xref: /linux/fs/btrfs/file.c (revision a9f80df4f51440303d063b55bb98720857693821)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include <linux/iomap.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "print-tree.h"
26 #include "tree-log.h"
27 #include "locking.h"
28 #include "volumes.h"
29 #include "qgroup.h"
30 #include "compression.h"
31 #include "delalloc-space.h"
32 #include "reflink.h"
33 #include "subpage.h"
34 #include "fs.h"
35 #include "accessors.h"
36 #include "extent-tree.h"
37 #include "file-item.h"
38 #include "ioctl.h"
39 #include "file.h"
40 #include "super.h"
41 
42 /* simple helper to fault in pages and copy.  This should go away
43  * and be replaced with calls into generic code.
44  */
45 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
46 					 struct page **prepared_pages,
47 					 struct iov_iter *i)
48 {
49 	size_t copied = 0;
50 	size_t total_copied = 0;
51 	int pg = 0;
52 	int offset = offset_in_page(pos);
53 
54 	while (write_bytes > 0) {
55 		size_t count = min_t(size_t,
56 				     PAGE_SIZE - offset, write_bytes);
57 		struct page *page = prepared_pages[pg];
58 		/*
59 		 * Copy data from userspace to the current page
60 		 */
61 		copied = copy_page_from_iter_atomic(page, offset, count, i);
62 
63 		/* Flush processor's dcache for this page */
64 		flush_dcache_page(page);
65 
66 		/*
67 		 * if we get a partial write, we can end up with
68 		 * partially up to date pages.  These add
69 		 * a lot of complexity, so make sure they don't
70 		 * happen by forcing this copy to be retried.
71 		 *
72 		 * The rest of the btrfs_file_write code will fall
73 		 * back to page at a time copies after we return 0.
74 		 */
75 		if (unlikely(copied < count)) {
76 			if (!PageUptodate(page)) {
77 				iov_iter_revert(i, copied);
78 				copied = 0;
79 			}
80 			if (!copied)
81 				break;
82 		}
83 
84 		write_bytes -= copied;
85 		total_copied += copied;
86 		offset += copied;
87 		if (offset == PAGE_SIZE) {
88 			pg++;
89 			offset = 0;
90 		}
91 	}
92 	return total_copied;
93 }
94 
95 /*
96  * unlocks pages after btrfs_file_write is done with them
97  */
98 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
99 			     struct page **pages, size_t num_pages,
100 			     u64 pos, u64 copied)
101 {
102 	size_t i;
103 	u64 block_start = round_down(pos, fs_info->sectorsize);
104 	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
105 
106 	ASSERT(block_len <= U32_MAX);
107 	for (i = 0; i < num_pages; i++) {
108 		/* page checked is some magic around finding pages that
109 		 * have been modified without going through btrfs_set_page_dirty
110 		 * clear it here. There should be no need to mark the pages
111 		 * accessed as prepare_pages should have marked them accessed
112 		 * in prepare_pages via find_or_create_page()
113 		 */
114 		btrfs_folio_clamp_clear_checked(fs_info, page_folio(pages[i]),
115 						block_start, block_len);
116 		unlock_page(pages[i]);
117 		put_page(pages[i]);
118 	}
119 }
120 
121 /*
122  * After btrfs_copy_from_user(), update the following things for delalloc:
123  * - Mark newly dirtied pages as DELALLOC in the io tree.
124  *   Used to advise which range is to be written back.
125  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
126  * - Update inode size for past EOF write
127  */
128 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
129 		      size_t num_pages, loff_t pos, size_t write_bytes,
130 		      struct extent_state **cached, bool noreserve)
131 {
132 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
133 	int err = 0;
134 	int i;
135 	u64 num_bytes;
136 	u64 start_pos;
137 	u64 end_of_last_block;
138 	u64 end_pos = pos + write_bytes;
139 	loff_t isize = i_size_read(&inode->vfs_inode);
140 	unsigned int extra_bits = 0;
141 
142 	if (write_bytes == 0)
143 		return 0;
144 
145 	if (noreserve)
146 		extra_bits |= EXTENT_NORESERVE;
147 
148 	start_pos = round_down(pos, fs_info->sectorsize);
149 	num_bytes = round_up(write_bytes + pos - start_pos,
150 			     fs_info->sectorsize);
151 	ASSERT(num_bytes <= U32_MAX);
152 
153 	end_of_last_block = start_pos + num_bytes - 1;
154 
155 	/*
156 	 * The pages may have already been dirty, clear out old accounting so
157 	 * we can set things up properly
158 	 */
159 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
160 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
161 			 cached);
162 
163 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
164 					extra_bits, cached);
165 	if (err)
166 		return err;
167 
168 	for (i = 0; i < num_pages; i++) {
169 		struct page *p = pages[i];
170 
171 		btrfs_folio_clamp_set_uptodate(fs_info, page_folio(p),
172 					       start_pos, num_bytes);
173 		btrfs_folio_clamp_clear_checked(fs_info, page_folio(p),
174 						start_pos, num_bytes);
175 		btrfs_folio_clamp_set_dirty(fs_info, page_folio(p),
176 					    start_pos, num_bytes);
177 	}
178 
179 	/*
180 	 * we've only changed i_size in ram, and we haven't updated
181 	 * the disk i_size.  There is no need to log the inode
182 	 * at this time.
183 	 */
184 	if (end_pos > isize)
185 		i_size_write(&inode->vfs_inode, end_pos);
186 	return 0;
187 }
188 
189 /*
190  * this is very complex, but the basic idea is to drop all extents
191  * in the range start - end.  hint_block is filled in with a block number
192  * that would be a good hint to the block allocator for this file.
193  *
194  * If an extent intersects the range but is not entirely inside the range
195  * it is either truncated or split.  Anything entirely inside the range
196  * is deleted from the tree.
197  *
198  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
199  * to deal with that. We set the field 'bytes_found' of the arguments structure
200  * with the number of allocated bytes found in the target range, so that the
201  * caller can update the inode's number of bytes in an atomic way when
202  * replacing extents in a range to avoid races with stat(2).
203  */
204 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
205 		       struct btrfs_root *root, struct btrfs_inode *inode,
206 		       struct btrfs_drop_extents_args *args)
207 {
208 	struct btrfs_fs_info *fs_info = root->fs_info;
209 	struct extent_buffer *leaf;
210 	struct btrfs_file_extent_item *fi;
211 	struct btrfs_ref ref = { 0 };
212 	struct btrfs_key key;
213 	struct btrfs_key new_key;
214 	u64 ino = btrfs_ino(inode);
215 	u64 search_start = args->start;
216 	u64 disk_bytenr = 0;
217 	u64 num_bytes = 0;
218 	u64 extent_offset = 0;
219 	u64 extent_end = 0;
220 	u64 last_end = args->start;
221 	int del_nr = 0;
222 	int del_slot = 0;
223 	int extent_type;
224 	int recow;
225 	int ret;
226 	int modify_tree = -1;
227 	int update_refs;
228 	int found = 0;
229 	struct btrfs_path *path = args->path;
230 
231 	args->bytes_found = 0;
232 	args->extent_inserted = false;
233 
234 	/* Must always have a path if ->replace_extent is true */
235 	ASSERT(!(args->replace_extent && !args->path));
236 
237 	if (!path) {
238 		path = btrfs_alloc_path();
239 		if (!path) {
240 			ret = -ENOMEM;
241 			goto out;
242 		}
243 	}
244 
245 	if (args->drop_cache)
246 		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
247 
248 	if (args->start >= inode->disk_i_size && !args->replace_extent)
249 		modify_tree = 0;
250 
251 	update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
252 	while (1) {
253 		recow = 0;
254 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
255 					       search_start, modify_tree);
256 		if (ret < 0)
257 			break;
258 		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
259 			leaf = path->nodes[0];
260 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
261 			if (key.objectid == ino &&
262 			    key.type == BTRFS_EXTENT_DATA_KEY)
263 				path->slots[0]--;
264 		}
265 		ret = 0;
266 next_slot:
267 		leaf = path->nodes[0];
268 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
269 			BUG_ON(del_nr > 0);
270 			ret = btrfs_next_leaf(root, path);
271 			if (ret < 0)
272 				break;
273 			if (ret > 0) {
274 				ret = 0;
275 				break;
276 			}
277 			leaf = path->nodes[0];
278 			recow = 1;
279 		}
280 
281 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
282 
283 		if (key.objectid > ino)
284 			break;
285 		if (WARN_ON_ONCE(key.objectid < ino) ||
286 		    key.type < BTRFS_EXTENT_DATA_KEY) {
287 			ASSERT(del_nr == 0);
288 			path->slots[0]++;
289 			goto next_slot;
290 		}
291 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
292 			break;
293 
294 		fi = btrfs_item_ptr(leaf, path->slots[0],
295 				    struct btrfs_file_extent_item);
296 		extent_type = btrfs_file_extent_type(leaf, fi);
297 
298 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
299 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
300 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
301 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
302 			extent_offset = btrfs_file_extent_offset(leaf, fi);
303 			extent_end = key.offset +
304 				btrfs_file_extent_num_bytes(leaf, fi);
305 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
306 			extent_end = key.offset +
307 				btrfs_file_extent_ram_bytes(leaf, fi);
308 		} else {
309 			/* can't happen */
310 			BUG();
311 		}
312 
313 		/*
314 		 * Don't skip extent items representing 0 byte lengths. They
315 		 * used to be created (bug) if while punching holes we hit
316 		 * -ENOSPC condition. So if we find one here, just ensure we
317 		 * delete it, otherwise we would insert a new file extent item
318 		 * with the same key (offset) as that 0 bytes length file
319 		 * extent item in the call to setup_items_for_insert() later
320 		 * in this function.
321 		 */
322 		if (extent_end == key.offset && extent_end >= search_start) {
323 			last_end = extent_end;
324 			goto delete_extent_item;
325 		}
326 
327 		if (extent_end <= search_start) {
328 			path->slots[0]++;
329 			goto next_slot;
330 		}
331 
332 		found = 1;
333 		search_start = max(key.offset, args->start);
334 		if (recow || !modify_tree) {
335 			modify_tree = -1;
336 			btrfs_release_path(path);
337 			continue;
338 		}
339 
340 		/*
341 		 *     | - range to drop - |
342 		 *  | -------- extent -------- |
343 		 */
344 		if (args->start > key.offset && args->end < extent_end) {
345 			BUG_ON(del_nr > 0);
346 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
347 				ret = -EOPNOTSUPP;
348 				break;
349 			}
350 
351 			memcpy(&new_key, &key, sizeof(new_key));
352 			new_key.offset = args->start;
353 			ret = btrfs_duplicate_item(trans, root, path,
354 						   &new_key);
355 			if (ret == -EAGAIN) {
356 				btrfs_release_path(path);
357 				continue;
358 			}
359 			if (ret < 0)
360 				break;
361 
362 			leaf = path->nodes[0];
363 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
364 					    struct btrfs_file_extent_item);
365 			btrfs_set_file_extent_num_bytes(leaf, fi,
366 							args->start - key.offset);
367 
368 			fi = btrfs_item_ptr(leaf, path->slots[0],
369 					    struct btrfs_file_extent_item);
370 
371 			extent_offset += args->start - key.offset;
372 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
373 			btrfs_set_file_extent_num_bytes(leaf, fi,
374 							extent_end - args->start);
375 			btrfs_mark_buffer_dirty(trans, leaf);
376 
377 			if (update_refs && disk_bytenr > 0) {
378 				btrfs_init_generic_ref(&ref,
379 						BTRFS_ADD_DELAYED_REF,
380 						disk_bytenr, num_bytes, 0,
381 						root->root_key.objectid);
382 				btrfs_init_data_ref(&ref,
383 						root->root_key.objectid,
384 						new_key.objectid,
385 						args->start - extent_offset,
386 						0, false);
387 				ret = btrfs_inc_extent_ref(trans, &ref);
388 				if (ret) {
389 					btrfs_abort_transaction(trans, ret);
390 					break;
391 				}
392 			}
393 			key.offset = args->start;
394 		}
395 		/*
396 		 * From here on out we will have actually dropped something, so
397 		 * last_end can be updated.
398 		 */
399 		last_end = extent_end;
400 
401 		/*
402 		 *  | ---- range to drop ----- |
403 		 *      | -------- extent -------- |
404 		 */
405 		if (args->start <= key.offset && args->end < extent_end) {
406 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
407 				ret = -EOPNOTSUPP;
408 				break;
409 			}
410 
411 			memcpy(&new_key, &key, sizeof(new_key));
412 			new_key.offset = args->end;
413 			btrfs_set_item_key_safe(trans, path, &new_key);
414 
415 			extent_offset += args->end - key.offset;
416 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
417 			btrfs_set_file_extent_num_bytes(leaf, fi,
418 							extent_end - args->end);
419 			btrfs_mark_buffer_dirty(trans, leaf);
420 			if (update_refs && disk_bytenr > 0)
421 				args->bytes_found += args->end - key.offset;
422 			break;
423 		}
424 
425 		search_start = extent_end;
426 		/*
427 		 *       | ---- range to drop ----- |
428 		 *  | -------- extent -------- |
429 		 */
430 		if (args->start > key.offset && args->end >= extent_end) {
431 			BUG_ON(del_nr > 0);
432 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
433 				ret = -EOPNOTSUPP;
434 				break;
435 			}
436 
437 			btrfs_set_file_extent_num_bytes(leaf, fi,
438 							args->start - key.offset);
439 			btrfs_mark_buffer_dirty(trans, leaf);
440 			if (update_refs && disk_bytenr > 0)
441 				args->bytes_found += extent_end - args->start;
442 			if (args->end == extent_end)
443 				break;
444 
445 			path->slots[0]++;
446 			goto next_slot;
447 		}
448 
449 		/*
450 		 *  | ---- range to drop ----- |
451 		 *    | ------ extent ------ |
452 		 */
453 		if (args->start <= key.offset && args->end >= extent_end) {
454 delete_extent_item:
455 			if (del_nr == 0) {
456 				del_slot = path->slots[0];
457 				del_nr = 1;
458 			} else {
459 				BUG_ON(del_slot + del_nr != path->slots[0]);
460 				del_nr++;
461 			}
462 
463 			if (update_refs &&
464 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
465 				args->bytes_found += extent_end - key.offset;
466 				extent_end = ALIGN(extent_end,
467 						   fs_info->sectorsize);
468 			} else if (update_refs && disk_bytenr > 0) {
469 				btrfs_init_generic_ref(&ref,
470 						BTRFS_DROP_DELAYED_REF,
471 						disk_bytenr, num_bytes, 0,
472 						root->root_key.objectid);
473 				btrfs_init_data_ref(&ref,
474 						root->root_key.objectid,
475 						key.objectid,
476 						key.offset - extent_offset, 0,
477 						false);
478 				ret = btrfs_free_extent(trans, &ref);
479 				if (ret) {
480 					btrfs_abort_transaction(trans, ret);
481 					break;
482 				}
483 				args->bytes_found += extent_end - key.offset;
484 			}
485 
486 			if (args->end == extent_end)
487 				break;
488 
489 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
490 				path->slots[0]++;
491 				goto next_slot;
492 			}
493 
494 			ret = btrfs_del_items(trans, root, path, del_slot,
495 					      del_nr);
496 			if (ret) {
497 				btrfs_abort_transaction(trans, ret);
498 				break;
499 			}
500 
501 			del_nr = 0;
502 			del_slot = 0;
503 
504 			btrfs_release_path(path);
505 			continue;
506 		}
507 
508 		BUG();
509 	}
510 
511 	if (!ret && del_nr > 0) {
512 		/*
513 		 * Set path->slots[0] to first slot, so that after the delete
514 		 * if items are move off from our leaf to its immediate left or
515 		 * right neighbor leafs, we end up with a correct and adjusted
516 		 * path->slots[0] for our insertion (if args->replace_extent).
517 		 */
518 		path->slots[0] = del_slot;
519 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
520 		if (ret)
521 			btrfs_abort_transaction(trans, ret);
522 	}
523 
524 	leaf = path->nodes[0];
525 	/*
526 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
527 	 * which case it unlocked our path, so check path->locks[0] matches a
528 	 * write lock.
529 	 */
530 	if (!ret && args->replace_extent &&
531 	    path->locks[0] == BTRFS_WRITE_LOCK &&
532 	    btrfs_leaf_free_space(leaf) >=
533 	    sizeof(struct btrfs_item) + args->extent_item_size) {
534 
535 		key.objectid = ino;
536 		key.type = BTRFS_EXTENT_DATA_KEY;
537 		key.offset = args->start;
538 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
539 			struct btrfs_key slot_key;
540 
541 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
542 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
543 				path->slots[0]++;
544 		}
545 		btrfs_setup_item_for_insert(trans, root, path, &key,
546 					    args->extent_item_size);
547 		args->extent_inserted = true;
548 	}
549 
550 	if (!args->path)
551 		btrfs_free_path(path);
552 	else if (!args->extent_inserted)
553 		btrfs_release_path(path);
554 out:
555 	args->drop_end = found ? min(args->end, last_end) : args->end;
556 
557 	return ret;
558 }
559 
560 static int extent_mergeable(struct extent_buffer *leaf, int slot,
561 			    u64 objectid, u64 bytenr, u64 orig_offset,
562 			    u64 *start, u64 *end)
563 {
564 	struct btrfs_file_extent_item *fi;
565 	struct btrfs_key key;
566 	u64 extent_end;
567 
568 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
569 		return 0;
570 
571 	btrfs_item_key_to_cpu(leaf, &key, slot);
572 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
573 		return 0;
574 
575 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
576 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
577 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
578 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
579 	    btrfs_file_extent_compression(leaf, fi) ||
580 	    btrfs_file_extent_encryption(leaf, fi) ||
581 	    btrfs_file_extent_other_encoding(leaf, fi))
582 		return 0;
583 
584 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
585 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
586 		return 0;
587 
588 	*start = key.offset;
589 	*end = extent_end;
590 	return 1;
591 }
592 
593 /*
594  * Mark extent in the range start - end as written.
595  *
596  * This changes extent type from 'pre-allocated' to 'regular'. If only
597  * part of extent is marked as written, the extent will be split into
598  * two or three.
599  */
600 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
601 			      struct btrfs_inode *inode, u64 start, u64 end)
602 {
603 	struct btrfs_root *root = inode->root;
604 	struct extent_buffer *leaf;
605 	struct btrfs_path *path;
606 	struct btrfs_file_extent_item *fi;
607 	struct btrfs_ref ref = { 0 };
608 	struct btrfs_key key;
609 	struct btrfs_key new_key;
610 	u64 bytenr;
611 	u64 num_bytes;
612 	u64 extent_end;
613 	u64 orig_offset;
614 	u64 other_start;
615 	u64 other_end;
616 	u64 split;
617 	int del_nr = 0;
618 	int del_slot = 0;
619 	int recow;
620 	int ret = 0;
621 	u64 ino = btrfs_ino(inode);
622 
623 	path = btrfs_alloc_path();
624 	if (!path)
625 		return -ENOMEM;
626 again:
627 	recow = 0;
628 	split = start;
629 	key.objectid = ino;
630 	key.type = BTRFS_EXTENT_DATA_KEY;
631 	key.offset = split;
632 
633 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
634 	if (ret < 0)
635 		goto out;
636 	if (ret > 0 && path->slots[0] > 0)
637 		path->slots[0]--;
638 
639 	leaf = path->nodes[0];
640 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
641 	if (key.objectid != ino ||
642 	    key.type != BTRFS_EXTENT_DATA_KEY) {
643 		ret = -EINVAL;
644 		btrfs_abort_transaction(trans, ret);
645 		goto out;
646 	}
647 	fi = btrfs_item_ptr(leaf, path->slots[0],
648 			    struct btrfs_file_extent_item);
649 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
650 		ret = -EINVAL;
651 		btrfs_abort_transaction(trans, ret);
652 		goto out;
653 	}
654 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
655 	if (key.offset > start || extent_end < end) {
656 		ret = -EINVAL;
657 		btrfs_abort_transaction(trans, ret);
658 		goto out;
659 	}
660 
661 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
662 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
663 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
664 	memcpy(&new_key, &key, sizeof(new_key));
665 
666 	if (start == key.offset && end < extent_end) {
667 		other_start = 0;
668 		other_end = start;
669 		if (extent_mergeable(leaf, path->slots[0] - 1,
670 				     ino, bytenr, orig_offset,
671 				     &other_start, &other_end)) {
672 			new_key.offset = end;
673 			btrfs_set_item_key_safe(trans, path, &new_key);
674 			fi = btrfs_item_ptr(leaf, path->slots[0],
675 					    struct btrfs_file_extent_item);
676 			btrfs_set_file_extent_generation(leaf, fi,
677 							 trans->transid);
678 			btrfs_set_file_extent_num_bytes(leaf, fi,
679 							extent_end - end);
680 			btrfs_set_file_extent_offset(leaf, fi,
681 						     end - orig_offset);
682 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
683 					    struct btrfs_file_extent_item);
684 			btrfs_set_file_extent_generation(leaf, fi,
685 							 trans->transid);
686 			btrfs_set_file_extent_num_bytes(leaf, fi,
687 							end - other_start);
688 			btrfs_mark_buffer_dirty(trans, leaf);
689 			goto out;
690 		}
691 	}
692 
693 	if (start > key.offset && end == extent_end) {
694 		other_start = end;
695 		other_end = 0;
696 		if (extent_mergeable(leaf, path->slots[0] + 1,
697 				     ino, bytenr, orig_offset,
698 				     &other_start, &other_end)) {
699 			fi = btrfs_item_ptr(leaf, path->slots[0],
700 					    struct btrfs_file_extent_item);
701 			btrfs_set_file_extent_num_bytes(leaf, fi,
702 							start - key.offset);
703 			btrfs_set_file_extent_generation(leaf, fi,
704 							 trans->transid);
705 			path->slots[0]++;
706 			new_key.offset = start;
707 			btrfs_set_item_key_safe(trans, path, &new_key);
708 
709 			fi = btrfs_item_ptr(leaf, path->slots[0],
710 					    struct btrfs_file_extent_item);
711 			btrfs_set_file_extent_generation(leaf, fi,
712 							 trans->transid);
713 			btrfs_set_file_extent_num_bytes(leaf, fi,
714 							other_end - start);
715 			btrfs_set_file_extent_offset(leaf, fi,
716 						     start - orig_offset);
717 			btrfs_mark_buffer_dirty(trans, leaf);
718 			goto out;
719 		}
720 	}
721 
722 	while (start > key.offset || end < extent_end) {
723 		if (key.offset == start)
724 			split = end;
725 
726 		new_key.offset = split;
727 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
728 		if (ret == -EAGAIN) {
729 			btrfs_release_path(path);
730 			goto again;
731 		}
732 		if (ret < 0) {
733 			btrfs_abort_transaction(trans, ret);
734 			goto out;
735 		}
736 
737 		leaf = path->nodes[0];
738 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
739 				    struct btrfs_file_extent_item);
740 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
741 		btrfs_set_file_extent_num_bytes(leaf, fi,
742 						split - key.offset);
743 
744 		fi = btrfs_item_ptr(leaf, path->slots[0],
745 				    struct btrfs_file_extent_item);
746 
747 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
748 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
749 		btrfs_set_file_extent_num_bytes(leaf, fi,
750 						extent_end - split);
751 		btrfs_mark_buffer_dirty(trans, leaf);
752 
753 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
754 				       num_bytes, 0, root->root_key.objectid);
755 		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
756 				    orig_offset, 0, false);
757 		ret = btrfs_inc_extent_ref(trans, &ref);
758 		if (ret) {
759 			btrfs_abort_transaction(trans, ret);
760 			goto out;
761 		}
762 
763 		if (split == start) {
764 			key.offset = start;
765 		} else {
766 			if (start != key.offset) {
767 				ret = -EINVAL;
768 				btrfs_abort_transaction(trans, ret);
769 				goto out;
770 			}
771 			path->slots[0]--;
772 			extent_end = end;
773 		}
774 		recow = 1;
775 	}
776 
777 	other_start = end;
778 	other_end = 0;
779 	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
780 			       num_bytes, 0, root->root_key.objectid);
781 	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
782 			    0, false);
783 	if (extent_mergeable(leaf, path->slots[0] + 1,
784 			     ino, bytenr, orig_offset,
785 			     &other_start, &other_end)) {
786 		if (recow) {
787 			btrfs_release_path(path);
788 			goto again;
789 		}
790 		extent_end = other_end;
791 		del_slot = path->slots[0] + 1;
792 		del_nr++;
793 		ret = btrfs_free_extent(trans, &ref);
794 		if (ret) {
795 			btrfs_abort_transaction(trans, ret);
796 			goto out;
797 		}
798 	}
799 	other_start = 0;
800 	other_end = start;
801 	if (extent_mergeable(leaf, path->slots[0] - 1,
802 			     ino, bytenr, orig_offset,
803 			     &other_start, &other_end)) {
804 		if (recow) {
805 			btrfs_release_path(path);
806 			goto again;
807 		}
808 		key.offset = other_start;
809 		del_slot = path->slots[0];
810 		del_nr++;
811 		ret = btrfs_free_extent(trans, &ref);
812 		if (ret) {
813 			btrfs_abort_transaction(trans, ret);
814 			goto out;
815 		}
816 	}
817 	if (del_nr == 0) {
818 		fi = btrfs_item_ptr(leaf, path->slots[0],
819 			   struct btrfs_file_extent_item);
820 		btrfs_set_file_extent_type(leaf, fi,
821 					   BTRFS_FILE_EXTENT_REG);
822 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
823 		btrfs_mark_buffer_dirty(trans, leaf);
824 	} else {
825 		fi = btrfs_item_ptr(leaf, del_slot - 1,
826 			   struct btrfs_file_extent_item);
827 		btrfs_set_file_extent_type(leaf, fi,
828 					   BTRFS_FILE_EXTENT_REG);
829 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
830 		btrfs_set_file_extent_num_bytes(leaf, fi,
831 						extent_end - key.offset);
832 		btrfs_mark_buffer_dirty(trans, leaf);
833 
834 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
835 		if (ret < 0) {
836 			btrfs_abort_transaction(trans, ret);
837 			goto out;
838 		}
839 	}
840 out:
841 	btrfs_free_path(path);
842 	return ret;
843 }
844 
845 /*
846  * on error we return an unlocked page and the error value
847  * on success we return a locked page and 0
848  */
849 static int prepare_uptodate_page(struct inode *inode,
850 				 struct page *page, u64 pos,
851 				 bool force_uptodate)
852 {
853 	struct folio *folio = page_folio(page);
854 	int ret = 0;
855 
856 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
857 	    !PageUptodate(page)) {
858 		ret = btrfs_read_folio(NULL, folio);
859 		if (ret)
860 			return ret;
861 		lock_page(page);
862 		if (!PageUptodate(page)) {
863 			unlock_page(page);
864 			return -EIO;
865 		}
866 
867 		/*
868 		 * Since btrfs_read_folio() will unlock the folio before it
869 		 * returns, there is a window where btrfs_release_folio() can be
870 		 * called to release the page.  Here we check both inode
871 		 * mapping and PagePrivate() to make sure the page was not
872 		 * released.
873 		 *
874 		 * The private flag check is essential for subpage as we need
875 		 * to store extra bitmap using folio private.
876 		 */
877 		if (page->mapping != inode->i_mapping || !folio_test_private(folio)) {
878 			unlock_page(page);
879 			return -EAGAIN;
880 		}
881 	}
882 	return 0;
883 }
884 
885 static fgf_t get_prepare_fgp_flags(bool nowait)
886 {
887 	fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
888 
889 	if (nowait)
890 		fgp_flags |= FGP_NOWAIT;
891 
892 	return fgp_flags;
893 }
894 
895 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
896 {
897 	gfp_t gfp;
898 
899 	gfp = btrfs_alloc_write_mask(inode->i_mapping);
900 	if (nowait) {
901 		gfp &= ~__GFP_DIRECT_RECLAIM;
902 		gfp |= GFP_NOWAIT;
903 	}
904 
905 	return gfp;
906 }
907 
908 /*
909  * this just gets pages into the page cache and locks them down.
910  */
911 static noinline int prepare_pages(struct inode *inode, struct page **pages,
912 				  size_t num_pages, loff_t pos,
913 				  size_t write_bytes, bool force_uptodate,
914 				  bool nowait)
915 {
916 	int i;
917 	unsigned long index = pos >> PAGE_SHIFT;
918 	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
919 	fgf_t fgp_flags = get_prepare_fgp_flags(nowait);
920 	int err = 0;
921 	int faili;
922 
923 	for (i = 0; i < num_pages; i++) {
924 again:
925 		pages[i] = pagecache_get_page(inode->i_mapping, index + i,
926 					      fgp_flags, mask | __GFP_WRITE);
927 		if (!pages[i]) {
928 			faili = i - 1;
929 			if (nowait)
930 				err = -EAGAIN;
931 			else
932 				err = -ENOMEM;
933 			goto fail;
934 		}
935 
936 		err = set_page_extent_mapped(pages[i]);
937 		if (err < 0) {
938 			faili = i;
939 			goto fail;
940 		}
941 
942 		if (i == 0)
943 			err = prepare_uptodate_page(inode, pages[i], pos,
944 						    force_uptodate);
945 		if (!err && i == num_pages - 1)
946 			err = prepare_uptodate_page(inode, pages[i],
947 						    pos + write_bytes, false);
948 		if (err) {
949 			put_page(pages[i]);
950 			if (!nowait && err == -EAGAIN) {
951 				err = 0;
952 				goto again;
953 			}
954 			faili = i - 1;
955 			goto fail;
956 		}
957 		wait_on_page_writeback(pages[i]);
958 	}
959 
960 	return 0;
961 fail:
962 	while (faili >= 0) {
963 		unlock_page(pages[faili]);
964 		put_page(pages[faili]);
965 		faili--;
966 	}
967 	return err;
968 
969 }
970 
971 /*
972  * This function locks the extent and properly waits for data=ordered extents
973  * to finish before allowing the pages to be modified if need.
974  *
975  * The return value:
976  * 1 - the extent is locked
977  * 0 - the extent is not locked, and everything is OK
978  * -EAGAIN - need re-prepare the pages
979  * the other < 0 number - Something wrong happens
980  */
981 static noinline int
982 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
983 				size_t num_pages, loff_t pos,
984 				size_t write_bytes,
985 				u64 *lockstart, u64 *lockend, bool nowait,
986 				struct extent_state **cached_state)
987 {
988 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
989 	u64 start_pos;
990 	u64 last_pos;
991 	int i;
992 	int ret = 0;
993 
994 	start_pos = round_down(pos, fs_info->sectorsize);
995 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
996 
997 	if (start_pos < inode->vfs_inode.i_size) {
998 		struct btrfs_ordered_extent *ordered;
999 
1000 		if (nowait) {
1001 			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
1002 					     cached_state)) {
1003 				for (i = 0; i < num_pages; i++) {
1004 					unlock_page(pages[i]);
1005 					put_page(pages[i]);
1006 					pages[i] = NULL;
1007 				}
1008 
1009 				return -EAGAIN;
1010 			}
1011 		} else {
1012 			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1013 		}
1014 
1015 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1016 						     last_pos - start_pos + 1);
1017 		if (ordered &&
1018 		    ordered->file_offset + ordered->num_bytes > start_pos &&
1019 		    ordered->file_offset <= last_pos) {
1020 			unlock_extent(&inode->io_tree, start_pos, last_pos,
1021 				      cached_state);
1022 			for (i = 0; i < num_pages; i++) {
1023 				unlock_page(pages[i]);
1024 				put_page(pages[i]);
1025 			}
1026 			btrfs_start_ordered_extent(ordered);
1027 			btrfs_put_ordered_extent(ordered);
1028 			return -EAGAIN;
1029 		}
1030 		if (ordered)
1031 			btrfs_put_ordered_extent(ordered);
1032 
1033 		*lockstart = start_pos;
1034 		*lockend = last_pos;
1035 		ret = 1;
1036 	}
1037 
1038 	/*
1039 	 * We should be called after prepare_pages() which should have locked
1040 	 * all pages in the range.
1041 	 */
1042 	for (i = 0; i < num_pages; i++)
1043 		WARN_ON(!PageLocked(pages[i]));
1044 
1045 	return ret;
1046 }
1047 
1048 /*
1049  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1050  *
1051  * @pos:         File offset.
1052  * @write_bytes: The length to write, will be updated to the nocow writeable
1053  *               range.
1054  *
1055  * This function will flush ordered extents in the range to ensure proper
1056  * nocow checks.
1057  *
1058  * Return:
1059  * > 0          If we can nocow, and updates @write_bytes.
1060  *  0           If we can't do a nocow write.
1061  * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1062  *              root is in progress.
1063  * < 0          If an error happened.
1064  *
1065  * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1066  */
1067 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1068 			   size_t *write_bytes, bool nowait)
1069 {
1070 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1071 	struct btrfs_root *root = inode->root;
1072 	struct extent_state *cached_state = NULL;
1073 	u64 lockstart, lockend;
1074 	u64 num_bytes;
1075 	int ret;
1076 
1077 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1078 		return 0;
1079 
1080 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1081 		return -EAGAIN;
1082 
1083 	lockstart = round_down(pos, fs_info->sectorsize);
1084 	lockend = round_up(pos + *write_bytes,
1085 			   fs_info->sectorsize) - 1;
1086 	num_bytes = lockend - lockstart + 1;
1087 
1088 	if (nowait) {
1089 		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1090 						  &cached_state)) {
1091 			btrfs_drew_write_unlock(&root->snapshot_lock);
1092 			return -EAGAIN;
1093 		}
1094 	} else {
1095 		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1096 						   &cached_state);
1097 	}
1098 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1099 			NULL, NULL, NULL, nowait, false);
1100 	if (ret <= 0)
1101 		btrfs_drew_write_unlock(&root->snapshot_lock);
1102 	else
1103 		*write_bytes = min_t(size_t, *write_bytes ,
1104 				     num_bytes - pos + lockstart);
1105 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1106 
1107 	return ret;
1108 }
1109 
1110 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1111 {
1112 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1113 }
1114 
1115 static void update_time_for_write(struct inode *inode)
1116 {
1117 	struct timespec64 now, ts;
1118 
1119 	if (IS_NOCMTIME(inode))
1120 		return;
1121 
1122 	now = current_time(inode);
1123 	ts = inode_get_mtime(inode);
1124 	if (!timespec64_equal(&ts, &now))
1125 		inode_set_mtime_to_ts(inode, now);
1126 
1127 	ts = inode_get_ctime(inode);
1128 	if (!timespec64_equal(&ts, &now))
1129 		inode_set_ctime_to_ts(inode, now);
1130 
1131 	if (IS_I_VERSION(inode))
1132 		inode_inc_iversion(inode);
1133 }
1134 
1135 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1136 			     size_t count)
1137 {
1138 	struct file *file = iocb->ki_filp;
1139 	struct inode *inode = file_inode(file);
1140 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1141 	loff_t pos = iocb->ki_pos;
1142 	int ret;
1143 	loff_t oldsize;
1144 	loff_t start_pos;
1145 
1146 	/*
1147 	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1148 	 * prealloc flags, as without those flags we always have to COW. We will
1149 	 * later check if we can really COW into the target range (using
1150 	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1151 	 */
1152 	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1153 	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1154 		return -EAGAIN;
1155 
1156 	ret = file_remove_privs(file);
1157 	if (ret)
1158 		return ret;
1159 
1160 	/*
1161 	 * We reserve space for updating the inode when we reserve space for the
1162 	 * extent we are going to write, so we will enospc out there.  We don't
1163 	 * need to start yet another transaction to update the inode as we will
1164 	 * update the inode when we finish writing whatever data we write.
1165 	 */
1166 	update_time_for_write(inode);
1167 
1168 	start_pos = round_down(pos, fs_info->sectorsize);
1169 	oldsize = i_size_read(inode);
1170 	if (start_pos > oldsize) {
1171 		/* Expand hole size to cover write data, preventing empty gap */
1172 		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1173 
1174 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1175 		if (ret)
1176 			return ret;
1177 	}
1178 
1179 	return 0;
1180 }
1181 
1182 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1183 					       struct iov_iter *i)
1184 {
1185 	struct file *file = iocb->ki_filp;
1186 	loff_t pos;
1187 	struct inode *inode = file_inode(file);
1188 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1189 	struct page **pages = NULL;
1190 	struct extent_changeset *data_reserved = NULL;
1191 	u64 release_bytes = 0;
1192 	u64 lockstart;
1193 	u64 lockend;
1194 	size_t num_written = 0;
1195 	int nrptrs;
1196 	ssize_t ret;
1197 	bool only_release_metadata = false;
1198 	bool force_page_uptodate = false;
1199 	loff_t old_isize = i_size_read(inode);
1200 	unsigned int ilock_flags = 0;
1201 	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1202 	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1203 
1204 	if (nowait)
1205 		ilock_flags |= BTRFS_ILOCK_TRY;
1206 
1207 	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1208 	if (ret < 0)
1209 		return ret;
1210 
1211 	ret = generic_write_checks(iocb, i);
1212 	if (ret <= 0)
1213 		goto out;
1214 
1215 	ret = btrfs_write_check(iocb, i, ret);
1216 	if (ret < 0)
1217 		goto out;
1218 
1219 	pos = iocb->ki_pos;
1220 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1221 			PAGE_SIZE / (sizeof(struct page *)));
1222 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1223 	nrptrs = max(nrptrs, 8);
1224 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1225 	if (!pages) {
1226 		ret = -ENOMEM;
1227 		goto out;
1228 	}
1229 
1230 	while (iov_iter_count(i) > 0) {
1231 		struct extent_state *cached_state = NULL;
1232 		size_t offset = offset_in_page(pos);
1233 		size_t sector_offset;
1234 		size_t write_bytes = min(iov_iter_count(i),
1235 					 nrptrs * (size_t)PAGE_SIZE -
1236 					 offset);
1237 		size_t num_pages;
1238 		size_t reserve_bytes;
1239 		size_t dirty_pages;
1240 		size_t copied;
1241 		size_t dirty_sectors;
1242 		size_t num_sectors;
1243 		int extents_locked;
1244 
1245 		/*
1246 		 * Fault pages before locking them in prepare_pages
1247 		 * to avoid recursive lock
1248 		 */
1249 		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1250 			ret = -EFAULT;
1251 			break;
1252 		}
1253 
1254 		only_release_metadata = false;
1255 		sector_offset = pos & (fs_info->sectorsize - 1);
1256 
1257 		extent_changeset_release(data_reserved);
1258 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1259 						  &data_reserved, pos,
1260 						  write_bytes, nowait);
1261 		if (ret < 0) {
1262 			int can_nocow;
1263 
1264 			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1265 				ret = -EAGAIN;
1266 				break;
1267 			}
1268 
1269 			/*
1270 			 * If we don't have to COW at the offset, reserve
1271 			 * metadata only. write_bytes may get smaller than
1272 			 * requested here.
1273 			 */
1274 			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1275 							   &write_bytes, nowait);
1276 			if (can_nocow < 0)
1277 				ret = can_nocow;
1278 			if (can_nocow > 0)
1279 				ret = 0;
1280 			if (ret)
1281 				break;
1282 			only_release_metadata = true;
1283 		}
1284 
1285 		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1286 		WARN_ON(num_pages > nrptrs);
1287 		reserve_bytes = round_up(write_bytes + sector_offset,
1288 					 fs_info->sectorsize);
1289 		WARN_ON(reserve_bytes == 0);
1290 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1291 						      reserve_bytes,
1292 						      reserve_bytes, nowait);
1293 		if (ret) {
1294 			if (!only_release_metadata)
1295 				btrfs_free_reserved_data_space(BTRFS_I(inode),
1296 						data_reserved, pos,
1297 						write_bytes);
1298 			else
1299 				btrfs_check_nocow_unlock(BTRFS_I(inode));
1300 
1301 			if (nowait && ret == -ENOSPC)
1302 				ret = -EAGAIN;
1303 			break;
1304 		}
1305 
1306 		release_bytes = reserve_bytes;
1307 again:
1308 		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1309 		if (ret) {
1310 			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1311 			break;
1312 		}
1313 
1314 		/*
1315 		 * This is going to setup the pages array with the number of
1316 		 * pages we want, so we don't really need to worry about the
1317 		 * contents of pages from loop to loop
1318 		 */
1319 		ret = prepare_pages(inode, pages, num_pages,
1320 				    pos, write_bytes, force_page_uptodate, false);
1321 		if (ret) {
1322 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1323 						       reserve_bytes);
1324 			break;
1325 		}
1326 
1327 		extents_locked = lock_and_cleanup_extent_if_need(
1328 				BTRFS_I(inode), pages,
1329 				num_pages, pos, write_bytes, &lockstart,
1330 				&lockend, nowait, &cached_state);
1331 		if (extents_locked < 0) {
1332 			if (!nowait && extents_locked == -EAGAIN)
1333 				goto again;
1334 
1335 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1336 						       reserve_bytes);
1337 			ret = extents_locked;
1338 			break;
1339 		}
1340 
1341 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1342 
1343 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1344 		dirty_sectors = round_up(copied + sector_offset,
1345 					fs_info->sectorsize);
1346 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1347 
1348 		/*
1349 		 * if we have trouble faulting in the pages, fall
1350 		 * back to one page at a time
1351 		 */
1352 		if (copied < write_bytes)
1353 			nrptrs = 1;
1354 
1355 		if (copied == 0) {
1356 			force_page_uptodate = true;
1357 			dirty_sectors = 0;
1358 			dirty_pages = 0;
1359 		} else {
1360 			force_page_uptodate = false;
1361 			dirty_pages = DIV_ROUND_UP(copied + offset,
1362 						   PAGE_SIZE);
1363 		}
1364 
1365 		if (num_sectors > dirty_sectors) {
1366 			/* release everything except the sectors we dirtied */
1367 			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1368 			if (only_release_metadata) {
1369 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1370 							release_bytes, true);
1371 			} else {
1372 				u64 __pos;
1373 
1374 				__pos = round_down(pos,
1375 						   fs_info->sectorsize) +
1376 					(dirty_pages << PAGE_SHIFT);
1377 				btrfs_delalloc_release_space(BTRFS_I(inode),
1378 						data_reserved, __pos,
1379 						release_bytes, true);
1380 			}
1381 		}
1382 
1383 		release_bytes = round_up(copied + sector_offset,
1384 					fs_info->sectorsize);
1385 
1386 		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1387 					dirty_pages, pos, copied,
1388 					&cached_state, only_release_metadata);
1389 
1390 		/*
1391 		 * If we have not locked the extent range, because the range's
1392 		 * start offset is >= i_size, we might still have a non-NULL
1393 		 * cached extent state, acquired while marking the extent range
1394 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1395 		 * possible cached extent state to avoid a memory leak.
1396 		 */
1397 		if (extents_locked)
1398 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1399 				      lockend, &cached_state);
1400 		else
1401 			free_extent_state(cached_state);
1402 
1403 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1404 		if (ret) {
1405 			btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1406 			break;
1407 		}
1408 
1409 		release_bytes = 0;
1410 		if (only_release_metadata)
1411 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1412 
1413 		btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1414 
1415 		cond_resched();
1416 
1417 		pos += copied;
1418 		num_written += copied;
1419 	}
1420 
1421 	kfree(pages);
1422 
1423 	if (release_bytes) {
1424 		if (only_release_metadata) {
1425 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1426 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1427 					release_bytes, true);
1428 		} else {
1429 			btrfs_delalloc_release_space(BTRFS_I(inode),
1430 					data_reserved,
1431 					round_down(pos, fs_info->sectorsize),
1432 					release_bytes, true);
1433 		}
1434 	}
1435 
1436 	extent_changeset_free(data_reserved);
1437 	if (num_written > 0) {
1438 		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1439 		iocb->ki_pos += num_written;
1440 	}
1441 out:
1442 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1443 	return num_written ? num_written : ret;
1444 }
1445 
1446 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1447 			       const struct iov_iter *iter, loff_t offset)
1448 {
1449 	const u32 blocksize_mask = fs_info->sectorsize - 1;
1450 
1451 	if (offset & blocksize_mask)
1452 		return -EINVAL;
1453 
1454 	if (iov_iter_alignment(iter) & blocksize_mask)
1455 		return -EINVAL;
1456 
1457 	return 0;
1458 }
1459 
1460 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1461 {
1462 	struct file *file = iocb->ki_filp;
1463 	struct inode *inode = file_inode(file);
1464 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1465 	loff_t pos;
1466 	ssize_t written = 0;
1467 	ssize_t written_buffered;
1468 	size_t prev_left = 0;
1469 	loff_t endbyte;
1470 	ssize_t err;
1471 	unsigned int ilock_flags = 0;
1472 	struct iomap_dio *dio;
1473 
1474 	if (iocb->ki_flags & IOCB_NOWAIT)
1475 		ilock_flags |= BTRFS_ILOCK_TRY;
1476 
1477 	/*
1478 	 * If the write DIO is within EOF, use a shared lock and also only if
1479 	 * security bits will likely not be dropped by file_remove_privs() called
1480 	 * from btrfs_write_check(). Either will need to be rechecked after the
1481 	 * lock was acquired.
1482 	 */
1483 	if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode))
1484 		ilock_flags |= BTRFS_ILOCK_SHARED;
1485 
1486 relock:
1487 	err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1488 	if (err < 0)
1489 		return err;
1490 
1491 	/* Shared lock cannot be used with security bits set. */
1492 	if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) {
1493 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1494 		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1495 		goto relock;
1496 	}
1497 
1498 	err = generic_write_checks(iocb, from);
1499 	if (err <= 0) {
1500 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1501 		return err;
1502 	}
1503 
1504 	err = btrfs_write_check(iocb, from, err);
1505 	if (err < 0) {
1506 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1507 		goto out;
1508 	}
1509 
1510 	pos = iocb->ki_pos;
1511 	/*
1512 	 * Re-check since file size may have changed just before taking the
1513 	 * lock or pos may have changed because of O_APPEND in generic_write_check()
1514 	 */
1515 	if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1516 	    pos + iov_iter_count(from) > i_size_read(inode)) {
1517 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1518 		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1519 		goto relock;
1520 	}
1521 
1522 	if (check_direct_IO(fs_info, from, pos)) {
1523 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1524 		goto buffered;
1525 	}
1526 
1527 	/*
1528 	 * The iov_iter can be mapped to the same file range we are writing to.
1529 	 * If that's the case, then we will deadlock in the iomap code, because
1530 	 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1531 	 * an ordered extent, and after that it will fault in the pages that the
1532 	 * iov_iter refers to. During the fault in we end up in the readahead
1533 	 * pages code (starting at btrfs_readahead()), which will lock the range,
1534 	 * find that ordered extent and then wait for it to complete (at
1535 	 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1536 	 * obviously the ordered extent can never complete as we didn't submit
1537 	 * yet the respective bio(s). This always happens when the buffer is
1538 	 * memory mapped to the same file range, since the iomap DIO code always
1539 	 * invalidates pages in the target file range (after starting and waiting
1540 	 * for any writeback).
1541 	 *
1542 	 * So here we disable page faults in the iov_iter and then retry if we
1543 	 * got -EFAULT, faulting in the pages before the retry.
1544 	 */
1545 	from->nofault = true;
1546 	dio = btrfs_dio_write(iocb, from, written);
1547 	from->nofault = false;
1548 
1549 	/*
1550 	 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1551 	 * iocb, and that needs to lock the inode. So unlock it before calling
1552 	 * iomap_dio_complete() to avoid a deadlock.
1553 	 */
1554 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1555 
1556 	if (IS_ERR_OR_NULL(dio))
1557 		err = PTR_ERR_OR_ZERO(dio);
1558 	else
1559 		err = iomap_dio_complete(dio);
1560 
1561 	/* No increment (+=) because iomap returns a cumulative value. */
1562 	if (err > 0)
1563 		written = err;
1564 
1565 	if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1566 		const size_t left = iov_iter_count(from);
1567 		/*
1568 		 * We have more data left to write. Try to fault in as many as
1569 		 * possible of the remainder pages and retry. We do this without
1570 		 * releasing and locking again the inode, to prevent races with
1571 		 * truncate.
1572 		 *
1573 		 * Also, in case the iov refers to pages in the file range of the
1574 		 * file we want to write to (due to a mmap), we could enter an
1575 		 * infinite loop if we retry after faulting the pages in, since
1576 		 * iomap will invalidate any pages in the range early on, before
1577 		 * it tries to fault in the pages of the iov. So we keep track of
1578 		 * how much was left of iov in the previous EFAULT and fallback
1579 		 * to buffered IO in case we haven't made any progress.
1580 		 */
1581 		if (left == prev_left) {
1582 			err = -ENOTBLK;
1583 		} else {
1584 			fault_in_iov_iter_readable(from, left);
1585 			prev_left = left;
1586 			goto relock;
1587 		}
1588 	}
1589 
1590 	/*
1591 	 * If 'err' is -ENOTBLK or we have not written all data, then it means
1592 	 * we must fallback to buffered IO.
1593 	 */
1594 	if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
1595 		goto out;
1596 
1597 buffered:
1598 	/*
1599 	 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1600 	 * it must retry the operation in a context where blocking is acceptable,
1601 	 * because even if we end up not blocking during the buffered IO attempt
1602 	 * below, we will block when flushing and waiting for the IO.
1603 	 */
1604 	if (iocb->ki_flags & IOCB_NOWAIT) {
1605 		err = -EAGAIN;
1606 		goto out;
1607 	}
1608 
1609 	pos = iocb->ki_pos;
1610 	written_buffered = btrfs_buffered_write(iocb, from);
1611 	if (written_buffered < 0) {
1612 		err = written_buffered;
1613 		goto out;
1614 	}
1615 	/*
1616 	 * Ensure all data is persisted. We want the next direct IO read to be
1617 	 * able to read what was just written.
1618 	 */
1619 	endbyte = pos + written_buffered - 1;
1620 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1621 	if (err)
1622 		goto out;
1623 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1624 	if (err)
1625 		goto out;
1626 	written += written_buffered;
1627 	iocb->ki_pos = pos + written_buffered;
1628 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1629 				 endbyte >> PAGE_SHIFT);
1630 out:
1631 	return err < 0 ? err : written;
1632 }
1633 
1634 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1635 			const struct btrfs_ioctl_encoded_io_args *encoded)
1636 {
1637 	struct file *file = iocb->ki_filp;
1638 	struct inode *inode = file_inode(file);
1639 	loff_t count;
1640 	ssize_t ret;
1641 
1642 	btrfs_inode_lock(BTRFS_I(inode), 0);
1643 	count = encoded->len;
1644 	ret = generic_write_checks_count(iocb, &count);
1645 	if (ret == 0 && count != encoded->len) {
1646 		/*
1647 		 * The write got truncated by generic_write_checks_count(). We
1648 		 * can't do a partial encoded write.
1649 		 */
1650 		ret = -EFBIG;
1651 	}
1652 	if (ret || encoded->len == 0)
1653 		goto out;
1654 
1655 	ret = btrfs_write_check(iocb, from, encoded->len);
1656 	if (ret < 0)
1657 		goto out;
1658 
1659 	ret = btrfs_do_encoded_write(iocb, from, encoded);
1660 out:
1661 	btrfs_inode_unlock(BTRFS_I(inode), 0);
1662 	return ret;
1663 }
1664 
1665 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1666 			    const struct btrfs_ioctl_encoded_io_args *encoded)
1667 {
1668 	struct file *file = iocb->ki_filp;
1669 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1670 	ssize_t num_written, num_sync;
1671 
1672 	/*
1673 	 * If the fs flips readonly due to some impossible error, although we
1674 	 * have opened a file as writable, we have to stop this write operation
1675 	 * to ensure consistency.
1676 	 */
1677 	if (BTRFS_FS_ERROR(inode->root->fs_info))
1678 		return -EROFS;
1679 
1680 	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1681 		return -EOPNOTSUPP;
1682 
1683 	if (encoded) {
1684 		num_written = btrfs_encoded_write(iocb, from, encoded);
1685 		num_sync = encoded->len;
1686 	} else if (iocb->ki_flags & IOCB_DIRECT) {
1687 		num_written = btrfs_direct_write(iocb, from);
1688 		num_sync = num_written;
1689 	} else {
1690 		num_written = btrfs_buffered_write(iocb, from);
1691 		num_sync = num_written;
1692 	}
1693 
1694 	btrfs_set_inode_last_sub_trans(inode);
1695 
1696 	if (num_sync > 0) {
1697 		num_sync = generic_write_sync(iocb, num_sync);
1698 		if (num_sync < 0)
1699 			num_written = num_sync;
1700 	}
1701 
1702 	return num_written;
1703 }
1704 
1705 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1706 {
1707 	return btrfs_do_write_iter(iocb, from, NULL);
1708 }
1709 
1710 int btrfs_release_file(struct inode *inode, struct file *filp)
1711 {
1712 	struct btrfs_file_private *private = filp->private_data;
1713 
1714 	if (private) {
1715 		kfree(private->filldir_buf);
1716 		free_extent_state(private->llseek_cached_state);
1717 		kfree(private);
1718 		filp->private_data = NULL;
1719 	}
1720 
1721 	/*
1722 	 * Set by setattr when we are about to truncate a file from a non-zero
1723 	 * size to a zero size.  This tries to flush down new bytes that may
1724 	 * have been written if the application were using truncate to replace
1725 	 * a file in place.
1726 	 */
1727 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1728 			       &BTRFS_I(inode)->runtime_flags))
1729 			filemap_flush(inode->i_mapping);
1730 	return 0;
1731 }
1732 
1733 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1734 {
1735 	int ret;
1736 	struct blk_plug plug;
1737 
1738 	/*
1739 	 * This is only called in fsync, which would do synchronous writes, so
1740 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1741 	 * multiple disks using raid profile, a large IO can be split to
1742 	 * several segments of stripe length (currently 64K).
1743 	 */
1744 	blk_start_plug(&plug);
1745 	ret = btrfs_fdatawrite_range(inode, start, end);
1746 	blk_finish_plug(&plug);
1747 
1748 	return ret;
1749 }
1750 
1751 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1752 {
1753 	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1754 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1755 
1756 	if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1757 	    list_empty(&ctx->ordered_extents))
1758 		return true;
1759 
1760 	/*
1761 	 * If we are doing a fast fsync we can not bail out if the inode's
1762 	 * last_trans is <= then the last committed transaction, because we only
1763 	 * update the last_trans of the inode during ordered extent completion,
1764 	 * and for a fast fsync we don't wait for that, we only wait for the
1765 	 * writeback to complete.
1766 	 */
1767 	if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1768 	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1769 	     list_empty(&ctx->ordered_extents)))
1770 		return true;
1771 
1772 	return false;
1773 }
1774 
1775 /*
1776  * fsync call for both files and directories.  This logs the inode into
1777  * the tree log instead of forcing full commits whenever possible.
1778  *
1779  * It needs to call filemap_fdatawait so that all ordered extent updates are
1780  * in the metadata btree are up to date for copying to the log.
1781  *
1782  * It drops the inode mutex before doing the tree log commit.  This is an
1783  * important optimization for directories because holding the mutex prevents
1784  * new operations on the dir while we write to disk.
1785  */
1786 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1787 {
1788 	struct dentry *dentry = file_dentry(file);
1789 	struct inode *inode = d_inode(dentry);
1790 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1791 	struct btrfs_root *root = BTRFS_I(inode)->root;
1792 	struct btrfs_trans_handle *trans;
1793 	struct btrfs_log_ctx ctx;
1794 	int ret = 0, err;
1795 	u64 len;
1796 	bool full_sync;
1797 
1798 	trace_btrfs_sync_file(file, datasync);
1799 
1800 	btrfs_init_log_ctx(&ctx, inode);
1801 
1802 	/*
1803 	 * Always set the range to a full range, otherwise we can get into
1804 	 * several problems, from missing file extent items to represent holes
1805 	 * when not using the NO_HOLES feature, to log tree corruption due to
1806 	 * races between hole detection during logging and completion of ordered
1807 	 * extents outside the range, to missing checksums due to ordered extents
1808 	 * for which we flushed only a subset of their pages.
1809 	 */
1810 	start = 0;
1811 	end = LLONG_MAX;
1812 	len = (u64)LLONG_MAX + 1;
1813 
1814 	/*
1815 	 * We write the dirty pages in the range and wait until they complete
1816 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1817 	 * multi-task, and make the performance up.  See
1818 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1819 	 */
1820 	ret = start_ordered_ops(inode, start, end);
1821 	if (ret)
1822 		goto out;
1823 
1824 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1825 
1826 	atomic_inc(&root->log_batch);
1827 
1828 	/*
1829 	 * Before we acquired the inode's lock and the mmap lock, someone may
1830 	 * have dirtied more pages in the target range. We need to make sure
1831 	 * that writeback for any such pages does not start while we are logging
1832 	 * the inode, because if it does, any of the following might happen when
1833 	 * we are not doing a full inode sync:
1834 	 *
1835 	 * 1) We log an extent after its writeback finishes but before its
1836 	 *    checksums are added to the csum tree, leading to -EIO errors
1837 	 *    when attempting to read the extent after a log replay.
1838 	 *
1839 	 * 2) We can end up logging an extent before its writeback finishes.
1840 	 *    Therefore after the log replay we will have a file extent item
1841 	 *    pointing to an unwritten extent (and no data checksums as well).
1842 	 *
1843 	 * So trigger writeback for any eventual new dirty pages and then we
1844 	 * wait for all ordered extents to complete below.
1845 	 */
1846 	ret = start_ordered_ops(inode, start, end);
1847 	if (ret) {
1848 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1849 		goto out;
1850 	}
1851 
1852 	/*
1853 	 * Always check for the full sync flag while holding the inode's lock,
1854 	 * to avoid races with other tasks. The flag must be either set all the
1855 	 * time during logging or always off all the time while logging.
1856 	 * We check the flag here after starting delalloc above, because when
1857 	 * running delalloc the full sync flag may be set if we need to drop
1858 	 * extra extent map ranges due to temporary memory allocation failures.
1859 	 */
1860 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1861 			     &BTRFS_I(inode)->runtime_flags);
1862 
1863 	/*
1864 	 * We have to do this here to avoid the priority inversion of waiting on
1865 	 * IO of a lower priority task while holding a transaction open.
1866 	 *
1867 	 * For a full fsync we wait for the ordered extents to complete while
1868 	 * for a fast fsync we wait just for writeback to complete, and then
1869 	 * attach the ordered extents to the transaction so that a transaction
1870 	 * commit waits for their completion, to avoid data loss if we fsync,
1871 	 * the current transaction commits before the ordered extents complete
1872 	 * and a power failure happens right after that.
1873 	 *
1874 	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1875 	 * logical address recorded in the ordered extent may change. We need
1876 	 * to wait for the IO to stabilize the logical address.
1877 	 */
1878 	if (full_sync || btrfs_is_zoned(fs_info)) {
1879 		ret = btrfs_wait_ordered_range(inode, start, len);
1880 	} else {
1881 		/*
1882 		 * Get our ordered extents as soon as possible to avoid doing
1883 		 * checksum lookups in the csum tree, and use instead the
1884 		 * checksums attached to the ordered extents.
1885 		 */
1886 		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1887 						      &ctx.ordered_extents);
1888 		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
1889 	}
1890 
1891 	if (ret)
1892 		goto out_release_extents;
1893 
1894 	atomic_inc(&root->log_batch);
1895 
1896 	if (skip_inode_logging(&ctx)) {
1897 		/*
1898 		 * We've had everything committed since the last time we were
1899 		 * modified so clear this flag in case it was set for whatever
1900 		 * reason, it's no longer relevant.
1901 		 */
1902 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1903 			  &BTRFS_I(inode)->runtime_flags);
1904 		/*
1905 		 * An ordered extent might have started before and completed
1906 		 * already with io errors, in which case the inode was not
1907 		 * updated and we end up here. So check the inode's mapping
1908 		 * for any errors that might have happened since we last
1909 		 * checked called fsync.
1910 		 */
1911 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
1912 		goto out_release_extents;
1913 	}
1914 
1915 	/*
1916 	 * We use start here because we will need to wait on the IO to complete
1917 	 * in btrfs_sync_log, which could require joining a transaction (for
1918 	 * example checking cross references in the nocow path).  If we use join
1919 	 * here we could get into a situation where we're waiting on IO to
1920 	 * happen that is blocked on a transaction trying to commit.  With start
1921 	 * we inc the extwriter counter, so we wait for all extwriters to exit
1922 	 * before we start blocking joiners.  This comment is to keep somebody
1923 	 * from thinking they are super smart and changing this to
1924 	 * btrfs_join_transaction *cough*Josef*cough*.
1925 	 */
1926 	trans = btrfs_start_transaction(root, 0);
1927 	if (IS_ERR(trans)) {
1928 		ret = PTR_ERR(trans);
1929 		goto out_release_extents;
1930 	}
1931 	trans->in_fsync = true;
1932 
1933 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1934 	btrfs_release_log_ctx_extents(&ctx);
1935 	if (ret < 0) {
1936 		/* Fallthrough and commit/free transaction. */
1937 		ret = BTRFS_LOG_FORCE_COMMIT;
1938 	}
1939 
1940 	/* we've logged all the items and now have a consistent
1941 	 * version of the file in the log.  It is possible that
1942 	 * someone will come in and modify the file, but that's
1943 	 * fine because the log is consistent on disk, and we
1944 	 * have references to all of the file's extents
1945 	 *
1946 	 * It is possible that someone will come in and log the
1947 	 * file again, but that will end up using the synchronization
1948 	 * inside btrfs_sync_log to keep things safe.
1949 	 */
1950 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1951 
1952 	if (ret == BTRFS_NO_LOG_SYNC) {
1953 		ret = btrfs_end_transaction(trans);
1954 		goto out;
1955 	}
1956 
1957 	/* We successfully logged the inode, attempt to sync the log. */
1958 	if (!ret) {
1959 		ret = btrfs_sync_log(trans, root, &ctx);
1960 		if (!ret) {
1961 			ret = btrfs_end_transaction(trans);
1962 			goto out;
1963 		}
1964 	}
1965 
1966 	/*
1967 	 * At this point we need to commit the transaction because we had
1968 	 * btrfs_need_log_full_commit() or some other error.
1969 	 *
1970 	 * If we didn't do a full sync we have to stop the trans handle, wait on
1971 	 * the ordered extents, start it again and commit the transaction.  If
1972 	 * we attempt to wait on the ordered extents here we could deadlock with
1973 	 * something like fallocate() that is holding the extent lock trying to
1974 	 * start a transaction while some other thread is trying to commit the
1975 	 * transaction while we (fsync) are currently holding the transaction
1976 	 * open.
1977 	 */
1978 	if (!full_sync) {
1979 		ret = btrfs_end_transaction(trans);
1980 		if (ret)
1981 			goto out;
1982 		ret = btrfs_wait_ordered_range(inode, start, len);
1983 		if (ret)
1984 			goto out;
1985 
1986 		/*
1987 		 * This is safe to use here because we're only interested in
1988 		 * making sure the transaction that had the ordered extents is
1989 		 * committed.  We aren't waiting on anything past this point,
1990 		 * we're purely getting the transaction and committing it.
1991 		 */
1992 		trans = btrfs_attach_transaction_barrier(root);
1993 		if (IS_ERR(trans)) {
1994 			ret = PTR_ERR(trans);
1995 
1996 			/*
1997 			 * We committed the transaction and there's no currently
1998 			 * running transaction, this means everything we care
1999 			 * about made it to disk and we are done.
2000 			 */
2001 			if (ret == -ENOENT)
2002 				ret = 0;
2003 			goto out;
2004 		}
2005 	}
2006 
2007 	ret = btrfs_commit_transaction(trans);
2008 out:
2009 	ASSERT(list_empty(&ctx.list));
2010 	ASSERT(list_empty(&ctx.conflict_inodes));
2011 	err = file_check_and_advance_wb_err(file);
2012 	if (!ret)
2013 		ret = err;
2014 	return ret > 0 ? -EIO : ret;
2015 
2016 out_release_extents:
2017 	btrfs_release_log_ctx_extents(&ctx);
2018 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2019 	goto out;
2020 }
2021 
2022 static const struct vm_operations_struct btrfs_file_vm_ops = {
2023 	.fault		= filemap_fault,
2024 	.map_pages	= filemap_map_pages,
2025 	.page_mkwrite	= btrfs_page_mkwrite,
2026 };
2027 
2028 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2029 {
2030 	struct address_space *mapping = filp->f_mapping;
2031 
2032 	if (!mapping->a_ops->read_folio)
2033 		return -ENOEXEC;
2034 
2035 	file_accessed(filp);
2036 	vma->vm_ops = &btrfs_file_vm_ops;
2037 
2038 	return 0;
2039 }
2040 
2041 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2042 			  int slot, u64 start, u64 end)
2043 {
2044 	struct btrfs_file_extent_item *fi;
2045 	struct btrfs_key key;
2046 
2047 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2048 		return 0;
2049 
2050 	btrfs_item_key_to_cpu(leaf, &key, slot);
2051 	if (key.objectid != btrfs_ino(inode) ||
2052 	    key.type != BTRFS_EXTENT_DATA_KEY)
2053 		return 0;
2054 
2055 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2056 
2057 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2058 		return 0;
2059 
2060 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2061 		return 0;
2062 
2063 	if (key.offset == end)
2064 		return 1;
2065 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2066 		return 1;
2067 	return 0;
2068 }
2069 
2070 static int fill_holes(struct btrfs_trans_handle *trans,
2071 		struct btrfs_inode *inode,
2072 		struct btrfs_path *path, u64 offset, u64 end)
2073 {
2074 	struct btrfs_fs_info *fs_info = trans->fs_info;
2075 	struct btrfs_root *root = inode->root;
2076 	struct extent_buffer *leaf;
2077 	struct btrfs_file_extent_item *fi;
2078 	struct extent_map *hole_em;
2079 	struct btrfs_key key;
2080 	int ret;
2081 
2082 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2083 		goto out;
2084 
2085 	key.objectid = btrfs_ino(inode);
2086 	key.type = BTRFS_EXTENT_DATA_KEY;
2087 	key.offset = offset;
2088 
2089 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2090 	if (ret <= 0) {
2091 		/*
2092 		 * We should have dropped this offset, so if we find it then
2093 		 * something has gone horribly wrong.
2094 		 */
2095 		if (ret == 0)
2096 			ret = -EINVAL;
2097 		return ret;
2098 	}
2099 
2100 	leaf = path->nodes[0];
2101 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2102 		u64 num_bytes;
2103 
2104 		path->slots[0]--;
2105 		fi = btrfs_item_ptr(leaf, path->slots[0],
2106 				    struct btrfs_file_extent_item);
2107 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2108 			end - offset;
2109 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2110 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2111 		btrfs_set_file_extent_offset(leaf, fi, 0);
2112 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2113 		btrfs_mark_buffer_dirty(trans, leaf);
2114 		goto out;
2115 	}
2116 
2117 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2118 		u64 num_bytes;
2119 
2120 		key.offset = offset;
2121 		btrfs_set_item_key_safe(trans, path, &key);
2122 		fi = btrfs_item_ptr(leaf, path->slots[0],
2123 				    struct btrfs_file_extent_item);
2124 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2125 			offset;
2126 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2127 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2128 		btrfs_set_file_extent_offset(leaf, fi, 0);
2129 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2130 		btrfs_mark_buffer_dirty(trans, leaf);
2131 		goto out;
2132 	}
2133 	btrfs_release_path(path);
2134 
2135 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2136 				       end - offset);
2137 	if (ret)
2138 		return ret;
2139 
2140 out:
2141 	btrfs_release_path(path);
2142 
2143 	hole_em = alloc_extent_map();
2144 	if (!hole_em) {
2145 		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2146 		btrfs_set_inode_full_sync(inode);
2147 	} else {
2148 		hole_em->start = offset;
2149 		hole_em->len = end - offset;
2150 		hole_em->ram_bytes = hole_em->len;
2151 		hole_em->orig_start = offset;
2152 
2153 		hole_em->block_start = EXTENT_MAP_HOLE;
2154 		hole_em->block_len = 0;
2155 		hole_em->orig_block_len = 0;
2156 		hole_em->generation = trans->transid;
2157 
2158 		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2159 		free_extent_map(hole_em);
2160 		if (ret)
2161 			btrfs_set_inode_full_sync(inode);
2162 	}
2163 
2164 	return 0;
2165 }
2166 
2167 /*
2168  * Find a hole extent on given inode and change start/len to the end of hole
2169  * extent.(hole/vacuum extent whose em->start <= start &&
2170  *	   em->start + em->len > start)
2171  * When a hole extent is found, return 1 and modify start/len.
2172  */
2173 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2174 {
2175 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2176 	struct extent_map *em;
2177 	int ret = 0;
2178 
2179 	em = btrfs_get_extent(inode, NULL, 0,
2180 			      round_down(*start, fs_info->sectorsize),
2181 			      round_up(*len, fs_info->sectorsize));
2182 	if (IS_ERR(em))
2183 		return PTR_ERR(em);
2184 
2185 	/* Hole or vacuum extent(only exists in no-hole mode) */
2186 	if (em->block_start == EXTENT_MAP_HOLE) {
2187 		ret = 1;
2188 		*len = em->start + em->len > *start + *len ?
2189 		       0 : *start + *len - em->start - em->len;
2190 		*start = em->start + em->len;
2191 	}
2192 	free_extent_map(em);
2193 	return ret;
2194 }
2195 
2196 static void btrfs_punch_hole_lock_range(struct inode *inode,
2197 					const u64 lockstart,
2198 					const u64 lockend,
2199 					struct extent_state **cached_state)
2200 {
2201 	/*
2202 	 * For subpage case, if the range is not at page boundary, we could
2203 	 * have pages at the leading/tailing part of the range.
2204 	 * This could lead to dead loop since filemap_range_has_page()
2205 	 * will always return true.
2206 	 * So here we need to do extra page alignment for
2207 	 * filemap_range_has_page().
2208 	 */
2209 	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2210 	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2211 
2212 	while (1) {
2213 		truncate_pagecache_range(inode, lockstart, lockend);
2214 
2215 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2216 			    cached_state);
2217 		/*
2218 		 * We can't have ordered extents in the range, nor dirty/writeback
2219 		 * pages, because we have locked the inode's VFS lock in exclusive
2220 		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2221 		 * we have flushed all delalloc in the range and we have waited
2222 		 * for any ordered extents in the range to complete.
2223 		 * We can race with anyone reading pages from this range, so after
2224 		 * locking the range check if we have pages in the range, and if
2225 		 * we do, unlock the range and retry.
2226 		 */
2227 		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2228 					    page_lockend))
2229 			break;
2230 
2231 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2232 			      cached_state);
2233 	}
2234 
2235 	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2236 }
2237 
2238 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2239 				     struct btrfs_inode *inode,
2240 				     struct btrfs_path *path,
2241 				     struct btrfs_replace_extent_info *extent_info,
2242 				     const u64 replace_len,
2243 				     const u64 bytes_to_drop)
2244 {
2245 	struct btrfs_fs_info *fs_info = trans->fs_info;
2246 	struct btrfs_root *root = inode->root;
2247 	struct btrfs_file_extent_item *extent;
2248 	struct extent_buffer *leaf;
2249 	struct btrfs_key key;
2250 	int slot;
2251 	struct btrfs_ref ref = { 0 };
2252 	int ret;
2253 
2254 	if (replace_len == 0)
2255 		return 0;
2256 
2257 	if (extent_info->disk_offset == 0 &&
2258 	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2259 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2260 		return 0;
2261 	}
2262 
2263 	key.objectid = btrfs_ino(inode);
2264 	key.type = BTRFS_EXTENT_DATA_KEY;
2265 	key.offset = extent_info->file_offset;
2266 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2267 				      sizeof(struct btrfs_file_extent_item));
2268 	if (ret)
2269 		return ret;
2270 	leaf = path->nodes[0];
2271 	slot = path->slots[0];
2272 	write_extent_buffer(leaf, extent_info->extent_buf,
2273 			    btrfs_item_ptr_offset(leaf, slot),
2274 			    sizeof(struct btrfs_file_extent_item));
2275 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2276 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2277 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2278 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2279 	if (extent_info->is_new_extent)
2280 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2281 	btrfs_mark_buffer_dirty(trans, leaf);
2282 	btrfs_release_path(path);
2283 
2284 	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2285 						replace_len);
2286 	if (ret)
2287 		return ret;
2288 
2289 	/* If it's a hole, nothing more needs to be done. */
2290 	if (extent_info->disk_offset == 0) {
2291 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2292 		return 0;
2293 	}
2294 
2295 	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2296 
2297 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2298 		key.objectid = extent_info->disk_offset;
2299 		key.type = BTRFS_EXTENT_ITEM_KEY;
2300 		key.offset = extent_info->disk_len;
2301 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2302 						       btrfs_ino(inode),
2303 						       extent_info->file_offset,
2304 						       extent_info->qgroup_reserved,
2305 						       &key);
2306 	} else {
2307 		u64 ref_offset;
2308 
2309 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2310 				       extent_info->disk_offset,
2311 				       extent_info->disk_len, 0,
2312 				       root->root_key.objectid);
2313 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2314 		btrfs_init_data_ref(&ref, root->root_key.objectid,
2315 				    btrfs_ino(inode), ref_offset, 0, false);
2316 		ret = btrfs_inc_extent_ref(trans, &ref);
2317 	}
2318 
2319 	extent_info->insertions++;
2320 
2321 	return ret;
2322 }
2323 
2324 /*
2325  * The respective range must have been previously locked, as well as the inode.
2326  * The end offset is inclusive (last byte of the range).
2327  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2328  * the file range with an extent.
2329  * When not punching a hole, we don't want to end up in a state where we dropped
2330  * extents without inserting a new one, so we must abort the transaction to avoid
2331  * a corruption.
2332  */
2333 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2334 			       struct btrfs_path *path, const u64 start,
2335 			       const u64 end,
2336 			       struct btrfs_replace_extent_info *extent_info,
2337 			       struct btrfs_trans_handle **trans_out)
2338 {
2339 	struct btrfs_drop_extents_args drop_args = { 0 };
2340 	struct btrfs_root *root = inode->root;
2341 	struct btrfs_fs_info *fs_info = root->fs_info;
2342 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2343 	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2344 	struct btrfs_trans_handle *trans = NULL;
2345 	struct btrfs_block_rsv *rsv;
2346 	unsigned int rsv_count;
2347 	u64 cur_offset;
2348 	u64 len = end - start;
2349 	int ret = 0;
2350 
2351 	if (end <= start)
2352 		return -EINVAL;
2353 
2354 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2355 	if (!rsv) {
2356 		ret = -ENOMEM;
2357 		goto out;
2358 	}
2359 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2360 	rsv->failfast = true;
2361 
2362 	/*
2363 	 * 1 - update the inode
2364 	 * 1 - removing the extents in the range
2365 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2366 	 *     replacing the range with a new extent
2367 	 */
2368 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2369 		rsv_count = 3;
2370 	else
2371 		rsv_count = 2;
2372 
2373 	trans = btrfs_start_transaction(root, rsv_count);
2374 	if (IS_ERR(trans)) {
2375 		ret = PTR_ERR(trans);
2376 		trans = NULL;
2377 		goto out_free;
2378 	}
2379 
2380 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2381 				      min_size, false);
2382 	if (WARN_ON(ret))
2383 		goto out_trans;
2384 	trans->block_rsv = rsv;
2385 
2386 	cur_offset = start;
2387 	drop_args.path = path;
2388 	drop_args.end = end + 1;
2389 	drop_args.drop_cache = true;
2390 	while (cur_offset < end) {
2391 		drop_args.start = cur_offset;
2392 		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2393 		/* If we are punching a hole decrement the inode's byte count */
2394 		if (!extent_info)
2395 			btrfs_update_inode_bytes(inode, 0,
2396 						 drop_args.bytes_found);
2397 		if (ret != -ENOSPC) {
2398 			/*
2399 			 * The only time we don't want to abort is if we are
2400 			 * attempting to clone a partial inline extent, in which
2401 			 * case we'll get EOPNOTSUPP.  However if we aren't
2402 			 * clone we need to abort no matter what, because if we
2403 			 * got EOPNOTSUPP via prealloc then we messed up and
2404 			 * need to abort.
2405 			 */
2406 			if (ret &&
2407 			    (ret != -EOPNOTSUPP ||
2408 			     (extent_info && extent_info->is_new_extent)))
2409 				btrfs_abort_transaction(trans, ret);
2410 			break;
2411 		}
2412 
2413 		trans->block_rsv = &fs_info->trans_block_rsv;
2414 
2415 		if (!extent_info && cur_offset < drop_args.drop_end &&
2416 		    cur_offset < ino_size) {
2417 			ret = fill_holes(trans, inode, path, cur_offset,
2418 					 drop_args.drop_end);
2419 			if (ret) {
2420 				/*
2421 				 * If we failed then we didn't insert our hole
2422 				 * entries for the area we dropped, so now the
2423 				 * fs is corrupted, so we must abort the
2424 				 * transaction.
2425 				 */
2426 				btrfs_abort_transaction(trans, ret);
2427 				break;
2428 			}
2429 		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2430 			/*
2431 			 * We are past the i_size here, but since we didn't
2432 			 * insert holes we need to clear the mapped area so we
2433 			 * know to not set disk_i_size in this area until a new
2434 			 * file extent is inserted here.
2435 			 */
2436 			ret = btrfs_inode_clear_file_extent_range(inode,
2437 					cur_offset,
2438 					drop_args.drop_end - cur_offset);
2439 			if (ret) {
2440 				/*
2441 				 * We couldn't clear our area, so we could
2442 				 * presumably adjust up and corrupt the fs, so
2443 				 * we need to abort.
2444 				 */
2445 				btrfs_abort_transaction(trans, ret);
2446 				break;
2447 			}
2448 		}
2449 
2450 		if (extent_info &&
2451 		    drop_args.drop_end > extent_info->file_offset) {
2452 			u64 replace_len = drop_args.drop_end -
2453 					  extent_info->file_offset;
2454 
2455 			ret = btrfs_insert_replace_extent(trans, inode,	path,
2456 					extent_info, replace_len,
2457 					drop_args.bytes_found);
2458 			if (ret) {
2459 				btrfs_abort_transaction(trans, ret);
2460 				break;
2461 			}
2462 			extent_info->data_len -= replace_len;
2463 			extent_info->data_offset += replace_len;
2464 			extent_info->file_offset += replace_len;
2465 		}
2466 
2467 		/*
2468 		 * We are releasing our handle on the transaction, balance the
2469 		 * dirty pages of the btree inode and flush delayed items, and
2470 		 * then get a new transaction handle, which may now point to a
2471 		 * new transaction in case someone else may have committed the
2472 		 * transaction we used to replace/drop file extent items. So
2473 		 * bump the inode's iversion and update mtime and ctime except
2474 		 * if we are called from a dedupe context. This is because a
2475 		 * power failure/crash may happen after the transaction is
2476 		 * committed and before we finish replacing/dropping all the
2477 		 * file extent items we need.
2478 		 */
2479 		inode_inc_iversion(&inode->vfs_inode);
2480 
2481 		if (!extent_info || extent_info->update_times)
2482 			inode_set_mtime_to_ts(&inode->vfs_inode,
2483 					      inode_set_ctime_current(&inode->vfs_inode));
2484 
2485 		ret = btrfs_update_inode(trans, inode);
2486 		if (ret)
2487 			break;
2488 
2489 		btrfs_end_transaction(trans);
2490 		btrfs_btree_balance_dirty(fs_info);
2491 
2492 		trans = btrfs_start_transaction(root, rsv_count);
2493 		if (IS_ERR(trans)) {
2494 			ret = PTR_ERR(trans);
2495 			trans = NULL;
2496 			break;
2497 		}
2498 
2499 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2500 					      rsv, min_size, false);
2501 		if (WARN_ON(ret))
2502 			break;
2503 		trans->block_rsv = rsv;
2504 
2505 		cur_offset = drop_args.drop_end;
2506 		len = end - cur_offset;
2507 		if (!extent_info && len) {
2508 			ret = find_first_non_hole(inode, &cur_offset, &len);
2509 			if (unlikely(ret < 0))
2510 				break;
2511 			if (ret && !len) {
2512 				ret = 0;
2513 				break;
2514 			}
2515 		}
2516 	}
2517 
2518 	/*
2519 	 * If we were cloning, force the next fsync to be a full one since we
2520 	 * we replaced (or just dropped in the case of cloning holes when
2521 	 * NO_HOLES is enabled) file extent items and did not setup new extent
2522 	 * maps for the replacement extents (or holes).
2523 	 */
2524 	if (extent_info && !extent_info->is_new_extent)
2525 		btrfs_set_inode_full_sync(inode);
2526 
2527 	if (ret)
2528 		goto out_trans;
2529 
2530 	trans->block_rsv = &fs_info->trans_block_rsv;
2531 	/*
2532 	 * If we are using the NO_HOLES feature we might have had already an
2533 	 * hole that overlaps a part of the region [lockstart, lockend] and
2534 	 * ends at (or beyond) lockend. Since we have no file extent items to
2535 	 * represent holes, drop_end can be less than lockend and so we must
2536 	 * make sure we have an extent map representing the existing hole (the
2537 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2538 	 * map representing the existing hole), otherwise the fast fsync path
2539 	 * will not record the existence of the hole region
2540 	 * [existing_hole_start, lockend].
2541 	 */
2542 	if (drop_args.drop_end <= end)
2543 		drop_args.drop_end = end + 1;
2544 	/*
2545 	 * Don't insert file hole extent item if it's for a range beyond eof
2546 	 * (because it's useless) or if it represents a 0 bytes range (when
2547 	 * cur_offset == drop_end).
2548 	 */
2549 	if (!extent_info && cur_offset < ino_size &&
2550 	    cur_offset < drop_args.drop_end) {
2551 		ret = fill_holes(trans, inode, path, cur_offset,
2552 				 drop_args.drop_end);
2553 		if (ret) {
2554 			/* Same comment as above. */
2555 			btrfs_abort_transaction(trans, ret);
2556 			goto out_trans;
2557 		}
2558 	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2559 		/* See the comment in the loop above for the reasoning here. */
2560 		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2561 					drop_args.drop_end - cur_offset);
2562 		if (ret) {
2563 			btrfs_abort_transaction(trans, ret);
2564 			goto out_trans;
2565 		}
2566 
2567 	}
2568 	if (extent_info) {
2569 		ret = btrfs_insert_replace_extent(trans, inode, path,
2570 				extent_info, extent_info->data_len,
2571 				drop_args.bytes_found);
2572 		if (ret) {
2573 			btrfs_abort_transaction(trans, ret);
2574 			goto out_trans;
2575 		}
2576 	}
2577 
2578 out_trans:
2579 	if (!trans)
2580 		goto out_free;
2581 
2582 	trans->block_rsv = &fs_info->trans_block_rsv;
2583 	if (ret)
2584 		btrfs_end_transaction(trans);
2585 	else
2586 		*trans_out = trans;
2587 out_free:
2588 	btrfs_free_block_rsv(fs_info, rsv);
2589 out:
2590 	return ret;
2591 }
2592 
2593 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2594 {
2595 	struct inode *inode = file_inode(file);
2596 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2597 	struct btrfs_root *root = BTRFS_I(inode)->root;
2598 	struct extent_state *cached_state = NULL;
2599 	struct btrfs_path *path;
2600 	struct btrfs_trans_handle *trans = NULL;
2601 	u64 lockstart;
2602 	u64 lockend;
2603 	u64 tail_start;
2604 	u64 tail_len;
2605 	u64 orig_start = offset;
2606 	int ret = 0;
2607 	bool same_block;
2608 	u64 ino_size;
2609 	bool truncated_block = false;
2610 	bool updated_inode = false;
2611 
2612 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2613 
2614 	ret = btrfs_wait_ordered_range(inode, offset, len);
2615 	if (ret)
2616 		goto out_only_mutex;
2617 
2618 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2619 	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2620 	if (ret < 0)
2621 		goto out_only_mutex;
2622 	if (ret && !len) {
2623 		/* Already in a large hole */
2624 		ret = 0;
2625 		goto out_only_mutex;
2626 	}
2627 
2628 	ret = file_modified(file);
2629 	if (ret)
2630 		goto out_only_mutex;
2631 
2632 	lockstart = round_up(offset, fs_info->sectorsize);
2633 	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2634 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2635 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2636 	/*
2637 	 * We needn't truncate any block which is beyond the end of the file
2638 	 * because we are sure there is no data there.
2639 	 */
2640 	/*
2641 	 * Only do this if we are in the same block and we aren't doing the
2642 	 * entire block.
2643 	 */
2644 	if (same_block && len < fs_info->sectorsize) {
2645 		if (offset < ino_size) {
2646 			truncated_block = true;
2647 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2648 						   0);
2649 		} else {
2650 			ret = 0;
2651 		}
2652 		goto out_only_mutex;
2653 	}
2654 
2655 	/* zero back part of the first block */
2656 	if (offset < ino_size) {
2657 		truncated_block = true;
2658 		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2659 		if (ret) {
2660 			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2661 			return ret;
2662 		}
2663 	}
2664 
2665 	/* Check the aligned pages after the first unaligned page,
2666 	 * if offset != orig_start, which means the first unaligned page
2667 	 * including several following pages are already in holes,
2668 	 * the extra check can be skipped */
2669 	if (offset == orig_start) {
2670 		/* after truncate page, check hole again */
2671 		len = offset + len - lockstart;
2672 		offset = lockstart;
2673 		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2674 		if (ret < 0)
2675 			goto out_only_mutex;
2676 		if (ret && !len) {
2677 			ret = 0;
2678 			goto out_only_mutex;
2679 		}
2680 		lockstart = offset;
2681 	}
2682 
2683 	/* Check the tail unaligned part is in a hole */
2684 	tail_start = lockend + 1;
2685 	tail_len = offset + len - tail_start;
2686 	if (tail_len) {
2687 		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2688 		if (unlikely(ret < 0))
2689 			goto out_only_mutex;
2690 		if (!ret) {
2691 			/* zero the front end of the last page */
2692 			if (tail_start + tail_len < ino_size) {
2693 				truncated_block = true;
2694 				ret = btrfs_truncate_block(BTRFS_I(inode),
2695 							tail_start + tail_len,
2696 							0, 1);
2697 				if (ret)
2698 					goto out_only_mutex;
2699 			}
2700 		}
2701 	}
2702 
2703 	if (lockend < lockstart) {
2704 		ret = 0;
2705 		goto out_only_mutex;
2706 	}
2707 
2708 	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2709 
2710 	path = btrfs_alloc_path();
2711 	if (!path) {
2712 		ret = -ENOMEM;
2713 		goto out;
2714 	}
2715 
2716 	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2717 					 lockend, NULL, &trans);
2718 	btrfs_free_path(path);
2719 	if (ret)
2720 		goto out;
2721 
2722 	ASSERT(trans != NULL);
2723 	inode_inc_iversion(inode);
2724 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2725 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2726 	updated_inode = true;
2727 	btrfs_end_transaction(trans);
2728 	btrfs_btree_balance_dirty(fs_info);
2729 out:
2730 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2731 		      &cached_state);
2732 out_only_mutex:
2733 	if (!updated_inode && truncated_block && !ret) {
2734 		/*
2735 		 * If we only end up zeroing part of a page, we still need to
2736 		 * update the inode item, so that all the time fields are
2737 		 * updated as well as the necessary btrfs inode in memory fields
2738 		 * for detecting, at fsync time, if the inode isn't yet in the
2739 		 * log tree or it's there but not up to date.
2740 		 */
2741 		struct timespec64 now = inode_set_ctime_current(inode);
2742 
2743 		inode_inc_iversion(inode);
2744 		inode_set_mtime_to_ts(inode, now);
2745 		trans = btrfs_start_transaction(root, 1);
2746 		if (IS_ERR(trans)) {
2747 			ret = PTR_ERR(trans);
2748 		} else {
2749 			int ret2;
2750 
2751 			ret = btrfs_update_inode(trans, BTRFS_I(inode));
2752 			ret2 = btrfs_end_transaction(trans);
2753 			if (!ret)
2754 				ret = ret2;
2755 		}
2756 	}
2757 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2758 	return ret;
2759 }
2760 
2761 /* Helper structure to record which range is already reserved */
2762 struct falloc_range {
2763 	struct list_head list;
2764 	u64 start;
2765 	u64 len;
2766 };
2767 
2768 /*
2769  * Helper function to add falloc range
2770  *
2771  * Caller should have locked the larger range of extent containing
2772  * [start, len)
2773  */
2774 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2775 {
2776 	struct falloc_range *range = NULL;
2777 
2778 	if (!list_empty(head)) {
2779 		/*
2780 		 * As fallocate iterates by bytenr order, we only need to check
2781 		 * the last range.
2782 		 */
2783 		range = list_last_entry(head, struct falloc_range, list);
2784 		if (range->start + range->len == start) {
2785 			range->len += len;
2786 			return 0;
2787 		}
2788 	}
2789 
2790 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2791 	if (!range)
2792 		return -ENOMEM;
2793 	range->start = start;
2794 	range->len = len;
2795 	list_add_tail(&range->list, head);
2796 	return 0;
2797 }
2798 
2799 static int btrfs_fallocate_update_isize(struct inode *inode,
2800 					const u64 end,
2801 					const int mode)
2802 {
2803 	struct btrfs_trans_handle *trans;
2804 	struct btrfs_root *root = BTRFS_I(inode)->root;
2805 	int ret;
2806 	int ret2;
2807 
2808 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2809 		return 0;
2810 
2811 	trans = btrfs_start_transaction(root, 1);
2812 	if (IS_ERR(trans))
2813 		return PTR_ERR(trans);
2814 
2815 	inode_set_ctime_current(inode);
2816 	i_size_write(inode, end);
2817 	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2818 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2819 	ret2 = btrfs_end_transaction(trans);
2820 
2821 	return ret ? ret : ret2;
2822 }
2823 
2824 enum {
2825 	RANGE_BOUNDARY_WRITTEN_EXTENT,
2826 	RANGE_BOUNDARY_PREALLOC_EXTENT,
2827 	RANGE_BOUNDARY_HOLE,
2828 };
2829 
2830 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2831 						 u64 offset)
2832 {
2833 	const u64 sectorsize = inode->root->fs_info->sectorsize;
2834 	struct extent_map *em;
2835 	int ret;
2836 
2837 	offset = round_down(offset, sectorsize);
2838 	em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
2839 	if (IS_ERR(em))
2840 		return PTR_ERR(em);
2841 
2842 	if (em->block_start == EXTENT_MAP_HOLE)
2843 		ret = RANGE_BOUNDARY_HOLE;
2844 	else if (em->flags & EXTENT_FLAG_PREALLOC)
2845 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2846 	else
2847 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2848 
2849 	free_extent_map(em);
2850 	return ret;
2851 }
2852 
2853 static int btrfs_zero_range(struct inode *inode,
2854 			    loff_t offset,
2855 			    loff_t len,
2856 			    const int mode)
2857 {
2858 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2859 	struct extent_map *em;
2860 	struct extent_changeset *data_reserved = NULL;
2861 	int ret;
2862 	u64 alloc_hint = 0;
2863 	const u64 sectorsize = fs_info->sectorsize;
2864 	u64 alloc_start = round_down(offset, sectorsize);
2865 	u64 alloc_end = round_up(offset + len, sectorsize);
2866 	u64 bytes_to_reserve = 0;
2867 	bool space_reserved = false;
2868 
2869 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2870 			      alloc_end - alloc_start);
2871 	if (IS_ERR(em)) {
2872 		ret = PTR_ERR(em);
2873 		goto out;
2874 	}
2875 
2876 	/*
2877 	 * Avoid hole punching and extent allocation for some cases. More cases
2878 	 * could be considered, but these are unlikely common and we keep things
2879 	 * as simple as possible for now. Also, intentionally, if the target
2880 	 * range contains one or more prealloc extents together with regular
2881 	 * extents and holes, we drop all the existing extents and allocate a
2882 	 * new prealloc extent, so that we get a larger contiguous disk extent.
2883 	 */
2884 	if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
2885 		const u64 em_end = em->start + em->len;
2886 
2887 		if (em_end >= offset + len) {
2888 			/*
2889 			 * The whole range is already a prealloc extent,
2890 			 * do nothing except updating the inode's i_size if
2891 			 * needed.
2892 			 */
2893 			free_extent_map(em);
2894 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2895 							   mode);
2896 			goto out;
2897 		}
2898 		/*
2899 		 * Part of the range is already a prealloc extent, so operate
2900 		 * only on the remaining part of the range.
2901 		 */
2902 		alloc_start = em_end;
2903 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2904 		len = offset + len - alloc_start;
2905 		offset = alloc_start;
2906 		alloc_hint = em->block_start + em->len;
2907 	}
2908 	free_extent_map(em);
2909 
2910 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2911 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2912 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2913 				      sectorsize);
2914 		if (IS_ERR(em)) {
2915 			ret = PTR_ERR(em);
2916 			goto out;
2917 		}
2918 
2919 		if (em->flags & EXTENT_FLAG_PREALLOC) {
2920 			free_extent_map(em);
2921 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2922 							   mode);
2923 			goto out;
2924 		}
2925 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2926 			free_extent_map(em);
2927 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2928 						   0);
2929 			if (!ret)
2930 				ret = btrfs_fallocate_update_isize(inode,
2931 								   offset + len,
2932 								   mode);
2933 			return ret;
2934 		}
2935 		free_extent_map(em);
2936 		alloc_start = round_down(offset, sectorsize);
2937 		alloc_end = alloc_start + sectorsize;
2938 		goto reserve_space;
2939 	}
2940 
2941 	alloc_start = round_up(offset, sectorsize);
2942 	alloc_end = round_down(offset + len, sectorsize);
2943 
2944 	/*
2945 	 * For unaligned ranges, check the pages at the boundaries, they might
2946 	 * map to an extent, in which case we need to partially zero them, or
2947 	 * they might map to a hole, in which case we need our allocation range
2948 	 * to cover them.
2949 	 */
2950 	if (!IS_ALIGNED(offset, sectorsize)) {
2951 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2952 							    offset);
2953 		if (ret < 0)
2954 			goto out;
2955 		if (ret == RANGE_BOUNDARY_HOLE) {
2956 			alloc_start = round_down(offset, sectorsize);
2957 			ret = 0;
2958 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2959 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2960 			if (ret)
2961 				goto out;
2962 		} else {
2963 			ret = 0;
2964 		}
2965 	}
2966 
2967 	if (!IS_ALIGNED(offset + len, sectorsize)) {
2968 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2969 							    offset + len);
2970 		if (ret < 0)
2971 			goto out;
2972 		if (ret == RANGE_BOUNDARY_HOLE) {
2973 			alloc_end = round_up(offset + len, sectorsize);
2974 			ret = 0;
2975 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2976 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2977 						   0, 1);
2978 			if (ret)
2979 				goto out;
2980 		} else {
2981 			ret = 0;
2982 		}
2983 	}
2984 
2985 reserve_space:
2986 	if (alloc_start < alloc_end) {
2987 		struct extent_state *cached_state = NULL;
2988 		const u64 lockstart = alloc_start;
2989 		const u64 lockend = alloc_end - 1;
2990 
2991 		bytes_to_reserve = alloc_end - alloc_start;
2992 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2993 						      bytes_to_reserve);
2994 		if (ret < 0)
2995 			goto out;
2996 		space_reserved = true;
2997 		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2998 					    &cached_state);
2999 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3000 						alloc_start, bytes_to_reserve);
3001 		if (ret) {
3002 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3003 				      lockend, &cached_state);
3004 			goto out;
3005 		}
3006 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3007 						alloc_end - alloc_start,
3008 						i_blocksize(inode),
3009 						offset + len, &alloc_hint);
3010 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3011 			      &cached_state);
3012 		/* btrfs_prealloc_file_range releases reserved space on error */
3013 		if (ret) {
3014 			space_reserved = false;
3015 			goto out;
3016 		}
3017 	}
3018 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3019  out:
3020 	if (ret && space_reserved)
3021 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3022 					       alloc_start, bytes_to_reserve);
3023 	extent_changeset_free(data_reserved);
3024 
3025 	return ret;
3026 }
3027 
3028 static long btrfs_fallocate(struct file *file, int mode,
3029 			    loff_t offset, loff_t len)
3030 {
3031 	struct inode *inode = file_inode(file);
3032 	struct extent_state *cached_state = NULL;
3033 	struct extent_changeset *data_reserved = NULL;
3034 	struct falloc_range *range;
3035 	struct falloc_range *tmp;
3036 	LIST_HEAD(reserve_list);
3037 	u64 cur_offset;
3038 	u64 last_byte;
3039 	u64 alloc_start;
3040 	u64 alloc_end;
3041 	u64 alloc_hint = 0;
3042 	u64 locked_end;
3043 	u64 actual_end = 0;
3044 	u64 data_space_needed = 0;
3045 	u64 data_space_reserved = 0;
3046 	u64 qgroup_reserved = 0;
3047 	struct extent_map *em;
3048 	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3049 	int ret;
3050 
3051 	/* Do not allow fallocate in ZONED mode */
3052 	if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3053 		return -EOPNOTSUPP;
3054 
3055 	alloc_start = round_down(offset, blocksize);
3056 	alloc_end = round_up(offset + len, blocksize);
3057 	cur_offset = alloc_start;
3058 
3059 	/* Make sure we aren't being give some crap mode */
3060 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3061 		     FALLOC_FL_ZERO_RANGE))
3062 		return -EOPNOTSUPP;
3063 
3064 	if (mode & FALLOC_FL_PUNCH_HOLE)
3065 		return btrfs_punch_hole(file, offset, len);
3066 
3067 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3068 
3069 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3070 		ret = inode_newsize_ok(inode, offset + len);
3071 		if (ret)
3072 			goto out;
3073 	}
3074 
3075 	ret = file_modified(file);
3076 	if (ret)
3077 		goto out;
3078 
3079 	/*
3080 	 * TODO: Move these two operations after we have checked
3081 	 * accurate reserved space, or fallocate can still fail but
3082 	 * with page truncated or size expanded.
3083 	 *
3084 	 * But that's a minor problem and won't do much harm BTW.
3085 	 */
3086 	if (alloc_start > inode->i_size) {
3087 		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3088 					alloc_start);
3089 		if (ret)
3090 			goto out;
3091 	} else if (offset + len > inode->i_size) {
3092 		/*
3093 		 * If we are fallocating from the end of the file onward we
3094 		 * need to zero out the end of the block if i_size lands in the
3095 		 * middle of a block.
3096 		 */
3097 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3098 		if (ret)
3099 			goto out;
3100 	}
3101 
3102 	/*
3103 	 * We have locked the inode at the VFS level (in exclusive mode) and we
3104 	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3105 	 * locking the file range, flush all dealloc in the range and wait for
3106 	 * all ordered extents in the range to complete. After this we can lock
3107 	 * the file range and, due to the previous locking we did, we know there
3108 	 * can't be more delalloc or ordered extents in the range.
3109 	 */
3110 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3111 				       alloc_end - alloc_start);
3112 	if (ret)
3113 		goto out;
3114 
3115 	if (mode & FALLOC_FL_ZERO_RANGE) {
3116 		ret = btrfs_zero_range(inode, offset, len, mode);
3117 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3118 		return ret;
3119 	}
3120 
3121 	locked_end = alloc_end - 1;
3122 	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3123 		    &cached_state);
3124 
3125 	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3126 
3127 	/* First, check if we exceed the qgroup limit */
3128 	while (cur_offset < alloc_end) {
3129 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3130 				      alloc_end - cur_offset);
3131 		if (IS_ERR(em)) {
3132 			ret = PTR_ERR(em);
3133 			break;
3134 		}
3135 		last_byte = min(extent_map_end(em), alloc_end);
3136 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3137 		last_byte = ALIGN(last_byte, blocksize);
3138 		if (em->block_start == EXTENT_MAP_HOLE ||
3139 		    (cur_offset >= inode->i_size &&
3140 		     !(em->flags & EXTENT_FLAG_PREALLOC))) {
3141 			const u64 range_len = last_byte - cur_offset;
3142 
3143 			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3144 			if (ret < 0) {
3145 				free_extent_map(em);
3146 				break;
3147 			}
3148 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3149 					&data_reserved, cur_offset, range_len);
3150 			if (ret < 0) {
3151 				free_extent_map(em);
3152 				break;
3153 			}
3154 			qgroup_reserved += range_len;
3155 			data_space_needed += range_len;
3156 		}
3157 		free_extent_map(em);
3158 		cur_offset = last_byte;
3159 	}
3160 
3161 	if (!ret && data_space_needed > 0) {
3162 		/*
3163 		 * We are safe to reserve space here as we can't have delalloc
3164 		 * in the range, see above.
3165 		 */
3166 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3167 						      data_space_needed);
3168 		if (!ret)
3169 			data_space_reserved = data_space_needed;
3170 	}
3171 
3172 	/*
3173 	 * If ret is still 0, means we're OK to fallocate.
3174 	 * Or just cleanup the list and exit.
3175 	 */
3176 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3177 		if (!ret) {
3178 			ret = btrfs_prealloc_file_range(inode, mode,
3179 					range->start,
3180 					range->len, i_blocksize(inode),
3181 					offset + len, &alloc_hint);
3182 			/*
3183 			 * btrfs_prealloc_file_range() releases space even
3184 			 * if it returns an error.
3185 			 */
3186 			data_space_reserved -= range->len;
3187 			qgroup_reserved -= range->len;
3188 		} else if (data_space_reserved > 0) {
3189 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3190 					       data_reserved, range->start,
3191 					       range->len);
3192 			data_space_reserved -= range->len;
3193 			qgroup_reserved -= range->len;
3194 		} else if (qgroup_reserved > 0) {
3195 			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3196 					       range->start, range->len, NULL);
3197 			qgroup_reserved -= range->len;
3198 		}
3199 		list_del(&range->list);
3200 		kfree(range);
3201 	}
3202 	if (ret < 0)
3203 		goto out_unlock;
3204 
3205 	/*
3206 	 * We didn't need to allocate any more space, but we still extended the
3207 	 * size of the file so we need to update i_size and the inode item.
3208 	 */
3209 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3210 out_unlock:
3211 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3212 		      &cached_state);
3213 out:
3214 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3215 	extent_changeset_free(data_reserved);
3216 	return ret;
3217 }
3218 
3219 /*
3220  * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3221  * that has unflushed and/or flushing delalloc. There might be other adjacent
3222  * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3223  * looping while it gets adjacent subranges, and merging them together.
3224  */
3225 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3226 				   struct extent_state **cached_state,
3227 				   bool *search_io_tree,
3228 				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3229 {
3230 	u64 len = end + 1 - start;
3231 	u64 delalloc_len = 0;
3232 	struct btrfs_ordered_extent *oe;
3233 	u64 oe_start;
3234 	u64 oe_end;
3235 
3236 	/*
3237 	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3238 	 * means we have delalloc (dirty pages) for which writeback has not
3239 	 * started yet.
3240 	 */
3241 	if (*search_io_tree) {
3242 		spin_lock(&inode->lock);
3243 		if (inode->delalloc_bytes > 0) {
3244 			spin_unlock(&inode->lock);
3245 			*delalloc_start_ret = start;
3246 			delalloc_len = count_range_bits(&inode->io_tree,
3247 							delalloc_start_ret, end,
3248 							len, EXTENT_DELALLOC, 1,
3249 							cached_state);
3250 		} else {
3251 			spin_unlock(&inode->lock);
3252 		}
3253 	}
3254 
3255 	if (delalloc_len > 0) {
3256 		/*
3257 		 * If delalloc was found then *delalloc_start_ret has a sector size
3258 		 * aligned value (rounded down).
3259 		 */
3260 		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3261 
3262 		if (*delalloc_start_ret == start) {
3263 			/* Delalloc for the whole range, nothing more to do. */
3264 			if (*delalloc_end_ret == end)
3265 				return true;
3266 			/* Else trim our search range for ordered extents. */
3267 			start = *delalloc_end_ret + 1;
3268 			len = end + 1 - start;
3269 		}
3270 	} else {
3271 		/* No delalloc, future calls don't need to search again. */
3272 		*search_io_tree = false;
3273 	}
3274 
3275 	/*
3276 	 * Now also check if there's any ordered extent in the range.
3277 	 * We do this because:
3278 	 *
3279 	 * 1) When delalloc is flushed, the file range is locked, we clear the
3280 	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3281 	 *    an ordered extent for the write. So we might just have been called
3282 	 *    after delalloc is flushed and before the ordered extent completes
3283 	 *    and inserts the new file extent item in the subvolume's btree;
3284 	 *
3285 	 * 2) We may have an ordered extent created by flushing delalloc for a
3286 	 *    subrange that starts before the subrange we found marked with
3287 	 *    EXTENT_DELALLOC in the io tree.
3288 	 *
3289 	 * We could also use the extent map tree to find such delalloc that is
3290 	 * being flushed, but using the ordered extents tree is more efficient
3291 	 * because it's usually much smaller as ordered extents are removed from
3292 	 * the tree once they complete. With the extent maps, we mau have them
3293 	 * in the extent map tree for a very long time, and they were either
3294 	 * created by previous writes or loaded by read operations.
3295 	 */
3296 	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3297 	if (!oe)
3298 		return (delalloc_len > 0);
3299 
3300 	/* The ordered extent may span beyond our search range. */
3301 	oe_start = max(oe->file_offset, start);
3302 	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3303 
3304 	btrfs_put_ordered_extent(oe);
3305 
3306 	/* Don't have unflushed delalloc, return the ordered extent range. */
3307 	if (delalloc_len == 0) {
3308 		*delalloc_start_ret = oe_start;
3309 		*delalloc_end_ret = oe_end;
3310 		return true;
3311 	}
3312 
3313 	/*
3314 	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3315 	 * If the ranges are adjacent returned a combined range, otherwise
3316 	 * return the leftmost range.
3317 	 */
3318 	if (oe_start < *delalloc_start_ret) {
3319 		if (oe_end < *delalloc_start_ret)
3320 			*delalloc_end_ret = oe_end;
3321 		*delalloc_start_ret = oe_start;
3322 	} else if (*delalloc_end_ret + 1 == oe_start) {
3323 		*delalloc_end_ret = oe_end;
3324 	}
3325 
3326 	return true;
3327 }
3328 
3329 /*
3330  * Check if there's delalloc in a given range.
3331  *
3332  * @inode:               The inode.
3333  * @start:               The start offset of the range. It does not need to be
3334  *                       sector size aligned.
3335  * @end:                 The end offset (inclusive value) of the search range.
3336  *                       It does not need to be sector size aligned.
3337  * @cached_state:        Extent state record used for speeding up delalloc
3338  *                       searches in the inode's io_tree. Can be NULL.
3339  * @delalloc_start_ret:  Output argument, set to the start offset of the
3340  *                       subrange found with delalloc (may not be sector size
3341  *                       aligned).
3342  * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3343  *                       of the subrange found with delalloc.
3344  *
3345  * Returns true if a subrange with delalloc is found within the given range, and
3346  * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3347  * end offsets of the subrange.
3348  */
3349 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3350 				  struct extent_state **cached_state,
3351 				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3352 {
3353 	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3354 	u64 prev_delalloc_end = 0;
3355 	bool search_io_tree = true;
3356 	bool ret = false;
3357 
3358 	while (cur_offset <= end) {
3359 		u64 delalloc_start;
3360 		u64 delalloc_end;
3361 		bool delalloc;
3362 
3363 		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3364 						  cached_state, &search_io_tree,
3365 						  &delalloc_start,
3366 						  &delalloc_end);
3367 		if (!delalloc)
3368 			break;
3369 
3370 		if (prev_delalloc_end == 0) {
3371 			/* First subrange found. */
3372 			*delalloc_start_ret = max(delalloc_start, start);
3373 			*delalloc_end_ret = delalloc_end;
3374 			ret = true;
3375 		} else if (delalloc_start == prev_delalloc_end + 1) {
3376 			/* Subrange adjacent to the previous one, merge them. */
3377 			*delalloc_end_ret = delalloc_end;
3378 		} else {
3379 			/* Subrange not adjacent to the previous one, exit. */
3380 			break;
3381 		}
3382 
3383 		prev_delalloc_end = delalloc_end;
3384 		cur_offset = delalloc_end + 1;
3385 		cond_resched();
3386 	}
3387 
3388 	return ret;
3389 }
3390 
3391 /*
3392  * Check if there's a hole or delalloc range in a range representing a hole (or
3393  * prealloc extent) found in the inode's subvolume btree.
3394  *
3395  * @inode:      The inode.
3396  * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3397  * @start:      Start offset of the hole region. It does not need to be sector
3398  *              size aligned.
3399  * @end:        End offset (inclusive value) of the hole region. It does not
3400  *              need to be sector size aligned.
3401  * @start_ret:  Return parameter, used to set the start of the subrange in the
3402  *              hole that matches the search criteria (seek mode), if such
3403  *              subrange is found (return value of the function is true).
3404  *              The value returned here may not be sector size aligned.
3405  *
3406  * Returns true if a subrange matching the given seek mode is found, and if one
3407  * is found, it updates @start_ret with the start of the subrange.
3408  */
3409 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3410 					struct extent_state **cached_state,
3411 					u64 start, u64 end, u64 *start_ret)
3412 {
3413 	u64 delalloc_start;
3414 	u64 delalloc_end;
3415 	bool delalloc;
3416 
3417 	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3418 						&delalloc_start, &delalloc_end);
3419 	if (delalloc && whence == SEEK_DATA) {
3420 		*start_ret = delalloc_start;
3421 		return true;
3422 	}
3423 
3424 	if (delalloc && whence == SEEK_HOLE) {
3425 		/*
3426 		 * We found delalloc but it starts after out start offset. So we
3427 		 * have a hole between our start offset and the delalloc start.
3428 		 */
3429 		if (start < delalloc_start) {
3430 			*start_ret = start;
3431 			return true;
3432 		}
3433 		/*
3434 		 * Delalloc range starts at our start offset.
3435 		 * If the delalloc range's length is smaller than our range,
3436 		 * then it means we have a hole that starts where the delalloc
3437 		 * subrange ends.
3438 		 */
3439 		if (delalloc_end < end) {
3440 			*start_ret = delalloc_end + 1;
3441 			return true;
3442 		}
3443 
3444 		/* There's delalloc for the whole range. */
3445 		return false;
3446 	}
3447 
3448 	if (!delalloc && whence == SEEK_HOLE) {
3449 		*start_ret = start;
3450 		return true;
3451 	}
3452 
3453 	/*
3454 	 * No delalloc in the range and we are seeking for data. The caller has
3455 	 * to iterate to the next extent item in the subvolume btree.
3456 	 */
3457 	return false;
3458 }
3459 
3460 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3461 {
3462 	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3463 	struct btrfs_file_private *private = file->private_data;
3464 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3465 	struct extent_state *cached_state = NULL;
3466 	struct extent_state **delalloc_cached_state;
3467 	const loff_t i_size = i_size_read(&inode->vfs_inode);
3468 	const u64 ino = btrfs_ino(inode);
3469 	struct btrfs_root *root = inode->root;
3470 	struct btrfs_path *path;
3471 	struct btrfs_key key;
3472 	u64 last_extent_end;
3473 	u64 lockstart;
3474 	u64 lockend;
3475 	u64 start;
3476 	int ret;
3477 	bool found = false;
3478 
3479 	if (i_size == 0 || offset >= i_size)
3480 		return -ENXIO;
3481 
3482 	/*
3483 	 * Quick path. If the inode has no prealloc extents and its number of
3484 	 * bytes used matches its i_size, then it can not have holes.
3485 	 */
3486 	if (whence == SEEK_HOLE &&
3487 	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3488 	    inode_get_bytes(&inode->vfs_inode) == i_size)
3489 		return i_size;
3490 
3491 	if (!private) {
3492 		private = kzalloc(sizeof(*private), GFP_KERNEL);
3493 		/*
3494 		 * No worries if memory allocation failed.
3495 		 * The private structure is used only for speeding up multiple
3496 		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3497 		 * so everything will still be correct.
3498 		 */
3499 		file->private_data = private;
3500 	}
3501 
3502 	if (private)
3503 		delalloc_cached_state = &private->llseek_cached_state;
3504 	else
3505 		delalloc_cached_state = NULL;
3506 
3507 	/*
3508 	 * offset can be negative, in this case we start finding DATA/HOLE from
3509 	 * the very start of the file.
3510 	 */
3511 	start = max_t(loff_t, 0, offset);
3512 
3513 	lockstart = round_down(start, fs_info->sectorsize);
3514 	lockend = round_up(i_size, fs_info->sectorsize);
3515 	if (lockend <= lockstart)
3516 		lockend = lockstart + fs_info->sectorsize;
3517 	lockend--;
3518 
3519 	path = btrfs_alloc_path();
3520 	if (!path)
3521 		return -ENOMEM;
3522 	path->reada = READA_FORWARD;
3523 
3524 	key.objectid = ino;
3525 	key.type = BTRFS_EXTENT_DATA_KEY;
3526 	key.offset = start;
3527 
3528 	last_extent_end = lockstart;
3529 
3530 	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3531 
3532 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3533 	if (ret < 0) {
3534 		goto out;
3535 	} else if (ret > 0 && path->slots[0] > 0) {
3536 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3537 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3538 			path->slots[0]--;
3539 	}
3540 
3541 	while (start < i_size) {
3542 		struct extent_buffer *leaf = path->nodes[0];
3543 		struct btrfs_file_extent_item *extent;
3544 		u64 extent_end;
3545 		u8 type;
3546 
3547 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3548 			ret = btrfs_next_leaf(root, path);
3549 			if (ret < 0)
3550 				goto out;
3551 			else if (ret > 0)
3552 				break;
3553 
3554 			leaf = path->nodes[0];
3555 		}
3556 
3557 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3558 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3559 			break;
3560 
3561 		extent_end = btrfs_file_extent_end(path);
3562 
3563 		/*
3564 		 * In the first iteration we may have a slot that points to an
3565 		 * extent that ends before our start offset, so skip it.
3566 		 */
3567 		if (extent_end <= start) {
3568 			path->slots[0]++;
3569 			continue;
3570 		}
3571 
3572 		/* We have an implicit hole, NO_HOLES feature is likely set. */
3573 		if (last_extent_end < key.offset) {
3574 			u64 search_start = last_extent_end;
3575 			u64 found_start;
3576 
3577 			/*
3578 			 * First iteration, @start matches @offset and it's
3579 			 * within the hole.
3580 			 */
3581 			if (start == offset)
3582 				search_start = offset;
3583 
3584 			found = find_desired_extent_in_hole(inode, whence,
3585 							    delalloc_cached_state,
3586 							    search_start,
3587 							    key.offset - 1,
3588 							    &found_start);
3589 			if (found) {
3590 				start = found_start;
3591 				break;
3592 			}
3593 			/*
3594 			 * Didn't find data or a hole (due to delalloc) in the
3595 			 * implicit hole range, so need to analyze the extent.
3596 			 */
3597 		}
3598 
3599 		extent = btrfs_item_ptr(leaf, path->slots[0],
3600 					struct btrfs_file_extent_item);
3601 		type = btrfs_file_extent_type(leaf, extent);
3602 
3603 		/*
3604 		 * Can't access the extent's disk_bytenr field if this is an
3605 		 * inline extent, since at that offset, it's where the extent
3606 		 * data starts.
3607 		 */
3608 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3609 		    (type == BTRFS_FILE_EXTENT_REG &&
3610 		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3611 			/*
3612 			 * Explicit hole or prealloc extent, search for delalloc.
3613 			 * A prealloc extent is treated like a hole.
3614 			 */
3615 			u64 search_start = key.offset;
3616 			u64 found_start;
3617 
3618 			/*
3619 			 * First iteration, @start matches @offset and it's
3620 			 * within the hole.
3621 			 */
3622 			if (start == offset)
3623 				search_start = offset;
3624 
3625 			found = find_desired_extent_in_hole(inode, whence,
3626 							    delalloc_cached_state,
3627 							    search_start,
3628 							    extent_end - 1,
3629 							    &found_start);
3630 			if (found) {
3631 				start = found_start;
3632 				break;
3633 			}
3634 			/*
3635 			 * Didn't find data or a hole (due to delalloc) in the
3636 			 * implicit hole range, so need to analyze the next
3637 			 * extent item.
3638 			 */
3639 		} else {
3640 			/*
3641 			 * Found a regular or inline extent.
3642 			 * If we are seeking for data, adjust the start offset
3643 			 * and stop, we're done.
3644 			 */
3645 			if (whence == SEEK_DATA) {
3646 				start = max_t(u64, key.offset, offset);
3647 				found = true;
3648 				break;
3649 			}
3650 			/*
3651 			 * Else, we are seeking for a hole, check the next file
3652 			 * extent item.
3653 			 */
3654 		}
3655 
3656 		start = extent_end;
3657 		last_extent_end = extent_end;
3658 		path->slots[0]++;
3659 		if (fatal_signal_pending(current)) {
3660 			ret = -EINTR;
3661 			goto out;
3662 		}
3663 		cond_resched();
3664 	}
3665 
3666 	/* We have an implicit hole from the last extent found up to i_size. */
3667 	if (!found && start < i_size) {
3668 		found = find_desired_extent_in_hole(inode, whence,
3669 						    delalloc_cached_state, start,
3670 						    i_size - 1, &start);
3671 		if (!found)
3672 			start = i_size;
3673 	}
3674 
3675 out:
3676 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3677 	btrfs_free_path(path);
3678 
3679 	if (ret < 0)
3680 		return ret;
3681 
3682 	if (whence == SEEK_DATA && start >= i_size)
3683 		return -ENXIO;
3684 
3685 	return min_t(loff_t, start, i_size);
3686 }
3687 
3688 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3689 {
3690 	struct inode *inode = file->f_mapping->host;
3691 
3692 	switch (whence) {
3693 	default:
3694 		return generic_file_llseek(file, offset, whence);
3695 	case SEEK_DATA:
3696 	case SEEK_HOLE:
3697 		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3698 		offset = find_desired_extent(file, offset, whence);
3699 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3700 		break;
3701 	}
3702 
3703 	if (offset < 0)
3704 		return offset;
3705 
3706 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3707 }
3708 
3709 static int btrfs_file_open(struct inode *inode, struct file *filp)
3710 {
3711 	int ret;
3712 
3713 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
3714 		        FMODE_CAN_ODIRECT;
3715 
3716 	ret = fsverity_file_open(inode, filp);
3717 	if (ret)
3718 		return ret;
3719 	return generic_file_open(inode, filp);
3720 }
3721 
3722 static int check_direct_read(struct btrfs_fs_info *fs_info,
3723 			     const struct iov_iter *iter, loff_t offset)
3724 {
3725 	int ret;
3726 	int i, seg;
3727 
3728 	ret = check_direct_IO(fs_info, iter, offset);
3729 	if (ret < 0)
3730 		return ret;
3731 
3732 	if (!iter_is_iovec(iter))
3733 		return 0;
3734 
3735 	for (seg = 0; seg < iter->nr_segs; seg++) {
3736 		for (i = seg + 1; i < iter->nr_segs; i++) {
3737 			const struct iovec *iov1 = iter_iov(iter) + seg;
3738 			const struct iovec *iov2 = iter_iov(iter) + i;
3739 
3740 			if (iov1->iov_base == iov2->iov_base)
3741 				return -EINVAL;
3742 		}
3743 	}
3744 	return 0;
3745 }
3746 
3747 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3748 {
3749 	struct inode *inode = file_inode(iocb->ki_filp);
3750 	size_t prev_left = 0;
3751 	ssize_t read = 0;
3752 	ssize_t ret;
3753 
3754 	if (fsverity_active(inode))
3755 		return 0;
3756 
3757 	if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3758 		return 0;
3759 
3760 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3761 again:
3762 	/*
3763 	 * This is similar to what we do for direct IO writes, see the comment
3764 	 * at btrfs_direct_write(), but we also disable page faults in addition
3765 	 * to disabling them only at the iov_iter level. This is because when
3766 	 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3767 	 * which can still trigger page fault ins despite having set ->nofault
3768 	 * to true of our 'to' iov_iter.
3769 	 *
3770 	 * The difference to direct IO writes is that we deadlock when trying
3771 	 * to lock the extent range in the inode's tree during he page reads
3772 	 * triggered by the fault in (while for writes it is due to waiting for
3773 	 * our own ordered extent). This is because for direct IO reads,
3774 	 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3775 	 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3776 	 */
3777 	pagefault_disable();
3778 	to->nofault = true;
3779 	ret = btrfs_dio_read(iocb, to, read);
3780 	to->nofault = false;
3781 	pagefault_enable();
3782 
3783 	/* No increment (+=) because iomap returns a cumulative value. */
3784 	if (ret > 0)
3785 		read = ret;
3786 
3787 	if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3788 		const size_t left = iov_iter_count(to);
3789 
3790 		if (left == prev_left) {
3791 			/*
3792 			 * We didn't make any progress since the last attempt,
3793 			 * fallback to a buffered read for the remainder of the
3794 			 * range. This is just to avoid any possibility of looping
3795 			 * for too long.
3796 			 */
3797 			ret = read;
3798 		} else {
3799 			/*
3800 			 * We made some progress since the last retry or this is
3801 			 * the first time we are retrying. Fault in as many pages
3802 			 * as possible and retry.
3803 			 */
3804 			fault_in_iov_iter_writeable(to, left);
3805 			prev_left = left;
3806 			goto again;
3807 		}
3808 	}
3809 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3810 	return ret < 0 ? ret : read;
3811 }
3812 
3813 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3814 {
3815 	ssize_t ret = 0;
3816 
3817 	if (iocb->ki_flags & IOCB_DIRECT) {
3818 		ret = btrfs_direct_read(iocb, to);
3819 		if (ret < 0 || !iov_iter_count(to) ||
3820 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3821 			return ret;
3822 	}
3823 
3824 	return filemap_read(iocb, to, ret);
3825 }
3826 
3827 const struct file_operations btrfs_file_operations = {
3828 	.llseek		= btrfs_file_llseek,
3829 	.read_iter      = btrfs_file_read_iter,
3830 	.splice_read	= filemap_splice_read,
3831 	.write_iter	= btrfs_file_write_iter,
3832 	.splice_write	= iter_file_splice_write,
3833 	.mmap		= btrfs_file_mmap,
3834 	.open		= btrfs_file_open,
3835 	.release	= btrfs_release_file,
3836 	.get_unmapped_area = thp_get_unmapped_area,
3837 	.fsync		= btrfs_sync_file,
3838 	.fallocate	= btrfs_fallocate,
3839 	.unlocked_ioctl	= btrfs_ioctl,
3840 #ifdef CONFIG_COMPAT
3841 	.compat_ioctl	= btrfs_compat_ioctl,
3842 #endif
3843 	.remap_file_range = btrfs_remap_file_range,
3844 };
3845 
3846 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3847 {
3848 	int ret;
3849 
3850 	/*
3851 	 * So with compression we will find and lock a dirty page and clear the
3852 	 * first one as dirty, setup an async extent, and immediately return
3853 	 * with the entire range locked but with nobody actually marked with
3854 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3855 	 * expect it to work since it will just kick off a thread to do the
3856 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3857 	 * since it will wait on the page lock, which won't be unlocked until
3858 	 * after the pages have been marked as writeback and so we're good to go
3859 	 * from there.  We have to do this otherwise we'll miss the ordered
3860 	 * extents and that results in badness.  Please Josef, do not think you
3861 	 * know better and pull this out at some point in the future, it is
3862 	 * right and you are wrong.
3863 	 */
3864 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3865 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3866 			     &BTRFS_I(inode)->runtime_flags))
3867 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3868 
3869 	return ret;
3870 }
3871