xref: /linux/fs/btrfs/file.c (revision c0c914eca7f251c70facc37dfebeaf176601918d)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
34 #include <linux/uio.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 #include "qgroup.h"
44 
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47  * when auto defrag is enabled we
48  * queue up these defrag structs to remember which
49  * inodes need defragging passes
50  */
51 struct inode_defrag {
52 	struct rb_node rb_node;
53 	/* objectid */
54 	u64 ino;
55 	/*
56 	 * transid where the defrag was added, we search for
57 	 * extents newer than this
58 	 */
59 	u64 transid;
60 
61 	/* root objectid */
62 	u64 root;
63 
64 	/* last offset we were able to defrag */
65 	u64 last_offset;
66 
67 	/* if we've wrapped around back to zero once already */
68 	int cycled;
69 };
70 
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 				  struct inode_defrag *defrag2)
73 {
74 	if (defrag1->root > defrag2->root)
75 		return 1;
76 	else if (defrag1->root < defrag2->root)
77 		return -1;
78 	else if (defrag1->ino > defrag2->ino)
79 		return 1;
80 	else if (defrag1->ino < defrag2->ino)
81 		return -1;
82 	else
83 		return 0;
84 }
85 
86 /* pop a record for an inode into the defrag tree.  The lock
87  * must be held already
88  *
89  * If you're inserting a record for an older transid than an
90  * existing record, the transid already in the tree is lowered
91  *
92  * If an existing record is found the defrag item you
93  * pass in is freed
94  */
95 static int __btrfs_add_inode_defrag(struct inode *inode,
96 				    struct inode_defrag *defrag)
97 {
98 	struct btrfs_root *root = BTRFS_I(inode)->root;
99 	struct inode_defrag *entry;
100 	struct rb_node **p;
101 	struct rb_node *parent = NULL;
102 	int ret;
103 
104 	p = &root->fs_info->defrag_inodes.rb_node;
105 	while (*p) {
106 		parent = *p;
107 		entry = rb_entry(parent, struct inode_defrag, rb_node);
108 
109 		ret = __compare_inode_defrag(defrag, entry);
110 		if (ret < 0)
111 			p = &parent->rb_left;
112 		else if (ret > 0)
113 			p = &parent->rb_right;
114 		else {
115 			/* if we're reinserting an entry for
116 			 * an old defrag run, make sure to
117 			 * lower the transid of our existing record
118 			 */
119 			if (defrag->transid < entry->transid)
120 				entry->transid = defrag->transid;
121 			if (defrag->last_offset > entry->last_offset)
122 				entry->last_offset = defrag->last_offset;
123 			return -EEXIST;
124 		}
125 	}
126 	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
127 	rb_link_node(&defrag->rb_node, parent, p);
128 	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
129 	return 0;
130 }
131 
132 static inline int __need_auto_defrag(struct btrfs_root *root)
133 {
134 	if (!btrfs_test_opt(root, AUTO_DEFRAG))
135 		return 0;
136 
137 	if (btrfs_fs_closing(root->fs_info))
138 		return 0;
139 
140 	return 1;
141 }
142 
143 /*
144  * insert a defrag record for this inode if auto defrag is
145  * enabled
146  */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 			   struct inode *inode)
149 {
150 	struct btrfs_root *root = BTRFS_I(inode)->root;
151 	struct inode_defrag *defrag;
152 	u64 transid;
153 	int ret;
154 
155 	if (!__need_auto_defrag(root))
156 		return 0;
157 
158 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
159 		return 0;
160 
161 	if (trans)
162 		transid = trans->transid;
163 	else
164 		transid = BTRFS_I(inode)->root->last_trans;
165 
166 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
167 	if (!defrag)
168 		return -ENOMEM;
169 
170 	defrag->ino = btrfs_ino(inode);
171 	defrag->transid = transid;
172 	defrag->root = root->root_key.objectid;
173 
174 	spin_lock(&root->fs_info->defrag_inodes_lock);
175 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176 		/*
177 		 * If we set IN_DEFRAG flag and evict the inode from memory,
178 		 * and then re-read this inode, this new inode doesn't have
179 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 		 */
181 		ret = __btrfs_add_inode_defrag(inode, defrag);
182 		if (ret)
183 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 	} else {
185 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
186 	}
187 	spin_unlock(&root->fs_info->defrag_inodes_lock);
188 	return 0;
189 }
190 
191 /*
192  * Requeue the defrag object. If there is a defrag object that points to
193  * the same inode in the tree, we will merge them together (by
194  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
195  */
196 static void btrfs_requeue_inode_defrag(struct inode *inode,
197 				       struct inode_defrag *defrag)
198 {
199 	struct btrfs_root *root = BTRFS_I(inode)->root;
200 	int ret;
201 
202 	if (!__need_auto_defrag(root))
203 		goto out;
204 
205 	/*
206 	 * Here we don't check the IN_DEFRAG flag, because we need merge
207 	 * them together.
208 	 */
209 	spin_lock(&root->fs_info->defrag_inodes_lock);
210 	ret = __btrfs_add_inode_defrag(inode, defrag);
211 	spin_unlock(&root->fs_info->defrag_inodes_lock);
212 	if (ret)
213 		goto out;
214 	return;
215 out:
216 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
217 }
218 
219 /*
220  * pick the defragable inode that we want, if it doesn't exist, we will get
221  * the next one.
222  */
223 static struct inode_defrag *
224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
225 {
226 	struct inode_defrag *entry = NULL;
227 	struct inode_defrag tmp;
228 	struct rb_node *p;
229 	struct rb_node *parent = NULL;
230 	int ret;
231 
232 	tmp.ino = ino;
233 	tmp.root = root;
234 
235 	spin_lock(&fs_info->defrag_inodes_lock);
236 	p = fs_info->defrag_inodes.rb_node;
237 	while (p) {
238 		parent = p;
239 		entry = rb_entry(parent, struct inode_defrag, rb_node);
240 
241 		ret = __compare_inode_defrag(&tmp, entry);
242 		if (ret < 0)
243 			p = parent->rb_left;
244 		else if (ret > 0)
245 			p = parent->rb_right;
246 		else
247 			goto out;
248 	}
249 
250 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
251 		parent = rb_next(parent);
252 		if (parent)
253 			entry = rb_entry(parent, struct inode_defrag, rb_node);
254 		else
255 			entry = NULL;
256 	}
257 out:
258 	if (entry)
259 		rb_erase(parent, &fs_info->defrag_inodes);
260 	spin_unlock(&fs_info->defrag_inodes_lock);
261 	return entry;
262 }
263 
264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
265 {
266 	struct inode_defrag *defrag;
267 	struct rb_node *node;
268 
269 	spin_lock(&fs_info->defrag_inodes_lock);
270 	node = rb_first(&fs_info->defrag_inodes);
271 	while (node) {
272 		rb_erase(node, &fs_info->defrag_inodes);
273 		defrag = rb_entry(node, struct inode_defrag, rb_node);
274 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275 
276 		cond_resched_lock(&fs_info->defrag_inodes_lock);
277 
278 		node = rb_first(&fs_info->defrag_inodes);
279 	}
280 	spin_unlock(&fs_info->defrag_inodes_lock);
281 }
282 
283 #define BTRFS_DEFRAG_BATCH	1024
284 
285 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
286 				    struct inode_defrag *defrag)
287 {
288 	struct btrfs_root *inode_root;
289 	struct inode *inode;
290 	struct btrfs_key key;
291 	struct btrfs_ioctl_defrag_range_args range;
292 	int num_defrag;
293 	int index;
294 	int ret;
295 
296 	/* get the inode */
297 	key.objectid = defrag->root;
298 	key.type = BTRFS_ROOT_ITEM_KEY;
299 	key.offset = (u64)-1;
300 
301 	index = srcu_read_lock(&fs_info->subvol_srcu);
302 
303 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
304 	if (IS_ERR(inode_root)) {
305 		ret = PTR_ERR(inode_root);
306 		goto cleanup;
307 	}
308 
309 	key.objectid = defrag->ino;
310 	key.type = BTRFS_INODE_ITEM_KEY;
311 	key.offset = 0;
312 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
313 	if (IS_ERR(inode)) {
314 		ret = PTR_ERR(inode);
315 		goto cleanup;
316 	}
317 	srcu_read_unlock(&fs_info->subvol_srcu, index);
318 
319 	/* do a chunk of defrag */
320 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
321 	memset(&range, 0, sizeof(range));
322 	range.len = (u64)-1;
323 	range.start = defrag->last_offset;
324 
325 	sb_start_write(fs_info->sb);
326 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
327 				       BTRFS_DEFRAG_BATCH);
328 	sb_end_write(fs_info->sb);
329 	/*
330 	 * if we filled the whole defrag batch, there
331 	 * must be more work to do.  Queue this defrag
332 	 * again
333 	 */
334 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
335 		defrag->last_offset = range.start;
336 		btrfs_requeue_inode_defrag(inode, defrag);
337 	} else if (defrag->last_offset && !defrag->cycled) {
338 		/*
339 		 * we didn't fill our defrag batch, but
340 		 * we didn't start at zero.  Make sure we loop
341 		 * around to the start of the file.
342 		 */
343 		defrag->last_offset = 0;
344 		defrag->cycled = 1;
345 		btrfs_requeue_inode_defrag(inode, defrag);
346 	} else {
347 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
348 	}
349 
350 	iput(inode);
351 	return 0;
352 cleanup:
353 	srcu_read_unlock(&fs_info->subvol_srcu, index);
354 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
355 	return ret;
356 }
357 
358 /*
359  * run through the list of inodes in the FS that need
360  * defragging
361  */
362 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
363 {
364 	struct inode_defrag *defrag;
365 	u64 first_ino = 0;
366 	u64 root_objectid = 0;
367 
368 	atomic_inc(&fs_info->defrag_running);
369 	while (1) {
370 		/* Pause the auto defragger. */
371 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
372 			     &fs_info->fs_state))
373 			break;
374 
375 		if (!__need_auto_defrag(fs_info->tree_root))
376 			break;
377 
378 		/* find an inode to defrag */
379 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
380 						 first_ino);
381 		if (!defrag) {
382 			if (root_objectid || first_ino) {
383 				root_objectid = 0;
384 				first_ino = 0;
385 				continue;
386 			} else {
387 				break;
388 			}
389 		}
390 
391 		first_ino = defrag->ino + 1;
392 		root_objectid = defrag->root;
393 
394 		__btrfs_run_defrag_inode(fs_info, defrag);
395 	}
396 	atomic_dec(&fs_info->defrag_running);
397 
398 	/*
399 	 * during unmount, we use the transaction_wait queue to
400 	 * wait for the defragger to stop
401 	 */
402 	wake_up(&fs_info->transaction_wait);
403 	return 0;
404 }
405 
406 /* simple helper to fault in pages and copy.  This should go away
407  * and be replaced with calls into generic code.
408  */
409 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
410 					 struct page **prepared_pages,
411 					 struct iov_iter *i)
412 {
413 	size_t copied = 0;
414 	size_t total_copied = 0;
415 	int pg = 0;
416 	int offset = pos & (PAGE_CACHE_SIZE - 1);
417 
418 	while (write_bytes > 0) {
419 		size_t count = min_t(size_t,
420 				     PAGE_CACHE_SIZE - offset, write_bytes);
421 		struct page *page = prepared_pages[pg];
422 		/*
423 		 * Copy data from userspace to the current page
424 		 */
425 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
426 
427 		/* Flush processor's dcache for this page */
428 		flush_dcache_page(page);
429 
430 		/*
431 		 * if we get a partial write, we can end up with
432 		 * partially up to date pages.  These add
433 		 * a lot of complexity, so make sure they don't
434 		 * happen by forcing this copy to be retried.
435 		 *
436 		 * The rest of the btrfs_file_write code will fall
437 		 * back to page at a time copies after we return 0.
438 		 */
439 		if (!PageUptodate(page) && copied < count)
440 			copied = 0;
441 
442 		iov_iter_advance(i, copied);
443 		write_bytes -= copied;
444 		total_copied += copied;
445 
446 		/* Return to btrfs_file_write_iter to fault page */
447 		if (unlikely(copied == 0))
448 			break;
449 
450 		if (copied < PAGE_CACHE_SIZE - offset) {
451 			offset += copied;
452 		} else {
453 			pg++;
454 			offset = 0;
455 		}
456 	}
457 	return total_copied;
458 }
459 
460 /*
461  * unlocks pages after btrfs_file_write is done with them
462  */
463 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
464 {
465 	size_t i;
466 	for (i = 0; i < num_pages; i++) {
467 		/* page checked is some magic around finding pages that
468 		 * have been modified without going through btrfs_set_page_dirty
469 		 * clear it here. There should be no need to mark the pages
470 		 * accessed as prepare_pages should have marked them accessed
471 		 * in prepare_pages via find_or_create_page()
472 		 */
473 		ClearPageChecked(pages[i]);
474 		unlock_page(pages[i]);
475 		page_cache_release(pages[i]);
476 	}
477 }
478 
479 /*
480  * after copy_from_user, pages need to be dirtied and we need to make
481  * sure holes are created between the current EOF and the start of
482  * any next extents (if required).
483  *
484  * this also makes the decision about creating an inline extent vs
485  * doing real data extents, marking pages dirty and delalloc as required.
486  */
487 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
488 			     struct page **pages, size_t num_pages,
489 			     loff_t pos, size_t write_bytes,
490 			     struct extent_state **cached)
491 {
492 	int err = 0;
493 	int i;
494 	u64 num_bytes;
495 	u64 start_pos;
496 	u64 end_of_last_block;
497 	u64 end_pos = pos + write_bytes;
498 	loff_t isize = i_size_read(inode);
499 
500 	start_pos = pos & ~((u64)root->sectorsize - 1);
501 	num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
502 
503 	end_of_last_block = start_pos + num_bytes - 1;
504 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
505 					cached);
506 	if (err)
507 		return err;
508 
509 	for (i = 0; i < num_pages; i++) {
510 		struct page *p = pages[i];
511 		SetPageUptodate(p);
512 		ClearPageChecked(p);
513 		set_page_dirty(p);
514 	}
515 
516 	/*
517 	 * we've only changed i_size in ram, and we haven't updated
518 	 * the disk i_size.  There is no need to log the inode
519 	 * at this time.
520 	 */
521 	if (end_pos > isize)
522 		i_size_write(inode, end_pos);
523 	return 0;
524 }
525 
526 /*
527  * this drops all the extents in the cache that intersect the range
528  * [start, end].  Existing extents are split as required.
529  */
530 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
531 			     int skip_pinned)
532 {
533 	struct extent_map *em;
534 	struct extent_map *split = NULL;
535 	struct extent_map *split2 = NULL;
536 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
537 	u64 len = end - start + 1;
538 	u64 gen;
539 	int ret;
540 	int testend = 1;
541 	unsigned long flags;
542 	int compressed = 0;
543 	bool modified;
544 
545 	WARN_ON(end < start);
546 	if (end == (u64)-1) {
547 		len = (u64)-1;
548 		testend = 0;
549 	}
550 	while (1) {
551 		int no_splits = 0;
552 
553 		modified = false;
554 		if (!split)
555 			split = alloc_extent_map();
556 		if (!split2)
557 			split2 = alloc_extent_map();
558 		if (!split || !split2)
559 			no_splits = 1;
560 
561 		write_lock(&em_tree->lock);
562 		em = lookup_extent_mapping(em_tree, start, len);
563 		if (!em) {
564 			write_unlock(&em_tree->lock);
565 			break;
566 		}
567 		flags = em->flags;
568 		gen = em->generation;
569 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
570 			if (testend && em->start + em->len >= start + len) {
571 				free_extent_map(em);
572 				write_unlock(&em_tree->lock);
573 				break;
574 			}
575 			start = em->start + em->len;
576 			if (testend)
577 				len = start + len - (em->start + em->len);
578 			free_extent_map(em);
579 			write_unlock(&em_tree->lock);
580 			continue;
581 		}
582 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
583 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
584 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
585 		modified = !list_empty(&em->list);
586 		if (no_splits)
587 			goto next;
588 
589 		if (em->start < start) {
590 			split->start = em->start;
591 			split->len = start - em->start;
592 
593 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
594 				split->orig_start = em->orig_start;
595 				split->block_start = em->block_start;
596 
597 				if (compressed)
598 					split->block_len = em->block_len;
599 				else
600 					split->block_len = split->len;
601 				split->orig_block_len = max(split->block_len,
602 						em->orig_block_len);
603 				split->ram_bytes = em->ram_bytes;
604 			} else {
605 				split->orig_start = split->start;
606 				split->block_len = 0;
607 				split->block_start = em->block_start;
608 				split->orig_block_len = 0;
609 				split->ram_bytes = split->len;
610 			}
611 
612 			split->generation = gen;
613 			split->bdev = em->bdev;
614 			split->flags = flags;
615 			split->compress_type = em->compress_type;
616 			replace_extent_mapping(em_tree, em, split, modified);
617 			free_extent_map(split);
618 			split = split2;
619 			split2 = NULL;
620 		}
621 		if (testend && em->start + em->len > start + len) {
622 			u64 diff = start + len - em->start;
623 
624 			split->start = start + len;
625 			split->len = em->start + em->len - (start + len);
626 			split->bdev = em->bdev;
627 			split->flags = flags;
628 			split->compress_type = em->compress_type;
629 			split->generation = gen;
630 
631 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
632 				split->orig_block_len = max(em->block_len,
633 						    em->orig_block_len);
634 
635 				split->ram_bytes = em->ram_bytes;
636 				if (compressed) {
637 					split->block_len = em->block_len;
638 					split->block_start = em->block_start;
639 					split->orig_start = em->orig_start;
640 				} else {
641 					split->block_len = split->len;
642 					split->block_start = em->block_start
643 						+ diff;
644 					split->orig_start = em->orig_start;
645 				}
646 			} else {
647 				split->ram_bytes = split->len;
648 				split->orig_start = split->start;
649 				split->block_len = 0;
650 				split->block_start = em->block_start;
651 				split->orig_block_len = 0;
652 			}
653 
654 			if (extent_map_in_tree(em)) {
655 				replace_extent_mapping(em_tree, em, split,
656 						       modified);
657 			} else {
658 				ret = add_extent_mapping(em_tree, split,
659 							 modified);
660 				ASSERT(ret == 0); /* Logic error */
661 			}
662 			free_extent_map(split);
663 			split = NULL;
664 		}
665 next:
666 		if (extent_map_in_tree(em))
667 			remove_extent_mapping(em_tree, em);
668 		write_unlock(&em_tree->lock);
669 
670 		/* once for us */
671 		free_extent_map(em);
672 		/* once for the tree*/
673 		free_extent_map(em);
674 	}
675 	if (split)
676 		free_extent_map(split);
677 	if (split2)
678 		free_extent_map(split2);
679 }
680 
681 /*
682  * this is very complex, but the basic idea is to drop all extents
683  * in the range start - end.  hint_block is filled in with a block number
684  * that would be a good hint to the block allocator for this file.
685  *
686  * If an extent intersects the range but is not entirely inside the range
687  * it is either truncated or split.  Anything entirely inside the range
688  * is deleted from the tree.
689  */
690 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
691 			 struct btrfs_root *root, struct inode *inode,
692 			 struct btrfs_path *path, u64 start, u64 end,
693 			 u64 *drop_end, int drop_cache,
694 			 int replace_extent,
695 			 u32 extent_item_size,
696 			 int *key_inserted)
697 {
698 	struct extent_buffer *leaf;
699 	struct btrfs_file_extent_item *fi;
700 	struct btrfs_key key;
701 	struct btrfs_key new_key;
702 	u64 ino = btrfs_ino(inode);
703 	u64 search_start = start;
704 	u64 disk_bytenr = 0;
705 	u64 num_bytes = 0;
706 	u64 extent_offset = 0;
707 	u64 extent_end = 0;
708 	int del_nr = 0;
709 	int del_slot = 0;
710 	int extent_type;
711 	int recow;
712 	int ret;
713 	int modify_tree = -1;
714 	int update_refs;
715 	int found = 0;
716 	int leafs_visited = 0;
717 
718 	if (drop_cache)
719 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
720 
721 	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
722 		modify_tree = 0;
723 
724 	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
725 		       root == root->fs_info->tree_root);
726 	while (1) {
727 		recow = 0;
728 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
729 					       search_start, modify_tree);
730 		if (ret < 0)
731 			break;
732 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
733 			leaf = path->nodes[0];
734 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
735 			if (key.objectid == ino &&
736 			    key.type == BTRFS_EXTENT_DATA_KEY)
737 				path->slots[0]--;
738 		}
739 		ret = 0;
740 		leafs_visited++;
741 next_slot:
742 		leaf = path->nodes[0];
743 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
744 			BUG_ON(del_nr > 0);
745 			ret = btrfs_next_leaf(root, path);
746 			if (ret < 0)
747 				break;
748 			if (ret > 0) {
749 				ret = 0;
750 				break;
751 			}
752 			leafs_visited++;
753 			leaf = path->nodes[0];
754 			recow = 1;
755 		}
756 
757 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
758 
759 		if (key.objectid > ino)
760 			break;
761 		if (WARN_ON_ONCE(key.objectid < ino) ||
762 		    key.type < BTRFS_EXTENT_DATA_KEY) {
763 			ASSERT(del_nr == 0);
764 			path->slots[0]++;
765 			goto next_slot;
766 		}
767 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
768 			break;
769 
770 		fi = btrfs_item_ptr(leaf, path->slots[0],
771 				    struct btrfs_file_extent_item);
772 		extent_type = btrfs_file_extent_type(leaf, fi);
773 
774 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
775 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
776 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
777 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
778 			extent_offset = btrfs_file_extent_offset(leaf, fi);
779 			extent_end = key.offset +
780 				btrfs_file_extent_num_bytes(leaf, fi);
781 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
782 			extent_end = key.offset +
783 				btrfs_file_extent_inline_len(leaf,
784 						     path->slots[0], fi);
785 		} else {
786 			/* can't happen */
787 			BUG();
788 		}
789 
790 		/*
791 		 * Don't skip extent items representing 0 byte lengths. They
792 		 * used to be created (bug) if while punching holes we hit
793 		 * -ENOSPC condition. So if we find one here, just ensure we
794 		 * delete it, otherwise we would insert a new file extent item
795 		 * with the same key (offset) as that 0 bytes length file
796 		 * extent item in the call to setup_items_for_insert() later
797 		 * in this function.
798 		 */
799 		if (extent_end == key.offset && extent_end >= search_start)
800 			goto delete_extent_item;
801 
802 		if (extent_end <= search_start) {
803 			path->slots[0]++;
804 			goto next_slot;
805 		}
806 
807 		found = 1;
808 		search_start = max(key.offset, start);
809 		if (recow || !modify_tree) {
810 			modify_tree = -1;
811 			btrfs_release_path(path);
812 			continue;
813 		}
814 
815 		/*
816 		 *     | - range to drop - |
817 		 *  | -------- extent -------- |
818 		 */
819 		if (start > key.offset && end < extent_end) {
820 			BUG_ON(del_nr > 0);
821 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
822 				ret = -EOPNOTSUPP;
823 				break;
824 			}
825 
826 			memcpy(&new_key, &key, sizeof(new_key));
827 			new_key.offset = start;
828 			ret = btrfs_duplicate_item(trans, root, path,
829 						   &new_key);
830 			if (ret == -EAGAIN) {
831 				btrfs_release_path(path);
832 				continue;
833 			}
834 			if (ret < 0)
835 				break;
836 
837 			leaf = path->nodes[0];
838 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
839 					    struct btrfs_file_extent_item);
840 			btrfs_set_file_extent_num_bytes(leaf, fi,
841 							start - key.offset);
842 
843 			fi = btrfs_item_ptr(leaf, path->slots[0],
844 					    struct btrfs_file_extent_item);
845 
846 			extent_offset += start - key.offset;
847 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
848 			btrfs_set_file_extent_num_bytes(leaf, fi,
849 							extent_end - start);
850 			btrfs_mark_buffer_dirty(leaf);
851 
852 			if (update_refs && disk_bytenr > 0) {
853 				ret = btrfs_inc_extent_ref(trans, root,
854 						disk_bytenr, num_bytes, 0,
855 						root->root_key.objectid,
856 						new_key.objectid,
857 						start - extent_offset);
858 				BUG_ON(ret); /* -ENOMEM */
859 			}
860 			key.offset = start;
861 		}
862 		/*
863 		 *  | ---- range to drop ----- |
864 		 *      | -------- extent -------- |
865 		 */
866 		if (start <= key.offset && end < extent_end) {
867 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
868 				ret = -EOPNOTSUPP;
869 				break;
870 			}
871 
872 			memcpy(&new_key, &key, sizeof(new_key));
873 			new_key.offset = end;
874 			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
875 
876 			extent_offset += end - key.offset;
877 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
878 			btrfs_set_file_extent_num_bytes(leaf, fi,
879 							extent_end - end);
880 			btrfs_mark_buffer_dirty(leaf);
881 			if (update_refs && disk_bytenr > 0)
882 				inode_sub_bytes(inode, end - key.offset);
883 			break;
884 		}
885 
886 		search_start = extent_end;
887 		/*
888 		 *       | ---- range to drop ----- |
889 		 *  | -------- extent -------- |
890 		 */
891 		if (start > key.offset && end >= extent_end) {
892 			BUG_ON(del_nr > 0);
893 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
894 				ret = -EOPNOTSUPP;
895 				break;
896 			}
897 
898 			btrfs_set_file_extent_num_bytes(leaf, fi,
899 							start - key.offset);
900 			btrfs_mark_buffer_dirty(leaf);
901 			if (update_refs && disk_bytenr > 0)
902 				inode_sub_bytes(inode, extent_end - start);
903 			if (end == extent_end)
904 				break;
905 
906 			path->slots[0]++;
907 			goto next_slot;
908 		}
909 
910 		/*
911 		 *  | ---- range to drop ----- |
912 		 *    | ------ extent ------ |
913 		 */
914 		if (start <= key.offset && end >= extent_end) {
915 delete_extent_item:
916 			if (del_nr == 0) {
917 				del_slot = path->slots[0];
918 				del_nr = 1;
919 			} else {
920 				BUG_ON(del_slot + del_nr != path->slots[0]);
921 				del_nr++;
922 			}
923 
924 			if (update_refs &&
925 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
926 				inode_sub_bytes(inode,
927 						extent_end - key.offset);
928 				extent_end = ALIGN(extent_end,
929 						   root->sectorsize);
930 			} else if (update_refs && disk_bytenr > 0) {
931 				ret = btrfs_free_extent(trans, root,
932 						disk_bytenr, num_bytes, 0,
933 						root->root_key.objectid,
934 						key.objectid, key.offset -
935 						extent_offset);
936 				BUG_ON(ret); /* -ENOMEM */
937 				inode_sub_bytes(inode,
938 						extent_end - key.offset);
939 			}
940 
941 			if (end == extent_end)
942 				break;
943 
944 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
945 				path->slots[0]++;
946 				goto next_slot;
947 			}
948 
949 			ret = btrfs_del_items(trans, root, path, del_slot,
950 					      del_nr);
951 			if (ret) {
952 				btrfs_abort_transaction(trans, root, ret);
953 				break;
954 			}
955 
956 			del_nr = 0;
957 			del_slot = 0;
958 
959 			btrfs_release_path(path);
960 			continue;
961 		}
962 
963 		BUG_ON(1);
964 	}
965 
966 	if (!ret && del_nr > 0) {
967 		/*
968 		 * Set path->slots[0] to first slot, so that after the delete
969 		 * if items are move off from our leaf to its immediate left or
970 		 * right neighbor leafs, we end up with a correct and adjusted
971 		 * path->slots[0] for our insertion (if replace_extent != 0).
972 		 */
973 		path->slots[0] = del_slot;
974 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
975 		if (ret)
976 			btrfs_abort_transaction(trans, root, ret);
977 	}
978 
979 	leaf = path->nodes[0];
980 	/*
981 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
982 	 * which case it unlocked our path, so check path->locks[0] matches a
983 	 * write lock.
984 	 */
985 	if (!ret && replace_extent && leafs_visited == 1 &&
986 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
987 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
988 	    btrfs_leaf_free_space(root, leaf) >=
989 	    sizeof(struct btrfs_item) + extent_item_size) {
990 
991 		key.objectid = ino;
992 		key.type = BTRFS_EXTENT_DATA_KEY;
993 		key.offset = start;
994 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
995 			struct btrfs_key slot_key;
996 
997 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
998 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
999 				path->slots[0]++;
1000 		}
1001 		setup_items_for_insert(root, path, &key,
1002 				       &extent_item_size,
1003 				       extent_item_size,
1004 				       sizeof(struct btrfs_item) +
1005 				       extent_item_size, 1);
1006 		*key_inserted = 1;
1007 	}
1008 
1009 	if (!replace_extent || !(*key_inserted))
1010 		btrfs_release_path(path);
1011 	if (drop_end)
1012 		*drop_end = found ? min(end, extent_end) : end;
1013 	return ret;
1014 }
1015 
1016 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1017 		       struct btrfs_root *root, struct inode *inode, u64 start,
1018 		       u64 end, int drop_cache)
1019 {
1020 	struct btrfs_path *path;
1021 	int ret;
1022 
1023 	path = btrfs_alloc_path();
1024 	if (!path)
1025 		return -ENOMEM;
1026 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1027 				   drop_cache, 0, 0, NULL);
1028 	btrfs_free_path(path);
1029 	return ret;
1030 }
1031 
1032 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1033 			    u64 objectid, u64 bytenr, u64 orig_offset,
1034 			    u64 *start, u64 *end)
1035 {
1036 	struct btrfs_file_extent_item *fi;
1037 	struct btrfs_key key;
1038 	u64 extent_end;
1039 
1040 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1041 		return 0;
1042 
1043 	btrfs_item_key_to_cpu(leaf, &key, slot);
1044 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1045 		return 0;
1046 
1047 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1048 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1049 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1050 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1051 	    btrfs_file_extent_compression(leaf, fi) ||
1052 	    btrfs_file_extent_encryption(leaf, fi) ||
1053 	    btrfs_file_extent_other_encoding(leaf, fi))
1054 		return 0;
1055 
1056 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1057 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1058 		return 0;
1059 
1060 	*start = key.offset;
1061 	*end = extent_end;
1062 	return 1;
1063 }
1064 
1065 /*
1066  * Mark extent in the range start - end as written.
1067  *
1068  * This changes extent type from 'pre-allocated' to 'regular'. If only
1069  * part of extent is marked as written, the extent will be split into
1070  * two or three.
1071  */
1072 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1073 			      struct inode *inode, u64 start, u64 end)
1074 {
1075 	struct btrfs_root *root = BTRFS_I(inode)->root;
1076 	struct extent_buffer *leaf;
1077 	struct btrfs_path *path;
1078 	struct btrfs_file_extent_item *fi;
1079 	struct btrfs_key key;
1080 	struct btrfs_key new_key;
1081 	u64 bytenr;
1082 	u64 num_bytes;
1083 	u64 extent_end;
1084 	u64 orig_offset;
1085 	u64 other_start;
1086 	u64 other_end;
1087 	u64 split;
1088 	int del_nr = 0;
1089 	int del_slot = 0;
1090 	int recow;
1091 	int ret;
1092 	u64 ino = btrfs_ino(inode);
1093 
1094 	path = btrfs_alloc_path();
1095 	if (!path)
1096 		return -ENOMEM;
1097 again:
1098 	recow = 0;
1099 	split = start;
1100 	key.objectid = ino;
1101 	key.type = BTRFS_EXTENT_DATA_KEY;
1102 	key.offset = split;
1103 
1104 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1105 	if (ret < 0)
1106 		goto out;
1107 	if (ret > 0 && path->slots[0] > 0)
1108 		path->slots[0]--;
1109 
1110 	leaf = path->nodes[0];
1111 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1112 	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1113 	fi = btrfs_item_ptr(leaf, path->slots[0],
1114 			    struct btrfs_file_extent_item);
1115 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1116 	       BTRFS_FILE_EXTENT_PREALLOC);
1117 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1118 	BUG_ON(key.offset > start || extent_end < end);
1119 
1120 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1121 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1122 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1123 	memcpy(&new_key, &key, sizeof(new_key));
1124 
1125 	if (start == key.offset && end < extent_end) {
1126 		other_start = 0;
1127 		other_end = start;
1128 		if (extent_mergeable(leaf, path->slots[0] - 1,
1129 				     ino, bytenr, orig_offset,
1130 				     &other_start, &other_end)) {
1131 			new_key.offset = end;
1132 			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1133 			fi = btrfs_item_ptr(leaf, path->slots[0],
1134 					    struct btrfs_file_extent_item);
1135 			btrfs_set_file_extent_generation(leaf, fi,
1136 							 trans->transid);
1137 			btrfs_set_file_extent_num_bytes(leaf, fi,
1138 							extent_end - end);
1139 			btrfs_set_file_extent_offset(leaf, fi,
1140 						     end - orig_offset);
1141 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1142 					    struct btrfs_file_extent_item);
1143 			btrfs_set_file_extent_generation(leaf, fi,
1144 							 trans->transid);
1145 			btrfs_set_file_extent_num_bytes(leaf, fi,
1146 							end - other_start);
1147 			btrfs_mark_buffer_dirty(leaf);
1148 			goto out;
1149 		}
1150 	}
1151 
1152 	if (start > key.offset && end == extent_end) {
1153 		other_start = end;
1154 		other_end = 0;
1155 		if (extent_mergeable(leaf, path->slots[0] + 1,
1156 				     ino, bytenr, orig_offset,
1157 				     &other_start, &other_end)) {
1158 			fi = btrfs_item_ptr(leaf, path->slots[0],
1159 					    struct btrfs_file_extent_item);
1160 			btrfs_set_file_extent_num_bytes(leaf, fi,
1161 							start - key.offset);
1162 			btrfs_set_file_extent_generation(leaf, fi,
1163 							 trans->transid);
1164 			path->slots[0]++;
1165 			new_key.offset = start;
1166 			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1167 
1168 			fi = btrfs_item_ptr(leaf, path->slots[0],
1169 					    struct btrfs_file_extent_item);
1170 			btrfs_set_file_extent_generation(leaf, fi,
1171 							 trans->transid);
1172 			btrfs_set_file_extent_num_bytes(leaf, fi,
1173 							other_end - start);
1174 			btrfs_set_file_extent_offset(leaf, fi,
1175 						     start - orig_offset);
1176 			btrfs_mark_buffer_dirty(leaf);
1177 			goto out;
1178 		}
1179 	}
1180 
1181 	while (start > key.offset || end < extent_end) {
1182 		if (key.offset == start)
1183 			split = end;
1184 
1185 		new_key.offset = split;
1186 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1187 		if (ret == -EAGAIN) {
1188 			btrfs_release_path(path);
1189 			goto again;
1190 		}
1191 		if (ret < 0) {
1192 			btrfs_abort_transaction(trans, root, ret);
1193 			goto out;
1194 		}
1195 
1196 		leaf = path->nodes[0];
1197 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1198 				    struct btrfs_file_extent_item);
1199 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1200 		btrfs_set_file_extent_num_bytes(leaf, fi,
1201 						split - key.offset);
1202 
1203 		fi = btrfs_item_ptr(leaf, path->slots[0],
1204 				    struct btrfs_file_extent_item);
1205 
1206 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1207 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1208 		btrfs_set_file_extent_num_bytes(leaf, fi,
1209 						extent_end - split);
1210 		btrfs_mark_buffer_dirty(leaf);
1211 
1212 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1213 					   root->root_key.objectid,
1214 					   ino, orig_offset);
1215 		BUG_ON(ret); /* -ENOMEM */
1216 
1217 		if (split == start) {
1218 			key.offset = start;
1219 		} else {
1220 			BUG_ON(start != key.offset);
1221 			path->slots[0]--;
1222 			extent_end = end;
1223 		}
1224 		recow = 1;
1225 	}
1226 
1227 	other_start = end;
1228 	other_end = 0;
1229 	if (extent_mergeable(leaf, path->slots[0] + 1,
1230 			     ino, bytenr, orig_offset,
1231 			     &other_start, &other_end)) {
1232 		if (recow) {
1233 			btrfs_release_path(path);
1234 			goto again;
1235 		}
1236 		extent_end = other_end;
1237 		del_slot = path->slots[0] + 1;
1238 		del_nr++;
1239 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1240 					0, root->root_key.objectid,
1241 					ino, orig_offset);
1242 		BUG_ON(ret); /* -ENOMEM */
1243 	}
1244 	other_start = 0;
1245 	other_end = start;
1246 	if (extent_mergeable(leaf, path->slots[0] - 1,
1247 			     ino, bytenr, orig_offset,
1248 			     &other_start, &other_end)) {
1249 		if (recow) {
1250 			btrfs_release_path(path);
1251 			goto again;
1252 		}
1253 		key.offset = other_start;
1254 		del_slot = path->slots[0];
1255 		del_nr++;
1256 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1257 					0, root->root_key.objectid,
1258 					ino, orig_offset);
1259 		BUG_ON(ret); /* -ENOMEM */
1260 	}
1261 	if (del_nr == 0) {
1262 		fi = btrfs_item_ptr(leaf, path->slots[0],
1263 			   struct btrfs_file_extent_item);
1264 		btrfs_set_file_extent_type(leaf, fi,
1265 					   BTRFS_FILE_EXTENT_REG);
1266 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1267 		btrfs_mark_buffer_dirty(leaf);
1268 	} else {
1269 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1270 			   struct btrfs_file_extent_item);
1271 		btrfs_set_file_extent_type(leaf, fi,
1272 					   BTRFS_FILE_EXTENT_REG);
1273 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1274 		btrfs_set_file_extent_num_bytes(leaf, fi,
1275 						extent_end - key.offset);
1276 		btrfs_mark_buffer_dirty(leaf);
1277 
1278 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1279 		if (ret < 0) {
1280 			btrfs_abort_transaction(trans, root, ret);
1281 			goto out;
1282 		}
1283 	}
1284 out:
1285 	btrfs_free_path(path);
1286 	return 0;
1287 }
1288 
1289 /*
1290  * on error we return an unlocked page and the error value
1291  * on success we return a locked page and 0
1292  */
1293 static int prepare_uptodate_page(struct inode *inode,
1294 				 struct page *page, u64 pos,
1295 				 bool force_uptodate)
1296 {
1297 	int ret = 0;
1298 
1299 	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1300 	    !PageUptodate(page)) {
1301 		ret = btrfs_readpage(NULL, page);
1302 		if (ret)
1303 			return ret;
1304 		lock_page(page);
1305 		if (!PageUptodate(page)) {
1306 			unlock_page(page);
1307 			return -EIO;
1308 		}
1309 		if (page->mapping != inode->i_mapping) {
1310 			unlock_page(page);
1311 			return -EAGAIN;
1312 		}
1313 	}
1314 	return 0;
1315 }
1316 
1317 /*
1318  * this just gets pages into the page cache and locks them down.
1319  */
1320 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1321 				  size_t num_pages, loff_t pos,
1322 				  size_t write_bytes, bool force_uptodate)
1323 {
1324 	int i;
1325 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
1326 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1327 	int err = 0;
1328 	int faili;
1329 
1330 	for (i = 0; i < num_pages; i++) {
1331 again:
1332 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1333 					       mask | __GFP_WRITE);
1334 		if (!pages[i]) {
1335 			faili = i - 1;
1336 			err = -ENOMEM;
1337 			goto fail;
1338 		}
1339 
1340 		if (i == 0)
1341 			err = prepare_uptodate_page(inode, pages[i], pos,
1342 						    force_uptodate);
1343 		if (!err && i == num_pages - 1)
1344 			err = prepare_uptodate_page(inode, pages[i],
1345 						    pos + write_bytes, false);
1346 		if (err) {
1347 			page_cache_release(pages[i]);
1348 			if (err == -EAGAIN) {
1349 				err = 0;
1350 				goto again;
1351 			}
1352 			faili = i - 1;
1353 			goto fail;
1354 		}
1355 		wait_on_page_writeback(pages[i]);
1356 	}
1357 
1358 	return 0;
1359 fail:
1360 	while (faili >= 0) {
1361 		unlock_page(pages[faili]);
1362 		page_cache_release(pages[faili]);
1363 		faili--;
1364 	}
1365 	return err;
1366 
1367 }
1368 
1369 /*
1370  * This function locks the extent and properly waits for data=ordered extents
1371  * to finish before allowing the pages to be modified if need.
1372  *
1373  * The return value:
1374  * 1 - the extent is locked
1375  * 0 - the extent is not locked, and everything is OK
1376  * -EAGAIN - need re-prepare the pages
1377  * the other < 0 number - Something wrong happens
1378  */
1379 static noinline int
1380 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1381 				size_t num_pages, loff_t pos,
1382 				u64 *lockstart, u64 *lockend,
1383 				struct extent_state **cached_state)
1384 {
1385 	u64 start_pos;
1386 	u64 last_pos;
1387 	int i;
1388 	int ret = 0;
1389 
1390 	start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1391 	last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1392 
1393 	if (start_pos < inode->i_size) {
1394 		struct btrfs_ordered_extent *ordered;
1395 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1396 				 start_pos, last_pos, cached_state);
1397 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1398 						     last_pos - start_pos + 1);
1399 		if (ordered &&
1400 		    ordered->file_offset + ordered->len > start_pos &&
1401 		    ordered->file_offset <= last_pos) {
1402 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1403 					     start_pos, last_pos,
1404 					     cached_state, GFP_NOFS);
1405 			for (i = 0; i < num_pages; i++) {
1406 				unlock_page(pages[i]);
1407 				page_cache_release(pages[i]);
1408 			}
1409 			btrfs_start_ordered_extent(inode, ordered, 1);
1410 			btrfs_put_ordered_extent(ordered);
1411 			return -EAGAIN;
1412 		}
1413 		if (ordered)
1414 			btrfs_put_ordered_extent(ordered);
1415 
1416 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1417 				  last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1418 				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1419 				  0, 0, cached_state, GFP_NOFS);
1420 		*lockstart = start_pos;
1421 		*lockend = last_pos;
1422 		ret = 1;
1423 	}
1424 
1425 	for (i = 0; i < num_pages; i++) {
1426 		if (clear_page_dirty_for_io(pages[i]))
1427 			account_page_redirty(pages[i]);
1428 		set_page_extent_mapped(pages[i]);
1429 		WARN_ON(!PageLocked(pages[i]));
1430 	}
1431 
1432 	return ret;
1433 }
1434 
1435 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1436 				    size_t *write_bytes)
1437 {
1438 	struct btrfs_root *root = BTRFS_I(inode)->root;
1439 	struct btrfs_ordered_extent *ordered;
1440 	u64 lockstart, lockend;
1441 	u64 num_bytes;
1442 	int ret;
1443 
1444 	ret = btrfs_start_write_no_snapshoting(root);
1445 	if (!ret)
1446 		return -ENOSPC;
1447 
1448 	lockstart = round_down(pos, root->sectorsize);
1449 	lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1450 
1451 	while (1) {
1452 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1453 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1454 						     lockend - lockstart + 1);
1455 		if (!ordered) {
1456 			break;
1457 		}
1458 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1459 		btrfs_start_ordered_extent(inode, ordered, 1);
1460 		btrfs_put_ordered_extent(ordered);
1461 	}
1462 
1463 	num_bytes = lockend - lockstart + 1;
1464 	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1465 	if (ret <= 0) {
1466 		ret = 0;
1467 		btrfs_end_write_no_snapshoting(root);
1468 	} else {
1469 		*write_bytes = min_t(size_t, *write_bytes ,
1470 				     num_bytes - pos + lockstart);
1471 	}
1472 
1473 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1474 
1475 	return ret;
1476 }
1477 
1478 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1479 					       struct iov_iter *i,
1480 					       loff_t pos)
1481 {
1482 	struct inode *inode = file_inode(file);
1483 	struct btrfs_root *root = BTRFS_I(inode)->root;
1484 	struct page **pages = NULL;
1485 	struct extent_state *cached_state = NULL;
1486 	u64 release_bytes = 0;
1487 	u64 lockstart;
1488 	u64 lockend;
1489 	size_t num_written = 0;
1490 	int nrptrs;
1491 	int ret = 0;
1492 	bool only_release_metadata = false;
1493 	bool force_page_uptodate = false;
1494 	bool need_unlock;
1495 
1496 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE),
1497 			PAGE_CACHE_SIZE / (sizeof(struct page *)));
1498 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1499 	nrptrs = max(nrptrs, 8);
1500 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1501 	if (!pages)
1502 		return -ENOMEM;
1503 
1504 	while (iov_iter_count(i) > 0) {
1505 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1506 		size_t write_bytes = min(iov_iter_count(i),
1507 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1508 					 offset);
1509 		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1510 						PAGE_CACHE_SIZE);
1511 		size_t reserve_bytes;
1512 		size_t dirty_pages;
1513 		size_t copied;
1514 
1515 		WARN_ON(num_pages > nrptrs);
1516 
1517 		/*
1518 		 * Fault pages before locking them in prepare_pages
1519 		 * to avoid recursive lock
1520 		 */
1521 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1522 			ret = -EFAULT;
1523 			break;
1524 		}
1525 
1526 		reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1527 
1528 		if (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1529 					     BTRFS_INODE_PREALLOC)) {
1530 			ret = check_can_nocow(inode, pos, &write_bytes);
1531 			if (ret < 0)
1532 				break;
1533 			if (ret > 0) {
1534 				/*
1535 				 * For nodata cow case, no need to reserve
1536 				 * data space.
1537 				 */
1538 				only_release_metadata = true;
1539 				/*
1540 				 * our prealloc extent may be smaller than
1541 				 * write_bytes, so scale down.
1542 				 */
1543 				num_pages = DIV_ROUND_UP(write_bytes + offset,
1544 							 PAGE_CACHE_SIZE);
1545 				reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1546 				goto reserve_metadata;
1547 			}
1548 		}
1549 		ret = btrfs_check_data_free_space(inode, pos, write_bytes);
1550 		if (ret < 0)
1551 			break;
1552 
1553 reserve_metadata:
1554 		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1555 		if (ret) {
1556 			if (!only_release_metadata)
1557 				btrfs_free_reserved_data_space(inode, pos,
1558 							       write_bytes);
1559 			else
1560 				btrfs_end_write_no_snapshoting(root);
1561 			break;
1562 		}
1563 
1564 		release_bytes = reserve_bytes;
1565 		need_unlock = false;
1566 again:
1567 		/*
1568 		 * This is going to setup the pages array with the number of
1569 		 * pages we want, so we don't really need to worry about the
1570 		 * contents of pages from loop to loop
1571 		 */
1572 		ret = prepare_pages(inode, pages, num_pages,
1573 				    pos, write_bytes,
1574 				    force_page_uptodate);
1575 		if (ret)
1576 			break;
1577 
1578 		ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1579 						      pos, &lockstart, &lockend,
1580 						      &cached_state);
1581 		if (ret < 0) {
1582 			if (ret == -EAGAIN)
1583 				goto again;
1584 			break;
1585 		} else if (ret > 0) {
1586 			need_unlock = true;
1587 			ret = 0;
1588 		}
1589 
1590 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1591 
1592 		/*
1593 		 * if we have trouble faulting in the pages, fall
1594 		 * back to one page at a time
1595 		 */
1596 		if (copied < write_bytes)
1597 			nrptrs = 1;
1598 
1599 		if (copied == 0) {
1600 			force_page_uptodate = true;
1601 			dirty_pages = 0;
1602 		} else {
1603 			force_page_uptodate = false;
1604 			dirty_pages = DIV_ROUND_UP(copied + offset,
1605 						   PAGE_CACHE_SIZE);
1606 		}
1607 
1608 		/*
1609 		 * If we had a short copy we need to release the excess delaloc
1610 		 * bytes we reserved.  We need to increment outstanding_extents
1611 		 * because btrfs_delalloc_release_space will decrement it, but
1612 		 * we still have an outstanding extent for the chunk we actually
1613 		 * managed to copy.
1614 		 */
1615 		if (num_pages > dirty_pages) {
1616 			release_bytes = (num_pages - dirty_pages) <<
1617 				PAGE_CACHE_SHIFT;
1618 			if (copied > 0) {
1619 				spin_lock(&BTRFS_I(inode)->lock);
1620 				BTRFS_I(inode)->outstanding_extents++;
1621 				spin_unlock(&BTRFS_I(inode)->lock);
1622 			}
1623 			if (only_release_metadata) {
1624 				btrfs_delalloc_release_metadata(inode,
1625 								release_bytes);
1626 			} else {
1627 				u64 __pos;
1628 
1629 				__pos = round_down(pos, root->sectorsize) +
1630 					(dirty_pages << PAGE_CACHE_SHIFT);
1631 				btrfs_delalloc_release_space(inode, __pos,
1632 							     release_bytes);
1633 			}
1634 		}
1635 
1636 		release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1637 
1638 		if (copied > 0)
1639 			ret = btrfs_dirty_pages(root, inode, pages,
1640 						dirty_pages, pos, copied,
1641 						NULL);
1642 		if (need_unlock)
1643 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1644 					     lockstart, lockend, &cached_state,
1645 					     GFP_NOFS);
1646 		if (ret) {
1647 			btrfs_drop_pages(pages, num_pages);
1648 			break;
1649 		}
1650 
1651 		release_bytes = 0;
1652 		if (only_release_metadata)
1653 			btrfs_end_write_no_snapshoting(root);
1654 
1655 		if (only_release_metadata && copied > 0) {
1656 			lockstart = round_down(pos, root->sectorsize);
1657 			lockend = lockstart +
1658 				(dirty_pages << PAGE_CACHE_SHIFT) - 1;
1659 
1660 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1661 				       lockend, EXTENT_NORESERVE, NULL,
1662 				       NULL, GFP_NOFS);
1663 			only_release_metadata = false;
1664 		}
1665 
1666 		btrfs_drop_pages(pages, num_pages);
1667 
1668 		cond_resched();
1669 
1670 		balance_dirty_pages_ratelimited(inode->i_mapping);
1671 		if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1)
1672 			btrfs_btree_balance_dirty(root);
1673 
1674 		pos += copied;
1675 		num_written += copied;
1676 	}
1677 
1678 	kfree(pages);
1679 
1680 	if (release_bytes) {
1681 		if (only_release_metadata) {
1682 			btrfs_end_write_no_snapshoting(root);
1683 			btrfs_delalloc_release_metadata(inode, release_bytes);
1684 		} else {
1685 			btrfs_delalloc_release_space(inode, pos, release_bytes);
1686 		}
1687 	}
1688 
1689 	return num_written ? num_written : ret;
1690 }
1691 
1692 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1693 				    struct iov_iter *from,
1694 				    loff_t pos)
1695 {
1696 	struct file *file = iocb->ki_filp;
1697 	struct inode *inode = file_inode(file);
1698 	ssize_t written;
1699 	ssize_t written_buffered;
1700 	loff_t endbyte;
1701 	int err;
1702 
1703 	written = generic_file_direct_write(iocb, from, pos);
1704 
1705 	if (written < 0 || !iov_iter_count(from))
1706 		return written;
1707 
1708 	pos += written;
1709 	written_buffered = __btrfs_buffered_write(file, from, pos);
1710 	if (written_buffered < 0) {
1711 		err = written_buffered;
1712 		goto out;
1713 	}
1714 	/*
1715 	 * Ensure all data is persisted. We want the next direct IO read to be
1716 	 * able to read what was just written.
1717 	 */
1718 	endbyte = pos + written_buffered - 1;
1719 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1720 	if (err)
1721 		goto out;
1722 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1723 	if (err)
1724 		goto out;
1725 	written += written_buffered;
1726 	iocb->ki_pos = pos + written_buffered;
1727 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1728 				 endbyte >> PAGE_CACHE_SHIFT);
1729 out:
1730 	return written ? written : err;
1731 }
1732 
1733 static void update_time_for_write(struct inode *inode)
1734 {
1735 	struct timespec now;
1736 
1737 	if (IS_NOCMTIME(inode))
1738 		return;
1739 
1740 	now = current_fs_time(inode->i_sb);
1741 	if (!timespec_equal(&inode->i_mtime, &now))
1742 		inode->i_mtime = now;
1743 
1744 	if (!timespec_equal(&inode->i_ctime, &now))
1745 		inode->i_ctime = now;
1746 
1747 	if (IS_I_VERSION(inode))
1748 		inode_inc_iversion(inode);
1749 }
1750 
1751 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1752 				    struct iov_iter *from)
1753 {
1754 	struct file *file = iocb->ki_filp;
1755 	struct inode *inode = file_inode(file);
1756 	struct btrfs_root *root = BTRFS_I(inode)->root;
1757 	u64 start_pos;
1758 	u64 end_pos;
1759 	ssize_t num_written = 0;
1760 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1761 	ssize_t err;
1762 	loff_t pos;
1763 	size_t count;
1764 
1765 	inode_lock(inode);
1766 	err = generic_write_checks(iocb, from);
1767 	if (err <= 0) {
1768 		inode_unlock(inode);
1769 		return err;
1770 	}
1771 
1772 	current->backing_dev_info = inode_to_bdi(inode);
1773 	err = file_remove_privs(file);
1774 	if (err) {
1775 		inode_unlock(inode);
1776 		goto out;
1777 	}
1778 
1779 	/*
1780 	 * If BTRFS flips readonly due to some impossible error
1781 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1782 	 * although we have opened a file as writable, we have
1783 	 * to stop this write operation to ensure FS consistency.
1784 	 */
1785 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1786 		inode_unlock(inode);
1787 		err = -EROFS;
1788 		goto out;
1789 	}
1790 
1791 	/*
1792 	 * We reserve space for updating the inode when we reserve space for the
1793 	 * extent we are going to write, so we will enospc out there.  We don't
1794 	 * need to start yet another transaction to update the inode as we will
1795 	 * update the inode when we finish writing whatever data we write.
1796 	 */
1797 	update_time_for_write(inode);
1798 
1799 	pos = iocb->ki_pos;
1800 	count = iov_iter_count(from);
1801 	start_pos = round_down(pos, root->sectorsize);
1802 	if (start_pos > i_size_read(inode)) {
1803 		/* Expand hole size to cover write data, preventing empty gap */
1804 		end_pos = round_up(pos + count, root->sectorsize);
1805 		err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
1806 		if (err) {
1807 			inode_unlock(inode);
1808 			goto out;
1809 		}
1810 	}
1811 
1812 	if (sync)
1813 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1814 
1815 	if (iocb->ki_flags & IOCB_DIRECT) {
1816 		num_written = __btrfs_direct_write(iocb, from, pos);
1817 	} else {
1818 		num_written = __btrfs_buffered_write(file, from, pos);
1819 		if (num_written > 0)
1820 			iocb->ki_pos = pos + num_written;
1821 	}
1822 
1823 	inode_unlock(inode);
1824 
1825 	/*
1826 	 * We also have to set last_sub_trans to the current log transid,
1827 	 * otherwise subsequent syncs to a file that's been synced in this
1828 	 * transaction will appear to have already occured.
1829 	 */
1830 	spin_lock(&BTRFS_I(inode)->lock);
1831 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1832 	spin_unlock(&BTRFS_I(inode)->lock);
1833 	if (num_written > 0) {
1834 		err = generic_write_sync(file, pos, num_written);
1835 		if (err < 0)
1836 			num_written = err;
1837 	}
1838 
1839 	if (sync)
1840 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1841 out:
1842 	current->backing_dev_info = NULL;
1843 	return num_written ? num_written : err;
1844 }
1845 
1846 int btrfs_release_file(struct inode *inode, struct file *filp)
1847 {
1848 	if (filp->private_data)
1849 		btrfs_ioctl_trans_end(filp);
1850 	/*
1851 	 * ordered_data_close is set by settattr when we are about to truncate
1852 	 * a file from a non-zero size to a zero size.  This tries to
1853 	 * flush down new bytes that may have been written if the
1854 	 * application were using truncate to replace a file in place.
1855 	 */
1856 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1857 			       &BTRFS_I(inode)->runtime_flags))
1858 			filemap_flush(inode->i_mapping);
1859 	return 0;
1860 }
1861 
1862 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1863 {
1864 	int ret;
1865 
1866 	atomic_inc(&BTRFS_I(inode)->sync_writers);
1867 	ret = btrfs_fdatawrite_range(inode, start, end);
1868 	atomic_dec(&BTRFS_I(inode)->sync_writers);
1869 
1870 	return ret;
1871 }
1872 
1873 /*
1874  * fsync call for both files and directories.  This logs the inode into
1875  * the tree log instead of forcing full commits whenever possible.
1876  *
1877  * It needs to call filemap_fdatawait so that all ordered extent updates are
1878  * in the metadata btree are up to date for copying to the log.
1879  *
1880  * It drops the inode mutex before doing the tree log commit.  This is an
1881  * important optimization for directories because holding the mutex prevents
1882  * new operations on the dir while we write to disk.
1883  */
1884 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1885 {
1886 	struct dentry *dentry = file->f_path.dentry;
1887 	struct inode *inode = d_inode(dentry);
1888 	struct btrfs_root *root = BTRFS_I(inode)->root;
1889 	struct btrfs_trans_handle *trans;
1890 	struct btrfs_log_ctx ctx;
1891 	int ret = 0;
1892 	bool full_sync = 0;
1893 	u64 len;
1894 
1895 	/*
1896 	 * The range length can be represented by u64, we have to do the typecasts
1897 	 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1898 	 */
1899 	len = (u64)end - (u64)start + 1;
1900 	trace_btrfs_sync_file(file, datasync);
1901 
1902 	/*
1903 	 * We write the dirty pages in the range and wait until they complete
1904 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1905 	 * multi-task, and make the performance up.  See
1906 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1907 	 */
1908 	ret = start_ordered_ops(inode, start, end);
1909 	if (ret)
1910 		return ret;
1911 
1912 	inode_lock(inode);
1913 	atomic_inc(&root->log_batch);
1914 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1915 			     &BTRFS_I(inode)->runtime_flags);
1916 	/*
1917 	 * We might have have had more pages made dirty after calling
1918 	 * start_ordered_ops and before acquiring the inode's i_mutex.
1919 	 */
1920 	if (full_sync) {
1921 		/*
1922 		 * For a full sync, we need to make sure any ordered operations
1923 		 * start and finish before we start logging the inode, so that
1924 		 * all extents are persisted and the respective file extent
1925 		 * items are in the fs/subvol btree.
1926 		 */
1927 		ret = btrfs_wait_ordered_range(inode, start, len);
1928 	} else {
1929 		/*
1930 		 * Start any new ordered operations before starting to log the
1931 		 * inode. We will wait for them to finish in btrfs_sync_log().
1932 		 *
1933 		 * Right before acquiring the inode's mutex, we might have new
1934 		 * writes dirtying pages, which won't immediately start the
1935 		 * respective ordered operations - that is done through the
1936 		 * fill_delalloc callbacks invoked from the writepage and
1937 		 * writepages address space operations. So make sure we start
1938 		 * all ordered operations before starting to log our inode. Not
1939 		 * doing this means that while logging the inode, writeback
1940 		 * could start and invoke writepage/writepages, which would call
1941 		 * the fill_delalloc callbacks (cow_file_range,
1942 		 * submit_compressed_extents). These callbacks add first an
1943 		 * extent map to the modified list of extents and then create
1944 		 * the respective ordered operation, which means in
1945 		 * tree-log.c:btrfs_log_inode() we might capture all existing
1946 		 * ordered operations (with btrfs_get_logged_extents()) before
1947 		 * the fill_delalloc callback adds its ordered operation, and by
1948 		 * the time we visit the modified list of extent maps (with
1949 		 * btrfs_log_changed_extents()), we see and process the extent
1950 		 * map they created. We then use the extent map to construct a
1951 		 * file extent item for logging without waiting for the
1952 		 * respective ordered operation to finish - this file extent
1953 		 * item points to a disk location that might not have yet been
1954 		 * written to, containing random data - so after a crash a log
1955 		 * replay will make our inode have file extent items that point
1956 		 * to disk locations containing invalid data, as we returned
1957 		 * success to userspace without waiting for the respective
1958 		 * ordered operation to finish, because it wasn't captured by
1959 		 * btrfs_get_logged_extents().
1960 		 */
1961 		ret = start_ordered_ops(inode, start, end);
1962 	}
1963 	if (ret) {
1964 		inode_unlock(inode);
1965 		goto out;
1966 	}
1967 	atomic_inc(&root->log_batch);
1968 
1969 	/*
1970 	 * If the last transaction that changed this file was before the current
1971 	 * transaction and we have the full sync flag set in our inode, we can
1972 	 * bail out now without any syncing.
1973 	 *
1974 	 * Note that we can't bail out if the full sync flag isn't set. This is
1975 	 * because when the full sync flag is set we start all ordered extents
1976 	 * and wait for them to fully complete - when they complete they update
1977 	 * the inode's last_trans field through:
1978 	 *
1979 	 *     btrfs_finish_ordered_io() ->
1980 	 *         btrfs_update_inode_fallback() ->
1981 	 *             btrfs_update_inode() ->
1982 	 *                 btrfs_set_inode_last_trans()
1983 	 *
1984 	 * So we are sure that last_trans is up to date and can do this check to
1985 	 * bail out safely. For the fast path, when the full sync flag is not
1986 	 * set in our inode, we can not do it because we start only our ordered
1987 	 * extents and don't wait for them to complete (that is when
1988 	 * btrfs_finish_ordered_io runs), so here at this point their last_trans
1989 	 * value might be less than or equals to fs_info->last_trans_committed,
1990 	 * and setting a speculative last_trans for an inode when a buffered
1991 	 * write is made (such as fs_info->generation + 1 for example) would not
1992 	 * be reliable since after setting the value and before fsync is called
1993 	 * any number of transactions can start and commit (transaction kthread
1994 	 * commits the current transaction periodically), and a transaction
1995 	 * commit does not start nor waits for ordered extents to complete.
1996 	 */
1997 	smp_mb();
1998 	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1999 	    (BTRFS_I(inode)->last_trans <=
2000 	     root->fs_info->last_trans_committed &&
2001 	     (full_sync ||
2002 	      !btrfs_have_ordered_extents_in_range(inode, start, len)))) {
2003 		/*
2004 		 * We'v had everything committed since the last time we were
2005 		 * modified so clear this flag in case it was set for whatever
2006 		 * reason, it's no longer relevant.
2007 		 */
2008 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2009 			  &BTRFS_I(inode)->runtime_flags);
2010 		inode_unlock(inode);
2011 		goto out;
2012 	}
2013 
2014 	/*
2015 	 * ok we haven't committed the transaction yet, lets do a commit
2016 	 */
2017 	if (file->private_data)
2018 		btrfs_ioctl_trans_end(file);
2019 
2020 	/*
2021 	 * We use start here because we will need to wait on the IO to complete
2022 	 * in btrfs_sync_log, which could require joining a transaction (for
2023 	 * example checking cross references in the nocow path).  If we use join
2024 	 * here we could get into a situation where we're waiting on IO to
2025 	 * happen that is blocked on a transaction trying to commit.  With start
2026 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2027 	 * before we start blocking join'ers.  This comment is to keep somebody
2028 	 * from thinking they are super smart and changing this to
2029 	 * btrfs_join_transaction *cough*Josef*cough*.
2030 	 */
2031 	trans = btrfs_start_transaction(root, 0);
2032 	if (IS_ERR(trans)) {
2033 		ret = PTR_ERR(trans);
2034 		inode_unlock(inode);
2035 		goto out;
2036 	}
2037 	trans->sync = true;
2038 
2039 	btrfs_init_log_ctx(&ctx);
2040 
2041 	ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2042 	if (ret < 0) {
2043 		/* Fallthrough and commit/free transaction. */
2044 		ret = 1;
2045 	}
2046 
2047 	/* we've logged all the items and now have a consistent
2048 	 * version of the file in the log.  It is possible that
2049 	 * someone will come in and modify the file, but that's
2050 	 * fine because the log is consistent on disk, and we
2051 	 * have references to all of the file's extents
2052 	 *
2053 	 * It is possible that someone will come in and log the
2054 	 * file again, but that will end up using the synchronization
2055 	 * inside btrfs_sync_log to keep things safe.
2056 	 */
2057 	inode_unlock(inode);
2058 
2059 	/*
2060 	 * If any of the ordered extents had an error, just return it to user
2061 	 * space, so that the application knows some writes didn't succeed and
2062 	 * can take proper action (retry for e.g.). Blindly committing the
2063 	 * transaction in this case, would fool userspace that everything was
2064 	 * successful. And we also want to make sure our log doesn't contain
2065 	 * file extent items pointing to extents that weren't fully written to -
2066 	 * just like in the non fast fsync path, where we check for the ordered
2067 	 * operation's error flag before writing to the log tree and return -EIO
2068 	 * if any of them had this flag set (btrfs_wait_ordered_range) -
2069 	 * therefore we need to check for errors in the ordered operations,
2070 	 * which are indicated by ctx.io_err.
2071 	 */
2072 	if (ctx.io_err) {
2073 		btrfs_end_transaction(trans, root);
2074 		ret = ctx.io_err;
2075 		goto out;
2076 	}
2077 
2078 	if (ret != BTRFS_NO_LOG_SYNC) {
2079 		if (!ret) {
2080 			ret = btrfs_sync_log(trans, root, &ctx);
2081 			if (!ret) {
2082 				ret = btrfs_end_transaction(trans, root);
2083 				goto out;
2084 			}
2085 		}
2086 		if (!full_sync) {
2087 			ret = btrfs_wait_ordered_range(inode, start, len);
2088 			if (ret) {
2089 				btrfs_end_transaction(trans, root);
2090 				goto out;
2091 			}
2092 		}
2093 		ret = btrfs_commit_transaction(trans, root);
2094 	} else {
2095 		ret = btrfs_end_transaction(trans, root);
2096 	}
2097 out:
2098 	return ret > 0 ? -EIO : ret;
2099 }
2100 
2101 static const struct vm_operations_struct btrfs_file_vm_ops = {
2102 	.fault		= filemap_fault,
2103 	.map_pages	= filemap_map_pages,
2104 	.page_mkwrite	= btrfs_page_mkwrite,
2105 };
2106 
2107 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2108 {
2109 	struct address_space *mapping = filp->f_mapping;
2110 
2111 	if (!mapping->a_ops->readpage)
2112 		return -ENOEXEC;
2113 
2114 	file_accessed(filp);
2115 	vma->vm_ops = &btrfs_file_vm_ops;
2116 
2117 	return 0;
2118 }
2119 
2120 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2121 			  int slot, u64 start, u64 end)
2122 {
2123 	struct btrfs_file_extent_item *fi;
2124 	struct btrfs_key key;
2125 
2126 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2127 		return 0;
2128 
2129 	btrfs_item_key_to_cpu(leaf, &key, slot);
2130 	if (key.objectid != btrfs_ino(inode) ||
2131 	    key.type != BTRFS_EXTENT_DATA_KEY)
2132 		return 0;
2133 
2134 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2135 
2136 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2137 		return 0;
2138 
2139 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2140 		return 0;
2141 
2142 	if (key.offset == end)
2143 		return 1;
2144 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2145 		return 1;
2146 	return 0;
2147 }
2148 
2149 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2150 		      struct btrfs_path *path, u64 offset, u64 end)
2151 {
2152 	struct btrfs_root *root = BTRFS_I(inode)->root;
2153 	struct extent_buffer *leaf;
2154 	struct btrfs_file_extent_item *fi;
2155 	struct extent_map *hole_em;
2156 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2157 	struct btrfs_key key;
2158 	int ret;
2159 
2160 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2161 		goto out;
2162 
2163 	key.objectid = btrfs_ino(inode);
2164 	key.type = BTRFS_EXTENT_DATA_KEY;
2165 	key.offset = offset;
2166 
2167 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2168 	if (ret < 0)
2169 		return ret;
2170 	BUG_ON(!ret);
2171 
2172 	leaf = path->nodes[0];
2173 	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2174 		u64 num_bytes;
2175 
2176 		path->slots[0]--;
2177 		fi = btrfs_item_ptr(leaf, path->slots[0],
2178 				    struct btrfs_file_extent_item);
2179 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2180 			end - offset;
2181 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2182 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2183 		btrfs_set_file_extent_offset(leaf, fi, 0);
2184 		btrfs_mark_buffer_dirty(leaf);
2185 		goto out;
2186 	}
2187 
2188 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2189 		u64 num_bytes;
2190 
2191 		key.offset = offset;
2192 		btrfs_set_item_key_safe(root->fs_info, path, &key);
2193 		fi = btrfs_item_ptr(leaf, path->slots[0],
2194 				    struct btrfs_file_extent_item);
2195 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2196 			offset;
2197 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2198 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2199 		btrfs_set_file_extent_offset(leaf, fi, 0);
2200 		btrfs_mark_buffer_dirty(leaf);
2201 		goto out;
2202 	}
2203 	btrfs_release_path(path);
2204 
2205 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2206 				       0, 0, end - offset, 0, end - offset,
2207 				       0, 0, 0);
2208 	if (ret)
2209 		return ret;
2210 
2211 out:
2212 	btrfs_release_path(path);
2213 
2214 	hole_em = alloc_extent_map();
2215 	if (!hole_em) {
2216 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2217 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2218 			&BTRFS_I(inode)->runtime_flags);
2219 	} else {
2220 		hole_em->start = offset;
2221 		hole_em->len = end - offset;
2222 		hole_em->ram_bytes = hole_em->len;
2223 		hole_em->orig_start = offset;
2224 
2225 		hole_em->block_start = EXTENT_MAP_HOLE;
2226 		hole_em->block_len = 0;
2227 		hole_em->orig_block_len = 0;
2228 		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2229 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2230 		hole_em->generation = trans->transid;
2231 
2232 		do {
2233 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2234 			write_lock(&em_tree->lock);
2235 			ret = add_extent_mapping(em_tree, hole_em, 1);
2236 			write_unlock(&em_tree->lock);
2237 		} while (ret == -EEXIST);
2238 		free_extent_map(hole_em);
2239 		if (ret)
2240 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2241 				&BTRFS_I(inode)->runtime_flags);
2242 	}
2243 
2244 	return 0;
2245 }
2246 
2247 /*
2248  * Find a hole extent on given inode and change start/len to the end of hole
2249  * extent.(hole/vacuum extent whose em->start <= start &&
2250  *	   em->start + em->len > start)
2251  * When a hole extent is found, return 1 and modify start/len.
2252  */
2253 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2254 {
2255 	struct extent_map *em;
2256 	int ret = 0;
2257 
2258 	em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2259 	if (IS_ERR_OR_NULL(em)) {
2260 		if (!em)
2261 			ret = -ENOMEM;
2262 		else
2263 			ret = PTR_ERR(em);
2264 		return ret;
2265 	}
2266 
2267 	/* Hole or vacuum extent(only exists in no-hole mode) */
2268 	if (em->block_start == EXTENT_MAP_HOLE) {
2269 		ret = 1;
2270 		*len = em->start + em->len > *start + *len ?
2271 		       0 : *start + *len - em->start - em->len;
2272 		*start = em->start + em->len;
2273 	}
2274 	free_extent_map(em);
2275 	return ret;
2276 }
2277 
2278 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2279 {
2280 	struct btrfs_root *root = BTRFS_I(inode)->root;
2281 	struct extent_state *cached_state = NULL;
2282 	struct btrfs_path *path;
2283 	struct btrfs_block_rsv *rsv;
2284 	struct btrfs_trans_handle *trans;
2285 	u64 lockstart;
2286 	u64 lockend;
2287 	u64 tail_start;
2288 	u64 tail_len;
2289 	u64 orig_start = offset;
2290 	u64 cur_offset;
2291 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2292 	u64 drop_end;
2293 	int ret = 0;
2294 	int err = 0;
2295 	unsigned int rsv_count;
2296 	bool same_page;
2297 	bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2298 	u64 ino_size;
2299 	bool truncated_page = false;
2300 	bool updated_inode = false;
2301 
2302 	ret = btrfs_wait_ordered_range(inode, offset, len);
2303 	if (ret)
2304 		return ret;
2305 
2306 	inode_lock(inode);
2307 	ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2308 	ret = find_first_non_hole(inode, &offset, &len);
2309 	if (ret < 0)
2310 		goto out_only_mutex;
2311 	if (ret && !len) {
2312 		/* Already in a large hole */
2313 		ret = 0;
2314 		goto out_only_mutex;
2315 	}
2316 
2317 	lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2318 	lockend = round_down(offset + len,
2319 			     BTRFS_I(inode)->root->sectorsize) - 1;
2320 	same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2321 		    ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2322 
2323 	/*
2324 	 * We needn't truncate any page which is beyond the end of the file
2325 	 * because we are sure there is no data there.
2326 	 */
2327 	/*
2328 	 * Only do this if we are in the same page and we aren't doing the
2329 	 * entire page.
2330 	 */
2331 	if (same_page && len < PAGE_CACHE_SIZE) {
2332 		if (offset < ino_size) {
2333 			truncated_page = true;
2334 			ret = btrfs_truncate_page(inode, offset, len, 0);
2335 		} else {
2336 			ret = 0;
2337 		}
2338 		goto out_only_mutex;
2339 	}
2340 
2341 	/* zero back part of the first page */
2342 	if (offset < ino_size) {
2343 		truncated_page = true;
2344 		ret = btrfs_truncate_page(inode, offset, 0, 0);
2345 		if (ret) {
2346 			inode_unlock(inode);
2347 			return ret;
2348 		}
2349 	}
2350 
2351 	/* Check the aligned pages after the first unaligned page,
2352 	 * if offset != orig_start, which means the first unaligned page
2353 	 * including serveral following pages are already in holes,
2354 	 * the extra check can be skipped */
2355 	if (offset == orig_start) {
2356 		/* after truncate page, check hole again */
2357 		len = offset + len - lockstart;
2358 		offset = lockstart;
2359 		ret = find_first_non_hole(inode, &offset, &len);
2360 		if (ret < 0)
2361 			goto out_only_mutex;
2362 		if (ret && !len) {
2363 			ret = 0;
2364 			goto out_only_mutex;
2365 		}
2366 		lockstart = offset;
2367 	}
2368 
2369 	/* Check the tail unaligned part is in a hole */
2370 	tail_start = lockend + 1;
2371 	tail_len = offset + len - tail_start;
2372 	if (tail_len) {
2373 		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2374 		if (unlikely(ret < 0))
2375 			goto out_only_mutex;
2376 		if (!ret) {
2377 			/* zero the front end of the last page */
2378 			if (tail_start + tail_len < ino_size) {
2379 				truncated_page = true;
2380 				ret = btrfs_truncate_page(inode,
2381 						tail_start + tail_len, 0, 1);
2382 				if (ret)
2383 					goto out_only_mutex;
2384 			}
2385 		}
2386 	}
2387 
2388 	if (lockend < lockstart) {
2389 		ret = 0;
2390 		goto out_only_mutex;
2391 	}
2392 
2393 	while (1) {
2394 		struct btrfs_ordered_extent *ordered;
2395 
2396 		truncate_pagecache_range(inode, lockstart, lockend);
2397 
2398 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2399 				 &cached_state);
2400 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2401 
2402 		/*
2403 		 * We need to make sure we have no ordered extents in this range
2404 		 * and nobody raced in and read a page in this range, if we did
2405 		 * we need to try again.
2406 		 */
2407 		if ((!ordered ||
2408 		    (ordered->file_offset + ordered->len <= lockstart ||
2409 		     ordered->file_offset > lockend)) &&
2410 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2411 			if (ordered)
2412 				btrfs_put_ordered_extent(ordered);
2413 			break;
2414 		}
2415 		if (ordered)
2416 			btrfs_put_ordered_extent(ordered);
2417 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2418 				     lockend, &cached_state, GFP_NOFS);
2419 		ret = btrfs_wait_ordered_range(inode, lockstart,
2420 					       lockend - lockstart + 1);
2421 		if (ret) {
2422 			inode_unlock(inode);
2423 			return ret;
2424 		}
2425 	}
2426 
2427 	path = btrfs_alloc_path();
2428 	if (!path) {
2429 		ret = -ENOMEM;
2430 		goto out;
2431 	}
2432 
2433 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2434 	if (!rsv) {
2435 		ret = -ENOMEM;
2436 		goto out_free;
2437 	}
2438 	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2439 	rsv->failfast = 1;
2440 
2441 	/*
2442 	 * 1 - update the inode
2443 	 * 1 - removing the extents in the range
2444 	 * 1 - adding the hole extent if no_holes isn't set
2445 	 */
2446 	rsv_count = no_holes ? 2 : 3;
2447 	trans = btrfs_start_transaction(root, rsv_count);
2448 	if (IS_ERR(trans)) {
2449 		err = PTR_ERR(trans);
2450 		goto out_free;
2451 	}
2452 
2453 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2454 				      min_size);
2455 	BUG_ON(ret);
2456 	trans->block_rsv = rsv;
2457 
2458 	cur_offset = lockstart;
2459 	len = lockend - cur_offset;
2460 	while (cur_offset < lockend) {
2461 		ret = __btrfs_drop_extents(trans, root, inode, path,
2462 					   cur_offset, lockend + 1,
2463 					   &drop_end, 1, 0, 0, NULL);
2464 		if (ret != -ENOSPC)
2465 			break;
2466 
2467 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2468 
2469 		if (cur_offset < ino_size) {
2470 			ret = fill_holes(trans, inode, path, cur_offset,
2471 					 drop_end);
2472 			if (ret) {
2473 				err = ret;
2474 				break;
2475 			}
2476 		}
2477 
2478 		cur_offset = drop_end;
2479 
2480 		ret = btrfs_update_inode(trans, root, inode);
2481 		if (ret) {
2482 			err = ret;
2483 			break;
2484 		}
2485 
2486 		btrfs_end_transaction(trans, root);
2487 		btrfs_btree_balance_dirty(root);
2488 
2489 		trans = btrfs_start_transaction(root, rsv_count);
2490 		if (IS_ERR(trans)) {
2491 			ret = PTR_ERR(trans);
2492 			trans = NULL;
2493 			break;
2494 		}
2495 
2496 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2497 					      rsv, min_size);
2498 		BUG_ON(ret);	/* shouldn't happen */
2499 		trans->block_rsv = rsv;
2500 
2501 		ret = find_first_non_hole(inode, &cur_offset, &len);
2502 		if (unlikely(ret < 0))
2503 			break;
2504 		if (ret && !len) {
2505 			ret = 0;
2506 			break;
2507 		}
2508 	}
2509 
2510 	if (ret) {
2511 		err = ret;
2512 		goto out_trans;
2513 	}
2514 
2515 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2516 	/*
2517 	 * If we are using the NO_HOLES feature we might have had already an
2518 	 * hole that overlaps a part of the region [lockstart, lockend] and
2519 	 * ends at (or beyond) lockend. Since we have no file extent items to
2520 	 * represent holes, drop_end can be less than lockend and so we must
2521 	 * make sure we have an extent map representing the existing hole (the
2522 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2523 	 * map representing the existing hole), otherwise the fast fsync path
2524 	 * will not record the existence of the hole region
2525 	 * [existing_hole_start, lockend].
2526 	 */
2527 	if (drop_end <= lockend)
2528 		drop_end = lockend + 1;
2529 	/*
2530 	 * Don't insert file hole extent item if it's for a range beyond eof
2531 	 * (because it's useless) or if it represents a 0 bytes range (when
2532 	 * cur_offset == drop_end).
2533 	 */
2534 	if (cur_offset < ino_size && cur_offset < drop_end) {
2535 		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2536 		if (ret) {
2537 			err = ret;
2538 			goto out_trans;
2539 		}
2540 	}
2541 
2542 out_trans:
2543 	if (!trans)
2544 		goto out_free;
2545 
2546 	inode_inc_iversion(inode);
2547 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2548 
2549 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2550 	ret = btrfs_update_inode(trans, root, inode);
2551 	updated_inode = true;
2552 	btrfs_end_transaction(trans, root);
2553 	btrfs_btree_balance_dirty(root);
2554 out_free:
2555 	btrfs_free_path(path);
2556 	btrfs_free_block_rsv(root, rsv);
2557 out:
2558 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2559 			     &cached_state, GFP_NOFS);
2560 out_only_mutex:
2561 	if (!updated_inode && truncated_page && !ret && !err) {
2562 		/*
2563 		 * If we only end up zeroing part of a page, we still need to
2564 		 * update the inode item, so that all the time fields are
2565 		 * updated as well as the necessary btrfs inode in memory fields
2566 		 * for detecting, at fsync time, if the inode isn't yet in the
2567 		 * log tree or it's there but not up to date.
2568 		 */
2569 		trans = btrfs_start_transaction(root, 1);
2570 		if (IS_ERR(trans)) {
2571 			err = PTR_ERR(trans);
2572 		} else {
2573 			err = btrfs_update_inode(trans, root, inode);
2574 			ret = btrfs_end_transaction(trans, root);
2575 		}
2576 	}
2577 	inode_unlock(inode);
2578 	if (ret && !err)
2579 		err = ret;
2580 	return err;
2581 }
2582 
2583 /* Helper structure to record which range is already reserved */
2584 struct falloc_range {
2585 	struct list_head list;
2586 	u64 start;
2587 	u64 len;
2588 };
2589 
2590 /*
2591  * Helper function to add falloc range
2592  *
2593  * Caller should have locked the larger range of extent containing
2594  * [start, len)
2595  */
2596 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2597 {
2598 	struct falloc_range *prev = NULL;
2599 	struct falloc_range *range = NULL;
2600 
2601 	if (list_empty(head))
2602 		goto insert;
2603 
2604 	/*
2605 	 * As fallocate iterate by bytenr order, we only need to check
2606 	 * the last range.
2607 	 */
2608 	prev = list_entry(head->prev, struct falloc_range, list);
2609 	if (prev->start + prev->len == start) {
2610 		prev->len += len;
2611 		return 0;
2612 	}
2613 insert:
2614 	range = kmalloc(sizeof(*range), GFP_NOFS);
2615 	if (!range)
2616 		return -ENOMEM;
2617 	range->start = start;
2618 	range->len = len;
2619 	list_add_tail(&range->list, head);
2620 	return 0;
2621 }
2622 
2623 static long btrfs_fallocate(struct file *file, int mode,
2624 			    loff_t offset, loff_t len)
2625 {
2626 	struct inode *inode = file_inode(file);
2627 	struct extent_state *cached_state = NULL;
2628 	struct falloc_range *range;
2629 	struct falloc_range *tmp;
2630 	struct list_head reserve_list;
2631 	u64 cur_offset;
2632 	u64 last_byte;
2633 	u64 alloc_start;
2634 	u64 alloc_end;
2635 	u64 alloc_hint = 0;
2636 	u64 locked_end;
2637 	u64 actual_end = 0;
2638 	struct extent_map *em;
2639 	int blocksize = BTRFS_I(inode)->root->sectorsize;
2640 	int ret;
2641 
2642 	alloc_start = round_down(offset, blocksize);
2643 	alloc_end = round_up(offset + len, blocksize);
2644 
2645 	/* Make sure we aren't being give some crap mode */
2646 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2647 		return -EOPNOTSUPP;
2648 
2649 	if (mode & FALLOC_FL_PUNCH_HOLE)
2650 		return btrfs_punch_hole(inode, offset, len);
2651 
2652 	/*
2653 	 * Only trigger disk allocation, don't trigger qgroup reserve
2654 	 *
2655 	 * For qgroup space, it will be checked later.
2656 	 */
2657 	ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2658 	if (ret < 0)
2659 		return ret;
2660 
2661 	inode_lock(inode);
2662 	ret = inode_newsize_ok(inode, alloc_end);
2663 	if (ret)
2664 		goto out;
2665 
2666 	/*
2667 	 * TODO: Move these two operations after we have checked
2668 	 * accurate reserved space, or fallocate can still fail but
2669 	 * with page truncated or size expanded.
2670 	 *
2671 	 * But that's a minor problem and won't do much harm BTW.
2672 	 */
2673 	if (alloc_start > inode->i_size) {
2674 		ret = btrfs_cont_expand(inode, i_size_read(inode),
2675 					alloc_start);
2676 		if (ret)
2677 			goto out;
2678 	} else if (offset + len > inode->i_size) {
2679 		/*
2680 		 * If we are fallocating from the end of the file onward we
2681 		 * need to zero out the end of the page if i_size lands in the
2682 		 * middle of a page.
2683 		 */
2684 		ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2685 		if (ret)
2686 			goto out;
2687 	}
2688 
2689 	/*
2690 	 * wait for ordered IO before we have any locks.  We'll loop again
2691 	 * below with the locks held.
2692 	 */
2693 	ret = btrfs_wait_ordered_range(inode, alloc_start,
2694 				       alloc_end - alloc_start);
2695 	if (ret)
2696 		goto out;
2697 
2698 	locked_end = alloc_end - 1;
2699 	while (1) {
2700 		struct btrfs_ordered_extent *ordered;
2701 
2702 		/* the extent lock is ordered inside the running
2703 		 * transaction
2704 		 */
2705 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2706 				 locked_end, &cached_state);
2707 		ordered = btrfs_lookup_first_ordered_extent(inode,
2708 							    alloc_end - 1);
2709 		if (ordered &&
2710 		    ordered->file_offset + ordered->len > alloc_start &&
2711 		    ordered->file_offset < alloc_end) {
2712 			btrfs_put_ordered_extent(ordered);
2713 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2714 					     alloc_start, locked_end,
2715 					     &cached_state, GFP_NOFS);
2716 			/*
2717 			 * we can't wait on the range with the transaction
2718 			 * running or with the extent lock held
2719 			 */
2720 			ret = btrfs_wait_ordered_range(inode, alloc_start,
2721 						       alloc_end - alloc_start);
2722 			if (ret)
2723 				goto out;
2724 		} else {
2725 			if (ordered)
2726 				btrfs_put_ordered_extent(ordered);
2727 			break;
2728 		}
2729 	}
2730 
2731 	/* First, check if we exceed the qgroup limit */
2732 	INIT_LIST_HEAD(&reserve_list);
2733 	cur_offset = alloc_start;
2734 	while (1) {
2735 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2736 				      alloc_end - cur_offset, 0);
2737 		if (IS_ERR_OR_NULL(em)) {
2738 			if (!em)
2739 				ret = -ENOMEM;
2740 			else
2741 				ret = PTR_ERR(em);
2742 			break;
2743 		}
2744 		last_byte = min(extent_map_end(em), alloc_end);
2745 		actual_end = min_t(u64, extent_map_end(em), offset + len);
2746 		last_byte = ALIGN(last_byte, blocksize);
2747 		if (em->block_start == EXTENT_MAP_HOLE ||
2748 		    (cur_offset >= inode->i_size &&
2749 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2750 			ret = add_falloc_range(&reserve_list, cur_offset,
2751 					       last_byte - cur_offset);
2752 			if (ret < 0) {
2753 				free_extent_map(em);
2754 				break;
2755 			}
2756 			ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2757 					last_byte - cur_offset);
2758 			if (ret < 0)
2759 				break;
2760 		}
2761 		free_extent_map(em);
2762 		cur_offset = last_byte;
2763 		if (cur_offset >= alloc_end)
2764 			break;
2765 	}
2766 
2767 	/*
2768 	 * If ret is still 0, means we're OK to fallocate.
2769 	 * Or just cleanup the list and exit.
2770 	 */
2771 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2772 		if (!ret)
2773 			ret = btrfs_prealloc_file_range(inode, mode,
2774 					range->start,
2775 					range->len, 1 << inode->i_blkbits,
2776 					offset + len, &alloc_hint);
2777 		list_del(&range->list);
2778 		kfree(range);
2779 	}
2780 	if (ret < 0)
2781 		goto out_unlock;
2782 
2783 	if (actual_end > inode->i_size &&
2784 	    !(mode & FALLOC_FL_KEEP_SIZE)) {
2785 		struct btrfs_trans_handle *trans;
2786 		struct btrfs_root *root = BTRFS_I(inode)->root;
2787 
2788 		/*
2789 		 * We didn't need to allocate any more space, but we
2790 		 * still extended the size of the file so we need to
2791 		 * update i_size and the inode item.
2792 		 */
2793 		trans = btrfs_start_transaction(root, 1);
2794 		if (IS_ERR(trans)) {
2795 			ret = PTR_ERR(trans);
2796 		} else {
2797 			inode->i_ctime = CURRENT_TIME;
2798 			i_size_write(inode, actual_end);
2799 			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2800 			ret = btrfs_update_inode(trans, root, inode);
2801 			if (ret)
2802 				btrfs_end_transaction(trans, root);
2803 			else
2804 				ret = btrfs_end_transaction(trans, root);
2805 		}
2806 	}
2807 out_unlock:
2808 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2809 			     &cached_state, GFP_NOFS);
2810 out:
2811 	/*
2812 	 * As we waited the extent range, the data_rsv_map must be empty
2813 	 * in the range, as written data range will be released from it.
2814 	 * And for prealloacted extent, it will also be released when
2815 	 * its metadata is written.
2816 	 * So this is completely used as cleanup.
2817 	 */
2818 	btrfs_qgroup_free_data(inode, alloc_start, alloc_end - alloc_start);
2819 	inode_unlock(inode);
2820 	/* Let go of our reservation. */
2821 	btrfs_free_reserved_data_space(inode, alloc_start,
2822 				       alloc_end - alloc_start);
2823 	return ret;
2824 }
2825 
2826 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2827 {
2828 	struct btrfs_root *root = BTRFS_I(inode)->root;
2829 	struct extent_map *em = NULL;
2830 	struct extent_state *cached_state = NULL;
2831 	u64 lockstart;
2832 	u64 lockend;
2833 	u64 start;
2834 	u64 len;
2835 	int ret = 0;
2836 
2837 	if (inode->i_size == 0)
2838 		return -ENXIO;
2839 
2840 	/*
2841 	 * *offset can be negative, in this case we start finding DATA/HOLE from
2842 	 * the very start of the file.
2843 	 */
2844 	start = max_t(loff_t, 0, *offset);
2845 
2846 	lockstart = round_down(start, root->sectorsize);
2847 	lockend = round_up(i_size_read(inode), root->sectorsize);
2848 	if (lockend <= lockstart)
2849 		lockend = lockstart + root->sectorsize;
2850 	lockend--;
2851 	len = lockend - lockstart + 1;
2852 
2853 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2854 			 &cached_state);
2855 
2856 	while (start < inode->i_size) {
2857 		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2858 		if (IS_ERR(em)) {
2859 			ret = PTR_ERR(em);
2860 			em = NULL;
2861 			break;
2862 		}
2863 
2864 		if (whence == SEEK_HOLE &&
2865 		    (em->block_start == EXTENT_MAP_HOLE ||
2866 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2867 			break;
2868 		else if (whence == SEEK_DATA &&
2869 			   (em->block_start != EXTENT_MAP_HOLE &&
2870 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2871 			break;
2872 
2873 		start = em->start + em->len;
2874 		free_extent_map(em);
2875 		em = NULL;
2876 		cond_resched();
2877 	}
2878 	free_extent_map(em);
2879 	if (!ret) {
2880 		if (whence == SEEK_DATA && start >= inode->i_size)
2881 			ret = -ENXIO;
2882 		else
2883 			*offset = min_t(loff_t, start, inode->i_size);
2884 	}
2885 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2886 			     &cached_state, GFP_NOFS);
2887 	return ret;
2888 }
2889 
2890 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2891 {
2892 	struct inode *inode = file->f_mapping->host;
2893 	int ret;
2894 
2895 	inode_lock(inode);
2896 	switch (whence) {
2897 	case SEEK_END:
2898 	case SEEK_CUR:
2899 		offset = generic_file_llseek(file, offset, whence);
2900 		goto out;
2901 	case SEEK_DATA:
2902 	case SEEK_HOLE:
2903 		if (offset >= i_size_read(inode)) {
2904 			inode_unlock(inode);
2905 			return -ENXIO;
2906 		}
2907 
2908 		ret = find_desired_extent(inode, &offset, whence);
2909 		if (ret) {
2910 			inode_unlock(inode);
2911 			return ret;
2912 		}
2913 	}
2914 
2915 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2916 out:
2917 	inode_unlock(inode);
2918 	return offset;
2919 }
2920 
2921 const struct file_operations btrfs_file_operations = {
2922 	.llseek		= btrfs_file_llseek,
2923 	.read_iter      = generic_file_read_iter,
2924 	.splice_read	= generic_file_splice_read,
2925 	.write_iter	= btrfs_file_write_iter,
2926 	.mmap		= btrfs_file_mmap,
2927 	.open		= generic_file_open,
2928 	.release	= btrfs_release_file,
2929 	.fsync		= btrfs_sync_file,
2930 	.fallocate	= btrfs_fallocate,
2931 	.unlocked_ioctl	= btrfs_ioctl,
2932 #ifdef CONFIG_COMPAT
2933 	.compat_ioctl	= btrfs_ioctl,
2934 #endif
2935 	.copy_file_range = btrfs_copy_file_range,
2936 	.clone_file_range = btrfs_clone_file_range,
2937 	.dedupe_file_range = btrfs_dedupe_file_range,
2938 };
2939 
2940 void btrfs_auto_defrag_exit(void)
2941 {
2942 	if (btrfs_inode_defrag_cachep)
2943 		kmem_cache_destroy(btrfs_inode_defrag_cachep);
2944 }
2945 
2946 int btrfs_auto_defrag_init(void)
2947 {
2948 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2949 					sizeof(struct inode_defrag), 0,
2950 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2951 					NULL);
2952 	if (!btrfs_inode_defrag_cachep)
2953 		return -ENOMEM;
2954 
2955 	return 0;
2956 }
2957 
2958 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
2959 {
2960 	int ret;
2961 
2962 	/*
2963 	 * So with compression we will find and lock a dirty page and clear the
2964 	 * first one as dirty, setup an async extent, and immediately return
2965 	 * with the entire range locked but with nobody actually marked with
2966 	 * writeback.  So we can't just filemap_write_and_wait_range() and
2967 	 * expect it to work since it will just kick off a thread to do the
2968 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
2969 	 * since it will wait on the page lock, which won't be unlocked until
2970 	 * after the pages have been marked as writeback and so we're good to go
2971 	 * from there.  We have to do this otherwise we'll miss the ordered
2972 	 * extents and that results in badness.  Please Josef, do not think you
2973 	 * know better and pull this out at some point in the future, it is
2974 	 * right and you are wrong.
2975 	 */
2976 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2977 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
2978 			     &BTRFS_I(inode)->runtime_flags))
2979 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2980 
2981 	return ret;
2982 }
2983