1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include "ctree.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "btrfs_inode.h" 23 #include "print-tree.h" 24 #include "tree-log.h" 25 #include "locking.h" 26 #include "volumes.h" 27 #include "qgroup.h" 28 #include "compression.h" 29 30 static struct kmem_cache *btrfs_inode_defrag_cachep; 31 /* 32 * when auto defrag is enabled we 33 * queue up these defrag structs to remember which 34 * inodes need defragging passes 35 */ 36 struct inode_defrag { 37 struct rb_node rb_node; 38 /* objectid */ 39 u64 ino; 40 /* 41 * transid where the defrag was added, we search for 42 * extents newer than this 43 */ 44 u64 transid; 45 46 /* root objectid */ 47 u64 root; 48 49 /* last offset we were able to defrag */ 50 u64 last_offset; 51 52 /* if we've wrapped around back to zero once already */ 53 int cycled; 54 }; 55 56 static int __compare_inode_defrag(struct inode_defrag *defrag1, 57 struct inode_defrag *defrag2) 58 { 59 if (defrag1->root > defrag2->root) 60 return 1; 61 else if (defrag1->root < defrag2->root) 62 return -1; 63 else if (defrag1->ino > defrag2->ino) 64 return 1; 65 else if (defrag1->ino < defrag2->ino) 66 return -1; 67 else 68 return 0; 69 } 70 71 /* pop a record for an inode into the defrag tree. The lock 72 * must be held already 73 * 74 * If you're inserting a record for an older transid than an 75 * existing record, the transid already in the tree is lowered 76 * 77 * If an existing record is found the defrag item you 78 * pass in is freed 79 */ 80 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 81 struct inode_defrag *defrag) 82 { 83 struct btrfs_fs_info *fs_info = inode->root->fs_info; 84 struct inode_defrag *entry; 85 struct rb_node **p; 86 struct rb_node *parent = NULL; 87 int ret; 88 89 p = &fs_info->defrag_inodes.rb_node; 90 while (*p) { 91 parent = *p; 92 entry = rb_entry(parent, struct inode_defrag, rb_node); 93 94 ret = __compare_inode_defrag(defrag, entry); 95 if (ret < 0) 96 p = &parent->rb_left; 97 else if (ret > 0) 98 p = &parent->rb_right; 99 else { 100 /* if we're reinserting an entry for 101 * an old defrag run, make sure to 102 * lower the transid of our existing record 103 */ 104 if (defrag->transid < entry->transid) 105 entry->transid = defrag->transid; 106 if (defrag->last_offset > entry->last_offset) 107 entry->last_offset = defrag->last_offset; 108 return -EEXIST; 109 } 110 } 111 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 112 rb_link_node(&defrag->rb_node, parent, p); 113 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 114 return 0; 115 } 116 117 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 118 { 119 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 120 return 0; 121 122 if (btrfs_fs_closing(fs_info)) 123 return 0; 124 125 return 1; 126 } 127 128 /* 129 * insert a defrag record for this inode if auto defrag is 130 * enabled 131 */ 132 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 133 struct btrfs_inode *inode) 134 { 135 struct btrfs_root *root = inode->root; 136 struct btrfs_fs_info *fs_info = root->fs_info; 137 struct inode_defrag *defrag; 138 u64 transid; 139 int ret; 140 141 if (!__need_auto_defrag(fs_info)) 142 return 0; 143 144 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 145 return 0; 146 147 if (trans) 148 transid = trans->transid; 149 else 150 transid = inode->root->last_trans; 151 152 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 153 if (!defrag) 154 return -ENOMEM; 155 156 defrag->ino = btrfs_ino(inode); 157 defrag->transid = transid; 158 defrag->root = root->root_key.objectid; 159 160 spin_lock(&fs_info->defrag_inodes_lock); 161 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 162 /* 163 * If we set IN_DEFRAG flag and evict the inode from memory, 164 * and then re-read this inode, this new inode doesn't have 165 * IN_DEFRAG flag. At the case, we may find the existed defrag. 166 */ 167 ret = __btrfs_add_inode_defrag(inode, defrag); 168 if (ret) 169 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 170 } else { 171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 172 } 173 spin_unlock(&fs_info->defrag_inodes_lock); 174 return 0; 175 } 176 177 /* 178 * Requeue the defrag object. If there is a defrag object that points to 179 * the same inode in the tree, we will merge them together (by 180 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 181 */ 182 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, 183 struct inode_defrag *defrag) 184 { 185 struct btrfs_fs_info *fs_info = inode->root->fs_info; 186 int ret; 187 188 if (!__need_auto_defrag(fs_info)) 189 goto out; 190 191 /* 192 * Here we don't check the IN_DEFRAG flag, because we need merge 193 * them together. 194 */ 195 spin_lock(&fs_info->defrag_inodes_lock); 196 ret = __btrfs_add_inode_defrag(inode, defrag); 197 spin_unlock(&fs_info->defrag_inodes_lock); 198 if (ret) 199 goto out; 200 return; 201 out: 202 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 203 } 204 205 /* 206 * pick the defragable inode that we want, if it doesn't exist, we will get 207 * the next one. 208 */ 209 static struct inode_defrag * 210 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 211 { 212 struct inode_defrag *entry = NULL; 213 struct inode_defrag tmp; 214 struct rb_node *p; 215 struct rb_node *parent = NULL; 216 int ret; 217 218 tmp.ino = ino; 219 tmp.root = root; 220 221 spin_lock(&fs_info->defrag_inodes_lock); 222 p = fs_info->defrag_inodes.rb_node; 223 while (p) { 224 parent = p; 225 entry = rb_entry(parent, struct inode_defrag, rb_node); 226 227 ret = __compare_inode_defrag(&tmp, entry); 228 if (ret < 0) 229 p = parent->rb_left; 230 else if (ret > 0) 231 p = parent->rb_right; 232 else 233 goto out; 234 } 235 236 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 237 parent = rb_next(parent); 238 if (parent) 239 entry = rb_entry(parent, struct inode_defrag, rb_node); 240 else 241 entry = NULL; 242 } 243 out: 244 if (entry) 245 rb_erase(parent, &fs_info->defrag_inodes); 246 spin_unlock(&fs_info->defrag_inodes_lock); 247 return entry; 248 } 249 250 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 251 { 252 struct inode_defrag *defrag; 253 struct rb_node *node; 254 255 spin_lock(&fs_info->defrag_inodes_lock); 256 node = rb_first(&fs_info->defrag_inodes); 257 while (node) { 258 rb_erase(node, &fs_info->defrag_inodes); 259 defrag = rb_entry(node, struct inode_defrag, rb_node); 260 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 261 262 cond_resched_lock(&fs_info->defrag_inodes_lock); 263 264 node = rb_first(&fs_info->defrag_inodes); 265 } 266 spin_unlock(&fs_info->defrag_inodes_lock); 267 } 268 269 #define BTRFS_DEFRAG_BATCH 1024 270 271 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 272 struct inode_defrag *defrag) 273 { 274 struct btrfs_root *inode_root; 275 struct inode *inode; 276 struct btrfs_key key; 277 struct btrfs_ioctl_defrag_range_args range; 278 int num_defrag; 279 int index; 280 int ret; 281 282 /* get the inode */ 283 key.objectid = defrag->root; 284 key.type = BTRFS_ROOT_ITEM_KEY; 285 key.offset = (u64)-1; 286 287 index = srcu_read_lock(&fs_info->subvol_srcu); 288 289 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 290 if (IS_ERR(inode_root)) { 291 ret = PTR_ERR(inode_root); 292 goto cleanup; 293 } 294 295 key.objectid = defrag->ino; 296 key.type = BTRFS_INODE_ITEM_KEY; 297 key.offset = 0; 298 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 299 if (IS_ERR(inode)) { 300 ret = PTR_ERR(inode); 301 goto cleanup; 302 } 303 srcu_read_unlock(&fs_info->subvol_srcu, index); 304 305 /* do a chunk of defrag */ 306 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 307 memset(&range, 0, sizeof(range)); 308 range.len = (u64)-1; 309 range.start = defrag->last_offset; 310 311 sb_start_write(fs_info->sb); 312 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 313 BTRFS_DEFRAG_BATCH); 314 sb_end_write(fs_info->sb); 315 /* 316 * if we filled the whole defrag batch, there 317 * must be more work to do. Queue this defrag 318 * again 319 */ 320 if (num_defrag == BTRFS_DEFRAG_BATCH) { 321 defrag->last_offset = range.start; 322 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 323 } else if (defrag->last_offset && !defrag->cycled) { 324 /* 325 * we didn't fill our defrag batch, but 326 * we didn't start at zero. Make sure we loop 327 * around to the start of the file. 328 */ 329 defrag->last_offset = 0; 330 defrag->cycled = 1; 331 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 332 } else { 333 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 334 } 335 336 iput(inode); 337 return 0; 338 cleanup: 339 srcu_read_unlock(&fs_info->subvol_srcu, index); 340 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 341 return ret; 342 } 343 344 /* 345 * run through the list of inodes in the FS that need 346 * defragging 347 */ 348 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 349 { 350 struct inode_defrag *defrag; 351 u64 first_ino = 0; 352 u64 root_objectid = 0; 353 354 atomic_inc(&fs_info->defrag_running); 355 while (1) { 356 /* Pause the auto defragger. */ 357 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 358 &fs_info->fs_state)) 359 break; 360 361 if (!__need_auto_defrag(fs_info)) 362 break; 363 364 /* find an inode to defrag */ 365 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 366 first_ino); 367 if (!defrag) { 368 if (root_objectid || first_ino) { 369 root_objectid = 0; 370 first_ino = 0; 371 continue; 372 } else { 373 break; 374 } 375 } 376 377 first_ino = defrag->ino + 1; 378 root_objectid = defrag->root; 379 380 __btrfs_run_defrag_inode(fs_info, defrag); 381 } 382 atomic_dec(&fs_info->defrag_running); 383 384 /* 385 * during unmount, we use the transaction_wait queue to 386 * wait for the defragger to stop 387 */ 388 wake_up(&fs_info->transaction_wait); 389 return 0; 390 } 391 392 /* simple helper to fault in pages and copy. This should go away 393 * and be replaced with calls into generic code. 394 */ 395 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 396 struct page **prepared_pages, 397 struct iov_iter *i) 398 { 399 size_t copied = 0; 400 size_t total_copied = 0; 401 int pg = 0; 402 int offset = offset_in_page(pos); 403 404 while (write_bytes > 0) { 405 size_t count = min_t(size_t, 406 PAGE_SIZE - offset, write_bytes); 407 struct page *page = prepared_pages[pg]; 408 /* 409 * Copy data from userspace to the current page 410 */ 411 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 412 413 /* Flush processor's dcache for this page */ 414 flush_dcache_page(page); 415 416 /* 417 * if we get a partial write, we can end up with 418 * partially up to date pages. These add 419 * a lot of complexity, so make sure they don't 420 * happen by forcing this copy to be retried. 421 * 422 * The rest of the btrfs_file_write code will fall 423 * back to page at a time copies after we return 0. 424 */ 425 if (!PageUptodate(page) && copied < count) 426 copied = 0; 427 428 iov_iter_advance(i, copied); 429 write_bytes -= copied; 430 total_copied += copied; 431 432 /* Return to btrfs_file_write_iter to fault page */ 433 if (unlikely(copied == 0)) 434 break; 435 436 if (copied < PAGE_SIZE - offset) { 437 offset += copied; 438 } else { 439 pg++; 440 offset = 0; 441 } 442 } 443 return total_copied; 444 } 445 446 /* 447 * unlocks pages after btrfs_file_write is done with them 448 */ 449 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 450 { 451 size_t i; 452 for (i = 0; i < num_pages; i++) { 453 /* page checked is some magic around finding pages that 454 * have been modified without going through btrfs_set_page_dirty 455 * clear it here. There should be no need to mark the pages 456 * accessed as prepare_pages should have marked them accessed 457 * in prepare_pages via find_or_create_page() 458 */ 459 ClearPageChecked(pages[i]); 460 unlock_page(pages[i]); 461 put_page(pages[i]); 462 } 463 } 464 465 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 466 const u64 start, 467 const u64 len, 468 struct extent_state **cached_state) 469 { 470 u64 search_start = start; 471 const u64 end = start + len - 1; 472 473 while (search_start < end) { 474 const u64 search_len = end - search_start + 1; 475 struct extent_map *em; 476 u64 em_len; 477 int ret = 0; 478 479 em = btrfs_get_extent(inode, NULL, 0, search_start, 480 search_len, 0); 481 if (IS_ERR(em)) 482 return PTR_ERR(em); 483 484 if (em->block_start != EXTENT_MAP_HOLE) 485 goto next; 486 487 em_len = em->len; 488 if (em->start < search_start) 489 em_len -= search_start - em->start; 490 if (em_len > search_len) 491 em_len = search_len; 492 493 ret = set_extent_bit(&inode->io_tree, search_start, 494 search_start + em_len - 1, 495 EXTENT_DELALLOC_NEW, 496 NULL, cached_state, GFP_NOFS); 497 next: 498 search_start = extent_map_end(em); 499 free_extent_map(em); 500 if (ret) 501 return ret; 502 } 503 return 0; 504 } 505 506 /* 507 * after copy_from_user, pages need to be dirtied and we need to make 508 * sure holes are created between the current EOF and the start of 509 * any next extents (if required). 510 * 511 * this also makes the decision about creating an inline extent vs 512 * doing real data extents, marking pages dirty and delalloc as required. 513 */ 514 int btrfs_dirty_pages(struct inode *inode, struct page **pages, 515 size_t num_pages, loff_t pos, size_t write_bytes, 516 struct extent_state **cached) 517 { 518 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 519 int err = 0; 520 int i; 521 u64 num_bytes; 522 u64 start_pos; 523 u64 end_of_last_block; 524 u64 end_pos = pos + write_bytes; 525 loff_t isize = i_size_read(inode); 526 unsigned int extra_bits = 0; 527 528 start_pos = pos & ~((u64) fs_info->sectorsize - 1); 529 num_bytes = round_up(write_bytes + pos - start_pos, 530 fs_info->sectorsize); 531 532 end_of_last_block = start_pos + num_bytes - 1; 533 534 /* 535 * The pages may have already been dirty, clear out old accounting so 536 * we can set things up properly 537 */ 538 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block, 539 EXTENT_DIRTY | EXTENT_DELALLOC | 540 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, cached); 541 542 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) { 543 if (start_pos >= isize && 544 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) { 545 /* 546 * There can't be any extents following eof in this case 547 * so just set the delalloc new bit for the range 548 * directly. 549 */ 550 extra_bits |= EXTENT_DELALLOC_NEW; 551 } else { 552 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode), 553 start_pos, 554 num_bytes, cached); 555 if (err) 556 return err; 557 } 558 } 559 560 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 561 extra_bits, cached, 0); 562 if (err) 563 return err; 564 565 for (i = 0; i < num_pages; i++) { 566 struct page *p = pages[i]; 567 SetPageUptodate(p); 568 ClearPageChecked(p); 569 set_page_dirty(p); 570 } 571 572 /* 573 * we've only changed i_size in ram, and we haven't updated 574 * the disk i_size. There is no need to log the inode 575 * at this time. 576 */ 577 if (end_pos > isize) 578 i_size_write(inode, end_pos); 579 return 0; 580 } 581 582 /* 583 * this drops all the extents in the cache that intersect the range 584 * [start, end]. Existing extents are split as required. 585 */ 586 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 587 int skip_pinned) 588 { 589 struct extent_map *em; 590 struct extent_map *split = NULL; 591 struct extent_map *split2 = NULL; 592 struct extent_map_tree *em_tree = &inode->extent_tree; 593 u64 len = end - start + 1; 594 u64 gen; 595 int ret; 596 int testend = 1; 597 unsigned long flags; 598 int compressed = 0; 599 bool modified; 600 601 WARN_ON(end < start); 602 if (end == (u64)-1) { 603 len = (u64)-1; 604 testend = 0; 605 } 606 while (1) { 607 int no_splits = 0; 608 609 modified = false; 610 if (!split) 611 split = alloc_extent_map(); 612 if (!split2) 613 split2 = alloc_extent_map(); 614 if (!split || !split2) 615 no_splits = 1; 616 617 write_lock(&em_tree->lock); 618 em = lookup_extent_mapping(em_tree, start, len); 619 if (!em) { 620 write_unlock(&em_tree->lock); 621 break; 622 } 623 flags = em->flags; 624 gen = em->generation; 625 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 626 if (testend && em->start + em->len >= start + len) { 627 free_extent_map(em); 628 write_unlock(&em_tree->lock); 629 break; 630 } 631 start = em->start + em->len; 632 if (testend) 633 len = start + len - (em->start + em->len); 634 free_extent_map(em); 635 write_unlock(&em_tree->lock); 636 continue; 637 } 638 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 639 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 640 clear_bit(EXTENT_FLAG_LOGGING, &flags); 641 modified = !list_empty(&em->list); 642 if (no_splits) 643 goto next; 644 645 if (em->start < start) { 646 split->start = em->start; 647 split->len = start - em->start; 648 649 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 650 split->orig_start = em->orig_start; 651 split->block_start = em->block_start; 652 653 if (compressed) 654 split->block_len = em->block_len; 655 else 656 split->block_len = split->len; 657 split->orig_block_len = max(split->block_len, 658 em->orig_block_len); 659 split->ram_bytes = em->ram_bytes; 660 } else { 661 split->orig_start = split->start; 662 split->block_len = 0; 663 split->block_start = em->block_start; 664 split->orig_block_len = 0; 665 split->ram_bytes = split->len; 666 } 667 668 split->generation = gen; 669 split->bdev = em->bdev; 670 split->flags = flags; 671 split->compress_type = em->compress_type; 672 replace_extent_mapping(em_tree, em, split, modified); 673 free_extent_map(split); 674 split = split2; 675 split2 = NULL; 676 } 677 if (testend && em->start + em->len > start + len) { 678 u64 diff = start + len - em->start; 679 680 split->start = start + len; 681 split->len = em->start + em->len - (start + len); 682 split->bdev = em->bdev; 683 split->flags = flags; 684 split->compress_type = em->compress_type; 685 split->generation = gen; 686 687 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 688 split->orig_block_len = max(em->block_len, 689 em->orig_block_len); 690 691 split->ram_bytes = em->ram_bytes; 692 if (compressed) { 693 split->block_len = em->block_len; 694 split->block_start = em->block_start; 695 split->orig_start = em->orig_start; 696 } else { 697 split->block_len = split->len; 698 split->block_start = em->block_start 699 + diff; 700 split->orig_start = em->orig_start; 701 } 702 } else { 703 split->ram_bytes = split->len; 704 split->orig_start = split->start; 705 split->block_len = 0; 706 split->block_start = em->block_start; 707 split->orig_block_len = 0; 708 } 709 710 if (extent_map_in_tree(em)) { 711 replace_extent_mapping(em_tree, em, split, 712 modified); 713 } else { 714 ret = add_extent_mapping(em_tree, split, 715 modified); 716 ASSERT(ret == 0); /* Logic error */ 717 } 718 free_extent_map(split); 719 split = NULL; 720 } 721 next: 722 if (extent_map_in_tree(em)) 723 remove_extent_mapping(em_tree, em); 724 write_unlock(&em_tree->lock); 725 726 /* once for us */ 727 free_extent_map(em); 728 /* once for the tree*/ 729 free_extent_map(em); 730 } 731 if (split) 732 free_extent_map(split); 733 if (split2) 734 free_extent_map(split2); 735 } 736 737 /* 738 * this is very complex, but the basic idea is to drop all extents 739 * in the range start - end. hint_block is filled in with a block number 740 * that would be a good hint to the block allocator for this file. 741 * 742 * If an extent intersects the range but is not entirely inside the range 743 * it is either truncated or split. Anything entirely inside the range 744 * is deleted from the tree. 745 */ 746 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 747 struct btrfs_root *root, struct inode *inode, 748 struct btrfs_path *path, u64 start, u64 end, 749 u64 *drop_end, int drop_cache, 750 int replace_extent, 751 u32 extent_item_size, 752 int *key_inserted) 753 { 754 struct btrfs_fs_info *fs_info = root->fs_info; 755 struct extent_buffer *leaf; 756 struct btrfs_file_extent_item *fi; 757 struct btrfs_ref ref = { 0 }; 758 struct btrfs_key key; 759 struct btrfs_key new_key; 760 u64 ino = btrfs_ino(BTRFS_I(inode)); 761 u64 search_start = start; 762 u64 disk_bytenr = 0; 763 u64 num_bytes = 0; 764 u64 extent_offset = 0; 765 u64 extent_end = 0; 766 u64 last_end = start; 767 int del_nr = 0; 768 int del_slot = 0; 769 int extent_type; 770 int recow; 771 int ret; 772 int modify_tree = -1; 773 int update_refs; 774 int found = 0; 775 int leafs_visited = 0; 776 777 if (drop_cache) 778 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0); 779 780 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 781 modify_tree = 0; 782 783 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 784 root == fs_info->tree_root); 785 while (1) { 786 recow = 0; 787 ret = btrfs_lookup_file_extent(trans, root, path, ino, 788 search_start, modify_tree); 789 if (ret < 0) 790 break; 791 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 792 leaf = path->nodes[0]; 793 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 794 if (key.objectid == ino && 795 key.type == BTRFS_EXTENT_DATA_KEY) 796 path->slots[0]--; 797 } 798 ret = 0; 799 leafs_visited++; 800 next_slot: 801 leaf = path->nodes[0]; 802 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 803 BUG_ON(del_nr > 0); 804 ret = btrfs_next_leaf(root, path); 805 if (ret < 0) 806 break; 807 if (ret > 0) { 808 ret = 0; 809 break; 810 } 811 leafs_visited++; 812 leaf = path->nodes[0]; 813 recow = 1; 814 } 815 816 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 817 818 if (key.objectid > ino) 819 break; 820 if (WARN_ON_ONCE(key.objectid < ino) || 821 key.type < BTRFS_EXTENT_DATA_KEY) { 822 ASSERT(del_nr == 0); 823 path->slots[0]++; 824 goto next_slot; 825 } 826 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 827 break; 828 829 fi = btrfs_item_ptr(leaf, path->slots[0], 830 struct btrfs_file_extent_item); 831 extent_type = btrfs_file_extent_type(leaf, fi); 832 833 if (extent_type == BTRFS_FILE_EXTENT_REG || 834 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 835 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 836 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 837 extent_offset = btrfs_file_extent_offset(leaf, fi); 838 extent_end = key.offset + 839 btrfs_file_extent_num_bytes(leaf, fi); 840 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 841 extent_end = key.offset + 842 btrfs_file_extent_ram_bytes(leaf, fi); 843 } else { 844 /* can't happen */ 845 BUG(); 846 } 847 848 /* 849 * Don't skip extent items representing 0 byte lengths. They 850 * used to be created (bug) if while punching holes we hit 851 * -ENOSPC condition. So if we find one here, just ensure we 852 * delete it, otherwise we would insert a new file extent item 853 * with the same key (offset) as that 0 bytes length file 854 * extent item in the call to setup_items_for_insert() later 855 * in this function. 856 */ 857 if (extent_end == key.offset && extent_end >= search_start) { 858 last_end = extent_end; 859 goto delete_extent_item; 860 } 861 862 if (extent_end <= search_start) { 863 path->slots[0]++; 864 goto next_slot; 865 } 866 867 found = 1; 868 search_start = max(key.offset, start); 869 if (recow || !modify_tree) { 870 modify_tree = -1; 871 btrfs_release_path(path); 872 continue; 873 } 874 875 /* 876 * | - range to drop - | 877 * | -------- extent -------- | 878 */ 879 if (start > key.offset && end < extent_end) { 880 BUG_ON(del_nr > 0); 881 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 882 ret = -EOPNOTSUPP; 883 break; 884 } 885 886 memcpy(&new_key, &key, sizeof(new_key)); 887 new_key.offset = start; 888 ret = btrfs_duplicate_item(trans, root, path, 889 &new_key); 890 if (ret == -EAGAIN) { 891 btrfs_release_path(path); 892 continue; 893 } 894 if (ret < 0) 895 break; 896 897 leaf = path->nodes[0]; 898 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 899 struct btrfs_file_extent_item); 900 btrfs_set_file_extent_num_bytes(leaf, fi, 901 start - key.offset); 902 903 fi = btrfs_item_ptr(leaf, path->slots[0], 904 struct btrfs_file_extent_item); 905 906 extent_offset += start - key.offset; 907 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 908 btrfs_set_file_extent_num_bytes(leaf, fi, 909 extent_end - start); 910 btrfs_mark_buffer_dirty(leaf); 911 912 if (update_refs && disk_bytenr > 0) { 913 btrfs_init_generic_ref(&ref, 914 BTRFS_ADD_DELAYED_REF, 915 disk_bytenr, num_bytes, 0); 916 btrfs_init_data_ref(&ref, 917 root->root_key.objectid, 918 new_key.objectid, 919 start - extent_offset); 920 ret = btrfs_inc_extent_ref(trans, &ref); 921 BUG_ON(ret); /* -ENOMEM */ 922 } 923 key.offset = start; 924 } 925 /* 926 * From here on out we will have actually dropped something, so 927 * last_end can be updated. 928 */ 929 last_end = extent_end; 930 931 /* 932 * | ---- range to drop ----- | 933 * | -------- extent -------- | 934 */ 935 if (start <= key.offset && end < extent_end) { 936 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 937 ret = -EOPNOTSUPP; 938 break; 939 } 940 941 memcpy(&new_key, &key, sizeof(new_key)); 942 new_key.offset = end; 943 btrfs_set_item_key_safe(fs_info, path, &new_key); 944 945 extent_offset += end - key.offset; 946 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 947 btrfs_set_file_extent_num_bytes(leaf, fi, 948 extent_end - end); 949 btrfs_mark_buffer_dirty(leaf); 950 if (update_refs && disk_bytenr > 0) 951 inode_sub_bytes(inode, end - key.offset); 952 break; 953 } 954 955 search_start = extent_end; 956 /* 957 * | ---- range to drop ----- | 958 * | -------- extent -------- | 959 */ 960 if (start > key.offset && end >= extent_end) { 961 BUG_ON(del_nr > 0); 962 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 963 ret = -EOPNOTSUPP; 964 break; 965 } 966 967 btrfs_set_file_extent_num_bytes(leaf, fi, 968 start - key.offset); 969 btrfs_mark_buffer_dirty(leaf); 970 if (update_refs && disk_bytenr > 0) 971 inode_sub_bytes(inode, extent_end - start); 972 if (end == extent_end) 973 break; 974 975 path->slots[0]++; 976 goto next_slot; 977 } 978 979 /* 980 * | ---- range to drop ----- | 981 * | ------ extent ------ | 982 */ 983 if (start <= key.offset && end >= extent_end) { 984 delete_extent_item: 985 if (del_nr == 0) { 986 del_slot = path->slots[0]; 987 del_nr = 1; 988 } else { 989 BUG_ON(del_slot + del_nr != path->slots[0]); 990 del_nr++; 991 } 992 993 if (update_refs && 994 extent_type == BTRFS_FILE_EXTENT_INLINE) { 995 inode_sub_bytes(inode, 996 extent_end - key.offset); 997 extent_end = ALIGN(extent_end, 998 fs_info->sectorsize); 999 } else if (update_refs && disk_bytenr > 0) { 1000 btrfs_init_generic_ref(&ref, 1001 BTRFS_DROP_DELAYED_REF, 1002 disk_bytenr, num_bytes, 0); 1003 btrfs_init_data_ref(&ref, 1004 root->root_key.objectid, 1005 key.objectid, 1006 key.offset - extent_offset); 1007 ret = btrfs_free_extent(trans, &ref); 1008 BUG_ON(ret); /* -ENOMEM */ 1009 inode_sub_bytes(inode, 1010 extent_end - key.offset); 1011 } 1012 1013 if (end == extent_end) 1014 break; 1015 1016 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 1017 path->slots[0]++; 1018 goto next_slot; 1019 } 1020 1021 ret = btrfs_del_items(trans, root, path, del_slot, 1022 del_nr); 1023 if (ret) { 1024 btrfs_abort_transaction(trans, ret); 1025 break; 1026 } 1027 1028 del_nr = 0; 1029 del_slot = 0; 1030 1031 btrfs_release_path(path); 1032 continue; 1033 } 1034 1035 BUG(); 1036 } 1037 1038 if (!ret && del_nr > 0) { 1039 /* 1040 * Set path->slots[0] to first slot, so that after the delete 1041 * if items are move off from our leaf to its immediate left or 1042 * right neighbor leafs, we end up with a correct and adjusted 1043 * path->slots[0] for our insertion (if replace_extent != 0). 1044 */ 1045 path->slots[0] = del_slot; 1046 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1047 if (ret) 1048 btrfs_abort_transaction(trans, ret); 1049 } 1050 1051 leaf = path->nodes[0]; 1052 /* 1053 * If btrfs_del_items() was called, it might have deleted a leaf, in 1054 * which case it unlocked our path, so check path->locks[0] matches a 1055 * write lock. 1056 */ 1057 if (!ret && replace_extent && leafs_visited == 1 && 1058 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 1059 path->locks[0] == BTRFS_WRITE_LOCK) && 1060 btrfs_leaf_free_space(leaf) >= 1061 sizeof(struct btrfs_item) + extent_item_size) { 1062 1063 key.objectid = ino; 1064 key.type = BTRFS_EXTENT_DATA_KEY; 1065 key.offset = start; 1066 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 1067 struct btrfs_key slot_key; 1068 1069 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 1070 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1071 path->slots[0]++; 1072 } 1073 setup_items_for_insert(root, path, &key, 1074 &extent_item_size, 1075 extent_item_size, 1076 sizeof(struct btrfs_item) + 1077 extent_item_size, 1); 1078 *key_inserted = 1; 1079 } 1080 1081 if (!replace_extent || !(*key_inserted)) 1082 btrfs_release_path(path); 1083 if (drop_end) 1084 *drop_end = found ? min(end, last_end) : end; 1085 return ret; 1086 } 1087 1088 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1089 struct btrfs_root *root, struct inode *inode, u64 start, 1090 u64 end, int drop_cache) 1091 { 1092 struct btrfs_path *path; 1093 int ret; 1094 1095 path = btrfs_alloc_path(); 1096 if (!path) 1097 return -ENOMEM; 1098 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1099 drop_cache, 0, 0, NULL); 1100 btrfs_free_path(path); 1101 return ret; 1102 } 1103 1104 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1105 u64 objectid, u64 bytenr, u64 orig_offset, 1106 u64 *start, u64 *end) 1107 { 1108 struct btrfs_file_extent_item *fi; 1109 struct btrfs_key key; 1110 u64 extent_end; 1111 1112 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1113 return 0; 1114 1115 btrfs_item_key_to_cpu(leaf, &key, slot); 1116 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1117 return 0; 1118 1119 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1120 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1121 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1122 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1123 btrfs_file_extent_compression(leaf, fi) || 1124 btrfs_file_extent_encryption(leaf, fi) || 1125 btrfs_file_extent_other_encoding(leaf, fi)) 1126 return 0; 1127 1128 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1129 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1130 return 0; 1131 1132 *start = key.offset; 1133 *end = extent_end; 1134 return 1; 1135 } 1136 1137 /* 1138 * Mark extent in the range start - end as written. 1139 * 1140 * This changes extent type from 'pre-allocated' to 'regular'. If only 1141 * part of extent is marked as written, the extent will be split into 1142 * two or three. 1143 */ 1144 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1145 struct btrfs_inode *inode, u64 start, u64 end) 1146 { 1147 struct btrfs_fs_info *fs_info = trans->fs_info; 1148 struct btrfs_root *root = inode->root; 1149 struct extent_buffer *leaf; 1150 struct btrfs_path *path; 1151 struct btrfs_file_extent_item *fi; 1152 struct btrfs_ref ref = { 0 }; 1153 struct btrfs_key key; 1154 struct btrfs_key new_key; 1155 u64 bytenr; 1156 u64 num_bytes; 1157 u64 extent_end; 1158 u64 orig_offset; 1159 u64 other_start; 1160 u64 other_end; 1161 u64 split; 1162 int del_nr = 0; 1163 int del_slot = 0; 1164 int recow; 1165 int ret; 1166 u64 ino = btrfs_ino(inode); 1167 1168 path = btrfs_alloc_path(); 1169 if (!path) 1170 return -ENOMEM; 1171 again: 1172 recow = 0; 1173 split = start; 1174 key.objectid = ino; 1175 key.type = BTRFS_EXTENT_DATA_KEY; 1176 key.offset = split; 1177 1178 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1179 if (ret < 0) 1180 goto out; 1181 if (ret > 0 && path->slots[0] > 0) 1182 path->slots[0]--; 1183 1184 leaf = path->nodes[0]; 1185 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1186 if (key.objectid != ino || 1187 key.type != BTRFS_EXTENT_DATA_KEY) { 1188 ret = -EINVAL; 1189 btrfs_abort_transaction(trans, ret); 1190 goto out; 1191 } 1192 fi = btrfs_item_ptr(leaf, path->slots[0], 1193 struct btrfs_file_extent_item); 1194 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1195 ret = -EINVAL; 1196 btrfs_abort_transaction(trans, ret); 1197 goto out; 1198 } 1199 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1200 if (key.offset > start || extent_end < end) { 1201 ret = -EINVAL; 1202 btrfs_abort_transaction(trans, ret); 1203 goto out; 1204 } 1205 1206 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1207 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1208 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1209 memcpy(&new_key, &key, sizeof(new_key)); 1210 1211 if (start == key.offset && end < extent_end) { 1212 other_start = 0; 1213 other_end = start; 1214 if (extent_mergeable(leaf, path->slots[0] - 1, 1215 ino, bytenr, orig_offset, 1216 &other_start, &other_end)) { 1217 new_key.offset = end; 1218 btrfs_set_item_key_safe(fs_info, path, &new_key); 1219 fi = btrfs_item_ptr(leaf, path->slots[0], 1220 struct btrfs_file_extent_item); 1221 btrfs_set_file_extent_generation(leaf, fi, 1222 trans->transid); 1223 btrfs_set_file_extent_num_bytes(leaf, fi, 1224 extent_end - end); 1225 btrfs_set_file_extent_offset(leaf, fi, 1226 end - orig_offset); 1227 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1228 struct btrfs_file_extent_item); 1229 btrfs_set_file_extent_generation(leaf, fi, 1230 trans->transid); 1231 btrfs_set_file_extent_num_bytes(leaf, fi, 1232 end - other_start); 1233 btrfs_mark_buffer_dirty(leaf); 1234 goto out; 1235 } 1236 } 1237 1238 if (start > key.offset && end == extent_end) { 1239 other_start = end; 1240 other_end = 0; 1241 if (extent_mergeable(leaf, path->slots[0] + 1, 1242 ino, bytenr, orig_offset, 1243 &other_start, &other_end)) { 1244 fi = btrfs_item_ptr(leaf, path->slots[0], 1245 struct btrfs_file_extent_item); 1246 btrfs_set_file_extent_num_bytes(leaf, fi, 1247 start - key.offset); 1248 btrfs_set_file_extent_generation(leaf, fi, 1249 trans->transid); 1250 path->slots[0]++; 1251 new_key.offset = start; 1252 btrfs_set_item_key_safe(fs_info, path, &new_key); 1253 1254 fi = btrfs_item_ptr(leaf, path->slots[0], 1255 struct btrfs_file_extent_item); 1256 btrfs_set_file_extent_generation(leaf, fi, 1257 trans->transid); 1258 btrfs_set_file_extent_num_bytes(leaf, fi, 1259 other_end - start); 1260 btrfs_set_file_extent_offset(leaf, fi, 1261 start - orig_offset); 1262 btrfs_mark_buffer_dirty(leaf); 1263 goto out; 1264 } 1265 } 1266 1267 while (start > key.offset || end < extent_end) { 1268 if (key.offset == start) 1269 split = end; 1270 1271 new_key.offset = split; 1272 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1273 if (ret == -EAGAIN) { 1274 btrfs_release_path(path); 1275 goto again; 1276 } 1277 if (ret < 0) { 1278 btrfs_abort_transaction(trans, ret); 1279 goto out; 1280 } 1281 1282 leaf = path->nodes[0]; 1283 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1284 struct btrfs_file_extent_item); 1285 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1286 btrfs_set_file_extent_num_bytes(leaf, fi, 1287 split - key.offset); 1288 1289 fi = btrfs_item_ptr(leaf, path->slots[0], 1290 struct btrfs_file_extent_item); 1291 1292 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1293 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1294 btrfs_set_file_extent_num_bytes(leaf, fi, 1295 extent_end - split); 1296 btrfs_mark_buffer_dirty(leaf); 1297 1298 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 1299 num_bytes, 0); 1300 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 1301 orig_offset); 1302 ret = btrfs_inc_extent_ref(trans, &ref); 1303 if (ret) { 1304 btrfs_abort_transaction(trans, ret); 1305 goto out; 1306 } 1307 1308 if (split == start) { 1309 key.offset = start; 1310 } else { 1311 if (start != key.offset) { 1312 ret = -EINVAL; 1313 btrfs_abort_transaction(trans, ret); 1314 goto out; 1315 } 1316 path->slots[0]--; 1317 extent_end = end; 1318 } 1319 recow = 1; 1320 } 1321 1322 other_start = end; 1323 other_end = 0; 1324 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1325 num_bytes, 0); 1326 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset); 1327 if (extent_mergeable(leaf, path->slots[0] + 1, 1328 ino, bytenr, orig_offset, 1329 &other_start, &other_end)) { 1330 if (recow) { 1331 btrfs_release_path(path); 1332 goto again; 1333 } 1334 extent_end = other_end; 1335 del_slot = path->slots[0] + 1; 1336 del_nr++; 1337 ret = btrfs_free_extent(trans, &ref); 1338 if (ret) { 1339 btrfs_abort_transaction(trans, ret); 1340 goto out; 1341 } 1342 } 1343 other_start = 0; 1344 other_end = start; 1345 if (extent_mergeable(leaf, path->slots[0] - 1, 1346 ino, bytenr, orig_offset, 1347 &other_start, &other_end)) { 1348 if (recow) { 1349 btrfs_release_path(path); 1350 goto again; 1351 } 1352 key.offset = other_start; 1353 del_slot = path->slots[0]; 1354 del_nr++; 1355 ret = btrfs_free_extent(trans, &ref); 1356 if (ret) { 1357 btrfs_abort_transaction(trans, ret); 1358 goto out; 1359 } 1360 } 1361 if (del_nr == 0) { 1362 fi = btrfs_item_ptr(leaf, path->slots[0], 1363 struct btrfs_file_extent_item); 1364 btrfs_set_file_extent_type(leaf, fi, 1365 BTRFS_FILE_EXTENT_REG); 1366 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1367 btrfs_mark_buffer_dirty(leaf); 1368 } else { 1369 fi = btrfs_item_ptr(leaf, del_slot - 1, 1370 struct btrfs_file_extent_item); 1371 btrfs_set_file_extent_type(leaf, fi, 1372 BTRFS_FILE_EXTENT_REG); 1373 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1374 btrfs_set_file_extent_num_bytes(leaf, fi, 1375 extent_end - key.offset); 1376 btrfs_mark_buffer_dirty(leaf); 1377 1378 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1379 if (ret < 0) { 1380 btrfs_abort_transaction(trans, ret); 1381 goto out; 1382 } 1383 } 1384 out: 1385 btrfs_free_path(path); 1386 return 0; 1387 } 1388 1389 /* 1390 * on error we return an unlocked page and the error value 1391 * on success we return a locked page and 0 1392 */ 1393 static int prepare_uptodate_page(struct inode *inode, 1394 struct page *page, u64 pos, 1395 bool force_uptodate) 1396 { 1397 int ret = 0; 1398 1399 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1400 !PageUptodate(page)) { 1401 ret = btrfs_readpage(NULL, page); 1402 if (ret) 1403 return ret; 1404 lock_page(page); 1405 if (!PageUptodate(page)) { 1406 unlock_page(page); 1407 return -EIO; 1408 } 1409 if (page->mapping != inode->i_mapping) { 1410 unlock_page(page); 1411 return -EAGAIN; 1412 } 1413 } 1414 return 0; 1415 } 1416 1417 /* 1418 * this just gets pages into the page cache and locks them down. 1419 */ 1420 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1421 size_t num_pages, loff_t pos, 1422 size_t write_bytes, bool force_uptodate) 1423 { 1424 int i; 1425 unsigned long index = pos >> PAGE_SHIFT; 1426 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1427 int err = 0; 1428 int faili; 1429 1430 for (i = 0; i < num_pages; i++) { 1431 again: 1432 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1433 mask | __GFP_WRITE); 1434 if (!pages[i]) { 1435 faili = i - 1; 1436 err = -ENOMEM; 1437 goto fail; 1438 } 1439 1440 if (i == 0) 1441 err = prepare_uptodate_page(inode, pages[i], pos, 1442 force_uptodate); 1443 if (!err && i == num_pages - 1) 1444 err = prepare_uptodate_page(inode, pages[i], 1445 pos + write_bytes, false); 1446 if (err) { 1447 put_page(pages[i]); 1448 if (err == -EAGAIN) { 1449 err = 0; 1450 goto again; 1451 } 1452 faili = i - 1; 1453 goto fail; 1454 } 1455 wait_on_page_writeback(pages[i]); 1456 } 1457 1458 return 0; 1459 fail: 1460 while (faili >= 0) { 1461 unlock_page(pages[faili]); 1462 put_page(pages[faili]); 1463 faili--; 1464 } 1465 return err; 1466 1467 } 1468 1469 /* 1470 * This function locks the extent and properly waits for data=ordered extents 1471 * to finish before allowing the pages to be modified if need. 1472 * 1473 * The return value: 1474 * 1 - the extent is locked 1475 * 0 - the extent is not locked, and everything is OK 1476 * -EAGAIN - need re-prepare the pages 1477 * the other < 0 number - Something wrong happens 1478 */ 1479 static noinline int 1480 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1481 size_t num_pages, loff_t pos, 1482 size_t write_bytes, 1483 u64 *lockstart, u64 *lockend, 1484 struct extent_state **cached_state) 1485 { 1486 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1487 u64 start_pos; 1488 u64 last_pos; 1489 int i; 1490 int ret = 0; 1491 1492 start_pos = round_down(pos, fs_info->sectorsize); 1493 last_pos = start_pos 1494 + round_up(pos + write_bytes - start_pos, 1495 fs_info->sectorsize) - 1; 1496 1497 if (start_pos < inode->vfs_inode.i_size) { 1498 struct btrfs_ordered_extent *ordered; 1499 1500 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1501 cached_state); 1502 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1503 last_pos - start_pos + 1); 1504 if (ordered && 1505 ordered->file_offset + ordered->len > start_pos && 1506 ordered->file_offset <= last_pos) { 1507 unlock_extent_cached(&inode->io_tree, start_pos, 1508 last_pos, cached_state); 1509 for (i = 0; i < num_pages; i++) { 1510 unlock_page(pages[i]); 1511 put_page(pages[i]); 1512 } 1513 btrfs_start_ordered_extent(&inode->vfs_inode, 1514 ordered, 1); 1515 btrfs_put_ordered_extent(ordered); 1516 return -EAGAIN; 1517 } 1518 if (ordered) 1519 btrfs_put_ordered_extent(ordered); 1520 1521 *lockstart = start_pos; 1522 *lockend = last_pos; 1523 ret = 1; 1524 } 1525 1526 /* 1527 * It's possible the pages are dirty right now, but we don't want 1528 * to clean them yet because copy_from_user may catch a page fault 1529 * and we might have to fall back to one page at a time. If that 1530 * happens, we'll unlock these pages and we'd have a window where 1531 * reclaim could sneak in and drop the once-dirty page on the floor 1532 * without writing it. 1533 * 1534 * We have the pages locked and the extent range locked, so there's 1535 * no way someone can start IO on any dirty pages in this range. 1536 * 1537 * We'll call btrfs_dirty_pages() later on, and that will flip around 1538 * delalloc bits and dirty the pages as required. 1539 */ 1540 for (i = 0; i < num_pages; i++) { 1541 set_page_extent_mapped(pages[i]); 1542 WARN_ON(!PageLocked(pages[i])); 1543 } 1544 1545 return ret; 1546 } 1547 1548 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1549 size_t *write_bytes) 1550 { 1551 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1552 struct btrfs_root *root = inode->root; 1553 struct btrfs_ordered_extent *ordered; 1554 u64 lockstart, lockend; 1555 u64 num_bytes; 1556 int ret; 1557 1558 ret = btrfs_start_write_no_snapshotting(root); 1559 if (!ret) 1560 return -ENOSPC; 1561 1562 lockstart = round_down(pos, fs_info->sectorsize); 1563 lockend = round_up(pos + *write_bytes, 1564 fs_info->sectorsize) - 1; 1565 1566 while (1) { 1567 lock_extent(&inode->io_tree, lockstart, lockend); 1568 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1569 lockend - lockstart + 1); 1570 if (!ordered) { 1571 break; 1572 } 1573 unlock_extent(&inode->io_tree, lockstart, lockend); 1574 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1); 1575 btrfs_put_ordered_extent(ordered); 1576 } 1577 1578 num_bytes = lockend - lockstart + 1; 1579 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1580 NULL, NULL, NULL); 1581 if (ret <= 0) { 1582 ret = 0; 1583 btrfs_end_write_no_snapshotting(root); 1584 } else { 1585 *write_bytes = min_t(size_t, *write_bytes , 1586 num_bytes - pos + lockstart); 1587 } 1588 1589 unlock_extent(&inode->io_tree, lockstart, lockend); 1590 1591 return ret; 1592 } 1593 1594 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1595 struct iov_iter *i) 1596 { 1597 struct file *file = iocb->ki_filp; 1598 loff_t pos = iocb->ki_pos; 1599 struct inode *inode = file_inode(file); 1600 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1601 struct btrfs_root *root = BTRFS_I(inode)->root; 1602 struct page **pages = NULL; 1603 struct extent_state *cached_state = NULL; 1604 struct extent_changeset *data_reserved = NULL; 1605 u64 release_bytes = 0; 1606 u64 lockstart; 1607 u64 lockend; 1608 size_t num_written = 0; 1609 int nrptrs; 1610 int ret = 0; 1611 bool only_release_metadata = false; 1612 bool force_page_uptodate = false; 1613 1614 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1615 PAGE_SIZE / (sizeof(struct page *))); 1616 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1617 nrptrs = max(nrptrs, 8); 1618 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1619 if (!pages) 1620 return -ENOMEM; 1621 1622 while (iov_iter_count(i) > 0) { 1623 size_t offset = offset_in_page(pos); 1624 size_t sector_offset; 1625 size_t write_bytes = min(iov_iter_count(i), 1626 nrptrs * (size_t)PAGE_SIZE - 1627 offset); 1628 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1629 PAGE_SIZE); 1630 size_t reserve_bytes; 1631 size_t dirty_pages; 1632 size_t copied; 1633 size_t dirty_sectors; 1634 size_t num_sectors; 1635 int extents_locked; 1636 1637 WARN_ON(num_pages > nrptrs); 1638 1639 /* 1640 * Fault pages before locking them in prepare_pages 1641 * to avoid recursive lock 1642 */ 1643 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1644 ret = -EFAULT; 1645 break; 1646 } 1647 1648 sector_offset = pos & (fs_info->sectorsize - 1); 1649 reserve_bytes = round_up(write_bytes + sector_offset, 1650 fs_info->sectorsize); 1651 1652 extent_changeset_release(data_reserved); 1653 ret = btrfs_check_data_free_space(inode, &data_reserved, pos, 1654 write_bytes); 1655 if (ret < 0) { 1656 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1657 BTRFS_INODE_PREALLOC)) && 1658 check_can_nocow(BTRFS_I(inode), pos, 1659 &write_bytes) > 0) { 1660 /* 1661 * For nodata cow case, no need to reserve 1662 * data space. 1663 */ 1664 only_release_metadata = true; 1665 /* 1666 * our prealloc extent may be smaller than 1667 * write_bytes, so scale down. 1668 */ 1669 num_pages = DIV_ROUND_UP(write_bytes + offset, 1670 PAGE_SIZE); 1671 reserve_bytes = round_up(write_bytes + 1672 sector_offset, 1673 fs_info->sectorsize); 1674 } else { 1675 break; 1676 } 1677 } 1678 1679 WARN_ON(reserve_bytes == 0); 1680 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1681 reserve_bytes); 1682 if (ret) { 1683 if (!only_release_metadata) 1684 btrfs_free_reserved_data_space(inode, 1685 data_reserved, pos, 1686 write_bytes); 1687 else 1688 btrfs_end_write_no_snapshotting(root); 1689 break; 1690 } 1691 1692 release_bytes = reserve_bytes; 1693 again: 1694 /* 1695 * This is going to setup the pages array with the number of 1696 * pages we want, so we don't really need to worry about the 1697 * contents of pages from loop to loop 1698 */ 1699 ret = prepare_pages(inode, pages, num_pages, 1700 pos, write_bytes, 1701 force_page_uptodate); 1702 if (ret) { 1703 btrfs_delalloc_release_extents(BTRFS_I(inode), 1704 reserve_bytes, true); 1705 break; 1706 } 1707 1708 extents_locked = lock_and_cleanup_extent_if_need( 1709 BTRFS_I(inode), pages, 1710 num_pages, pos, write_bytes, &lockstart, 1711 &lockend, &cached_state); 1712 if (extents_locked < 0) { 1713 if (extents_locked == -EAGAIN) 1714 goto again; 1715 btrfs_delalloc_release_extents(BTRFS_I(inode), 1716 reserve_bytes, true); 1717 ret = extents_locked; 1718 break; 1719 } 1720 1721 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1722 1723 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1724 dirty_sectors = round_up(copied + sector_offset, 1725 fs_info->sectorsize); 1726 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1727 1728 /* 1729 * if we have trouble faulting in the pages, fall 1730 * back to one page at a time 1731 */ 1732 if (copied < write_bytes) 1733 nrptrs = 1; 1734 1735 if (copied == 0) { 1736 force_page_uptodate = true; 1737 dirty_sectors = 0; 1738 dirty_pages = 0; 1739 } else { 1740 force_page_uptodate = false; 1741 dirty_pages = DIV_ROUND_UP(copied + offset, 1742 PAGE_SIZE); 1743 } 1744 1745 if (num_sectors > dirty_sectors) { 1746 /* release everything except the sectors we dirtied */ 1747 release_bytes -= dirty_sectors << 1748 fs_info->sb->s_blocksize_bits; 1749 if (only_release_metadata) { 1750 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1751 release_bytes, true); 1752 } else { 1753 u64 __pos; 1754 1755 __pos = round_down(pos, 1756 fs_info->sectorsize) + 1757 (dirty_pages << PAGE_SHIFT); 1758 btrfs_delalloc_release_space(inode, 1759 data_reserved, __pos, 1760 release_bytes, true); 1761 } 1762 } 1763 1764 release_bytes = round_up(copied + sector_offset, 1765 fs_info->sectorsize); 1766 1767 if (copied > 0) 1768 ret = btrfs_dirty_pages(inode, pages, dirty_pages, 1769 pos, copied, &cached_state); 1770 if (extents_locked) 1771 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1772 lockstart, lockend, &cached_state); 1773 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes, 1774 true); 1775 if (ret) { 1776 btrfs_drop_pages(pages, num_pages); 1777 break; 1778 } 1779 1780 release_bytes = 0; 1781 if (only_release_metadata) 1782 btrfs_end_write_no_snapshotting(root); 1783 1784 if (only_release_metadata && copied > 0) { 1785 lockstart = round_down(pos, 1786 fs_info->sectorsize); 1787 lockend = round_up(pos + copied, 1788 fs_info->sectorsize) - 1; 1789 1790 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1791 lockend, EXTENT_NORESERVE, NULL, 1792 NULL, GFP_NOFS); 1793 only_release_metadata = false; 1794 } 1795 1796 btrfs_drop_pages(pages, num_pages); 1797 1798 cond_resched(); 1799 1800 balance_dirty_pages_ratelimited(inode->i_mapping); 1801 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1) 1802 btrfs_btree_balance_dirty(fs_info); 1803 1804 pos += copied; 1805 num_written += copied; 1806 } 1807 1808 kfree(pages); 1809 1810 if (release_bytes) { 1811 if (only_release_metadata) { 1812 btrfs_end_write_no_snapshotting(root); 1813 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1814 release_bytes, true); 1815 } else { 1816 btrfs_delalloc_release_space(inode, data_reserved, 1817 round_down(pos, fs_info->sectorsize), 1818 release_bytes, true); 1819 } 1820 } 1821 1822 extent_changeset_free(data_reserved); 1823 return num_written ? num_written : ret; 1824 } 1825 1826 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1827 { 1828 struct file *file = iocb->ki_filp; 1829 struct inode *inode = file_inode(file); 1830 loff_t pos; 1831 ssize_t written; 1832 ssize_t written_buffered; 1833 loff_t endbyte; 1834 int err; 1835 1836 written = generic_file_direct_write(iocb, from); 1837 1838 if (written < 0 || !iov_iter_count(from)) 1839 return written; 1840 1841 pos = iocb->ki_pos; 1842 written_buffered = btrfs_buffered_write(iocb, from); 1843 if (written_buffered < 0) { 1844 err = written_buffered; 1845 goto out; 1846 } 1847 /* 1848 * Ensure all data is persisted. We want the next direct IO read to be 1849 * able to read what was just written. 1850 */ 1851 endbyte = pos + written_buffered - 1; 1852 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1853 if (err) 1854 goto out; 1855 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1856 if (err) 1857 goto out; 1858 written += written_buffered; 1859 iocb->ki_pos = pos + written_buffered; 1860 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1861 endbyte >> PAGE_SHIFT); 1862 out: 1863 return written ? written : err; 1864 } 1865 1866 static void update_time_for_write(struct inode *inode) 1867 { 1868 struct timespec64 now; 1869 1870 if (IS_NOCMTIME(inode)) 1871 return; 1872 1873 now = current_time(inode); 1874 if (!timespec64_equal(&inode->i_mtime, &now)) 1875 inode->i_mtime = now; 1876 1877 if (!timespec64_equal(&inode->i_ctime, &now)) 1878 inode->i_ctime = now; 1879 1880 if (IS_I_VERSION(inode)) 1881 inode_inc_iversion(inode); 1882 } 1883 1884 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1885 struct iov_iter *from) 1886 { 1887 struct file *file = iocb->ki_filp; 1888 struct inode *inode = file_inode(file); 1889 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1890 struct btrfs_root *root = BTRFS_I(inode)->root; 1891 u64 start_pos; 1892 u64 end_pos; 1893 ssize_t num_written = 0; 1894 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1895 ssize_t err; 1896 loff_t pos; 1897 size_t count = iov_iter_count(from); 1898 loff_t oldsize; 1899 int clean_page = 0; 1900 1901 if (!(iocb->ki_flags & IOCB_DIRECT) && 1902 (iocb->ki_flags & IOCB_NOWAIT)) 1903 return -EOPNOTSUPP; 1904 1905 if (!inode_trylock(inode)) { 1906 if (iocb->ki_flags & IOCB_NOWAIT) 1907 return -EAGAIN; 1908 inode_lock(inode); 1909 } 1910 1911 err = generic_write_checks(iocb, from); 1912 if (err <= 0) { 1913 inode_unlock(inode); 1914 return err; 1915 } 1916 1917 pos = iocb->ki_pos; 1918 if (iocb->ki_flags & IOCB_NOWAIT) { 1919 /* 1920 * We will allocate space in case nodatacow is not set, 1921 * so bail 1922 */ 1923 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1924 BTRFS_INODE_PREALLOC)) || 1925 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) { 1926 inode_unlock(inode); 1927 return -EAGAIN; 1928 } 1929 } 1930 1931 current->backing_dev_info = inode_to_bdi(inode); 1932 err = file_remove_privs(file); 1933 if (err) { 1934 inode_unlock(inode); 1935 goto out; 1936 } 1937 1938 /* 1939 * If BTRFS flips readonly due to some impossible error 1940 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1941 * although we have opened a file as writable, we have 1942 * to stop this write operation to ensure FS consistency. 1943 */ 1944 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1945 inode_unlock(inode); 1946 err = -EROFS; 1947 goto out; 1948 } 1949 1950 /* 1951 * We reserve space for updating the inode when we reserve space for the 1952 * extent we are going to write, so we will enospc out there. We don't 1953 * need to start yet another transaction to update the inode as we will 1954 * update the inode when we finish writing whatever data we write. 1955 */ 1956 update_time_for_write(inode); 1957 1958 start_pos = round_down(pos, fs_info->sectorsize); 1959 oldsize = i_size_read(inode); 1960 if (start_pos > oldsize) { 1961 /* Expand hole size to cover write data, preventing empty gap */ 1962 end_pos = round_up(pos + count, 1963 fs_info->sectorsize); 1964 err = btrfs_cont_expand(inode, oldsize, end_pos); 1965 if (err) { 1966 inode_unlock(inode); 1967 goto out; 1968 } 1969 if (start_pos > round_up(oldsize, fs_info->sectorsize)) 1970 clean_page = 1; 1971 } 1972 1973 if (sync) 1974 atomic_inc(&BTRFS_I(inode)->sync_writers); 1975 1976 if (iocb->ki_flags & IOCB_DIRECT) { 1977 num_written = __btrfs_direct_write(iocb, from); 1978 } else { 1979 num_written = btrfs_buffered_write(iocb, from); 1980 if (num_written > 0) 1981 iocb->ki_pos = pos + num_written; 1982 if (clean_page) 1983 pagecache_isize_extended(inode, oldsize, 1984 i_size_read(inode)); 1985 } 1986 1987 inode_unlock(inode); 1988 1989 /* 1990 * We also have to set last_sub_trans to the current log transid, 1991 * otherwise subsequent syncs to a file that's been synced in this 1992 * transaction will appear to have already occurred. 1993 */ 1994 spin_lock(&BTRFS_I(inode)->lock); 1995 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1996 spin_unlock(&BTRFS_I(inode)->lock); 1997 if (num_written > 0) 1998 num_written = generic_write_sync(iocb, num_written); 1999 2000 if (sync) 2001 atomic_dec(&BTRFS_I(inode)->sync_writers); 2002 out: 2003 current->backing_dev_info = NULL; 2004 return num_written ? num_written : err; 2005 } 2006 2007 int btrfs_release_file(struct inode *inode, struct file *filp) 2008 { 2009 struct btrfs_file_private *private = filp->private_data; 2010 2011 if (private && private->filldir_buf) 2012 kfree(private->filldir_buf); 2013 kfree(private); 2014 filp->private_data = NULL; 2015 2016 /* 2017 * ordered_data_close is set by setattr when we are about to truncate 2018 * a file from a non-zero size to a zero size. This tries to 2019 * flush down new bytes that may have been written if the 2020 * application were using truncate to replace a file in place. 2021 */ 2022 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 2023 &BTRFS_I(inode)->runtime_flags)) 2024 filemap_flush(inode->i_mapping); 2025 return 0; 2026 } 2027 2028 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2029 { 2030 int ret; 2031 struct blk_plug plug; 2032 2033 /* 2034 * This is only called in fsync, which would do synchronous writes, so 2035 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2036 * multiple disks using raid profile, a large IO can be split to 2037 * several segments of stripe length (currently 64K). 2038 */ 2039 blk_start_plug(&plug); 2040 atomic_inc(&BTRFS_I(inode)->sync_writers); 2041 ret = btrfs_fdatawrite_range(inode, start, end); 2042 atomic_dec(&BTRFS_I(inode)->sync_writers); 2043 blk_finish_plug(&plug); 2044 2045 return ret; 2046 } 2047 2048 /* 2049 * fsync call for both files and directories. This logs the inode into 2050 * the tree log instead of forcing full commits whenever possible. 2051 * 2052 * It needs to call filemap_fdatawait so that all ordered extent updates are 2053 * in the metadata btree are up to date for copying to the log. 2054 * 2055 * It drops the inode mutex before doing the tree log commit. This is an 2056 * important optimization for directories because holding the mutex prevents 2057 * new operations on the dir while we write to disk. 2058 */ 2059 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2060 { 2061 struct dentry *dentry = file_dentry(file); 2062 struct inode *inode = d_inode(dentry); 2063 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2064 struct btrfs_root *root = BTRFS_I(inode)->root; 2065 struct btrfs_trans_handle *trans; 2066 struct btrfs_log_ctx ctx; 2067 int ret = 0, err; 2068 u64 len; 2069 2070 /* 2071 * If the inode needs a full sync, make sure we use a full range to 2072 * avoid log tree corruption, due to hole detection racing with ordered 2073 * extent completion for adjacent ranges, and assertion failures during 2074 * hole detection. 2075 */ 2076 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2077 &BTRFS_I(inode)->runtime_flags)) { 2078 start = 0; 2079 end = LLONG_MAX; 2080 } 2081 2082 /* 2083 * The range length can be represented by u64, we have to do the typecasts 2084 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync() 2085 */ 2086 len = (u64)end - (u64)start + 1; 2087 trace_btrfs_sync_file(file, datasync); 2088 2089 btrfs_init_log_ctx(&ctx, inode); 2090 2091 /* 2092 * We write the dirty pages in the range and wait until they complete 2093 * out of the ->i_mutex. If so, we can flush the dirty pages by 2094 * multi-task, and make the performance up. See 2095 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2096 */ 2097 ret = start_ordered_ops(inode, start, end); 2098 if (ret) 2099 goto out; 2100 2101 inode_lock(inode); 2102 2103 /* 2104 * We take the dio_sem here because the tree log stuff can race with 2105 * lockless dio writes and get an extent map logged for an extent we 2106 * never waited on. We need it this high up for lockdep reasons. 2107 */ 2108 down_write(&BTRFS_I(inode)->dio_sem); 2109 2110 atomic_inc(&root->log_batch); 2111 2112 /* 2113 * Before we acquired the inode's lock, someone may have dirtied more 2114 * pages in the target range. We need to make sure that writeback for 2115 * any such pages does not start while we are logging the inode, because 2116 * if it does, any of the following might happen when we are not doing a 2117 * full inode sync: 2118 * 2119 * 1) We log an extent after its writeback finishes but before its 2120 * checksums are added to the csum tree, leading to -EIO errors 2121 * when attempting to read the extent after a log replay. 2122 * 2123 * 2) We can end up logging an extent before its writeback finishes. 2124 * Therefore after the log replay we will have a file extent item 2125 * pointing to an unwritten extent (and no data checksums as well). 2126 * 2127 * So trigger writeback for any eventual new dirty pages and then we 2128 * wait for all ordered extents to complete below. 2129 */ 2130 ret = start_ordered_ops(inode, start, end); 2131 if (ret) { 2132 inode_unlock(inode); 2133 goto out; 2134 } 2135 2136 /* 2137 * We have to do this here to avoid the priority inversion of waiting on 2138 * IO of a lower priority task while holding a transaction open. 2139 */ 2140 ret = btrfs_wait_ordered_range(inode, start, len); 2141 if (ret) { 2142 up_write(&BTRFS_I(inode)->dio_sem); 2143 inode_unlock(inode); 2144 goto out; 2145 } 2146 atomic_inc(&root->log_batch); 2147 2148 smp_mb(); 2149 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) || 2150 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) { 2151 /* 2152 * We've had everything committed since the last time we were 2153 * modified so clear this flag in case it was set for whatever 2154 * reason, it's no longer relevant. 2155 */ 2156 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2157 &BTRFS_I(inode)->runtime_flags); 2158 /* 2159 * An ordered extent might have started before and completed 2160 * already with io errors, in which case the inode was not 2161 * updated and we end up here. So check the inode's mapping 2162 * for any errors that might have happened since we last 2163 * checked called fsync. 2164 */ 2165 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2166 up_write(&BTRFS_I(inode)->dio_sem); 2167 inode_unlock(inode); 2168 goto out; 2169 } 2170 2171 /* 2172 * We use start here because we will need to wait on the IO to complete 2173 * in btrfs_sync_log, which could require joining a transaction (for 2174 * example checking cross references in the nocow path). If we use join 2175 * here we could get into a situation where we're waiting on IO to 2176 * happen that is blocked on a transaction trying to commit. With start 2177 * we inc the extwriter counter, so we wait for all extwriters to exit 2178 * before we start blocking joiners. This comment is to keep somebody 2179 * from thinking they are super smart and changing this to 2180 * btrfs_join_transaction *cough*Josef*cough*. 2181 */ 2182 trans = btrfs_start_transaction(root, 0); 2183 if (IS_ERR(trans)) { 2184 ret = PTR_ERR(trans); 2185 up_write(&BTRFS_I(inode)->dio_sem); 2186 inode_unlock(inode); 2187 goto out; 2188 } 2189 2190 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx); 2191 if (ret < 0) { 2192 /* Fallthrough and commit/free transaction. */ 2193 ret = 1; 2194 } 2195 2196 /* we've logged all the items and now have a consistent 2197 * version of the file in the log. It is possible that 2198 * someone will come in and modify the file, but that's 2199 * fine because the log is consistent on disk, and we 2200 * have references to all of the file's extents 2201 * 2202 * It is possible that someone will come in and log the 2203 * file again, but that will end up using the synchronization 2204 * inside btrfs_sync_log to keep things safe. 2205 */ 2206 up_write(&BTRFS_I(inode)->dio_sem); 2207 inode_unlock(inode); 2208 2209 if (ret != BTRFS_NO_LOG_SYNC) { 2210 if (!ret) { 2211 ret = btrfs_sync_log(trans, root, &ctx); 2212 if (!ret) { 2213 ret = btrfs_end_transaction(trans); 2214 goto out; 2215 } 2216 } 2217 ret = btrfs_commit_transaction(trans); 2218 } else { 2219 ret = btrfs_end_transaction(trans); 2220 } 2221 out: 2222 ASSERT(list_empty(&ctx.list)); 2223 err = file_check_and_advance_wb_err(file); 2224 if (!ret) 2225 ret = err; 2226 return ret > 0 ? -EIO : ret; 2227 } 2228 2229 static const struct vm_operations_struct btrfs_file_vm_ops = { 2230 .fault = filemap_fault, 2231 .map_pages = filemap_map_pages, 2232 .page_mkwrite = btrfs_page_mkwrite, 2233 }; 2234 2235 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2236 { 2237 struct address_space *mapping = filp->f_mapping; 2238 2239 if (!mapping->a_ops->readpage) 2240 return -ENOEXEC; 2241 2242 file_accessed(filp); 2243 vma->vm_ops = &btrfs_file_vm_ops; 2244 2245 return 0; 2246 } 2247 2248 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2249 int slot, u64 start, u64 end) 2250 { 2251 struct btrfs_file_extent_item *fi; 2252 struct btrfs_key key; 2253 2254 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2255 return 0; 2256 2257 btrfs_item_key_to_cpu(leaf, &key, slot); 2258 if (key.objectid != btrfs_ino(inode) || 2259 key.type != BTRFS_EXTENT_DATA_KEY) 2260 return 0; 2261 2262 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2263 2264 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2265 return 0; 2266 2267 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2268 return 0; 2269 2270 if (key.offset == end) 2271 return 1; 2272 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2273 return 1; 2274 return 0; 2275 } 2276 2277 static int fill_holes(struct btrfs_trans_handle *trans, 2278 struct btrfs_inode *inode, 2279 struct btrfs_path *path, u64 offset, u64 end) 2280 { 2281 struct btrfs_fs_info *fs_info = trans->fs_info; 2282 struct btrfs_root *root = inode->root; 2283 struct extent_buffer *leaf; 2284 struct btrfs_file_extent_item *fi; 2285 struct extent_map *hole_em; 2286 struct extent_map_tree *em_tree = &inode->extent_tree; 2287 struct btrfs_key key; 2288 int ret; 2289 2290 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2291 goto out; 2292 2293 key.objectid = btrfs_ino(inode); 2294 key.type = BTRFS_EXTENT_DATA_KEY; 2295 key.offset = offset; 2296 2297 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2298 if (ret <= 0) { 2299 /* 2300 * We should have dropped this offset, so if we find it then 2301 * something has gone horribly wrong. 2302 */ 2303 if (ret == 0) 2304 ret = -EINVAL; 2305 return ret; 2306 } 2307 2308 leaf = path->nodes[0]; 2309 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2310 u64 num_bytes; 2311 2312 path->slots[0]--; 2313 fi = btrfs_item_ptr(leaf, path->slots[0], 2314 struct btrfs_file_extent_item); 2315 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2316 end - offset; 2317 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2318 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2319 btrfs_set_file_extent_offset(leaf, fi, 0); 2320 btrfs_mark_buffer_dirty(leaf); 2321 goto out; 2322 } 2323 2324 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2325 u64 num_bytes; 2326 2327 key.offset = offset; 2328 btrfs_set_item_key_safe(fs_info, path, &key); 2329 fi = btrfs_item_ptr(leaf, path->slots[0], 2330 struct btrfs_file_extent_item); 2331 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2332 offset; 2333 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2334 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2335 btrfs_set_file_extent_offset(leaf, fi, 0); 2336 btrfs_mark_buffer_dirty(leaf); 2337 goto out; 2338 } 2339 btrfs_release_path(path); 2340 2341 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2342 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2343 if (ret) 2344 return ret; 2345 2346 out: 2347 btrfs_release_path(path); 2348 2349 hole_em = alloc_extent_map(); 2350 if (!hole_em) { 2351 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2352 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2353 } else { 2354 hole_em->start = offset; 2355 hole_em->len = end - offset; 2356 hole_em->ram_bytes = hole_em->len; 2357 hole_em->orig_start = offset; 2358 2359 hole_em->block_start = EXTENT_MAP_HOLE; 2360 hole_em->block_len = 0; 2361 hole_em->orig_block_len = 0; 2362 hole_em->bdev = fs_info->fs_devices->latest_bdev; 2363 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2364 hole_em->generation = trans->transid; 2365 2366 do { 2367 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2368 write_lock(&em_tree->lock); 2369 ret = add_extent_mapping(em_tree, hole_em, 1); 2370 write_unlock(&em_tree->lock); 2371 } while (ret == -EEXIST); 2372 free_extent_map(hole_em); 2373 if (ret) 2374 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2375 &inode->runtime_flags); 2376 } 2377 2378 return 0; 2379 } 2380 2381 /* 2382 * Find a hole extent on given inode and change start/len to the end of hole 2383 * extent.(hole/vacuum extent whose em->start <= start && 2384 * em->start + em->len > start) 2385 * When a hole extent is found, return 1 and modify start/len. 2386 */ 2387 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2388 { 2389 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2390 struct extent_map *em; 2391 int ret = 0; 2392 2393 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2394 round_down(*start, fs_info->sectorsize), 2395 round_up(*len, fs_info->sectorsize), 0); 2396 if (IS_ERR(em)) 2397 return PTR_ERR(em); 2398 2399 /* Hole or vacuum extent(only exists in no-hole mode) */ 2400 if (em->block_start == EXTENT_MAP_HOLE) { 2401 ret = 1; 2402 *len = em->start + em->len > *start + *len ? 2403 0 : *start + *len - em->start - em->len; 2404 *start = em->start + em->len; 2405 } 2406 free_extent_map(em); 2407 return ret; 2408 } 2409 2410 static int btrfs_punch_hole_lock_range(struct inode *inode, 2411 const u64 lockstart, 2412 const u64 lockend, 2413 struct extent_state **cached_state) 2414 { 2415 while (1) { 2416 struct btrfs_ordered_extent *ordered; 2417 int ret; 2418 2419 truncate_pagecache_range(inode, lockstart, lockend); 2420 2421 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2422 cached_state); 2423 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2424 2425 /* 2426 * We need to make sure we have no ordered extents in this range 2427 * and nobody raced in and read a page in this range, if we did 2428 * we need to try again. 2429 */ 2430 if ((!ordered || 2431 (ordered->file_offset + ordered->len <= lockstart || 2432 ordered->file_offset > lockend)) && 2433 !filemap_range_has_page(inode->i_mapping, 2434 lockstart, lockend)) { 2435 if (ordered) 2436 btrfs_put_ordered_extent(ordered); 2437 break; 2438 } 2439 if (ordered) 2440 btrfs_put_ordered_extent(ordered); 2441 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2442 lockend, cached_state); 2443 ret = btrfs_wait_ordered_range(inode, lockstart, 2444 lockend - lockstart + 1); 2445 if (ret) 2446 return ret; 2447 } 2448 return 0; 2449 } 2450 2451 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2452 { 2453 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2454 struct btrfs_root *root = BTRFS_I(inode)->root; 2455 struct extent_state *cached_state = NULL; 2456 struct btrfs_path *path; 2457 struct btrfs_block_rsv *rsv; 2458 struct btrfs_trans_handle *trans; 2459 u64 lockstart; 2460 u64 lockend; 2461 u64 tail_start; 2462 u64 tail_len; 2463 u64 orig_start = offset; 2464 u64 cur_offset; 2465 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1); 2466 u64 drop_end; 2467 int ret = 0; 2468 int err = 0; 2469 unsigned int rsv_count; 2470 bool same_block; 2471 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES); 2472 u64 ino_size; 2473 bool truncated_block = false; 2474 bool updated_inode = false; 2475 2476 ret = btrfs_wait_ordered_range(inode, offset, len); 2477 if (ret) 2478 return ret; 2479 2480 inode_lock(inode); 2481 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2482 ret = find_first_non_hole(inode, &offset, &len); 2483 if (ret < 0) 2484 goto out_only_mutex; 2485 if (ret && !len) { 2486 /* Already in a large hole */ 2487 ret = 0; 2488 goto out_only_mutex; 2489 } 2490 2491 lockstart = round_up(offset, btrfs_inode_sectorsize(inode)); 2492 lockend = round_down(offset + len, 2493 btrfs_inode_sectorsize(inode)) - 1; 2494 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2495 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2496 /* 2497 * We needn't truncate any block which is beyond the end of the file 2498 * because we are sure there is no data there. 2499 */ 2500 /* 2501 * Only do this if we are in the same block and we aren't doing the 2502 * entire block. 2503 */ 2504 if (same_block && len < fs_info->sectorsize) { 2505 if (offset < ino_size) { 2506 truncated_block = true; 2507 ret = btrfs_truncate_block(inode, offset, len, 0); 2508 } else { 2509 ret = 0; 2510 } 2511 goto out_only_mutex; 2512 } 2513 2514 /* zero back part of the first block */ 2515 if (offset < ino_size) { 2516 truncated_block = true; 2517 ret = btrfs_truncate_block(inode, offset, 0, 0); 2518 if (ret) { 2519 inode_unlock(inode); 2520 return ret; 2521 } 2522 } 2523 2524 /* Check the aligned pages after the first unaligned page, 2525 * if offset != orig_start, which means the first unaligned page 2526 * including several following pages are already in holes, 2527 * the extra check can be skipped */ 2528 if (offset == orig_start) { 2529 /* after truncate page, check hole again */ 2530 len = offset + len - lockstart; 2531 offset = lockstart; 2532 ret = find_first_non_hole(inode, &offset, &len); 2533 if (ret < 0) 2534 goto out_only_mutex; 2535 if (ret && !len) { 2536 ret = 0; 2537 goto out_only_mutex; 2538 } 2539 lockstart = offset; 2540 } 2541 2542 /* Check the tail unaligned part is in a hole */ 2543 tail_start = lockend + 1; 2544 tail_len = offset + len - tail_start; 2545 if (tail_len) { 2546 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2547 if (unlikely(ret < 0)) 2548 goto out_only_mutex; 2549 if (!ret) { 2550 /* zero the front end of the last page */ 2551 if (tail_start + tail_len < ino_size) { 2552 truncated_block = true; 2553 ret = btrfs_truncate_block(inode, 2554 tail_start + tail_len, 2555 0, 1); 2556 if (ret) 2557 goto out_only_mutex; 2558 } 2559 } 2560 } 2561 2562 if (lockend < lockstart) { 2563 ret = 0; 2564 goto out_only_mutex; 2565 } 2566 2567 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2568 &cached_state); 2569 if (ret) 2570 goto out_only_mutex; 2571 2572 path = btrfs_alloc_path(); 2573 if (!path) { 2574 ret = -ENOMEM; 2575 goto out; 2576 } 2577 2578 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2579 if (!rsv) { 2580 ret = -ENOMEM; 2581 goto out_free; 2582 } 2583 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1); 2584 rsv->failfast = 1; 2585 2586 /* 2587 * 1 - update the inode 2588 * 1 - removing the extents in the range 2589 * 1 - adding the hole extent if no_holes isn't set 2590 */ 2591 rsv_count = no_holes ? 2 : 3; 2592 trans = btrfs_start_transaction(root, rsv_count); 2593 if (IS_ERR(trans)) { 2594 err = PTR_ERR(trans); 2595 goto out_free; 2596 } 2597 2598 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2599 min_size, false); 2600 BUG_ON(ret); 2601 trans->block_rsv = rsv; 2602 2603 cur_offset = lockstart; 2604 len = lockend - cur_offset; 2605 while (cur_offset < lockend) { 2606 ret = __btrfs_drop_extents(trans, root, inode, path, 2607 cur_offset, lockend + 1, 2608 &drop_end, 1, 0, 0, NULL); 2609 if (ret != -ENOSPC) 2610 break; 2611 2612 trans->block_rsv = &fs_info->trans_block_rsv; 2613 2614 if (cur_offset < drop_end && cur_offset < ino_size) { 2615 ret = fill_holes(trans, BTRFS_I(inode), path, 2616 cur_offset, drop_end); 2617 if (ret) { 2618 /* 2619 * If we failed then we didn't insert our hole 2620 * entries for the area we dropped, so now the 2621 * fs is corrupted, so we must abort the 2622 * transaction. 2623 */ 2624 btrfs_abort_transaction(trans, ret); 2625 err = ret; 2626 break; 2627 } 2628 } 2629 2630 cur_offset = drop_end; 2631 2632 ret = btrfs_update_inode(trans, root, inode); 2633 if (ret) { 2634 err = ret; 2635 break; 2636 } 2637 2638 btrfs_end_transaction(trans); 2639 btrfs_btree_balance_dirty(fs_info); 2640 2641 trans = btrfs_start_transaction(root, rsv_count); 2642 if (IS_ERR(trans)) { 2643 ret = PTR_ERR(trans); 2644 trans = NULL; 2645 break; 2646 } 2647 2648 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2649 rsv, min_size, false); 2650 BUG_ON(ret); /* shouldn't happen */ 2651 trans->block_rsv = rsv; 2652 2653 ret = find_first_non_hole(inode, &cur_offset, &len); 2654 if (unlikely(ret < 0)) 2655 break; 2656 if (ret && !len) { 2657 ret = 0; 2658 break; 2659 } 2660 } 2661 2662 if (ret) { 2663 err = ret; 2664 goto out_trans; 2665 } 2666 2667 trans->block_rsv = &fs_info->trans_block_rsv; 2668 /* 2669 * If we are using the NO_HOLES feature we might have had already an 2670 * hole that overlaps a part of the region [lockstart, lockend] and 2671 * ends at (or beyond) lockend. Since we have no file extent items to 2672 * represent holes, drop_end can be less than lockend and so we must 2673 * make sure we have an extent map representing the existing hole (the 2674 * call to __btrfs_drop_extents() might have dropped the existing extent 2675 * map representing the existing hole), otherwise the fast fsync path 2676 * will not record the existence of the hole region 2677 * [existing_hole_start, lockend]. 2678 */ 2679 if (drop_end <= lockend) 2680 drop_end = lockend + 1; 2681 /* 2682 * Don't insert file hole extent item if it's for a range beyond eof 2683 * (because it's useless) or if it represents a 0 bytes range (when 2684 * cur_offset == drop_end). 2685 */ 2686 if (cur_offset < ino_size && cur_offset < drop_end) { 2687 ret = fill_holes(trans, BTRFS_I(inode), path, 2688 cur_offset, drop_end); 2689 if (ret) { 2690 /* Same comment as above. */ 2691 btrfs_abort_transaction(trans, ret); 2692 err = ret; 2693 goto out_trans; 2694 } 2695 } 2696 2697 out_trans: 2698 if (!trans) 2699 goto out_free; 2700 2701 inode_inc_iversion(inode); 2702 inode->i_mtime = inode->i_ctime = current_time(inode); 2703 2704 trans->block_rsv = &fs_info->trans_block_rsv; 2705 ret = btrfs_update_inode(trans, root, inode); 2706 updated_inode = true; 2707 btrfs_end_transaction(trans); 2708 btrfs_btree_balance_dirty(fs_info); 2709 out_free: 2710 btrfs_free_path(path); 2711 btrfs_free_block_rsv(fs_info, rsv); 2712 out: 2713 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2714 &cached_state); 2715 out_only_mutex: 2716 if (!updated_inode && truncated_block && !ret && !err) { 2717 /* 2718 * If we only end up zeroing part of a page, we still need to 2719 * update the inode item, so that all the time fields are 2720 * updated as well as the necessary btrfs inode in memory fields 2721 * for detecting, at fsync time, if the inode isn't yet in the 2722 * log tree or it's there but not up to date. 2723 */ 2724 trans = btrfs_start_transaction(root, 1); 2725 if (IS_ERR(trans)) { 2726 err = PTR_ERR(trans); 2727 } else { 2728 err = btrfs_update_inode(trans, root, inode); 2729 ret = btrfs_end_transaction(trans); 2730 } 2731 } 2732 inode_unlock(inode); 2733 if (ret && !err) 2734 err = ret; 2735 return err; 2736 } 2737 2738 /* Helper structure to record which range is already reserved */ 2739 struct falloc_range { 2740 struct list_head list; 2741 u64 start; 2742 u64 len; 2743 }; 2744 2745 /* 2746 * Helper function to add falloc range 2747 * 2748 * Caller should have locked the larger range of extent containing 2749 * [start, len) 2750 */ 2751 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2752 { 2753 struct falloc_range *prev = NULL; 2754 struct falloc_range *range = NULL; 2755 2756 if (list_empty(head)) 2757 goto insert; 2758 2759 /* 2760 * As fallocate iterate by bytenr order, we only need to check 2761 * the last range. 2762 */ 2763 prev = list_entry(head->prev, struct falloc_range, list); 2764 if (prev->start + prev->len == start) { 2765 prev->len += len; 2766 return 0; 2767 } 2768 insert: 2769 range = kmalloc(sizeof(*range), GFP_KERNEL); 2770 if (!range) 2771 return -ENOMEM; 2772 range->start = start; 2773 range->len = len; 2774 list_add_tail(&range->list, head); 2775 return 0; 2776 } 2777 2778 static int btrfs_fallocate_update_isize(struct inode *inode, 2779 const u64 end, 2780 const int mode) 2781 { 2782 struct btrfs_trans_handle *trans; 2783 struct btrfs_root *root = BTRFS_I(inode)->root; 2784 int ret; 2785 int ret2; 2786 2787 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2788 return 0; 2789 2790 trans = btrfs_start_transaction(root, 1); 2791 if (IS_ERR(trans)) 2792 return PTR_ERR(trans); 2793 2794 inode->i_ctime = current_time(inode); 2795 i_size_write(inode, end); 2796 btrfs_ordered_update_i_size(inode, end, NULL); 2797 ret = btrfs_update_inode(trans, root, inode); 2798 ret2 = btrfs_end_transaction(trans); 2799 2800 return ret ? ret : ret2; 2801 } 2802 2803 enum { 2804 RANGE_BOUNDARY_WRITTEN_EXTENT = 0, 2805 RANGE_BOUNDARY_PREALLOC_EXTENT = 1, 2806 RANGE_BOUNDARY_HOLE = 2, 2807 }; 2808 2809 static int btrfs_zero_range_check_range_boundary(struct inode *inode, 2810 u64 offset) 2811 { 2812 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2813 struct extent_map *em; 2814 int ret; 2815 2816 offset = round_down(offset, sectorsize); 2817 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0); 2818 if (IS_ERR(em)) 2819 return PTR_ERR(em); 2820 2821 if (em->block_start == EXTENT_MAP_HOLE) 2822 ret = RANGE_BOUNDARY_HOLE; 2823 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2824 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2825 else 2826 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2827 2828 free_extent_map(em); 2829 return ret; 2830 } 2831 2832 static int btrfs_zero_range(struct inode *inode, 2833 loff_t offset, 2834 loff_t len, 2835 const int mode) 2836 { 2837 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2838 struct extent_map *em; 2839 struct extent_changeset *data_reserved = NULL; 2840 int ret; 2841 u64 alloc_hint = 0; 2842 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2843 u64 alloc_start = round_down(offset, sectorsize); 2844 u64 alloc_end = round_up(offset + len, sectorsize); 2845 u64 bytes_to_reserve = 0; 2846 bool space_reserved = false; 2847 2848 inode_dio_wait(inode); 2849 2850 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2851 alloc_start, alloc_end - alloc_start, 0); 2852 if (IS_ERR(em)) { 2853 ret = PTR_ERR(em); 2854 goto out; 2855 } 2856 2857 /* 2858 * Avoid hole punching and extent allocation for some cases. More cases 2859 * could be considered, but these are unlikely common and we keep things 2860 * as simple as possible for now. Also, intentionally, if the target 2861 * range contains one or more prealloc extents together with regular 2862 * extents and holes, we drop all the existing extents and allocate a 2863 * new prealloc extent, so that we get a larger contiguous disk extent. 2864 */ 2865 if (em->start <= alloc_start && 2866 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2867 const u64 em_end = em->start + em->len; 2868 2869 if (em_end >= offset + len) { 2870 /* 2871 * The whole range is already a prealloc extent, 2872 * do nothing except updating the inode's i_size if 2873 * needed. 2874 */ 2875 free_extent_map(em); 2876 ret = btrfs_fallocate_update_isize(inode, offset + len, 2877 mode); 2878 goto out; 2879 } 2880 /* 2881 * Part of the range is already a prealloc extent, so operate 2882 * only on the remaining part of the range. 2883 */ 2884 alloc_start = em_end; 2885 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2886 len = offset + len - alloc_start; 2887 offset = alloc_start; 2888 alloc_hint = em->block_start + em->len; 2889 } 2890 free_extent_map(em); 2891 2892 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2893 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2894 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2895 alloc_start, sectorsize, 0); 2896 if (IS_ERR(em)) { 2897 ret = PTR_ERR(em); 2898 goto out; 2899 } 2900 2901 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2902 free_extent_map(em); 2903 ret = btrfs_fallocate_update_isize(inode, offset + len, 2904 mode); 2905 goto out; 2906 } 2907 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 2908 free_extent_map(em); 2909 ret = btrfs_truncate_block(inode, offset, len, 0); 2910 if (!ret) 2911 ret = btrfs_fallocate_update_isize(inode, 2912 offset + len, 2913 mode); 2914 return ret; 2915 } 2916 free_extent_map(em); 2917 alloc_start = round_down(offset, sectorsize); 2918 alloc_end = alloc_start + sectorsize; 2919 goto reserve_space; 2920 } 2921 2922 alloc_start = round_up(offset, sectorsize); 2923 alloc_end = round_down(offset + len, sectorsize); 2924 2925 /* 2926 * For unaligned ranges, check the pages at the boundaries, they might 2927 * map to an extent, in which case we need to partially zero them, or 2928 * they might map to a hole, in which case we need our allocation range 2929 * to cover them. 2930 */ 2931 if (!IS_ALIGNED(offset, sectorsize)) { 2932 ret = btrfs_zero_range_check_range_boundary(inode, offset); 2933 if (ret < 0) 2934 goto out; 2935 if (ret == RANGE_BOUNDARY_HOLE) { 2936 alloc_start = round_down(offset, sectorsize); 2937 ret = 0; 2938 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2939 ret = btrfs_truncate_block(inode, offset, 0, 0); 2940 if (ret) 2941 goto out; 2942 } else { 2943 ret = 0; 2944 } 2945 } 2946 2947 if (!IS_ALIGNED(offset + len, sectorsize)) { 2948 ret = btrfs_zero_range_check_range_boundary(inode, 2949 offset + len); 2950 if (ret < 0) 2951 goto out; 2952 if (ret == RANGE_BOUNDARY_HOLE) { 2953 alloc_end = round_up(offset + len, sectorsize); 2954 ret = 0; 2955 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2956 ret = btrfs_truncate_block(inode, offset + len, 0, 1); 2957 if (ret) 2958 goto out; 2959 } else { 2960 ret = 0; 2961 } 2962 } 2963 2964 reserve_space: 2965 if (alloc_start < alloc_end) { 2966 struct extent_state *cached_state = NULL; 2967 const u64 lockstart = alloc_start; 2968 const u64 lockend = alloc_end - 1; 2969 2970 bytes_to_reserve = alloc_end - alloc_start; 2971 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 2972 bytes_to_reserve); 2973 if (ret < 0) 2974 goto out; 2975 space_reserved = true; 2976 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 2977 alloc_start, bytes_to_reserve); 2978 if (ret) 2979 goto out; 2980 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2981 &cached_state); 2982 if (ret) 2983 goto out; 2984 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 2985 alloc_end - alloc_start, 2986 i_blocksize(inode), 2987 offset + len, &alloc_hint); 2988 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2989 lockend, &cached_state); 2990 /* btrfs_prealloc_file_range releases reserved space on error */ 2991 if (ret) { 2992 space_reserved = false; 2993 goto out; 2994 } 2995 } 2996 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 2997 out: 2998 if (ret && space_reserved) 2999 btrfs_free_reserved_data_space(inode, data_reserved, 3000 alloc_start, bytes_to_reserve); 3001 extent_changeset_free(data_reserved); 3002 3003 return ret; 3004 } 3005 3006 static long btrfs_fallocate(struct file *file, int mode, 3007 loff_t offset, loff_t len) 3008 { 3009 struct inode *inode = file_inode(file); 3010 struct extent_state *cached_state = NULL; 3011 struct extent_changeset *data_reserved = NULL; 3012 struct falloc_range *range; 3013 struct falloc_range *tmp; 3014 struct list_head reserve_list; 3015 u64 cur_offset; 3016 u64 last_byte; 3017 u64 alloc_start; 3018 u64 alloc_end; 3019 u64 alloc_hint = 0; 3020 u64 locked_end; 3021 u64 actual_end = 0; 3022 struct extent_map *em; 3023 int blocksize = btrfs_inode_sectorsize(inode); 3024 int ret; 3025 3026 alloc_start = round_down(offset, blocksize); 3027 alloc_end = round_up(offset + len, blocksize); 3028 cur_offset = alloc_start; 3029 3030 /* Make sure we aren't being give some crap mode */ 3031 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3032 FALLOC_FL_ZERO_RANGE)) 3033 return -EOPNOTSUPP; 3034 3035 if (mode & FALLOC_FL_PUNCH_HOLE) 3036 return btrfs_punch_hole(inode, offset, len); 3037 3038 /* 3039 * Only trigger disk allocation, don't trigger qgroup reserve 3040 * 3041 * For qgroup space, it will be checked later. 3042 */ 3043 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 3044 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3045 alloc_end - alloc_start); 3046 if (ret < 0) 3047 return ret; 3048 } 3049 3050 inode_lock(inode); 3051 3052 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3053 ret = inode_newsize_ok(inode, offset + len); 3054 if (ret) 3055 goto out; 3056 } 3057 3058 /* 3059 * TODO: Move these two operations after we have checked 3060 * accurate reserved space, or fallocate can still fail but 3061 * with page truncated or size expanded. 3062 * 3063 * But that's a minor problem and won't do much harm BTW. 3064 */ 3065 if (alloc_start > inode->i_size) { 3066 ret = btrfs_cont_expand(inode, i_size_read(inode), 3067 alloc_start); 3068 if (ret) 3069 goto out; 3070 } else if (offset + len > inode->i_size) { 3071 /* 3072 * If we are fallocating from the end of the file onward we 3073 * need to zero out the end of the block if i_size lands in the 3074 * middle of a block. 3075 */ 3076 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 3077 if (ret) 3078 goto out; 3079 } 3080 3081 /* 3082 * wait for ordered IO before we have any locks. We'll loop again 3083 * below with the locks held. 3084 */ 3085 ret = btrfs_wait_ordered_range(inode, alloc_start, 3086 alloc_end - alloc_start); 3087 if (ret) 3088 goto out; 3089 3090 if (mode & FALLOC_FL_ZERO_RANGE) { 3091 ret = btrfs_zero_range(inode, offset, len, mode); 3092 inode_unlock(inode); 3093 return ret; 3094 } 3095 3096 locked_end = alloc_end - 1; 3097 while (1) { 3098 struct btrfs_ordered_extent *ordered; 3099 3100 /* the extent lock is ordered inside the running 3101 * transaction 3102 */ 3103 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3104 locked_end, &cached_state); 3105 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end); 3106 3107 if (ordered && 3108 ordered->file_offset + ordered->len > alloc_start && 3109 ordered->file_offset < alloc_end) { 3110 btrfs_put_ordered_extent(ordered); 3111 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3112 alloc_start, locked_end, 3113 &cached_state); 3114 /* 3115 * we can't wait on the range with the transaction 3116 * running or with the extent lock held 3117 */ 3118 ret = btrfs_wait_ordered_range(inode, alloc_start, 3119 alloc_end - alloc_start); 3120 if (ret) 3121 goto out; 3122 } else { 3123 if (ordered) 3124 btrfs_put_ordered_extent(ordered); 3125 break; 3126 } 3127 } 3128 3129 /* First, check if we exceed the qgroup limit */ 3130 INIT_LIST_HEAD(&reserve_list); 3131 while (cur_offset < alloc_end) { 3132 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3133 alloc_end - cur_offset, 0); 3134 if (IS_ERR(em)) { 3135 ret = PTR_ERR(em); 3136 break; 3137 } 3138 last_byte = min(extent_map_end(em), alloc_end); 3139 actual_end = min_t(u64, extent_map_end(em), offset + len); 3140 last_byte = ALIGN(last_byte, blocksize); 3141 if (em->block_start == EXTENT_MAP_HOLE || 3142 (cur_offset >= inode->i_size && 3143 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3144 ret = add_falloc_range(&reserve_list, cur_offset, 3145 last_byte - cur_offset); 3146 if (ret < 0) { 3147 free_extent_map(em); 3148 break; 3149 } 3150 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 3151 cur_offset, last_byte - cur_offset); 3152 if (ret < 0) { 3153 cur_offset = last_byte; 3154 free_extent_map(em); 3155 break; 3156 } 3157 } else { 3158 /* 3159 * Do not need to reserve unwritten extent for this 3160 * range, free reserved data space first, otherwise 3161 * it'll result in false ENOSPC error. 3162 */ 3163 btrfs_free_reserved_data_space(inode, data_reserved, 3164 cur_offset, last_byte - cur_offset); 3165 } 3166 free_extent_map(em); 3167 cur_offset = last_byte; 3168 } 3169 3170 /* 3171 * If ret is still 0, means we're OK to fallocate. 3172 * Or just cleanup the list and exit. 3173 */ 3174 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3175 if (!ret) 3176 ret = btrfs_prealloc_file_range(inode, mode, 3177 range->start, 3178 range->len, i_blocksize(inode), 3179 offset + len, &alloc_hint); 3180 else 3181 btrfs_free_reserved_data_space(inode, 3182 data_reserved, range->start, 3183 range->len); 3184 list_del(&range->list); 3185 kfree(range); 3186 } 3187 if (ret < 0) 3188 goto out_unlock; 3189 3190 /* 3191 * We didn't need to allocate any more space, but we still extended the 3192 * size of the file so we need to update i_size and the inode item. 3193 */ 3194 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3195 out_unlock: 3196 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3197 &cached_state); 3198 out: 3199 inode_unlock(inode); 3200 /* Let go of our reservation. */ 3201 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3202 btrfs_free_reserved_data_space(inode, data_reserved, 3203 cur_offset, alloc_end - cur_offset); 3204 extent_changeset_free(data_reserved); 3205 return ret; 3206 } 3207 3208 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 3209 { 3210 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3211 struct extent_map *em = NULL; 3212 struct extent_state *cached_state = NULL; 3213 u64 lockstart; 3214 u64 lockend; 3215 u64 start; 3216 u64 len; 3217 int ret = 0; 3218 3219 if (inode->i_size == 0) 3220 return -ENXIO; 3221 3222 /* 3223 * *offset can be negative, in this case we start finding DATA/HOLE from 3224 * the very start of the file. 3225 */ 3226 start = max_t(loff_t, 0, *offset); 3227 3228 lockstart = round_down(start, fs_info->sectorsize); 3229 lockend = round_up(i_size_read(inode), 3230 fs_info->sectorsize); 3231 if (lockend <= lockstart) 3232 lockend = lockstart + fs_info->sectorsize; 3233 lockend--; 3234 len = lockend - lockstart + 1; 3235 3236 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3237 &cached_state); 3238 3239 while (start < inode->i_size) { 3240 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len); 3241 if (IS_ERR(em)) { 3242 ret = PTR_ERR(em); 3243 em = NULL; 3244 break; 3245 } 3246 3247 if (whence == SEEK_HOLE && 3248 (em->block_start == EXTENT_MAP_HOLE || 3249 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3250 break; 3251 else if (whence == SEEK_DATA && 3252 (em->block_start != EXTENT_MAP_HOLE && 3253 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3254 break; 3255 3256 start = em->start + em->len; 3257 free_extent_map(em); 3258 em = NULL; 3259 cond_resched(); 3260 } 3261 free_extent_map(em); 3262 if (!ret) { 3263 if (whence == SEEK_DATA && start >= inode->i_size) 3264 ret = -ENXIO; 3265 else 3266 *offset = min_t(loff_t, start, inode->i_size); 3267 } 3268 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3269 &cached_state); 3270 return ret; 3271 } 3272 3273 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3274 { 3275 struct inode *inode = file->f_mapping->host; 3276 int ret; 3277 3278 inode_lock(inode); 3279 switch (whence) { 3280 case SEEK_END: 3281 case SEEK_CUR: 3282 offset = generic_file_llseek(file, offset, whence); 3283 goto out; 3284 case SEEK_DATA: 3285 case SEEK_HOLE: 3286 if (offset >= i_size_read(inode)) { 3287 inode_unlock(inode); 3288 return -ENXIO; 3289 } 3290 3291 ret = find_desired_extent(inode, &offset, whence); 3292 if (ret) { 3293 inode_unlock(inode); 3294 return ret; 3295 } 3296 } 3297 3298 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3299 out: 3300 inode_unlock(inode); 3301 return offset; 3302 } 3303 3304 static int btrfs_file_open(struct inode *inode, struct file *filp) 3305 { 3306 filp->f_mode |= FMODE_NOWAIT; 3307 return generic_file_open(inode, filp); 3308 } 3309 3310 const struct file_operations btrfs_file_operations = { 3311 .llseek = btrfs_file_llseek, 3312 .read_iter = generic_file_read_iter, 3313 .splice_read = generic_file_splice_read, 3314 .write_iter = btrfs_file_write_iter, 3315 .mmap = btrfs_file_mmap, 3316 .open = btrfs_file_open, 3317 .release = btrfs_release_file, 3318 .fsync = btrfs_sync_file, 3319 .fallocate = btrfs_fallocate, 3320 .unlocked_ioctl = btrfs_ioctl, 3321 #ifdef CONFIG_COMPAT 3322 .compat_ioctl = btrfs_compat_ioctl, 3323 #endif 3324 .remap_file_range = btrfs_remap_file_range, 3325 }; 3326 3327 void __cold btrfs_auto_defrag_exit(void) 3328 { 3329 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3330 } 3331 3332 int __init btrfs_auto_defrag_init(void) 3333 { 3334 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3335 sizeof(struct inode_defrag), 0, 3336 SLAB_MEM_SPREAD, 3337 NULL); 3338 if (!btrfs_inode_defrag_cachep) 3339 return -ENOMEM; 3340 3341 return 0; 3342 } 3343 3344 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3345 { 3346 int ret; 3347 3348 /* 3349 * So with compression we will find and lock a dirty page and clear the 3350 * first one as dirty, setup an async extent, and immediately return 3351 * with the entire range locked but with nobody actually marked with 3352 * writeback. So we can't just filemap_write_and_wait_range() and 3353 * expect it to work since it will just kick off a thread to do the 3354 * actual work. So we need to call filemap_fdatawrite_range _again_ 3355 * since it will wait on the page lock, which won't be unlocked until 3356 * after the pages have been marked as writeback and so we're good to go 3357 * from there. We have to do this otherwise we'll miss the ordered 3358 * extents and that results in badness. Please Josef, do not think you 3359 * know better and pull this out at some point in the future, it is 3360 * right and you are wrong. 3361 */ 3362 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3363 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3364 &BTRFS_I(inode)->runtime_flags)) 3365 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3366 3367 return ret; 3368 } 3369