1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include "ctree.h" 21 #include "direct-io.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "btrfs_inode.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "qgroup.h" 28 #include "compression.h" 29 #include "delalloc-space.h" 30 #include "reflink.h" 31 #include "subpage.h" 32 #include "fs.h" 33 #include "accessors.h" 34 #include "extent-tree.h" 35 #include "file-item.h" 36 #include "ioctl.h" 37 #include "file.h" 38 #include "super.h" 39 40 /* simple helper to fault in pages and copy. This should go away 41 * and be replaced with calls into generic code. 42 */ 43 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 44 struct page **prepared_pages, 45 struct iov_iter *i) 46 { 47 size_t copied = 0; 48 size_t total_copied = 0; 49 int pg = 0; 50 int offset = offset_in_page(pos); 51 52 while (write_bytes > 0) { 53 size_t count = min_t(size_t, 54 PAGE_SIZE - offset, write_bytes); 55 struct page *page = prepared_pages[pg]; 56 /* 57 * Copy data from userspace to the current page 58 */ 59 copied = copy_page_from_iter_atomic(page, offset, count, i); 60 61 /* Flush processor's dcache for this page */ 62 flush_dcache_page(page); 63 64 /* 65 * if we get a partial write, we can end up with 66 * partially up to date pages. These add 67 * a lot of complexity, so make sure they don't 68 * happen by forcing this copy to be retried. 69 * 70 * The rest of the btrfs_file_write code will fall 71 * back to page at a time copies after we return 0. 72 */ 73 if (unlikely(copied < count)) { 74 if (!PageUptodate(page)) { 75 iov_iter_revert(i, copied); 76 copied = 0; 77 } 78 if (!copied) 79 break; 80 } 81 82 write_bytes -= copied; 83 total_copied += copied; 84 offset += copied; 85 if (offset == PAGE_SIZE) { 86 pg++; 87 offset = 0; 88 } 89 } 90 return total_copied; 91 } 92 93 /* 94 * unlocks pages after btrfs_file_write is done with them 95 */ 96 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 97 struct page **pages, size_t num_pages, 98 u64 pos, u64 copied) 99 { 100 size_t i; 101 u64 block_start = round_down(pos, fs_info->sectorsize); 102 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 103 104 ASSERT(block_len <= U32_MAX); 105 for (i = 0; i < num_pages; i++) { 106 /* page checked is some magic around finding pages that 107 * have been modified without going through btrfs_set_page_dirty 108 * clear it here. There should be no need to mark the pages 109 * accessed as prepare_pages should have marked them accessed 110 * in prepare_pages via find_or_create_page() 111 */ 112 btrfs_folio_clamp_clear_checked(fs_info, page_folio(pages[i]), 113 block_start, block_len); 114 unlock_page(pages[i]); 115 put_page(pages[i]); 116 } 117 } 118 119 /* 120 * After btrfs_copy_from_user(), update the following things for delalloc: 121 * - Mark newly dirtied pages as DELALLOC in the io tree. 122 * Used to advise which range is to be written back. 123 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 124 * - Update inode size for past EOF write 125 */ 126 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 127 size_t num_pages, loff_t pos, size_t write_bytes, 128 struct extent_state **cached, bool noreserve) 129 { 130 struct btrfs_fs_info *fs_info = inode->root->fs_info; 131 int ret = 0; 132 int i; 133 u64 num_bytes; 134 u64 start_pos; 135 u64 end_of_last_block; 136 u64 end_pos = pos + write_bytes; 137 loff_t isize = i_size_read(&inode->vfs_inode); 138 unsigned int extra_bits = 0; 139 140 if (write_bytes == 0) 141 return 0; 142 143 if (noreserve) 144 extra_bits |= EXTENT_NORESERVE; 145 146 start_pos = round_down(pos, fs_info->sectorsize); 147 num_bytes = round_up(write_bytes + pos - start_pos, 148 fs_info->sectorsize); 149 ASSERT(num_bytes <= U32_MAX); 150 151 end_of_last_block = start_pos + num_bytes - 1; 152 153 /* 154 * The pages may have already been dirty, clear out old accounting so 155 * we can set things up properly 156 */ 157 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 158 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 159 cached); 160 161 ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 162 extra_bits, cached); 163 if (ret) 164 return ret; 165 166 for (i = 0; i < num_pages; i++) { 167 struct page *p = pages[i]; 168 169 btrfs_folio_clamp_set_uptodate(fs_info, page_folio(p), 170 start_pos, num_bytes); 171 btrfs_folio_clamp_clear_checked(fs_info, page_folio(p), 172 start_pos, num_bytes); 173 btrfs_folio_clamp_set_dirty(fs_info, page_folio(p), 174 start_pos, num_bytes); 175 } 176 177 /* 178 * we've only changed i_size in ram, and we haven't updated 179 * the disk i_size. There is no need to log the inode 180 * at this time. 181 */ 182 if (end_pos > isize) 183 i_size_write(&inode->vfs_inode, end_pos); 184 return 0; 185 } 186 187 /* 188 * this is very complex, but the basic idea is to drop all extents 189 * in the range start - end. hint_block is filled in with a block number 190 * that would be a good hint to the block allocator for this file. 191 * 192 * If an extent intersects the range but is not entirely inside the range 193 * it is either truncated or split. Anything entirely inside the range 194 * is deleted from the tree. 195 * 196 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 197 * to deal with that. We set the field 'bytes_found' of the arguments structure 198 * with the number of allocated bytes found in the target range, so that the 199 * caller can update the inode's number of bytes in an atomic way when 200 * replacing extents in a range to avoid races with stat(2). 201 */ 202 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 203 struct btrfs_root *root, struct btrfs_inode *inode, 204 struct btrfs_drop_extents_args *args) 205 { 206 struct btrfs_fs_info *fs_info = root->fs_info; 207 struct extent_buffer *leaf; 208 struct btrfs_file_extent_item *fi; 209 struct btrfs_key key; 210 struct btrfs_key new_key; 211 u64 ino = btrfs_ino(inode); 212 u64 search_start = args->start; 213 u64 disk_bytenr = 0; 214 u64 num_bytes = 0; 215 u64 extent_offset = 0; 216 u64 extent_end = 0; 217 u64 last_end = args->start; 218 int del_nr = 0; 219 int del_slot = 0; 220 int extent_type; 221 int recow; 222 int ret; 223 int modify_tree = -1; 224 int update_refs; 225 int found = 0; 226 struct btrfs_path *path = args->path; 227 228 args->bytes_found = 0; 229 args->extent_inserted = false; 230 231 /* Must always have a path if ->replace_extent is true */ 232 ASSERT(!(args->replace_extent && !args->path)); 233 234 if (!path) { 235 path = btrfs_alloc_path(); 236 if (!path) { 237 ret = -ENOMEM; 238 goto out; 239 } 240 } 241 242 if (args->drop_cache) 243 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); 244 245 if (args->start >= inode->disk_i_size && !args->replace_extent) 246 modify_tree = 0; 247 248 update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID); 249 while (1) { 250 recow = 0; 251 ret = btrfs_lookup_file_extent(trans, root, path, ino, 252 search_start, modify_tree); 253 if (ret < 0) 254 break; 255 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 256 leaf = path->nodes[0]; 257 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 258 if (key.objectid == ino && 259 key.type == BTRFS_EXTENT_DATA_KEY) 260 path->slots[0]--; 261 } 262 ret = 0; 263 next_slot: 264 leaf = path->nodes[0]; 265 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 266 BUG_ON(del_nr > 0); 267 ret = btrfs_next_leaf(root, path); 268 if (ret < 0) 269 break; 270 if (ret > 0) { 271 ret = 0; 272 break; 273 } 274 leaf = path->nodes[0]; 275 recow = 1; 276 } 277 278 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 279 280 if (key.objectid > ino) 281 break; 282 if (WARN_ON_ONCE(key.objectid < ino) || 283 key.type < BTRFS_EXTENT_DATA_KEY) { 284 ASSERT(del_nr == 0); 285 path->slots[0]++; 286 goto next_slot; 287 } 288 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 289 break; 290 291 fi = btrfs_item_ptr(leaf, path->slots[0], 292 struct btrfs_file_extent_item); 293 extent_type = btrfs_file_extent_type(leaf, fi); 294 295 if (extent_type == BTRFS_FILE_EXTENT_REG || 296 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 297 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 298 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 299 extent_offset = btrfs_file_extent_offset(leaf, fi); 300 extent_end = key.offset + 301 btrfs_file_extent_num_bytes(leaf, fi); 302 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 303 extent_end = key.offset + 304 btrfs_file_extent_ram_bytes(leaf, fi); 305 } else { 306 /* can't happen */ 307 BUG(); 308 } 309 310 /* 311 * Don't skip extent items representing 0 byte lengths. They 312 * used to be created (bug) if while punching holes we hit 313 * -ENOSPC condition. So if we find one here, just ensure we 314 * delete it, otherwise we would insert a new file extent item 315 * with the same key (offset) as that 0 bytes length file 316 * extent item in the call to setup_items_for_insert() later 317 * in this function. 318 */ 319 if (extent_end == key.offset && extent_end >= search_start) { 320 last_end = extent_end; 321 goto delete_extent_item; 322 } 323 324 if (extent_end <= search_start) { 325 path->slots[0]++; 326 goto next_slot; 327 } 328 329 found = 1; 330 search_start = max(key.offset, args->start); 331 if (recow || !modify_tree) { 332 modify_tree = -1; 333 btrfs_release_path(path); 334 continue; 335 } 336 337 /* 338 * | - range to drop - | 339 * | -------- extent -------- | 340 */ 341 if (args->start > key.offset && args->end < extent_end) { 342 BUG_ON(del_nr > 0); 343 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 344 ret = -EOPNOTSUPP; 345 break; 346 } 347 348 memcpy(&new_key, &key, sizeof(new_key)); 349 new_key.offset = args->start; 350 ret = btrfs_duplicate_item(trans, root, path, 351 &new_key); 352 if (ret == -EAGAIN) { 353 btrfs_release_path(path); 354 continue; 355 } 356 if (ret < 0) 357 break; 358 359 leaf = path->nodes[0]; 360 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 361 struct btrfs_file_extent_item); 362 btrfs_set_file_extent_num_bytes(leaf, fi, 363 args->start - key.offset); 364 365 fi = btrfs_item_ptr(leaf, path->slots[0], 366 struct btrfs_file_extent_item); 367 368 extent_offset += args->start - key.offset; 369 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 370 btrfs_set_file_extent_num_bytes(leaf, fi, 371 extent_end - args->start); 372 btrfs_mark_buffer_dirty(trans, leaf); 373 374 if (update_refs && disk_bytenr > 0) { 375 struct btrfs_ref ref = { 376 .action = BTRFS_ADD_DELAYED_REF, 377 .bytenr = disk_bytenr, 378 .num_bytes = num_bytes, 379 .parent = 0, 380 .owning_root = btrfs_root_id(root), 381 .ref_root = btrfs_root_id(root), 382 }; 383 btrfs_init_data_ref(&ref, new_key.objectid, 384 args->start - extent_offset, 385 0, false); 386 ret = btrfs_inc_extent_ref(trans, &ref); 387 if (ret) { 388 btrfs_abort_transaction(trans, ret); 389 break; 390 } 391 } 392 key.offset = args->start; 393 } 394 /* 395 * From here on out we will have actually dropped something, so 396 * last_end can be updated. 397 */ 398 last_end = extent_end; 399 400 /* 401 * | ---- range to drop ----- | 402 * | -------- extent -------- | 403 */ 404 if (args->start <= key.offset && args->end < extent_end) { 405 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 406 ret = -EOPNOTSUPP; 407 break; 408 } 409 410 memcpy(&new_key, &key, sizeof(new_key)); 411 new_key.offset = args->end; 412 btrfs_set_item_key_safe(trans, path, &new_key); 413 414 extent_offset += args->end - key.offset; 415 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 416 btrfs_set_file_extent_num_bytes(leaf, fi, 417 extent_end - args->end); 418 btrfs_mark_buffer_dirty(trans, leaf); 419 if (update_refs && disk_bytenr > 0) 420 args->bytes_found += args->end - key.offset; 421 break; 422 } 423 424 search_start = extent_end; 425 /* 426 * | ---- range to drop ----- | 427 * | -------- extent -------- | 428 */ 429 if (args->start > key.offset && args->end >= extent_end) { 430 BUG_ON(del_nr > 0); 431 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 432 ret = -EOPNOTSUPP; 433 break; 434 } 435 436 btrfs_set_file_extent_num_bytes(leaf, fi, 437 args->start - key.offset); 438 btrfs_mark_buffer_dirty(trans, leaf); 439 if (update_refs && disk_bytenr > 0) 440 args->bytes_found += extent_end - args->start; 441 if (args->end == extent_end) 442 break; 443 444 path->slots[0]++; 445 goto next_slot; 446 } 447 448 /* 449 * | ---- range to drop ----- | 450 * | ------ extent ------ | 451 */ 452 if (args->start <= key.offset && args->end >= extent_end) { 453 delete_extent_item: 454 if (del_nr == 0) { 455 del_slot = path->slots[0]; 456 del_nr = 1; 457 } else { 458 BUG_ON(del_slot + del_nr != path->slots[0]); 459 del_nr++; 460 } 461 462 if (update_refs && 463 extent_type == BTRFS_FILE_EXTENT_INLINE) { 464 args->bytes_found += extent_end - key.offset; 465 extent_end = ALIGN(extent_end, 466 fs_info->sectorsize); 467 } else if (update_refs && disk_bytenr > 0) { 468 struct btrfs_ref ref = { 469 .action = BTRFS_DROP_DELAYED_REF, 470 .bytenr = disk_bytenr, 471 .num_bytes = num_bytes, 472 .parent = 0, 473 .owning_root = btrfs_root_id(root), 474 .ref_root = btrfs_root_id(root), 475 }; 476 btrfs_init_data_ref(&ref, key.objectid, 477 key.offset - extent_offset, 478 0, false); 479 ret = btrfs_free_extent(trans, &ref); 480 if (ret) { 481 btrfs_abort_transaction(trans, ret); 482 break; 483 } 484 args->bytes_found += extent_end - key.offset; 485 } 486 487 if (args->end == extent_end) 488 break; 489 490 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 491 path->slots[0]++; 492 goto next_slot; 493 } 494 495 ret = btrfs_del_items(trans, root, path, del_slot, 496 del_nr); 497 if (ret) { 498 btrfs_abort_transaction(trans, ret); 499 break; 500 } 501 502 del_nr = 0; 503 del_slot = 0; 504 505 btrfs_release_path(path); 506 continue; 507 } 508 509 BUG(); 510 } 511 512 if (!ret && del_nr > 0) { 513 /* 514 * Set path->slots[0] to first slot, so that after the delete 515 * if items are move off from our leaf to its immediate left or 516 * right neighbor leafs, we end up with a correct and adjusted 517 * path->slots[0] for our insertion (if args->replace_extent). 518 */ 519 path->slots[0] = del_slot; 520 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 521 if (ret) 522 btrfs_abort_transaction(trans, ret); 523 } 524 525 leaf = path->nodes[0]; 526 /* 527 * If btrfs_del_items() was called, it might have deleted a leaf, in 528 * which case it unlocked our path, so check path->locks[0] matches a 529 * write lock. 530 */ 531 if (!ret && args->replace_extent && 532 path->locks[0] == BTRFS_WRITE_LOCK && 533 btrfs_leaf_free_space(leaf) >= 534 sizeof(struct btrfs_item) + args->extent_item_size) { 535 536 key.objectid = ino; 537 key.type = BTRFS_EXTENT_DATA_KEY; 538 key.offset = args->start; 539 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 540 struct btrfs_key slot_key; 541 542 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 543 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 544 path->slots[0]++; 545 } 546 btrfs_setup_item_for_insert(trans, root, path, &key, 547 args->extent_item_size); 548 args->extent_inserted = true; 549 } 550 551 if (!args->path) 552 btrfs_free_path(path); 553 else if (!args->extent_inserted) 554 btrfs_release_path(path); 555 out: 556 args->drop_end = found ? min(args->end, last_end) : args->end; 557 558 return ret; 559 } 560 561 static int extent_mergeable(struct extent_buffer *leaf, int slot, 562 u64 objectid, u64 bytenr, u64 orig_offset, 563 u64 *start, u64 *end) 564 { 565 struct btrfs_file_extent_item *fi; 566 struct btrfs_key key; 567 u64 extent_end; 568 569 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 570 return 0; 571 572 btrfs_item_key_to_cpu(leaf, &key, slot); 573 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 574 return 0; 575 576 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 577 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 578 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 579 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 580 btrfs_file_extent_compression(leaf, fi) || 581 btrfs_file_extent_encryption(leaf, fi) || 582 btrfs_file_extent_other_encoding(leaf, fi)) 583 return 0; 584 585 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 586 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 587 return 0; 588 589 *start = key.offset; 590 *end = extent_end; 591 return 1; 592 } 593 594 /* 595 * Mark extent in the range start - end as written. 596 * 597 * This changes extent type from 'pre-allocated' to 'regular'. If only 598 * part of extent is marked as written, the extent will be split into 599 * two or three. 600 */ 601 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 602 struct btrfs_inode *inode, u64 start, u64 end) 603 { 604 struct btrfs_root *root = inode->root; 605 struct extent_buffer *leaf; 606 struct btrfs_path *path; 607 struct btrfs_file_extent_item *fi; 608 struct btrfs_ref ref = { 0 }; 609 struct btrfs_key key; 610 struct btrfs_key new_key; 611 u64 bytenr; 612 u64 num_bytes; 613 u64 extent_end; 614 u64 orig_offset; 615 u64 other_start; 616 u64 other_end; 617 u64 split; 618 int del_nr = 0; 619 int del_slot = 0; 620 int recow; 621 int ret = 0; 622 u64 ino = btrfs_ino(inode); 623 624 path = btrfs_alloc_path(); 625 if (!path) 626 return -ENOMEM; 627 again: 628 recow = 0; 629 split = start; 630 key.objectid = ino; 631 key.type = BTRFS_EXTENT_DATA_KEY; 632 key.offset = split; 633 634 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 635 if (ret < 0) 636 goto out; 637 if (ret > 0 && path->slots[0] > 0) 638 path->slots[0]--; 639 640 leaf = path->nodes[0]; 641 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 642 if (key.objectid != ino || 643 key.type != BTRFS_EXTENT_DATA_KEY) { 644 ret = -EINVAL; 645 btrfs_abort_transaction(trans, ret); 646 goto out; 647 } 648 fi = btrfs_item_ptr(leaf, path->slots[0], 649 struct btrfs_file_extent_item); 650 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 651 ret = -EINVAL; 652 btrfs_abort_transaction(trans, ret); 653 goto out; 654 } 655 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 656 if (key.offset > start || extent_end < end) { 657 ret = -EINVAL; 658 btrfs_abort_transaction(trans, ret); 659 goto out; 660 } 661 662 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 663 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 664 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 665 memcpy(&new_key, &key, sizeof(new_key)); 666 667 if (start == key.offset && end < extent_end) { 668 other_start = 0; 669 other_end = start; 670 if (extent_mergeable(leaf, path->slots[0] - 1, 671 ino, bytenr, orig_offset, 672 &other_start, &other_end)) { 673 new_key.offset = end; 674 btrfs_set_item_key_safe(trans, path, &new_key); 675 fi = btrfs_item_ptr(leaf, path->slots[0], 676 struct btrfs_file_extent_item); 677 btrfs_set_file_extent_generation(leaf, fi, 678 trans->transid); 679 btrfs_set_file_extent_num_bytes(leaf, fi, 680 extent_end - end); 681 btrfs_set_file_extent_offset(leaf, fi, 682 end - orig_offset); 683 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 684 struct btrfs_file_extent_item); 685 btrfs_set_file_extent_generation(leaf, fi, 686 trans->transid); 687 btrfs_set_file_extent_num_bytes(leaf, fi, 688 end - other_start); 689 btrfs_mark_buffer_dirty(trans, leaf); 690 goto out; 691 } 692 } 693 694 if (start > key.offset && end == extent_end) { 695 other_start = end; 696 other_end = 0; 697 if (extent_mergeable(leaf, path->slots[0] + 1, 698 ino, bytenr, orig_offset, 699 &other_start, &other_end)) { 700 fi = btrfs_item_ptr(leaf, path->slots[0], 701 struct btrfs_file_extent_item); 702 btrfs_set_file_extent_num_bytes(leaf, fi, 703 start - key.offset); 704 btrfs_set_file_extent_generation(leaf, fi, 705 trans->transid); 706 path->slots[0]++; 707 new_key.offset = start; 708 btrfs_set_item_key_safe(trans, path, &new_key); 709 710 fi = btrfs_item_ptr(leaf, path->slots[0], 711 struct btrfs_file_extent_item); 712 btrfs_set_file_extent_generation(leaf, fi, 713 trans->transid); 714 btrfs_set_file_extent_num_bytes(leaf, fi, 715 other_end - start); 716 btrfs_set_file_extent_offset(leaf, fi, 717 start - orig_offset); 718 btrfs_mark_buffer_dirty(trans, leaf); 719 goto out; 720 } 721 } 722 723 while (start > key.offset || end < extent_end) { 724 if (key.offset == start) 725 split = end; 726 727 new_key.offset = split; 728 ret = btrfs_duplicate_item(trans, root, path, &new_key); 729 if (ret == -EAGAIN) { 730 btrfs_release_path(path); 731 goto again; 732 } 733 if (ret < 0) { 734 btrfs_abort_transaction(trans, ret); 735 goto out; 736 } 737 738 leaf = path->nodes[0]; 739 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 740 struct btrfs_file_extent_item); 741 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 742 btrfs_set_file_extent_num_bytes(leaf, fi, 743 split - key.offset); 744 745 fi = btrfs_item_ptr(leaf, path->slots[0], 746 struct btrfs_file_extent_item); 747 748 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 749 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 750 btrfs_set_file_extent_num_bytes(leaf, fi, 751 extent_end - split); 752 btrfs_mark_buffer_dirty(trans, leaf); 753 754 ref.action = BTRFS_ADD_DELAYED_REF; 755 ref.bytenr = bytenr; 756 ref.num_bytes = num_bytes; 757 ref.parent = 0; 758 ref.owning_root = btrfs_root_id(root); 759 ref.ref_root = btrfs_root_id(root); 760 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false); 761 ret = btrfs_inc_extent_ref(trans, &ref); 762 if (ret) { 763 btrfs_abort_transaction(trans, ret); 764 goto out; 765 } 766 767 if (split == start) { 768 key.offset = start; 769 } else { 770 if (start != key.offset) { 771 ret = -EINVAL; 772 btrfs_abort_transaction(trans, ret); 773 goto out; 774 } 775 path->slots[0]--; 776 extent_end = end; 777 } 778 recow = 1; 779 } 780 781 other_start = end; 782 other_end = 0; 783 784 ref.action = BTRFS_DROP_DELAYED_REF; 785 ref.bytenr = bytenr; 786 ref.num_bytes = num_bytes; 787 ref.parent = 0; 788 ref.owning_root = btrfs_root_id(root); 789 ref.ref_root = btrfs_root_id(root); 790 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false); 791 if (extent_mergeable(leaf, path->slots[0] + 1, 792 ino, bytenr, orig_offset, 793 &other_start, &other_end)) { 794 if (recow) { 795 btrfs_release_path(path); 796 goto again; 797 } 798 extent_end = other_end; 799 del_slot = path->slots[0] + 1; 800 del_nr++; 801 ret = btrfs_free_extent(trans, &ref); 802 if (ret) { 803 btrfs_abort_transaction(trans, ret); 804 goto out; 805 } 806 } 807 other_start = 0; 808 other_end = start; 809 if (extent_mergeable(leaf, path->slots[0] - 1, 810 ino, bytenr, orig_offset, 811 &other_start, &other_end)) { 812 if (recow) { 813 btrfs_release_path(path); 814 goto again; 815 } 816 key.offset = other_start; 817 del_slot = path->slots[0]; 818 del_nr++; 819 ret = btrfs_free_extent(trans, &ref); 820 if (ret) { 821 btrfs_abort_transaction(trans, ret); 822 goto out; 823 } 824 } 825 if (del_nr == 0) { 826 fi = btrfs_item_ptr(leaf, path->slots[0], 827 struct btrfs_file_extent_item); 828 btrfs_set_file_extent_type(leaf, fi, 829 BTRFS_FILE_EXTENT_REG); 830 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 831 btrfs_mark_buffer_dirty(trans, leaf); 832 } else { 833 fi = btrfs_item_ptr(leaf, del_slot - 1, 834 struct btrfs_file_extent_item); 835 btrfs_set_file_extent_type(leaf, fi, 836 BTRFS_FILE_EXTENT_REG); 837 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 838 btrfs_set_file_extent_num_bytes(leaf, fi, 839 extent_end - key.offset); 840 btrfs_mark_buffer_dirty(trans, leaf); 841 842 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 843 if (ret < 0) { 844 btrfs_abort_transaction(trans, ret); 845 goto out; 846 } 847 } 848 out: 849 btrfs_free_path(path); 850 return ret; 851 } 852 853 /* 854 * on error we return an unlocked page and the error value 855 * on success we return a locked page and 0 856 */ 857 static int prepare_uptodate_page(struct inode *inode, 858 struct page *page, u64 pos, 859 bool force_uptodate) 860 { 861 struct folio *folio = page_folio(page); 862 int ret = 0; 863 864 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 865 !PageUptodate(page)) { 866 ret = btrfs_read_folio(NULL, folio); 867 if (ret) 868 return ret; 869 lock_page(page); 870 if (!PageUptodate(page)) { 871 unlock_page(page); 872 return -EIO; 873 } 874 875 /* 876 * Since btrfs_read_folio() will unlock the folio before it 877 * returns, there is a window where btrfs_release_folio() can be 878 * called to release the page. Here we check both inode 879 * mapping and PagePrivate() to make sure the page was not 880 * released. 881 * 882 * The private flag check is essential for subpage as we need 883 * to store extra bitmap using folio private. 884 */ 885 if (page->mapping != inode->i_mapping || !folio_test_private(folio)) { 886 unlock_page(page); 887 return -EAGAIN; 888 } 889 } 890 return 0; 891 } 892 893 static fgf_t get_prepare_fgp_flags(bool nowait) 894 { 895 fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT; 896 897 if (nowait) 898 fgp_flags |= FGP_NOWAIT; 899 900 return fgp_flags; 901 } 902 903 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) 904 { 905 gfp_t gfp; 906 907 gfp = btrfs_alloc_write_mask(inode->i_mapping); 908 if (nowait) { 909 gfp &= ~__GFP_DIRECT_RECLAIM; 910 gfp |= GFP_NOWAIT; 911 } 912 913 return gfp; 914 } 915 916 /* 917 * this just gets pages into the page cache and locks them down. 918 */ 919 static noinline int prepare_pages(struct inode *inode, struct page **pages, 920 size_t num_pages, loff_t pos, 921 size_t write_bytes, bool force_uptodate, 922 bool nowait) 923 { 924 int i; 925 unsigned long index = pos >> PAGE_SHIFT; 926 gfp_t mask = get_prepare_gfp_flags(inode, nowait); 927 fgf_t fgp_flags = get_prepare_fgp_flags(nowait); 928 int ret = 0; 929 int faili; 930 931 for (i = 0; i < num_pages; i++) { 932 again: 933 pages[i] = pagecache_get_page(inode->i_mapping, index + i, 934 fgp_flags, mask | __GFP_WRITE); 935 if (!pages[i]) { 936 faili = i - 1; 937 if (nowait) 938 ret = -EAGAIN; 939 else 940 ret = -ENOMEM; 941 goto fail; 942 } 943 944 ret = set_page_extent_mapped(pages[i]); 945 if (ret < 0) { 946 faili = i; 947 goto fail; 948 } 949 950 if (i == 0) 951 ret = prepare_uptodate_page(inode, pages[i], pos, 952 force_uptodate); 953 if (!ret && i == num_pages - 1) 954 ret = prepare_uptodate_page(inode, pages[i], 955 pos + write_bytes, false); 956 if (ret) { 957 put_page(pages[i]); 958 if (!nowait && ret == -EAGAIN) { 959 ret = 0; 960 goto again; 961 } 962 faili = i - 1; 963 goto fail; 964 } 965 wait_on_page_writeback(pages[i]); 966 } 967 968 return 0; 969 fail: 970 while (faili >= 0) { 971 unlock_page(pages[faili]); 972 put_page(pages[faili]); 973 faili--; 974 } 975 return ret; 976 977 } 978 979 /* 980 * This function locks the extent and properly waits for data=ordered extents 981 * to finish before allowing the pages to be modified if need. 982 * 983 * The return value: 984 * 1 - the extent is locked 985 * 0 - the extent is not locked, and everything is OK 986 * -EAGAIN - need re-prepare the pages 987 * the other < 0 number - Something wrong happens 988 */ 989 static noinline int 990 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 991 size_t num_pages, loff_t pos, 992 size_t write_bytes, 993 u64 *lockstart, u64 *lockend, bool nowait, 994 struct extent_state **cached_state) 995 { 996 struct btrfs_fs_info *fs_info = inode->root->fs_info; 997 u64 start_pos; 998 u64 last_pos; 999 int i; 1000 int ret = 0; 1001 1002 start_pos = round_down(pos, fs_info->sectorsize); 1003 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 1004 1005 if (start_pos < inode->vfs_inode.i_size) { 1006 struct btrfs_ordered_extent *ordered; 1007 1008 if (nowait) { 1009 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos, 1010 cached_state)) { 1011 for (i = 0; i < num_pages; i++) { 1012 unlock_page(pages[i]); 1013 put_page(pages[i]); 1014 pages[i] = NULL; 1015 } 1016 1017 return -EAGAIN; 1018 } 1019 } else { 1020 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state); 1021 } 1022 1023 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1024 last_pos - start_pos + 1); 1025 if (ordered && 1026 ordered->file_offset + ordered->num_bytes > start_pos && 1027 ordered->file_offset <= last_pos) { 1028 unlock_extent(&inode->io_tree, start_pos, last_pos, 1029 cached_state); 1030 for (i = 0; i < num_pages; i++) { 1031 unlock_page(pages[i]); 1032 put_page(pages[i]); 1033 } 1034 btrfs_start_ordered_extent(ordered); 1035 btrfs_put_ordered_extent(ordered); 1036 return -EAGAIN; 1037 } 1038 if (ordered) 1039 btrfs_put_ordered_extent(ordered); 1040 1041 *lockstart = start_pos; 1042 *lockend = last_pos; 1043 ret = 1; 1044 } 1045 1046 /* 1047 * We should be called after prepare_pages() which should have locked 1048 * all pages in the range. 1049 */ 1050 for (i = 0; i < num_pages; i++) 1051 WARN_ON(!PageLocked(pages[i])); 1052 1053 return ret; 1054 } 1055 1056 /* 1057 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1058 * 1059 * @pos: File offset. 1060 * @write_bytes: The length to write, will be updated to the nocow writeable 1061 * range. 1062 * 1063 * This function will flush ordered extents in the range to ensure proper 1064 * nocow checks. 1065 * 1066 * Return: 1067 * > 0 If we can nocow, and updates @write_bytes. 1068 * 0 If we can't do a nocow write. 1069 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's 1070 * root is in progress. 1071 * < 0 If an error happened. 1072 * 1073 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 1074 */ 1075 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1076 size_t *write_bytes, bool nowait) 1077 { 1078 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1079 struct btrfs_root *root = inode->root; 1080 struct extent_state *cached_state = NULL; 1081 u64 lockstart, lockend; 1082 u64 num_bytes; 1083 int ret; 1084 1085 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1086 return 0; 1087 1088 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1089 return -EAGAIN; 1090 1091 lockstart = round_down(pos, fs_info->sectorsize); 1092 lockend = round_up(pos + *write_bytes, 1093 fs_info->sectorsize) - 1; 1094 num_bytes = lockend - lockstart + 1; 1095 1096 if (nowait) { 1097 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend, 1098 &cached_state)) { 1099 btrfs_drew_write_unlock(&root->snapshot_lock); 1100 return -EAGAIN; 1101 } 1102 } else { 1103 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, 1104 &cached_state); 1105 } 1106 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1107 NULL, nowait, false); 1108 if (ret <= 0) 1109 btrfs_drew_write_unlock(&root->snapshot_lock); 1110 else 1111 *write_bytes = min_t(size_t, *write_bytes , 1112 num_bytes - pos + lockstart); 1113 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 1114 1115 return ret; 1116 } 1117 1118 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1119 { 1120 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1121 } 1122 1123 static void update_time_for_write(struct inode *inode) 1124 { 1125 struct timespec64 now, ts; 1126 1127 if (IS_NOCMTIME(inode)) 1128 return; 1129 1130 now = current_time(inode); 1131 ts = inode_get_mtime(inode); 1132 if (!timespec64_equal(&ts, &now)) 1133 inode_set_mtime_to_ts(inode, now); 1134 1135 ts = inode_get_ctime(inode); 1136 if (!timespec64_equal(&ts, &now)) 1137 inode_set_ctime_to_ts(inode, now); 1138 1139 if (IS_I_VERSION(inode)) 1140 inode_inc_iversion(inode); 1141 } 1142 1143 int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, size_t count) 1144 { 1145 struct file *file = iocb->ki_filp; 1146 struct inode *inode = file_inode(file); 1147 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1148 loff_t pos = iocb->ki_pos; 1149 int ret; 1150 loff_t oldsize; 1151 loff_t start_pos; 1152 1153 /* 1154 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1155 * prealloc flags, as without those flags we always have to COW. We will 1156 * later check if we can really COW into the target range (using 1157 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1158 */ 1159 if ((iocb->ki_flags & IOCB_NOWAIT) && 1160 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1161 return -EAGAIN; 1162 1163 ret = file_remove_privs(file); 1164 if (ret) 1165 return ret; 1166 1167 /* 1168 * We reserve space for updating the inode when we reserve space for the 1169 * extent we are going to write, so we will enospc out there. We don't 1170 * need to start yet another transaction to update the inode as we will 1171 * update the inode when we finish writing whatever data we write. 1172 */ 1173 update_time_for_write(inode); 1174 1175 start_pos = round_down(pos, fs_info->sectorsize); 1176 oldsize = i_size_read(inode); 1177 if (start_pos > oldsize) { 1178 /* Expand hole size to cover write data, preventing empty gap */ 1179 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1180 1181 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1182 if (ret) 1183 return ret; 1184 } 1185 1186 return 0; 1187 } 1188 1189 ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *i) 1190 { 1191 struct file *file = iocb->ki_filp; 1192 loff_t pos; 1193 struct inode *inode = file_inode(file); 1194 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1195 struct page **pages = NULL; 1196 struct extent_changeset *data_reserved = NULL; 1197 u64 release_bytes = 0; 1198 u64 lockstart; 1199 u64 lockend; 1200 size_t num_written = 0; 1201 int nrptrs; 1202 ssize_t ret; 1203 bool only_release_metadata = false; 1204 bool force_page_uptodate = false; 1205 loff_t old_isize = i_size_read(inode); 1206 unsigned int ilock_flags = 0; 1207 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 1208 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); 1209 1210 if (nowait) 1211 ilock_flags |= BTRFS_ILOCK_TRY; 1212 1213 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1214 if (ret < 0) 1215 return ret; 1216 1217 ret = generic_write_checks(iocb, i); 1218 if (ret <= 0) 1219 goto out; 1220 1221 ret = btrfs_write_check(iocb, i, ret); 1222 if (ret < 0) 1223 goto out; 1224 1225 pos = iocb->ki_pos; 1226 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1227 PAGE_SIZE / (sizeof(struct page *))); 1228 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1229 nrptrs = max(nrptrs, 8); 1230 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1231 if (!pages) { 1232 ret = -ENOMEM; 1233 goto out; 1234 } 1235 1236 while (iov_iter_count(i) > 0) { 1237 struct extent_state *cached_state = NULL; 1238 size_t offset = offset_in_page(pos); 1239 size_t sector_offset; 1240 size_t write_bytes = min(iov_iter_count(i), 1241 nrptrs * (size_t)PAGE_SIZE - 1242 offset); 1243 size_t num_pages; 1244 size_t reserve_bytes; 1245 size_t dirty_pages; 1246 size_t copied; 1247 size_t dirty_sectors; 1248 size_t num_sectors; 1249 int extents_locked; 1250 1251 /* 1252 * Fault pages before locking them in prepare_pages 1253 * to avoid recursive lock 1254 */ 1255 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1256 ret = -EFAULT; 1257 break; 1258 } 1259 1260 only_release_metadata = false; 1261 sector_offset = pos & (fs_info->sectorsize - 1); 1262 1263 extent_changeset_release(data_reserved); 1264 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1265 &data_reserved, pos, 1266 write_bytes, nowait); 1267 if (ret < 0) { 1268 int can_nocow; 1269 1270 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) { 1271 ret = -EAGAIN; 1272 break; 1273 } 1274 1275 /* 1276 * If we don't have to COW at the offset, reserve 1277 * metadata only. write_bytes may get smaller than 1278 * requested here. 1279 */ 1280 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1281 &write_bytes, nowait); 1282 if (can_nocow < 0) 1283 ret = can_nocow; 1284 if (can_nocow > 0) 1285 ret = 0; 1286 if (ret) 1287 break; 1288 only_release_metadata = true; 1289 } 1290 1291 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1292 WARN_ON(num_pages > nrptrs); 1293 reserve_bytes = round_up(write_bytes + sector_offset, 1294 fs_info->sectorsize); 1295 WARN_ON(reserve_bytes == 0); 1296 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1297 reserve_bytes, 1298 reserve_bytes, nowait); 1299 if (ret) { 1300 if (!only_release_metadata) 1301 btrfs_free_reserved_data_space(BTRFS_I(inode), 1302 data_reserved, pos, 1303 write_bytes); 1304 else 1305 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1306 1307 if (nowait && ret == -ENOSPC) 1308 ret = -EAGAIN; 1309 break; 1310 } 1311 1312 release_bytes = reserve_bytes; 1313 again: 1314 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags); 1315 if (ret) { 1316 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1317 break; 1318 } 1319 1320 /* 1321 * This is going to setup the pages array with the number of 1322 * pages we want, so we don't really need to worry about the 1323 * contents of pages from loop to loop 1324 */ 1325 ret = prepare_pages(inode, pages, num_pages, 1326 pos, write_bytes, force_page_uptodate, false); 1327 if (ret) { 1328 btrfs_delalloc_release_extents(BTRFS_I(inode), 1329 reserve_bytes); 1330 break; 1331 } 1332 1333 extents_locked = lock_and_cleanup_extent_if_need( 1334 BTRFS_I(inode), pages, 1335 num_pages, pos, write_bytes, &lockstart, 1336 &lockend, nowait, &cached_state); 1337 if (extents_locked < 0) { 1338 if (!nowait && extents_locked == -EAGAIN) 1339 goto again; 1340 1341 btrfs_delalloc_release_extents(BTRFS_I(inode), 1342 reserve_bytes); 1343 ret = extents_locked; 1344 break; 1345 } 1346 1347 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1348 1349 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1350 dirty_sectors = round_up(copied + sector_offset, 1351 fs_info->sectorsize); 1352 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1353 1354 /* 1355 * if we have trouble faulting in the pages, fall 1356 * back to one page at a time 1357 */ 1358 if (copied < write_bytes) 1359 nrptrs = 1; 1360 1361 if (copied == 0) { 1362 force_page_uptodate = true; 1363 dirty_sectors = 0; 1364 dirty_pages = 0; 1365 } else { 1366 force_page_uptodate = false; 1367 dirty_pages = DIV_ROUND_UP(copied + offset, 1368 PAGE_SIZE); 1369 } 1370 1371 if (num_sectors > dirty_sectors) { 1372 /* release everything except the sectors we dirtied */ 1373 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1374 if (only_release_metadata) { 1375 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1376 release_bytes, true); 1377 } else { 1378 u64 __pos; 1379 1380 __pos = round_down(pos, 1381 fs_info->sectorsize) + 1382 (dirty_pages << PAGE_SHIFT); 1383 btrfs_delalloc_release_space(BTRFS_I(inode), 1384 data_reserved, __pos, 1385 release_bytes, true); 1386 } 1387 } 1388 1389 release_bytes = round_up(copied + sector_offset, 1390 fs_info->sectorsize); 1391 1392 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1393 dirty_pages, pos, copied, 1394 &cached_state, only_release_metadata); 1395 1396 /* 1397 * If we have not locked the extent range, because the range's 1398 * start offset is >= i_size, we might still have a non-NULL 1399 * cached extent state, acquired while marking the extent range 1400 * as delalloc through btrfs_dirty_pages(). Therefore free any 1401 * possible cached extent state to avoid a memory leak. 1402 */ 1403 if (extents_locked) 1404 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 1405 lockend, &cached_state); 1406 else 1407 free_extent_state(cached_state); 1408 1409 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1410 if (ret) { 1411 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1412 break; 1413 } 1414 1415 release_bytes = 0; 1416 if (only_release_metadata) 1417 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1418 1419 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1420 1421 cond_resched(); 1422 1423 pos += copied; 1424 num_written += copied; 1425 } 1426 1427 kfree(pages); 1428 1429 if (release_bytes) { 1430 if (only_release_metadata) { 1431 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1432 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1433 release_bytes, true); 1434 } else { 1435 btrfs_delalloc_release_space(BTRFS_I(inode), 1436 data_reserved, 1437 round_down(pos, fs_info->sectorsize), 1438 release_bytes, true); 1439 } 1440 } 1441 1442 extent_changeset_free(data_reserved); 1443 if (num_written > 0) { 1444 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1445 iocb->ki_pos += num_written; 1446 } 1447 out: 1448 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1449 return num_written ? num_written : ret; 1450 } 1451 1452 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 1453 const struct btrfs_ioctl_encoded_io_args *encoded) 1454 { 1455 struct file *file = iocb->ki_filp; 1456 struct inode *inode = file_inode(file); 1457 loff_t count; 1458 ssize_t ret; 1459 1460 btrfs_inode_lock(BTRFS_I(inode), 0); 1461 count = encoded->len; 1462 ret = generic_write_checks_count(iocb, &count); 1463 if (ret == 0 && count != encoded->len) { 1464 /* 1465 * The write got truncated by generic_write_checks_count(). We 1466 * can't do a partial encoded write. 1467 */ 1468 ret = -EFBIG; 1469 } 1470 if (ret || encoded->len == 0) 1471 goto out; 1472 1473 ret = btrfs_write_check(iocb, from, encoded->len); 1474 if (ret < 0) 1475 goto out; 1476 1477 ret = btrfs_do_encoded_write(iocb, from, encoded); 1478 out: 1479 btrfs_inode_unlock(BTRFS_I(inode), 0); 1480 return ret; 1481 } 1482 1483 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 1484 const struct btrfs_ioctl_encoded_io_args *encoded) 1485 { 1486 struct file *file = iocb->ki_filp; 1487 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1488 ssize_t num_written, num_sync; 1489 1490 /* 1491 * If the fs flips readonly due to some impossible error, although we 1492 * have opened a file as writable, we have to stop this write operation 1493 * to ensure consistency. 1494 */ 1495 if (BTRFS_FS_ERROR(inode->root->fs_info)) 1496 return -EROFS; 1497 1498 if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) 1499 return -EOPNOTSUPP; 1500 1501 if (encoded) { 1502 num_written = btrfs_encoded_write(iocb, from, encoded); 1503 num_sync = encoded->len; 1504 } else if (iocb->ki_flags & IOCB_DIRECT) { 1505 num_written = btrfs_direct_write(iocb, from); 1506 num_sync = num_written; 1507 } else { 1508 num_written = btrfs_buffered_write(iocb, from); 1509 num_sync = num_written; 1510 } 1511 1512 btrfs_set_inode_last_sub_trans(inode); 1513 1514 if (num_sync > 0) { 1515 num_sync = generic_write_sync(iocb, num_sync); 1516 if (num_sync < 0) 1517 num_written = num_sync; 1518 } 1519 1520 return num_written; 1521 } 1522 1523 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1524 { 1525 return btrfs_do_write_iter(iocb, from, NULL); 1526 } 1527 1528 int btrfs_release_file(struct inode *inode, struct file *filp) 1529 { 1530 struct btrfs_file_private *private = filp->private_data; 1531 1532 if (private) { 1533 kfree(private->filldir_buf); 1534 free_extent_state(private->llseek_cached_state); 1535 kfree(private); 1536 filp->private_data = NULL; 1537 } 1538 1539 /* 1540 * Set by setattr when we are about to truncate a file from a non-zero 1541 * size to a zero size. This tries to flush down new bytes that may 1542 * have been written if the application were using truncate to replace 1543 * a file in place. 1544 */ 1545 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 1546 &BTRFS_I(inode)->runtime_flags)) 1547 filemap_flush(inode->i_mapping); 1548 return 0; 1549 } 1550 1551 static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end) 1552 { 1553 int ret; 1554 struct blk_plug plug; 1555 1556 /* 1557 * This is only called in fsync, which would do synchronous writes, so 1558 * a plug can merge adjacent IOs as much as possible. Esp. in case of 1559 * multiple disks using raid profile, a large IO can be split to 1560 * several segments of stripe length (currently 64K). 1561 */ 1562 blk_start_plug(&plug); 1563 ret = btrfs_fdatawrite_range(inode, start, end); 1564 blk_finish_plug(&plug); 1565 1566 return ret; 1567 } 1568 1569 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 1570 { 1571 struct btrfs_inode *inode = ctx->inode; 1572 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1573 1574 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) && 1575 list_empty(&ctx->ordered_extents)) 1576 return true; 1577 1578 /* 1579 * If we are doing a fast fsync we can not bail out if the inode's 1580 * last_trans is <= then the last committed transaction, because we only 1581 * update the last_trans of the inode during ordered extent completion, 1582 * and for a fast fsync we don't wait for that, we only wait for the 1583 * writeback to complete. 1584 */ 1585 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) && 1586 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 1587 list_empty(&ctx->ordered_extents))) 1588 return true; 1589 1590 return false; 1591 } 1592 1593 /* 1594 * fsync call for both files and directories. This logs the inode into 1595 * the tree log instead of forcing full commits whenever possible. 1596 * 1597 * It needs to call filemap_fdatawait so that all ordered extent updates are 1598 * in the metadata btree are up to date for copying to the log. 1599 * 1600 * It drops the inode mutex before doing the tree log commit. This is an 1601 * important optimization for directories because holding the mutex prevents 1602 * new operations on the dir while we write to disk. 1603 */ 1604 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1605 { 1606 struct btrfs_file_private *private = file->private_data; 1607 struct dentry *dentry = file_dentry(file); 1608 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 1609 struct btrfs_root *root = inode->root; 1610 struct btrfs_fs_info *fs_info = root->fs_info; 1611 struct btrfs_trans_handle *trans; 1612 struct btrfs_log_ctx ctx; 1613 int ret = 0, err; 1614 u64 len; 1615 bool full_sync; 1616 const bool skip_ilock = (private ? private->fsync_skip_inode_lock : false); 1617 1618 trace_btrfs_sync_file(file, datasync); 1619 1620 btrfs_init_log_ctx(&ctx, inode); 1621 1622 /* 1623 * Always set the range to a full range, otherwise we can get into 1624 * several problems, from missing file extent items to represent holes 1625 * when not using the NO_HOLES feature, to log tree corruption due to 1626 * races between hole detection during logging and completion of ordered 1627 * extents outside the range, to missing checksums due to ordered extents 1628 * for which we flushed only a subset of their pages. 1629 */ 1630 start = 0; 1631 end = LLONG_MAX; 1632 len = (u64)LLONG_MAX + 1; 1633 1634 /* 1635 * We write the dirty pages in the range and wait until they complete 1636 * out of the ->i_mutex. If so, we can flush the dirty pages by 1637 * multi-task, and make the performance up. See 1638 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1639 */ 1640 ret = start_ordered_ops(inode, start, end); 1641 if (ret) 1642 goto out; 1643 1644 if (skip_ilock) 1645 down_write(&inode->i_mmap_lock); 1646 else 1647 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 1648 1649 atomic_inc(&root->log_batch); 1650 1651 /* 1652 * Before we acquired the inode's lock and the mmap lock, someone may 1653 * have dirtied more pages in the target range. We need to make sure 1654 * that writeback for any such pages does not start while we are logging 1655 * the inode, because if it does, any of the following might happen when 1656 * we are not doing a full inode sync: 1657 * 1658 * 1) We log an extent after its writeback finishes but before its 1659 * checksums are added to the csum tree, leading to -EIO errors 1660 * when attempting to read the extent after a log replay. 1661 * 1662 * 2) We can end up logging an extent before its writeback finishes. 1663 * Therefore after the log replay we will have a file extent item 1664 * pointing to an unwritten extent (and no data checksums as well). 1665 * 1666 * So trigger writeback for any eventual new dirty pages and then we 1667 * wait for all ordered extents to complete below. 1668 */ 1669 ret = start_ordered_ops(inode, start, end); 1670 if (ret) { 1671 if (skip_ilock) 1672 up_write(&inode->i_mmap_lock); 1673 else 1674 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 1675 goto out; 1676 } 1677 1678 /* 1679 * Always check for the full sync flag while holding the inode's lock, 1680 * to avoid races with other tasks. The flag must be either set all the 1681 * time during logging or always off all the time while logging. 1682 * We check the flag here after starting delalloc above, because when 1683 * running delalloc the full sync flag may be set if we need to drop 1684 * extra extent map ranges due to temporary memory allocation failures. 1685 */ 1686 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 1687 1688 /* 1689 * We have to do this here to avoid the priority inversion of waiting on 1690 * IO of a lower priority task while holding a transaction open. 1691 * 1692 * For a full fsync we wait for the ordered extents to complete while 1693 * for a fast fsync we wait just for writeback to complete, and then 1694 * attach the ordered extents to the transaction so that a transaction 1695 * commit waits for their completion, to avoid data loss if we fsync, 1696 * the current transaction commits before the ordered extents complete 1697 * and a power failure happens right after that. 1698 * 1699 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 1700 * logical address recorded in the ordered extent may change. We need 1701 * to wait for the IO to stabilize the logical address. 1702 */ 1703 if (full_sync || btrfs_is_zoned(fs_info)) { 1704 ret = btrfs_wait_ordered_range(inode, start, len); 1705 clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags); 1706 } else { 1707 /* 1708 * Get our ordered extents as soon as possible to avoid doing 1709 * checksum lookups in the csum tree, and use instead the 1710 * checksums attached to the ordered extents. 1711 */ 1712 btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents); 1713 ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end); 1714 if (ret) 1715 goto out_release_extents; 1716 1717 /* 1718 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after 1719 * starting and waiting for writeback, because for buffered IO 1720 * it may have been set during the end IO callback 1721 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in 1722 * case an error happened and we need to wait for ordered 1723 * extents to complete so that any extent maps that point to 1724 * unwritten locations are dropped and we don't log them. 1725 */ 1726 if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags)) 1727 ret = btrfs_wait_ordered_range(inode, start, len); 1728 } 1729 1730 if (ret) 1731 goto out_release_extents; 1732 1733 atomic_inc(&root->log_batch); 1734 1735 if (skip_inode_logging(&ctx)) { 1736 /* 1737 * We've had everything committed since the last time we were 1738 * modified so clear this flag in case it was set for whatever 1739 * reason, it's no longer relevant. 1740 */ 1741 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 1742 /* 1743 * An ordered extent might have started before and completed 1744 * already with io errors, in which case the inode was not 1745 * updated and we end up here. So check the inode's mapping 1746 * for any errors that might have happened since we last 1747 * checked called fsync. 1748 */ 1749 ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err); 1750 goto out_release_extents; 1751 } 1752 1753 btrfs_init_log_ctx_scratch_eb(&ctx); 1754 1755 /* 1756 * We use start here because we will need to wait on the IO to complete 1757 * in btrfs_sync_log, which could require joining a transaction (for 1758 * example checking cross references in the nocow path). If we use join 1759 * here we could get into a situation where we're waiting on IO to 1760 * happen that is blocked on a transaction trying to commit. With start 1761 * we inc the extwriter counter, so we wait for all extwriters to exit 1762 * before we start blocking joiners. This comment is to keep somebody 1763 * from thinking they are super smart and changing this to 1764 * btrfs_join_transaction *cough*Josef*cough*. 1765 */ 1766 trans = btrfs_start_transaction(root, 0); 1767 if (IS_ERR(trans)) { 1768 ret = PTR_ERR(trans); 1769 goto out_release_extents; 1770 } 1771 trans->in_fsync = true; 1772 1773 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 1774 /* 1775 * Scratch eb no longer needed, release before syncing log or commit 1776 * transaction, to avoid holding unnecessary memory during such long 1777 * operations. 1778 */ 1779 if (ctx.scratch_eb) { 1780 free_extent_buffer(ctx.scratch_eb); 1781 ctx.scratch_eb = NULL; 1782 } 1783 btrfs_release_log_ctx_extents(&ctx); 1784 if (ret < 0) { 1785 /* Fallthrough and commit/free transaction. */ 1786 ret = BTRFS_LOG_FORCE_COMMIT; 1787 } 1788 1789 /* we've logged all the items and now have a consistent 1790 * version of the file in the log. It is possible that 1791 * someone will come in and modify the file, but that's 1792 * fine because the log is consistent on disk, and we 1793 * have references to all of the file's extents 1794 * 1795 * It is possible that someone will come in and log the 1796 * file again, but that will end up using the synchronization 1797 * inside btrfs_sync_log to keep things safe. 1798 */ 1799 if (skip_ilock) 1800 up_write(&inode->i_mmap_lock); 1801 else 1802 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 1803 1804 if (ret == BTRFS_NO_LOG_SYNC) { 1805 ret = btrfs_end_transaction(trans); 1806 goto out; 1807 } 1808 1809 /* We successfully logged the inode, attempt to sync the log. */ 1810 if (!ret) { 1811 ret = btrfs_sync_log(trans, root, &ctx); 1812 if (!ret) { 1813 ret = btrfs_end_transaction(trans); 1814 goto out; 1815 } 1816 } 1817 1818 /* 1819 * At this point we need to commit the transaction because we had 1820 * btrfs_need_log_full_commit() or some other error. 1821 * 1822 * If we didn't do a full sync we have to stop the trans handle, wait on 1823 * the ordered extents, start it again and commit the transaction. If 1824 * we attempt to wait on the ordered extents here we could deadlock with 1825 * something like fallocate() that is holding the extent lock trying to 1826 * start a transaction while some other thread is trying to commit the 1827 * transaction while we (fsync) are currently holding the transaction 1828 * open. 1829 */ 1830 if (!full_sync) { 1831 ret = btrfs_end_transaction(trans); 1832 if (ret) 1833 goto out; 1834 ret = btrfs_wait_ordered_range(inode, start, len); 1835 if (ret) 1836 goto out; 1837 1838 /* 1839 * This is safe to use here because we're only interested in 1840 * making sure the transaction that had the ordered extents is 1841 * committed. We aren't waiting on anything past this point, 1842 * we're purely getting the transaction and committing it. 1843 */ 1844 trans = btrfs_attach_transaction_barrier(root); 1845 if (IS_ERR(trans)) { 1846 ret = PTR_ERR(trans); 1847 1848 /* 1849 * We committed the transaction and there's no currently 1850 * running transaction, this means everything we care 1851 * about made it to disk and we are done. 1852 */ 1853 if (ret == -ENOENT) 1854 ret = 0; 1855 goto out; 1856 } 1857 } 1858 1859 ret = btrfs_commit_transaction(trans); 1860 out: 1861 free_extent_buffer(ctx.scratch_eb); 1862 ASSERT(list_empty(&ctx.list)); 1863 ASSERT(list_empty(&ctx.conflict_inodes)); 1864 err = file_check_and_advance_wb_err(file); 1865 if (!ret) 1866 ret = err; 1867 return ret > 0 ? -EIO : ret; 1868 1869 out_release_extents: 1870 btrfs_release_log_ctx_extents(&ctx); 1871 if (skip_ilock) 1872 up_write(&inode->i_mmap_lock); 1873 else 1874 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 1875 goto out; 1876 } 1877 1878 /* 1879 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 1880 * called from a page fault handler when a page is first dirtied. Hence we must 1881 * be careful to check for EOF conditions here. We set the page up correctly 1882 * for a written page which means we get ENOSPC checking when writing into 1883 * holes and correct delalloc and unwritten extent mapping on filesystems that 1884 * support these features. 1885 * 1886 * We are not allowed to take the i_mutex here so we have to play games to 1887 * protect against truncate races as the page could now be beyond EOF. Because 1888 * truncate_setsize() writes the inode size before removing pages, once we have 1889 * the page lock we can determine safely if the page is beyond EOF. If it is not 1890 * beyond EOF, then the page is guaranteed safe against truncation until we 1891 * unlock the page. 1892 */ 1893 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 1894 { 1895 struct page *page = vmf->page; 1896 struct folio *folio = page_folio(page); 1897 struct inode *inode = file_inode(vmf->vma->vm_file); 1898 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1899 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1900 struct btrfs_ordered_extent *ordered; 1901 struct extent_state *cached_state = NULL; 1902 struct extent_changeset *data_reserved = NULL; 1903 unsigned long zero_start; 1904 loff_t size; 1905 vm_fault_t ret; 1906 int ret2; 1907 int reserved = 0; 1908 u64 reserved_space; 1909 u64 page_start; 1910 u64 page_end; 1911 u64 end; 1912 1913 ASSERT(folio_order(folio) == 0); 1914 1915 reserved_space = PAGE_SIZE; 1916 1917 sb_start_pagefault(inode->i_sb); 1918 page_start = page_offset(page); 1919 page_end = page_start + PAGE_SIZE - 1; 1920 end = page_end; 1921 1922 /* 1923 * Reserving delalloc space after obtaining the page lock can lead to 1924 * deadlock. For example, if a dirty page is locked by this function 1925 * and the call to btrfs_delalloc_reserve_space() ends up triggering 1926 * dirty page write out, then the btrfs_writepages() function could 1927 * end up waiting indefinitely to get a lock on the page currently 1928 * being processed by btrfs_page_mkwrite() function. 1929 */ 1930 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 1931 page_start, reserved_space); 1932 if (!ret2) { 1933 ret2 = file_update_time(vmf->vma->vm_file); 1934 reserved = 1; 1935 } 1936 if (ret2) { 1937 ret = vmf_error(ret2); 1938 if (reserved) 1939 goto out; 1940 goto out_noreserve; 1941 } 1942 1943 /* Make the VM retry the fault. */ 1944 ret = VM_FAULT_NOPAGE; 1945 again: 1946 down_read(&BTRFS_I(inode)->i_mmap_lock); 1947 lock_page(page); 1948 size = i_size_read(inode); 1949 1950 if ((page->mapping != inode->i_mapping) || 1951 (page_start >= size)) { 1952 /* Page got truncated out from underneath us. */ 1953 goto out_unlock; 1954 } 1955 wait_on_page_writeback(page); 1956 1957 lock_extent(io_tree, page_start, page_end, &cached_state); 1958 ret2 = set_page_extent_mapped(page); 1959 if (ret2 < 0) { 1960 ret = vmf_error(ret2); 1961 unlock_extent(io_tree, page_start, page_end, &cached_state); 1962 goto out_unlock; 1963 } 1964 1965 /* 1966 * We can't set the delalloc bits if there are pending ordered 1967 * extents. Drop our locks and wait for them to finish. 1968 */ 1969 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE); 1970 if (ordered) { 1971 unlock_extent(io_tree, page_start, page_end, &cached_state); 1972 unlock_page(page); 1973 up_read(&BTRFS_I(inode)->i_mmap_lock); 1974 btrfs_start_ordered_extent(ordered); 1975 btrfs_put_ordered_extent(ordered); 1976 goto again; 1977 } 1978 1979 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 1980 reserved_space = round_up(size - page_start, fs_info->sectorsize); 1981 if (reserved_space < PAGE_SIZE) { 1982 end = page_start + reserved_space - 1; 1983 btrfs_delalloc_release_space(BTRFS_I(inode), 1984 data_reserved, page_start, 1985 PAGE_SIZE - reserved_space, true); 1986 } 1987 } 1988 1989 /* 1990 * page_mkwrite gets called when the page is firstly dirtied after it's 1991 * faulted in, but write(2) could also dirty a page and set delalloc 1992 * bits, thus in this case for space account reason, we still need to 1993 * clear any delalloc bits within this page range since we have to 1994 * reserve data&meta space before lock_page() (see above comments). 1995 */ 1996 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 1997 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1998 EXTENT_DEFRAG, &cached_state); 1999 2000 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 2001 &cached_state); 2002 if (ret2) { 2003 unlock_extent(io_tree, page_start, page_end, &cached_state); 2004 ret = VM_FAULT_SIGBUS; 2005 goto out_unlock; 2006 } 2007 2008 /* Page is wholly or partially inside EOF. */ 2009 if (page_start + PAGE_SIZE > size) 2010 zero_start = offset_in_page(size); 2011 else 2012 zero_start = PAGE_SIZE; 2013 2014 if (zero_start != PAGE_SIZE) 2015 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 2016 2017 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2018 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start); 2019 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start); 2020 2021 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 2022 2023 unlock_extent(io_tree, page_start, page_end, &cached_state); 2024 up_read(&BTRFS_I(inode)->i_mmap_lock); 2025 2026 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2027 sb_end_pagefault(inode->i_sb); 2028 extent_changeset_free(data_reserved); 2029 return VM_FAULT_LOCKED; 2030 2031 out_unlock: 2032 unlock_page(page); 2033 up_read(&BTRFS_I(inode)->i_mmap_lock); 2034 out: 2035 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2036 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 2037 reserved_space, (ret != 0)); 2038 out_noreserve: 2039 sb_end_pagefault(inode->i_sb); 2040 extent_changeset_free(data_reserved); 2041 return ret; 2042 } 2043 2044 static const struct vm_operations_struct btrfs_file_vm_ops = { 2045 .fault = filemap_fault, 2046 .map_pages = filemap_map_pages, 2047 .page_mkwrite = btrfs_page_mkwrite, 2048 }; 2049 2050 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2051 { 2052 struct address_space *mapping = filp->f_mapping; 2053 2054 if (!mapping->a_ops->read_folio) 2055 return -ENOEXEC; 2056 2057 file_accessed(filp); 2058 vma->vm_ops = &btrfs_file_vm_ops; 2059 2060 return 0; 2061 } 2062 2063 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2064 int slot, u64 start, u64 end) 2065 { 2066 struct btrfs_file_extent_item *fi; 2067 struct btrfs_key key; 2068 2069 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2070 return 0; 2071 2072 btrfs_item_key_to_cpu(leaf, &key, slot); 2073 if (key.objectid != btrfs_ino(inode) || 2074 key.type != BTRFS_EXTENT_DATA_KEY) 2075 return 0; 2076 2077 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2078 2079 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2080 return 0; 2081 2082 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2083 return 0; 2084 2085 if (key.offset == end) 2086 return 1; 2087 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2088 return 1; 2089 return 0; 2090 } 2091 2092 static int fill_holes(struct btrfs_trans_handle *trans, 2093 struct btrfs_inode *inode, 2094 struct btrfs_path *path, u64 offset, u64 end) 2095 { 2096 struct btrfs_fs_info *fs_info = trans->fs_info; 2097 struct btrfs_root *root = inode->root; 2098 struct extent_buffer *leaf; 2099 struct btrfs_file_extent_item *fi; 2100 struct extent_map *hole_em; 2101 struct btrfs_key key; 2102 int ret; 2103 2104 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2105 goto out; 2106 2107 key.objectid = btrfs_ino(inode); 2108 key.type = BTRFS_EXTENT_DATA_KEY; 2109 key.offset = offset; 2110 2111 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2112 if (ret <= 0) { 2113 /* 2114 * We should have dropped this offset, so if we find it then 2115 * something has gone horribly wrong. 2116 */ 2117 if (ret == 0) 2118 ret = -EINVAL; 2119 return ret; 2120 } 2121 2122 leaf = path->nodes[0]; 2123 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2124 u64 num_bytes; 2125 2126 path->slots[0]--; 2127 fi = btrfs_item_ptr(leaf, path->slots[0], 2128 struct btrfs_file_extent_item); 2129 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2130 end - offset; 2131 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2132 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2133 btrfs_set_file_extent_offset(leaf, fi, 0); 2134 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2135 btrfs_mark_buffer_dirty(trans, leaf); 2136 goto out; 2137 } 2138 2139 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2140 u64 num_bytes; 2141 2142 key.offset = offset; 2143 btrfs_set_item_key_safe(trans, path, &key); 2144 fi = btrfs_item_ptr(leaf, path->slots[0], 2145 struct btrfs_file_extent_item); 2146 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2147 offset; 2148 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2149 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2150 btrfs_set_file_extent_offset(leaf, fi, 0); 2151 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2152 btrfs_mark_buffer_dirty(trans, leaf); 2153 goto out; 2154 } 2155 btrfs_release_path(path); 2156 2157 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, 2158 end - offset); 2159 if (ret) 2160 return ret; 2161 2162 out: 2163 btrfs_release_path(path); 2164 2165 hole_em = alloc_extent_map(); 2166 if (!hole_em) { 2167 btrfs_drop_extent_map_range(inode, offset, end - 1, false); 2168 btrfs_set_inode_full_sync(inode); 2169 } else { 2170 hole_em->start = offset; 2171 hole_em->len = end - offset; 2172 hole_em->ram_bytes = hole_em->len; 2173 2174 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 2175 hole_em->disk_num_bytes = 0; 2176 hole_em->generation = trans->transid; 2177 2178 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 2179 free_extent_map(hole_em); 2180 if (ret) 2181 btrfs_set_inode_full_sync(inode); 2182 } 2183 2184 return 0; 2185 } 2186 2187 /* 2188 * Find a hole extent on given inode and change start/len to the end of hole 2189 * extent.(hole/vacuum extent whose em->start <= start && 2190 * em->start + em->len > start) 2191 * When a hole extent is found, return 1 and modify start/len. 2192 */ 2193 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2194 { 2195 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2196 struct extent_map *em; 2197 int ret = 0; 2198 2199 em = btrfs_get_extent(inode, NULL, 2200 round_down(*start, fs_info->sectorsize), 2201 round_up(*len, fs_info->sectorsize)); 2202 if (IS_ERR(em)) 2203 return PTR_ERR(em); 2204 2205 /* Hole or vacuum extent(only exists in no-hole mode) */ 2206 if (em->disk_bytenr == EXTENT_MAP_HOLE) { 2207 ret = 1; 2208 *len = em->start + em->len > *start + *len ? 2209 0 : *start + *len - em->start - em->len; 2210 *start = em->start + em->len; 2211 } 2212 free_extent_map(em); 2213 return ret; 2214 } 2215 2216 static void btrfs_punch_hole_lock_range(struct inode *inode, 2217 const u64 lockstart, 2218 const u64 lockend, 2219 struct extent_state **cached_state) 2220 { 2221 /* 2222 * For subpage case, if the range is not at page boundary, we could 2223 * have pages at the leading/tailing part of the range. 2224 * This could lead to dead loop since filemap_range_has_page() 2225 * will always return true. 2226 * So here we need to do extra page alignment for 2227 * filemap_range_has_page(). 2228 */ 2229 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2230 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2231 2232 while (1) { 2233 truncate_pagecache_range(inode, lockstart, lockend); 2234 2235 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2236 cached_state); 2237 /* 2238 * We can't have ordered extents in the range, nor dirty/writeback 2239 * pages, because we have locked the inode's VFS lock in exclusive 2240 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2241 * we have flushed all delalloc in the range and we have waited 2242 * for any ordered extents in the range to complete. 2243 * We can race with anyone reading pages from this range, so after 2244 * locking the range check if we have pages in the range, and if 2245 * we do, unlock the range and retry. 2246 */ 2247 if (!filemap_range_has_page(inode->i_mapping, page_lockstart, 2248 page_lockend)) 2249 break; 2250 2251 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2252 cached_state); 2253 } 2254 2255 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2256 } 2257 2258 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2259 struct btrfs_inode *inode, 2260 struct btrfs_path *path, 2261 struct btrfs_replace_extent_info *extent_info, 2262 const u64 replace_len, 2263 const u64 bytes_to_drop) 2264 { 2265 struct btrfs_fs_info *fs_info = trans->fs_info; 2266 struct btrfs_root *root = inode->root; 2267 struct btrfs_file_extent_item *extent; 2268 struct extent_buffer *leaf; 2269 struct btrfs_key key; 2270 int slot; 2271 int ret; 2272 2273 if (replace_len == 0) 2274 return 0; 2275 2276 if (extent_info->disk_offset == 0 && 2277 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2278 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2279 return 0; 2280 } 2281 2282 key.objectid = btrfs_ino(inode); 2283 key.type = BTRFS_EXTENT_DATA_KEY; 2284 key.offset = extent_info->file_offset; 2285 ret = btrfs_insert_empty_item(trans, root, path, &key, 2286 sizeof(struct btrfs_file_extent_item)); 2287 if (ret) 2288 return ret; 2289 leaf = path->nodes[0]; 2290 slot = path->slots[0]; 2291 write_extent_buffer(leaf, extent_info->extent_buf, 2292 btrfs_item_ptr_offset(leaf, slot), 2293 sizeof(struct btrfs_file_extent_item)); 2294 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2295 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2296 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2297 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2298 if (extent_info->is_new_extent) 2299 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2300 btrfs_mark_buffer_dirty(trans, leaf); 2301 btrfs_release_path(path); 2302 2303 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2304 replace_len); 2305 if (ret) 2306 return ret; 2307 2308 /* If it's a hole, nothing more needs to be done. */ 2309 if (extent_info->disk_offset == 0) { 2310 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2311 return 0; 2312 } 2313 2314 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2315 2316 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2317 key.objectid = extent_info->disk_offset; 2318 key.type = BTRFS_EXTENT_ITEM_KEY; 2319 key.offset = extent_info->disk_len; 2320 ret = btrfs_alloc_reserved_file_extent(trans, root, 2321 btrfs_ino(inode), 2322 extent_info->file_offset, 2323 extent_info->qgroup_reserved, 2324 &key); 2325 } else { 2326 struct btrfs_ref ref = { 2327 .action = BTRFS_ADD_DELAYED_REF, 2328 .bytenr = extent_info->disk_offset, 2329 .num_bytes = extent_info->disk_len, 2330 .owning_root = btrfs_root_id(root), 2331 .ref_root = btrfs_root_id(root), 2332 }; 2333 u64 ref_offset; 2334 2335 ref_offset = extent_info->file_offset - extent_info->data_offset; 2336 btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false); 2337 ret = btrfs_inc_extent_ref(trans, &ref); 2338 } 2339 2340 extent_info->insertions++; 2341 2342 return ret; 2343 } 2344 2345 /* 2346 * The respective range must have been previously locked, as well as the inode. 2347 * The end offset is inclusive (last byte of the range). 2348 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2349 * the file range with an extent. 2350 * When not punching a hole, we don't want to end up in a state where we dropped 2351 * extents without inserting a new one, so we must abort the transaction to avoid 2352 * a corruption. 2353 */ 2354 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2355 struct btrfs_path *path, const u64 start, 2356 const u64 end, 2357 struct btrfs_replace_extent_info *extent_info, 2358 struct btrfs_trans_handle **trans_out) 2359 { 2360 struct btrfs_drop_extents_args drop_args = { 0 }; 2361 struct btrfs_root *root = inode->root; 2362 struct btrfs_fs_info *fs_info = root->fs_info; 2363 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2364 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2365 struct btrfs_trans_handle *trans = NULL; 2366 struct btrfs_block_rsv *rsv; 2367 unsigned int rsv_count; 2368 u64 cur_offset; 2369 u64 len = end - start; 2370 int ret = 0; 2371 2372 if (end <= start) 2373 return -EINVAL; 2374 2375 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2376 if (!rsv) { 2377 ret = -ENOMEM; 2378 goto out; 2379 } 2380 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2381 rsv->failfast = true; 2382 2383 /* 2384 * 1 - update the inode 2385 * 1 - removing the extents in the range 2386 * 1 - adding the hole extent if no_holes isn't set or if we are 2387 * replacing the range with a new extent 2388 */ 2389 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2390 rsv_count = 3; 2391 else 2392 rsv_count = 2; 2393 2394 trans = btrfs_start_transaction(root, rsv_count); 2395 if (IS_ERR(trans)) { 2396 ret = PTR_ERR(trans); 2397 trans = NULL; 2398 goto out_free; 2399 } 2400 2401 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2402 min_size, false); 2403 if (WARN_ON(ret)) 2404 goto out_trans; 2405 trans->block_rsv = rsv; 2406 2407 cur_offset = start; 2408 drop_args.path = path; 2409 drop_args.end = end + 1; 2410 drop_args.drop_cache = true; 2411 while (cur_offset < end) { 2412 drop_args.start = cur_offset; 2413 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2414 /* If we are punching a hole decrement the inode's byte count */ 2415 if (!extent_info) 2416 btrfs_update_inode_bytes(inode, 0, 2417 drop_args.bytes_found); 2418 if (ret != -ENOSPC) { 2419 /* 2420 * The only time we don't want to abort is if we are 2421 * attempting to clone a partial inline extent, in which 2422 * case we'll get EOPNOTSUPP. However if we aren't 2423 * clone we need to abort no matter what, because if we 2424 * got EOPNOTSUPP via prealloc then we messed up and 2425 * need to abort. 2426 */ 2427 if (ret && 2428 (ret != -EOPNOTSUPP || 2429 (extent_info && extent_info->is_new_extent))) 2430 btrfs_abort_transaction(trans, ret); 2431 break; 2432 } 2433 2434 trans->block_rsv = &fs_info->trans_block_rsv; 2435 2436 if (!extent_info && cur_offset < drop_args.drop_end && 2437 cur_offset < ino_size) { 2438 ret = fill_holes(trans, inode, path, cur_offset, 2439 drop_args.drop_end); 2440 if (ret) { 2441 /* 2442 * If we failed then we didn't insert our hole 2443 * entries for the area we dropped, so now the 2444 * fs is corrupted, so we must abort the 2445 * transaction. 2446 */ 2447 btrfs_abort_transaction(trans, ret); 2448 break; 2449 } 2450 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2451 /* 2452 * We are past the i_size here, but since we didn't 2453 * insert holes we need to clear the mapped area so we 2454 * know to not set disk_i_size in this area until a new 2455 * file extent is inserted here. 2456 */ 2457 ret = btrfs_inode_clear_file_extent_range(inode, 2458 cur_offset, 2459 drop_args.drop_end - cur_offset); 2460 if (ret) { 2461 /* 2462 * We couldn't clear our area, so we could 2463 * presumably adjust up and corrupt the fs, so 2464 * we need to abort. 2465 */ 2466 btrfs_abort_transaction(trans, ret); 2467 break; 2468 } 2469 } 2470 2471 if (extent_info && 2472 drop_args.drop_end > extent_info->file_offset) { 2473 u64 replace_len = drop_args.drop_end - 2474 extent_info->file_offset; 2475 2476 ret = btrfs_insert_replace_extent(trans, inode, path, 2477 extent_info, replace_len, 2478 drop_args.bytes_found); 2479 if (ret) { 2480 btrfs_abort_transaction(trans, ret); 2481 break; 2482 } 2483 extent_info->data_len -= replace_len; 2484 extent_info->data_offset += replace_len; 2485 extent_info->file_offset += replace_len; 2486 } 2487 2488 /* 2489 * We are releasing our handle on the transaction, balance the 2490 * dirty pages of the btree inode and flush delayed items, and 2491 * then get a new transaction handle, which may now point to a 2492 * new transaction in case someone else may have committed the 2493 * transaction we used to replace/drop file extent items. So 2494 * bump the inode's iversion and update mtime and ctime except 2495 * if we are called from a dedupe context. This is because a 2496 * power failure/crash may happen after the transaction is 2497 * committed and before we finish replacing/dropping all the 2498 * file extent items we need. 2499 */ 2500 inode_inc_iversion(&inode->vfs_inode); 2501 2502 if (!extent_info || extent_info->update_times) 2503 inode_set_mtime_to_ts(&inode->vfs_inode, 2504 inode_set_ctime_current(&inode->vfs_inode)); 2505 2506 ret = btrfs_update_inode(trans, inode); 2507 if (ret) 2508 break; 2509 2510 btrfs_end_transaction(trans); 2511 btrfs_btree_balance_dirty(fs_info); 2512 2513 trans = btrfs_start_transaction(root, rsv_count); 2514 if (IS_ERR(trans)) { 2515 ret = PTR_ERR(trans); 2516 trans = NULL; 2517 break; 2518 } 2519 2520 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2521 rsv, min_size, false); 2522 if (WARN_ON(ret)) 2523 break; 2524 trans->block_rsv = rsv; 2525 2526 cur_offset = drop_args.drop_end; 2527 len = end - cur_offset; 2528 if (!extent_info && len) { 2529 ret = find_first_non_hole(inode, &cur_offset, &len); 2530 if (unlikely(ret < 0)) 2531 break; 2532 if (ret && !len) { 2533 ret = 0; 2534 break; 2535 } 2536 } 2537 } 2538 2539 /* 2540 * If we were cloning, force the next fsync to be a full one since we 2541 * we replaced (or just dropped in the case of cloning holes when 2542 * NO_HOLES is enabled) file extent items and did not setup new extent 2543 * maps for the replacement extents (or holes). 2544 */ 2545 if (extent_info && !extent_info->is_new_extent) 2546 btrfs_set_inode_full_sync(inode); 2547 2548 if (ret) 2549 goto out_trans; 2550 2551 trans->block_rsv = &fs_info->trans_block_rsv; 2552 /* 2553 * If we are using the NO_HOLES feature we might have had already an 2554 * hole that overlaps a part of the region [lockstart, lockend] and 2555 * ends at (or beyond) lockend. Since we have no file extent items to 2556 * represent holes, drop_end can be less than lockend and so we must 2557 * make sure we have an extent map representing the existing hole (the 2558 * call to __btrfs_drop_extents() might have dropped the existing extent 2559 * map representing the existing hole), otherwise the fast fsync path 2560 * will not record the existence of the hole region 2561 * [existing_hole_start, lockend]. 2562 */ 2563 if (drop_args.drop_end <= end) 2564 drop_args.drop_end = end + 1; 2565 /* 2566 * Don't insert file hole extent item if it's for a range beyond eof 2567 * (because it's useless) or if it represents a 0 bytes range (when 2568 * cur_offset == drop_end). 2569 */ 2570 if (!extent_info && cur_offset < ino_size && 2571 cur_offset < drop_args.drop_end) { 2572 ret = fill_holes(trans, inode, path, cur_offset, 2573 drop_args.drop_end); 2574 if (ret) { 2575 /* Same comment as above. */ 2576 btrfs_abort_transaction(trans, ret); 2577 goto out_trans; 2578 } 2579 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2580 /* See the comment in the loop above for the reasoning here. */ 2581 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2582 drop_args.drop_end - cur_offset); 2583 if (ret) { 2584 btrfs_abort_transaction(trans, ret); 2585 goto out_trans; 2586 } 2587 2588 } 2589 if (extent_info) { 2590 ret = btrfs_insert_replace_extent(trans, inode, path, 2591 extent_info, extent_info->data_len, 2592 drop_args.bytes_found); 2593 if (ret) { 2594 btrfs_abort_transaction(trans, ret); 2595 goto out_trans; 2596 } 2597 } 2598 2599 out_trans: 2600 if (!trans) 2601 goto out_free; 2602 2603 trans->block_rsv = &fs_info->trans_block_rsv; 2604 if (ret) 2605 btrfs_end_transaction(trans); 2606 else 2607 *trans_out = trans; 2608 out_free: 2609 btrfs_free_block_rsv(fs_info, rsv); 2610 out: 2611 return ret; 2612 } 2613 2614 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2615 { 2616 struct inode *inode = file_inode(file); 2617 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2618 struct btrfs_root *root = BTRFS_I(inode)->root; 2619 struct extent_state *cached_state = NULL; 2620 struct btrfs_path *path; 2621 struct btrfs_trans_handle *trans = NULL; 2622 u64 lockstart; 2623 u64 lockend; 2624 u64 tail_start; 2625 u64 tail_len; 2626 u64 orig_start = offset; 2627 int ret = 0; 2628 bool same_block; 2629 u64 ino_size; 2630 bool truncated_block = false; 2631 bool updated_inode = false; 2632 2633 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2634 2635 ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len); 2636 if (ret) 2637 goto out_only_mutex; 2638 2639 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2640 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2641 if (ret < 0) 2642 goto out_only_mutex; 2643 if (ret && !len) { 2644 /* Already in a large hole */ 2645 ret = 0; 2646 goto out_only_mutex; 2647 } 2648 2649 ret = file_modified(file); 2650 if (ret) 2651 goto out_only_mutex; 2652 2653 lockstart = round_up(offset, fs_info->sectorsize); 2654 lockend = round_down(offset + len, fs_info->sectorsize) - 1; 2655 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2656 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2657 /* 2658 * We needn't truncate any block which is beyond the end of the file 2659 * because we are sure there is no data there. 2660 */ 2661 /* 2662 * Only do this if we are in the same block and we aren't doing the 2663 * entire block. 2664 */ 2665 if (same_block && len < fs_info->sectorsize) { 2666 if (offset < ino_size) { 2667 truncated_block = true; 2668 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2669 0); 2670 } else { 2671 ret = 0; 2672 } 2673 goto out_only_mutex; 2674 } 2675 2676 /* zero back part of the first block */ 2677 if (offset < ino_size) { 2678 truncated_block = true; 2679 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2680 if (ret) { 2681 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2682 return ret; 2683 } 2684 } 2685 2686 /* Check the aligned pages after the first unaligned page, 2687 * if offset != orig_start, which means the first unaligned page 2688 * including several following pages are already in holes, 2689 * the extra check can be skipped */ 2690 if (offset == orig_start) { 2691 /* after truncate page, check hole again */ 2692 len = offset + len - lockstart; 2693 offset = lockstart; 2694 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2695 if (ret < 0) 2696 goto out_only_mutex; 2697 if (ret && !len) { 2698 ret = 0; 2699 goto out_only_mutex; 2700 } 2701 lockstart = offset; 2702 } 2703 2704 /* Check the tail unaligned part is in a hole */ 2705 tail_start = lockend + 1; 2706 tail_len = offset + len - tail_start; 2707 if (tail_len) { 2708 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2709 if (unlikely(ret < 0)) 2710 goto out_only_mutex; 2711 if (!ret) { 2712 /* zero the front end of the last page */ 2713 if (tail_start + tail_len < ino_size) { 2714 truncated_block = true; 2715 ret = btrfs_truncate_block(BTRFS_I(inode), 2716 tail_start + tail_len, 2717 0, 1); 2718 if (ret) 2719 goto out_only_mutex; 2720 } 2721 } 2722 } 2723 2724 if (lockend < lockstart) { 2725 ret = 0; 2726 goto out_only_mutex; 2727 } 2728 2729 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 2730 2731 path = btrfs_alloc_path(); 2732 if (!path) { 2733 ret = -ENOMEM; 2734 goto out; 2735 } 2736 2737 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 2738 lockend, NULL, &trans); 2739 btrfs_free_path(path); 2740 if (ret) 2741 goto out; 2742 2743 ASSERT(trans != NULL); 2744 inode_inc_iversion(inode); 2745 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2746 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2747 updated_inode = true; 2748 btrfs_end_transaction(trans); 2749 btrfs_btree_balance_dirty(fs_info); 2750 out: 2751 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2752 &cached_state); 2753 out_only_mutex: 2754 if (!updated_inode && truncated_block && !ret) { 2755 /* 2756 * If we only end up zeroing part of a page, we still need to 2757 * update the inode item, so that all the time fields are 2758 * updated as well as the necessary btrfs inode in memory fields 2759 * for detecting, at fsync time, if the inode isn't yet in the 2760 * log tree or it's there but not up to date. 2761 */ 2762 struct timespec64 now = inode_set_ctime_current(inode); 2763 2764 inode_inc_iversion(inode); 2765 inode_set_mtime_to_ts(inode, now); 2766 trans = btrfs_start_transaction(root, 1); 2767 if (IS_ERR(trans)) { 2768 ret = PTR_ERR(trans); 2769 } else { 2770 int ret2; 2771 2772 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2773 ret2 = btrfs_end_transaction(trans); 2774 if (!ret) 2775 ret = ret2; 2776 } 2777 } 2778 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2779 return ret; 2780 } 2781 2782 /* Helper structure to record which range is already reserved */ 2783 struct falloc_range { 2784 struct list_head list; 2785 u64 start; 2786 u64 len; 2787 }; 2788 2789 /* 2790 * Helper function to add falloc range 2791 * 2792 * Caller should have locked the larger range of extent containing 2793 * [start, len) 2794 */ 2795 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2796 { 2797 struct falloc_range *range = NULL; 2798 2799 if (!list_empty(head)) { 2800 /* 2801 * As fallocate iterates by bytenr order, we only need to check 2802 * the last range. 2803 */ 2804 range = list_last_entry(head, struct falloc_range, list); 2805 if (range->start + range->len == start) { 2806 range->len += len; 2807 return 0; 2808 } 2809 } 2810 2811 range = kmalloc(sizeof(*range), GFP_KERNEL); 2812 if (!range) 2813 return -ENOMEM; 2814 range->start = start; 2815 range->len = len; 2816 list_add_tail(&range->list, head); 2817 return 0; 2818 } 2819 2820 static int btrfs_fallocate_update_isize(struct inode *inode, 2821 const u64 end, 2822 const int mode) 2823 { 2824 struct btrfs_trans_handle *trans; 2825 struct btrfs_root *root = BTRFS_I(inode)->root; 2826 int ret; 2827 int ret2; 2828 2829 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2830 return 0; 2831 2832 trans = btrfs_start_transaction(root, 1); 2833 if (IS_ERR(trans)) 2834 return PTR_ERR(trans); 2835 2836 inode_set_ctime_current(inode); 2837 i_size_write(inode, end); 2838 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 2839 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2840 ret2 = btrfs_end_transaction(trans); 2841 2842 return ret ? ret : ret2; 2843 } 2844 2845 enum { 2846 RANGE_BOUNDARY_WRITTEN_EXTENT, 2847 RANGE_BOUNDARY_PREALLOC_EXTENT, 2848 RANGE_BOUNDARY_HOLE, 2849 }; 2850 2851 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 2852 u64 offset) 2853 { 2854 const u64 sectorsize = inode->root->fs_info->sectorsize; 2855 struct extent_map *em; 2856 int ret; 2857 2858 offset = round_down(offset, sectorsize); 2859 em = btrfs_get_extent(inode, NULL, offset, sectorsize); 2860 if (IS_ERR(em)) 2861 return PTR_ERR(em); 2862 2863 if (em->disk_bytenr == EXTENT_MAP_HOLE) 2864 ret = RANGE_BOUNDARY_HOLE; 2865 else if (em->flags & EXTENT_FLAG_PREALLOC) 2866 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2867 else 2868 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2869 2870 free_extent_map(em); 2871 return ret; 2872 } 2873 2874 static int btrfs_zero_range(struct inode *inode, 2875 loff_t offset, 2876 loff_t len, 2877 const int mode) 2878 { 2879 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2880 struct extent_map *em; 2881 struct extent_changeset *data_reserved = NULL; 2882 int ret; 2883 u64 alloc_hint = 0; 2884 const u64 sectorsize = fs_info->sectorsize; 2885 u64 alloc_start = round_down(offset, sectorsize); 2886 u64 alloc_end = round_up(offset + len, sectorsize); 2887 u64 bytes_to_reserve = 0; 2888 bool space_reserved = false; 2889 2890 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, 2891 alloc_end - alloc_start); 2892 if (IS_ERR(em)) { 2893 ret = PTR_ERR(em); 2894 goto out; 2895 } 2896 2897 /* 2898 * Avoid hole punching and extent allocation for some cases. More cases 2899 * could be considered, but these are unlikely common and we keep things 2900 * as simple as possible for now. Also, intentionally, if the target 2901 * range contains one or more prealloc extents together with regular 2902 * extents and holes, we drop all the existing extents and allocate a 2903 * new prealloc extent, so that we get a larger contiguous disk extent. 2904 */ 2905 if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) { 2906 const u64 em_end = em->start + em->len; 2907 2908 if (em_end >= offset + len) { 2909 /* 2910 * The whole range is already a prealloc extent, 2911 * do nothing except updating the inode's i_size if 2912 * needed. 2913 */ 2914 free_extent_map(em); 2915 ret = btrfs_fallocate_update_isize(inode, offset + len, 2916 mode); 2917 goto out; 2918 } 2919 /* 2920 * Part of the range is already a prealloc extent, so operate 2921 * only on the remaining part of the range. 2922 */ 2923 alloc_start = em_end; 2924 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2925 len = offset + len - alloc_start; 2926 offset = alloc_start; 2927 alloc_hint = extent_map_block_start(em) + em->len; 2928 } 2929 free_extent_map(em); 2930 2931 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2932 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2933 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize); 2934 if (IS_ERR(em)) { 2935 ret = PTR_ERR(em); 2936 goto out; 2937 } 2938 2939 if (em->flags & EXTENT_FLAG_PREALLOC) { 2940 free_extent_map(em); 2941 ret = btrfs_fallocate_update_isize(inode, offset + len, 2942 mode); 2943 goto out; 2944 } 2945 if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) { 2946 free_extent_map(em); 2947 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2948 0); 2949 if (!ret) 2950 ret = btrfs_fallocate_update_isize(inode, 2951 offset + len, 2952 mode); 2953 return ret; 2954 } 2955 free_extent_map(em); 2956 alloc_start = round_down(offset, sectorsize); 2957 alloc_end = alloc_start + sectorsize; 2958 goto reserve_space; 2959 } 2960 2961 alloc_start = round_up(offset, sectorsize); 2962 alloc_end = round_down(offset + len, sectorsize); 2963 2964 /* 2965 * For unaligned ranges, check the pages at the boundaries, they might 2966 * map to an extent, in which case we need to partially zero them, or 2967 * they might map to a hole, in which case we need our allocation range 2968 * to cover them. 2969 */ 2970 if (!IS_ALIGNED(offset, sectorsize)) { 2971 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2972 offset); 2973 if (ret < 0) 2974 goto out; 2975 if (ret == RANGE_BOUNDARY_HOLE) { 2976 alloc_start = round_down(offset, sectorsize); 2977 ret = 0; 2978 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2979 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2980 if (ret) 2981 goto out; 2982 } else { 2983 ret = 0; 2984 } 2985 } 2986 2987 if (!IS_ALIGNED(offset + len, sectorsize)) { 2988 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2989 offset + len); 2990 if (ret < 0) 2991 goto out; 2992 if (ret == RANGE_BOUNDARY_HOLE) { 2993 alloc_end = round_up(offset + len, sectorsize); 2994 ret = 0; 2995 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2996 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 2997 0, 1); 2998 if (ret) 2999 goto out; 3000 } else { 3001 ret = 0; 3002 } 3003 } 3004 3005 reserve_space: 3006 if (alloc_start < alloc_end) { 3007 struct extent_state *cached_state = NULL; 3008 const u64 lockstart = alloc_start; 3009 const u64 lockend = alloc_end - 1; 3010 3011 bytes_to_reserve = alloc_end - alloc_start; 3012 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3013 bytes_to_reserve); 3014 if (ret < 0) 3015 goto out; 3016 space_reserved = true; 3017 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3018 &cached_state); 3019 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3020 alloc_start, bytes_to_reserve); 3021 if (ret) { 3022 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 3023 lockend, &cached_state); 3024 goto out; 3025 } 3026 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3027 alloc_end - alloc_start, 3028 fs_info->sectorsize, 3029 offset + len, &alloc_hint); 3030 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3031 &cached_state); 3032 /* btrfs_prealloc_file_range releases reserved space on error */ 3033 if (ret) { 3034 space_reserved = false; 3035 goto out; 3036 } 3037 } 3038 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3039 out: 3040 if (ret && space_reserved) 3041 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3042 alloc_start, bytes_to_reserve); 3043 extent_changeset_free(data_reserved); 3044 3045 return ret; 3046 } 3047 3048 static long btrfs_fallocate(struct file *file, int mode, 3049 loff_t offset, loff_t len) 3050 { 3051 struct inode *inode = file_inode(file); 3052 struct extent_state *cached_state = NULL; 3053 struct extent_changeset *data_reserved = NULL; 3054 struct falloc_range *range; 3055 struct falloc_range *tmp; 3056 LIST_HEAD(reserve_list); 3057 u64 cur_offset; 3058 u64 last_byte; 3059 u64 alloc_start; 3060 u64 alloc_end; 3061 u64 alloc_hint = 0; 3062 u64 locked_end; 3063 u64 actual_end = 0; 3064 u64 data_space_needed = 0; 3065 u64 data_space_reserved = 0; 3066 u64 qgroup_reserved = 0; 3067 struct extent_map *em; 3068 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; 3069 int ret; 3070 3071 /* Do not allow fallocate in ZONED mode */ 3072 if (btrfs_is_zoned(inode_to_fs_info(inode))) 3073 return -EOPNOTSUPP; 3074 3075 alloc_start = round_down(offset, blocksize); 3076 alloc_end = round_up(offset + len, blocksize); 3077 cur_offset = alloc_start; 3078 3079 /* Make sure we aren't being give some crap mode */ 3080 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3081 FALLOC_FL_ZERO_RANGE)) 3082 return -EOPNOTSUPP; 3083 3084 if (mode & FALLOC_FL_PUNCH_HOLE) 3085 return btrfs_punch_hole(file, offset, len); 3086 3087 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3088 3089 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3090 ret = inode_newsize_ok(inode, offset + len); 3091 if (ret) 3092 goto out; 3093 } 3094 3095 ret = file_modified(file); 3096 if (ret) 3097 goto out; 3098 3099 /* 3100 * TODO: Move these two operations after we have checked 3101 * accurate reserved space, or fallocate can still fail but 3102 * with page truncated or size expanded. 3103 * 3104 * But that's a minor problem and won't do much harm BTW. 3105 */ 3106 if (alloc_start > inode->i_size) { 3107 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3108 alloc_start); 3109 if (ret) 3110 goto out; 3111 } else if (offset + len > inode->i_size) { 3112 /* 3113 * If we are fallocating from the end of the file onward we 3114 * need to zero out the end of the block if i_size lands in the 3115 * middle of a block. 3116 */ 3117 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3118 if (ret) 3119 goto out; 3120 } 3121 3122 /* 3123 * We have locked the inode at the VFS level (in exclusive mode) and we 3124 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3125 * locking the file range, flush all dealloc in the range and wait for 3126 * all ordered extents in the range to complete. After this we can lock 3127 * the file range and, due to the previous locking we did, we know there 3128 * can't be more delalloc or ordered extents in the range. 3129 */ 3130 ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start, 3131 alloc_end - alloc_start); 3132 if (ret) 3133 goto out; 3134 3135 if (mode & FALLOC_FL_ZERO_RANGE) { 3136 ret = btrfs_zero_range(inode, offset, len, mode); 3137 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3138 return ret; 3139 } 3140 3141 locked_end = alloc_end - 1; 3142 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3143 &cached_state); 3144 3145 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3146 3147 /* First, check if we exceed the qgroup limit */ 3148 while (cur_offset < alloc_end) { 3149 em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset, 3150 alloc_end - cur_offset); 3151 if (IS_ERR(em)) { 3152 ret = PTR_ERR(em); 3153 break; 3154 } 3155 last_byte = min(extent_map_end(em), alloc_end); 3156 actual_end = min_t(u64, extent_map_end(em), offset + len); 3157 last_byte = ALIGN(last_byte, blocksize); 3158 if (em->disk_bytenr == EXTENT_MAP_HOLE || 3159 (cur_offset >= inode->i_size && 3160 !(em->flags & EXTENT_FLAG_PREALLOC))) { 3161 const u64 range_len = last_byte - cur_offset; 3162 3163 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3164 if (ret < 0) { 3165 free_extent_map(em); 3166 break; 3167 } 3168 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3169 &data_reserved, cur_offset, range_len); 3170 if (ret < 0) { 3171 free_extent_map(em); 3172 break; 3173 } 3174 qgroup_reserved += range_len; 3175 data_space_needed += range_len; 3176 } 3177 free_extent_map(em); 3178 cur_offset = last_byte; 3179 } 3180 3181 if (!ret && data_space_needed > 0) { 3182 /* 3183 * We are safe to reserve space here as we can't have delalloc 3184 * in the range, see above. 3185 */ 3186 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3187 data_space_needed); 3188 if (!ret) 3189 data_space_reserved = data_space_needed; 3190 } 3191 3192 /* 3193 * If ret is still 0, means we're OK to fallocate. 3194 * Or just cleanup the list and exit. 3195 */ 3196 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3197 if (!ret) { 3198 ret = btrfs_prealloc_file_range(inode, mode, 3199 range->start, 3200 range->len, blocksize, 3201 offset + len, &alloc_hint); 3202 /* 3203 * btrfs_prealloc_file_range() releases space even 3204 * if it returns an error. 3205 */ 3206 data_space_reserved -= range->len; 3207 qgroup_reserved -= range->len; 3208 } else if (data_space_reserved > 0) { 3209 btrfs_free_reserved_data_space(BTRFS_I(inode), 3210 data_reserved, range->start, 3211 range->len); 3212 data_space_reserved -= range->len; 3213 qgroup_reserved -= range->len; 3214 } else if (qgroup_reserved > 0) { 3215 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3216 range->start, range->len, NULL); 3217 qgroup_reserved -= range->len; 3218 } 3219 list_del(&range->list); 3220 kfree(range); 3221 } 3222 if (ret < 0) 3223 goto out_unlock; 3224 3225 /* 3226 * We didn't need to allocate any more space, but we still extended the 3227 * size of the file so we need to update i_size and the inode item. 3228 */ 3229 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3230 out_unlock: 3231 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3232 &cached_state); 3233 out: 3234 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3235 extent_changeset_free(data_reserved); 3236 return ret; 3237 } 3238 3239 /* 3240 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range 3241 * that has unflushed and/or flushing delalloc. There might be other adjacent 3242 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps 3243 * looping while it gets adjacent subranges, and merging them together. 3244 */ 3245 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, 3246 struct extent_state **cached_state, 3247 bool *search_io_tree, 3248 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3249 { 3250 u64 len = end + 1 - start; 3251 u64 delalloc_len = 0; 3252 struct btrfs_ordered_extent *oe; 3253 u64 oe_start; 3254 u64 oe_end; 3255 3256 /* 3257 * Search the io tree first for EXTENT_DELALLOC. If we find any, it 3258 * means we have delalloc (dirty pages) for which writeback has not 3259 * started yet. 3260 */ 3261 if (*search_io_tree) { 3262 spin_lock(&inode->lock); 3263 if (inode->delalloc_bytes > 0) { 3264 spin_unlock(&inode->lock); 3265 *delalloc_start_ret = start; 3266 delalloc_len = count_range_bits(&inode->io_tree, 3267 delalloc_start_ret, end, 3268 len, EXTENT_DELALLOC, 1, 3269 cached_state); 3270 } else { 3271 spin_unlock(&inode->lock); 3272 } 3273 } 3274 3275 if (delalloc_len > 0) { 3276 /* 3277 * If delalloc was found then *delalloc_start_ret has a sector size 3278 * aligned value (rounded down). 3279 */ 3280 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; 3281 3282 if (*delalloc_start_ret == start) { 3283 /* Delalloc for the whole range, nothing more to do. */ 3284 if (*delalloc_end_ret == end) 3285 return true; 3286 /* Else trim our search range for ordered extents. */ 3287 start = *delalloc_end_ret + 1; 3288 len = end + 1 - start; 3289 } 3290 } else { 3291 /* No delalloc, future calls don't need to search again. */ 3292 *search_io_tree = false; 3293 } 3294 3295 /* 3296 * Now also check if there's any ordered extent in the range. 3297 * We do this because: 3298 * 3299 * 1) When delalloc is flushed, the file range is locked, we clear the 3300 * EXTENT_DELALLOC bit from the io tree and create an extent map and 3301 * an ordered extent for the write. So we might just have been called 3302 * after delalloc is flushed and before the ordered extent completes 3303 * and inserts the new file extent item in the subvolume's btree; 3304 * 3305 * 2) We may have an ordered extent created by flushing delalloc for a 3306 * subrange that starts before the subrange we found marked with 3307 * EXTENT_DELALLOC in the io tree. 3308 * 3309 * We could also use the extent map tree to find such delalloc that is 3310 * being flushed, but using the ordered extents tree is more efficient 3311 * because it's usually much smaller as ordered extents are removed from 3312 * the tree once they complete. With the extent maps, we mau have them 3313 * in the extent map tree for a very long time, and they were either 3314 * created by previous writes or loaded by read operations. 3315 */ 3316 oe = btrfs_lookup_first_ordered_range(inode, start, len); 3317 if (!oe) 3318 return (delalloc_len > 0); 3319 3320 /* The ordered extent may span beyond our search range. */ 3321 oe_start = max(oe->file_offset, start); 3322 oe_end = min(oe->file_offset + oe->num_bytes - 1, end); 3323 3324 btrfs_put_ordered_extent(oe); 3325 3326 /* Don't have unflushed delalloc, return the ordered extent range. */ 3327 if (delalloc_len == 0) { 3328 *delalloc_start_ret = oe_start; 3329 *delalloc_end_ret = oe_end; 3330 return true; 3331 } 3332 3333 /* 3334 * We have both unflushed delalloc (io_tree) and an ordered extent. 3335 * If the ranges are adjacent returned a combined range, otherwise 3336 * return the leftmost range. 3337 */ 3338 if (oe_start < *delalloc_start_ret) { 3339 if (oe_end < *delalloc_start_ret) 3340 *delalloc_end_ret = oe_end; 3341 *delalloc_start_ret = oe_start; 3342 } else if (*delalloc_end_ret + 1 == oe_start) { 3343 *delalloc_end_ret = oe_end; 3344 } 3345 3346 return true; 3347 } 3348 3349 /* 3350 * Check if there's delalloc in a given range. 3351 * 3352 * @inode: The inode. 3353 * @start: The start offset of the range. It does not need to be 3354 * sector size aligned. 3355 * @end: The end offset (inclusive value) of the search range. 3356 * It does not need to be sector size aligned. 3357 * @cached_state: Extent state record used for speeding up delalloc 3358 * searches in the inode's io_tree. Can be NULL. 3359 * @delalloc_start_ret: Output argument, set to the start offset of the 3360 * subrange found with delalloc (may not be sector size 3361 * aligned). 3362 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value) 3363 * of the subrange found with delalloc. 3364 * 3365 * Returns true if a subrange with delalloc is found within the given range, and 3366 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and 3367 * end offsets of the subrange. 3368 */ 3369 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3370 struct extent_state **cached_state, 3371 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3372 { 3373 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); 3374 u64 prev_delalloc_end = 0; 3375 bool search_io_tree = true; 3376 bool ret = false; 3377 3378 while (cur_offset <= end) { 3379 u64 delalloc_start; 3380 u64 delalloc_end; 3381 bool delalloc; 3382 3383 delalloc = find_delalloc_subrange(inode, cur_offset, end, 3384 cached_state, &search_io_tree, 3385 &delalloc_start, 3386 &delalloc_end); 3387 if (!delalloc) 3388 break; 3389 3390 if (prev_delalloc_end == 0) { 3391 /* First subrange found. */ 3392 *delalloc_start_ret = max(delalloc_start, start); 3393 *delalloc_end_ret = delalloc_end; 3394 ret = true; 3395 } else if (delalloc_start == prev_delalloc_end + 1) { 3396 /* Subrange adjacent to the previous one, merge them. */ 3397 *delalloc_end_ret = delalloc_end; 3398 } else { 3399 /* Subrange not adjacent to the previous one, exit. */ 3400 break; 3401 } 3402 3403 prev_delalloc_end = delalloc_end; 3404 cur_offset = delalloc_end + 1; 3405 cond_resched(); 3406 } 3407 3408 return ret; 3409 } 3410 3411 /* 3412 * Check if there's a hole or delalloc range in a range representing a hole (or 3413 * prealloc extent) found in the inode's subvolume btree. 3414 * 3415 * @inode: The inode. 3416 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE). 3417 * @start: Start offset of the hole region. It does not need to be sector 3418 * size aligned. 3419 * @end: End offset (inclusive value) of the hole region. It does not 3420 * need to be sector size aligned. 3421 * @start_ret: Return parameter, used to set the start of the subrange in the 3422 * hole that matches the search criteria (seek mode), if such 3423 * subrange is found (return value of the function is true). 3424 * The value returned here may not be sector size aligned. 3425 * 3426 * Returns true if a subrange matching the given seek mode is found, and if one 3427 * is found, it updates @start_ret with the start of the subrange. 3428 */ 3429 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, 3430 struct extent_state **cached_state, 3431 u64 start, u64 end, u64 *start_ret) 3432 { 3433 u64 delalloc_start; 3434 u64 delalloc_end; 3435 bool delalloc; 3436 3437 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state, 3438 &delalloc_start, &delalloc_end); 3439 if (delalloc && whence == SEEK_DATA) { 3440 *start_ret = delalloc_start; 3441 return true; 3442 } 3443 3444 if (delalloc && whence == SEEK_HOLE) { 3445 /* 3446 * We found delalloc but it starts after out start offset. So we 3447 * have a hole between our start offset and the delalloc start. 3448 */ 3449 if (start < delalloc_start) { 3450 *start_ret = start; 3451 return true; 3452 } 3453 /* 3454 * Delalloc range starts at our start offset. 3455 * If the delalloc range's length is smaller than our range, 3456 * then it means we have a hole that starts where the delalloc 3457 * subrange ends. 3458 */ 3459 if (delalloc_end < end) { 3460 *start_ret = delalloc_end + 1; 3461 return true; 3462 } 3463 3464 /* There's delalloc for the whole range. */ 3465 return false; 3466 } 3467 3468 if (!delalloc && whence == SEEK_HOLE) { 3469 *start_ret = start; 3470 return true; 3471 } 3472 3473 /* 3474 * No delalloc in the range and we are seeking for data. The caller has 3475 * to iterate to the next extent item in the subvolume btree. 3476 */ 3477 return false; 3478 } 3479 3480 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence) 3481 { 3482 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host); 3483 struct btrfs_file_private *private = file->private_data; 3484 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3485 struct extent_state *cached_state = NULL; 3486 struct extent_state **delalloc_cached_state; 3487 const loff_t i_size = i_size_read(&inode->vfs_inode); 3488 const u64 ino = btrfs_ino(inode); 3489 struct btrfs_root *root = inode->root; 3490 struct btrfs_path *path; 3491 struct btrfs_key key; 3492 u64 last_extent_end; 3493 u64 lockstart; 3494 u64 lockend; 3495 u64 start; 3496 int ret; 3497 bool found = false; 3498 3499 if (i_size == 0 || offset >= i_size) 3500 return -ENXIO; 3501 3502 /* 3503 * Quick path. If the inode has no prealloc extents and its number of 3504 * bytes used matches its i_size, then it can not have holes. 3505 */ 3506 if (whence == SEEK_HOLE && 3507 !(inode->flags & BTRFS_INODE_PREALLOC) && 3508 inode_get_bytes(&inode->vfs_inode) == i_size) 3509 return i_size; 3510 3511 if (!private) { 3512 private = kzalloc(sizeof(*private), GFP_KERNEL); 3513 /* 3514 * No worries if memory allocation failed. 3515 * The private structure is used only for speeding up multiple 3516 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc, 3517 * so everything will still be correct. 3518 */ 3519 file->private_data = private; 3520 } 3521 3522 if (private) 3523 delalloc_cached_state = &private->llseek_cached_state; 3524 else 3525 delalloc_cached_state = NULL; 3526 3527 /* 3528 * offset can be negative, in this case we start finding DATA/HOLE from 3529 * the very start of the file. 3530 */ 3531 start = max_t(loff_t, 0, offset); 3532 3533 lockstart = round_down(start, fs_info->sectorsize); 3534 lockend = round_up(i_size, fs_info->sectorsize); 3535 if (lockend <= lockstart) 3536 lockend = lockstart + fs_info->sectorsize; 3537 lockend--; 3538 3539 path = btrfs_alloc_path(); 3540 if (!path) 3541 return -ENOMEM; 3542 path->reada = READA_FORWARD; 3543 3544 key.objectid = ino; 3545 key.type = BTRFS_EXTENT_DATA_KEY; 3546 key.offset = start; 3547 3548 last_extent_end = lockstart; 3549 3550 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3551 3552 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3553 if (ret < 0) { 3554 goto out; 3555 } else if (ret > 0 && path->slots[0] > 0) { 3556 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3557 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3558 path->slots[0]--; 3559 } 3560 3561 while (start < i_size) { 3562 struct extent_buffer *leaf = path->nodes[0]; 3563 struct btrfs_file_extent_item *extent; 3564 u64 extent_end; 3565 u8 type; 3566 3567 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3568 ret = btrfs_next_leaf(root, path); 3569 if (ret < 0) 3570 goto out; 3571 else if (ret > 0) 3572 break; 3573 3574 leaf = path->nodes[0]; 3575 } 3576 3577 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3578 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3579 break; 3580 3581 extent_end = btrfs_file_extent_end(path); 3582 3583 /* 3584 * In the first iteration we may have a slot that points to an 3585 * extent that ends before our start offset, so skip it. 3586 */ 3587 if (extent_end <= start) { 3588 path->slots[0]++; 3589 continue; 3590 } 3591 3592 /* We have an implicit hole, NO_HOLES feature is likely set. */ 3593 if (last_extent_end < key.offset) { 3594 u64 search_start = last_extent_end; 3595 u64 found_start; 3596 3597 /* 3598 * First iteration, @start matches @offset and it's 3599 * within the hole. 3600 */ 3601 if (start == offset) 3602 search_start = offset; 3603 3604 found = find_desired_extent_in_hole(inode, whence, 3605 delalloc_cached_state, 3606 search_start, 3607 key.offset - 1, 3608 &found_start); 3609 if (found) { 3610 start = found_start; 3611 break; 3612 } 3613 /* 3614 * Didn't find data or a hole (due to delalloc) in the 3615 * implicit hole range, so need to analyze the extent. 3616 */ 3617 } 3618 3619 extent = btrfs_item_ptr(leaf, path->slots[0], 3620 struct btrfs_file_extent_item); 3621 type = btrfs_file_extent_type(leaf, extent); 3622 3623 /* 3624 * Can't access the extent's disk_bytenr field if this is an 3625 * inline extent, since at that offset, it's where the extent 3626 * data starts. 3627 */ 3628 if (type == BTRFS_FILE_EXTENT_PREALLOC || 3629 (type == BTRFS_FILE_EXTENT_REG && 3630 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) { 3631 /* 3632 * Explicit hole or prealloc extent, search for delalloc. 3633 * A prealloc extent is treated like a hole. 3634 */ 3635 u64 search_start = key.offset; 3636 u64 found_start; 3637 3638 /* 3639 * First iteration, @start matches @offset and it's 3640 * within the hole. 3641 */ 3642 if (start == offset) 3643 search_start = offset; 3644 3645 found = find_desired_extent_in_hole(inode, whence, 3646 delalloc_cached_state, 3647 search_start, 3648 extent_end - 1, 3649 &found_start); 3650 if (found) { 3651 start = found_start; 3652 break; 3653 } 3654 /* 3655 * Didn't find data or a hole (due to delalloc) in the 3656 * implicit hole range, so need to analyze the next 3657 * extent item. 3658 */ 3659 } else { 3660 /* 3661 * Found a regular or inline extent. 3662 * If we are seeking for data, adjust the start offset 3663 * and stop, we're done. 3664 */ 3665 if (whence == SEEK_DATA) { 3666 start = max_t(u64, key.offset, offset); 3667 found = true; 3668 break; 3669 } 3670 /* 3671 * Else, we are seeking for a hole, check the next file 3672 * extent item. 3673 */ 3674 } 3675 3676 start = extent_end; 3677 last_extent_end = extent_end; 3678 path->slots[0]++; 3679 if (fatal_signal_pending(current)) { 3680 ret = -EINTR; 3681 goto out; 3682 } 3683 cond_resched(); 3684 } 3685 3686 /* We have an implicit hole from the last extent found up to i_size. */ 3687 if (!found && start < i_size) { 3688 found = find_desired_extent_in_hole(inode, whence, 3689 delalloc_cached_state, start, 3690 i_size - 1, &start); 3691 if (!found) 3692 start = i_size; 3693 } 3694 3695 out: 3696 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3697 btrfs_free_path(path); 3698 3699 if (ret < 0) 3700 return ret; 3701 3702 if (whence == SEEK_DATA && start >= i_size) 3703 return -ENXIO; 3704 3705 return min_t(loff_t, start, i_size); 3706 } 3707 3708 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3709 { 3710 struct inode *inode = file->f_mapping->host; 3711 3712 switch (whence) { 3713 default: 3714 return generic_file_llseek(file, offset, whence); 3715 case SEEK_DATA: 3716 case SEEK_HOLE: 3717 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3718 offset = find_desired_extent(file, offset, whence); 3719 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3720 break; 3721 } 3722 3723 if (offset < 0) 3724 return offset; 3725 3726 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3727 } 3728 3729 static int btrfs_file_open(struct inode *inode, struct file *filp) 3730 { 3731 int ret; 3732 3733 filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT; 3734 3735 ret = fsverity_file_open(inode, filp); 3736 if (ret) 3737 return ret; 3738 return generic_file_open(inode, filp); 3739 } 3740 3741 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3742 { 3743 ssize_t ret = 0; 3744 3745 if (iocb->ki_flags & IOCB_DIRECT) { 3746 ret = btrfs_direct_read(iocb, to); 3747 if (ret < 0 || !iov_iter_count(to) || 3748 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3749 return ret; 3750 } 3751 3752 return filemap_read(iocb, to, ret); 3753 } 3754 3755 const struct file_operations btrfs_file_operations = { 3756 .llseek = btrfs_file_llseek, 3757 .read_iter = btrfs_file_read_iter, 3758 .splice_read = filemap_splice_read, 3759 .write_iter = btrfs_file_write_iter, 3760 .splice_write = iter_file_splice_write, 3761 .mmap = btrfs_file_mmap, 3762 .open = btrfs_file_open, 3763 .release = btrfs_release_file, 3764 .get_unmapped_area = thp_get_unmapped_area, 3765 .fsync = btrfs_sync_file, 3766 .fallocate = btrfs_fallocate, 3767 .unlocked_ioctl = btrfs_ioctl, 3768 #ifdef CONFIG_COMPAT 3769 .compat_ioctl = btrfs_compat_ioctl, 3770 #endif 3771 .remap_file_range = btrfs_remap_file_range, 3772 .fop_flags = FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC, 3773 }; 3774 3775 int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end) 3776 { 3777 struct address_space *mapping = inode->vfs_inode.i_mapping; 3778 int ret; 3779 3780 /* 3781 * So with compression we will find and lock a dirty page and clear the 3782 * first one as dirty, setup an async extent, and immediately return 3783 * with the entire range locked but with nobody actually marked with 3784 * writeback. So we can't just filemap_write_and_wait_range() and 3785 * expect it to work since it will just kick off a thread to do the 3786 * actual work. So we need to call filemap_fdatawrite_range _again_ 3787 * since it will wait on the page lock, which won't be unlocked until 3788 * after the pages have been marked as writeback and so we're good to go 3789 * from there. We have to do this otherwise we'll miss the ordered 3790 * extents and that results in badness. Please Josef, do not think you 3791 * know better and pull this out at some point in the future, it is 3792 * right and you are wrong. 3793 */ 3794 ret = filemap_fdatawrite_range(mapping, start, end); 3795 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags)) 3796 ret = filemap_fdatawrite_range(mapping, start, end); 3797 3798 return ret; 3799 } 3800