1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/time.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/backing-dev.h> 26 #include <linux/mpage.h> 27 #include <linux/falloc.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/statfs.h> 31 #include <linux/compat.h> 32 #include <linux/slab.h> 33 #include "ctree.h" 34 #include "disk-io.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "ioctl.h" 38 #include "print-tree.h" 39 #include "tree-log.h" 40 #include "locking.h" 41 #include "compat.h" 42 #include "volumes.h" 43 44 static struct kmem_cache *btrfs_inode_defrag_cachep; 45 /* 46 * when auto defrag is enabled we 47 * queue up these defrag structs to remember which 48 * inodes need defragging passes 49 */ 50 struct inode_defrag { 51 struct rb_node rb_node; 52 /* objectid */ 53 u64 ino; 54 /* 55 * transid where the defrag was added, we search for 56 * extents newer than this 57 */ 58 u64 transid; 59 60 /* root objectid */ 61 u64 root; 62 63 /* last offset we were able to defrag */ 64 u64 last_offset; 65 66 /* if we've wrapped around back to zero once already */ 67 int cycled; 68 }; 69 70 static int __compare_inode_defrag(struct inode_defrag *defrag1, 71 struct inode_defrag *defrag2) 72 { 73 if (defrag1->root > defrag2->root) 74 return 1; 75 else if (defrag1->root < defrag2->root) 76 return -1; 77 else if (defrag1->ino > defrag2->ino) 78 return 1; 79 else if (defrag1->ino < defrag2->ino) 80 return -1; 81 else 82 return 0; 83 } 84 85 /* pop a record for an inode into the defrag tree. The lock 86 * must be held already 87 * 88 * If you're inserting a record for an older transid than an 89 * existing record, the transid already in the tree is lowered 90 * 91 * If an existing record is found the defrag item you 92 * pass in is freed 93 */ 94 static int __btrfs_add_inode_defrag(struct inode *inode, 95 struct inode_defrag *defrag) 96 { 97 struct btrfs_root *root = BTRFS_I(inode)->root; 98 struct inode_defrag *entry; 99 struct rb_node **p; 100 struct rb_node *parent = NULL; 101 int ret; 102 103 p = &root->fs_info->defrag_inodes.rb_node; 104 while (*p) { 105 parent = *p; 106 entry = rb_entry(parent, struct inode_defrag, rb_node); 107 108 ret = __compare_inode_defrag(defrag, entry); 109 if (ret < 0) 110 p = &parent->rb_left; 111 else if (ret > 0) 112 p = &parent->rb_right; 113 else { 114 /* if we're reinserting an entry for 115 * an old defrag run, make sure to 116 * lower the transid of our existing record 117 */ 118 if (defrag->transid < entry->transid) 119 entry->transid = defrag->transid; 120 if (defrag->last_offset > entry->last_offset) 121 entry->last_offset = defrag->last_offset; 122 return -EEXIST; 123 } 124 } 125 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 126 rb_link_node(&defrag->rb_node, parent, p); 127 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes); 128 return 0; 129 } 130 131 static inline int __need_auto_defrag(struct btrfs_root *root) 132 { 133 if (!btrfs_test_opt(root, AUTO_DEFRAG)) 134 return 0; 135 136 if (btrfs_fs_closing(root->fs_info)) 137 return 0; 138 139 return 1; 140 } 141 142 /* 143 * insert a defrag record for this inode if auto defrag is 144 * enabled 145 */ 146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 147 struct inode *inode) 148 { 149 struct btrfs_root *root = BTRFS_I(inode)->root; 150 struct inode_defrag *defrag; 151 u64 transid; 152 int ret; 153 154 if (!__need_auto_defrag(root)) 155 return 0; 156 157 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) 158 return 0; 159 160 if (trans) 161 transid = trans->transid; 162 else 163 transid = BTRFS_I(inode)->root->last_trans; 164 165 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 166 if (!defrag) 167 return -ENOMEM; 168 169 defrag->ino = btrfs_ino(inode); 170 defrag->transid = transid; 171 defrag->root = root->root_key.objectid; 172 173 spin_lock(&root->fs_info->defrag_inodes_lock); 174 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) { 175 /* 176 * If we set IN_DEFRAG flag and evict the inode from memory, 177 * and then re-read this inode, this new inode doesn't have 178 * IN_DEFRAG flag. At the case, we may find the existed defrag. 179 */ 180 ret = __btrfs_add_inode_defrag(inode, defrag); 181 if (ret) 182 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 183 } else { 184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 185 } 186 spin_unlock(&root->fs_info->defrag_inodes_lock); 187 return 0; 188 } 189 190 /* 191 * Requeue the defrag object. If there is a defrag object that points to 192 * the same inode in the tree, we will merge them together (by 193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 194 */ 195 void btrfs_requeue_inode_defrag(struct inode *inode, 196 struct inode_defrag *defrag) 197 { 198 struct btrfs_root *root = BTRFS_I(inode)->root; 199 int ret; 200 201 if (!__need_auto_defrag(root)) 202 goto out; 203 204 /* 205 * Here we don't check the IN_DEFRAG flag, because we need merge 206 * them together. 207 */ 208 spin_lock(&root->fs_info->defrag_inodes_lock); 209 ret = __btrfs_add_inode_defrag(inode, defrag); 210 spin_unlock(&root->fs_info->defrag_inodes_lock); 211 if (ret) 212 goto out; 213 return; 214 out: 215 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 216 } 217 218 /* 219 * pick the defragable inode that we want, if it doesn't exist, we will get 220 * the next one. 221 */ 222 static struct inode_defrag * 223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 224 { 225 struct inode_defrag *entry = NULL; 226 struct inode_defrag tmp; 227 struct rb_node *p; 228 struct rb_node *parent = NULL; 229 int ret; 230 231 tmp.ino = ino; 232 tmp.root = root; 233 234 spin_lock(&fs_info->defrag_inodes_lock); 235 p = fs_info->defrag_inodes.rb_node; 236 while (p) { 237 parent = p; 238 entry = rb_entry(parent, struct inode_defrag, rb_node); 239 240 ret = __compare_inode_defrag(&tmp, entry); 241 if (ret < 0) 242 p = parent->rb_left; 243 else if (ret > 0) 244 p = parent->rb_right; 245 else 246 goto out; 247 } 248 249 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 250 parent = rb_next(parent); 251 if (parent) 252 entry = rb_entry(parent, struct inode_defrag, rb_node); 253 else 254 entry = NULL; 255 } 256 out: 257 if (entry) 258 rb_erase(parent, &fs_info->defrag_inodes); 259 spin_unlock(&fs_info->defrag_inodes_lock); 260 return entry; 261 } 262 263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 264 { 265 struct inode_defrag *defrag; 266 struct rb_node *node; 267 268 spin_lock(&fs_info->defrag_inodes_lock); 269 node = rb_first(&fs_info->defrag_inodes); 270 while (node) { 271 rb_erase(node, &fs_info->defrag_inodes); 272 defrag = rb_entry(node, struct inode_defrag, rb_node); 273 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 274 275 if (need_resched()) { 276 spin_unlock(&fs_info->defrag_inodes_lock); 277 cond_resched(); 278 spin_lock(&fs_info->defrag_inodes_lock); 279 } 280 281 node = rb_first(&fs_info->defrag_inodes); 282 } 283 spin_unlock(&fs_info->defrag_inodes_lock); 284 } 285 286 #define BTRFS_DEFRAG_BATCH 1024 287 288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 289 struct inode_defrag *defrag) 290 { 291 struct btrfs_root *inode_root; 292 struct inode *inode; 293 struct btrfs_key key; 294 struct btrfs_ioctl_defrag_range_args range; 295 int num_defrag; 296 297 /* get the inode */ 298 key.objectid = defrag->root; 299 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 300 key.offset = (u64)-1; 301 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 302 if (IS_ERR(inode_root)) { 303 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 304 return PTR_ERR(inode_root); 305 } 306 307 key.objectid = defrag->ino; 308 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 309 key.offset = 0; 310 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 311 if (IS_ERR(inode)) { 312 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 313 return PTR_ERR(inode); 314 } 315 316 /* do a chunk of defrag */ 317 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 318 memset(&range, 0, sizeof(range)); 319 range.len = (u64)-1; 320 range.start = defrag->last_offset; 321 322 sb_start_write(fs_info->sb); 323 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 324 BTRFS_DEFRAG_BATCH); 325 sb_end_write(fs_info->sb); 326 /* 327 * if we filled the whole defrag batch, there 328 * must be more work to do. Queue this defrag 329 * again 330 */ 331 if (num_defrag == BTRFS_DEFRAG_BATCH) { 332 defrag->last_offset = range.start; 333 btrfs_requeue_inode_defrag(inode, defrag); 334 } else if (defrag->last_offset && !defrag->cycled) { 335 /* 336 * we didn't fill our defrag batch, but 337 * we didn't start at zero. Make sure we loop 338 * around to the start of the file. 339 */ 340 defrag->last_offset = 0; 341 defrag->cycled = 1; 342 btrfs_requeue_inode_defrag(inode, defrag); 343 } else { 344 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 345 } 346 347 iput(inode); 348 return 0; 349 } 350 351 /* 352 * run through the list of inodes in the FS that need 353 * defragging 354 */ 355 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 356 { 357 struct inode_defrag *defrag; 358 u64 first_ino = 0; 359 u64 root_objectid = 0; 360 361 atomic_inc(&fs_info->defrag_running); 362 while(1) { 363 if (!__need_auto_defrag(fs_info->tree_root)) 364 break; 365 366 /* find an inode to defrag */ 367 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 368 first_ino); 369 if (!defrag) { 370 if (root_objectid || first_ino) { 371 root_objectid = 0; 372 first_ino = 0; 373 continue; 374 } else { 375 break; 376 } 377 } 378 379 first_ino = defrag->ino + 1; 380 root_objectid = defrag->root; 381 382 __btrfs_run_defrag_inode(fs_info, defrag); 383 } 384 atomic_dec(&fs_info->defrag_running); 385 386 /* 387 * during unmount, we use the transaction_wait queue to 388 * wait for the defragger to stop 389 */ 390 wake_up(&fs_info->transaction_wait); 391 return 0; 392 } 393 394 /* simple helper to fault in pages and copy. This should go away 395 * and be replaced with calls into generic code. 396 */ 397 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages, 398 size_t write_bytes, 399 struct page **prepared_pages, 400 struct iov_iter *i) 401 { 402 size_t copied = 0; 403 size_t total_copied = 0; 404 int pg = 0; 405 int offset = pos & (PAGE_CACHE_SIZE - 1); 406 407 while (write_bytes > 0) { 408 size_t count = min_t(size_t, 409 PAGE_CACHE_SIZE - offset, write_bytes); 410 struct page *page = prepared_pages[pg]; 411 /* 412 * Copy data from userspace to the current page 413 * 414 * Disable pagefault to avoid recursive lock since 415 * the pages are already locked 416 */ 417 pagefault_disable(); 418 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 419 pagefault_enable(); 420 421 /* Flush processor's dcache for this page */ 422 flush_dcache_page(page); 423 424 /* 425 * if we get a partial write, we can end up with 426 * partially up to date pages. These add 427 * a lot of complexity, so make sure they don't 428 * happen by forcing this copy to be retried. 429 * 430 * The rest of the btrfs_file_write code will fall 431 * back to page at a time copies after we return 0. 432 */ 433 if (!PageUptodate(page) && copied < count) 434 copied = 0; 435 436 iov_iter_advance(i, copied); 437 write_bytes -= copied; 438 total_copied += copied; 439 440 /* Return to btrfs_file_aio_write to fault page */ 441 if (unlikely(copied == 0)) 442 break; 443 444 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) { 445 offset += copied; 446 } else { 447 pg++; 448 offset = 0; 449 } 450 } 451 return total_copied; 452 } 453 454 /* 455 * unlocks pages after btrfs_file_write is done with them 456 */ 457 void btrfs_drop_pages(struct page **pages, size_t num_pages) 458 { 459 size_t i; 460 for (i = 0; i < num_pages; i++) { 461 /* page checked is some magic around finding pages that 462 * have been modified without going through btrfs_set_page_dirty 463 * clear it here 464 */ 465 ClearPageChecked(pages[i]); 466 unlock_page(pages[i]); 467 mark_page_accessed(pages[i]); 468 page_cache_release(pages[i]); 469 } 470 } 471 472 /* 473 * after copy_from_user, pages need to be dirtied and we need to make 474 * sure holes are created between the current EOF and the start of 475 * any next extents (if required). 476 * 477 * this also makes the decision about creating an inline extent vs 478 * doing real data extents, marking pages dirty and delalloc as required. 479 */ 480 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, 481 struct page **pages, size_t num_pages, 482 loff_t pos, size_t write_bytes, 483 struct extent_state **cached) 484 { 485 int err = 0; 486 int i; 487 u64 num_bytes; 488 u64 start_pos; 489 u64 end_of_last_block; 490 u64 end_pos = pos + write_bytes; 491 loff_t isize = i_size_read(inode); 492 493 start_pos = pos & ~((u64)root->sectorsize - 1); 494 num_bytes = (write_bytes + pos - start_pos + 495 root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 496 497 end_of_last_block = start_pos + num_bytes - 1; 498 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 499 cached); 500 if (err) 501 return err; 502 503 for (i = 0; i < num_pages; i++) { 504 struct page *p = pages[i]; 505 SetPageUptodate(p); 506 ClearPageChecked(p); 507 set_page_dirty(p); 508 } 509 510 /* 511 * we've only changed i_size in ram, and we haven't updated 512 * the disk i_size. There is no need to log the inode 513 * at this time. 514 */ 515 if (end_pos > isize) 516 i_size_write(inode, end_pos); 517 return 0; 518 } 519 520 /* 521 * this drops all the extents in the cache that intersect the range 522 * [start, end]. Existing extents are split as required. 523 */ 524 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, 525 int skip_pinned) 526 { 527 struct extent_map *em; 528 struct extent_map *split = NULL; 529 struct extent_map *split2 = NULL; 530 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 531 u64 len = end - start + 1; 532 u64 gen; 533 int ret; 534 int testend = 1; 535 unsigned long flags; 536 int compressed = 0; 537 538 WARN_ON(end < start); 539 if (end == (u64)-1) { 540 len = (u64)-1; 541 testend = 0; 542 } 543 while (1) { 544 int no_splits = 0; 545 546 if (!split) 547 split = alloc_extent_map(); 548 if (!split2) 549 split2 = alloc_extent_map(); 550 if (!split || !split2) 551 no_splits = 1; 552 553 write_lock(&em_tree->lock); 554 em = lookup_extent_mapping(em_tree, start, len); 555 if (!em) { 556 write_unlock(&em_tree->lock); 557 break; 558 } 559 flags = em->flags; 560 gen = em->generation; 561 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 562 if (testend && em->start + em->len >= start + len) { 563 free_extent_map(em); 564 write_unlock(&em_tree->lock); 565 break; 566 } 567 start = em->start + em->len; 568 if (testend) 569 len = start + len - (em->start + em->len); 570 free_extent_map(em); 571 write_unlock(&em_tree->lock); 572 continue; 573 } 574 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 575 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 576 remove_extent_mapping(em_tree, em); 577 if (no_splits) 578 goto next; 579 580 if (em->block_start < EXTENT_MAP_LAST_BYTE && 581 em->start < start) { 582 split->start = em->start; 583 split->len = start - em->start; 584 split->orig_start = em->orig_start; 585 split->block_start = em->block_start; 586 587 if (compressed) 588 split->block_len = em->block_len; 589 else 590 split->block_len = split->len; 591 split->orig_block_len = max(split->block_len, 592 em->orig_block_len); 593 split->generation = gen; 594 split->bdev = em->bdev; 595 split->flags = flags; 596 split->compress_type = em->compress_type; 597 ret = add_extent_mapping(em_tree, split); 598 BUG_ON(ret); /* Logic error */ 599 list_move(&split->list, &em_tree->modified_extents); 600 free_extent_map(split); 601 split = split2; 602 split2 = NULL; 603 } 604 if (em->block_start < EXTENT_MAP_LAST_BYTE && 605 testend && em->start + em->len > start + len) { 606 u64 diff = start + len - em->start; 607 608 split->start = start + len; 609 split->len = em->start + em->len - (start + len); 610 split->bdev = em->bdev; 611 split->flags = flags; 612 split->compress_type = em->compress_type; 613 split->generation = gen; 614 split->orig_block_len = max(em->block_len, 615 em->orig_block_len); 616 617 if (compressed) { 618 split->block_len = em->block_len; 619 split->block_start = em->block_start; 620 split->orig_start = em->orig_start; 621 } else { 622 split->block_len = split->len; 623 split->block_start = em->block_start + diff; 624 split->orig_start = em->orig_start; 625 } 626 627 ret = add_extent_mapping(em_tree, split); 628 BUG_ON(ret); /* Logic error */ 629 list_move(&split->list, &em_tree->modified_extents); 630 free_extent_map(split); 631 split = NULL; 632 } 633 next: 634 write_unlock(&em_tree->lock); 635 636 /* once for us */ 637 free_extent_map(em); 638 /* once for the tree*/ 639 free_extent_map(em); 640 } 641 if (split) 642 free_extent_map(split); 643 if (split2) 644 free_extent_map(split2); 645 } 646 647 /* 648 * this is very complex, but the basic idea is to drop all extents 649 * in the range start - end. hint_block is filled in with a block number 650 * that would be a good hint to the block allocator for this file. 651 * 652 * If an extent intersects the range but is not entirely inside the range 653 * it is either truncated or split. Anything entirely inside the range 654 * is deleted from the tree. 655 */ 656 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 657 struct btrfs_root *root, struct inode *inode, 658 struct btrfs_path *path, u64 start, u64 end, 659 u64 *drop_end, int drop_cache) 660 { 661 struct extent_buffer *leaf; 662 struct btrfs_file_extent_item *fi; 663 struct btrfs_key key; 664 struct btrfs_key new_key; 665 u64 ino = btrfs_ino(inode); 666 u64 search_start = start; 667 u64 disk_bytenr = 0; 668 u64 num_bytes = 0; 669 u64 extent_offset = 0; 670 u64 extent_end = 0; 671 int del_nr = 0; 672 int del_slot = 0; 673 int extent_type; 674 int recow; 675 int ret; 676 int modify_tree = -1; 677 int update_refs = (root->ref_cows || root == root->fs_info->tree_root); 678 int found = 0; 679 680 if (drop_cache) 681 btrfs_drop_extent_cache(inode, start, end - 1, 0); 682 683 if (start >= BTRFS_I(inode)->disk_i_size) 684 modify_tree = 0; 685 686 while (1) { 687 recow = 0; 688 ret = btrfs_lookup_file_extent(trans, root, path, ino, 689 search_start, modify_tree); 690 if (ret < 0) 691 break; 692 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 693 leaf = path->nodes[0]; 694 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 695 if (key.objectid == ino && 696 key.type == BTRFS_EXTENT_DATA_KEY) 697 path->slots[0]--; 698 } 699 ret = 0; 700 next_slot: 701 leaf = path->nodes[0]; 702 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 703 BUG_ON(del_nr > 0); 704 ret = btrfs_next_leaf(root, path); 705 if (ret < 0) 706 break; 707 if (ret > 0) { 708 ret = 0; 709 break; 710 } 711 leaf = path->nodes[0]; 712 recow = 1; 713 } 714 715 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 716 if (key.objectid > ino || 717 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 718 break; 719 720 fi = btrfs_item_ptr(leaf, path->slots[0], 721 struct btrfs_file_extent_item); 722 extent_type = btrfs_file_extent_type(leaf, fi); 723 724 if (extent_type == BTRFS_FILE_EXTENT_REG || 725 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 726 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 727 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 728 extent_offset = btrfs_file_extent_offset(leaf, fi); 729 extent_end = key.offset + 730 btrfs_file_extent_num_bytes(leaf, fi); 731 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 732 extent_end = key.offset + 733 btrfs_file_extent_inline_len(leaf, fi); 734 } else { 735 WARN_ON(1); 736 extent_end = search_start; 737 } 738 739 if (extent_end <= search_start) { 740 path->slots[0]++; 741 goto next_slot; 742 } 743 744 found = 1; 745 search_start = max(key.offset, start); 746 if (recow || !modify_tree) { 747 modify_tree = -1; 748 btrfs_release_path(path); 749 continue; 750 } 751 752 /* 753 * | - range to drop - | 754 * | -------- extent -------- | 755 */ 756 if (start > key.offset && end < extent_end) { 757 BUG_ON(del_nr > 0); 758 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); 759 760 memcpy(&new_key, &key, sizeof(new_key)); 761 new_key.offset = start; 762 ret = btrfs_duplicate_item(trans, root, path, 763 &new_key); 764 if (ret == -EAGAIN) { 765 btrfs_release_path(path); 766 continue; 767 } 768 if (ret < 0) 769 break; 770 771 leaf = path->nodes[0]; 772 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 773 struct btrfs_file_extent_item); 774 btrfs_set_file_extent_num_bytes(leaf, fi, 775 start - key.offset); 776 777 fi = btrfs_item_ptr(leaf, path->slots[0], 778 struct btrfs_file_extent_item); 779 780 extent_offset += start - key.offset; 781 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 782 btrfs_set_file_extent_num_bytes(leaf, fi, 783 extent_end - start); 784 btrfs_mark_buffer_dirty(leaf); 785 786 if (update_refs && disk_bytenr > 0) { 787 ret = btrfs_inc_extent_ref(trans, root, 788 disk_bytenr, num_bytes, 0, 789 root->root_key.objectid, 790 new_key.objectid, 791 start - extent_offset, 0); 792 BUG_ON(ret); /* -ENOMEM */ 793 } 794 key.offset = start; 795 } 796 /* 797 * | ---- range to drop ----- | 798 * | -------- extent -------- | 799 */ 800 if (start <= key.offset && end < extent_end) { 801 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); 802 803 memcpy(&new_key, &key, sizeof(new_key)); 804 new_key.offset = end; 805 btrfs_set_item_key_safe(trans, root, path, &new_key); 806 807 extent_offset += end - key.offset; 808 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 809 btrfs_set_file_extent_num_bytes(leaf, fi, 810 extent_end - end); 811 btrfs_mark_buffer_dirty(leaf); 812 if (update_refs && disk_bytenr > 0) 813 inode_sub_bytes(inode, end - key.offset); 814 break; 815 } 816 817 search_start = extent_end; 818 /* 819 * | ---- range to drop ----- | 820 * | -------- extent -------- | 821 */ 822 if (start > key.offset && end >= extent_end) { 823 BUG_ON(del_nr > 0); 824 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE); 825 826 btrfs_set_file_extent_num_bytes(leaf, fi, 827 start - key.offset); 828 btrfs_mark_buffer_dirty(leaf); 829 if (update_refs && disk_bytenr > 0) 830 inode_sub_bytes(inode, extent_end - start); 831 if (end == extent_end) 832 break; 833 834 path->slots[0]++; 835 goto next_slot; 836 } 837 838 /* 839 * | ---- range to drop ----- | 840 * | ------ extent ------ | 841 */ 842 if (start <= key.offset && end >= extent_end) { 843 if (del_nr == 0) { 844 del_slot = path->slots[0]; 845 del_nr = 1; 846 } else { 847 BUG_ON(del_slot + del_nr != path->slots[0]); 848 del_nr++; 849 } 850 851 if (update_refs && 852 extent_type == BTRFS_FILE_EXTENT_INLINE) { 853 inode_sub_bytes(inode, 854 extent_end - key.offset); 855 extent_end = ALIGN(extent_end, 856 root->sectorsize); 857 } else if (update_refs && disk_bytenr > 0) { 858 ret = btrfs_free_extent(trans, root, 859 disk_bytenr, num_bytes, 0, 860 root->root_key.objectid, 861 key.objectid, key.offset - 862 extent_offset, 0); 863 BUG_ON(ret); /* -ENOMEM */ 864 inode_sub_bytes(inode, 865 extent_end - key.offset); 866 } 867 868 if (end == extent_end) 869 break; 870 871 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 872 path->slots[0]++; 873 goto next_slot; 874 } 875 876 ret = btrfs_del_items(trans, root, path, del_slot, 877 del_nr); 878 if (ret) { 879 btrfs_abort_transaction(trans, root, ret); 880 break; 881 } 882 883 del_nr = 0; 884 del_slot = 0; 885 886 btrfs_release_path(path); 887 continue; 888 } 889 890 BUG_ON(1); 891 } 892 893 if (!ret && del_nr > 0) { 894 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 895 if (ret) 896 btrfs_abort_transaction(trans, root, ret); 897 } 898 899 if (drop_end) 900 *drop_end = found ? min(end, extent_end) : end; 901 btrfs_release_path(path); 902 return ret; 903 } 904 905 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 906 struct btrfs_root *root, struct inode *inode, u64 start, 907 u64 end, int drop_cache) 908 { 909 struct btrfs_path *path; 910 int ret; 911 912 path = btrfs_alloc_path(); 913 if (!path) 914 return -ENOMEM; 915 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 916 drop_cache); 917 btrfs_free_path(path); 918 return ret; 919 } 920 921 static int extent_mergeable(struct extent_buffer *leaf, int slot, 922 u64 objectid, u64 bytenr, u64 orig_offset, 923 u64 *start, u64 *end) 924 { 925 struct btrfs_file_extent_item *fi; 926 struct btrfs_key key; 927 u64 extent_end; 928 929 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 930 return 0; 931 932 btrfs_item_key_to_cpu(leaf, &key, slot); 933 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 934 return 0; 935 936 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 937 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 938 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 939 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 940 btrfs_file_extent_compression(leaf, fi) || 941 btrfs_file_extent_encryption(leaf, fi) || 942 btrfs_file_extent_other_encoding(leaf, fi)) 943 return 0; 944 945 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 946 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 947 return 0; 948 949 *start = key.offset; 950 *end = extent_end; 951 return 1; 952 } 953 954 /* 955 * Mark extent in the range start - end as written. 956 * 957 * This changes extent type from 'pre-allocated' to 'regular'. If only 958 * part of extent is marked as written, the extent will be split into 959 * two or three. 960 */ 961 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 962 struct inode *inode, u64 start, u64 end) 963 { 964 struct btrfs_root *root = BTRFS_I(inode)->root; 965 struct extent_buffer *leaf; 966 struct btrfs_path *path; 967 struct btrfs_file_extent_item *fi; 968 struct btrfs_key key; 969 struct btrfs_key new_key; 970 u64 bytenr; 971 u64 num_bytes; 972 u64 extent_end; 973 u64 orig_offset; 974 u64 other_start; 975 u64 other_end; 976 u64 split; 977 int del_nr = 0; 978 int del_slot = 0; 979 int recow; 980 int ret; 981 u64 ino = btrfs_ino(inode); 982 983 path = btrfs_alloc_path(); 984 if (!path) 985 return -ENOMEM; 986 again: 987 recow = 0; 988 split = start; 989 key.objectid = ino; 990 key.type = BTRFS_EXTENT_DATA_KEY; 991 key.offset = split; 992 993 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 994 if (ret < 0) 995 goto out; 996 if (ret > 0 && path->slots[0] > 0) 997 path->slots[0]--; 998 999 leaf = path->nodes[0]; 1000 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1001 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY); 1002 fi = btrfs_item_ptr(leaf, path->slots[0], 1003 struct btrfs_file_extent_item); 1004 BUG_ON(btrfs_file_extent_type(leaf, fi) != 1005 BTRFS_FILE_EXTENT_PREALLOC); 1006 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1007 BUG_ON(key.offset > start || extent_end < end); 1008 1009 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1010 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1011 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1012 memcpy(&new_key, &key, sizeof(new_key)); 1013 1014 if (start == key.offset && end < extent_end) { 1015 other_start = 0; 1016 other_end = start; 1017 if (extent_mergeable(leaf, path->slots[0] - 1, 1018 ino, bytenr, orig_offset, 1019 &other_start, &other_end)) { 1020 new_key.offset = end; 1021 btrfs_set_item_key_safe(trans, root, path, &new_key); 1022 fi = btrfs_item_ptr(leaf, path->slots[0], 1023 struct btrfs_file_extent_item); 1024 btrfs_set_file_extent_generation(leaf, fi, 1025 trans->transid); 1026 btrfs_set_file_extent_num_bytes(leaf, fi, 1027 extent_end - end); 1028 btrfs_set_file_extent_offset(leaf, fi, 1029 end - orig_offset); 1030 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1031 struct btrfs_file_extent_item); 1032 btrfs_set_file_extent_generation(leaf, fi, 1033 trans->transid); 1034 btrfs_set_file_extent_num_bytes(leaf, fi, 1035 end - other_start); 1036 btrfs_mark_buffer_dirty(leaf); 1037 goto out; 1038 } 1039 } 1040 1041 if (start > key.offset && end == extent_end) { 1042 other_start = end; 1043 other_end = 0; 1044 if (extent_mergeable(leaf, path->slots[0] + 1, 1045 ino, bytenr, orig_offset, 1046 &other_start, &other_end)) { 1047 fi = btrfs_item_ptr(leaf, path->slots[0], 1048 struct btrfs_file_extent_item); 1049 btrfs_set_file_extent_num_bytes(leaf, fi, 1050 start - key.offset); 1051 btrfs_set_file_extent_generation(leaf, fi, 1052 trans->transid); 1053 path->slots[0]++; 1054 new_key.offset = start; 1055 btrfs_set_item_key_safe(trans, root, path, &new_key); 1056 1057 fi = btrfs_item_ptr(leaf, path->slots[0], 1058 struct btrfs_file_extent_item); 1059 btrfs_set_file_extent_generation(leaf, fi, 1060 trans->transid); 1061 btrfs_set_file_extent_num_bytes(leaf, fi, 1062 other_end - start); 1063 btrfs_set_file_extent_offset(leaf, fi, 1064 start - orig_offset); 1065 btrfs_mark_buffer_dirty(leaf); 1066 goto out; 1067 } 1068 } 1069 1070 while (start > key.offset || end < extent_end) { 1071 if (key.offset == start) 1072 split = end; 1073 1074 new_key.offset = split; 1075 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1076 if (ret == -EAGAIN) { 1077 btrfs_release_path(path); 1078 goto again; 1079 } 1080 if (ret < 0) { 1081 btrfs_abort_transaction(trans, root, ret); 1082 goto out; 1083 } 1084 1085 leaf = path->nodes[0]; 1086 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1087 struct btrfs_file_extent_item); 1088 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1089 btrfs_set_file_extent_num_bytes(leaf, fi, 1090 split - key.offset); 1091 1092 fi = btrfs_item_ptr(leaf, path->slots[0], 1093 struct btrfs_file_extent_item); 1094 1095 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1096 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1097 btrfs_set_file_extent_num_bytes(leaf, fi, 1098 extent_end - split); 1099 btrfs_mark_buffer_dirty(leaf); 1100 1101 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, 1102 root->root_key.objectid, 1103 ino, orig_offset, 0); 1104 BUG_ON(ret); /* -ENOMEM */ 1105 1106 if (split == start) { 1107 key.offset = start; 1108 } else { 1109 BUG_ON(start != key.offset); 1110 path->slots[0]--; 1111 extent_end = end; 1112 } 1113 recow = 1; 1114 } 1115 1116 other_start = end; 1117 other_end = 0; 1118 if (extent_mergeable(leaf, path->slots[0] + 1, 1119 ino, bytenr, orig_offset, 1120 &other_start, &other_end)) { 1121 if (recow) { 1122 btrfs_release_path(path); 1123 goto again; 1124 } 1125 extent_end = other_end; 1126 del_slot = path->slots[0] + 1; 1127 del_nr++; 1128 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1129 0, root->root_key.objectid, 1130 ino, orig_offset, 0); 1131 BUG_ON(ret); /* -ENOMEM */ 1132 } 1133 other_start = 0; 1134 other_end = start; 1135 if (extent_mergeable(leaf, path->slots[0] - 1, 1136 ino, bytenr, orig_offset, 1137 &other_start, &other_end)) { 1138 if (recow) { 1139 btrfs_release_path(path); 1140 goto again; 1141 } 1142 key.offset = other_start; 1143 del_slot = path->slots[0]; 1144 del_nr++; 1145 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1146 0, root->root_key.objectid, 1147 ino, orig_offset, 0); 1148 BUG_ON(ret); /* -ENOMEM */ 1149 } 1150 if (del_nr == 0) { 1151 fi = btrfs_item_ptr(leaf, path->slots[0], 1152 struct btrfs_file_extent_item); 1153 btrfs_set_file_extent_type(leaf, fi, 1154 BTRFS_FILE_EXTENT_REG); 1155 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1156 btrfs_mark_buffer_dirty(leaf); 1157 } else { 1158 fi = btrfs_item_ptr(leaf, del_slot - 1, 1159 struct btrfs_file_extent_item); 1160 btrfs_set_file_extent_type(leaf, fi, 1161 BTRFS_FILE_EXTENT_REG); 1162 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1163 btrfs_set_file_extent_num_bytes(leaf, fi, 1164 extent_end - key.offset); 1165 btrfs_mark_buffer_dirty(leaf); 1166 1167 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1168 if (ret < 0) { 1169 btrfs_abort_transaction(trans, root, ret); 1170 goto out; 1171 } 1172 } 1173 out: 1174 btrfs_free_path(path); 1175 return 0; 1176 } 1177 1178 /* 1179 * on error we return an unlocked page and the error value 1180 * on success we return a locked page and 0 1181 */ 1182 static int prepare_uptodate_page(struct page *page, u64 pos, 1183 bool force_uptodate) 1184 { 1185 int ret = 0; 1186 1187 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) && 1188 !PageUptodate(page)) { 1189 ret = btrfs_readpage(NULL, page); 1190 if (ret) 1191 return ret; 1192 lock_page(page); 1193 if (!PageUptodate(page)) { 1194 unlock_page(page); 1195 return -EIO; 1196 } 1197 } 1198 return 0; 1199 } 1200 1201 /* 1202 * this gets pages into the page cache and locks them down, it also properly 1203 * waits for data=ordered extents to finish before allowing the pages to be 1204 * modified. 1205 */ 1206 static noinline int prepare_pages(struct btrfs_root *root, struct file *file, 1207 struct page **pages, size_t num_pages, 1208 loff_t pos, unsigned long first_index, 1209 size_t write_bytes, bool force_uptodate) 1210 { 1211 struct extent_state *cached_state = NULL; 1212 int i; 1213 unsigned long index = pos >> PAGE_CACHE_SHIFT; 1214 struct inode *inode = fdentry(file)->d_inode; 1215 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1216 int err = 0; 1217 int faili = 0; 1218 u64 start_pos; 1219 u64 last_pos; 1220 1221 start_pos = pos & ~((u64)root->sectorsize - 1); 1222 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT; 1223 1224 again: 1225 for (i = 0; i < num_pages; i++) { 1226 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1227 mask | __GFP_WRITE); 1228 if (!pages[i]) { 1229 faili = i - 1; 1230 err = -ENOMEM; 1231 goto fail; 1232 } 1233 1234 if (i == 0) 1235 err = prepare_uptodate_page(pages[i], pos, 1236 force_uptodate); 1237 if (i == num_pages - 1) 1238 err = prepare_uptodate_page(pages[i], 1239 pos + write_bytes, false); 1240 if (err) { 1241 page_cache_release(pages[i]); 1242 faili = i - 1; 1243 goto fail; 1244 } 1245 wait_on_page_writeback(pages[i]); 1246 } 1247 err = 0; 1248 if (start_pos < inode->i_size) { 1249 struct btrfs_ordered_extent *ordered; 1250 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1251 start_pos, last_pos - 1, 0, &cached_state); 1252 ordered = btrfs_lookup_first_ordered_extent(inode, 1253 last_pos - 1); 1254 if (ordered && 1255 ordered->file_offset + ordered->len > start_pos && 1256 ordered->file_offset < last_pos) { 1257 btrfs_put_ordered_extent(ordered); 1258 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1259 start_pos, last_pos - 1, 1260 &cached_state, GFP_NOFS); 1261 for (i = 0; i < num_pages; i++) { 1262 unlock_page(pages[i]); 1263 page_cache_release(pages[i]); 1264 } 1265 btrfs_wait_ordered_range(inode, start_pos, 1266 last_pos - start_pos); 1267 goto again; 1268 } 1269 if (ordered) 1270 btrfs_put_ordered_extent(ordered); 1271 1272 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, 1273 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1274 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1275 0, 0, &cached_state, GFP_NOFS); 1276 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1277 start_pos, last_pos - 1, &cached_state, 1278 GFP_NOFS); 1279 } 1280 for (i = 0; i < num_pages; i++) { 1281 if (clear_page_dirty_for_io(pages[i])) 1282 account_page_redirty(pages[i]); 1283 set_page_extent_mapped(pages[i]); 1284 WARN_ON(!PageLocked(pages[i])); 1285 } 1286 return 0; 1287 fail: 1288 while (faili >= 0) { 1289 unlock_page(pages[faili]); 1290 page_cache_release(pages[faili]); 1291 faili--; 1292 } 1293 return err; 1294 1295 } 1296 1297 static noinline ssize_t __btrfs_buffered_write(struct file *file, 1298 struct iov_iter *i, 1299 loff_t pos) 1300 { 1301 struct inode *inode = fdentry(file)->d_inode; 1302 struct btrfs_root *root = BTRFS_I(inode)->root; 1303 struct page **pages = NULL; 1304 unsigned long first_index; 1305 size_t num_written = 0; 1306 int nrptrs; 1307 int ret = 0; 1308 bool force_page_uptodate = false; 1309 1310 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) / 1311 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE / 1312 (sizeof(struct page *))); 1313 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1314 nrptrs = max(nrptrs, 8); 1315 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL); 1316 if (!pages) 1317 return -ENOMEM; 1318 1319 first_index = pos >> PAGE_CACHE_SHIFT; 1320 1321 while (iov_iter_count(i) > 0) { 1322 size_t offset = pos & (PAGE_CACHE_SIZE - 1); 1323 size_t write_bytes = min(iov_iter_count(i), 1324 nrptrs * (size_t)PAGE_CACHE_SIZE - 1325 offset); 1326 size_t num_pages = (write_bytes + offset + 1327 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1328 size_t dirty_pages; 1329 size_t copied; 1330 1331 WARN_ON(num_pages > nrptrs); 1332 1333 /* 1334 * Fault pages before locking them in prepare_pages 1335 * to avoid recursive lock 1336 */ 1337 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1338 ret = -EFAULT; 1339 break; 1340 } 1341 1342 ret = btrfs_delalloc_reserve_space(inode, 1343 num_pages << PAGE_CACHE_SHIFT); 1344 if (ret) 1345 break; 1346 1347 /* 1348 * This is going to setup the pages array with the number of 1349 * pages we want, so we don't really need to worry about the 1350 * contents of pages from loop to loop 1351 */ 1352 ret = prepare_pages(root, file, pages, num_pages, 1353 pos, first_index, write_bytes, 1354 force_page_uptodate); 1355 if (ret) { 1356 btrfs_delalloc_release_space(inode, 1357 num_pages << PAGE_CACHE_SHIFT); 1358 break; 1359 } 1360 1361 copied = btrfs_copy_from_user(pos, num_pages, 1362 write_bytes, pages, i); 1363 1364 /* 1365 * if we have trouble faulting in the pages, fall 1366 * back to one page at a time 1367 */ 1368 if (copied < write_bytes) 1369 nrptrs = 1; 1370 1371 if (copied == 0) { 1372 force_page_uptodate = true; 1373 dirty_pages = 0; 1374 } else { 1375 force_page_uptodate = false; 1376 dirty_pages = (copied + offset + 1377 PAGE_CACHE_SIZE - 1) >> 1378 PAGE_CACHE_SHIFT; 1379 } 1380 1381 /* 1382 * If we had a short copy we need to release the excess delaloc 1383 * bytes we reserved. We need to increment outstanding_extents 1384 * because btrfs_delalloc_release_space will decrement it, but 1385 * we still have an outstanding extent for the chunk we actually 1386 * managed to copy. 1387 */ 1388 if (num_pages > dirty_pages) { 1389 if (copied > 0) { 1390 spin_lock(&BTRFS_I(inode)->lock); 1391 BTRFS_I(inode)->outstanding_extents++; 1392 spin_unlock(&BTRFS_I(inode)->lock); 1393 } 1394 btrfs_delalloc_release_space(inode, 1395 (num_pages - dirty_pages) << 1396 PAGE_CACHE_SHIFT); 1397 } 1398 1399 if (copied > 0) { 1400 ret = btrfs_dirty_pages(root, inode, pages, 1401 dirty_pages, pos, copied, 1402 NULL); 1403 if (ret) { 1404 btrfs_delalloc_release_space(inode, 1405 dirty_pages << PAGE_CACHE_SHIFT); 1406 btrfs_drop_pages(pages, num_pages); 1407 break; 1408 } 1409 } 1410 1411 btrfs_drop_pages(pages, num_pages); 1412 1413 cond_resched(); 1414 1415 balance_dirty_pages_ratelimited(inode->i_mapping); 1416 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1) 1417 btrfs_btree_balance_dirty(root); 1418 1419 pos += copied; 1420 num_written += copied; 1421 } 1422 1423 kfree(pages); 1424 1425 return num_written ? num_written : ret; 1426 } 1427 1428 static ssize_t __btrfs_direct_write(struct kiocb *iocb, 1429 const struct iovec *iov, 1430 unsigned long nr_segs, loff_t pos, 1431 loff_t *ppos, size_t count, size_t ocount) 1432 { 1433 struct file *file = iocb->ki_filp; 1434 struct iov_iter i; 1435 ssize_t written; 1436 ssize_t written_buffered; 1437 loff_t endbyte; 1438 int err; 1439 1440 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos, 1441 count, ocount); 1442 1443 if (written < 0 || written == count) 1444 return written; 1445 1446 pos += written; 1447 count -= written; 1448 iov_iter_init(&i, iov, nr_segs, count, written); 1449 written_buffered = __btrfs_buffered_write(file, &i, pos); 1450 if (written_buffered < 0) { 1451 err = written_buffered; 1452 goto out; 1453 } 1454 endbyte = pos + written_buffered - 1; 1455 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 1456 if (err) 1457 goto out; 1458 written += written_buffered; 1459 *ppos = pos + written_buffered; 1460 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT, 1461 endbyte >> PAGE_CACHE_SHIFT); 1462 out: 1463 return written ? written : err; 1464 } 1465 1466 static void update_time_for_write(struct inode *inode) 1467 { 1468 struct timespec now; 1469 1470 if (IS_NOCMTIME(inode)) 1471 return; 1472 1473 now = current_fs_time(inode->i_sb); 1474 if (!timespec_equal(&inode->i_mtime, &now)) 1475 inode->i_mtime = now; 1476 1477 if (!timespec_equal(&inode->i_ctime, &now)) 1478 inode->i_ctime = now; 1479 1480 if (IS_I_VERSION(inode)) 1481 inode_inc_iversion(inode); 1482 } 1483 1484 static ssize_t btrfs_file_aio_write(struct kiocb *iocb, 1485 const struct iovec *iov, 1486 unsigned long nr_segs, loff_t pos) 1487 { 1488 struct file *file = iocb->ki_filp; 1489 struct inode *inode = fdentry(file)->d_inode; 1490 struct btrfs_root *root = BTRFS_I(inode)->root; 1491 loff_t *ppos = &iocb->ki_pos; 1492 u64 start_pos; 1493 ssize_t num_written = 0; 1494 ssize_t err = 0; 1495 size_t count, ocount; 1496 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1497 1498 sb_start_write(inode->i_sb); 1499 1500 mutex_lock(&inode->i_mutex); 1501 1502 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 1503 if (err) { 1504 mutex_unlock(&inode->i_mutex); 1505 goto out; 1506 } 1507 count = ocount; 1508 1509 current->backing_dev_info = inode->i_mapping->backing_dev_info; 1510 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 1511 if (err) { 1512 mutex_unlock(&inode->i_mutex); 1513 goto out; 1514 } 1515 1516 if (count == 0) { 1517 mutex_unlock(&inode->i_mutex); 1518 goto out; 1519 } 1520 1521 err = file_remove_suid(file); 1522 if (err) { 1523 mutex_unlock(&inode->i_mutex); 1524 goto out; 1525 } 1526 1527 /* 1528 * If BTRFS flips readonly due to some impossible error 1529 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1530 * although we have opened a file as writable, we have 1531 * to stop this write operation to ensure FS consistency. 1532 */ 1533 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 1534 mutex_unlock(&inode->i_mutex); 1535 err = -EROFS; 1536 goto out; 1537 } 1538 1539 /* 1540 * We reserve space for updating the inode when we reserve space for the 1541 * extent we are going to write, so we will enospc out there. We don't 1542 * need to start yet another transaction to update the inode as we will 1543 * update the inode when we finish writing whatever data we write. 1544 */ 1545 update_time_for_write(inode); 1546 1547 start_pos = round_down(pos, root->sectorsize); 1548 if (start_pos > i_size_read(inode)) { 1549 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos); 1550 if (err) { 1551 mutex_unlock(&inode->i_mutex); 1552 goto out; 1553 } 1554 } 1555 1556 if (sync) 1557 atomic_inc(&BTRFS_I(inode)->sync_writers); 1558 1559 if (unlikely(file->f_flags & O_DIRECT)) { 1560 num_written = __btrfs_direct_write(iocb, iov, nr_segs, 1561 pos, ppos, count, ocount); 1562 } else { 1563 struct iov_iter i; 1564 1565 iov_iter_init(&i, iov, nr_segs, count, num_written); 1566 1567 num_written = __btrfs_buffered_write(file, &i, pos); 1568 if (num_written > 0) 1569 *ppos = pos + num_written; 1570 } 1571 1572 mutex_unlock(&inode->i_mutex); 1573 1574 /* 1575 * we want to make sure fsync finds this change 1576 * but we haven't joined a transaction running right now. 1577 * 1578 * Later on, someone is sure to update the inode and get the 1579 * real transid recorded. 1580 * 1581 * We set last_trans now to the fs_info generation + 1, 1582 * this will either be one more than the running transaction 1583 * or the generation used for the next transaction if there isn't 1584 * one running right now. 1585 * 1586 * We also have to set last_sub_trans to the current log transid, 1587 * otherwise subsequent syncs to a file that's been synced in this 1588 * transaction will appear to have already occured. 1589 */ 1590 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1; 1591 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1592 if (num_written > 0 || num_written == -EIOCBQUEUED) { 1593 err = generic_write_sync(file, pos, num_written); 1594 if (err < 0 && num_written > 0) 1595 num_written = err; 1596 } 1597 out: 1598 if (sync) 1599 atomic_dec(&BTRFS_I(inode)->sync_writers); 1600 sb_end_write(inode->i_sb); 1601 current->backing_dev_info = NULL; 1602 return num_written ? num_written : err; 1603 } 1604 1605 int btrfs_release_file(struct inode *inode, struct file *filp) 1606 { 1607 /* 1608 * ordered_data_close is set by settattr when we are about to truncate 1609 * a file from a non-zero size to a zero size. This tries to 1610 * flush down new bytes that may have been written if the 1611 * application were using truncate to replace a file in place. 1612 */ 1613 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 1614 &BTRFS_I(inode)->runtime_flags)) { 1615 btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode); 1616 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 1617 filemap_flush(inode->i_mapping); 1618 } 1619 if (filp->private_data) 1620 btrfs_ioctl_trans_end(filp); 1621 return 0; 1622 } 1623 1624 /* 1625 * fsync call for both files and directories. This logs the inode into 1626 * the tree log instead of forcing full commits whenever possible. 1627 * 1628 * It needs to call filemap_fdatawait so that all ordered extent updates are 1629 * in the metadata btree are up to date for copying to the log. 1630 * 1631 * It drops the inode mutex before doing the tree log commit. This is an 1632 * important optimization for directories because holding the mutex prevents 1633 * new operations on the dir while we write to disk. 1634 */ 1635 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1636 { 1637 struct dentry *dentry = file->f_path.dentry; 1638 struct inode *inode = dentry->d_inode; 1639 struct btrfs_root *root = BTRFS_I(inode)->root; 1640 int ret = 0; 1641 struct btrfs_trans_handle *trans; 1642 1643 trace_btrfs_sync_file(file, datasync); 1644 1645 /* 1646 * We write the dirty pages in the range and wait until they complete 1647 * out of the ->i_mutex. If so, we can flush the dirty pages by 1648 * multi-task, and make the performance up. 1649 */ 1650 atomic_inc(&BTRFS_I(inode)->sync_writers); 1651 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 1652 atomic_dec(&BTRFS_I(inode)->sync_writers); 1653 if (ret) 1654 return ret; 1655 1656 mutex_lock(&inode->i_mutex); 1657 1658 /* 1659 * We flush the dirty pages again to avoid some dirty pages in the 1660 * range being left. 1661 */ 1662 atomic_inc(&root->log_batch); 1663 btrfs_wait_ordered_range(inode, start, end - start + 1); 1664 atomic_inc(&root->log_batch); 1665 1666 /* 1667 * check the transaction that last modified this inode 1668 * and see if its already been committed 1669 */ 1670 if (!BTRFS_I(inode)->last_trans) { 1671 mutex_unlock(&inode->i_mutex); 1672 goto out; 1673 } 1674 1675 /* 1676 * if the last transaction that changed this file was before 1677 * the current transaction, we can bail out now without any 1678 * syncing 1679 */ 1680 smp_mb(); 1681 if (btrfs_inode_in_log(inode, root->fs_info->generation) || 1682 BTRFS_I(inode)->last_trans <= 1683 root->fs_info->last_trans_committed) { 1684 BTRFS_I(inode)->last_trans = 0; 1685 1686 /* 1687 * We'v had everything committed since the last time we were 1688 * modified so clear this flag in case it was set for whatever 1689 * reason, it's no longer relevant. 1690 */ 1691 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1692 &BTRFS_I(inode)->runtime_flags); 1693 mutex_unlock(&inode->i_mutex); 1694 goto out; 1695 } 1696 1697 /* 1698 * ok we haven't committed the transaction yet, lets do a commit 1699 */ 1700 if (file->private_data) 1701 btrfs_ioctl_trans_end(file); 1702 1703 trans = btrfs_start_transaction(root, 0); 1704 if (IS_ERR(trans)) { 1705 ret = PTR_ERR(trans); 1706 mutex_unlock(&inode->i_mutex); 1707 goto out; 1708 } 1709 1710 ret = btrfs_log_dentry_safe(trans, root, dentry); 1711 if (ret < 0) { 1712 mutex_unlock(&inode->i_mutex); 1713 goto out; 1714 } 1715 1716 /* we've logged all the items and now have a consistent 1717 * version of the file in the log. It is possible that 1718 * someone will come in and modify the file, but that's 1719 * fine because the log is consistent on disk, and we 1720 * have references to all of the file's extents 1721 * 1722 * It is possible that someone will come in and log the 1723 * file again, but that will end up using the synchronization 1724 * inside btrfs_sync_log to keep things safe. 1725 */ 1726 mutex_unlock(&inode->i_mutex); 1727 1728 if (ret != BTRFS_NO_LOG_SYNC) { 1729 if (ret > 0) { 1730 ret = btrfs_commit_transaction(trans, root); 1731 } else { 1732 ret = btrfs_sync_log(trans, root); 1733 if (ret == 0) 1734 ret = btrfs_end_transaction(trans, root); 1735 else 1736 ret = btrfs_commit_transaction(trans, root); 1737 } 1738 } else { 1739 ret = btrfs_end_transaction(trans, root); 1740 } 1741 out: 1742 return ret > 0 ? -EIO : ret; 1743 } 1744 1745 static const struct vm_operations_struct btrfs_file_vm_ops = { 1746 .fault = filemap_fault, 1747 .page_mkwrite = btrfs_page_mkwrite, 1748 .remap_pages = generic_file_remap_pages, 1749 }; 1750 1751 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 1752 { 1753 struct address_space *mapping = filp->f_mapping; 1754 1755 if (!mapping->a_ops->readpage) 1756 return -ENOEXEC; 1757 1758 file_accessed(filp); 1759 vma->vm_ops = &btrfs_file_vm_ops; 1760 1761 return 0; 1762 } 1763 1764 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf, 1765 int slot, u64 start, u64 end) 1766 { 1767 struct btrfs_file_extent_item *fi; 1768 struct btrfs_key key; 1769 1770 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1771 return 0; 1772 1773 btrfs_item_key_to_cpu(leaf, &key, slot); 1774 if (key.objectid != btrfs_ino(inode) || 1775 key.type != BTRFS_EXTENT_DATA_KEY) 1776 return 0; 1777 1778 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1779 1780 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 1781 return 0; 1782 1783 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 1784 return 0; 1785 1786 if (key.offset == end) 1787 return 1; 1788 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 1789 return 1; 1790 return 0; 1791 } 1792 1793 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode, 1794 struct btrfs_path *path, u64 offset, u64 end) 1795 { 1796 struct btrfs_root *root = BTRFS_I(inode)->root; 1797 struct extent_buffer *leaf; 1798 struct btrfs_file_extent_item *fi; 1799 struct extent_map *hole_em; 1800 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1801 struct btrfs_key key; 1802 int ret; 1803 1804 key.objectid = btrfs_ino(inode); 1805 key.type = BTRFS_EXTENT_DATA_KEY; 1806 key.offset = offset; 1807 1808 1809 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1810 if (ret < 0) 1811 return ret; 1812 BUG_ON(!ret); 1813 1814 leaf = path->nodes[0]; 1815 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) { 1816 u64 num_bytes; 1817 1818 path->slots[0]--; 1819 fi = btrfs_item_ptr(leaf, path->slots[0], 1820 struct btrfs_file_extent_item); 1821 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 1822 end - offset; 1823 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1824 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 1825 btrfs_set_file_extent_offset(leaf, fi, 0); 1826 btrfs_mark_buffer_dirty(leaf); 1827 goto out; 1828 } 1829 1830 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) { 1831 u64 num_bytes; 1832 1833 path->slots[0]++; 1834 key.offset = offset; 1835 btrfs_set_item_key_safe(trans, root, path, &key); 1836 fi = btrfs_item_ptr(leaf, path->slots[0], 1837 struct btrfs_file_extent_item); 1838 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 1839 offset; 1840 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1841 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 1842 btrfs_set_file_extent_offset(leaf, fi, 0); 1843 btrfs_mark_buffer_dirty(leaf); 1844 goto out; 1845 } 1846 btrfs_release_path(path); 1847 1848 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 1849 0, 0, end - offset, 0, end - offset, 1850 0, 0, 0); 1851 if (ret) 1852 return ret; 1853 1854 out: 1855 btrfs_release_path(path); 1856 1857 hole_em = alloc_extent_map(); 1858 if (!hole_em) { 1859 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 1860 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1861 &BTRFS_I(inode)->runtime_flags); 1862 } else { 1863 hole_em->start = offset; 1864 hole_em->len = end - offset; 1865 hole_em->orig_start = offset; 1866 1867 hole_em->block_start = EXTENT_MAP_HOLE; 1868 hole_em->block_len = 0; 1869 hole_em->orig_block_len = 0; 1870 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 1871 hole_em->compress_type = BTRFS_COMPRESS_NONE; 1872 hole_em->generation = trans->transid; 1873 1874 do { 1875 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 1876 write_lock(&em_tree->lock); 1877 ret = add_extent_mapping(em_tree, hole_em); 1878 if (!ret) 1879 list_move(&hole_em->list, 1880 &em_tree->modified_extents); 1881 write_unlock(&em_tree->lock); 1882 } while (ret == -EEXIST); 1883 free_extent_map(hole_em); 1884 if (ret) 1885 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1886 &BTRFS_I(inode)->runtime_flags); 1887 } 1888 1889 return 0; 1890 } 1891 1892 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 1893 { 1894 struct btrfs_root *root = BTRFS_I(inode)->root; 1895 struct extent_state *cached_state = NULL; 1896 struct btrfs_path *path; 1897 struct btrfs_block_rsv *rsv; 1898 struct btrfs_trans_handle *trans; 1899 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize); 1900 u64 lockend = round_down(offset + len, 1901 BTRFS_I(inode)->root->sectorsize) - 1; 1902 u64 cur_offset = lockstart; 1903 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 1904 u64 drop_end; 1905 int ret = 0; 1906 int err = 0; 1907 bool same_page = ((offset >> PAGE_CACHE_SHIFT) == 1908 ((offset + len - 1) >> PAGE_CACHE_SHIFT)); 1909 1910 btrfs_wait_ordered_range(inode, offset, len); 1911 1912 mutex_lock(&inode->i_mutex); 1913 /* 1914 * We needn't truncate any page which is beyond the end of the file 1915 * because we are sure there is no data there. 1916 */ 1917 /* 1918 * Only do this if we are in the same page and we aren't doing the 1919 * entire page. 1920 */ 1921 if (same_page && len < PAGE_CACHE_SIZE) { 1922 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) 1923 ret = btrfs_truncate_page(inode, offset, len, 0); 1924 mutex_unlock(&inode->i_mutex); 1925 return ret; 1926 } 1927 1928 /* zero back part of the first page */ 1929 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) { 1930 ret = btrfs_truncate_page(inode, offset, 0, 0); 1931 if (ret) { 1932 mutex_unlock(&inode->i_mutex); 1933 return ret; 1934 } 1935 } 1936 1937 /* zero the front end of the last page */ 1938 if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) { 1939 ret = btrfs_truncate_page(inode, offset + len, 0, 1); 1940 if (ret) { 1941 mutex_unlock(&inode->i_mutex); 1942 return ret; 1943 } 1944 } 1945 1946 if (lockend < lockstart) { 1947 mutex_unlock(&inode->i_mutex); 1948 return 0; 1949 } 1950 1951 while (1) { 1952 struct btrfs_ordered_extent *ordered; 1953 1954 truncate_pagecache_range(inode, lockstart, lockend); 1955 1956 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 1957 0, &cached_state); 1958 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 1959 1960 /* 1961 * We need to make sure we have no ordered extents in this range 1962 * and nobody raced in and read a page in this range, if we did 1963 * we need to try again. 1964 */ 1965 if ((!ordered || 1966 (ordered->file_offset + ordered->len < lockstart || 1967 ordered->file_offset > lockend)) && 1968 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart, 1969 lockend, EXTENT_UPTODATE, 0, 1970 cached_state)) { 1971 if (ordered) 1972 btrfs_put_ordered_extent(ordered); 1973 break; 1974 } 1975 if (ordered) 1976 btrfs_put_ordered_extent(ordered); 1977 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 1978 lockend, &cached_state, GFP_NOFS); 1979 btrfs_wait_ordered_range(inode, lockstart, 1980 lockend - lockstart + 1); 1981 } 1982 1983 path = btrfs_alloc_path(); 1984 if (!path) { 1985 ret = -ENOMEM; 1986 goto out; 1987 } 1988 1989 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 1990 if (!rsv) { 1991 ret = -ENOMEM; 1992 goto out_free; 1993 } 1994 rsv->size = btrfs_calc_trunc_metadata_size(root, 1); 1995 rsv->failfast = 1; 1996 1997 /* 1998 * 1 - update the inode 1999 * 1 - removing the extents in the range 2000 * 1 - adding the hole extent 2001 */ 2002 trans = btrfs_start_transaction(root, 3); 2003 if (IS_ERR(trans)) { 2004 err = PTR_ERR(trans); 2005 goto out_free; 2006 } 2007 2008 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 2009 min_size); 2010 BUG_ON(ret); 2011 trans->block_rsv = rsv; 2012 2013 while (cur_offset < lockend) { 2014 ret = __btrfs_drop_extents(trans, root, inode, path, 2015 cur_offset, lockend + 1, 2016 &drop_end, 1); 2017 if (ret != -ENOSPC) 2018 break; 2019 2020 trans->block_rsv = &root->fs_info->trans_block_rsv; 2021 2022 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2023 if (ret) { 2024 err = ret; 2025 break; 2026 } 2027 2028 cur_offset = drop_end; 2029 2030 ret = btrfs_update_inode(trans, root, inode); 2031 if (ret) { 2032 err = ret; 2033 break; 2034 } 2035 2036 btrfs_end_transaction(trans, root); 2037 btrfs_btree_balance_dirty(root); 2038 2039 trans = btrfs_start_transaction(root, 3); 2040 if (IS_ERR(trans)) { 2041 ret = PTR_ERR(trans); 2042 trans = NULL; 2043 break; 2044 } 2045 2046 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 2047 rsv, min_size); 2048 BUG_ON(ret); /* shouldn't happen */ 2049 trans->block_rsv = rsv; 2050 } 2051 2052 if (ret) { 2053 err = ret; 2054 goto out_trans; 2055 } 2056 2057 trans->block_rsv = &root->fs_info->trans_block_rsv; 2058 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2059 if (ret) { 2060 err = ret; 2061 goto out_trans; 2062 } 2063 2064 out_trans: 2065 if (!trans) 2066 goto out_free; 2067 2068 inode_inc_iversion(inode); 2069 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2070 2071 trans->block_rsv = &root->fs_info->trans_block_rsv; 2072 ret = btrfs_update_inode(trans, root, inode); 2073 btrfs_end_transaction(trans, root); 2074 btrfs_btree_balance_dirty(root); 2075 out_free: 2076 btrfs_free_path(path); 2077 btrfs_free_block_rsv(root, rsv); 2078 out: 2079 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2080 &cached_state, GFP_NOFS); 2081 mutex_unlock(&inode->i_mutex); 2082 if (ret && !err) 2083 err = ret; 2084 return err; 2085 } 2086 2087 static long btrfs_fallocate(struct file *file, int mode, 2088 loff_t offset, loff_t len) 2089 { 2090 struct inode *inode = file->f_path.dentry->d_inode; 2091 struct extent_state *cached_state = NULL; 2092 u64 cur_offset; 2093 u64 last_byte; 2094 u64 alloc_start; 2095 u64 alloc_end; 2096 u64 alloc_hint = 0; 2097 u64 locked_end; 2098 struct extent_map *em; 2099 int blocksize = BTRFS_I(inode)->root->sectorsize; 2100 int ret; 2101 2102 alloc_start = round_down(offset, blocksize); 2103 alloc_end = round_up(offset + len, blocksize); 2104 2105 /* Make sure we aren't being give some crap mode */ 2106 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2107 return -EOPNOTSUPP; 2108 2109 if (mode & FALLOC_FL_PUNCH_HOLE) 2110 return btrfs_punch_hole(inode, offset, len); 2111 2112 /* 2113 * Make sure we have enough space before we do the 2114 * allocation. 2115 */ 2116 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start); 2117 if (ret) 2118 return ret; 2119 2120 /* 2121 * wait for ordered IO before we have any locks. We'll loop again 2122 * below with the locks held. 2123 */ 2124 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start); 2125 2126 mutex_lock(&inode->i_mutex); 2127 ret = inode_newsize_ok(inode, alloc_end); 2128 if (ret) 2129 goto out; 2130 2131 if (alloc_start > inode->i_size) { 2132 ret = btrfs_cont_expand(inode, i_size_read(inode), 2133 alloc_start); 2134 if (ret) 2135 goto out; 2136 } 2137 2138 locked_end = alloc_end - 1; 2139 while (1) { 2140 struct btrfs_ordered_extent *ordered; 2141 2142 /* the extent lock is ordered inside the running 2143 * transaction 2144 */ 2145 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 2146 locked_end, 0, &cached_state); 2147 ordered = btrfs_lookup_first_ordered_extent(inode, 2148 alloc_end - 1); 2149 if (ordered && 2150 ordered->file_offset + ordered->len > alloc_start && 2151 ordered->file_offset < alloc_end) { 2152 btrfs_put_ordered_extent(ordered); 2153 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 2154 alloc_start, locked_end, 2155 &cached_state, GFP_NOFS); 2156 /* 2157 * we can't wait on the range with the transaction 2158 * running or with the extent lock held 2159 */ 2160 btrfs_wait_ordered_range(inode, alloc_start, 2161 alloc_end - alloc_start); 2162 } else { 2163 if (ordered) 2164 btrfs_put_ordered_extent(ordered); 2165 break; 2166 } 2167 } 2168 2169 cur_offset = alloc_start; 2170 while (1) { 2171 u64 actual_end; 2172 2173 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2174 alloc_end - cur_offset, 0); 2175 if (IS_ERR_OR_NULL(em)) { 2176 if (!em) 2177 ret = -ENOMEM; 2178 else 2179 ret = PTR_ERR(em); 2180 break; 2181 } 2182 last_byte = min(extent_map_end(em), alloc_end); 2183 actual_end = min_t(u64, extent_map_end(em), offset + len); 2184 last_byte = ALIGN(last_byte, blocksize); 2185 2186 if (em->block_start == EXTENT_MAP_HOLE || 2187 (cur_offset >= inode->i_size && 2188 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 2189 ret = btrfs_prealloc_file_range(inode, mode, cur_offset, 2190 last_byte - cur_offset, 2191 1 << inode->i_blkbits, 2192 offset + len, 2193 &alloc_hint); 2194 2195 if (ret < 0) { 2196 free_extent_map(em); 2197 break; 2198 } 2199 } else if (actual_end > inode->i_size && 2200 !(mode & FALLOC_FL_KEEP_SIZE)) { 2201 /* 2202 * We didn't need to allocate any more space, but we 2203 * still extended the size of the file so we need to 2204 * update i_size. 2205 */ 2206 inode->i_ctime = CURRENT_TIME; 2207 i_size_write(inode, actual_end); 2208 btrfs_ordered_update_i_size(inode, actual_end, NULL); 2209 } 2210 free_extent_map(em); 2211 2212 cur_offset = last_byte; 2213 if (cur_offset >= alloc_end) { 2214 ret = 0; 2215 break; 2216 } 2217 } 2218 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 2219 &cached_state, GFP_NOFS); 2220 out: 2221 mutex_unlock(&inode->i_mutex); 2222 /* Let go of our reservation. */ 2223 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start); 2224 return ret; 2225 } 2226 2227 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 2228 { 2229 struct btrfs_root *root = BTRFS_I(inode)->root; 2230 struct extent_map *em; 2231 struct extent_state *cached_state = NULL; 2232 u64 lockstart = *offset; 2233 u64 lockend = i_size_read(inode); 2234 u64 start = *offset; 2235 u64 orig_start = *offset; 2236 u64 len = i_size_read(inode); 2237 u64 last_end = 0; 2238 int ret = 0; 2239 2240 lockend = max_t(u64, root->sectorsize, lockend); 2241 if (lockend <= lockstart) 2242 lockend = lockstart + root->sectorsize; 2243 2244 len = lockend - lockstart + 1; 2245 2246 len = max_t(u64, len, root->sectorsize); 2247 if (inode->i_size == 0) 2248 return -ENXIO; 2249 2250 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0, 2251 &cached_state); 2252 2253 /* 2254 * Delalloc is such a pain. If we have a hole and we have pending 2255 * delalloc for a portion of the hole we will get back a hole that 2256 * exists for the entire range since it hasn't been actually written 2257 * yet. So to take care of this case we need to look for an extent just 2258 * before the position we want in case there is outstanding delalloc 2259 * going on here. 2260 */ 2261 if (whence == SEEK_HOLE && start != 0) { 2262 if (start <= root->sectorsize) 2263 em = btrfs_get_extent_fiemap(inode, NULL, 0, 0, 2264 root->sectorsize, 0); 2265 else 2266 em = btrfs_get_extent_fiemap(inode, NULL, 0, 2267 start - root->sectorsize, 2268 root->sectorsize, 0); 2269 if (IS_ERR(em)) { 2270 ret = PTR_ERR(em); 2271 goto out; 2272 } 2273 last_end = em->start + em->len; 2274 if (em->block_start == EXTENT_MAP_DELALLOC) 2275 last_end = min_t(u64, last_end, inode->i_size); 2276 free_extent_map(em); 2277 } 2278 2279 while (1) { 2280 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0); 2281 if (IS_ERR(em)) { 2282 ret = PTR_ERR(em); 2283 break; 2284 } 2285 2286 if (em->block_start == EXTENT_MAP_HOLE) { 2287 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { 2288 if (last_end <= orig_start) { 2289 free_extent_map(em); 2290 ret = -ENXIO; 2291 break; 2292 } 2293 } 2294 2295 if (whence == SEEK_HOLE) { 2296 *offset = start; 2297 free_extent_map(em); 2298 break; 2299 } 2300 } else { 2301 if (whence == SEEK_DATA) { 2302 if (em->block_start == EXTENT_MAP_DELALLOC) { 2303 if (start >= inode->i_size) { 2304 free_extent_map(em); 2305 ret = -ENXIO; 2306 break; 2307 } 2308 } 2309 2310 *offset = start; 2311 free_extent_map(em); 2312 break; 2313 } 2314 } 2315 2316 start = em->start + em->len; 2317 last_end = em->start + em->len; 2318 2319 if (em->block_start == EXTENT_MAP_DELALLOC) 2320 last_end = min_t(u64, last_end, inode->i_size); 2321 2322 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { 2323 free_extent_map(em); 2324 ret = -ENXIO; 2325 break; 2326 } 2327 free_extent_map(em); 2328 cond_resched(); 2329 } 2330 if (!ret) 2331 *offset = min(*offset, inode->i_size); 2332 out: 2333 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2334 &cached_state, GFP_NOFS); 2335 return ret; 2336 } 2337 2338 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 2339 { 2340 struct inode *inode = file->f_mapping->host; 2341 int ret; 2342 2343 mutex_lock(&inode->i_mutex); 2344 switch (whence) { 2345 case SEEK_END: 2346 case SEEK_CUR: 2347 offset = generic_file_llseek(file, offset, whence); 2348 goto out; 2349 case SEEK_DATA: 2350 case SEEK_HOLE: 2351 if (offset >= i_size_read(inode)) { 2352 mutex_unlock(&inode->i_mutex); 2353 return -ENXIO; 2354 } 2355 2356 ret = find_desired_extent(inode, &offset, whence); 2357 if (ret) { 2358 mutex_unlock(&inode->i_mutex); 2359 return ret; 2360 } 2361 } 2362 2363 if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) { 2364 offset = -EINVAL; 2365 goto out; 2366 } 2367 if (offset > inode->i_sb->s_maxbytes) { 2368 offset = -EINVAL; 2369 goto out; 2370 } 2371 2372 /* Special lock needed here? */ 2373 if (offset != file->f_pos) { 2374 file->f_pos = offset; 2375 file->f_version = 0; 2376 } 2377 out: 2378 mutex_unlock(&inode->i_mutex); 2379 return offset; 2380 } 2381 2382 const struct file_operations btrfs_file_operations = { 2383 .llseek = btrfs_file_llseek, 2384 .read = do_sync_read, 2385 .write = do_sync_write, 2386 .aio_read = generic_file_aio_read, 2387 .splice_read = generic_file_splice_read, 2388 .aio_write = btrfs_file_aio_write, 2389 .mmap = btrfs_file_mmap, 2390 .open = generic_file_open, 2391 .release = btrfs_release_file, 2392 .fsync = btrfs_sync_file, 2393 .fallocate = btrfs_fallocate, 2394 .unlocked_ioctl = btrfs_ioctl, 2395 #ifdef CONFIG_COMPAT 2396 .compat_ioctl = btrfs_ioctl, 2397 #endif 2398 }; 2399 2400 void btrfs_auto_defrag_exit(void) 2401 { 2402 if (btrfs_inode_defrag_cachep) 2403 kmem_cache_destroy(btrfs_inode_defrag_cachep); 2404 } 2405 2406 int btrfs_auto_defrag_init(void) 2407 { 2408 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 2409 sizeof(struct inode_defrag), 0, 2410 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 2411 NULL); 2412 if (!btrfs_inode_defrag_cachep) 2413 return -ENOMEM; 2414 2415 return 0; 2416 } 2417