1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/time.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/backing-dev.h> 26 #include <linux/mpage.h> 27 #include <linux/falloc.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/statfs.h> 31 #include <linux/compat.h> 32 #include <linux/slab.h> 33 #include <linux/btrfs.h> 34 #include <linux/uio.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "print-tree.h" 40 #include "tree-log.h" 41 #include "locking.h" 42 #include "volumes.h" 43 #include "qgroup.h" 44 45 static struct kmem_cache *btrfs_inode_defrag_cachep; 46 /* 47 * when auto defrag is enabled we 48 * queue up these defrag structs to remember which 49 * inodes need defragging passes 50 */ 51 struct inode_defrag { 52 struct rb_node rb_node; 53 /* objectid */ 54 u64 ino; 55 /* 56 * transid where the defrag was added, we search for 57 * extents newer than this 58 */ 59 u64 transid; 60 61 /* root objectid */ 62 u64 root; 63 64 /* last offset we were able to defrag */ 65 u64 last_offset; 66 67 /* if we've wrapped around back to zero once already */ 68 int cycled; 69 }; 70 71 static int __compare_inode_defrag(struct inode_defrag *defrag1, 72 struct inode_defrag *defrag2) 73 { 74 if (defrag1->root > defrag2->root) 75 return 1; 76 else if (defrag1->root < defrag2->root) 77 return -1; 78 else if (defrag1->ino > defrag2->ino) 79 return 1; 80 else if (defrag1->ino < defrag2->ino) 81 return -1; 82 else 83 return 0; 84 } 85 86 /* pop a record for an inode into the defrag tree. The lock 87 * must be held already 88 * 89 * If you're inserting a record for an older transid than an 90 * existing record, the transid already in the tree is lowered 91 * 92 * If an existing record is found the defrag item you 93 * pass in is freed 94 */ 95 static int __btrfs_add_inode_defrag(struct inode *inode, 96 struct inode_defrag *defrag) 97 { 98 struct btrfs_root *root = BTRFS_I(inode)->root; 99 struct inode_defrag *entry; 100 struct rb_node **p; 101 struct rb_node *parent = NULL; 102 int ret; 103 104 p = &root->fs_info->defrag_inodes.rb_node; 105 while (*p) { 106 parent = *p; 107 entry = rb_entry(parent, struct inode_defrag, rb_node); 108 109 ret = __compare_inode_defrag(defrag, entry); 110 if (ret < 0) 111 p = &parent->rb_left; 112 else if (ret > 0) 113 p = &parent->rb_right; 114 else { 115 /* if we're reinserting an entry for 116 * an old defrag run, make sure to 117 * lower the transid of our existing record 118 */ 119 if (defrag->transid < entry->transid) 120 entry->transid = defrag->transid; 121 if (defrag->last_offset > entry->last_offset) 122 entry->last_offset = defrag->last_offset; 123 return -EEXIST; 124 } 125 } 126 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 127 rb_link_node(&defrag->rb_node, parent, p); 128 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes); 129 return 0; 130 } 131 132 static inline int __need_auto_defrag(struct btrfs_root *root) 133 { 134 if (!btrfs_test_opt(root, AUTO_DEFRAG)) 135 return 0; 136 137 if (btrfs_fs_closing(root->fs_info)) 138 return 0; 139 140 return 1; 141 } 142 143 /* 144 * insert a defrag record for this inode if auto defrag is 145 * enabled 146 */ 147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 148 struct inode *inode) 149 { 150 struct btrfs_root *root = BTRFS_I(inode)->root; 151 struct inode_defrag *defrag; 152 u64 transid; 153 int ret; 154 155 if (!__need_auto_defrag(root)) 156 return 0; 157 158 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) 159 return 0; 160 161 if (trans) 162 transid = trans->transid; 163 else 164 transid = BTRFS_I(inode)->root->last_trans; 165 166 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 167 if (!defrag) 168 return -ENOMEM; 169 170 defrag->ino = btrfs_ino(inode); 171 defrag->transid = transid; 172 defrag->root = root->root_key.objectid; 173 174 spin_lock(&root->fs_info->defrag_inodes_lock); 175 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) { 176 /* 177 * If we set IN_DEFRAG flag and evict the inode from memory, 178 * and then re-read this inode, this new inode doesn't have 179 * IN_DEFRAG flag. At the case, we may find the existed defrag. 180 */ 181 ret = __btrfs_add_inode_defrag(inode, defrag); 182 if (ret) 183 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 184 } else { 185 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 186 } 187 spin_unlock(&root->fs_info->defrag_inodes_lock); 188 return 0; 189 } 190 191 /* 192 * Requeue the defrag object. If there is a defrag object that points to 193 * the same inode in the tree, we will merge them together (by 194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 195 */ 196 static void btrfs_requeue_inode_defrag(struct inode *inode, 197 struct inode_defrag *defrag) 198 { 199 struct btrfs_root *root = BTRFS_I(inode)->root; 200 int ret; 201 202 if (!__need_auto_defrag(root)) 203 goto out; 204 205 /* 206 * Here we don't check the IN_DEFRAG flag, because we need merge 207 * them together. 208 */ 209 spin_lock(&root->fs_info->defrag_inodes_lock); 210 ret = __btrfs_add_inode_defrag(inode, defrag); 211 spin_unlock(&root->fs_info->defrag_inodes_lock); 212 if (ret) 213 goto out; 214 return; 215 out: 216 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 217 } 218 219 /* 220 * pick the defragable inode that we want, if it doesn't exist, we will get 221 * the next one. 222 */ 223 static struct inode_defrag * 224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 225 { 226 struct inode_defrag *entry = NULL; 227 struct inode_defrag tmp; 228 struct rb_node *p; 229 struct rb_node *parent = NULL; 230 int ret; 231 232 tmp.ino = ino; 233 tmp.root = root; 234 235 spin_lock(&fs_info->defrag_inodes_lock); 236 p = fs_info->defrag_inodes.rb_node; 237 while (p) { 238 parent = p; 239 entry = rb_entry(parent, struct inode_defrag, rb_node); 240 241 ret = __compare_inode_defrag(&tmp, entry); 242 if (ret < 0) 243 p = parent->rb_left; 244 else if (ret > 0) 245 p = parent->rb_right; 246 else 247 goto out; 248 } 249 250 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 251 parent = rb_next(parent); 252 if (parent) 253 entry = rb_entry(parent, struct inode_defrag, rb_node); 254 else 255 entry = NULL; 256 } 257 out: 258 if (entry) 259 rb_erase(parent, &fs_info->defrag_inodes); 260 spin_unlock(&fs_info->defrag_inodes_lock); 261 return entry; 262 } 263 264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 265 { 266 struct inode_defrag *defrag; 267 struct rb_node *node; 268 269 spin_lock(&fs_info->defrag_inodes_lock); 270 node = rb_first(&fs_info->defrag_inodes); 271 while (node) { 272 rb_erase(node, &fs_info->defrag_inodes); 273 defrag = rb_entry(node, struct inode_defrag, rb_node); 274 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 275 276 cond_resched_lock(&fs_info->defrag_inodes_lock); 277 278 node = rb_first(&fs_info->defrag_inodes); 279 } 280 spin_unlock(&fs_info->defrag_inodes_lock); 281 } 282 283 #define BTRFS_DEFRAG_BATCH 1024 284 285 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 286 struct inode_defrag *defrag) 287 { 288 struct btrfs_root *inode_root; 289 struct inode *inode; 290 struct btrfs_key key; 291 struct btrfs_ioctl_defrag_range_args range; 292 int num_defrag; 293 int index; 294 int ret; 295 296 /* get the inode */ 297 key.objectid = defrag->root; 298 key.type = BTRFS_ROOT_ITEM_KEY; 299 key.offset = (u64)-1; 300 301 index = srcu_read_lock(&fs_info->subvol_srcu); 302 303 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 304 if (IS_ERR(inode_root)) { 305 ret = PTR_ERR(inode_root); 306 goto cleanup; 307 } 308 309 key.objectid = defrag->ino; 310 key.type = BTRFS_INODE_ITEM_KEY; 311 key.offset = 0; 312 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 313 if (IS_ERR(inode)) { 314 ret = PTR_ERR(inode); 315 goto cleanup; 316 } 317 srcu_read_unlock(&fs_info->subvol_srcu, index); 318 319 /* do a chunk of defrag */ 320 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 321 memset(&range, 0, sizeof(range)); 322 range.len = (u64)-1; 323 range.start = defrag->last_offset; 324 325 sb_start_write(fs_info->sb); 326 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 327 BTRFS_DEFRAG_BATCH); 328 sb_end_write(fs_info->sb); 329 /* 330 * if we filled the whole defrag batch, there 331 * must be more work to do. Queue this defrag 332 * again 333 */ 334 if (num_defrag == BTRFS_DEFRAG_BATCH) { 335 defrag->last_offset = range.start; 336 btrfs_requeue_inode_defrag(inode, defrag); 337 } else if (defrag->last_offset && !defrag->cycled) { 338 /* 339 * we didn't fill our defrag batch, but 340 * we didn't start at zero. Make sure we loop 341 * around to the start of the file. 342 */ 343 defrag->last_offset = 0; 344 defrag->cycled = 1; 345 btrfs_requeue_inode_defrag(inode, defrag); 346 } else { 347 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 348 } 349 350 iput(inode); 351 return 0; 352 cleanup: 353 srcu_read_unlock(&fs_info->subvol_srcu, index); 354 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 355 return ret; 356 } 357 358 /* 359 * run through the list of inodes in the FS that need 360 * defragging 361 */ 362 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 363 { 364 struct inode_defrag *defrag; 365 u64 first_ino = 0; 366 u64 root_objectid = 0; 367 368 atomic_inc(&fs_info->defrag_running); 369 while (1) { 370 /* Pause the auto defragger. */ 371 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 372 &fs_info->fs_state)) 373 break; 374 375 if (!__need_auto_defrag(fs_info->tree_root)) 376 break; 377 378 /* find an inode to defrag */ 379 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 380 first_ino); 381 if (!defrag) { 382 if (root_objectid || first_ino) { 383 root_objectid = 0; 384 first_ino = 0; 385 continue; 386 } else { 387 break; 388 } 389 } 390 391 first_ino = defrag->ino + 1; 392 root_objectid = defrag->root; 393 394 __btrfs_run_defrag_inode(fs_info, defrag); 395 } 396 atomic_dec(&fs_info->defrag_running); 397 398 /* 399 * during unmount, we use the transaction_wait queue to 400 * wait for the defragger to stop 401 */ 402 wake_up(&fs_info->transaction_wait); 403 return 0; 404 } 405 406 /* simple helper to fault in pages and copy. This should go away 407 * and be replaced with calls into generic code. 408 */ 409 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 410 struct page **prepared_pages, 411 struct iov_iter *i) 412 { 413 size_t copied = 0; 414 size_t total_copied = 0; 415 int pg = 0; 416 int offset = pos & (PAGE_CACHE_SIZE - 1); 417 418 while (write_bytes > 0) { 419 size_t count = min_t(size_t, 420 PAGE_CACHE_SIZE - offset, write_bytes); 421 struct page *page = prepared_pages[pg]; 422 /* 423 * Copy data from userspace to the current page 424 */ 425 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 426 427 /* Flush processor's dcache for this page */ 428 flush_dcache_page(page); 429 430 /* 431 * if we get a partial write, we can end up with 432 * partially up to date pages. These add 433 * a lot of complexity, so make sure they don't 434 * happen by forcing this copy to be retried. 435 * 436 * The rest of the btrfs_file_write code will fall 437 * back to page at a time copies after we return 0. 438 */ 439 if (!PageUptodate(page) && copied < count) 440 copied = 0; 441 442 iov_iter_advance(i, copied); 443 write_bytes -= copied; 444 total_copied += copied; 445 446 /* Return to btrfs_file_write_iter to fault page */ 447 if (unlikely(copied == 0)) 448 break; 449 450 if (copied < PAGE_CACHE_SIZE - offset) { 451 offset += copied; 452 } else { 453 pg++; 454 offset = 0; 455 } 456 } 457 return total_copied; 458 } 459 460 /* 461 * unlocks pages after btrfs_file_write is done with them 462 */ 463 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 464 { 465 size_t i; 466 for (i = 0; i < num_pages; i++) { 467 /* page checked is some magic around finding pages that 468 * have been modified without going through btrfs_set_page_dirty 469 * clear it here. There should be no need to mark the pages 470 * accessed as prepare_pages should have marked them accessed 471 * in prepare_pages via find_or_create_page() 472 */ 473 ClearPageChecked(pages[i]); 474 unlock_page(pages[i]); 475 page_cache_release(pages[i]); 476 } 477 } 478 479 /* 480 * after copy_from_user, pages need to be dirtied and we need to make 481 * sure holes are created between the current EOF and the start of 482 * any next extents (if required). 483 * 484 * this also makes the decision about creating an inline extent vs 485 * doing real data extents, marking pages dirty and delalloc as required. 486 */ 487 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, 488 struct page **pages, size_t num_pages, 489 loff_t pos, size_t write_bytes, 490 struct extent_state **cached) 491 { 492 int err = 0; 493 int i; 494 u64 num_bytes; 495 u64 start_pos; 496 u64 end_of_last_block; 497 u64 end_pos = pos + write_bytes; 498 loff_t isize = i_size_read(inode); 499 500 start_pos = pos & ~((u64)root->sectorsize - 1); 501 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize); 502 503 end_of_last_block = start_pos + num_bytes - 1; 504 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 505 cached); 506 if (err) 507 return err; 508 509 for (i = 0; i < num_pages; i++) { 510 struct page *p = pages[i]; 511 SetPageUptodate(p); 512 ClearPageChecked(p); 513 set_page_dirty(p); 514 } 515 516 /* 517 * we've only changed i_size in ram, and we haven't updated 518 * the disk i_size. There is no need to log the inode 519 * at this time. 520 */ 521 if (end_pos > isize) 522 i_size_write(inode, end_pos); 523 return 0; 524 } 525 526 /* 527 * this drops all the extents in the cache that intersect the range 528 * [start, end]. Existing extents are split as required. 529 */ 530 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, 531 int skip_pinned) 532 { 533 struct extent_map *em; 534 struct extent_map *split = NULL; 535 struct extent_map *split2 = NULL; 536 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 537 u64 len = end - start + 1; 538 u64 gen; 539 int ret; 540 int testend = 1; 541 unsigned long flags; 542 int compressed = 0; 543 bool modified; 544 545 WARN_ON(end < start); 546 if (end == (u64)-1) { 547 len = (u64)-1; 548 testend = 0; 549 } 550 while (1) { 551 int no_splits = 0; 552 553 modified = false; 554 if (!split) 555 split = alloc_extent_map(); 556 if (!split2) 557 split2 = alloc_extent_map(); 558 if (!split || !split2) 559 no_splits = 1; 560 561 write_lock(&em_tree->lock); 562 em = lookup_extent_mapping(em_tree, start, len); 563 if (!em) { 564 write_unlock(&em_tree->lock); 565 break; 566 } 567 flags = em->flags; 568 gen = em->generation; 569 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 570 if (testend && em->start + em->len >= start + len) { 571 free_extent_map(em); 572 write_unlock(&em_tree->lock); 573 break; 574 } 575 start = em->start + em->len; 576 if (testend) 577 len = start + len - (em->start + em->len); 578 free_extent_map(em); 579 write_unlock(&em_tree->lock); 580 continue; 581 } 582 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 583 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 584 clear_bit(EXTENT_FLAG_LOGGING, &flags); 585 modified = !list_empty(&em->list); 586 if (no_splits) 587 goto next; 588 589 if (em->start < start) { 590 split->start = em->start; 591 split->len = start - em->start; 592 593 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 594 split->orig_start = em->orig_start; 595 split->block_start = em->block_start; 596 597 if (compressed) 598 split->block_len = em->block_len; 599 else 600 split->block_len = split->len; 601 split->orig_block_len = max(split->block_len, 602 em->orig_block_len); 603 split->ram_bytes = em->ram_bytes; 604 } else { 605 split->orig_start = split->start; 606 split->block_len = 0; 607 split->block_start = em->block_start; 608 split->orig_block_len = 0; 609 split->ram_bytes = split->len; 610 } 611 612 split->generation = gen; 613 split->bdev = em->bdev; 614 split->flags = flags; 615 split->compress_type = em->compress_type; 616 replace_extent_mapping(em_tree, em, split, modified); 617 free_extent_map(split); 618 split = split2; 619 split2 = NULL; 620 } 621 if (testend && em->start + em->len > start + len) { 622 u64 diff = start + len - em->start; 623 624 split->start = start + len; 625 split->len = em->start + em->len - (start + len); 626 split->bdev = em->bdev; 627 split->flags = flags; 628 split->compress_type = em->compress_type; 629 split->generation = gen; 630 631 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 632 split->orig_block_len = max(em->block_len, 633 em->orig_block_len); 634 635 split->ram_bytes = em->ram_bytes; 636 if (compressed) { 637 split->block_len = em->block_len; 638 split->block_start = em->block_start; 639 split->orig_start = em->orig_start; 640 } else { 641 split->block_len = split->len; 642 split->block_start = em->block_start 643 + diff; 644 split->orig_start = em->orig_start; 645 } 646 } else { 647 split->ram_bytes = split->len; 648 split->orig_start = split->start; 649 split->block_len = 0; 650 split->block_start = em->block_start; 651 split->orig_block_len = 0; 652 } 653 654 if (extent_map_in_tree(em)) { 655 replace_extent_mapping(em_tree, em, split, 656 modified); 657 } else { 658 ret = add_extent_mapping(em_tree, split, 659 modified); 660 ASSERT(ret == 0); /* Logic error */ 661 } 662 free_extent_map(split); 663 split = NULL; 664 } 665 next: 666 if (extent_map_in_tree(em)) 667 remove_extent_mapping(em_tree, em); 668 write_unlock(&em_tree->lock); 669 670 /* once for us */ 671 free_extent_map(em); 672 /* once for the tree*/ 673 free_extent_map(em); 674 } 675 if (split) 676 free_extent_map(split); 677 if (split2) 678 free_extent_map(split2); 679 } 680 681 /* 682 * this is very complex, but the basic idea is to drop all extents 683 * in the range start - end. hint_block is filled in with a block number 684 * that would be a good hint to the block allocator for this file. 685 * 686 * If an extent intersects the range but is not entirely inside the range 687 * it is either truncated or split. Anything entirely inside the range 688 * is deleted from the tree. 689 */ 690 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 691 struct btrfs_root *root, struct inode *inode, 692 struct btrfs_path *path, u64 start, u64 end, 693 u64 *drop_end, int drop_cache, 694 int replace_extent, 695 u32 extent_item_size, 696 int *key_inserted) 697 { 698 struct extent_buffer *leaf; 699 struct btrfs_file_extent_item *fi; 700 struct btrfs_key key; 701 struct btrfs_key new_key; 702 u64 ino = btrfs_ino(inode); 703 u64 search_start = start; 704 u64 disk_bytenr = 0; 705 u64 num_bytes = 0; 706 u64 extent_offset = 0; 707 u64 extent_end = 0; 708 int del_nr = 0; 709 int del_slot = 0; 710 int extent_type; 711 int recow; 712 int ret; 713 int modify_tree = -1; 714 int update_refs; 715 int found = 0; 716 int leafs_visited = 0; 717 718 if (drop_cache) 719 btrfs_drop_extent_cache(inode, start, end - 1, 0); 720 721 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 722 modify_tree = 0; 723 724 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 725 root == root->fs_info->tree_root); 726 while (1) { 727 recow = 0; 728 ret = btrfs_lookup_file_extent(trans, root, path, ino, 729 search_start, modify_tree); 730 if (ret < 0) 731 break; 732 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 733 leaf = path->nodes[0]; 734 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 735 if (key.objectid == ino && 736 key.type == BTRFS_EXTENT_DATA_KEY) 737 path->slots[0]--; 738 } 739 ret = 0; 740 leafs_visited++; 741 next_slot: 742 leaf = path->nodes[0]; 743 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 744 BUG_ON(del_nr > 0); 745 ret = btrfs_next_leaf(root, path); 746 if (ret < 0) 747 break; 748 if (ret > 0) { 749 ret = 0; 750 break; 751 } 752 leafs_visited++; 753 leaf = path->nodes[0]; 754 recow = 1; 755 } 756 757 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 758 759 if (key.objectid > ino) 760 break; 761 if (WARN_ON_ONCE(key.objectid < ino) || 762 key.type < BTRFS_EXTENT_DATA_KEY) { 763 ASSERT(del_nr == 0); 764 path->slots[0]++; 765 goto next_slot; 766 } 767 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 768 break; 769 770 fi = btrfs_item_ptr(leaf, path->slots[0], 771 struct btrfs_file_extent_item); 772 extent_type = btrfs_file_extent_type(leaf, fi); 773 774 if (extent_type == BTRFS_FILE_EXTENT_REG || 775 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 776 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 777 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 778 extent_offset = btrfs_file_extent_offset(leaf, fi); 779 extent_end = key.offset + 780 btrfs_file_extent_num_bytes(leaf, fi); 781 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 782 extent_end = key.offset + 783 btrfs_file_extent_inline_len(leaf, 784 path->slots[0], fi); 785 } else { 786 /* can't happen */ 787 BUG(); 788 } 789 790 /* 791 * Don't skip extent items representing 0 byte lengths. They 792 * used to be created (bug) if while punching holes we hit 793 * -ENOSPC condition. So if we find one here, just ensure we 794 * delete it, otherwise we would insert a new file extent item 795 * with the same key (offset) as that 0 bytes length file 796 * extent item in the call to setup_items_for_insert() later 797 * in this function. 798 */ 799 if (extent_end == key.offset && extent_end >= search_start) 800 goto delete_extent_item; 801 802 if (extent_end <= search_start) { 803 path->slots[0]++; 804 goto next_slot; 805 } 806 807 found = 1; 808 search_start = max(key.offset, start); 809 if (recow || !modify_tree) { 810 modify_tree = -1; 811 btrfs_release_path(path); 812 continue; 813 } 814 815 /* 816 * | - range to drop - | 817 * | -------- extent -------- | 818 */ 819 if (start > key.offset && end < extent_end) { 820 BUG_ON(del_nr > 0); 821 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 822 ret = -EOPNOTSUPP; 823 break; 824 } 825 826 memcpy(&new_key, &key, sizeof(new_key)); 827 new_key.offset = start; 828 ret = btrfs_duplicate_item(trans, root, path, 829 &new_key); 830 if (ret == -EAGAIN) { 831 btrfs_release_path(path); 832 continue; 833 } 834 if (ret < 0) 835 break; 836 837 leaf = path->nodes[0]; 838 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 839 struct btrfs_file_extent_item); 840 btrfs_set_file_extent_num_bytes(leaf, fi, 841 start - key.offset); 842 843 fi = btrfs_item_ptr(leaf, path->slots[0], 844 struct btrfs_file_extent_item); 845 846 extent_offset += start - key.offset; 847 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 848 btrfs_set_file_extent_num_bytes(leaf, fi, 849 extent_end - start); 850 btrfs_mark_buffer_dirty(leaf); 851 852 if (update_refs && disk_bytenr > 0) { 853 ret = btrfs_inc_extent_ref(trans, root, 854 disk_bytenr, num_bytes, 0, 855 root->root_key.objectid, 856 new_key.objectid, 857 start - extent_offset); 858 BUG_ON(ret); /* -ENOMEM */ 859 } 860 key.offset = start; 861 } 862 /* 863 * | ---- range to drop ----- | 864 * | -------- extent -------- | 865 */ 866 if (start <= key.offset && end < extent_end) { 867 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 868 ret = -EOPNOTSUPP; 869 break; 870 } 871 872 memcpy(&new_key, &key, sizeof(new_key)); 873 new_key.offset = end; 874 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 875 876 extent_offset += end - key.offset; 877 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 878 btrfs_set_file_extent_num_bytes(leaf, fi, 879 extent_end - end); 880 btrfs_mark_buffer_dirty(leaf); 881 if (update_refs && disk_bytenr > 0) 882 inode_sub_bytes(inode, end - key.offset); 883 break; 884 } 885 886 search_start = extent_end; 887 /* 888 * | ---- range to drop ----- | 889 * | -------- extent -------- | 890 */ 891 if (start > key.offset && end >= extent_end) { 892 BUG_ON(del_nr > 0); 893 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 894 ret = -EOPNOTSUPP; 895 break; 896 } 897 898 btrfs_set_file_extent_num_bytes(leaf, fi, 899 start - key.offset); 900 btrfs_mark_buffer_dirty(leaf); 901 if (update_refs && disk_bytenr > 0) 902 inode_sub_bytes(inode, extent_end - start); 903 if (end == extent_end) 904 break; 905 906 path->slots[0]++; 907 goto next_slot; 908 } 909 910 /* 911 * | ---- range to drop ----- | 912 * | ------ extent ------ | 913 */ 914 if (start <= key.offset && end >= extent_end) { 915 delete_extent_item: 916 if (del_nr == 0) { 917 del_slot = path->slots[0]; 918 del_nr = 1; 919 } else { 920 BUG_ON(del_slot + del_nr != path->slots[0]); 921 del_nr++; 922 } 923 924 if (update_refs && 925 extent_type == BTRFS_FILE_EXTENT_INLINE) { 926 inode_sub_bytes(inode, 927 extent_end - key.offset); 928 extent_end = ALIGN(extent_end, 929 root->sectorsize); 930 } else if (update_refs && disk_bytenr > 0) { 931 ret = btrfs_free_extent(trans, root, 932 disk_bytenr, num_bytes, 0, 933 root->root_key.objectid, 934 key.objectid, key.offset - 935 extent_offset); 936 BUG_ON(ret); /* -ENOMEM */ 937 inode_sub_bytes(inode, 938 extent_end - key.offset); 939 } 940 941 if (end == extent_end) 942 break; 943 944 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 945 path->slots[0]++; 946 goto next_slot; 947 } 948 949 ret = btrfs_del_items(trans, root, path, del_slot, 950 del_nr); 951 if (ret) { 952 btrfs_abort_transaction(trans, root, ret); 953 break; 954 } 955 956 del_nr = 0; 957 del_slot = 0; 958 959 btrfs_release_path(path); 960 continue; 961 } 962 963 BUG_ON(1); 964 } 965 966 if (!ret && del_nr > 0) { 967 /* 968 * Set path->slots[0] to first slot, so that after the delete 969 * if items are move off from our leaf to its immediate left or 970 * right neighbor leafs, we end up with a correct and adjusted 971 * path->slots[0] for our insertion (if replace_extent != 0). 972 */ 973 path->slots[0] = del_slot; 974 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 975 if (ret) 976 btrfs_abort_transaction(trans, root, ret); 977 } 978 979 leaf = path->nodes[0]; 980 /* 981 * If btrfs_del_items() was called, it might have deleted a leaf, in 982 * which case it unlocked our path, so check path->locks[0] matches a 983 * write lock. 984 */ 985 if (!ret && replace_extent && leafs_visited == 1 && 986 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 987 path->locks[0] == BTRFS_WRITE_LOCK) && 988 btrfs_leaf_free_space(root, leaf) >= 989 sizeof(struct btrfs_item) + extent_item_size) { 990 991 key.objectid = ino; 992 key.type = BTRFS_EXTENT_DATA_KEY; 993 key.offset = start; 994 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 995 struct btrfs_key slot_key; 996 997 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 998 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 999 path->slots[0]++; 1000 } 1001 setup_items_for_insert(root, path, &key, 1002 &extent_item_size, 1003 extent_item_size, 1004 sizeof(struct btrfs_item) + 1005 extent_item_size, 1); 1006 *key_inserted = 1; 1007 } 1008 1009 if (!replace_extent || !(*key_inserted)) 1010 btrfs_release_path(path); 1011 if (drop_end) 1012 *drop_end = found ? min(end, extent_end) : end; 1013 return ret; 1014 } 1015 1016 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1017 struct btrfs_root *root, struct inode *inode, u64 start, 1018 u64 end, int drop_cache) 1019 { 1020 struct btrfs_path *path; 1021 int ret; 1022 1023 path = btrfs_alloc_path(); 1024 if (!path) 1025 return -ENOMEM; 1026 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1027 drop_cache, 0, 0, NULL); 1028 btrfs_free_path(path); 1029 return ret; 1030 } 1031 1032 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1033 u64 objectid, u64 bytenr, u64 orig_offset, 1034 u64 *start, u64 *end) 1035 { 1036 struct btrfs_file_extent_item *fi; 1037 struct btrfs_key key; 1038 u64 extent_end; 1039 1040 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1041 return 0; 1042 1043 btrfs_item_key_to_cpu(leaf, &key, slot); 1044 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1045 return 0; 1046 1047 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1048 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1049 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1050 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1051 btrfs_file_extent_compression(leaf, fi) || 1052 btrfs_file_extent_encryption(leaf, fi) || 1053 btrfs_file_extent_other_encoding(leaf, fi)) 1054 return 0; 1055 1056 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1057 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1058 return 0; 1059 1060 *start = key.offset; 1061 *end = extent_end; 1062 return 1; 1063 } 1064 1065 /* 1066 * Mark extent in the range start - end as written. 1067 * 1068 * This changes extent type from 'pre-allocated' to 'regular'. If only 1069 * part of extent is marked as written, the extent will be split into 1070 * two or three. 1071 */ 1072 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1073 struct inode *inode, u64 start, u64 end) 1074 { 1075 struct btrfs_root *root = BTRFS_I(inode)->root; 1076 struct extent_buffer *leaf; 1077 struct btrfs_path *path; 1078 struct btrfs_file_extent_item *fi; 1079 struct btrfs_key key; 1080 struct btrfs_key new_key; 1081 u64 bytenr; 1082 u64 num_bytes; 1083 u64 extent_end; 1084 u64 orig_offset; 1085 u64 other_start; 1086 u64 other_end; 1087 u64 split; 1088 int del_nr = 0; 1089 int del_slot = 0; 1090 int recow; 1091 int ret; 1092 u64 ino = btrfs_ino(inode); 1093 1094 path = btrfs_alloc_path(); 1095 if (!path) 1096 return -ENOMEM; 1097 again: 1098 recow = 0; 1099 split = start; 1100 key.objectid = ino; 1101 key.type = BTRFS_EXTENT_DATA_KEY; 1102 key.offset = split; 1103 1104 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1105 if (ret < 0) 1106 goto out; 1107 if (ret > 0 && path->slots[0] > 0) 1108 path->slots[0]--; 1109 1110 leaf = path->nodes[0]; 1111 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1112 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY); 1113 fi = btrfs_item_ptr(leaf, path->slots[0], 1114 struct btrfs_file_extent_item); 1115 BUG_ON(btrfs_file_extent_type(leaf, fi) != 1116 BTRFS_FILE_EXTENT_PREALLOC); 1117 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1118 BUG_ON(key.offset > start || extent_end < end); 1119 1120 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1121 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1122 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1123 memcpy(&new_key, &key, sizeof(new_key)); 1124 1125 if (start == key.offset && end < extent_end) { 1126 other_start = 0; 1127 other_end = start; 1128 if (extent_mergeable(leaf, path->slots[0] - 1, 1129 ino, bytenr, orig_offset, 1130 &other_start, &other_end)) { 1131 new_key.offset = end; 1132 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 1133 fi = btrfs_item_ptr(leaf, path->slots[0], 1134 struct btrfs_file_extent_item); 1135 btrfs_set_file_extent_generation(leaf, fi, 1136 trans->transid); 1137 btrfs_set_file_extent_num_bytes(leaf, fi, 1138 extent_end - end); 1139 btrfs_set_file_extent_offset(leaf, fi, 1140 end - orig_offset); 1141 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1142 struct btrfs_file_extent_item); 1143 btrfs_set_file_extent_generation(leaf, fi, 1144 trans->transid); 1145 btrfs_set_file_extent_num_bytes(leaf, fi, 1146 end - other_start); 1147 btrfs_mark_buffer_dirty(leaf); 1148 goto out; 1149 } 1150 } 1151 1152 if (start > key.offset && end == extent_end) { 1153 other_start = end; 1154 other_end = 0; 1155 if (extent_mergeable(leaf, path->slots[0] + 1, 1156 ino, bytenr, orig_offset, 1157 &other_start, &other_end)) { 1158 fi = btrfs_item_ptr(leaf, path->slots[0], 1159 struct btrfs_file_extent_item); 1160 btrfs_set_file_extent_num_bytes(leaf, fi, 1161 start - key.offset); 1162 btrfs_set_file_extent_generation(leaf, fi, 1163 trans->transid); 1164 path->slots[0]++; 1165 new_key.offset = start; 1166 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 1167 1168 fi = btrfs_item_ptr(leaf, path->slots[0], 1169 struct btrfs_file_extent_item); 1170 btrfs_set_file_extent_generation(leaf, fi, 1171 trans->transid); 1172 btrfs_set_file_extent_num_bytes(leaf, fi, 1173 other_end - start); 1174 btrfs_set_file_extent_offset(leaf, fi, 1175 start - orig_offset); 1176 btrfs_mark_buffer_dirty(leaf); 1177 goto out; 1178 } 1179 } 1180 1181 while (start > key.offset || end < extent_end) { 1182 if (key.offset == start) 1183 split = end; 1184 1185 new_key.offset = split; 1186 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1187 if (ret == -EAGAIN) { 1188 btrfs_release_path(path); 1189 goto again; 1190 } 1191 if (ret < 0) { 1192 btrfs_abort_transaction(trans, root, ret); 1193 goto out; 1194 } 1195 1196 leaf = path->nodes[0]; 1197 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1198 struct btrfs_file_extent_item); 1199 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1200 btrfs_set_file_extent_num_bytes(leaf, fi, 1201 split - key.offset); 1202 1203 fi = btrfs_item_ptr(leaf, path->slots[0], 1204 struct btrfs_file_extent_item); 1205 1206 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1207 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1208 btrfs_set_file_extent_num_bytes(leaf, fi, 1209 extent_end - split); 1210 btrfs_mark_buffer_dirty(leaf); 1211 1212 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, 1213 root->root_key.objectid, 1214 ino, orig_offset); 1215 BUG_ON(ret); /* -ENOMEM */ 1216 1217 if (split == start) { 1218 key.offset = start; 1219 } else { 1220 BUG_ON(start != key.offset); 1221 path->slots[0]--; 1222 extent_end = end; 1223 } 1224 recow = 1; 1225 } 1226 1227 other_start = end; 1228 other_end = 0; 1229 if (extent_mergeable(leaf, path->slots[0] + 1, 1230 ino, bytenr, orig_offset, 1231 &other_start, &other_end)) { 1232 if (recow) { 1233 btrfs_release_path(path); 1234 goto again; 1235 } 1236 extent_end = other_end; 1237 del_slot = path->slots[0] + 1; 1238 del_nr++; 1239 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1240 0, root->root_key.objectid, 1241 ino, orig_offset); 1242 BUG_ON(ret); /* -ENOMEM */ 1243 } 1244 other_start = 0; 1245 other_end = start; 1246 if (extent_mergeable(leaf, path->slots[0] - 1, 1247 ino, bytenr, orig_offset, 1248 &other_start, &other_end)) { 1249 if (recow) { 1250 btrfs_release_path(path); 1251 goto again; 1252 } 1253 key.offset = other_start; 1254 del_slot = path->slots[0]; 1255 del_nr++; 1256 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1257 0, root->root_key.objectid, 1258 ino, orig_offset); 1259 BUG_ON(ret); /* -ENOMEM */ 1260 } 1261 if (del_nr == 0) { 1262 fi = btrfs_item_ptr(leaf, path->slots[0], 1263 struct btrfs_file_extent_item); 1264 btrfs_set_file_extent_type(leaf, fi, 1265 BTRFS_FILE_EXTENT_REG); 1266 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1267 btrfs_mark_buffer_dirty(leaf); 1268 } else { 1269 fi = btrfs_item_ptr(leaf, del_slot - 1, 1270 struct btrfs_file_extent_item); 1271 btrfs_set_file_extent_type(leaf, fi, 1272 BTRFS_FILE_EXTENT_REG); 1273 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1274 btrfs_set_file_extent_num_bytes(leaf, fi, 1275 extent_end - key.offset); 1276 btrfs_mark_buffer_dirty(leaf); 1277 1278 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1279 if (ret < 0) { 1280 btrfs_abort_transaction(trans, root, ret); 1281 goto out; 1282 } 1283 } 1284 out: 1285 btrfs_free_path(path); 1286 return 0; 1287 } 1288 1289 /* 1290 * on error we return an unlocked page and the error value 1291 * on success we return a locked page and 0 1292 */ 1293 static int prepare_uptodate_page(struct inode *inode, 1294 struct page *page, u64 pos, 1295 bool force_uptodate) 1296 { 1297 int ret = 0; 1298 1299 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) && 1300 !PageUptodate(page)) { 1301 ret = btrfs_readpage(NULL, page); 1302 if (ret) 1303 return ret; 1304 lock_page(page); 1305 if (!PageUptodate(page)) { 1306 unlock_page(page); 1307 return -EIO; 1308 } 1309 if (page->mapping != inode->i_mapping) { 1310 unlock_page(page); 1311 return -EAGAIN; 1312 } 1313 } 1314 return 0; 1315 } 1316 1317 /* 1318 * this just gets pages into the page cache and locks them down. 1319 */ 1320 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1321 size_t num_pages, loff_t pos, 1322 size_t write_bytes, bool force_uptodate) 1323 { 1324 int i; 1325 unsigned long index = pos >> PAGE_CACHE_SHIFT; 1326 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1327 int err = 0; 1328 int faili; 1329 1330 for (i = 0; i < num_pages; i++) { 1331 again: 1332 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1333 mask | __GFP_WRITE); 1334 if (!pages[i]) { 1335 faili = i - 1; 1336 err = -ENOMEM; 1337 goto fail; 1338 } 1339 1340 if (i == 0) 1341 err = prepare_uptodate_page(inode, pages[i], pos, 1342 force_uptodate); 1343 if (!err && i == num_pages - 1) 1344 err = prepare_uptodate_page(inode, pages[i], 1345 pos + write_bytes, false); 1346 if (err) { 1347 page_cache_release(pages[i]); 1348 if (err == -EAGAIN) { 1349 err = 0; 1350 goto again; 1351 } 1352 faili = i - 1; 1353 goto fail; 1354 } 1355 wait_on_page_writeback(pages[i]); 1356 } 1357 1358 return 0; 1359 fail: 1360 while (faili >= 0) { 1361 unlock_page(pages[faili]); 1362 page_cache_release(pages[faili]); 1363 faili--; 1364 } 1365 return err; 1366 1367 } 1368 1369 /* 1370 * This function locks the extent and properly waits for data=ordered extents 1371 * to finish before allowing the pages to be modified if need. 1372 * 1373 * The return value: 1374 * 1 - the extent is locked 1375 * 0 - the extent is not locked, and everything is OK 1376 * -EAGAIN - need re-prepare the pages 1377 * the other < 0 number - Something wrong happens 1378 */ 1379 static noinline int 1380 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages, 1381 size_t num_pages, loff_t pos, 1382 u64 *lockstart, u64 *lockend, 1383 struct extent_state **cached_state) 1384 { 1385 u64 start_pos; 1386 u64 last_pos; 1387 int i; 1388 int ret = 0; 1389 1390 start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1); 1391 last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1; 1392 1393 if (start_pos < inode->i_size) { 1394 struct btrfs_ordered_extent *ordered; 1395 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1396 start_pos, last_pos, cached_state); 1397 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1398 last_pos - start_pos + 1); 1399 if (ordered && 1400 ordered->file_offset + ordered->len > start_pos && 1401 ordered->file_offset <= last_pos) { 1402 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1403 start_pos, last_pos, 1404 cached_state, GFP_NOFS); 1405 for (i = 0; i < num_pages; i++) { 1406 unlock_page(pages[i]); 1407 page_cache_release(pages[i]); 1408 } 1409 btrfs_start_ordered_extent(inode, ordered, 1); 1410 btrfs_put_ordered_extent(ordered); 1411 return -EAGAIN; 1412 } 1413 if (ordered) 1414 btrfs_put_ordered_extent(ordered); 1415 1416 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, 1417 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC | 1418 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1419 0, 0, cached_state, GFP_NOFS); 1420 *lockstart = start_pos; 1421 *lockend = last_pos; 1422 ret = 1; 1423 } 1424 1425 for (i = 0; i < num_pages; i++) { 1426 if (clear_page_dirty_for_io(pages[i])) 1427 account_page_redirty(pages[i]); 1428 set_page_extent_mapped(pages[i]); 1429 WARN_ON(!PageLocked(pages[i])); 1430 } 1431 1432 return ret; 1433 } 1434 1435 static noinline int check_can_nocow(struct inode *inode, loff_t pos, 1436 size_t *write_bytes) 1437 { 1438 struct btrfs_root *root = BTRFS_I(inode)->root; 1439 struct btrfs_ordered_extent *ordered; 1440 u64 lockstart, lockend; 1441 u64 num_bytes; 1442 int ret; 1443 1444 ret = btrfs_start_write_no_snapshoting(root); 1445 if (!ret) 1446 return -ENOSPC; 1447 1448 lockstart = round_down(pos, root->sectorsize); 1449 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1; 1450 1451 while (1) { 1452 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1453 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1454 lockend - lockstart + 1); 1455 if (!ordered) { 1456 break; 1457 } 1458 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1459 btrfs_start_ordered_extent(inode, ordered, 1); 1460 btrfs_put_ordered_extent(ordered); 1461 } 1462 1463 num_bytes = lockend - lockstart + 1; 1464 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL); 1465 if (ret <= 0) { 1466 ret = 0; 1467 btrfs_end_write_no_snapshoting(root); 1468 } else { 1469 *write_bytes = min_t(size_t, *write_bytes , 1470 num_bytes - pos + lockstart); 1471 } 1472 1473 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1474 1475 return ret; 1476 } 1477 1478 static noinline ssize_t __btrfs_buffered_write(struct file *file, 1479 struct iov_iter *i, 1480 loff_t pos) 1481 { 1482 struct inode *inode = file_inode(file); 1483 struct btrfs_root *root = BTRFS_I(inode)->root; 1484 struct page **pages = NULL; 1485 struct extent_state *cached_state = NULL; 1486 u64 release_bytes = 0; 1487 u64 lockstart; 1488 u64 lockend; 1489 size_t num_written = 0; 1490 int nrptrs; 1491 int ret = 0; 1492 bool only_release_metadata = false; 1493 bool force_page_uptodate = false; 1494 bool need_unlock; 1495 1496 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE), 1497 PAGE_CACHE_SIZE / (sizeof(struct page *))); 1498 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1499 nrptrs = max(nrptrs, 8); 1500 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1501 if (!pages) 1502 return -ENOMEM; 1503 1504 while (iov_iter_count(i) > 0) { 1505 size_t offset = pos & (PAGE_CACHE_SIZE - 1); 1506 size_t write_bytes = min(iov_iter_count(i), 1507 nrptrs * (size_t)PAGE_CACHE_SIZE - 1508 offset); 1509 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1510 PAGE_CACHE_SIZE); 1511 size_t reserve_bytes; 1512 size_t dirty_pages; 1513 size_t copied; 1514 1515 WARN_ON(num_pages > nrptrs); 1516 1517 /* 1518 * Fault pages before locking them in prepare_pages 1519 * to avoid recursive lock 1520 */ 1521 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1522 ret = -EFAULT; 1523 break; 1524 } 1525 1526 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1527 1528 if (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1529 BTRFS_INODE_PREALLOC)) { 1530 ret = check_can_nocow(inode, pos, &write_bytes); 1531 if (ret < 0) 1532 break; 1533 if (ret > 0) { 1534 /* 1535 * For nodata cow case, no need to reserve 1536 * data space. 1537 */ 1538 only_release_metadata = true; 1539 /* 1540 * our prealloc extent may be smaller than 1541 * write_bytes, so scale down. 1542 */ 1543 num_pages = DIV_ROUND_UP(write_bytes + offset, 1544 PAGE_CACHE_SIZE); 1545 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1546 goto reserve_metadata; 1547 } 1548 } 1549 ret = btrfs_check_data_free_space(inode, pos, write_bytes); 1550 if (ret < 0) 1551 break; 1552 1553 reserve_metadata: 1554 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes); 1555 if (ret) { 1556 if (!only_release_metadata) 1557 btrfs_free_reserved_data_space(inode, pos, 1558 write_bytes); 1559 else 1560 btrfs_end_write_no_snapshoting(root); 1561 break; 1562 } 1563 1564 release_bytes = reserve_bytes; 1565 need_unlock = false; 1566 again: 1567 /* 1568 * This is going to setup the pages array with the number of 1569 * pages we want, so we don't really need to worry about the 1570 * contents of pages from loop to loop 1571 */ 1572 ret = prepare_pages(inode, pages, num_pages, 1573 pos, write_bytes, 1574 force_page_uptodate); 1575 if (ret) 1576 break; 1577 1578 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages, 1579 pos, &lockstart, &lockend, 1580 &cached_state); 1581 if (ret < 0) { 1582 if (ret == -EAGAIN) 1583 goto again; 1584 break; 1585 } else if (ret > 0) { 1586 need_unlock = true; 1587 ret = 0; 1588 } 1589 1590 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1591 1592 /* 1593 * if we have trouble faulting in the pages, fall 1594 * back to one page at a time 1595 */ 1596 if (copied < write_bytes) 1597 nrptrs = 1; 1598 1599 if (copied == 0) { 1600 force_page_uptodate = true; 1601 dirty_pages = 0; 1602 } else { 1603 force_page_uptodate = false; 1604 dirty_pages = DIV_ROUND_UP(copied + offset, 1605 PAGE_CACHE_SIZE); 1606 } 1607 1608 /* 1609 * If we had a short copy we need to release the excess delaloc 1610 * bytes we reserved. We need to increment outstanding_extents 1611 * because btrfs_delalloc_release_space will decrement it, but 1612 * we still have an outstanding extent for the chunk we actually 1613 * managed to copy. 1614 */ 1615 if (num_pages > dirty_pages) { 1616 release_bytes = (num_pages - dirty_pages) << 1617 PAGE_CACHE_SHIFT; 1618 if (copied > 0) { 1619 spin_lock(&BTRFS_I(inode)->lock); 1620 BTRFS_I(inode)->outstanding_extents++; 1621 spin_unlock(&BTRFS_I(inode)->lock); 1622 } 1623 if (only_release_metadata) { 1624 btrfs_delalloc_release_metadata(inode, 1625 release_bytes); 1626 } else { 1627 u64 __pos; 1628 1629 __pos = round_down(pos, root->sectorsize) + 1630 (dirty_pages << PAGE_CACHE_SHIFT); 1631 btrfs_delalloc_release_space(inode, __pos, 1632 release_bytes); 1633 } 1634 } 1635 1636 release_bytes = dirty_pages << PAGE_CACHE_SHIFT; 1637 1638 if (copied > 0) 1639 ret = btrfs_dirty_pages(root, inode, pages, 1640 dirty_pages, pos, copied, 1641 NULL); 1642 if (need_unlock) 1643 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1644 lockstart, lockend, &cached_state, 1645 GFP_NOFS); 1646 if (ret) { 1647 btrfs_drop_pages(pages, num_pages); 1648 break; 1649 } 1650 1651 release_bytes = 0; 1652 if (only_release_metadata) 1653 btrfs_end_write_no_snapshoting(root); 1654 1655 if (only_release_metadata && copied > 0) { 1656 lockstart = round_down(pos, root->sectorsize); 1657 lockend = lockstart + 1658 (dirty_pages << PAGE_CACHE_SHIFT) - 1; 1659 1660 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1661 lockend, EXTENT_NORESERVE, NULL, 1662 NULL, GFP_NOFS); 1663 only_release_metadata = false; 1664 } 1665 1666 btrfs_drop_pages(pages, num_pages); 1667 1668 cond_resched(); 1669 1670 balance_dirty_pages_ratelimited(inode->i_mapping); 1671 if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1) 1672 btrfs_btree_balance_dirty(root); 1673 1674 pos += copied; 1675 num_written += copied; 1676 } 1677 1678 kfree(pages); 1679 1680 if (release_bytes) { 1681 if (only_release_metadata) { 1682 btrfs_end_write_no_snapshoting(root); 1683 btrfs_delalloc_release_metadata(inode, release_bytes); 1684 } else { 1685 btrfs_delalloc_release_space(inode, pos, release_bytes); 1686 } 1687 } 1688 1689 return num_written ? num_written : ret; 1690 } 1691 1692 static ssize_t __btrfs_direct_write(struct kiocb *iocb, 1693 struct iov_iter *from, 1694 loff_t pos) 1695 { 1696 struct file *file = iocb->ki_filp; 1697 struct inode *inode = file_inode(file); 1698 ssize_t written; 1699 ssize_t written_buffered; 1700 loff_t endbyte; 1701 int err; 1702 1703 written = generic_file_direct_write(iocb, from, pos); 1704 1705 if (written < 0 || !iov_iter_count(from)) 1706 return written; 1707 1708 pos += written; 1709 written_buffered = __btrfs_buffered_write(file, from, pos); 1710 if (written_buffered < 0) { 1711 err = written_buffered; 1712 goto out; 1713 } 1714 /* 1715 * Ensure all data is persisted. We want the next direct IO read to be 1716 * able to read what was just written. 1717 */ 1718 endbyte = pos + written_buffered - 1; 1719 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1720 if (err) 1721 goto out; 1722 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1723 if (err) 1724 goto out; 1725 written += written_buffered; 1726 iocb->ki_pos = pos + written_buffered; 1727 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT, 1728 endbyte >> PAGE_CACHE_SHIFT); 1729 out: 1730 return written ? written : err; 1731 } 1732 1733 static void update_time_for_write(struct inode *inode) 1734 { 1735 struct timespec now; 1736 1737 if (IS_NOCMTIME(inode)) 1738 return; 1739 1740 now = current_fs_time(inode->i_sb); 1741 if (!timespec_equal(&inode->i_mtime, &now)) 1742 inode->i_mtime = now; 1743 1744 if (!timespec_equal(&inode->i_ctime, &now)) 1745 inode->i_ctime = now; 1746 1747 if (IS_I_VERSION(inode)) 1748 inode_inc_iversion(inode); 1749 } 1750 1751 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1752 struct iov_iter *from) 1753 { 1754 struct file *file = iocb->ki_filp; 1755 struct inode *inode = file_inode(file); 1756 struct btrfs_root *root = BTRFS_I(inode)->root; 1757 u64 start_pos; 1758 u64 end_pos; 1759 ssize_t num_written = 0; 1760 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1761 ssize_t err; 1762 loff_t pos; 1763 size_t count; 1764 1765 inode_lock(inode); 1766 err = generic_write_checks(iocb, from); 1767 if (err <= 0) { 1768 inode_unlock(inode); 1769 return err; 1770 } 1771 1772 current->backing_dev_info = inode_to_bdi(inode); 1773 err = file_remove_privs(file); 1774 if (err) { 1775 inode_unlock(inode); 1776 goto out; 1777 } 1778 1779 /* 1780 * If BTRFS flips readonly due to some impossible error 1781 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1782 * although we have opened a file as writable, we have 1783 * to stop this write operation to ensure FS consistency. 1784 */ 1785 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1786 inode_unlock(inode); 1787 err = -EROFS; 1788 goto out; 1789 } 1790 1791 /* 1792 * We reserve space for updating the inode when we reserve space for the 1793 * extent we are going to write, so we will enospc out there. We don't 1794 * need to start yet another transaction to update the inode as we will 1795 * update the inode when we finish writing whatever data we write. 1796 */ 1797 update_time_for_write(inode); 1798 1799 pos = iocb->ki_pos; 1800 count = iov_iter_count(from); 1801 start_pos = round_down(pos, root->sectorsize); 1802 if (start_pos > i_size_read(inode)) { 1803 /* Expand hole size to cover write data, preventing empty gap */ 1804 end_pos = round_up(pos + count, root->sectorsize); 1805 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos); 1806 if (err) { 1807 inode_unlock(inode); 1808 goto out; 1809 } 1810 } 1811 1812 if (sync) 1813 atomic_inc(&BTRFS_I(inode)->sync_writers); 1814 1815 if (iocb->ki_flags & IOCB_DIRECT) { 1816 num_written = __btrfs_direct_write(iocb, from, pos); 1817 } else { 1818 num_written = __btrfs_buffered_write(file, from, pos); 1819 if (num_written > 0) 1820 iocb->ki_pos = pos + num_written; 1821 } 1822 1823 inode_unlock(inode); 1824 1825 /* 1826 * We also have to set last_sub_trans to the current log transid, 1827 * otherwise subsequent syncs to a file that's been synced in this 1828 * transaction will appear to have already occured. 1829 */ 1830 spin_lock(&BTRFS_I(inode)->lock); 1831 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1832 spin_unlock(&BTRFS_I(inode)->lock); 1833 if (num_written > 0) { 1834 err = generic_write_sync(file, pos, num_written); 1835 if (err < 0) 1836 num_written = err; 1837 } 1838 1839 if (sync) 1840 atomic_dec(&BTRFS_I(inode)->sync_writers); 1841 out: 1842 current->backing_dev_info = NULL; 1843 return num_written ? num_written : err; 1844 } 1845 1846 int btrfs_release_file(struct inode *inode, struct file *filp) 1847 { 1848 if (filp->private_data) 1849 btrfs_ioctl_trans_end(filp); 1850 /* 1851 * ordered_data_close is set by settattr when we are about to truncate 1852 * a file from a non-zero size to a zero size. This tries to 1853 * flush down new bytes that may have been written if the 1854 * application were using truncate to replace a file in place. 1855 */ 1856 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 1857 &BTRFS_I(inode)->runtime_flags)) 1858 filemap_flush(inode->i_mapping); 1859 return 0; 1860 } 1861 1862 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 1863 { 1864 int ret; 1865 1866 atomic_inc(&BTRFS_I(inode)->sync_writers); 1867 ret = btrfs_fdatawrite_range(inode, start, end); 1868 atomic_dec(&BTRFS_I(inode)->sync_writers); 1869 1870 return ret; 1871 } 1872 1873 /* 1874 * fsync call for both files and directories. This logs the inode into 1875 * the tree log instead of forcing full commits whenever possible. 1876 * 1877 * It needs to call filemap_fdatawait so that all ordered extent updates are 1878 * in the metadata btree are up to date for copying to the log. 1879 * 1880 * It drops the inode mutex before doing the tree log commit. This is an 1881 * important optimization for directories because holding the mutex prevents 1882 * new operations on the dir while we write to disk. 1883 */ 1884 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1885 { 1886 struct dentry *dentry = file->f_path.dentry; 1887 struct inode *inode = d_inode(dentry); 1888 struct btrfs_root *root = BTRFS_I(inode)->root; 1889 struct btrfs_trans_handle *trans; 1890 struct btrfs_log_ctx ctx; 1891 int ret = 0; 1892 bool full_sync = 0; 1893 u64 len; 1894 1895 /* 1896 * The range length can be represented by u64, we have to do the typecasts 1897 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync() 1898 */ 1899 len = (u64)end - (u64)start + 1; 1900 trace_btrfs_sync_file(file, datasync); 1901 1902 /* 1903 * We write the dirty pages in the range and wait until they complete 1904 * out of the ->i_mutex. If so, we can flush the dirty pages by 1905 * multi-task, and make the performance up. See 1906 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1907 */ 1908 ret = start_ordered_ops(inode, start, end); 1909 if (ret) 1910 return ret; 1911 1912 inode_lock(inode); 1913 atomic_inc(&root->log_batch); 1914 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1915 &BTRFS_I(inode)->runtime_flags); 1916 /* 1917 * We might have have had more pages made dirty after calling 1918 * start_ordered_ops and before acquiring the inode's i_mutex. 1919 */ 1920 if (full_sync) { 1921 /* 1922 * For a full sync, we need to make sure any ordered operations 1923 * start and finish before we start logging the inode, so that 1924 * all extents are persisted and the respective file extent 1925 * items are in the fs/subvol btree. 1926 */ 1927 ret = btrfs_wait_ordered_range(inode, start, len); 1928 } else { 1929 /* 1930 * Start any new ordered operations before starting to log the 1931 * inode. We will wait for them to finish in btrfs_sync_log(). 1932 * 1933 * Right before acquiring the inode's mutex, we might have new 1934 * writes dirtying pages, which won't immediately start the 1935 * respective ordered operations - that is done through the 1936 * fill_delalloc callbacks invoked from the writepage and 1937 * writepages address space operations. So make sure we start 1938 * all ordered operations before starting to log our inode. Not 1939 * doing this means that while logging the inode, writeback 1940 * could start and invoke writepage/writepages, which would call 1941 * the fill_delalloc callbacks (cow_file_range, 1942 * submit_compressed_extents). These callbacks add first an 1943 * extent map to the modified list of extents and then create 1944 * the respective ordered operation, which means in 1945 * tree-log.c:btrfs_log_inode() we might capture all existing 1946 * ordered operations (with btrfs_get_logged_extents()) before 1947 * the fill_delalloc callback adds its ordered operation, and by 1948 * the time we visit the modified list of extent maps (with 1949 * btrfs_log_changed_extents()), we see and process the extent 1950 * map they created. We then use the extent map to construct a 1951 * file extent item for logging without waiting for the 1952 * respective ordered operation to finish - this file extent 1953 * item points to a disk location that might not have yet been 1954 * written to, containing random data - so after a crash a log 1955 * replay will make our inode have file extent items that point 1956 * to disk locations containing invalid data, as we returned 1957 * success to userspace without waiting for the respective 1958 * ordered operation to finish, because it wasn't captured by 1959 * btrfs_get_logged_extents(). 1960 */ 1961 ret = start_ordered_ops(inode, start, end); 1962 } 1963 if (ret) { 1964 inode_unlock(inode); 1965 goto out; 1966 } 1967 atomic_inc(&root->log_batch); 1968 1969 /* 1970 * If the last transaction that changed this file was before the current 1971 * transaction and we have the full sync flag set in our inode, we can 1972 * bail out now without any syncing. 1973 * 1974 * Note that we can't bail out if the full sync flag isn't set. This is 1975 * because when the full sync flag is set we start all ordered extents 1976 * and wait for them to fully complete - when they complete they update 1977 * the inode's last_trans field through: 1978 * 1979 * btrfs_finish_ordered_io() -> 1980 * btrfs_update_inode_fallback() -> 1981 * btrfs_update_inode() -> 1982 * btrfs_set_inode_last_trans() 1983 * 1984 * So we are sure that last_trans is up to date and can do this check to 1985 * bail out safely. For the fast path, when the full sync flag is not 1986 * set in our inode, we can not do it because we start only our ordered 1987 * extents and don't wait for them to complete (that is when 1988 * btrfs_finish_ordered_io runs), so here at this point their last_trans 1989 * value might be less than or equals to fs_info->last_trans_committed, 1990 * and setting a speculative last_trans for an inode when a buffered 1991 * write is made (such as fs_info->generation + 1 for example) would not 1992 * be reliable since after setting the value and before fsync is called 1993 * any number of transactions can start and commit (transaction kthread 1994 * commits the current transaction periodically), and a transaction 1995 * commit does not start nor waits for ordered extents to complete. 1996 */ 1997 smp_mb(); 1998 if (btrfs_inode_in_log(inode, root->fs_info->generation) || 1999 (BTRFS_I(inode)->last_trans <= 2000 root->fs_info->last_trans_committed && 2001 (full_sync || 2002 !btrfs_have_ordered_extents_in_range(inode, start, len)))) { 2003 /* 2004 * We'v had everything committed since the last time we were 2005 * modified so clear this flag in case it was set for whatever 2006 * reason, it's no longer relevant. 2007 */ 2008 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2009 &BTRFS_I(inode)->runtime_flags); 2010 inode_unlock(inode); 2011 goto out; 2012 } 2013 2014 /* 2015 * ok we haven't committed the transaction yet, lets do a commit 2016 */ 2017 if (file->private_data) 2018 btrfs_ioctl_trans_end(file); 2019 2020 /* 2021 * We use start here because we will need to wait on the IO to complete 2022 * in btrfs_sync_log, which could require joining a transaction (for 2023 * example checking cross references in the nocow path). If we use join 2024 * here we could get into a situation where we're waiting on IO to 2025 * happen that is blocked on a transaction trying to commit. With start 2026 * we inc the extwriter counter, so we wait for all extwriters to exit 2027 * before we start blocking join'ers. This comment is to keep somebody 2028 * from thinking they are super smart and changing this to 2029 * btrfs_join_transaction *cough*Josef*cough*. 2030 */ 2031 trans = btrfs_start_transaction(root, 0); 2032 if (IS_ERR(trans)) { 2033 ret = PTR_ERR(trans); 2034 inode_unlock(inode); 2035 goto out; 2036 } 2037 trans->sync = true; 2038 2039 btrfs_init_log_ctx(&ctx); 2040 2041 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx); 2042 if (ret < 0) { 2043 /* Fallthrough and commit/free transaction. */ 2044 ret = 1; 2045 } 2046 2047 /* we've logged all the items and now have a consistent 2048 * version of the file in the log. It is possible that 2049 * someone will come in and modify the file, but that's 2050 * fine because the log is consistent on disk, and we 2051 * have references to all of the file's extents 2052 * 2053 * It is possible that someone will come in and log the 2054 * file again, but that will end up using the synchronization 2055 * inside btrfs_sync_log to keep things safe. 2056 */ 2057 inode_unlock(inode); 2058 2059 /* 2060 * If any of the ordered extents had an error, just return it to user 2061 * space, so that the application knows some writes didn't succeed and 2062 * can take proper action (retry for e.g.). Blindly committing the 2063 * transaction in this case, would fool userspace that everything was 2064 * successful. And we also want to make sure our log doesn't contain 2065 * file extent items pointing to extents that weren't fully written to - 2066 * just like in the non fast fsync path, where we check for the ordered 2067 * operation's error flag before writing to the log tree and return -EIO 2068 * if any of them had this flag set (btrfs_wait_ordered_range) - 2069 * therefore we need to check for errors in the ordered operations, 2070 * which are indicated by ctx.io_err. 2071 */ 2072 if (ctx.io_err) { 2073 btrfs_end_transaction(trans, root); 2074 ret = ctx.io_err; 2075 goto out; 2076 } 2077 2078 if (ret != BTRFS_NO_LOG_SYNC) { 2079 if (!ret) { 2080 ret = btrfs_sync_log(trans, root, &ctx); 2081 if (!ret) { 2082 ret = btrfs_end_transaction(trans, root); 2083 goto out; 2084 } 2085 } 2086 if (!full_sync) { 2087 ret = btrfs_wait_ordered_range(inode, start, len); 2088 if (ret) { 2089 btrfs_end_transaction(trans, root); 2090 goto out; 2091 } 2092 } 2093 ret = btrfs_commit_transaction(trans, root); 2094 } else { 2095 ret = btrfs_end_transaction(trans, root); 2096 } 2097 out: 2098 return ret > 0 ? -EIO : ret; 2099 } 2100 2101 static const struct vm_operations_struct btrfs_file_vm_ops = { 2102 .fault = filemap_fault, 2103 .map_pages = filemap_map_pages, 2104 .page_mkwrite = btrfs_page_mkwrite, 2105 }; 2106 2107 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2108 { 2109 struct address_space *mapping = filp->f_mapping; 2110 2111 if (!mapping->a_ops->readpage) 2112 return -ENOEXEC; 2113 2114 file_accessed(filp); 2115 vma->vm_ops = &btrfs_file_vm_ops; 2116 2117 return 0; 2118 } 2119 2120 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf, 2121 int slot, u64 start, u64 end) 2122 { 2123 struct btrfs_file_extent_item *fi; 2124 struct btrfs_key key; 2125 2126 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2127 return 0; 2128 2129 btrfs_item_key_to_cpu(leaf, &key, slot); 2130 if (key.objectid != btrfs_ino(inode) || 2131 key.type != BTRFS_EXTENT_DATA_KEY) 2132 return 0; 2133 2134 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2135 2136 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2137 return 0; 2138 2139 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2140 return 0; 2141 2142 if (key.offset == end) 2143 return 1; 2144 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2145 return 1; 2146 return 0; 2147 } 2148 2149 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode, 2150 struct btrfs_path *path, u64 offset, u64 end) 2151 { 2152 struct btrfs_root *root = BTRFS_I(inode)->root; 2153 struct extent_buffer *leaf; 2154 struct btrfs_file_extent_item *fi; 2155 struct extent_map *hole_em; 2156 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2157 struct btrfs_key key; 2158 int ret; 2159 2160 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) 2161 goto out; 2162 2163 key.objectid = btrfs_ino(inode); 2164 key.type = BTRFS_EXTENT_DATA_KEY; 2165 key.offset = offset; 2166 2167 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2168 if (ret < 0) 2169 return ret; 2170 BUG_ON(!ret); 2171 2172 leaf = path->nodes[0]; 2173 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) { 2174 u64 num_bytes; 2175 2176 path->slots[0]--; 2177 fi = btrfs_item_ptr(leaf, path->slots[0], 2178 struct btrfs_file_extent_item); 2179 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2180 end - offset; 2181 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2182 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2183 btrfs_set_file_extent_offset(leaf, fi, 0); 2184 btrfs_mark_buffer_dirty(leaf); 2185 goto out; 2186 } 2187 2188 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2189 u64 num_bytes; 2190 2191 key.offset = offset; 2192 btrfs_set_item_key_safe(root->fs_info, path, &key); 2193 fi = btrfs_item_ptr(leaf, path->slots[0], 2194 struct btrfs_file_extent_item); 2195 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2196 offset; 2197 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2198 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2199 btrfs_set_file_extent_offset(leaf, fi, 0); 2200 btrfs_mark_buffer_dirty(leaf); 2201 goto out; 2202 } 2203 btrfs_release_path(path); 2204 2205 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 2206 0, 0, end - offset, 0, end - offset, 2207 0, 0, 0); 2208 if (ret) 2209 return ret; 2210 2211 out: 2212 btrfs_release_path(path); 2213 2214 hole_em = alloc_extent_map(); 2215 if (!hole_em) { 2216 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2217 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2218 &BTRFS_I(inode)->runtime_flags); 2219 } else { 2220 hole_em->start = offset; 2221 hole_em->len = end - offset; 2222 hole_em->ram_bytes = hole_em->len; 2223 hole_em->orig_start = offset; 2224 2225 hole_em->block_start = EXTENT_MAP_HOLE; 2226 hole_em->block_len = 0; 2227 hole_em->orig_block_len = 0; 2228 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 2229 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2230 hole_em->generation = trans->transid; 2231 2232 do { 2233 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2234 write_lock(&em_tree->lock); 2235 ret = add_extent_mapping(em_tree, hole_em, 1); 2236 write_unlock(&em_tree->lock); 2237 } while (ret == -EEXIST); 2238 free_extent_map(hole_em); 2239 if (ret) 2240 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2241 &BTRFS_I(inode)->runtime_flags); 2242 } 2243 2244 return 0; 2245 } 2246 2247 /* 2248 * Find a hole extent on given inode and change start/len to the end of hole 2249 * extent.(hole/vacuum extent whose em->start <= start && 2250 * em->start + em->len > start) 2251 * When a hole extent is found, return 1 and modify start/len. 2252 */ 2253 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2254 { 2255 struct extent_map *em; 2256 int ret = 0; 2257 2258 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0); 2259 if (IS_ERR_OR_NULL(em)) { 2260 if (!em) 2261 ret = -ENOMEM; 2262 else 2263 ret = PTR_ERR(em); 2264 return ret; 2265 } 2266 2267 /* Hole or vacuum extent(only exists in no-hole mode) */ 2268 if (em->block_start == EXTENT_MAP_HOLE) { 2269 ret = 1; 2270 *len = em->start + em->len > *start + *len ? 2271 0 : *start + *len - em->start - em->len; 2272 *start = em->start + em->len; 2273 } 2274 free_extent_map(em); 2275 return ret; 2276 } 2277 2278 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2279 { 2280 struct btrfs_root *root = BTRFS_I(inode)->root; 2281 struct extent_state *cached_state = NULL; 2282 struct btrfs_path *path; 2283 struct btrfs_block_rsv *rsv; 2284 struct btrfs_trans_handle *trans; 2285 u64 lockstart; 2286 u64 lockend; 2287 u64 tail_start; 2288 u64 tail_len; 2289 u64 orig_start = offset; 2290 u64 cur_offset; 2291 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 2292 u64 drop_end; 2293 int ret = 0; 2294 int err = 0; 2295 unsigned int rsv_count; 2296 bool same_page; 2297 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES); 2298 u64 ino_size; 2299 bool truncated_page = false; 2300 bool updated_inode = false; 2301 2302 ret = btrfs_wait_ordered_range(inode, offset, len); 2303 if (ret) 2304 return ret; 2305 2306 inode_lock(inode); 2307 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE); 2308 ret = find_first_non_hole(inode, &offset, &len); 2309 if (ret < 0) 2310 goto out_only_mutex; 2311 if (ret && !len) { 2312 /* Already in a large hole */ 2313 ret = 0; 2314 goto out_only_mutex; 2315 } 2316 2317 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize); 2318 lockend = round_down(offset + len, 2319 BTRFS_I(inode)->root->sectorsize) - 1; 2320 same_page = ((offset >> PAGE_CACHE_SHIFT) == 2321 ((offset + len - 1) >> PAGE_CACHE_SHIFT)); 2322 2323 /* 2324 * We needn't truncate any page which is beyond the end of the file 2325 * because we are sure there is no data there. 2326 */ 2327 /* 2328 * Only do this if we are in the same page and we aren't doing the 2329 * entire page. 2330 */ 2331 if (same_page && len < PAGE_CACHE_SIZE) { 2332 if (offset < ino_size) { 2333 truncated_page = true; 2334 ret = btrfs_truncate_page(inode, offset, len, 0); 2335 } else { 2336 ret = 0; 2337 } 2338 goto out_only_mutex; 2339 } 2340 2341 /* zero back part of the first page */ 2342 if (offset < ino_size) { 2343 truncated_page = true; 2344 ret = btrfs_truncate_page(inode, offset, 0, 0); 2345 if (ret) { 2346 inode_unlock(inode); 2347 return ret; 2348 } 2349 } 2350 2351 /* Check the aligned pages after the first unaligned page, 2352 * if offset != orig_start, which means the first unaligned page 2353 * including serveral following pages are already in holes, 2354 * the extra check can be skipped */ 2355 if (offset == orig_start) { 2356 /* after truncate page, check hole again */ 2357 len = offset + len - lockstart; 2358 offset = lockstart; 2359 ret = find_first_non_hole(inode, &offset, &len); 2360 if (ret < 0) 2361 goto out_only_mutex; 2362 if (ret && !len) { 2363 ret = 0; 2364 goto out_only_mutex; 2365 } 2366 lockstart = offset; 2367 } 2368 2369 /* Check the tail unaligned part is in a hole */ 2370 tail_start = lockend + 1; 2371 tail_len = offset + len - tail_start; 2372 if (tail_len) { 2373 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2374 if (unlikely(ret < 0)) 2375 goto out_only_mutex; 2376 if (!ret) { 2377 /* zero the front end of the last page */ 2378 if (tail_start + tail_len < ino_size) { 2379 truncated_page = true; 2380 ret = btrfs_truncate_page(inode, 2381 tail_start + tail_len, 0, 1); 2382 if (ret) 2383 goto out_only_mutex; 2384 } 2385 } 2386 } 2387 2388 if (lockend < lockstart) { 2389 ret = 0; 2390 goto out_only_mutex; 2391 } 2392 2393 while (1) { 2394 struct btrfs_ordered_extent *ordered; 2395 2396 truncate_pagecache_range(inode, lockstart, lockend); 2397 2398 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2399 &cached_state); 2400 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2401 2402 /* 2403 * We need to make sure we have no ordered extents in this range 2404 * and nobody raced in and read a page in this range, if we did 2405 * we need to try again. 2406 */ 2407 if ((!ordered || 2408 (ordered->file_offset + ordered->len <= lockstart || 2409 ordered->file_offset > lockend)) && 2410 !btrfs_page_exists_in_range(inode, lockstart, lockend)) { 2411 if (ordered) 2412 btrfs_put_ordered_extent(ordered); 2413 break; 2414 } 2415 if (ordered) 2416 btrfs_put_ordered_extent(ordered); 2417 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2418 lockend, &cached_state, GFP_NOFS); 2419 ret = btrfs_wait_ordered_range(inode, lockstart, 2420 lockend - lockstart + 1); 2421 if (ret) { 2422 inode_unlock(inode); 2423 return ret; 2424 } 2425 } 2426 2427 path = btrfs_alloc_path(); 2428 if (!path) { 2429 ret = -ENOMEM; 2430 goto out; 2431 } 2432 2433 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2434 if (!rsv) { 2435 ret = -ENOMEM; 2436 goto out_free; 2437 } 2438 rsv->size = btrfs_calc_trunc_metadata_size(root, 1); 2439 rsv->failfast = 1; 2440 2441 /* 2442 * 1 - update the inode 2443 * 1 - removing the extents in the range 2444 * 1 - adding the hole extent if no_holes isn't set 2445 */ 2446 rsv_count = no_holes ? 2 : 3; 2447 trans = btrfs_start_transaction(root, rsv_count); 2448 if (IS_ERR(trans)) { 2449 err = PTR_ERR(trans); 2450 goto out_free; 2451 } 2452 2453 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 2454 min_size); 2455 BUG_ON(ret); 2456 trans->block_rsv = rsv; 2457 2458 cur_offset = lockstart; 2459 len = lockend - cur_offset; 2460 while (cur_offset < lockend) { 2461 ret = __btrfs_drop_extents(trans, root, inode, path, 2462 cur_offset, lockend + 1, 2463 &drop_end, 1, 0, 0, NULL); 2464 if (ret != -ENOSPC) 2465 break; 2466 2467 trans->block_rsv = &root->fs_info->trans_block_rsv; 2468 2469 if (cur_offset < ino_size) { 2470 ret = fill_holes(trans, inode, path, cur_offset, 2471 drop_end); 2472 if (ret) { 2473 err = ret; 2474 break; 2475 } 2476 } 2477 2478 cur_offset = drop_end; 2479 2480 ret = btrfs_update_inode(trans, root, inode); 2481 if (ret) { 2482 err = ret; 2483 break; 2484 } 2485 2486 btrfs_end_transaction(trans, root); 2487 btrfs_btree_balance_dirty(root); 2488 2489 trans = btrfs_start_transaction(root, rsv_count); 2490 if (IS_ERR(trans)) { 2491 ret = PTR_ERR(trans); 2492 trans = NULL; 2493 break; 2494 } 2495 2496 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 2497 rsv, min_size); 2498 BUG_ON(ret); /* shouldn't happen */ 2499 trans->block_rsv = rsv; 2500 2501 ret = find_first_non_hole(inode, &cur_offset, &len); 2502 if (unlikely(ret < 0)) 2503 break; 2504 if (ret && !len) { 2505 ret = 0; 2506 break; 2507 } 2508 } 2509 2510 if (ret) { 2511 err = ret; 2512 goto out_trans; 2513 } 2514 2515 trans->block_rsv = &root->fs_info->trans_block_rsv; 2516 /* 2517 * If we are using the NO_HOLES feature we might have had already an 2518 * hole that overlaps a part of the region [lockstart, lockend] and 2519 * ends at (or beyond) lockend. Since we have no file extent items to 2520 * represent holes, drop_end can be less than lockend and so we must 2521 * make sure we have an extent map representing the existing hole (the 2522 * call to __btrfs_drop_extents() might have dropped the existing extent 2523 * map representing the existing hole), otherwise the fast fsync path 2524 * will not record the existence of the hole region 2525 * [existing_hole_start, lockend]. 2526 */ 2527 if (drop_end <= lockend) 2528 drop_end = lockend + 1; 2529 /* 2530 * Don't insert file hole extent item if it's for a range beyond eof 2531 * (because it's useless) or if it represents a 0 bytes range (when 2532 * cur_offset == drop_end). 2533 */ 2534 if (cur_offset < ino_size && cur_offset < drop_end) { 2535 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2536 if (ret) { 2537 err = ret; 2538 goto out_trans; 2539 } 2540 } 2541 2542 out_trans: 2543 if (!trans) 2544 goto out_free; 2545 2546 inode_inc_iversion(inode); 2547 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2548 2549 trans->block_rsv = &root->fs_info->trans_block_rsv; 2550 ret = btrfs_update_inode(trans, root, inode); 2551 updated_inode = true; 2552 btrfs_end_transaction(trans, root); 2553 btrfs_btree_balance_dirty(root); 2554 out_free: 2555 btrfs_free_path(path); 2556 btrfs_free_block_rsv(root, rsv); 2557 out: 2558 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2559 &cached_state, GFP_NOFS); 2560 out_only_mutex: 2561 if (!updated_inode && truncated_page && !ret && !err) { 2562 /* 2563 * If we only end up zeroing part of a page, we still need to 2564 * update the inode item, so that all the time fields are 2565 * updated as well as the necessary btrfs inode in memory fields 2566 * for detecting, at fsync time, if the inode isn't yet in the 2567 * log tree or it's there but not up to date. 2568 */ 2569 trans = btrfs_start_transaction(root, 1); 2570 if (IS_ERR(trans)) { 2571 err = PTR_ERR(trans); 2572 } else { 2573 err = btrfs_update_inode(trans, root, inode); 2574 ret = btrfs_end_transaction(trans, root); 2575 } 2576 } 2577 inode_unlock(inode); 2578 if (ret && !err) 2579 err = ret; 2580 return err; 2581 } 2582 2583 /* Helper structure to record which range is already reserved */ 2584 struct falloc_range { 2585 struct list_head list; 2586 u64 start; 2587 u64 len; 2588 }; 2589 2590 /* 2591 * Helper function to add falloc range 2592 * 2593 * Caller should have locked the larger range of extent containing 2594 * [start, len) 2595 */ 2596 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2597 { 2598 struct falloc_range *prev = NULL; 2599 struct falloc_range *range = NULL; 2600 2601 if (list_empty(head)) 2602 goto insert; 2603 2604 /* 2605 * As fallocate iterate by bytenr order, we only need to check 2606 * the last range. 2607 */ 2608 prev = list_entry(head->prev, struct falloc_range, list); 2609 if (prev->start + prev->len == start) { 2610 prev->len += len; 2611 return 0; 2612 } 2613 insert: 2614 range = kmalloc(sizeof(*range), GFP_NOFS); 2615 if (!range) 2616 return -ENOMEM; 2617 range->start = start; 2618 range->len = len; 2619 list_add_tail(&range->list, head); 2620 return 0; 2621 } 2622 2623 static long btrfs_fallocate(struct file *file, int mode, 2624 loff_t offset, loff_t len) 2625 { 2626 struct inode *inode = file_inode(file); 2627 struct extent_state *cached_state = NULL; 2628 struct falloc_range *range; 2629 struct falloc_range *tmp; 2630 struct list_head reserve_list; 2631 u64 cur_offset; 2632 u64 last_byte; 2633 u64 alloc_start; 2634 u64 alloc_end; 2635 u64 alloc_hint = 0; 2636 u64 locked_end; 2637 u64 actual_end = 0; 2638 struct extent_map *em; 2639 int blocksize = BTRFS_I(inode)->root->sectorsize; 2640 int ret; 2641 2642 alloc_start = round_down(offset, blocksize); 2643 alloc_end = round_up(offset + len, blocksize); 2644 2645 /* Make sure we aren't being give some crap mode */ 2646 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2647 return -EOPNOTSUPP; 2648 2649 if (mode & FALLOC_FL_PUNCH_HOLE) 2650 return btrfs_punch_hole(inode, offset, len); 2651 2652 /* 2653 * Only trigger disk allocation, don't trigger qgroup reserve 2654 * 2655 * For qgroup space, it will be checked later. 2656 */ 2657 ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start); 2658 if (ret < 0) 2659 return ret; 2660 2661 inode_lock(inode); 2662 ret = inode_newsize_ok(inode, alloc_end); 2663 if (ret) 2664 goto out; 2665 2666 /* 2667 * TODO: Move these two operations after we have checked 2668 * accurate reserved space, or fallocate can still fail but 2669 * with page truncated or size expanded. 2670 * 2671 * But that's a minor problem and won't do much harm BTW. 2672 */ 2673 if (alloc_start > inode->i_size) { 2674 ret = btrfs_cont_expand(inode, i_size_read(inode), 2675 alloc_start); 2676 if (ret) 2677 goto out; 2678 } else if (offset + len > inode->i_size) { 2679 /* 2680 * If we are fallocating from the end of the file onward we 2681 * need to zero out the end of the page if i_size lands in the 2682 * middle of a page. 2683 */ 2684 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0); 2685 if (ret) 2686 goto out; 2687 } 2688 2689 /* 2690 * wait for ordered IO before we have any locks. We'll loop again 2691 * below with the locks held. 2692 */ 2693 ret = btrfs_wait_ordered_range(inode, alloc_start, 2694 alloc_end - alloc_start); 2695 if (ret) 2696 goto out; 2697 2698 locked_end = alloc_end - 1; 2699 while (1) { 2700 struct btrfs_ordered_extent *ordered; 2701 2702 /* the extent lock is ordered inside the running 2703 * transaction 2704 */ 2705 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 2706 locked_end, &cached_state); 2707 ordered = btrfs_lookup_first_ordered_extent(inode, 2708 alloc_end - 1); 2709 if (ordered && 2710 ordered->file_offset + ordered->len > alloc_start && 2711 ordered->file_offset < alloc_end) { 2712 btrfs_put_ordered_extent(ordered); 2713 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 2714 alloc_start, locked_end, 2715 &cached_state, GFP_NOFS); 2716 /* 2717 * we can't wait on the range with the transaction 2718 * running or with the extent lock held 2719 */ 2720 ret = btrfs_wait_ordered_range(inode, alloc_start, 2721 alloc_end - alloc_start); 2722 if (ret) 2723 goto out; 2724 } else { 2725 if (ordered) 2726 btrfs_put_ordered_extent(ordered); 2727 break; 2728 } 2729 } 2730 2731 /* First, check if we exceed the qgroup limit */ 2732 INIT_LIST_HEAD(&reserve_list); 2733 cur_offset = alloc_start; 2734 while (1) { 2735 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2736 alloc_end - cur_offset, 0); 2737 if (IS_ERR_OR_NULL(em)) { 2738 if (!em) 2739 ret = -ENOMEM; 2740 else 2741 ret = PTR_ERR(em); 2742 break; 2743 } 2744 last_byte = min(extent_map_end(em), alloc_end); 2745 actual_end = min_t(u64, extent_map_end(em), offset + len); 2746 last_byte = ALIGN(last_byte, blocksize); 2747 if (em->block_start == EXTENT_MAP_HOLE || 2748 (cur_offset >= inode->i_size && 2749 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 2750 ret = add_falloc_range(&reserve_list, cur_offset, 2751 last_byte - cur_offset); 2752 if (ret < 0) { 2753 free_extent_map(em); 2754 break; 2755 } 2756 ret = btrfs_qgroup_reserve_data(inode, cur_offset, 2757 last_byte - cur_offset); 2758 if (ret < 0) 2759 break; 2760 } 2761 free_extent_map(em); 2762 cur_offset = last_byte; 2763 if (cur_offset >= alloc_end) 2764 break; 2765 } 2766 2767 /* 2768 * If ret is still 0, means we're OK to fallocate. 2769 * Or just cleanup the list and exit. 2770 */ 2771 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 2772 if (!ret) 2773 ret = btrfs_prealloc_file_range(inode, mode, 2774 range->start, 2775 range->len, 1 << inode->i_blkbits, 2776 offset + len, &alloc_hint); 2777 list_del(&range->list); 2778 kfree(range); 2779 } 2780 if (ret < 0) 2781 goto out_unlock; 2782 2783 if (actual_end > inode->i_size && 2784 !(mode & FALLOC_FL_KEEP_SIZE)) { 2785 struct btrfs_trans_handle *trans; 2786 struct btrfs_root *root = BTRFS_I(inode)->root; 2787 2788 /* 2789 * We didn't need to allocate any more space, but we 2790 * still extended the size of the file so we need to 2791 * update i_size and the inode item. 2792 */ 2793 trans = btrfs_start_transaction(root, 1); 2794 if (IS_ERR(trans)) { 2795 ret = PTR_ERR(trans); 2796 } else { 2797 inode->i_ctime = CURRENT_TIME; 2798 i_size_write(inode, actual_end); 2799 btrfs_ordered_update_i_size(inode, actual_end, NULL); 2800 ret = btrfs_update_inode(trans, root, inode); 2801 if (ret) 2802 btrfs_end_transaction(trans, root); 2803 else 2804 ret = btrfs_end_transaction(trans, root); 2805 } 2806 } 2807 out_unlock: 2808 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 2809 &cached_state, GFP_NOFS); 2810 out: 2811 /* 2812 * As we waited the extent range, the data_rsv_map must be empty 2813 * in the range, as written data range will be released from it. 2814 * And for prealloacted extent, it will also be released when 2815 * its metadata is written. 2816 * So this is completely used as cleanup. 2817 */ 2818 btrfs_qgroup_free_data(inode, alloc_start, alloc_end - alloc_start); 2819 inode_unlock(inode); 2820 /* Let go of our reservation. */ 2821 btrfs_free_reserved_data_space(inode, alloc_start, 2822 alloc_end - alloc_start); 2823 return ret; 2824 } 2825 2826 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 2827 { 2828 struct btrfs_root *root = BTRFS_I(inode)->root; 2829 struct extent_map *em = NULL; 2830 struct extent_state *cached_state = NULL; 2831 u64 lockstart; 2832 u64 lockend; 2833 u64 start; 2834 u64 len; 2835 int ret = 0; 2836 2837 if (inode->i_size == 0) 2838 return -ENXIO; 2839 2840 /* 2841 * *offset can be negative, in this case we start finding DATA/HOLE from 2842 * the very start of the file. 2843 */ 2844 start = max_t(loff_t, 0, *offset); 2845 2846 lockstart = round_down(start, root->sectorsize); 2847 lockend = round_up(i_size_read(inode), root->sectorsize); 2848 if (lockend <= lockstart) 2849 lockend = lockstart + root->sectorsize; 2850 lockend--; 2851 len = lockend - lockstart + 1; 2852 2853 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2854 &cached_state); 2855 2856 while (start < inode->i_size) { 2857 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0); 2858 if (IS_ERR(em)) { 2859 ret = PTR_ERR(em); 2860 em = NULL; 2861 break; 2862 } 2863 2864 if (whence == SEEK_HOLE && 2865 (em->block_start == EXTENT_MAP_HOLE || 2866 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2867 break; 2868 else if (whence == SEEK_DATA && 2869 (em->block_start != EXTENT_MAP_HOLE && 2870 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2871 break; 2872 2873 start = em->start + em->len; 2874 free_extent_map(em); 2875 em = NULL; 2876 cond_resched(); 2877 } 2878 free_extent_map(em); 2879 if (!ret) { 2880 if (whence == SEEK_DATA && start >= inode->i_size) 2881 ret = -ENXIO; 2882 else 2883 *offset = min_t(loff_t, start, inode->i_size); 2884 } 2885 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2886 &cached_state, GFP_NOFS); 2887 return ret; 2888 } 2889 2890 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 2891 { 2892 struct inode *inode = file->f_mapping->host; 2893 int ret; 2894 2895 inode_lock(inode); 2896 switch (whence) { 2897 case SEEK_END: 2898 case SEEK_CUR: 2899 offset = generic_file_llseek(file, offset, whence); 2900 goto out; 2901 case SEEK_DATA: 2902 case SEEK_HOLE: 2903 if (offset >= i_size_read(inode)) { 2904 inode_unlock(inode); 2905 return -ENXIO; 2906 } 2907 2908 ret = find_desired_extent(inode, &offset, whence); 2909 if (ret) { 2910 inode_unlock(inode); 2911 return ret; 2912 } 2913 } 2914 2915 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2916 out: 2917 inode_unlock(inode); 2918 return offset; 2919 } 2920 2921 const struct file_operations btrfs_file_operations = { 2922 .llseek = btrfs_file_llseek, 2923 .read_iter = generic_file_read_iter, 2924 .splice_read = generic_file_splice_read, 2925 .write_iter = btrfs_file_write_iter, 2926 .mmap = btrfs_file_mmap, 2927 .open = generic_file_open, 2928 .release = btrfs_release_file, 2929 .fsync = btrfs_sync_file, 2930 .fallocate = btrfs_fallocate, 2931 .unlocked_ioctl = btrfs_ioctl, 2932 #ifdef CONFIG_COMPAT 2933 .compat_ioctl = btrfs_ioctl, 2934 #endif 2935 .copy_file_range = btrfs_copy_file_range, 2936 .clone_file_range = btrfs_clone_file_range, 2937 .dedupe_file_range = btrfs_dedupe_file_range, 2938 }; 2939 2940 void btrfs_auto_defrag_exit(void) 2941 { 2942 if (btrfs_inode_defrag_cachep) 2943 kmem_cache_destroy(btrfs_inode_defrag_cachep); 2944 } 2945 2946 int btrfs_auto_defrag_init(void) 2947 { 2948 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 2949 sizeof(struct inode_defrag), 0, 2950 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 2951 NULL); 2952 if (!btrfs_inode_defrag_cachep) 2953 return -ENOMEM; 2954 2955 return 0; 2956 } 2957 2958 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 2959 { 2960 int ret; 2961 2962 /* 2963 * So with compression we will find and lock a dirty page and clear the 2964 * first one as dirty, setup an async extent, and immediately return 2965 * with the entire range locked but with nobody actually marked with 2966 * writeback. So we can't just filemap_write_and_wait_range() and 2967 * expect it to work since it will just kick off a thread to do the 2968 * actual work. So we need to call filemap_fdatawrite_range _again_ 2969 * since it will wait on the page lock, which won't be unlocked until 2970 * after the pages have been marked as writeback and so we're good to go 2971 * from there. We have to do this otherwise we'll miss the ordered 2972 * extents and that results in badness. Please Josef, do not think you 2973 * know better and pull this out at some point in the future, it is 2974 * right and you are wrong. 2975 */ 2976 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 2977 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 2978 &BTRFS_I(inode)->runtime_flags)) 2979 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 2980 2981 return ret; 2982 } 2983