xref: /linux/fs/btrfs/file.c (revision b7019ac550eb3916f34d79db583e9b7ea2524afa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 
30 static struct kmem_cache *btrfs_inode_defrag_cachep;
31 /*
32  * when auto defrag is enabled we
33  * queue up these defrag structs to remember which
34  * inodes need defragging passes
35  */
36 struct inode_defrag {
37 	struct rb_node rb_node;
38 	/* objectid */
39 	u64 ino;
40 	/*
41 	 * transid where the defrag was added, we search for
42 	 * extents newer than this
43 	 */
44 	u64 transid;
45 
46 	/* root objectid */
47 	u64 root;
48 
49 	/* last offset we were able to defrag */
50 	u64 last_offset;
51 
52 	/* if we've wrapped around back to zero once already */
53 	int cycled;
54 };
55 
56 static int __compare_inode_defrag(struct inode_defrag *defrag1,
57 				  struct inode_defrag *defrag2)
58 {
59 	if (defrag1->root > defrag2->root)
60 		return 1;
61 	else if (defrag1->root < defrag2->root)
62 		return -1;
63 	else if (defrag1->ino > defrag2->ino)
64 		return 1;
65 	else if (defrag1->ino < defrag2->ino)
66 		return -1;
67 	else
68 		return 0;
69 }
70 
71 /* pop a record for an inode into the defrag tree.  The lock
72  * must be held already
73  *
74  * If you're inserting a record for an older transid than an
75  * existing record, the transid already in the tree is lowered
76  *
77  * If an existing record is found the defrag item you
78  * pass in is freed
79  */
80 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
81 				    struct inode_defrag *defrag)
82 {
83 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
84 	struct inode_defrag *entry;
85 	struct rb_node **p;
86 	struct rb_node *parent = NULL;
87 	int ret;
88 
89 	p = &fs_info->defrag_inodes.rb_node;
90 	while (*p) {
91 		parent = *p;
92 		entry = rb_entry(parent, struct inode_defrag, rb_node);
93 
94 		ret = __compare_inode_defrag(defrag, entry);
95 		if (ret < 0)
96 			p = &parent->rb_left;
97 		else if (ret > 0)
98 			p = &parent->rb_right;
99 		else {
100 			/* if we're reinserting an entry for
101 			 * an old defrag run, make sure to
102 			 * lower the transid of our existing record
103 			 */
104 			if (defrag->transid < entry->transid)
105 				entry->transid = defrag->transid;
106 			if (defrag->last_offset > entry->last_offset)
107 				entry->last_offset = defrag->last_offset;
108 			return -EEXIST;
109 		}
110 	}
111 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
112 	rb_link_node(&defrag->rb_node, parent, p);
113 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
114 	return 0;
115 }
116 
117 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
118 {
119 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
120 		return 0;
121 
122 	if (btrfs_fs_closing(fs_info))
123 		return 0;
124 
125 	return 1;
126 }
127 
128 /*
129  * insert a defrag record for this inode if auto defrag is
130  * enabled
131  */
132 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
133 			   struct btrfs_inode *inode)
134 {
135 	struct btrfs_root *root = inode->root;
136 	struct btrfs_fs_info *fs_info = root->fs_info;
137 	struct inode_defrag *defrag;
138 	u64 transid;
139 	int ret;
140 
141 	if (!__need_auto_defrag(fs_info))
142 		return 0;
143 
144 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
145 		return 0;
146 
147 	if (trans)
148 		transid = trans->transid;
149 	else
150 		transid = inode->root->last_trans;
151 
152 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
153 	if (!defrag)
154 		return -ENOMEM;
155 
156 	defrag->ino = btrfs_ino(inode);
157 	defrag->transid = transid;
158 	defrag->root = root->root_key.objectid;
159 
160 	spin_lock(&fs_info->defrag_inodes_lock);
161 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
162 		/*
163 		 * If we set IN_DEFRAG flag and evict the inode from memory,
164 		 * and then re-read this inode, this new inode doesn't have
165 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
166 		 */
167 		ret = __btrfs_add_inode_defrag(inode, defrag);
168 		if (ret)
169 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
170 	} else {
171 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
172 	}
173 	spin_unlock(&fs_info->defrag_inodes_lock);
174 	return 0;
175 }
176 
177 /*
178  * Requeue the defrag object. If there is a defrag object that points to
179  * the same inode in the tree, we will merge them together (by
180  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
181  */
182 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
183 				       struct inode_defrag *defrag)
184 {
185 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
186 	int ret;
187 
188 	if (!__need_auto_defrag(fs_info))
189 		goto out;
190 
191 	/*
192 	 * Here we don't check the IN_DEFRAG flag, because we need merge
193 	 * them together.
194 	 */
195 	spin_lock(&fs_info->defrag_inodes_lock);
196 	ret = __btrfs_add_inode_defrag(inode, defrag);
197 	spin_unlock(&fs_info->defrag_inodes_lock);
198 	if (ret)
199 		goto out;
200 	return;
201 out:
202 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
203 }
204 
205 /*
206  * pick the defragable inode that we want, if it doesn't exist, we will get
207  * the next one.
208  */
209 static struct inode_defrag *
210 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
211 {
212 	struct inode_defrag *entry = NULL;
213 	struct inode_defrag tmp;
214 	struct rb_node *p;
215 	struct rb_node *parent = NULL;
216 	int ret;
217 
218 	tmp.ino = ino;
219 	tmp.root = root;
220 
221 	spin_lock(&fs_info->defrag_inodes_lock);
222 	p = fs_info->defrag_inodes.rb_node;
223 	while (p) {
224 		parent = p;
225 		entry = rb_entry(parent, struct inode_defrag, rb_node);
226 
227 		ret = __compare_inode_defrag(&tmp, entry);
228 		if (ret < 0)
229 			p = parent->rb_left;
230 		else if (ret > 0)
231 			p = parent->rb_right;
232 		else
233 			goto out;
234 	}
235 
236 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
237 		parent = rb_next(parent);
238 		if (parent)
239 			entry = rb_entry(parent, struct inode_defrag, rb_node);
240 		else
241 			entry = NULL;
242 	}
243 out:
244 	if (entry)
245 		rb_erase(parent, &fs_info->defrag_inodes);
246 	spin_unlock(&fs_info->defrag_inodes_lock);
247 	return entry;
248 }
249 
250 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
251 {
252 	struct inode_defrag *defrag;
253 	struct rb_node *node;
254 
255 	spin_lock(&fs_info->defrag_inodes_lock);
256 	node = rb_first(&fs_info->defrag_inodes);
257 	while (node) {
258 		rb_erase(node, &fs_info->defrag_inodes);
259 		defrag = rb_entry(node, struct inode_defrag, rb_node);
260 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
261 
262 		cond_resched_lock(&fs_info->defrag_inodes_lock);
263 
264 		node = rb_first(&fs_info->defrag_inodes);
265 	}
266 	spin_unlock(&fs_info->defrag_inodes_lock);
267 }
268 
269 #define BTRFS_DEFRAG_BATCH	1024
270 
271 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
272 				    struct inode_defrag *defrag)
273 {
274 	struct btrfs_root *inode_root;
275 	struct inode *inode;
276 	struct btrfs_key key;
277 	struct btrfs_ioctl_defrag_range_args range;
278 	int num_defrag;
279 	int index;
280 	int ret;
281 
282 	/* get the inode */
283 	key.objectid = defrag->root;
284 	key.type = BTRFS_ROOT_ITEM_KEY;
285 	key.offset = (u64)-1;
286 
287 	index = srcu_read_lock(&fs_info->subvol_srcu);
288 
289 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
290 	if (IS_ERR(inode_root)) {
291 		ret = PTR_ERR(inode_root);
292 		goto cleanup;
293 	}
294 
295 	key.objectid = defrag->ino;
296 	key.type = BTRFS_INODE_ITEM_KEY;
297 	key.offset = 0;
298 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
299 	if (IS_ERR(inode)) {
300 		ret = PTR_ERR(inode);
301 		goto cleanup;
302 	}
303 	srcu_read_unlock(&fs_info->subvol_srcu, index);
304 
305 	/* do a chunk of defrag */
306 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
307 	memset(&range, 0, sizeof(range));
308 	range.len = (u64)-1;
309 	range.start = defrag->last_offset;
310 
311 	sb_start_write(fs_info->sb);
312 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
313 				       BTRFS_DEFRAG_BATCH);
314 	sb_end_write(fs_info->sb);
315 	/*
316 	 * if we filled the whole defrag batch, there
317 	 * must be more work to do.  Queue this defrag
318 	 * again
319 	 */
320 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
321 		defrag->last_offset = range.start;
322 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
323 	} else if (defrag->last_offset && !defrag->cycled) {
324 		/*
325 		 * we didn't fill our defrag batch, but
326 		 * we didn't start at zero.  Make sure we loop
327 		 * around to the start of the file.
328 		 */
329 		defrag->last_offset = 0;
330 		defrag->cycled = 1;
331 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
332 	} else {
333 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
334 	}
335 
336 	iput(inode);
337 	return 0;
338 cleanup:
339 	srcu_read_unlock(&fs_info->subvol_srcu, index);
340 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
341 	return ret;
342 }
343 
344 /*
345  * run through the list of inodes in the FS that need
346  * defragging
347  */
348 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
349 {
350 	struct inode_defrag *defrag;
351 	u64 first_ino = 0;
352 	u64 root_objectid = 0;
353 
354 	atomic_inc(&fs_info->defrag_running);
355 	while (1) {
356 		/* Pause the auto defragger. */
357 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
358 			     &fs_info->fs_state))
359 			break;
360 
361 		if (!__need_auto_defrag(fs_info))
362 			break;
363 
364 		/* find an inode to defrag */
365 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
366 						 first_ino);
367 		if (!defrag) {
368 			if (root_objectid || first_ino) {
369 				root_objectid = 0;
370 				first_ino = 0;
371 				continue;
372 			} else {
373 				break;
374 			}
375 		}
376 
377 		first_ino = defrag->ino + 1;
378 		root_objectid = defrag->root;
379 
380 		__btrfs_run_defrag_inode(fs_info, defrag);
381 	}
382 	atomic_dec(&fs_info->defrag_running);
383 
384 	/*
385 	 * during unmount, we use the transaction_wait queue to
386 	 * wait for the defragger to stop
387 	 */
388 	wake_up(&fs_info->transaction_wait);
389 	return 0;
390 }
391 
392 /* simple helper to fault in pages and copy.  This should go away
393  * and be replaced with calls into generic code.
394  */
395 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
396 					 struct page **prepared_pages,
397 					 struct iov_iter *i)
398 {
399 	size_t copied = 0;
400 	size_t total_copied = 0;
401 	int pg = 0;
402 	int offset = offset_in_page(pos);
403 
404 	while (write_bytes > 0) {
405 		size_t count = min_t(size_t,
406 				     PAGE_SIZE - offset, write_bytes);
407 		struct page *page = prepared_pages[pg];
408 		/*
409 		 * Copy data from userspace to the current page
410 		 */
411 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
412 
413 		/* Flush processor's dcache for this page */
414 		flush_dcache_page(page);
415 
416 		/*
417 		 * if we get a partial write, we can end up with
418 		 * partially up to date pages.  These add
419 		 * a lot of complexity, so make sure they don't
420 		 * happen by forcing this copy to be retried.
421 		 *
422 		 * The rest of the btrfs_file_write code will fall
423 		 * back to page at a time copies after we return 0.
424 		 */
425 		if (!PageUptodate(page) && copied < count)
426 			copied = 0;
427 
428 		iov_iter_advance(i, copied);
429 		write_bytes -= copied;
430 		total_copied += copied;
431 
432 		/* Return to btrfs_file_write_iter to fault page */
433 		if (unlikely(copied == 0))
434 			break;
435 
436 		if (copied < PAGE_SIZE - offset) {
437 			offset += copied;
438 		} else {
439 			pg++;
440 			offset = 0;
441 		}
442 	}
443 	return total_copied;
444 }
445 
446 /*
447  * unlocks pages after btrfs_file_write is done with them
448  */
449 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
450 {
451 	size_t i;
452 	for (i = 0; i < num_pages; i++) {
453 		/* page checked is some magic around finding pages that
454 		 * have been modified without going through btrfs_set_page_dirty
455 		 * clear it here. There should be no need to mark the pages
456 		 * accessed as prepare_pages should have marked them accessed
457 		 * in prepare_pages via find_or_create_page()
458 		 */
459 		ClearPageChecked(pages[i]);
460 		unlock_page(pages[i]);
461 		put_page(pages[i]);
462 	}
463 }
464 
465 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
466 					 const u64 start,
467 					 const u64 len,
468 					 struct extent_state **cached_state)
469 {
470 	u64 search_start = start;
471 	const u64 end = start + len - 1;
472 
473 	while (search_start < end) {
474 		const u64 search_len = end - search_start + 1;
475 		struct extent_map *em;
476 		u64 em_len;
477 		int ret = 0;
478 
479 		em = btrfs_get_extent(inode, NULL, 0, search_start,
480 				      search_len, 0);
481 		if (IS_ERR(em))
482 			return PTR_ERR(em);
483 
484 		if (em->block_start != EXTENT_MAP_HOLE)
485 			goto next;
486 
487 		em_len = em->len;
488 		if (em->start < search_start)
489 			em_len -= search_start - em->start;
490 		if (em_len > search_len)
491 			em_len = search_len;
492 
493 		ret = set_extent_bit(&inode->io_tree, search_start,
494 				     search_start + em_len - 1,
495 				     EXTENT_DELALLOC_NEW,
496 				     NULL, cached_state, GFP_NOFS);
497 next:
498 		search_start = extent_map_end(em);
499 		free_extent_map(em);
500 		if (ret)
501 			return ret;
502 	}
503 	return 0;
504 }
505 
506 /*
507  * after copy_from_user, pages need to be dirtied and we need to make
508  * sure holes are created between the current EOF and the start of
509  * any next extents (if required).
510  *
511  * this also makes the decision about creating an inline extent vs
512  * doing real data extents, marking pages dirty and delalloc as required.
513  */
514 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
515 		      size_t num_pages, loff_t pos, size_t write_bytes,
516 		      struct extent_state **cached)
517 {
518 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
519 	int err = 0;
520 	int i;
521 	u64 num_bytes;
522 	u64 start_pos;
523 	u64 end_of_last_block;
524 	u64 end_pos = pos + write_bytes;
525 	loff_t isize = i_size_read(inode);
526 	unsigned int extra_bits = 0;
527 
528 	start_pos = pos & ~((u64) fs_info->sectorsize - 1);
529 	num_bytes = round_up(write_bytes + pos - start_pos,
530 			     fs_info->sectorsize);
531 
532 	end_of_last_block = start_pos + num_bytes - 1;
533 
534 	/*
535 	 * The pages may have already been dirty, clear out old accounting so
536 	 * we can set things up properly
537 	 */
538 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
539 			 EXTENT_DIRTY | EXTENT_DELALLOC |
540 			 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, cached);
541 
542 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
543 		if (start_pos >= isize &&
544 		    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
545 			/*
546 			 * There can't be any extents following eof in this case
547 			 * so just set the delalloc new bit for the range
548 			 * directly.
549 			 */
550 			extra_bits |= EXTENT_DELALLOC_NEW;
551 		} else {
552 			err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
553 							    start_pos,
554 							    num_bytes, cached);
555 			if (err)
556 				return err;
557 		}
558 	}
559 
560 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
561 					extra_bits, cached, 0);
562 	if (err)
563 		return err;
564 
565 	for (i = 0; i < num_pages; i++) {
566 		struct page *p = pages[i];
567 		SetPageUptodate(p);
568 		ClearPageChecked(p);
569 		set_page_dirty(p);
570 	}
571 
572 	/*
573 	 * we've only changed i_size in ram, and we haven't updated
574 	 * the disk i_size.  There is no need to log the inode
575 	 * at this time.
576 	 */
577 	if (end_pos > isize)
578 		i_size_write(inode, end_pos);
579 	return 0;
580 }
581 
582 /*
583  * this drops all the extents in the cache that intersect the range
584  * [start, end].  Existing extents are split as required.
585  */
586 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
587 			     int skip_pinned)
588 {
589 	struct extent_map *em;
590 	struct extent_map *split = NULL;
591 	struct extent_map *split2 = NULL;
592 	struct extent_map_tree *em_tree = &inode->extent_tree;
593 	u64 len = end - start + 1;
594 	u64 gen;
595 	int ret;
596 	int testend = 1;
597 	unsigned long flags;
598 	int compressed = 0;
599 	bool modified;
600 
601 	WARN_ON(end < start);
602 	if (end == (u64)-1) {
603 		len = (u64)-1;
604 		testend = 0;
605 	}
606 	while (1) {
607 		int no_splits = 0;
608 
609 		modified = false;
610 		if (!split)
611 			split = alloc_extent_map();
612 		if (!split2)
613 			split2 = alloc_extent_map();
614 		if (!split || !split2)
615 			no_splits = 1;
616 
617 		write_lock(&em_tree->lock);
618 		em = lookup_extent_mapping(em_tree, start, len);
619 		if (!em) {
620 			write_unlock(&em_tree->lock);
621 			break;
622 		}
623 		flags = em->flags;
624 		gen = em->generation;
625 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
626 			if (testend && em->start + em->len >= start + len) {
627 				free_extent_map(em);
628 				write_unlock(&em_tree->lock);
629 				break;
630 			}
631 			start = em->start + em->len;
632 			if (testend)
633 				len = start + len - (em->start + em->len);
634 			free_extent_map(em);
635 			write_unlock(&em_tree->lock);
636 			continue;
637 		}
638 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
639 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
640 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
641 		modified = !list_empty(&em->list);
642 		if (no_splits)
643 			goto next;
644 
645 		if (em->start < start) {
646 			split->start = em->start;
647 			split->len = start - em->start;
648 
649 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
650 				split->orig_start = em->orig_start;
651 				split->block_start = em->block_start;
652 
653 				if (compressed)
654 					split->block_len = em->block_len;
655 				else
656 					split->block_len = split->len;
657 				split->orig_block_len = max(split->block_len,
658 						em->orig_block_len);
659 				split->ram_bytes = em->ram_bytes;
660 			} else {
661 				split->orig_start = split->start;
662 				split->block_len = 0;
663 				split->block_start = em->block_start;
664 				split->orig_block_len = 0;
665 				split->ram_bytes = split->len;
666 			}
667 
668 			split->generation = gen;
669 			split->bdev = em->bdev;
670 			split->flags = flags;
671 			split->compress_type = em->compress_type;
672 			replace_extent_mapping(em_tree, em, split, modified);
673 			free_extent_map(split);
674 			split = split2;
675 			split2 = NULL;
676 		}
677 		if (testend && em->start + em->len > start + len) {
678 			u64 diff = start + len - em->start;
679 
680 			split->start = start + len;
681 			split->len = em->start + em->len - (start + len);
682 			split->bdev = em->bdev;
683 			split->flags = flags;
684 			split->compress_type = em->compress_type;
685 			split->generation = gen;
686 
687 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
688 				split->orig_block_len = max(em->block_len,
689 						    em->orig_block_len);
690 
691 				split->ram_bytes = em->ram_bytes;
692 				if (compressed) {
693 					split->block_len = em->block_len;
694 					split->block_start = em->block_start;
695 					split->orig_start = em->orig_start;
696 				} else {
697 					split->block_len = split->len;
698 					split->block_start = em->block_start
699 						+ diff;
700 					split->orig_start = em->orig_start;
701 				}
702 			} else {
703 				split->ram_bytes = split->len;
704 				split->orig_start = split->start;
705 				split->block_len = 0;
706 				split->block_start = em->block_start;
707 				split->orig_block_len = 0;
708 			}
709 
710 			if (extent_map_in_tree(em)) {
711 				replace_extent_mapping(em_tree, em, split,
712 						       modified);
713 			} else {
714 				ret = add_extent_mapping(em_tree, split,
715 							 modified);
716 				ASSERT(ret == 0); /* Logic error */
717 			}
718 			free_extent_map(split);
719 			split = NULL;
720 		}
721 next:
722 		if (extent_map_in_tree(em))
723 			remove_extent_mapping(em_tree, em);
724 		write_unlock(&em_tree->lock);
725 
726 		/* once for us */
727 		free_extent_map(em);
728 		/* once for the tree*/
729 		free_extent_map(em);
730 	}
731 	if (split)
732 		free_extent_map(split);
733 	if (split2)
734 		free_extent_map(split2);
735 }
736 
737 /*
738  * this is very complex, but the basic idea is to drop all extents
739  * in the range start - end.  hint_block is filled in with a block number
740  * that would be a good hint to the block allocator for this file.
741  *
742  * If an extent intersects the range but is not entirely inside the range
743  * it is either truncated or split.  Anything entirely inside the range
744  * is deleted from the tree.
745  */
746 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
747 			 struct btrfs_root *root, struct inode *inode,
748 			 struct btrfs_path *path, u64 start, u64 end,
749 			 u64 *drop_end, int drop_cache,
750 			 int replace_extent,
751 			 u32 extent_item_size,
752 			 int *key_inserted)
753 {
754 	struct btrfs_fs_info *fs_info = root->fs_info;
755 	struct extent_buffer *leaf;
756 	struct btrfs_file_extent_item *fi;
757 	struct btrfs_ref ref = { 0 };
758 	struct btrfs_key key;
759 	struct btrfs_key new_key;
760 	u64 ino = btrfs_ino(BTRFS_I(inode));
761 	u64 search_start = start;
762 	u64 disk_bytenr = 0;
763 	u64 num_bytes = 0;
764 	u64 extent_offset = 0;
765 	u64 extent_end = 0;
766 	u64 last_end = start;
767 	int del_nr = 0;
768 	int del_slot = 0;
769 	int extent_type;
770 	int recow;
771 	int ret;
772 	int modify_tree = -1;
773 	int update_refs;
774 	int found = 0;
775 	int leafs_visited = 0;
776 
777 	if (drop_cache)
778 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
779 
780 	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
781 		modify_tree = 0;
782 
783 	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
784 		       root == fs_info->tree_root);
785 	while (1) {
786 		recow = 0;
787 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
788 					       search_start, modify_tree);
789 		if (ret < 0)
790 			break;
791 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
792 			leaf = path->nodes[0];
793 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
794 			if (key.objectid == ino &&
795 			    key.type == BTRFS_EXTENT_DATA_KEY)
796 				path->slots[0]--;
797 		}
798 		ret = 0;
799 		leafs_visited++;
800 next_slot:
801 		leaf = path->nodes[0];
802 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
803 			BUG_ON(del_nr > 0);
804 			ret = btrfs_next_leaf(root, path);
805 			if (ret < 0)
806 				break;
807 			if (ret > 0) {
808 				ret = 0;
809 				break;
810 			}
811 			leafs_visited++;
812 			leaf = path->nodes[0];
813 			recow = 1;
814 		}
815 
816 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
817 
818 		if (key.objectid > ino)
819 			break;
820 		if (WARN_ON_ONCE(key.objectid < ino) ||
821 		    key.type < BTRFS_EXTENT_DATA_KEY) {
822 			ASSERT(del_nr == 0);
823 			path->slots[0]++;
824 			goto next_slot;
825 		}
826 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
827 			break;
828 
829 		fi = btrfs_item_ptr(leaf, path->slots[0],
830 				    struct btrfs_file_extent_item);
831 		extent_type = btrfs_file_extent_type(leaf, fi);
832 
833 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
834 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
835 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
836 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
837 			extent_offset = btrfs_file_extent_offset(leaf, fi);
838 			extent_end = key.offset +
839 				btrfs_file_extent_num_bytes(leaf, fi);
840 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
841 			extent_end = key.offset +
842 				btrfs_file_extent_ram_bytes(leaf, fi);
843 		} else {
844 			/* can't happen */
845 			BUG();
846 		}
847 
848 		/*
849 		 * Don't skip extent items representing 0 byte lengths. They
850 		 * used to be created (bug) if while punching holes we hit
851 		 * -ENOSPC condition. So if we find one here, just ensure we
852 		 * delete it, otherwise we would insert a new file extent item
853 		 * with the same key (offset) as that 0 bytes length file
854 		 * extent item in the call to setup_items_for_insert() later
855 		 * in this function.
856 		 */
857 		if (extent_end == key.offset && extent_end >= search_start) {
858 			last_end = extent_end;
859 			goto delete_extent_item;
860 		}
861 
862 		if (extent_end <= search_start) {
863 			path->slots[0]++;
864 			goto next_slot;
865 		}
866 
867 		found = 1;
868 		search_start = max(key.offset, start);
869 		if (recow || !modify_tree) {
870 			modify_tree = -1;
871 			btrfs_release_path(path);
872 			continue;
873 		}
874 
875 		/*
876 		 *     | - range to drop - |
877 		 *  | -------- extent -------- |
878 		 */
879 		if (start > key.offset && end < extent_end) {
880 			BUG_ON(del_nr > 0);
881 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
882 				ret = -EOPNOTSUPP;
883 				break;
884 			}
885 
886 			memcpy(&new_key, &key, sizeof(new_key));
887 			new_key.offset = start;
888 			ret = btrfs_duplicate_item(trans, root, path,
889 						   &new_key);
890 			if (ret == -EAGAIN) {
891 				btrfs_release_path(path);
892 				continue;
893 			}
894 			if (ret < 0)
895 				break;
896 
897 			leaf = path->nodes[0];
898 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
899 					    struct btrfs_file_extent_item);
900 			btrfs_set_file_extent_num_bytes(leaf, fi,
901 							start - key.offset);
902 
903 			fi = btrfs_item_ptr(leaf, path->slots[0],
904 					    struct btrfs_file_extent_item);
905 
906 			extent_offset += start - key.offset;
907 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
908 			btrfs_set_file_extent_num_bytes(leaf, fi,
909 							extent_end - start);
910 			btrfs_mark_buffer_dirty(leaf);
911 
912 			if (update_refs && disk_bytenr > 0) {
913 				btrfs_init_generic_ref(&ref,
914 						BTRFS_ADD_DELAYED_REF,
915 						disk_bytenr, num_bytes, 0);
916 				btrfs_init_data_ref(&ref,
917 						root->root_key.objectid,
918 						new_key.objectid,
919 						start - extent_offset);
920 				ret = btrfs_inc_extent_ref(trans, &ref);
921 				BUG_ON(ret); /* -ENOMEM */
922 			}
923 			key.offset = start;
924 		}
925 		/*
926 		 * From here on out we will have actually dropped something, so
927 		 * last_end can be updated.
928 		 */
929 		last_end = extent_end;
930 
931 		/*
932 		 *  | ---- range to drop ----- |
933 		 *      | -------- extent -------- |
934 		 */
935 		if (start <= key.offset && end < extent_end) {
936 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
937 				ret = -EOPNOTSUPP;
938 				break;
939 			}
940 
941 			memcpy(&new_key, &key, sizeof(new_key));
942 			new_key.offset = end;
943 			btrfs_set_item_key_safe(fs_info, path, &new_key);
944 
945 			extent_offset += end - key.offset;
946 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
947 			btrfs_set_file_extent_num_bytes(leaf, fi,
948 							extent_end - end);
949 			btrfs_mark_buffer_dirty(leaf);
950 			if (update_refs && disk_bytenr > 0)
951 				inode_sub_bytes(inode, end - key.offset);
952 			break;
953 		}
954 
955 		search_start = extent_end;
956 		/*
957 		 *       | ---- range to drop ----- |
958 		 *  | -------- extent -------- |
959 		 */
960 		if (start > key.offset && end >= extent_end) {
961 			BUG_ON(del_nr > 0);
962 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
963 				ret = -EOPNOTSUPP;
964 				break;
965 			}
966 
967 			btrfs_set_file_extent_num_bytes(leaf, fi,
968 							start - key.offset);
969 			btrfs_mark_buffer_dirty(leaf);
970 			if (update_refs && disk_bytenr > 0)
971 				inode_sub_bytes(inode, extent_end - start);
972 			if (end == extent_end)
973 				break;
974 
975 			path->slots[0]++;
976 			goto next_slot;
977 		}
978 
979 		/*
980 		 *  | ---- range to drop ----- |
981 		 *    | ------ extent ------ |
982 		 */
983 		if (start <= key.offset && end >= extent_end) {
984 delete_extent_item:
985 			if (del_nr == 0) {
986 				del_slot = path->slots[0];
987 				del_nr = 1;
988 			} else {
989 				BUG_ON(del_slot + del_nr != path->slots[0]);
990 				del_nr++;
991 			}
992 
993 			if (update_refs &&
994 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
995 				inode_sub_bytes(inode,
996 						extent_end - key.offset);
997 				extent_end = ALIGN(extent_end,
998 						   fs_info->sectorsize);
999 			} else if (update_refs && disk_bytenr > 0) {
1000 				btrfs_init_generic_ref(&ref,
1001 						BTRFS_DROP_DELAYED_REF,
1002 						disk_bytenr, num_bytes, 0);
1003 				btrfs_init_data_ref(&ref,
1004 						root->root_key.objectid,
1005 						key.objectid,
1006 						key.offset - extent_offset);
1007 				ret = btrfs_free_extent(trans, &ref);
1008 				BUG_ON(ret); /* -ENOMEM */
1009 				inode_sub_bytes(inode,
1010 						extent_end - key.offset);
1011 			}
1012 
1013 			if (end == extent_end)
1014 				break;
1015 
1016 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1017 				path->slots[0]++;
1018 				goto next_slot;
1019 			}
1020 
1021 			ret = btrfs_del_items(trans, root, path, del_slot,
1022 					      del_nr);
1023 			if (ret) {
1024 				btrfs_abort_transaction(trans, ret);
1025 				break;
1026 			}
1027 
1028 			del_nr = 0;
1029 			del_slot = 0;
1030 
1031 			btrfs_release_path(path);
1032 			continue;
1033 		}
1034 
1035 		BUG();
1036 	}
1037 
1038 	if (!ret && del_nr > 0) {
1039 		/*
1040 		 * Set path->slots[0] to first slot, so that after the delete
1041 		 * if items are move off from our leaf to its immediate left or
1042 		 * right neighbor leafs, we end up with a correct and adjusted
1043 		 * path->slots[0] for our insertion (if replace_extent != 0).
1044 		 */
1045 		path->slots[0] = del_slot;
1046 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1047 		if (ret)
1048 			btrfs_abort_transaction(trans, ret);
1049 	}
1050 
1051 	leaf = path->nodes[0];
1052 	/*
1053 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
1054 	 * which case it unlocked our path, so check path->locks[0] matches a
1055 	 * write lock.
1056 	 */
1057 	if (!ret && replace_extent && leafs_visited == 1 &&
1058 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1059 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
1060 	    btrfs_leaf_free_space(leaf) >=
1061 	    sizeof(struct btrfs_item) + extent_item_size) {
1062 
1063 		key.objectid = ino;
1064 		key.type = BTRFS_EXTENT_DATA_KEY;
1065 		key.offset = start;
1066 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1067 			struct btrfs_key slot_key;
1068 
1069 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1070 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1071 				path->slots[0]++;
1072 		}
1073 		setup_items_for_insert(root, path, &key,
1074 				       &extent_item_size,
1075 				       extent_item_size,
1076 				       sizeof(struct btrfs_item) +
1077 				       extent_item_size, 1);
1078 		*key_inserted = 1;
1079 	}
1080 
1081 	if (!replace_extent || !(*key_inserted))
1082 		btrfs_release_path(path);
1083 	if (drop_end)
1084 		*drop_end = found ? min(end, last_end) : end;
1085 	return ret;
1086 }
1087 
1088 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1089 		       struct btrfs_root *root, struct inode *inode, u64 start,
1090 		       u64 end, int drop_cache)
1091 {
1092 	struct btrfs_path *path;
1093 	int ret;
1094 
1095 	path = btrfs_alloc_path();
1096 	if (!path)
1097 		return -ENOMEM;
1098 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1099 				   drop_cache, 0, 0, NULL);
1100 	btrfs_free_path(path);
1101 	return ret;
1102 }
1103 
1104 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1105 			    u64 objectid, u64 bytenr, u64 orig_offset,
1106 			    u64 *start, u64 *end)
1107 {
1108 	struct btrfs_file_extent_item *fi;
1109 	struct btrfs_key key;
1110 	u64 extent_end;
1111 
1112 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1113 		return 0;
1114 
1115 	btrfs_item_key_to_cpu(leaf, &key, slot);
1116 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1117 		return 0;
1118 
1119 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1120 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1121 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1122 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1123 	    btrfs_file_extent_compression(leaf, fi) ||
1124 	    btrfs_file_extent_encryption(leaf, fi) ||
1125 	    btrfs_file_extent_other_encoding(leaf, fi))
1126 		return 0;
1127 
1128 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1129 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1130 		return 0;
1131 
1132 	*start = key.offset;
1133 	*end = extent_end;
1134 	return 1;
1135 }
1136 
1137 /*
1138  * Mark extent in the range start - end as written.
1139  *
1140  * This changes extent type from 'pre-allocated' to 'regular'. If only
1141  * part of extent is marked as written, the extent will be split into
1142  * two or three.
1143  */
1144 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1145 			      struct btrfs_inode *inode, u64 start, u64 end)
1146 {
1147 	struct btrfs_fs_info *fs_info = trans->fs_info;
1148 	struct btrfs_root *root = inode->root;
1149 	struct extent_buffer *leaf;
1150 	struct btrfs_path *path;
1151 	struct btrfs_file_extent_item *fi;
1152 	struct btrfs_ref ref = { 0 };
1153 	struct btrfs_key key;
1154 	struct btrfs_key new_key;
1155 	u64 bytenr;
1156 	u64 num_bytes;
1157 	u64 extent_end;
1158 	u64 orig_offset;
1159 	u64 other_start;
1160 	u64 other_end;
1161 	u64 split;
1162 	int del_nr = 0;
1163 	int del_slot = 0;
1164 	int recow;
1165 	int ret;
1166 	u64 ino = btrfs_ino(inode);
1167 
1168 	path = btrfs_alloc_path();
1169 	if (!path)
1170 		return -ENOMEM;
1171 again:
1172 	recow = 0;
1173 	split = start;
1174 	key.objectid = ino;
1175 	key.type = BTRFS_EXTENT_DATA_KEY;
1176 	key.offset = split;
1177 
1178 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1179 	if (ret < 0)
1180 		goto out;
1181 	if (ret > 0 && path->slots[0] > 0)
1182 		path->slots[0]--;
1183 
1184 	leaf = path->nodes[0];
1185 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1186 	if (key.objectid != ino ||
1187 	    key.type != BTRFS_EXTENT_DATA_KEY) {
1188 		ret = -EINVAL;
1189 		btrfs_abort_transaction(trans, ret);
1190 		goto out;
1191 	}
1192 	fi = btrfs_item_ptr(leaf, path->slots[0],
1193 			    struct btrfs_file_extent_item);
1194 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1195 		ret = -EINVAL;
1196 		btrfs_abort_transaction(trans, ret);
1197 		goto out;
1198 	}
1199 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1200 	if (key.offset > start || extent_end < end) {
1201 		ret = -EINVAL;
1202 		btrfs_abort_transaction(trans, ret);
1203 		goto out;
1204 	}
1205 
1206 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1207 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1208 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1209 	memcpy(&new_key, &key, sizeof(new_key));
1210 
1211 	if (start == key.offset && end < extent_end) {
1212 		other_start = 0;
1213 		other_end = start;
1214 		if (extent_mergeable(leaf, path->slots[0] - 1,
1215 				     ino, bytenr, orig_offset,
1216 				     &other_start, &other_end)) {
1217 			new_key.offset = end;
1218 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1219 			fi = btrfs_item_ptr(leaf, path->slots[0],
1220 					    struct btrfs_file_extent_item);
1221 			btrfs_set_file_extent_generation(leaf, fi,
1222 							 trans->transid);
1223 			btrfs_set_file_extent_num_bytes(leaf, fi,
1224 							extent_end - end);
1225 			btrfs_set_file_extent_offset(leaf, fi,
1226 						     end - orig_offset);
1227 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1228 					    struct btrfs_file_extent_item);
1229 			btrfs_set_file_extent_generation(leaf, fi,
1230 							 trans->transid);
1231 			btrfs_set_file_extent_num_bytes(leaf, fi,
1232 							end - other_start);
1233 			btrfs_mark_buffer_dirty(leaf);
1234 			goto out;
1235 		}
1236 	}
1237 
1238 	if (start > key.offset && end == extent_end) {
1239 		other_start = end;
1240 		other_end = 0;
1241 		if (extent_mergeable(leaf, path->slots[0] + 1,
1242 				     ino, bytenr, orig_offset,
1243 				     &other_start, &other_end)) {
1244 			fi = btrfs_item_ptr(leaf, path->slots[0],
1245 					    struct btrfs_file_extent_item);
1246 			btrfs_set_file_extent_num_bytes(leaf, fi,
1247 							start - key.offset);
1248 			btrfs_set_file_extent_generation(leaf, fi,
1249 							 trans->transid);
1250 			path->slots[0]++;
1251 			new_key.offset = start;
1252 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1253 
1254 			fi = btrfs_item_ptr(leaf, path->slots[0],
1255 					    struct btrfs_file_extent_item);
1256 			btrfs_set_file_extent_generation(leaf, fi,
1257 							 trans->transid);
1258 			btrfs_set_file_extent_num_bytes(leaf, fi,
1259 							other_end - start);
1260 			btrfs_set_file_extent_offset(leaf, fi,
1261 						     start - orig_offset);
1262 			btrfs_mark_buffer_dirty(leaf);
1263 			goto out;
1264 		}
1265 	}
1266 
1267 	while (start > key.offset || end < extent_end) {
1268 		if (key.offset == start)
1269 			split = end;
1270 
1271 		new_key.offset = split;
1272 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1273 		if (ret == -EAGAIN) {
1274 			btrfs_release_path(path);
1275 			goto again;
1276 		}
1277 		if (ret < 0) {
1278 			btrfs_abort_transaction(trans, ret);
1279 			goto out;
1280 		}
1281 
1282 		leaf = path->nodes[0];
1283 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1284 				    struct btrfs_file_extent_item);
1285 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1286 		btrfs_set_file_extent_num_bytes(leaf, fi,
1287 						split - key.offset);
1288 
1289 		fi = btrfs_item_ptr(leaf, path->slots[0],
1290 				    struct btrfs_file_extent_item);
1291 
1292 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1293 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1294 		btrfs_set_file_extent_num_bytes(leaf, fi,
1295 						extent_end - split);
1296 		btrfs_mark_buffer_dirty(leaf);
1297 
1298 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1299 				       num_bytes, 0);
1300 		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1301 				    orig_offset);
1302 		ret = btrfs_inc_extent_ref(trans, &ref);
1303 		if (ret) {
1304 			btrfs_abort_transaction(trans, ret);
1305 			goto out;
1306 		}
1307 
1308 		if (split == start) {
1309 			key.offset = start;
1310 		} else {
1311 			if (start != key.offset) {
1312 				ret = -EINVAL;
1313 				btrfs_abort_transaction(trans, ret);
1314 				goto out;
1315 			}
1316 			path->slots[0]--;
1317 			extent_end = end;
1318 		}
1319 		recow = 1;
1320 	}
1321 
1322 	other_start = end;
1323 	other_end = 0;
1324 	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1325 			       num_bytes, 0);
1326 	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1327 	if (extent_mergeable(leaf, path->slots[0] + 1,
1328 			     ino, bytenr, orig_offset,
1329 			     &other_start, &other_end)) {
1330 		if (recow) {
1331 			btrfs_release_path(path);
1332 			goto again;
1333 		}
1334 		extent_end = other_end;
1335 		del_slot = path->slots[0] + 1;
1336 		del_nr++;
1337 		ret = btrfs_free_extent(trans, &ref);
1338 		if (ret) {
1339 			btrfs_abort_transaction(trans, ret);
1340 			goto out;
1341 		}
1342 	}
1343 	other_start = 0;
1344 	other_end = start;
1345 	if (extent_mergeable(leaf, path->slots[0] - 1,
1346 			     ino, bytenr, orig_offset,
1347 			     &other_start, &other_end)) {
1348 		if (recow) {
1349 			btrfs_release_path(path);
1350 			goto again;
1351 		}
1352 		key.offset = other_start;
1353 		del_slot = path->slots[0];
1354 		del_nr++;
1355 		ret = btrfs_free_extent(trans, &ref);
1356 		if (ret) {
1357 			btrfs_abort_transaction(trans, ret);
1358 			goto out;
1359 		}
1360 	}
1361 	if (del_nr == 0) {
1362 		fi = btrfs_item_ptr(leaf, path->slots[0],
1363 			   struct btrfs_file_extent_item);
1364 		btrfs_set_file_extent_type(leaf, fi,
1365 					   BTRFS_FILE_EXTENT_REG);
1366 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1367 		btrfs_mark_buffer_dirty(leaf);
1368 	} else {
1369 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1370 			   struct btrfs_file_extent_item);
1371 		btrfs_set_file_extent_type(leaf, fi,
1372 					   BTRFS_FILE_EXTENT_REG);
1373 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1374 		btrfs_set_file_extent_num_bytes(leaf, fi,
1375 						extent_end - key.offset);
1376 		btrfs_mark_buffer_dirty(leaf);
1377 
1378 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1379 		if (ret < 0) {
1380 			btrfs_abort_transaction(trans, ret);
1381 			goto out;
1382 		}
1383 	}
1384 out:
1385 	btrfs_free_path(path);
1386 	return 0;
1387 }
1388 
1389 /*
1390  * on error we return an unlocked page and the error value
1391  * on success we return a locked page and 0
1392  */
1393 static int prepare_uptodate_page(struct inode *inode,
1394 				 struct page *page, u64 pos,
1395 				 bool force_uptodate)
1396 {
1397 	int ret = 0;
1398 
1399 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1400 	    !PageUptodate(page)) {
1401 		ret = btrfs_readpage(NULL, page);
1402 		if (ret)
1403 			return ret;
1404 		lock_page(page);
1405 		if (!PageUptodate(page)) {
1406 			unlock_page(page);
1407 			return -EIO;
1408 		}
1409 		if (page->mapping != inode->i_mapping) {
1410 			unlock_page(page);
1411 			return -EAGAIN;
1412 		}
1413 	}
1414 	return 0;
1415 }
1416 
1417 /*
1418  * this just gets pages into the page cache and locks them down.
1419  */
1420 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1421 				  size_t num_pages, loff_t pos,
1422 				  size_t write_bytes, bool force_uptodate)
1423 {
1424 	int i;
1425 	unsigned long index = pos >> PAGE_SHIFT;
1426 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1427 	int err = 0;
1428 	int faili;
1429 
1430 	for (i = 0; i < num_pages; i++) {
1431 again:
1432 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1433 					       mask | __GFP_WRITE);
1434 		if (!pages[i]) {
1435 			faili = i - 1;
1436 			err = -ENOMEM;
1437 			goto fail;
1438 		}
1439 
1440 		if (i == 0)
1441 			err = prepare_uptodate_page(inode, pages[i], pos,
1442 						    force_uptodate);
1443 		if (!err && i == num_pages - 1)
1444 			err = prepare_uptodate_page(inode, pages[i],
1445 						    pos + write_bytes, false);
1446 		if (err) {
1447 			put_page(pages[i]);
1448 			if (err == -EAGAIN) {
1449 				err = 0;
1450 				goto again;
1451 			}
1452 			faili = i - 1;
1453 			goto fail;
1454 		}
1455 		wait_on_page_writeback(pages[i]);
1456 	}
1457 
1458 	return 0;
1459 fail:
1460 	while (faili >= 0) {
1461 		unlock_page(pages[faili]);
1462 		put_page(pages[faili]);
1463 		faili--;
1464 	}
1465 	return err;
1466 
1467 }
1468 
1469 /*
1470  * This function locks the extent and properly waits for data=ordered extents
1471  * to finish before allowing the pages to be modified if need.
1472  *
1473  * The return value:
1474  * 1 - the extent is locked
1475  * 0 - the extent is not locked, and everything is OK
1476  * -EAGAIN - need re-prepare the pages
1477  * the other < 0 number - Something wrong happens
1478  */
1479 static noinline int
1480 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1481 				size_t num_pages, loff_t pos,
1482 				size_t write_bytes,
1483 				u64 *lockstart, u64 *lockend,
1484 				struct extent_state **cached_state)
1485 {
1486 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1487 	u64 start_pos;
1488 	u64 last_pos;
1489 	int i;
1490 	int ret = 0;
1491 
1492 	start_pos = round_down(pos, fs_info->sectorsize);
1493 	last_pos = start_pos
1494 		+ round_up(pos + write_bytes - start_pos,
1495 			   fs_info->sectorsize) - 1;
1496 
1497 	if (start_pos < inode->vfs_inode.i_size) {
1498 		struct btrfs_ordered_extent *ordered;
1499 
1500 		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1501 				cached_state);
1502 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1503 						     last_pos - start_pos + 1);
1504 		if (ordered &&
1505 		    ordered->file_offset + ordered->len > start_pos &&
1506 		    ordered->file_offset <= last_pos) {
1507 			unlock_extent_cached(&inode->io_tree, start_pos,
1508 					last_pos, cached_state);
1509 			for (i = 0; i < num_pages; i++) {
1510 				unlock_page(pages[i]);
1511 				put_page(pages[i]);
1512 			}
1513 			btrfs_start_ordered_extent(&inode->vfs_inode,
1514 					ordered, 1);
1515 			btrfs_put_ordered_extent(ordered);
1516 			return -EAGAIN;
1517 		}
1518 		if (ordered)
1519 			btrfs_put_ordered_extent(ordered);
1520 
1521 		*lockstart = start_pos;
1522 		*lockend = last_pos;
1523 		ret = 1;
1524 	}
1525 
1526 	/*
1527 	 * It's possible the pages are dirty right now, but we don't want
1528 	 * to clean them yet because copy_from_user may catch a page fault
1529 	 * and we might have to fall back to one page at a time.  If that
1530 	 * happens, we'll unlock these pages and we'd have a window where
1531 	 * reclaim could sneak in and drop the once-dirty page on the floor
1532 	 * without writing it.
1533 	 *
1534 	 * We have the pages locked and the extent range locked, so there's
1535 	 * no way someone can start IO on any dirty pages in this range.
1536 	 *
1537 	 * We'll call btrfs_dirty_pages() later on, and that will flip around
1538 	 * delalloc bits and dirty the pages as required.
1539 	 */
1540 	for (i = 0; i < num_pages; i++) {
1541 		set_page_extent_mapped(pages[i]);
1542 		WARN_ON(!PageLocked(pages[i]));
1543 	}
1544 
1545 	return ret;
1546 }
1547 
1548 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1549 				    size_t *write_bytes)
1550 {
1551 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1552 	struct btrfs_root *root = inode->root;
1553 	struct btrfs_ordered_extent *ordered;
1554 	u64 lockstart, lockend;
1555 	u64 num_bytes;
1556 	int ret;
1557 
1558 	ret = btrfs_start_write_no_snapshotting(root);
1559 	if (!ret)
1560 		return -ENOSPC;
1561 
1562 	lockstart = round_down(pos, fs_info->sectorsize);
1563 	lockend = round_up(pos + *write_bytes,
1564 			   fs_info->sectorsize) - 1;
1565 
1566 	while (1) {
1567 		lock_extent(&inode->io_tree, lockstart, lockend);
1568 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1569 						     lockend - lockstart + 1);
1570 		if (!ordered) {
1571 			break;
1572 		}
1573 		unlock_extent(&inode->io_tree, lockstart, lockend);
1574 		btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1575 		btrfs_put_ordered_extent(ordered);
1576 	}
1577 
1578 	num_bytes = lockend - lockstart + 1;
1579 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1580 			NULL, NULL, NULL);
1581 	if (ret <= 0) {
1582 		ret = 0;
1583 		btrfs_end_write_no_snapshotting(root);
1584 	} else {
1585 		*write_bytes = min_t(size_t, *write_bytes ,
1586 				     num_bytes - pos + lockstart);
1587 	}
1588 
1589 	unlock_extent(&inode->io_tree, lockstart, lockend);
1590 
1591 	return ret;
1592 }
1593 
1594 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1595 					       struct iov_iter *i)
1596 {
1597 	struct file *file = iocb->ki_filp;
1598 	loff_t pos = iocb->ki_pos;
1599 	struct inode *inode = file_inode(file);
1600 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1601 	struct btrfs_root *root = BTRFS_I(inode)->root;
1602 	struct page **pages = NULL;
1603 	struct extent_state *cached_state = NULL;
1604 	struct extent_changeset *data_reserved = NULL;
1605 	u64 release_bytes = 0;
1606 	u64 lockstart;
1607 	u64 lockend;
1608 	size_t num_written = 0;
1609 	int nrptrs;
1610 	int ret = 0;
1611 	bool only_release_metadata = false;
1612 	bool force_page_uptodate = false;
1613 
1614 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1615 			PAGE_SIZE / (sizeof(struct page *)));
1616 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1617 	nrptrs = max(nrptrs, 8);
1618 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1619 	if (!pages)
1620 		return -ENOMEM;
1621 
1622 	while (iov_iter_count(i) > 0) {
1623 		size_t offset = offset_in_page(pos);
1624 		size_t sector_offset;
1625 		size_t write_bytes = min(iov_iter_count(i),
1626 					 nrptrs * (size_t)PAGE_SIZE -
1627 					 offset);
1628 		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1629 						PAGE_SIZE);
1630 		size_t reserve_bytes;
1631 		size_t dirty_pages;
1632 		size_t copied;
1633 		size_t dirty_sectors;
1634 		size_t num_sectors;
1635 		int extents_locked;
1636 
1637 		WARN_ON(num_pages > nrptrs);
1638 
1639 		/*
1640 		 * Fault pages before locking them in prepare_pages
1641 		 * to avoid recursive lock
1642 		 */
1643 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1644 			ret = -EFAULT;
1645 			break;
1646 		}
1647 
1648 		sector_offset = pos & (fs_info->sectorsize - 1);
1649 		reserve_bytes = round_up(write_bytes + sector_offset,
1650 				fs_info->sectorsize);
1651 
1652 		extent_changeset_release(data_reserved);
1653 		ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1654 						  write_bytes);
1655 		if (ret < 0) {
1656 			if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1657 						      BTRFS_INODE_PREALLOC)) &&
1658 			    check_can_nocow(BTRFS_I(inode), pos,
1659 					&write_bytes) > 0) {
1660 				/*
1661 				 * For nodata cow case, no need to reserve
1662 				 * data space.
1663 				 */
1664 				only_release_metadata = true;
1665 				/*
1666 				 * our prealloc extent may be smaller than
1667 				 * write_bytes, so scale down.
1668 				 */
1669 				num_pages = DIV_ROUND_UP(write_bytes + offset,
1670 							 PAGE_SIZE);
1671 				reserve_bytes = round_up(write_bytes +
1672 							 sector_offset,
1673 							 fs_info->sectorsize);
1674 			} else {
1675 				break;
1676 			}
1677 		}
1678 
1679 		WARN_ON(reserve_bytes == 0);
1680 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1681 				reserve_bytes);
1682 		if (ret) {
1683 			if (!only_release_metadata)
1684 				btrfs_free_reserved_data_space(inode,
1685 						data_reserved, pos,
1686 						write_bytes);
1687 			else
1688 				btrfs_end_write_no_snapshotting(root);
1689 			break;
1690 		}
1691 
1692 		release_bytes = reserve_bytes;
1693 again:
1694 		/*
1695 		 * This is going to setup the pages array with the number of
1696 		 * pages we want, so we don't really need to worry about the
1697 		 * contents of pages from loop to loop
1698 		 */
1699 		ret = prepare_pages(inode, pages, num_pages,
1700 				    pos, write_bytes,
1701 				    force_page_uptodate);
1702 		if (ret) {
1703 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1704 						       reserve_bytes, true);
1705 			break;
1706 		}
1707 
1708 		extents_locked = lock_and_cleanup_extent_if_need(
1709 				BTRFS_I(inode), pages,
1710 				num_pages, pos, write_bytes, &lockstart,
1711 				&lockend, &cached_state);
1712 		if (extents_locked < 0) {
1713 			if (extents_locked == -EAGAIN)
1714 				goto again;
1715 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1716 						       reserve_bytes, true);
1717 			ret = extents_locked;
1718 			break;
1719 		}
1720 
1721 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1722 
1723 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1724 		dirty_sectors = round_up(copied + sector_offset,
1725 					fs_info->sectorsize);
1726 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1727 
1728 		/*
1729 		 * if we have trouble faulting in the pages, fall
1730 		 * back to one page at a time
1731 		 */
1732 		if (copied < write_bytes)
1733 			nrptrs = 1;
1734 
1735 		if (copied == 0) {
1736 			force_page_uptodate = true;
1737 			dirty_sectors = 0;
1738 			dirty_pages = 0;
1739 		} else {
1740 			force_page_uptodate = false;
1741 			dirty_pages = DIV_ROUND_UP(copied + offset,
1742 						   PAGE_SIZE);
1743 		}
1744 
1745 		if (num_sectors > dirty_sectors) {
1746 			/* release everything except the sectors we dirtied */
1747 			release_bytes -= dirty_sectors <<
1748 						fs_info->sb->s_blocksize_bits;
1749 			if (only_release_metadata) {
1750 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1751 							release_bytes, true);
1752 			} else {
1753 				u64 __pos;
1754 
1755 				__pos = round_down(pos,
1756 						   fs_info->sectorsize) +
1757 					(dirty_pages << PAGE_SHIFT);
1758 				btrfs_delalloc_release_space(inode,
1759 						data_reserved, __pos,
1760 						release_bytes, true);
1761 			}
1762 		}
1763 
1764 		release_bytes = round_up(copied + sector_offset,
1765 					fs_info->sectorsize);
1766 
1767 		if (copied > 0)
1768 			ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1769 						pos, copied, &cached_state);
1770 		if (extents_locked)
1771 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1772 					     lockstart, lockend, &cached_state);
1773 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes,
1774 					       true);
1775 		if (ret) {
1776 			btrfs_drop_pages(pages, num_pages);
1777 			break;
1778 		}
1779 
1780 		release_bytes = 0;
1781 		if (only_release_metadata)
1782 			btrfs_end_write_no_snapshotting(root);
1783 
1784 		if (only_release_metadata && copied > 0) {
1785 			lockstart = round_down(pos,
1786 					       fs_info->sectorsize);
1787 			lockend = round_up(pos + copied,
1788 					   fs_info->sectorsize) - 1;
1789 
1790 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1791 				       lockend, EXTENT_NORESERVE, NULL,
1792 				       NULL, GFP_NOFS);
1793 			only_release_metadata = false;
1794 		}
1795 
1796 		btrfs_drop_pages(pages, num_pages);
1797 
1798 		cond_resched();
1799 
1800 		balance_dirty_pages_ratelimited(inode->i_mapping);
1801 		if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1802 			btrfs_btree_balance_dirty(fs_info);
1803 
1804 		pos += copied;
1805 		num_written += copied;
1806 	}
1807 
1808 	kfree(pages);
1809 
1810 	if (release_bytes) {
1811 		if (only_release_metadata) {
1812 			btrfs_end_write_no_snapshotting(root);
1813 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1814 					release_bytes, true);
1815 		} else {
1816 			btrfs_delalloc_release_space(inode, data_reserved,
1817 					round_down(pos, fs_info->sectorsize),
1818 					release_bytes, true);
1819 		}
1820 	}
1821 
1822 	extent_changeset_free(data_reserved);
1823 	return num_written ? num_written : ret;
1824 }
1825 
1826 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1827 {
1828 	struct file *file = iocb->ki_filp;
1829 	struct inode *inode = file_inode(file);
1830 	loff_t pos;
1831 	ssize_t written;
1832 	ssize_t written_buffered;
1833 	loff_t endbyte;
1834 	int err;
1835 
1836 	written = generic_file_direct_write(iocb, from);
1837 
1838 	if (written < 0 || !iov_iter_count(from))
1839 		return written;
1840 
1841 	pos = iocb->ki_pos;
1842 	written_buffered = btrfs_buffered_write(iocb, from);
1843 	if (written_buffered < 0) {
1844 		err = written_buffered;
1845 		goto out;
1846 	}
1847 	/*
1848 	 * Ensure all data is persisted. We want the next direct IO read to be
1849 	 * able to read what was just written.
1850 	 */
1851 	endbyte = pos + written_buffered - 1;
1852 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1853 	if (err)
1854 		goto out;
1855 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1856 	if (err)
1857 		goto out;
1858 	written += written_buffered;
1859 	iocb->ki_pos = pos + written_buffered;
1860 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1861 				 endbyte >> PAGE_SHIFT);
1862 out:
1863 	return written ? written : err;
1864 }
1865 
1866 static void update_time_for_write(struct inode *inode)
1867 {
1868 	struct timespec64 now;
1869 
1870 	if (IS_NOCMTIME(inode))
1871 		return;
1872 
1873 	now = current_time(inode);
1874 	if (!timespec64_equal(&inode->i_mtime, &now))
1875 		inode->i_mtime = now;
1876 
1877 	if (!timespec64_equal(&inode->i_ctime, &now))
1878 		inode->i_ctime = now;
1879 
1880 	if (IS_I_VERSION(inode))
1881 		inode_inc_iversion(inode);
1882 }
1883 
1884 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1885 				    struct iov_iter *from)
1886 {
1887 	struct file *file = iocb->ki_filp;
1888 	struct inode *inode = file_inode(file);
1889 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1890 	struct btrfs_root *root = BTRFS_I(inode)->root;
1891 	u64 start_pos;
1892 	u64 end_pos;
1893 	ssize_t num_written = 0;
1894 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1895 	ssize_t err;
1896 	loff_t pos;
1897 	size_t count = iov_iter_count(from);
1898 	loff_t oldsize;
1899 	int clean_page = 0;
1900 
1901 	if (!(iocb->ki_flags & IOCB_DIRECT) &&
1902 	    (iocb->ki_flags & IOCB_NOWAIT))
1903 		return -EOPNOTSUPP;
1904 
1905 	if (!inode_trylock(inode)) {
1906 		if (iocb->ki_flags & IOCB_NOWAIT)
1907 			return -EAGAIN;
1908 		inode_lock(inode);
1909 	}
1910 
1911 	err = generic_write_checks(iocb, from);
1912 	if (err <= 0) {
1913 		inode_unlock(inode);
1914 		return err;
1915 	}
1916 
1917 	pos = iocb->ki_pos;
1918 	if (iocb->ki_flags & IOCB_NOWAIT) {
1919 		/*
1920 		 * We will allocate space in case nodatacow is not set,
1921 		 * so bail
1922 		 */
1923 		if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1924 					      BTRFS_INODE_PREALLOC)) ||
1925 		    check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1926 			inode_unlock(inode);
1927 			return -EAGAIN;
1928 		}
1929 	}
1930 
1931 	current->backing_dev_info = inode_to_bdi(inode);
1932 	err = file_remove_privs(file);
1933 	if (err) {
1934 		inode_unlock(inode);
1935 		goto out;
1936 	}
1937 
1938 	/*
1939 	 * If BTRFS flips readonly due to some impossible error
1940 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1941 	 * although we have opened a file as writable, we have
1942 	 * to stop this write operation to ensure FS consistency.
1943 	 */
1944 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1945 		inode_unlock(inode);
1946 		err = -EROFS;
1947 		goto out;
1948 	}
1949 
1950 	/*
1951 	 * We reserve space for updating the inode when we reserve space for the
1952 	 * extent we are going to write, so we will enospc out there.  We don't
1953 	 * need to start yet another transaction to update the inode as we will
1954 	 * update the inode when we finish writing whatever data we write.
1955 	 */
1956 	update_time_for_write(inode);
1957 
1958 	start_pos = round_down(pos, fs_info->sectorsize);
1959 	oldsize = i_size_read(inode);
1960 	if (start_pos > oldsize) {
1961 		/* Expand hole size to cover write data, preventing empty gap */
1962 		end_pos = round_up(pos + count,
1963 				   fs_info->sectorsize);
1964 		err = btrfs_cont_expand(inode, oldsize, end_pos);
1965 		if (err) {
1966 			inode_unlock(inode);
1967 			goto out;
1968 		}
1969 		if (start_pos > round_up(oldsize, fs_info->sectorsize))
1970 			clean_page = 1;
1971 	}
1972 
1973 	if (sync)
1974 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1975 
1976 	if (iocb->ki_flags & IOCB_DIRECT) {
1977 		num_written = __btrfs_direct_write(iocb, from);
1978 	} else {
1979 		num_written = btrfs_buffered_write(iocb, from);
1980 		if (num_written > 0)
1981 			iocb->ki_pos = pos + num_written;
1982 		if (clean_page)
1983 			pagecache_isize_extended(inode, oldsize,
1984 						i_size_read(inode));
1985 	}
1986 
1987 	inode_unlock(inode);
1988 
1989 	/*
1990 	 * We also have to set last_sub_trans to the current log transid,
1991 	 * otherwise subsequent syncs to a file that's been synced in this
1992 	 * transaction will appear to have already occurred.
1993 	 */
1994 	spin_lock(&BTRFS_I(inode)->lock);
1995 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1996 	spin_unlock(&BTRFS_I(inode)->lock);
1997 	if (num_written > 0)
1998 		num_written = generic_write_sync(iocb, num_written);
1999 
2000 	if (sync)
2001 		atomic_dec(&BTRFS_I(inode)->sync_writers);
2002 out:
2003 	current->backing_dev_info = NULL;
2004 	return num_written ? num_written : err;
2005 }
2006 
2007 int btrfs_release_file(struct inode *inode, struct file *filp)
2008 {
2009 	struct btrfs_file_private *private = filp->private_data;
2010 
2011 	if (private && private->filldir_buf)
2012 		kfree(private->filldir_buf);
2013 	kfree(private);
2014 	filp->private_data = NULL;
2015 
2016 	/*
2017 	 * ordered_data_close is set by setattr when we are about to truncate
2018 	 * a file from a non-zero size to a zero size.  This tries to
2019 	 * flush down new bytes that may have been written if the
2020 	 * application were using truncate to replace a file in place.
2021 	 */
2022 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2023 			       &BTRFS_I(inode)->runtime_flags))
2024 			filemap_flush(inode->i_mapping);
2025 	return 0;
2026 }
2027 
2028 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2029 {
2030 	int ret;
2031 	struct blk_plug plug;
2032 
2033 	/*
2034 	 * This is only called in fsync, which would do synchronous writes, so
2035 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2036 	 * multiple disks using raid profile, a large IO can be split to
2037 	 * several segments of stripe length (currently 64K).
2038 	 */
2039 	blk_start_plug(&plug);
2040 	atomic_inc(&BTRFS_I(inode)->sync_writers);
2041 	ret = btrfs_fdatawrite_range(inode, start, end);
2042 	atomic_dec(&BTRFS_I(inode)->sync_writers);
2043 	blk_finish_plug(&plug);
2044 
2045 	return ret;
2046 }
2047 
2048 /*
2049  * fsync call for both files and directories.  This logs the inode into
2050  * the tree log instead of forcing full commits whenever possible.
2051  *
2052  * It needs to call filemap_fdatawait so that all ordered extent updates are
2053  * in the metadata btree are up to date for copying to the log.
2054  *
2055  * It drops the inode mutex before doing the tree log commit.  This is an
2056  * important optimization for directories because holding the mutex prevents
2057  * new operations on the dir while we write to disk.
2058  */
2059 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2060 {
2061 	struct dentry *dentry = file_dentry(file);
2062 	struct inode *inode = d_inode(dentry);
2063 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2064 	struct btrfs_root *root = BTRFS_I(inode)->root;
2065 	struct btrfs_trans_handle *trans;
2066 	struct btrfs_log_ctx ctx;
2067 	int ret = 0, err;
2068 	u64 len;
2069 
2070 	/*
2071 	 * If the inode needs a full sync, make sure we use a full range to
2072 	 * avoid log tree corruption, due to hole detection racing with ordered
2073 	 * extent completion for adjacent ranges, and assertion failures during
2074 	 * hole detection.
2075 	 */
2076 	if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2077 		     &BTRFS_I(inode)->runtime_flags)) {
2078 		start = 0;
2079 		end = LLONG_MAX;
2080 	}
2081 
2082 	/*
2083 	 * The range length can be represented by u64, we have to do the typecasts
2084 	 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2085 	 */
2086 	len = (u64)end - (u64)start + 1;
2087 	trace_btrfs_sync_file(file, datasync);
2088 
2089 	btrfs_init_log_ctx(&ctx, inode);
2090 
2091 	/*
2092 	 * We write the dirty pages in the range and wait until they complete
2093 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2094 	 * multi-task, and make the performance up.  See
2095 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2096 	 */
2097 	ret = start_ordered_ops(inode, start, end);
2098 	if (ret)
2099 		goto out;
2100 
2101 	inode_lock(inode);
2102 
2103 	/*
2104 	 * We take the dio_sem here because the tree log stuff can race with
2105 	 * lockless dio writes and get an extent map logged for an extent we
2106 	 * never waited on.  We need it this high up for lockdep reasons.
2107 	 */
2108 	down_write(&BTRFS_I(inode)->dio_sem);
2109 
2110 	atomic_inc(&root->log_batch);
2111 
2112 	/*
2113 	 * Before we acquired the inode's lock, someone may have dirtied more
2114 	 * pages in the target range. We need to make sure that writeback for
2115 	 * any such pages does not start while we are logging the inode, because
2116 	 * if it does, any of the following might happen when we are not doing a
2117 	 * full inode sync:
2118 	 *
2119 	 * 1) We log an extent after its writeback finishes but before its
2120 	 *    checksums are added to the csum tree, leading to -EIO errors
2121 	 *    when attempting to read the extent after a log replay.
2122 	 *
2123 	 * 2) We can end up logging an extent before its writeback finishes.
2124 	 *    Therefore after the log replay we will have a file extent item
2125 	 *    pointing to an unwritten extent (and no data checksums as well).
2126 	 *
2127 	 * So trigger writeback for any eventual new dirty pages and then we
2128 	 * wait for all ordered extents to complete below.
2129 	 */
2130 	ret = start_ordered_ops(inode, start, end);
2131 	if (ret) {
2132 		inode_unlock(inode);
2133 		goto out;
2134 	}
2135 
2136 	/*
2137 	 * We have to do this here to avoid the priority inversion of waiting on
2138 	 * IO of a lower priority task while holding a transaction open.
2139 	 */
2140 	ret = btrfs_wait_ordered_range(inode, start, len);
2141 	if (ret) {
2142 		up_write(&BTRFS_I(inode)->dio_sem);
2143 		inode_unlock(inode);
2144 		goto out;
2145 	}
2146 	atomic_inc(&root->log_batch);
2147 
2148 	smp_mb();
2149 	if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2150 	    BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
2151 		/*
2152 		 * We've had everything committed since the last time we were
2153 		 * modified so clear this flag in case it was set for whatever
2154 		 * reason, it's no longer relevant.
2155 		 */
2156 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2157 			  &BTRFS_I(inode)->runtime_flags);
2158 		/*
2159 		 * An ordered extent might have started before and completed
2160 		 * already with io errors, in which case the inode was not
2161 		 * updated and we end up here. So check the inode's mapping
2162 		 * for any errors that might have happened since we last
2163 		 * checked called fsync.
2164 		 */
2165 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2166 		up_write(&BTRFS_I(inode)->dio_sem);
2167 		inode_unlock(inode);
2168 		goto out;
2169 	}
2170 
2171 	/*
2172 	 * We use start here because we will need to wait on the IO to complete
2173 	 * in btrfs_sync_log, which could require joining a transaction (for
2174 	 * example checking cross references in the nocow path).  If we use join
2175 	 * here we could get into a situation where we're waiting on IO to
2176 	 * happen that is blocked on a transaction trying to commit.  With start
2177 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2178 	 * before we start blocking joiners.  This comment is to keep somebody
2179 	 * from thinking they are super smart and changing this to
2180 	 * btrfs_join_transaction *cough*Josef*cough*.
2181 	 */
2182 	trans = btrfs_start_transaction(root, 0);
2183 	if (IS_ERR(trans)) {
2184 		ret = PTR_ERR(trans);
2185 		up_write(&BTRFS_I(inode)->dio_sem);
2186 		inode_unlock(inode);
2187 		goto out;
2188 	}
2189 
2190 	ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2191 	if (ret < 0) {
2192 		/* Fallthrough and commit/free transaction. */
2193 		ret = 1;
2194 	}
2195 
2196 	/* we've logged all the items and now have a consistent
2197 	 * version of the file in the log.  It is possible that
2198 	 * someone will come in and modify the file, but that's
2199 	 * fine because the log is consistent on disk, and we
2200 	 * have references to all of the file's extents
2201 	 *
2202 	 * It is possible that someone will come in and log the
2203 	 * file again, but that will end up using the synchronization
2204 	 * inside btrfs_sync_log to keep things safe.
2205 	 */
2206 	up_write(&BTRFS_I(inode)->dio_sem);
2207 	inode_unlock(inode);
2208 
2209 	if (ret != BTRFS_NO_LOG_SYNC) {
2210 		if (!ret) {
2211 			ret = btrfs_sync_log(trans, root, &ctx);
2212 			if (!ret) {
2213 				ret = btrfs_end_transaction(trans);
2214 				goto out;
2215 			}
2216 		}
2217 		ret = btrfs_commit_transaction(trans);
2218 	} else {
2219 		ret = btrfs_end_transaction(trans);
2220 	}
2221 out:
2222 	ASSERT(list_empty(&ctx.list));
2223 	err = file_check_and_advance_wb_err(file);
2224 	if (!ret)
2225 		ret = err;
2226 	return ret > 0 ? -EIO : ret;
2227 }
2228 
2229 static const struct vm_operations_struct btrfs_file_vm_ops = {
2230 	.fault		= filemap_fault,
2231 	.map_pages	= filemap_map_pages,
2232 	.page_mkwrite	= btrfs_page_mkwrite,
2233 };
2234 
2235 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2236 {
2237 	struct address_space *mapping = filp->f_mapping;
2238 
2239 	if (!mapping->a_ops->readpage)
2240 		return -ENOEXEC;
2241 
2242 	file_accessed(filp);
2243 	vma->vm_ops = &btrfs_file_vm_ops;
2244 
2245 	return 0;
2246 }
2247 
2248 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2249 			  int slot, u64 start, u64 end)
2250 {
2251 	struct btrfs_file_extent_item *fi;
2252 	struct btrfs_key key;
2253 
2254 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2255 		return 0;
2256 
2257 	btrfs_item_key_to_cpu(leaf, &key, slot);
2258 	if (key.objectid != btrfs_ino(inode) ||
2259 	    key.type != BTRFS_EXTENT_DATA_KEY)
2260 		return 0;
2261 
2262 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2263 
2264 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2265 		return 0;
2266 
2267 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2268 		return 0;
2269 
2270 	if (key.offset == end)
2271 		return 1;
2272 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2273 		return 1;
2274 	return 0;
2275 }
2276 
2277 static int fill_holes(struct btrfs_trans_handle *trans,
2278 		struct btrfs_inode *inode,
2279 		struct btrfs_path *path, u64 offset, u64 end)
2280 {
2281 	struct btrfs_fs_info *fs_info = trans->fs_info;
2282 	struct btrfs_root *root = inode->root;
2283 	struct extent_buffer *leaf;
2284 	struct btrfs_file_extent_item *fi;
2285 	struct extent_map *hole_em;
2286 	struct extent_map_tree *em_tree = &inode->extent_tree;
2287 	struct btrfs_key key;
2288 	int ret;
2289 
2290 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2291 		goto out;
2292 
2293 	key.objectid = btrfs_ino(inode);
2294 	key.type = BTRFS_EXTENT_DATA_KEY;
2295 	key.offset = offset;
2296 
2297 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2298 	if (ret <= 0) {
2299 		/*
2300 		 * We should have dropped this offset, so if we find it then
2301 		 * something has gone horribly wrong.
2302 		 */
2303 		if (ret == 0)
2304 			ret = -EINVAL;
2305 		return ret;
2306 	}
2307 
2308 	leaf = path->nodes[0];
2309 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2310 		u64 num_bytes;
2311 
2312 		path->slots[0]--;
2313 		fi = btrfs_item_ptr(leaf, path->slots[0],
2314 				    struct btrfs_file_extent_item);
2315 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2316 			end - offset;
2317 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2318 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2319 		btrfs_set_file_extent_offset(leaf, fi, 0);
2320 		btrfs_mark_buffer_dirty(leaf);
2321 		goto out;
2322 	}
2323 
2324 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2325 		u64 num_bytes;
2326 
2327 		key.offset = offset;
2328 		btrfs_set_item_key_safe(fs_info, path, &key);
2329 		fi = btrfs_item_ptr(leaf, path->slots[0],
2330 				    struct btrfs_file_extent_item);
2331 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2332 			offset;
2333 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2334 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2335 		btrfs_set_file_extent_offset(leaf, fi, 0);
2336 		btrfs_mark_buffer_dirty(leaf);
2337 		goto out;
2338 	}
2339 	btrfs_release_path(path);
2340 
2341 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2342 			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2343 	if (ret)
2344 		return ret;
2345 
2346 out:
2347 	btrfs_release_path(path);
2348 
2349 	hole_em = alloc_extent_map();
2350 	if (!hole_em) {
2351 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2352 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2353 	} else {
2354 		hole_em->start = offset;
2355 		hole_em->len = end - offset;
2356 		hole_em->ram_bytes = hole_em->len;
2357 		hole_em->orig_start = offset;
2358 
2359 		hole_em->block_start = EXTENT_MAP_HOLE;
2360 		hole_em->block_len = 0;
2361 		hole_em->orig_block_len = 0;
2362 		hole_em->bdev = fs_info->fs_devices->latest_bdev;
2363 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2364 		hole_em->generation = trans->transid;
2365 
2366 		do {
2367 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2368 			write_lock(&em_tree->lock);
2369 			ret = add_extent_mapping(em_tree, hole_em, 1);
2370 			write_unlock(&em_tree->lock);
2371 		} while (ret == -EEXIST);
2372 		free_extent_map(hole_em);
2373 		if (ret)
2374 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2375 					&inode->runtime_flags);
2376 	}
2377 
2378 	return 0;
2379 }
2380 
2381 /*
2382  * Find a hole extent on given inode and change start/len to the end of hole
2383  * extent.(hole/vacuum extent whose em->start <= start &&
2384  *	   em->start + em->len > start)
2385  * When a hole extent is found, return 1 and modify start/len.
2386  */
2387 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2388 {
2389 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2390 	struct extent_map *em;
2391 	int ret = 0;
2392 
2393 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2394 			      round_down(*start, fs_info->sectorsize),
2395 			      round_up(*len, fs_info->sectorsize), 0);
2396 	if (IS_ERR(em))
2397 		return PTR_ERR(em);
2398 
2399 	/* Hole or vacuum extent(only exists in no-hole mode) */
2400 	if (em->block_start == EXTENT_MAP_HOLE) {
2401 		ret = 1;
2402 		*len = em->start + em->len > *start + *len ?
2403 		       0 : *start + *len - em->start - em->len;
2404 		*start = em->start + em->len;
2405 	}
2406 	free_extent_map(em);
2407 	return ret;
2408 }
2409 
2410 static int btrfs_punch_hole_lock_range(struct inode *inode,
2411 				       const u64 lockstart,
2412 				       const u64 lockend,
2413 				       struct extent_state **cached_state)
2414 {
2415 	while (1) {
2416 		struct btrfs_ordered_extent *ordered;
2417 		int ret;
2418 
2419 		truncate_pagecache_range(inode, lockstart, lockend);
2420 
2421 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2422 				 cached_state);
2423 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2424 
2425 		/*
2426 		 * We need to make sure we have no ordered extents in this range
2427 		 * and nobody raced in and read a page in this range, if we did
2428 		 * we need to try again.
2429 		 */
2430 		if ((!ordered ||
2431 		    (ordered->file_offset + ordered->len <= lockstart ||
2432 		     ordered->file_offset > lockend)) &&
2433 		     !filemap_range_has_page(inode->i_mapping,
2434 					     lockstart, lockend)) {
2435 			if (ordered)
2436 				btrfs_put_ordered_extent(ordered);
2437 			break;
2438 		}
2439 		if (ordered)
2440 			btrfs_put_ordered_extent(ordered);
2441 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2442 				     lockend, cached_state);
2443 		ret = btrfs_wait_ordered_range(inode, lockstart,
2444 					       lockend - lockstart + 1);
2445 		if (ret)
2446 			return ret;
2447 	}
2448 	return 0;
2449 }
2450 
2451 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2452 {
2453 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2454 	struct btrfs_root *root = BTRFS_I(inode)->root;
2455 	struct extent_state *cached_state = NULL;
2456 	struct btrfs_path *path;
2457 	struct btrfs_block_rsv *rsv;
2458 	struct btrfs_trans_handle *trans;
2459 	u64 lockstart;
2460 	u64 lockend;
2461 	u64 tail_start;
2462 	u64 tail_len;
2463 	u64 orig_start = offset;
2464 	u64 cur_offset;
2465 	u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2466 	u64 drop_end;
2467 	int ret = 0;
2468 	int err = 0;
2469 	unsigned int rsv_count;
2470 	bool same_block;
2471 	bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2472 	u64 ino_size;
2473 	bool truncated_block = false;
2474 	bool updated_inode = false;
2475 
2476 	ret = btrfs_wait_ordered_range(inode, offset, len);
2477 	if (ret)
2478 		return ret;
2479 
2480 	inode_lock(inode);
2481 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2482 	ret = find_first_non_hole(inode, &offset, &len);
2483 	if (ret < 0)
2484 		goto out_only_mutex;
2485 	if (ret && !len) {
2486 		/* Already in a large hole */
2487 		ret = 0;
2488 		goto out_only_mutex;
2489 	}
2490 
2491 	lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2492 	lockend = round_down(offset + len,
2493 			     btrfs_inode_sectorsize(inode)) - 1;
2494 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2495 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2496 	/*
2497 	 * We needn't truncate any block which is beyond the end of the file
2498 	 * because we are sure there is no data there.
2499 	 */
2500 	/*
2501 	 * Only do this if we are in the same block and we aren't doing the
2502 	 * entire block.
2503 	 */
2504 	if (same_block && len < fs_info->sectorsize) {
2505 		if (offset < ino_size) {
2506 			truncated_block = true;
2507 			ret = btrfs_truncate_block(inode, offset, len, 0);
2508 		} else {
2509 			ret = 0;
2510 		}
2511 		goto out_only_mutex;
2512 	}
2513 
2514 	/* zero back part of the first block */
2515 	if (offset < ino_size) {
2516 		truncated_block = true;
2517 		ret = btrfs_truncate_block(inode, offset, 0, 0);
2518 		if (ret) {
2519 			inode_unlock(inode);
2520 			return ret;
2521 		}
2522 	}
2523 
2524 	/* Check the aligned pages after the first unaligned page,
2525 	 * if offset != orig_start, which means the first unaligned page
2526 	 * including several following pages are already in holes,
2527 	 * the extra check can be skipped */
2528 	if (offset == orig_start) {
2529 		/* after truncate page, check hole again */
2530 		len = offset + len - lockstart;
2531 		offset = lockstart;
2532 		ret = find_first_non_hole(inode, &offset, &len);
2533 		if (ret < 0)
2534 			goto out_only_mutex;
2535 		if (ret && !len) {
2536 			ret = 0;
2537 			goto out_only_mutex;
2538 		}
2539 		lockstart = offset;
2540 	}
2541 
2542 	/* Check the tail unaligned part is in a hole */
2543 	tail_start = lockend + 1;
2544 	tail_len = offset + len - tail_start;
2545 	if (tail_len) {
2546 		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2547 		if (unlikely(ret < 0))
2548 			goto out_only_mutex;
2549 		if (!ret) {
2550 			/* zero the front end of the last page */
2551 			if (tail_start + tail_len < ino_size) {
2552 				truncated_block = true;
2553 				ret = btrfs_truncate_block(inode,
2554 							tail_start + tail_len,
2555 							0, 1);
2556 				if (ret)
2557 					goto out_only_mutex;
2558 			}
2559 		}
2560 	}
2561 
2562 	if (lockend < lockstart) {
2563 		ret = 0;
2564 		goto out_only_mutex;
2565 	}
2566 
2567 	ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2568 					  &cached_state);
2569 	if (ret)
2570 		goto out_only_mutex;
2571 
2572 	path = btrfs_alloc_path();
2573 	if (!path) {
2574 		ret = -ENOMEM;
2575 		goto out;
2576 	}
2577 
2578 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2579 	if (!rsv) {
2580 		ret = -ENOMEM;
2581 		goto out_free;
2582 	}
2583 	rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2584 	rsv->failfast = 1;
2585 
2586 	/*
2587 	 * 1 - update the inode
2588 	 * 1 - removing the extents in the range
2589 	 * 1 - adding the hole extent if no_holes isn't set
2590 	 */
2591 	rsv_count = no_holes ? 2 : 3;
2592 	trans = btrfs_start_transaction(root, rsv_count);
2593 	if (IS_ERR(trans)) {
2594 		err = PTR_ERR(trans);
2595 		goto out_free;
2596 	}
2597 
2598 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2599 				      min_size, false);
2600 	BUG_ON(ret);
2601 	trans->block_rsv = rsv;
2602 
2603 	cur_offset = lockstart;
2604 	len = lockend - cur_offset;
2605 	while (cur_offset < lockend) {
2606 		ret = __btrfs_drop_extents(trans, root, inode, path,
2607 					   cur_offset, lockend + 1,
2608 					   &drop_end, 1, 0, 0, NULL);
2609 		if (ret != -ENOSPC)
2610 			break;
2611 
2612 		trans->block_rsv = &fs_info->trans_block_rsv;
2613 
2614 		if (cur_offset < drop_end && cur_offset < ino_size) {
2615 			ret = fill_holes(trans, BTRFS_I(inode), path,
2616 					cur_offset, drop_end);
2617 			if (ret) {
2618 				/*
2619 				 * If we failed then we didn't insert our hole
2620 				 * entries for the area we dropped, so now the
2621 				 * fs is corrupted, so we must abort the
2622 				 * transaction.
2623 				 */
2624 				btrfs_abort_transaction(trans, ret);
2625 				err = ret;
2626 				break;
2627 			}
2628 		}
2629 
2630 		cur_offset = drop_end;
2631 
2632 		ret = btrfs_update_inode(trans, root, inode);
2633 		if (ret) {
2634 			err = ret;
2635 			break;
2636 		}
2637 
2638 		btrfs_end_transaction(trans);
2639 		btrfs_btree_balance_dirty(fs_info);
2640 
2641 		trans = btrfs_start_transaction(root, rsv_count);
2642 		if (IS_ERR(trans)) {
2643 			ret = PTR_ERR(trans);
2644 			trans = NULL;
2645 			break;
2646 		}
2647 
2648 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2649 					      rsv, min_size, false);
2650 		BUG_ON(ret);	/* shouldn't happen */
2651 		trans->block_rsv = rsv;
2652 
2653 		ret = find_first_non_hole(inode, &cur_offset, &len);
2654 		if (unlikely(ret < 0))
2655 			break;
2656 		if (ret && !len) {
2657 			ret = 0;
2658 			break;
2659 		}
2660 	}
2661 
2662 	if (ret) {
2663 		err = ret;
2664 		goto out_trans;
2665 	}
2666 
2667 	trans->block_rsv = &fs_info->trans_block_rsv;
2668 	/*
2669 	 * If we are using the NO_HOLES feature we might have had already an
2670 	 * hole that overlaps a part of the region [lockstart, lockend] and
2671 	 * ends at (or beyond) lockend. Since we have no file extent items to
2672 	 * represent holes, drop_end can be less than lockend and so we must
2673 	 * make sure we have an extent map representing the existing hole (the
2674 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2675 	 * map representing the existing hole), otherwise the fast fsync path
2676 	 * will not record the existence of the hole region
2677 	 * [existing_hole_start, lockend].
2678 	 */
2679 	if (drop_end <= lockend)
2680 		drop_end = lockend + 1;
2681 	/*
2682 	 * Don't insert file hole extent item if it's for a range beyond eof
2683 	 * (because it's useless) or if it represents a 0 bytes range (when
2684 	 * cur_offset == drop_end).
2685 	 */
2686 	if (cur_offset < ino_size && cur_offset < drop_end) {
2687 		ret = fill_holes(trans, BTRFS_I(inode), path,
2688 				cur_offset, drop_end);
2689 		if (ret) {
2690 			/* Same comment as above. */
2691 			btrfs_abort_transaction(trans, ret);
2692 			err = ret;
2693 			goto out_trans;
2694 		}
2695 	}
2696 
2697 out_trans:
2698 	if (!trans)
2699 		goto out_free;
2700 
2701 	inode_inc_iversion(inode);
2702 	inode->i_mtime = inode->i_ctime = current_time(inode);
2703 
2704 	trans->block_rsv = &fs_info->trans_block_rsv;
2705 	ret = btrfs_update_inode(trans, root, inode);
2706 	updated_inode = true;
2707 	btrfs_end_transaction(trans);
2708 	btrfs_btree_balance_dirty(fs_info);
2709 out_free:
2710 	btrfs_free_path(path);
2711 	btrfs_free_block_rsv(fs_info, rsv);
2712 out:
2713 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2714 			     &cached_state);
2715 out_only_mutex:
2716 	if (!updated_inode && truncated_block && !ret && !err) {
2717 		/*
2718 		 * If we only end up zeroing part of a page, we still need to
2719 		 * update the inode item, so that all the time fields are
2720 		 * updated as well as the necessary btrfs inode in memory fields
2721 		 * for detecting, at fsync time, if the inode isn't yet in the
2722 		 * log tree or it's there but not up to date.
2723 		 */
2724 		trans = btrfs_start_transaction(root, 1);
2725 		if (IS_ERR(trans)) {
2726 			err = PTR_ERR(trans);
2727 		} else {
2728 			err = btrfs_update_inode(trans, root, inode);
2729 			ret = btrfs_end_transaction(trans);
2730 		}
2731 	}
2732 	inode_unlock(inode);
2733 	if (ret && !err)
2734 		err = ret;
2735 	return err;
2736 }
2737 
2738 /* Helper structure to record which range is already reserved */
2739 struct falloc_range {
2740 	struct list_head list;
2741 	u64 start;
2742 	u64 len;
2743 };
2744 
2745 /*
2746  * Helper function to add falloc range
2747  *
2748  * Caller should have locked the larger range of extent containing
2749  * [start, len)
2750  */
2751 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2752 {
2753 	struct falloc_range *prev = NULL;
2754 	struct falloc_range *range = NULL;
2755 
2756 	if (list_empty(head))
2757 		goto insert;
2758 
2759 	/*
2760 	 * As fallocate iterate by bytenr order, we only need to check
2761 	 * the last range.
2762 	 */
2763 	prev = list_entry(head->prev, struct falloc_range, list);
2764 	if (prev->start + prev->len == start) {
2765 		prev->len += len;
2766 		return 0;
2767 	}
2768 insert:
2769 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2770 	if (!range)
2771 		return -ENOMEM;
2772 	range->start = start;
2773 	range->len = len;
2774 	list_add_tail(&range->list, head);
2775 	return 0;
2776 }
2777 
2778 static int btrfs_fallocate_update_isize(struct inode *inode,
2779 					const u64 end,
2780 					const int mode)
2781 {
2782 	struct btrfs_trans_handle *trans;
2783 	struct btrfs_root *root = BTRFS_I(inode)->root;
2784 	int ret;
2785 	int ret2;
2786 
2787 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2788 		return 0;
2789 
2790 	trans = btrfs_start_transaction(root, 1);
2791 	if (IS_ERR(trans))
2792 		return PTR_ERR(trans);
2793 
2794 	inode->i_ctime = current_time(inode);
2795 	i_size_write(inode, end);
2796 	btrfs_ordered_update_i_size(inode, end, NULL);
2797 	ret = btrfs_update_inode(trans, root, inode);
2798 	ret2 = btrfs_end_transaction(trans);
2799 
2800 	return ret ? ret : ret2;
2801 }
2802 
2803 enum {
2804 	RANGE_BOUNDARY_WRITTEN_EXTENT = 0,
2805 	RANGE_BOUNDARY_PREALLOC_EXTENT = 1,
2806 	RANGE_BOUNDARY_HOLE = 2,
2807 };
2808 
2809 static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2810 						 u64 offset)
2811 {
2812 	const u64 sectorsize = btrfs_inode_sectorsize(inode);
2813 	struct extent_map *em;
2814 	int ret;
2815 
2816 	offset = round_down(offset, sectorsize);
2817 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
2818 	if (IS_ERR(em))
2819 		return PTR_ERR(em);
2820 
2821 	if (em->block_start == EXTENT_MAP_HOLE)
2822 		ret = RANGE_BOUNDARY_HOLE;
2823 	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2824 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2825 	else
2826 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2827 
2828 	free_extent_map(em);
2829 	return ret;
2830 }
2831 
2832 static int btrfs_zero_range(struct inode *inode,
2833 			    loff_t offset,
2834 			    loff_t len,
2835 			    const int mode)
2836 {
2837 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2838 	struct extent_map *em;
2839 	struct extent_changeset *data_reserved = NULL;
2840 	int ret;
2841 	u64 alloc_hint = 0;
2842 	const u64 sectorsize = btrfs_inode_sectorsize(inode);
2843 	u64 alloc_start = round_down(offset, sectorsize);
2844 	u64 alloc_end = round_up(offset + len, sectorsize);
2845 	u64 bytes_to_reserve = 0;
2846 	bool space_reserved = false;
2847 
2848 	inode_dio_wait(inode);
2849 
2850 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2851 			      alloc_start, alloc_end - alloc_start, 0);
2852 	if (IS_ERR(em)) {
2853 		ret = PTR_ERR(em);
2854 		goto out;
2855 	}
2856 
2857 	/*
2858 	 * Avoid hole punching and extent allocation for some cases. More cases
2859 	 * could be considered, but these are unlikely common and we keep things
2860 	 * as simple as possible for now. Also, intentionally, if the target
2861 	 * range contains one or more prealloc extents together with regular
2862 	 * extents and holes, we drop all the existing extents and allocate a
2863 	 * new prealloc extent, so that we get a larger contiguous disk extent.
2864 	 */
2865 	if (em->start <= alloc_start &&
2866 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2867 		const u64 em_end = em->start + em->len;
2868 
2869 		if (em_end >= offset + len) {
2870 			/*
2871 			 * The whole range is already a prealloc extent,
2872 			 * do nothing except updating the inode's i_size if
2873 			 * needed.
2874 			 */
2875 			free_extent_map(em);
2876 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2877 							   mode);
2878 			goto out;
2879 		}
2880 		/*
2881 		 * Part of the range is already a prealloc extent, so operate
2882 		 * only on the remaining part of the range.
2883 		 */
2884 		alloc_start = em_end;
2885 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2886 		len = offset + len - alloc_start;
2887 		offset = alloc_start;
2888 		alloc_hint = em->block_start + em->len;
2889 	}
2890 	free_extent_map(em);
2891 
2892 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2893 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2894 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2895 				      alloc_start, sectorsize, 0);
2896 		if (IS_ERR(em)) {
2897 			ret = PTR_ERR(em);
2898 			goto out;
2899 		}
2900 
2901 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2902 			free_extent_map(em);
2903 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2904 							   mode);
2905 			goto out;
2906 		}
2907 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2908 			free_extent_map(em);
2909 			ret = btrfs_truncate_block(inode, offset, len, 0);
2910 			if (!ret)
2911 				ret = btrfs_fallocate_update_isize(inode,
2912 								   offset + len,
2913 								   mode);
2914 			return ret;
2915 		}
2916 		free_extent_map(em);
2917 		alloc_start = round_down(offset, sectorsize);
2918 		alloc_end = alloc_start + sectorsize;
2919 		goto reserve_space;
2920 	}
2921 
2922 	alloc_start = round_up(offset, sectorsize);
2923 	alloc_end = round_down(offset + len, sectorsize);
2924 
2925 	/*
2926 	 * For unaligned ranges, check the pages at the boundaries, they might
2927 	 * map to an extent, in which case we need to partially zero them, or
2928 	 * they might map to a hole, in which case we need our allocation range
2929 	 * to cover them.
2930 	 */
2931 	if (!IS_ALIGNED(offset, sectorsize)) {
2932 		ret = btrfs_zero_range_check_range_boundary(inode, offset);
2933 		if (ret < 0)
2934 			goto out;
2935 		if (ret == RANGE_BOUNDARY_HOLE) {
2936 			alloc_start = round_down(offset, sectorsize);
2937 			ret = 0;
2938 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2939 			ret = btrfs_truncate_block(inode, offset, 0, 0);
2940 			if (ret)
2941 				goto out;
2942 		} else {
2943 			ret = 0;
2944 		}
2945 	}
2946 
2947 	if (!IS_ALIGNED(offset + len, sectorsize)) {
2948 		ret = btrfs_zero_range_check_range_boundary(inode,
2949 							    offset + len);
2950 		if (ret < 0)
2951 			goto out;
2952 		if (ret == RANGE_BOUNDARY_HOLE) {
2953 			alloc_end = round_up(offset + len, sectorsize);
2954 			ret = 0;
2955 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2956 			ret = btrfs_truncate_block(inode, offset + len, 0, 1);
2957 			if (ret)
2958 				goto out;
2959 		} else {
2960 			ret = 0;
2961 		}
2962 	}
2963 
2964 reserve_space:
2965 	if (alloc_start < alloc_end) {
2966 		struct extent_state *cached_state = NULL;
2967 		const u64 lockstart = alloc_start;
2968 		const u64 lockend = alloc_end - 1;
2969 
2970 		bytes_to_reserve = alloc_end - alloc_start;
2971 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2972 						      bytes_to_reserve);
2973 		if (ret < 0)
2974 			goto out;
2975 		space_reserved = true;
2976 		ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2977 						alloc_start, bytes_to_reserve);
2978 		if (ret)
2979 			goto out;
2980 		ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2981 						  &cached_state);
2982 		if (ret)
2983 			goto out;
2984 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2985 						alloc_end - alloc_start,
2986 						i_blocksize(inode),
2987 						offset + len, &alloc_hint);
2988 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2989 				     lockend, &cached_state);
2990 		/* btrfs_prealloc_file_range releases reserved space on error */
2991 		if (ret) {
2992 			space_reserved = false;
2993 			goto out;
2994 		}
2995 	}
2996 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
2997  out:
2998 	if (ret && space_reserved)
2999 		btrfs_free_reserved_data_space(inode, data_reserved,
3000 					       alloc_start, bytes_to_reserve);
3001 	extent_changeset_free(data_reserved);
3002 
3003 	return ret;
3004 }
3005 
3006 static long btrfs_fallocate(struct file *file, int mode,
3007 			    loff_t offset, loff_t len)
3008 {
3009 	struct inode *inode = file_inode(file);
3010 	struct extent_state *cached_state = NULL;
3011 	struct extent_changeset *data_reserved = NULL;
3012 	struct falloc_range *range;
3013 	struct falloc_range *tmp;
3014 	struct list_head reserve_list;
3015 	u64 cur_offset;
3016 	u64 last_byte;
3017 	u64 alloc_start;
3018 	u64 alloc_end;
3019 	u64 alloc_hint = 0;
3020 	u64 locked_end;
3021 	u64 actual_end = 0;
3022 	struct extent_map *em;
3023 	int blocksize = btrfs_inode_sectorsize(inode);
3024 	int ret;
3025 
3026 	alloc_start = round_down(offset, blocksize);
3027 	alloc_end = round_up(offset + len, blocksize);
3028 	cur_offset = alloc_start;
3029 
3030 	/* Make sure we aren't being give some crap mode */
3031 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3032 		     FALLOC_FL_ZERO_RANGE))
3033 		return -EOPNOTSUPP;
3034 
3035 	if (mode & FALLOC_FL_PUNCH_HOLE)
3036 		return btrfs_punch_hole(inode, offset, len);
3037 
3038 	/*
3039 	 * Only trigger disk allocation, don't trigger qgroup reserve
3040 	 *
3041 	 * For qgroup space, it will be checked later.
3042 	 */
3043 	if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3044 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3045 						      alloc_end - alloc_start);
3046 		if (ret < 0)
3047 			return ret;
3048 	}
3049 
3050 	inode_lock(inode);
3051 
3052 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3053 		ret = inode_newsize_ok(inode, offset + len);
3054 		if (ret)
3055 			goto out;
3056 	}
3057 
3058 	/*
3059 	 * TODO: Move these two operations after we have checked
3060 	 * accurate reserved space, or fallocate can still fail but
3061 	 * with page truncated or size expanded.
3062 	 *
3063 	 * But that's a minor problem and won't do much harm BTW.
3064 	 */
3065 	if (alloc_start > inode->i_size) {
3066 		ret = btrfs_cont_expand(inode, i_size_read(inode),
3067 					alloc_start);
3068 		if (ret)
3069 			goto out;
3070 	} else if (offset + len > inode->i_size) {
3071 		/*
3072 		 * If we are fallocating from the end of the file onward we
3073 		 * need to zero out the end of the block if i_size lands in the
3074 		 * middle of a block.
3075 		 */
3076 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3077 		if (ret)
3078 			goto out;
3079 	}
3080 
3081 	/*
3082 	 * wait for ordered IO before we have any locks.  We'll loop again
3083 	 * below with the locks held.
3084 	 */
3085 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3086 				       alloc_end - alloc_start);
3087 	if (ret)
3088 		goto out;
3089 
3090 	if (mode & FALLOC_FL_ZERO_RANGE) {
3091 		ret = btrfs_zero_range(inode, offset, len, mode);
3092 		inode_unlock(inode);
3093 		return ret;
3094 	}
3095 
3096 	locked_end = alloc_end - 1;
3097 	while (1) {
3098 		struct btrfs_ordered_extent *ordered;
3099 
3100 		/* the extent lock is ordered inside the running
3101 		 * transaction
3102 		 */
3103 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3104 				 locked_end, &cached_state);
3105 		ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3106 
3107 		if (ordered &&
3108 		    ordered->file_offset + ordered->len > alloc_start &&
3109 		    ordered->file_offset < alloc_end) {
3110 			btrfs_put_ordered_extent(ordered);
3111 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3112 					     alloc_start, locked_end,
3113 					     &cached_state);
3114 			/*
3115 			 * we can't wait on the range with the transaction
3116 			 * running or with the extent lock held
3117 			 */
3118 			ret = btrfs_wait_ordered_range(inode, alloc_start,
3119 						       alloc_end - alloc_start);
3120 			if (ret)
3121 				goto out;
3122 		} else {
3123 			if (ordered)
3124 				btrfs_put_ordered_extent(ordered);
3125 			break;
3126 		}
3127 	}
3128 
3129 	/* First, check if we exceed the qgroup limit */
3130 	INIT_LIST_HEAD(&reserve_list);
3131 	while (cur_offset < alloc_end) {
3132 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3133 				      alloc_end - cur_offset, 0);
3134 		if (IS_ERR(em)) {
3135 			ret = PTR_ERR(em);
3136 			break;
3137 		}
3138 		last_byte = min(extent_map_end(em), alloc_end);
3139 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3140 		last_byte = ALIGN(last_byte, blocksize);
3141 		if (em->block_start == EXTENT_MAP_HOLE ||
3142 		    (cur_offset >= inode->i_size &&
3143 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3144 			ret = add_falloc_range(&reserve_list, cur_offset,
3145 					       last_byte - cur_offset);
3146 			if (ret < 0) {
3147 				free_extent_map(em);
3148 				break;
3149 			}
3150 			ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3151 					cur_offset, last_byte - cur_offset);
3152 			if (ret < 0) {
3153 				cur_offset = last_byte;
3154 				free_extent_map(em);
3155 				break;
3156 			}
3157 		} else {
3158 			/*
3159 			 * Do not need to reserve unwritten extent for this
3160 			 * range, free reserved data space first, otherwise
3161 			 * it'll result in false ENOSPC error.
3162 			 */
3163 			btrfs_free_reserved_data_space(inode, data_reserved,
3164 					cur_offset, last_byte - cur_offset);
3165 		}
3166 		free_extent_map(em);
3167 		cur_offset = last_byte;
3168 	}
3169 
3170 	/*
3171 	 * If ret is still 0, means we're OK to fallocate.
3172 	 * Or just cleanup the list and exit.
3173 	 */
3174 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3175 		if (!ret)
3176 			ret = btrfs_prealloc_file_range(inode, mode,
3177 					range->start,
3178 					range->len, i_blocksize(inode),
3179 					offset + len, &alloc_hint);
3180 		else
3181 			btrfs_free_reserved_data_space(inode,
3182 					data_reserved, range->start,
3183 					range->len);
3184 		list_del(&range->list);
3185 		kfree(range);
3186 	}
3187 	if (ret < 0)
3188 		goto out_unlock;
3189 
3190 	/*
3191 	 * We didn't need to allocate any more space, but we still extended the
3192 	 * size of the file so we need to update i_size and the inode item.
3193 	 */
3194 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3195 out_unlock:
3196 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3197 			     &cached_state);
3198 out:
3199 	inode_unlock(inode);
3200 	/* Let go of our reservation. */
3201 	if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3202 		btrfs_free_reserved_data_space(inode, data_reserved,
3203 				cur_offset, alloc_end - cur_offset);
3204 	extent_changeset_free(data_reserved);
3205 	return ret;
3206 }
3207 
3208 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3209 {
3210 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3211 	struct extent_map *em = NULL;
3212 	struct extent_state *cached_state = NULL;
3213 	u64 lockstart;
3214 	u64 lockend;
3215 	u64 start;
3216 	u64 len;
3217 	int ret = 0;
3218 
3219 	if (inode->i_size == 0)
3220 		return -ENXIO;
3221 
3222 	/*
3223 	 * *offset can be negative, in this case we start finding DATA/HOLE from
3224 	 * the very start of the file.
3225 	 */
3226 	start = max_t(loff_t, 0, *offset);
3227 
3228 	lockstart = round_down(start, fs_info->sectorsize);
3229 	lockend = round_up(i_size_read(inode),
3230 			   fs_info->sectorsize);
3231 	if (lockend <= lockstart)
3232 		lockend = lockstart + fs_info->sectorsize;
3233 	lockend--;
3234 	len = lockend - lockstart + 1;
3235 
3236 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3237 			 &cached_state);
3238 
3239 	while (start < inode->i_size) {
3240 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3241 		if (IS_ERR(em)) {
3242 			ret = PTR_ERR(em);
3243 			em = NULL;
3244 			break;
3245 		}
3246 
3247 		if (whence == SEEK_HOLE &&
3248 		    (em->block_start == EXTENT_MAP_HOLE ||
3249 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3250 			break;
3251 		else if (whence == SEEK_DATA &&
3252 			   (em->block_start != EXTENT_MAP_HOLE &&
3253 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3254 			break;
3255 
3256 		start = em->start + em->len;
3257 		free_extent_map(em);
3258 		em = NULL;
3259 		cond_resched();
3260 	}
3261 	free_extent_map(em);
3262 	if (!ret) {
3263 		if (whence == SEEK_DATA && start >= inode->i_size)
3264 			ret = -ENXIO;
3265 		else
3266 			*offset = min_t(loff_t, start, inode->i_size);
3267 	}
3268 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3269 			     &cached_state);
3270 	return ret;
3271 }
3272 
3273 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3274 {
3275 	struct inode *inode = file->f_mapping->host;
3276 	int ret;
3277 
3278 	inode_lock(inode);
3279 	switch (whence) {
3280 	case SEEK_END:
3281 	case SEEK_CUR:
3282 		offset = generic_file_llseek(file, offset, whence);
3283 		goto out;
3284 	case SEEK_DATA:
3285 	case SEEK_HOLE:
3286 		if (offset >= i_size_read(inode)) {
3287 			inode_unlock(inode);
3288 			return -ENXIO;
3289 		}
3290 
3291 		ret = find_desired_extent(inode, &offset, whence);
3292 		if (ret) {
3293 			inode_unlock(inode);
3294 			return ret;
3295 		}
3296 	}
3297 
3298 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3299 out:
3300 	inode_unlock(inode);
3301 	return offset;
3302 }
3303 
3304 static int btrfs_file_open(struct inode *inode, struct file *filp)
3305 {
3306 	filp->f_mode |= FMODE_NOWAIT;
3307 	return generic_file_open(inode, filp);
3308 }
3309 
3310 const struct file_operations btrfs_file_operations = {
3311 	.llseek		= btrfs_file_llseek,
3312 	.read_iter      = generic_file_read_iter,
3313 	.splice_read	= generic_file_splice_read,
3314 	.write_iter	= btrfs_file_write_iter,
3315 	.mmap		= btrfs_file_mmap,
3316 	.open		= btrfs_file_open,
3317 	.release	= btrfs_release_file,
3318 	.fsync		= btrfs_sync_file,
3319 	.fallocate	= btrfs_fallocate,
3320 	.unlocked_ioctl	= btrfs_ioctl,
3321 #ifdef CONFIG_COMPAT
3322 	.compat_ioctl	= btrfs_compat_ioctl,
3323 #endif
3324 	.remap_file_range = btrfs_remap_file_range,
3325 };
3326 
3327 void __cold btrfs_auto_defrag_exit(void)
3328 {
3329 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3330 }
3331 
3332 int __init btrfs_auto_defrag_init(void)
3333 {
3334 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3335 					sizeof(struct inode_defrag), 0,
3336 					SLAB_MEM_SPREAD,
3337 					NULL);
3338 	if (!btrfs_inode_defrag_cachep)
3339 		return -ENOMEM;
3340 
3341 	return 0;
3342 }
3343 
3344 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3345 {
3346 	int ret;
3347 
3348 	/*
3349 	 * So with compression we will find and lock a dirty page and clear the
3350 	 * first one as dirty, setup an async extent, and immediately return
3351 	 * with the entire range locked but with nobody actually marked with
3352 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3353 	 * expect it to work since it will just kick off a thread to do the
3354 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3355 	 * since it will wait on the page lock, which won't be unlocked until
3356 	 * after the pages have been marked as writeback and so we're good to go
3357 	 * from there.  We have to do this otherwise we'll miss the ordered
3358 	 * extents and that results in badness.  Please Josef, do not think you
3359 	 * know better and pull this out at some point in the future, it is
3360 	 * right and you are wrong.
3361 	 */
3362 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3363 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3364 			     &BTRFS_I(inode)->runtime_flags))
3365 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3366 
3367 	return ret;
3368 }
3369