if (IS_ERR(trans))
1757 			return PTR_ERR(trans);
1758 		btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1759 		btrfs_end_transaction(trans, root);
1760 		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1761 			filemap_flush(inode->i_mapping);
1762 	}
1763 	if (filp->private_data)
1764 		btrfs_ioctl_trans_end(filp);
1765 	return 0;
1766 }
1767 
1768 /*
1769  * fsync call for both files and directories.  This logs the inode into
1770  * the tree log instead of forcing full commits whenever possible.
1771  *
1772  * It needs to call filemap_fdatawait so that all ordered extent updates are
1773  * in the metadata btree are up to date for copying to the log.
1774  *
1775  * It drops the inode mutex before doing the tree log commit.  This is an
1776  * important optimization for directories because holding the mutex prevents
1777  * new operations on the dir while we write to disk.
1778  */
1779 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1780 {
1781 	struct dentry *dentry = file->f_path.dentry;
1782 	struct inode *inode = dentry->d_inode;
1783 	struct btrfs_root *root = BTRFS_I(inode)->root;
1784 	int ret = 0;
1785 	struct btrfs_trans_handle *trans;
1786 	bool full_sync = 0;
1787 
1788 	trace_btrfs_sync_file(file, datasync);
1789 
1790 	/*
1791 	 * We write the dirty pages in the range and wait until they complete
1792 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1793 	 * multi-task, and make the performance up.  See
1794 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1795 	 */
1796 	atomic_inc(&BTRFS_I(inode)->sync_writers);
1797 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1798 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1799 			     &BTRFS_I(inode)->runtime_flags))
1800 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1801 	atomic_dec(&BTRFS_I(inode)->sync_writers);
1802 	if (ret)
1803 		return ret;
1804 
1805 	mutex_lock(&inode->i_mutex);
1806 
1807 	/*
1808 	 * We flush the dirty pages again to avoid some dirty pages in the
1809 	 * range being left.
1810 	 */
1811 	atomic_inc(&root->log_batch);
1812 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1813 			     &BTRFS_I(inode)->runtime_flags);
1814 	if (full_sync) {
1815 		ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1816 		if (ret) {
1817 			mutex_unlock(&inode->i_mutex);
1818 			goto out;
1819 		}
1820 	}
1821 	atomic_inc(&root->log_batch);
1822 
1823 	/*
1824 	 * check the transaction that last modified this inode
1825 	 * and see if its already been committed
1826 	 */
1827 	if (!BTRFS_I(inode)->last_trans) {
1828 		mutex_unlock(&inode->i_mutex);
1829 		goto out;
1830 	}
1831 
1832 	/*
1833 	 * if the last transaction that changed this file was before
1834 	 * the current transaction, we can bail out now without any
1835 	 * syncing
1836 	 */
1837 	smp_mb();
1838 	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1839 	    BTRFS_I(inode)->last_trans <=
1840 	    root->fs_info->last_trans_committed) {
1841 		BTRFS_I(inode)->last_trans = 0;
1842 
1843 		/*
1844 		 * We'v had everything committed since the last time we were
1845 		 * modified so clear this flag in case it was set for whatever
1846 		 * reason, it's no longer relevant.
1847 		 */
1848 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1849 			  &BTRFS_I(inode)->runtime_flags);
1850 		mutex_unlock(&inode->i_mutex);
1851 		goto out;
1852 	}
1853 
1854 	/*
1855 	 * ok we haven't committed the transaction yet, lets do a commit
1856 	 */
1857 	if (file->private_data)
1858 		btrfs_ioctl_trans_end(file);
1859 
1860 	trans = btrfs_start_transaction(root, 0);
1861 	if (IS_ERR(trans)) {
1862 		ret = PTR_ERR(trans);
1863 		mutex_unlock(&inode->i_mutex);
1864 		goto out;
1865 	}
1866 
1867 	ret = btrfs_log_dentry_safe(trans, root, dentry);
1868 	if (ret < 0) {
1869 		/* Fallthrough and commit/free transaction. */
1870 		ret = 1;
1871 	}
1872 
1873 	/* we've logged all the items and now have a consistent
1874 	 * version of the file in the log.  It is possible that
1875 	 * someone will come in and modify the file, but that's
1876 	 * fine because the log is consistent on disk, and we
1877 	 * have references to all of the file's extents
1878 	 *
1879 	 * It is possible that someone will come in and log the
1880 	 * file again, but that will end up using the synchronization
1881 	 * inside btrfs_sync_log to keep things safe.
1882 	 */
1883 	mutex_unlock(&inode->i_mutex);
1884 
1885 	if (ret != BTRFS_NO_LOG_SYNC) {
1886 		if (!ret) {
1887 			ret = btrfs_sync_log(trans, root);
1888 			if (!ret) {
1889 				ret = btrfs_end_transaction(trans, root);
1890 				goto out;
1891 			}
1892 		}
1893 		if (!full_sync) {
1894 			ret = btrfs_wait_ordered_range(inode, start,
1895 						       end - start + 1);
1896 			if (ret)
1897 				goto out;
1898 		}
1899 		ret = btrfs_commit_transaction(trans, root);
1900 	} else {
1901 		ret = btrfs_end_transaction(trans, root);
1902 	}
1903 out:
1904 	return ret > 0 ? -EIO : ret;
1905 }
1906 
1907 static const struct vm_operations_struct btrfs_file_vm_ops = {
1908 	.fault		= filemap_fault,
1909 	.page_mkwrite	= btrfs_page_mkwrite,
1910 	.remap_pages	= generic_file_remap_pages,
1911 };
1912 
1913 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1914 {
1915 	struct address_space *mapping = filp->f_mapping;
1916 
1917 	if (!mapping->a_ops->readpage)
1918 		return -ENOEXEC;
1919 
1920 	file_accessed(filp);
1921 	vma->vm_ops = &btrfs_file_vm_ops;
1922 
1923 	return 0;
1924 }
1925 
1926 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
1927 			  int slot, u64 start, u64 end)
1928 {
1929 	struct btrfs_file_extent_item *fi;
1930 	struct btrfs_key key;
1931 
1932 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1933 		return 0;
1934 
1935 	btrfs_item_key_to_cpu(leaf, &key, slot);
1936 	if (key.objectid != btrfs_ino(inode) ||
1937 	    key.type != BTRFS_EXTENT_DATA_KEY)
1938 		return 0;
1939 
1940 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1941 
1942 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1943 		return 0;
1944 
1945 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
1946 		return 0;
1947 
1948 	if (key.offset == end)
1949 		return 1;
1950 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1951 		return 1;
1952 	return 0;
1953 }
1954 
1955 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
1956 		      struct btrfs_path *path, u64 offset, u64 end)
1957 {
1958 	struct btrfs_root *root = BTRFS_I(inode)->root;
1959 	struct extent_buffer *leaf;
1960 	struct btrfs_file_extent_item *fi;
1961 	struct extent_map *hole_em;
1962 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1963 	struct btrfs_key key;
1964 	int ret;
1965 
1966 	key.objectid = btrfs_ino(inode);
1967 	key.type = BTRFS_EXTENT_DATA_KEY;
1968 	key.offset = offset;
1969 
1970 
1971 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1972 	if (ret < 0)
1973 		return ret;
1974 	BUG_ON(!ret);
1975 
1976 	leaf = path->nodes[0];
1977 	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
1978 		u64 num_bytes;
1979 
1980 		path->slots[0]--;
1981 		fi = btrfs_item_ptr(leaf, path->slots[0],
1982 				    struct btrfs_file_extent_item);
1983 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
1984 			end - offset;
1985 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1986 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1987 		btrfs_set_file_extent_offset(leaf, fi, 0);
1988 		btrfs_mark_buffer_dirty(leaf);
1989 		goto out;
1990 	}
1991 
1992 	if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
1993 		u64 num_bytes;
1994 
1995 		path->slots[0]++;
1996 		key.offset = offset;
1997 		btrfs_set_item_key_safe(root, path, &key);
1998 		fi = btrfs_item_ptr(leaf, path->slots[0],
1999 				    struct btrfs_file_extent_item);
2000 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2001 			offset;
2002 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2003 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2004 		btrfs_set_file_extent_offset(leaf, fi, 0);
2005 		btrfs_mark_buffer_dirty(leaf);
2006 		goto out;
2007 	}
2008 	btrfs_release_path(path);
2009 
2010 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2011 				       0, 0, end - offset, 0, end - offset,
2012 				       0, 0, 0);
2013 	if (ret)
2014 		return ret;
2015 
2016 out:
2017 	btrfs_release_path(path);
2018 
2019 	hole_em = alloc_extent_map();
2020 	if (!hole_em) {
2021 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2022 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2023 			&BTRFS_I(inode)->runtime_flags);
2024 	} else {
2025 		hole_em->start = offset;
2026 		hole_em->len = end - offset;
2027 		hole_em->ram_bytes = hole_em->len;
2028 		hole_em->orig_start = offset;
2029 
2030 		hole_em->block_start = EXTENT_MAP_HOLE;
2031 		hole_em->block_len = 0;
2032 		hole_em->orig_block_len = 0;
2033 		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2034 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2035 		hole_em->generation = trans->transid;
2036 
2037 		do {
2038 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2039 			write_lock(&em_tree->lock);
2040 			ret = add_extent_mapping(em_tree, hole_em, 1);
2041 			write_unlock(&em_tree->lock);
2042 		} while (ret == -EEXIST);
2043 		free_extent_map(hole_em);
2044 		if (ret)
2045 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2046 				&BTRFS_I(inode)->runtime_flags);
2047 	}
2048 
2049 	return 0;
2050 }
2051 
2052 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2053 {
2054 	struct btrfs_root *root = BTRFS_I(inode)->root;
2055 	struct extent_state *cached_state = NULL;
2056 	struct btrfs_path *path;
2057 	struct btrfs_block_rsv *rsv;
2058 	struct btrfs_trans_handle *trans;
2059 	u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2060 	u64 lockend = round_down(offset + len,
2061 				 BTRFS_I(inode)->root->sectorsize) - 1;
2062 	u64 cur_offset = lockstart;
2063 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2064 	u64 drop_end;
2065 	int ret = 0;
2066 	int err = 0;
2067 	bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2068 			  ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2069 
2070 	ret = btrfs_wait_ordered_range(inode, offset, len);
2071 	if (ret)
2072 		return ret;
2073 
2074 	mutex_lock(&inode->i_mutex);
2075 	/*
2076 	 * We needn't truncate any page which is beyond the end of the file
2077 	 * because we are sure there is no data there.
2078 	 */
2079 	/*
2080 	 * Only do this if we are in the same page and we aren't doing the
2081 	 * entire page.
2082 	 */
2083 	if (same_page && len < PAGE_CACHE_SIZE) {
2084 		if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
2085 			ret = btrfs_truncate_page(inode, offset, len, 0);
2086 		mutex_unlock(&inode->i_mutex);
2087 		return ret;
2088 	}
2089 
2090 	/* zero back part of the first page */
2091 	if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2092 		ret = btrfs_truncate_page(inode, offset, 0, 0);
2093 		if (ret) {
2094 			mutex_unlock(&inode->i_mutex);
2095 			return ret;
2096 		}
2097 	}
2098 
2099 	/* zero the front end of the last page */
2100 	if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
2101 		ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2102 		if (ret) {
2103 			mutex_unlock(&inode->i_mutex);
2104 			return ret;
2105 		}
2106 	}
2107 
2108 	if (lockend < lockstart) {
2109 		mutex_unlock(&inode->i_mutex);
2110 		return 0;
2111 	}
2112 
2113 	while (1) {
2114 		struct btrfs_ordered_extent *ordered;
2115 
2116 		truncate_pagecache_range(inode, lockstart, lockend);
2117 
2118 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2119 				 0, &cached_state);
2120 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2121 
2122 		/*
2123 		 * We need to make sure we have no ordered extents in this range
2124 		 * and nobody raced in and read a page in this range, if we did
2125 		 * we need to try again.
2126 		 */
2127 		if ((!ordered ||
2128 		    (ordered->file_offset + ordered->len < lockstart ||
2129 		     ordered->file_offset > lockend)) &&
2130 		     !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2131 				     lockend, EXTENT_UPTODATE, 0,
2132 				     cached_state)) {
2133 			if (ordered)
2134 				btrfs_put_ordered_extent(ordered);
2135 			break;
2136 		}
2137 		if (ordered)
2138 			btrfs_put_ordered_extent(ordered);
2139 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2140 				     lockend, &cached_state, GFP_NOFS);
2141 		ret = btrfs_wait_ordered_range(inode, lockstart,
2142 					       lockend - lockstart + 1);
2143 		if (ret) {
2144 			mutex_unlock(&inode->i_mutex);
2145 			return ret;
2146 		}
2147 	}
2148 
2149 	path = btrfs_alloc_path();
2150 	if (!path) {
2151 		ret = -ENOMEM;
2152 		goto out;
2153 	}
2154 
2155 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2156 	if (!rsv) {
2157 		ret = -ENOMEM;
2158 		goto out_free;
2159 	}
2160 	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2161 	rsv->failfast = 1;
2162 
2163 	/*
2164 	 * 1 - update the inode
2165 	 * 1 - removing the extents in the range
2166 	 * 1 - adding the hole extent
2167 	 */
2168 	trans = btrfs_start_transaction(root, 3);
2169 	if (IS_ERR(trans)) {
2170 		err = PTR_ERR(trans);
2171 		goto out_free;
2172 	}
2173 
2174 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2175 				      min_size);
2176 	BUG_ON(ret);
2177 	trans->block_rsv = rsv;
2178 
2179 	while (cur_offset < lockend) {
2180 		ret = __btrfs_drop_extents(trans, root, inode, path,
2181 					   cur_offset, lockend + 1,
2182 					   &drop_end, 1);
2183 		if (ret != -ENOSPC)
2184 			break;
2185 
2186 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2187 
2188 		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2189 		if (ret) {
2190 			err = ret;
2191 			break;
2192 		}
2193 
2194 		cur_offset = drop_end;
2195 
2196 		ret = btrfs_update_inode(trans, root, inode);
2197 		if (ret) {
2198 			err = ret;
2199 			break;
2200 		}
2201 
2202 		btrfs_end_transaction(trans, root);
2203 		btrfs_btree_balance_dirty(root);
2204 
2205 		trans = btrfs_start_transaction(root, 3);
2206 		if (IS_ERR(trans)) {
2207 			ret = PTR_ERR(trans);
2208 			trans = NULL;
2209 			break;
2210 		}
2211 
2212 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2213 					      rsv, min_size);
2214 		BUG_ON(ret);	/* shouldn't happen */
2215 		trans->block_rsv = rsv;
2216 	}
2217 
2218 	if (ret) {
2219 		err = ret;
2220 		goto out_trans;
2221 	}
2222 
2223 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2224 	ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2225 	if (ret) {
2226 		err = ret;
2227 		goto out_trans;
2228 	}
2229 
2230 out_trans:
2231 	if (!trans)
2232 		goto out_free;
2233 
2234 	inode_inc_iversion(inode);
2235 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2236 
2237 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2238 	ret = btrfs_update_inode(trans, root, inode);
2239 	btrfs_end_transaction(trans, root);
2240 	btrfs_btree_balance_dirty(root);
2241 out_free:
2242 	btrfs_free_path(path);
2243 	btrfs_free_block_rsv(root, rsv);
2244 out:
2245 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2246 			     &cached_state, GFP_NOFS);
2247 	mutex_unlock(&inode->i_mutex);
2248 	if (ret && !err)
2249 		err = ret;
2250 	return err;
2251 }
2252 
2253 static long btrfs_fallocate(struct file *file, int mode,
2254 			    loff_t offset, loff_t len)
2255 {
2256 	struct inode *inode = file_inode(file);
2257 	struct extent_state *cached_state = NULL;
2258 	struct btrfs_root *root = BTRFS_I(inode)->root;
2259 	u64 cur_offset;
2260 	u64 last_byte;
2261 	u64 alloc_start;
2262 	u64 alloc_end;
2263 	u64 alloc_hint = 0;
2264 	u64 locked_end;
2265 	struct extent_map *em;
2266 	int blocksize = BTRFS_I(inode)->root->sectorsize;
2267 	int ret;
2268 
2269 	alloc_start = round_down(offset, blocksize);
2270 	alloc_end = round_up(offset + len, blocksize);
2271 
2272 	/* Make sure we aren't being give some crap mode */
2273 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2274 		return -EOPNOTSUPP;
2275 
2276 	if (mode & FALLOC_FL_PUNCH_HOLE)
2277 		return btrfs_punch_hole(inode, offset, len);
2278 
2279 	/*
2280 	 * Make sure we have enough space before we do the
2281 	 * allocation.
2282 	 */
2283 	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2284 	if (ret)
2285 		return ret;
2286 	if (root->fs_info->quota_enabled) {
2287 		ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2288 		if (ret)
2289 			goto out_reserve_fail;
2290 	}
2291 
2292 	mutex_lock(&inode->i_mutex);
2293 	ret = inode_newsize_ok(inode, alloc_end);
2294 	if (ret)
2295 		goto out;
2296 
2297 	if (alloc_start > inode->i_size) {
2298 		ret = btrfs_cont_expand(inode, i_size_read(inode),
2299 					alloc_start);
2300 		if (ret)
2301 			goto out;
2302 	} else {
2303 		/*
2304 		 * If we are fallocating from the end of the file onward we
2305 		 * need to zero out the end of the page if i_size lands in the
2306 		 * middle of a page.
2307 		 */
2308 		ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2309 		if (ret)
2310 			goto out;
2311 	}
2312 
2313 	/*
2314 	 * wait for ordered IO before we have any locks.  We'll loop again
2315 	 * below with the locks held.
2316 	 */
2317 	ret = btrfs_wait_ordered_range(inode, alloc_start,
2318 				       alloc_end - alloc_start);
2319 	if (ret)
2320 		goto out;
2321 
2322 	locked_end = alloc_end - 1;
2323 	while (1) {
2324 		struct btrfs_ordered_extent *ordered;
2325 
2326 		/* the extent lock is ordered inside the running
2327 		 * transaction
2328 		 */
2329 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2330 				 locked_end, 0, &cached_state);
2331 		ordered = btrfs_lookup_first_ordered_extent(inode,
2332 							    alloc_end - 1);
2333 		if (ordered &&
2334 		    ordered->file_offset + ordered->len > alloc_start &&
2335 		    ordered->file_offset < alloc_end) {
2336 			btrfs_put_ordered_extent(ordered);
2337 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2338 					     alloc_start, locked_end,
2339 					     &cached_state, GFP_NOFS);
2340 			/*
2341 			 * we can't wait on the range with the transaction
2342 			 * running or with the extent lock held
2343 			 */
2344 			ret = btrfs_wait_ordered_range(inode, alloc_start,
2345 						       alloc_end - alloc_start);
2346 			if (ret)
2347 				goto out;
2348 		} else {
2349 			if (ordered)
2350 				btrfs_put_ordered_extent(ordered);
2351 			break;
2352 		}
2353 	}
2354 
2355 	cur_offset = alloc_start;
2356 	while (1) {
2357 		u64 actual_end;
2358 
2359 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2360 				      alloc_end - cur_offset, 0);
2361 		if (IS_ERR_OR_NULL(em)) {
2362 			if (!em)
2363 				ret = -ENOMEM;
2364 			else
2365 				ret = PTR_ERR(em);
2366 			break;
2367 		}
2368 		last_byte = min(extent_map_end(em), alloc_end);
2369 		actual_end = min_t(u64, extent_map_end(em), offset + len);
2370 		last_byte = ALIGN(last_byte, blocksize);
2371 
2372 		if (em->block_start == EXTENT_MAP_HOLE ||
2373 		    (cur_offset >= inode->i_size &&
2374 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2375 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2376 							last_byte - cur_offset,
2377 							1 << inode->i_blkbits,
2378 							offset + len,
2379 							&alloc_hint);
2380 
2381 			if (ret < 0) {
2382 				free_extent_map(em);
2383 				break;
2384 			}
2385 		} else if (actual_end > inode->i_size &&
2386 			   !(mode & FALLOC_FL_KEEP_SIZE)) {
2387 			/*
2388 			 * We didn't need to allocate any more space, but we
2389 			 * still extended the size of the file so we need to
2390 			 * update i_size.
2391 			 */
2392 			inode->i_ctime = CURRENT_TIME;
2393 			i_size_write(inode, actual_end);
2394 			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2395 		}
2396 		free_extent_map(em);
2397 
2398 		cur_offset = last_byte;
2399 		if (cur_offset >= alloc_end) {
2400 			ret = 0;
2401 			break;
2402 		}
2403 	}
2404 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2405 			     &cached_state, GFP_NOFS);
2406 out:
2407 	mutex_unlock(&inode->i_mutex);
2408 	if (root->fs_info->quota_enabled)
2409 		btrfs_qgroup_free(root, alloc_end - alloc_start);
2410 out_reserve_fail:
2411 	/* Let go of our reservation. */
2412 	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2413 	return ret;
2414 }
2415 
2416 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2417 {
2418 	struct btrfs_root *root = BTRFS_I(inode)->root;
2419 	struct extent_map *em = NULL;
2420 	struct extent_state *cached_state = NULL;
2421 	u64 lockstart = *offset;
2422 	u64 lockend = i_size_read(inode);
2423 	u64 start = *offset;
2424 	u64 len = i_size_read(inode);
2425 	int ret = 0;
2426 
2427 	lockend = max_t(u64, root->sectorsize, lockend);
2428 	if (lockend <= lockstart)
2429 		lockend = lockstart + root->sectorsize;
2430 
2431 	lockend--;
2432 	len = lockend - lockstart + 1;
2433 
2434 	len = max_t(u64, len, root->sectorsize);
2435 	if (inode->i_size == 0)
2436 		return -ENXIO;
2437 
2438 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2439 			 &cached_state);
2440 
2441 	while (start < inode->i_size) {
2442 		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2443 		if (IS_ERR(em)) {
2444 			ret = PTR_ERR(em);
2445 			em = NULL;
2446 			break;
2447 		}
2448 
2449 		if (whence == SEEK_HOLE &&
2450 		    (em->block_start == EXTENT_MAP_HOLE ||
2451 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2452 			break;
2453 		else if (whence == SEEK_DATA &&
2454 			   (em->block_start != EXTENT_MAP_HOLE &&
2455 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2456 			break;
2457 
2458 		start = em->start + em->len;
2459 		free_extent_map(em);
2460 		em = NULL;
2461 		cond_resched();
2462 	}
2463 	free_extent_map(em);
2464 	if (!ret) {
2465 		if (whence == SEEK_DATA && start >= inode->i_size)
2466 			ret = -ENXIO;
2467 		else
2468 			*offset = min_t(loff_t, start, inode->i_size);
2469 	}
2470 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2471 			     &cached_state, GFP_NOFS);
2472 	return ret;
2473 }
2474 
2475 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2476 {
2477 	struct inode *inode = file->f_mapping->host;
2478 	int ret;
2479 
2480 	mutex_lock(&inode->i_mutex);
2481 	switch (whence) {
2482 	case SEEK_END:
2483 	case SEEK_CUR:
2484 		offset = generic_file_llseek(file, offset, whence);
2485 		goto out;
2486 	case SEEK_DATA:
2487 	case SEEK_HOLE:
2488 		if (offset >= i_size_read(inode)) {
2489 			mutex_unlock(&inode->i_mutex);
2490 			return -ENXIO;
2491 		}
2492 
2493 		ret = find_desired_extent(inode, &offset, whence);
2494 		if (ret) {
2495 			mutex_unlock(&inode->i_mutex);
2496 			return ret;
2497 		}
2498 	}
2499 
2500 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2501 out:
2502 	mutex_unlock(&inode->i_mutex);
2503 	return offset;
2504 }
2505 
2506 const struct file_operations btrfs_file_operations = {
2507 	.llseek		= btrfs_file_llseek,
2508 	.read		= do_sync_read,
2509 	.write		= do_sync_write,
2510 	.aio_read       = generic_file_aio_read,
2511 	.splice_read	= generic_file_splice_read,
2512 	.aio_write	= btrfs_file_aio_write,
2513 	.mmap		= btrfs_file_mmap,
2514 	.open		= generic_file_open,
2515 	.release	= btrfs_release_file,
2516 	.fsync		= btrfs_sync_file,
2517 	.fallocate	= btrfs_fallocate,
2518 	.unlocked_ioctl	= btrfs_ioctl,
2519 #ifdef CONFIG_COMPAT
2520 	.compat_ioctl	= btrfs_ioctl,
2521 #endif
2522 };
2523 
2524 void btrfs_auto_defrag_exit(void)
2525 {
2526 	if (btrfs_inode_defrag_cachep)
2527 		kmem_cache_destroy(btrfs_inode_defrag_cachep);
2528 }
2529 
2530 int btrfs_auto_defrag_init(void)
2531 {
2532 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2533 					sizeof(struct inode_defrag), 0,
2534 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2535 					NULL);
2536 	if (!btrfs_inode_defrag_cachep)
2537 		return -ENOMEM;
2538 
2539 	return 0;
2540 }
2541