1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include <linux/iomap.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "btrfs_inode.h" 25 #include "print-tree.h" 26 #include "tree-log.h" 27 #include "locking.h" 28 #include "volumes.h" 29 #include "qgroup.h" 30 #include "compression.h" 31 #include "delalloc-space.h" 32 #include "reflink.h" 33 #include "subpage.h" 34 #include "fs.h" 35 #include "accessors.h" 36 #include "extent-tree.h" 37 #include "file-item.h" 38 #include "ioctl.h" 39 #include "file.h" 40 #include "super.h" 41 42 /* simple helper to fault in pages and copy. This should go away 43 * and be replaced with calls into generic code. 44 */ 45 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 46 struct page **prepared_pages, 47 struct iov_iter *i) 48 { 49 size_t copied = 0; 50 size_t total_copied = 0; 51 int pg = 0; 52 int offset = offset_in_page(pos); 53 54 while (write_bytes > 0) { 55 size_t count = min_t(size_t, 56 PAGE_SIZE - offset, write_bytes); 57 struct page *page = prepared_pages[pg]; 58 /* 59 * Copy data from userspace to the current page 60 */ 61 copied = copy_page_from_iter_atomic(page, offset, count, i); 62 63 /* Flush processor's dcache for this page */ 64 flush_dcache_page(page); 65 66 /* 67 * if we get a partial write, we can end up with 68 * partially up to date pages. These add 69 * a lot of complexity, so make sure they don't 70 * happen by forcing this copy to be retried. 71 * 72 * The rest of the btrfs_file_write code will fall 73 * back to page at a time copies after we return 0. 74 */ 75 if (unlikely(copied < count)) { 76 if (!PageUptodate(page)) { 77 iov_iter_revert(i, copied); 78 copied = 0; 79 } 80 if (!copied) 81 break; 82 } 83 84 write_bytes -= copied; 85 total_copied += copied; 86 offset += copied; 87 if (offset == PAGE_SIZE) { 88 pg++; 89 offset = 0; 90 } 91 } 92 return total_copied; 93 } 94 95 /* 96 * unlocks pages after btrfs_file_write is done with them 97 */ 98 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 99 struct page **pages, size_t num_pages, 100 u64 pos, u64 copied) 101 { 102 size_t i; 103 u64 block_start = round_down(pos, fs_info->sectorsize); 104 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 105 106 ASSERT(block_len <= U32_MAX); 107 for (i = 0; i < num_pages; i++) { 108 /* page checked is some magic around finding pages that 109 * have been modified without going through btrfs_set_page_dirty 110 * clear it here. There should be no need to mark the pages 111 * accessed as prepare_pages should have marked them accessed 112 * in prepare_pages via find_or_create_page() 113 */ 114 btrfs_folio_clamp_clear_checked(fs_info, page_folio(pages[i]), 115 block_start, block_len); 116 unlock_page(pages[i]); 117 put_page(pages[i]); 118 } 119 } 120 121 /* 122 * After btrfs_copy_from_user(), update the following things for delalloc: 123 * - Mark newly dirtied pages as DELALLOC in the io tree. 124 * Used to advise which range is to be written back. 125 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 126 * - Update inode size for past EOF write 127 */ 128 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 129 size_t num_pages, loff_t pos, size_t write_bytes, 130 struct extent_state **cached, bool noreserve) 131 { 132 struct btrfs_fs_info *fs_info = inode->root->fs_info; 133 int err = 0; 134 int i; 135 u64 num_bytes; 136 u64 start_pos; 137 u64 end_of_last_block; 138 u64 end_pos = pos + write_bytes; 139 loff_t isize = i_size_read(&inode->vfs_inode); 140 unsigned int extra_bits = 0; 141 142 if (write_bytes == 0) 143 return 0; 144 145 if (noreserve) 146 extra_bits |= EXTENT_NORESERVE; 147 148 start_pos = round_down(pos, fs_info->sectorsize); 149 num_bytes = round_up(write_bytes + pos - start_pos, 150 fs_info->sectorsize); 151 ASSERT(num_bytes <= U32_MAX); 152 153 end_of_last_block = start_pos + num_bytes - 1; 154 155 /* 156 * The pages may have already been dirty, clear out old accounting so 157 * we can set things up properly 158 */ 159 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 160 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 161 cached); 162 163 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 164 extra_bits, cached); 165 if (err) 166 return err; 167 168 for (i = 0; i < num_pages; i++) { 169 struct page *p = pages[i]; 170 171 btrfs_folio_clamp_set_uptodate(fs_info, page_folio(p), 172 start_pos, num_bytes); 173 btrfs_folio_clamp_clear_checked(fs_info, page_folio(p), 174 start_pos, num_bytes); 175 btrfs_folio_clamp_set_dirty(fs_info, page_folio(p), 176 start_pos, num_bytes); 177 } 178 179 /* 180 * we've only changed i_size in ram, and we haven't updated 181 * the disk i_size. There is no need to log the inode 182 * at this time. 183 */ 184 if (end_pos > isize) 185 i_size_write(&inode->vfs_inode, end_pos); 186 return 0; 187 } 188 189 /* 190 * this is very complex, but the basic idea is to drop all extents 191 * in the range start - end. hint_block is filled in with a block number 192 * that would be a good hint to the block allocator for this file. 193 * 194 * If an extent intersects the range but is not entirely inside the range 195 * it is either truncated or split. Anything entirely inside the range 196 * is deleted from the tree. 197 * 198 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 199 * to deal with that. We set the field 'bytes_found' of the arguments structure 200 * with the number of allocated bytes found in the target range, so that the 201 * caller can update the inode's number of bytes in an atomic way when 202 * replacing extents in a range to avoid races with stat(2). 203 */ 204 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 205 struct btrfs_root *root, struct btrfs_inode *inode, 206 struct btrfs_drop_extents_args *args) 207 { 208 struct btrfs_fs_info *fs_info = root->fs_info; 209 struct extent_buffer *leaf; 210 struct btrfs_file_extent_item *fi; 211 struct btrfs_ref ref = { 0 }; 212 struct btrfs_key key; 213 struct btrfs_key new_key; 214 u64 ino = btrfs_ino(inode); 215 u64 search_start = args->start; 216 u64 disk_bytenr = 0; 217 u64 num_bytes = 0; 218 u64 extent_offset = 0; 219 u64 extent_end = 0; 220 u64 last_end = args->start; 221 int del_nr = 0; 222 int del_slot = 0; 223 int extent_type; 224 int recow; 225 int ret; 226 int modify_tree = -1; 227 int update_refs; 228 int found = 0; 229 struct btrfs_path *path = args->path; 230 231 args->bytes_found = 0; 232 args->extent_inserted = false; 233 234 /* Must always have a path if ->replace_extent is true */ 235 ASSERT(!(args->replace_extent && !args->path)); 236 237 if (!path) { 238 path = btrfs_alloc_path(); 239 if (!path) { 240 ret = -ENOMEM; 241 goto out; 242 } 243 } 244 245 if (args->drop_cache) 246 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); 247 248 if (args->start >= inode->disk_i_size && !args->replace_extent) 249 modify_tree = 0; 250 251 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 252 while (1) { 253 recow = 0; 254 ret = btrfs_lookup_file_extent(trans, root, path, ino, 255 search_start, modify_tree); 256 if (ret < 0) 257 break; 258 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 259 leaf = path->nodes[0]; 260 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 261 if (key.objectid == ino && 262 key.type == BTRFS_EXTENT_DATA_KEY) 263 path->slots[0]--; 264 } 265 ret = 0; 266 next_slot: 267 leaf = path->nodes[0]; 268 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 269 BUG_ON(del_nr > 0); 270 ret = btrfs_next_leaf(root, path); 271 if (ret < 0) 272 break; 273 if (ret > 0) { 274 ret = 0; 275 break; 276 } 277 leaf = path->nodes[0]; 278 recow = 1; 279 } 280 281 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 282 283 if (key.objectid > ino) 284 break; 285 if (WARN_ON_ONCE(key.objectid < ino) || 286 key.type < BTRFS_EXTENT_DATA_KEY) { 287 ASSERT(del_nr == 0); 288 path->slots[0]++; 289 goto next_slot; 290 } 291 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 292 break; 293 294 fi = btrfs_item_ptr(leaf, path->slots[0], 295 struct btrfs_file_extent_item); 296 extent_type = btrfs_file_extent_type(leaf, fi); 297 298 if (extent_type == BTRFS_FILE_EXTENT_REG || 299 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 300 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 301 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 302 extent_offset = btrfs_file_extent_offset(leaf, fi); 303 extent_end = key.offset + 304 btrfs_file_extent_num_bytes(leaf, fi); 305 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 306 extent_end = key.offset + 307 btrfs_file_extent_ram_bytes(leaf, fi); 308 } else { 309 /* can't happen */ 310 BUG(); 311 } 312 313 /* 314 * Don't skip extent items representing 0 byte lengths. They 315 * used to be created (bug) if while punching holes we hit 316 * -ENOSPC condition. So if we find one here, just ensure we 317 * delete it, otherwise we would insert a new file extent item 318 * with the same key (offset) as that 0 bytes length file 319 * extent item in the call to setup_items_for_insert() later 320 * in this function. 321 */ 322 if (extent_end == key.offset && extent_end >= search_start) { 323 last_end = extent_end; 324 goto delete_extent_item; 325 } 326 327 if (extent_end <= search_start) { 328 path->slots[0]++; 329 goto next_slot; 330 } 331 332 found = 1; 333 search_start = max(key.offset, args->start); 334 if (recow || !modify_tree) { 335 modify_tree = -1; 336 btrfs_release_path(path); 337 continue; 338 } 339 340 /* 341 * | - range to drop - | 342 * | -------- extent -------- | 343 */ 344 if (args->start > key.offset && args->end < extent_end) { 345 BUG_ON(del_nr > 0); 346 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 347 ret = -EOPNOTSUPP; 348 break; 349 } 350 351 memcpy(&new_key, &key, sizeof(new_key)); 352 new_key.offset = args->start; 353 ret = btrfs_duplicate_item(trans, root, path, 354 &new_key); 355 if (ret == -EAGAIN) { 356 btrfs_release_path(path); 357 continue; 358 } 359 if (ret < 0) 360 break; 361 362 leaf = path->nodes[0]; 363 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 364 struct btrfs_file_extent_item); 365 btrfs_set_file_extent_num_bytes(leaf, fi, 366 args->start - key.offset); 367 368 fi = btrfs_item_ptr(leaf, path->slots[0], 369 struct btrfs_file_extent_item); 370 371 extent_offset += args->start - key.offset; 372 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 373 btrfs_set_file_extent_num_bytes(leaf, fi, 374 extent_end - args->start); 375 btrfs_mark_buffer_dirty(trans, leaf); 376 377 if (update_refs && disk_bytenr > 0) { 378 btrfs_init_generic_ref(&ref, 379 BTRFS_ADD_DELAYED_REF, 380 disk_bytenr, num_bytes, 0, 381 root->root_key.objectid); 382 btrfs_init_data_ref(&ref, 383 root->root_key.objectid, 384 new_key.objectid, 385 args->start - extent_offset, 386 0, false); 387 ret = btrfs_inc_extent_ref(trans, &ref); 388 if (ret) { 389 btrfs_abort_transaction(trans, ret); 390 break; 391 } 392 } 393 key.offset = args->start; 394 } 395 /* 396 * From here on out we will have actually dropped something, so 397 * last_end can be updated. 398 */ 399 last_end = extent_end; 400 401 /* 402 * | ---- range to drop ----- | 403 * | -------- extent -------- | 404 */ 405 if (args->start <= key.offset && args->end < extent_end) { 406 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 407 ret = -EOPNOTSUPP; 408 break; 409 } 410 411 memcpy(&new_key, &key, sizeof(new_key)); 412 new_key.offset = args->end; 413 btrfs_set_item_key_safe(trans, path, &new_key); 414 415 extent_offset += args->end - key.offset; 416 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 417 btrfs_set_file_extent_num_bytes(leaf, fi, 418 extent_end - args->end); 419 btrfs_mark_buffer_dirty(trans, leaf); 420 if (update_refs && disk_bytenr > 0) 421 args->bytes_found += args->end - key.offset; 422 break; 423 } 424 425 search_start = extent_end; 426 /* 427 * | ---- range to drop ----- | 428 * | -------- extent -------- | 429 */ 430 if (args->start > key.offset && args->end >= extent_end) { 431 BUG_ON(del_nr > 0); 432 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 433 ret = -EOPNOTSUPP; 434 break; 435 } 436 437 btrfs_set_file_extent_num_bytes(leaf, fi, 438 args->start - key.offset); 439 btrfs_mark_buffer_dirty(trans, leaf); 440 if (update_refs && disk_bytenr > 0) 441 args->bytes_found += extent_end - args->start; 442 if (args->end == extent_end) 443 break; 444 445 path->slots[0]++; 446 goto next_slot; 447 } 448 449 /* 450 * | ---- range to drop ----- | 451 * | ------ extent ------ | 452 */ 453 if (args->start <= key.offset && args->end >= extent_end) { 454 delete_extent_item: 455 if (del_nr == 0) { 456 del_slot = path->slots[0]; 457 del_nr = 1; 458 } else { 459 BUG_ON(del_slot + del_nr != path->slots[0]); 460 del_nr++; 461 } 462 463 if (update_refs && 464 extent_type == BTRFS_FILE_EXTENT_INLINE) { 465 args->bytes_found += extent_end - key.offset; 466 extent_end = ALIGN(extent_end, 467 fs_info->sectorsize); 468 } else if (update_refs && disk_bytenr > 0) { 469 btrfs_init_generic_ref(&ref, 470 BTRFS_DROP_DELAYED_REF, 471 disk_bytenr, num_bytes, 0, 472 root->root_key.objectid); 473 btrfs_init_data_ref(&ref, 474 root->root_key.objectid, 475 key.objectid, 476 key.offset - extent_offset, 0, 477 false); 478 ret = btrfs_free_extent(trans, &ref); 479 if (ret) { 480 btrfs_abort_transaction(trans, ret); 481 break; 482 } 483 args->bytes_found += extent_end - key.offset; 484 } 485 486 if (args->end == extent_end) 487 break; 488 489 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 490 path->slots[0]++; 491 goto next_slot; 492 } 493 494 ret = btrfs_del_items(trans, root, path, del_slot, 495 del_nr); 496 if (ret) { 497 btrfs_abort_transaction(trans, ret); 498 break; 499 } 500 501 del_nr = 0; 502 del_slot = 0; 503 504 btrfs_release_path(path); 505 continue; 506 } 507 508 BUG(); 509 } 510 511 if (!ret && del_nr > 0) { 512 /* 513 * Set path->slots[0] to first slot, so that after the delete 514 * if items are move off from our leaf to its immediate left or 515 * right neighbor leafs, we end up with a correct and adjusted 516 * path->slots[0] for our insertion (if args->replace_extent). 517 */ 518 path->slots[0] = del_slot; 519 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 520 if (ret) 521 btrfs_abort_transaction(trans, ret); 522 } 523 524 leaf = path->nodes[0]; 525 /* 526 * If btrfs_del_items() was called, it might have deleted a leaf, in 527 * which case it unlocked our path, so check path->locks[0] matches a 528 * write lock. 529 */ 530 if (!ret && args->replace_extent && 531 path->locks[0] == BTRFS_WRITE_LOCK && 532 btrfs_leaf_free_space(leaf) >= 533 sizeof(struct btrfs_item) + args->extent_item_size) { 534 535 key.objectid = ino; 536 key.type = BTRFS_EXTENT_DATA_KEY; 537 key.offset = args->start; 538 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 539 struct btrfs_key slot_key; 540 541 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 542 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 543 path->slots[0]++; 544 } 545 btrfs_setup_item_for_insert(trans, root, path, &key, 546 args->extent_item_size); 547 args->extent_inserted = true; 548 } 549 550 if (!args->path) 551 btrfs_free_path(path); 552 else if (!args->extent_inserted) 553 btrfs_release_path(path); 554 out: 555 args->drop_end = found ? min(args->end, last_end) : args->end; 556 557 return ret; 558 } 559 560 static int extent_mergeable(struct extent_buffer *leaf, int slot, 561 u64 objectid, u64 bytenr, u64 orig_offset, 562 u64 *start, u64 *end) 563 { 564 struct btrfs_file_extent_item *fi; 565 struct btrfs_key key; 566 u64 extent_end; 567 568 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 569 return 0; 570 571 btrfs_item_key_to_cpu(leaf, &key, slot); 572 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 573 return 0; 574 575 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 576 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 577 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 578 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 579 btrfs_file_extent_compression(leaf, fi) || 580 btrfs_file_extent_encryption(leaf, fi) || 581 btrfs_file_extent_other_encoding(leaf, fi)) 582 return 0; 583 584 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 585 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 586 return 0; 587 588 *start = key.offset; 589 *end = extent_end; 590 return 1; 591 } 592 593 /* 594 * Mark extent in the range start - end as written. 595 * 596 * This changes extent type from 'pre-allocated' to 'regular'. If only 597 * part of extent is marked as written, the extent will be split into 598 * two or three. 599 */ 600 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 601 struct btrfs_inode *inode, u64 start, u64 end) 602 { 603 struct btrfs_root *root = inode->root; 604 struct extent_buffer *leaf; 605 struct btrfs_path *path; 606 struct btrfs_file_extent_item *fi; 607 struct btrfs_ref ref = { 0 }; 608 struct btrfs_key key; 609 struct btrfs_key new_key; 610 u64 bytenr; 611 u64 num_bytes; 612 u64 extent_end; 613 u64 orig_offset; 614 u64 other_start; 615 u64 other_end; 616 u64 split; 617 int del_nr = 0; 618 int del_slot = 0; 619 int recow; 620 int ret = 0; 621 u64 ino = btrfs_ino(inode); 622 623 path = btrfs_alloc_path(); 624 if (!path) 625 return -ENOMEM; 626 again: 627 recow = 0; 628 split = start; 629 key.objectid = ino; 630 key.type = BTRFS_EXTENT_DATA_KEY; 631 key.offset = split; 632 633 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 634 if (ret < 0) 635 goto out; 636 if (ret > 0 && path->slots[0] > 0) 637 path->slots[0]--; 638 639 leaf = path->nodes[0]; 640 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 641 if (key.objectid != ino || 642 key.type != BTRFS_EXTENT_DATA_KEY) { 643 ret = -EINVAL; 644 btrfs_abort_transaction(trans, ret); 645 goto out; 646 } 647 fi = btrfs_item_ptr(leaf, path->slots[0], 648 struct btrfs_file_extent_item); 649 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 650 ret = -EINVAL; 651 btrfs_abort_transaction(trans, ret); 652 goto out; 653 } 654 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 655 if (key.offset > start || extent_end < end) { 656 ret = -EINVAL; 657 btrfs_abort_transaction(trans, ret); 658 goto out; 659 } 660 661 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 662 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 663 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 664 memcpy(&new_key, &key, sizeof(new_key)); 665 666 if (start == key.offset && end < extent_end) { 667 other_start = 0; 668 other_end = start; 669 if (extent_mergeable(leaf, path->slots[0] - 1, 670 ino, bytenr, orig_offset, 671 &other_start, &other_end)) { 672 new_key.offset = end; 673 btrfs_set_item_key_safe(trans, path, &new_key); 674 fi = btrfs_item_ptr(leaf, path->slots[0], 675 struct btrfs_file_extent_item); 676 btrfs_set_file_extent_generation(leaf, fi, 677 trans->transid); 678 btrfs_set_file_extent_num_bytes(leaf, fi, 679 extent_end - end); 680 btrfs_set_file_extent_offset(leaf, fi, 681 end - orig_offset); 682 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 683 struct btrfs_file_extent_item); 684 btrfs_set_file_extent_generation(leaf, fi, 685 trans->transid); 686 btrfs_set_file_extent_num_bytes(leaf, fi, 687 end - other_start); 688 btrfs_mark_buffer_dirty(trans, leaf); 689 goto out; 690 } 691 } 692 693 if (start > key.offset && end == extent_end) { 694 other_start = end; 695 other_end = 0; 696 if (extent_mergeable(leaf, path->slots[0] + 1, 697 ino, bytenr, orig_offset, 698 &other_start, &other_end)) { 699 fi = btrfs_item_ptr(leaf, path->slots[0], 700 struct btrfs_file_extent_item); 701 btrfs_set_file_extent_num_bytes(leaf, fi, 702 start - key.offset); 703 btrfs_set_file_extent_generation(leaf, fi, 704 trans->transid); 705 path->slots[0]++; 706 new_key.offset = start; 707 btrfs_set_item_key_safe(trans, path, &new_key); 708 709 fi = btrfs_item_ptr(leaf, path->slots[0], 710 struct btrfs_file_extent_item); 711 btrfs_set_file_extent_generation(leaf, fi, 712 trans->transid); 713 btrfs_set_file_extent_num_bytes(leaf, fi, 714 other_end - start); 715 btrfs_set_file_extent_offset(leaf, fi, 716 start - orig_offset); 717 btrfs_mark_buffer_dirty(trans, leaf); 718 goto out; 719 } 720 } 721 722 while (start > key.offset || end < extent_end) { 723 if (key.offset == start) 724 split = end; 725 726 new_key.offset = split; 727 ret = btrfs_duplicate_item(trans, root, path, &new_key); 728 if (ret == -EAGAIN) { 729 btrfs_release_path(path); 730 goto again; 731 } 732 if (ret < 0) { 733 btrfs_abort_transaction(trans, ret); 734 goto out; 735 } 736 737 leaf = path->nodes[0]; 738 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 739 struct btrfs_file_extent_item); 740 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 741 btrfs_set_file_extent_num_bytes(leaf, fi, 742 split - key.offset); 743 744 fi = btrfs_item_ptr(leaf, path->slots[0], 745 struct btrfs_file_extent_item); 746 747 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 748 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 749 btrfs_set_file_extent_num_bytes(leaf, fi, 750 extent_end - split); 751 btrfs_mark_buffer_dirty(trans, leaf); 752 753 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 754 num_bytes, 0, root->root_key.objectid); 755 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 756 orig_offset, 0, false); 757 ret = btrfs_inc_extent_ref(trans, &ref); 758 if (ret) { 759 btrfs_abort_transaction(trans, ret); 760 goto out; 761 } 762 763 if (split == start) { 764 key.offset = start; 765 } else { 766 if (start != key.offset) { 767 ret = -EINVAL; 768 btrfs_abort_transaction(trans, ret); 769 goto out; 770 } 771 path->slots[0]--; 772 extent_end = end; 773 } 774 recow = 1; 775 } 776 777 other_start = end; 778 other_end = 0; 779 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 780 num_bytes, 0, root->root_key.objectid); 781 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset, 782 0, false); 783 if (extent_mergeable(leaf, path->slots[0] + 1, 784 ino, bytenr, orig_offset, 785 &other_start, &other_end)) { 786 if (recow) { 787 btrfs_release_path(path); 788 goto again; 789 } 790 extent_end = other_end; 791 del_slot = path->slots[0] + 1; 792 del_nr++; 793 ret = btrfs_free_extent(trans, &ref); 794 if (ret) { 795 btrfs_abort_transaction(trans, ret); 796 goto out; 797 } 798 } 799 other_start = 0; 800 other_end = start; 801 if (extent_mergeable(leaf, path->slots[0] - 1, 802 ino, bytenr, orig_offset, 803 &other_start, &other_end)) { 804 if (recow) { 805 btrfs_release_path(path); 806 goto again; 807 } 808 key.offset = other_start; 809 del_slot = path->slots[0]; 810 del_nr++; 811 ret = btrfs_free_extent(trans, &ref); 812 if (ret) { 813 btrfs_abort_transaction(trans, ret); 814 goto out; 815 } 816 } 817 if (del_nr == 0) { 818 fi = btrfs_item_ptr(leaf, path->slots[0], 819 struct btrfs_file_extent_item); 820 btrfs_set_file_extent_type(leaf, fi, 821 BTRFS_FILE_EXTENT_REG); 822 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 823 btrfs_mark_buffer_dirty(trans, leaf); 824 } else { 825 fi = btrfs_item_ptr(leaf, del_slot - 1, 826 struct btrfs_file_extent_item); 827 btrfs_set_file_extent_type(leaf, fi, 828 BTRFS_FILE_EXTENT_REG); 829 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 830 btrfs_set_file_extent_num_bytes(leaf, fi, 831 extent_end - key.offset); 832 btrfs_mark_buffer_dirty(trans, leaf); 833 834 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 835 if (ret < 0) { 836 btrfs_abort_transaction(trans, ret); 837 goto out; 838 } 839 } 840 out: 841 btrfs_free_path(path); 842 return ret; 843 } 844 845 /* 846 * on error we return an unlocked page and the error value 847 * on success we return a locked page and 0 848 */ 849 static int prepare_uptodate_page(struct inode *inode, 850 struct page *page, u64 pos, 851 bool force_uptodate) 852 { 853 struct folio *folio = page_folio(page); 854 int ret = 0; 855 856 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 857 !PageUptodate(page)) { 858 ret = btrfs_read_folio(NULL, folio); 859 if (ret) 860 return ret; 861 lock_page(page); 862 if (!PageUptodate(page)) { 863 unlock_page(page); 864 return -EIO; 865 } 866 867 /* 868 * Since btrfs_read_folio() will unlock the folio before it 869 * returns, there is a window where btrfs_release_folio() can be 870 * called to release the page. Here we check both inode 871 * mapping and PagePrivate() to make sure the page was not 872 * released. 873 * 874 * The private flag check is essential for subpage as we need 875 * to store extra bitmap using folio private. 876 */ 877 if (page->mapping != inode->i_mapping || !folio_test_private(folio)) { 878 unlock_page(page); 879 return -EAGAIN; 880 } 881 } 882 return 0; 883 } 884 885 static fgf_t get_prepare_fgp_flags(bool nowait) 886 { 887 fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT; 888 889 if (nowait) 890 fgp_flags |= FGP_NOWAIT; 891 892 return fgp_flags; 893 } 894 895 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) 896 { 897 gfp_t gfp; 898 899 gfp = btrfs_alloc_write_mask(inode->i_mapping); 900 if (nowait) { 901 gfp &= ~__GFP_DIRECT_RECLAIM; 902 gfp |= GFP_NOWAIT; 903 } 904 905 return gfp; 906 } 907 908 /* 909 * this just gets pages into the page cache and locks them down. 910 */ 911 static noinline int prepare_pages(struct inode *inode, struct page **pages, 912 size_t num_pages, loff_t pos, 913 size_t write_bytes, bool force_uptodate, 914 bool nowait) 915 { 916 int i; 917 unsigned long index = pos >> PAGE_SHIFT; 918 gfp_t mask = get_prepare_gfp_flags(inode, nowait); 919 fgf_t fgp_flags = get_prepare_fgp_flags(nowait); 920 int err = 0; 921 int faili; 922 923 for (i = 0; i < num_pages; i++) { 924 again: 925 pages[i] = pagecache_get_page(inode->i_mapping, index + i, 926 fgp_flags, mask | __GFP_WRITE); 927 if (!pages[i]) { 928 faili = i - 1; 929 if (nowait) 930 err = -EAGAIN; 931 else 932 err = -ENOMEM; 933 goto fail; 934 } 935 936 err = set_page_extent_mapped(pages[i]); 937 if (err < 0) { 938 faili = i; 939 goto fail; 940 } 941 942 if (i == 0) 943 err = prepare_uptodate_page(inode, pages[i], pos, 944 force_uptodate); 945 if (!err && i == num_pages - 1) 946 err = prepare_uptodate_page(inode, pages[i], 947 pos + write_bytes, false); 948 if (err) { 949 put_page(pages[i]); 950 if (!nowait && err == -EAGAIN) { 951 err = 0; 952 goto again; 953 } 954 faili = i - 1; 955 goto fail; 956 } 957 wait_on_page_writeback(pages[i]); 958 } 959 960 return 0; 961 fail: 962 while (faili >= 0) { 963 unlock_page(pages[faili]); 964 put_page(pages[faili]); 965 faili--; 966 } 967 return err; 968 969 } 970 971 /* 972 * This function locks the extent and properly waits for data=ordered extents 973 * to finish before allowing the pages to be modified if need. 974 * 975 * The return value: 976 * 1 - the extent is locked 977 * 0 - the extent is not locked, and everything is OK 978 * -EAGAIN - need re-prepare the pages 979 * the other < 0 number - Something wrong happens 980 */ 981 static noinline int 982 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 983 size_t num_pages, loff_t pos, 984 size_t write_bytes, 985 u64 *lockstart, u64 *lockend, bool nowait, 986 struct extent_state **cached_state) 987 { 988 struct btrfs_fs_info *fs_info = inode->root->fs_info; 989 u64 start_pos; 990 u64 last_pos; 991 int i; 992 int ret = 0; 993 994 start_pos = round_down(pos, fs_info->sectorsize); 995 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 996 997 if (start_pos < inode->vfs_inode.i_size) { 998 struct btrfs_ordered_extent *ordered; 999 1000 if (nowait) { 1001 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos, 1002 cached_state)) { 1003 for (i = 0; i < num_pages; i++) { 1004 unlock_page(pages[i]); 1005 put_page(pages[i]); 1006 pages[i] = NULL; 1007 } 1008 1009 return -EAGAIN; 1010 } 1011 } else { 1012 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state); 1013 } 1014 1015 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1016 last_pos - start_pos + 1); 1017 if (ordered && 1018 ordered->file_offset + ordered->num_bytes > start_pos && 1019 ordered->file_offset <= last_pos) { 1020 unlock_extent(&inode->io_tree, start_pos, last_pos, 1021 cached_state); 1022 for (i = 0; i < num_pages; i++) { 1023 unlock_page(pages[i]); 1024 put_page(pages[i]); 1025 } 1026 btrfs_start_ordered_extent(ordered); 1027 btrfs_put_ordered_extent(ordered); 1028 return -EAGAIN; 1029 } 1030 if (ordered) 1031 btrfs_put_ordered_extent(ordered); 1032 1033 *lockstart = start_pos; 1034 *lockend = last_pos; 1035 ret = 1; 1036 } 1037 1038 /* 1039 * We should be called after prepare_pages() which should have locked 1040 * all pages in the range. 1041 */ 1042 for (i = 0; i < num_pages; i++) 1043 WARN_ON(!PageLocked(pages[i])); 1044 1045 return ret; 1046 } 1047 1048 /* 1049 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1050 * 1051 * @pos: File offset. 1052 * @write_bytes: The length to write, will be updated to the nocow writeable 1053 * range. 1054 * 1055 * This function will flush ordered extents in the range to ensure proper 1056 * nocow checks. 1057 * 1058 * Return: 1059 * > 0 If we can nocow, and updates @write_bytes. 1060 * 0 If we can't do a nocow write. 1061 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's 1062 * root is in progress. 1063 * < 0 If an error happened. 1064 * 1065 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 1066 */ 1067 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1068 size_t *write_bytes, bool nowait) 1069 { 1070 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1071 struct btrfs_root *root = inode->root; 1072 struct extent_state *cached_state = NULL; 1073 u64 lockstart, lockend; 1074 u64 num_bytes; 1075 int ret; 1076 1077 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1078 return 0; 1079 1080 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1081 return -EAGAIN; 1082 1083 lockstart = round_down(pos, fs_info->sectorsize); 1084 lockend = round_up(pos + *write_bytes, 1085 fs_info->sectorsize) - 1; 1086 num_bytes = lockend - lockstart + 1; 1087 1088 if (nowait) { 1089 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend, 1090 &cached_state)) { 1091 btrfs_drew_write_unlock(&root->snapshot_lock); 1092 return -EAGAIN; 1093 } 1094 } else { 1095 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, 1096 &cached_state); 1097 } 1098 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1099 NULL, NULL, NULL, nowait, false); 1100 if (ret <= 0) 1101 btrfs_drew_write_unlock(&root->snapshot_lock); 1102 else 1103 *write_bytes = min_t(size_t, *write_bytes , 1104 num_bytes - pos + lockstart); 1105 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 1106 1107 return ret; 1108 } 1109 1110 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1111 { 1112 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1113 } 1114 1115 static void update_time_for_write(struct inode *inode) 1116 { 1117 struct timespec64 now, ts; 1118 1119 if (IS_NOCMTIME(inode)) 1120 return; 1121 1122 now = current_time(inode); 1123 ts = inode_get_mtime(inode); 1124 if (!timespec64_equal(&ts, &now)) 1125 inode_set_mtime_to_ts(inode, now); 1126 1127 ts = inode_get_ctime(inode); 1128 if (!timespec64_equal(&ts, &now)) 1129 inode_set_ctime_to_ts(inode, now); 1130 1131 if (IS_I_VERSION(inode)) 1132 inode_inc_iversion(inode); 1133 } 1134 1135 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1136 size_t count) 1137 { 1138 struct file *file = iocb->ki_filp; 1139 struct inode *inode = file_inode(file); 1140 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1141 loff_t pos = iocb->ki_pos; 1142 int ret; 1143 loff_t oldsize; 1144 loff_t start_pos; 1145 1146 /* 1147 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1148 * prealloc flags, as without those flags we always have to COW. We will 1149 * later check if we can really COW into the target range (using 1150 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1151 */ 1152 if ((iocb->ki_flags & IOCB_NOWAIT) && 1153 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1154 return -EAGAIN; 1155 1156 ret = file_remove_privs(file); 1157 if (ret) 1158 return ret; 1159 1160 /* 1161 * We reserve space for updating the inode when we reserve space for the 1162 * extent we are going to write, so we will enospc out there. We don't 1163 * need to start yet another transaction to update the inode as we will 1164 * update the inode when we finish writing whatever data we write. 1165 */ 1166 update_time_for_write(inode); 1167 1168 start_pos = round_down(pos, fs_info->sectorsize); 1169 oldsize = i_size_read(inode); 1170 if (start_pos > oldsize) { 1171 /* Expand hole size to cover write data, preventing empty gap */ 1172 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1173 1174 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1175 if (ret) 1176 return ret; 1177 } 1178 1179 return 0; 1180 } 1181 1182 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1183 struct iov_iter *i) 1184 { 1185 struct file *file = iocb->ki_filp; 1186 loff_t pos; 1187 struct inode *inode = file_inode(file); 1188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1189 struct page **pages = NULL; 1190 struct extent_changeset *data_reserved = NULL; 1191 u64 release_bytes = 0; 1192 u64 lockstart; 1193 u64 lockend; 1194 size_t num_written = 0; 1195 int nrptrs; 1196 ssize_t ret; 1197 bool only_release_metadata = false; 1198 bool force_page_uptodate = false; 1199 loff_t old_isize = i_size_read(inode); 1200 unsigned int ilock_flags = 0; 1201 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 1202 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); 1203 1204 if (nowait) 1205 ilock_flags |= BTRFS_ILOCK_TRY; 1206 1207 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1208 if (ret < 0) 1209 return ret; 1210 1211 ret = generic_write_checks(iocb, i); 1212 if (ret <= 0) 1213 goto out; 1214 1215 ret = btrfs_write_check(iocb, i, ret); 1216 if (ret < 0) 1217 goto out; 1218 1219 pos = iocb->ki_pos; 1220 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1221 PAGE_SIZE / (sizeof(struct page *))); 1222 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1223 nrptrs = max(nrptrs, 8); 1224 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1225 if (!pages) { 1226 ret = -ENOMEM; 1227 goto out; 1228 } 1229 1230 while (iov_iter_count(i) > 0) { 1231 struct extent_state *cached_state = NULL; 1232 size_t offset = offset_in_page(pos); 1233 size_t sector_offset; 1234 size_t write_bytes = min(iov_iter_count(i), 1235 nrptrs * (size_t)PAGE_SIZE - 1236 offset); 1237 size_t num_pages; 1238 size_t reserve_bytes; 1239 size_t dirty_pages; 1240 size_t copied; 1241 size_t dirty_sectors; 1242 size_t num_sectors; 1243 int extents_locked; 1244 1245 /* 1246 * Fault pages before locking them in prepare_pages 1247 * to avoid recursive lock 1248 */ 1249 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1250 ret = -EFAULT; 1251 break; 1252 } 1253 1254 only_release_metadata = false; 1255 sector_offset = pos & (fs_info->sectorsize - 1); 1256 1257 extent_changeset_release(data_reserved); 1258 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1259 &data_reserved, pos, 1260 write_bytes, nowait); 1261 if (ret < 0) { 1262 int can_nocow; 1263 1264 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) { 1265 ret = -EAGAIN; 1266 break; 1267 } 1268 1269 /* 1270 * If we don't have to COW at the offset, reserve 1271 * metadata only. write_bytes may get smaller than 1272 * requested here. 1273 */ 1274 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1275 &write_bytes, nowait); 1276 if (can_nocow < 0) 1277 ret = can_nocow; 1278 if (can_nocow > 0) 1279 ret = 0; 1280 if (ret) 1281 break; 1282 only_release_metadata = true; 1283 } 1284 1285 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1286 WARN_ON(num_pages > nrptrs); 1287 reserve_bytes = round_up(write_bytes + sector_offset, 1288 fs_info->sectorsize); 1289 WARN_ON(reserve_bytes == 0); 1290 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1291 reserve_bytes, 1292 reserve_bytes, nowait); 1293 if (ret) { 1294 if (!only_release_metadata) 1295 btrfs_free_reserved_data_space(BTRFS_I(inode), 1296 data_reserved, pos, 1297 write_bytes); 1298 else 1299 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1300 1301 if (nowait && ret == -ENOSPC) 1302 ret = -EAGAIN; 1303 break; 1304 } 1305 1306 release_bytes = reserve_bytes; 1307 again: 1308 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags); 1309 if (ret) { 1310 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1311 break; 1312 } 1313 1314 /* 1315 * This is going to setup the pages array with the number of 1316 * pages we want, so we don't really need to worry about the 1317 * contents of pages from loop to loop 1318 */ 1319 ret = prepare_pages(inode, pages, num_pages, 1320 pos, write_bytes, force_page_uptodate, false); 1321 if (ret) { 1322 btrfs_delalloc_release_extents(BTRFS_I(inode), 1323 reserve_bytes); 1324 break; 1325 } 1326 1327 extents_locked = lock_and_cleanup_extent_if_need( 1328 BTRFS_I(inode), pages, 1329 num_pages, pos, write_bytes, &lockstart, 1330 &lockend, nowait, &cached_state); 1331 if (extents_locked < 0) { 1332 if (!nowait && extents_locked == -EAGAIN) 1333 goto again; 1334 1335 btrfs_delalloc_release_extents(BTRFS_I(inode), 1336 reserve_bytes); 1337 ret = extents_locked; 1338 break; 1339 } 1340 1341 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1342 1343 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1344 dirty_sectors = round_up(copied + sector_offset, 1345 fs_info->sectorsize); 1346 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1347 1348 /* 1349 * if we have trouble faulting in the pages, fall 1350 * back to one page at a time 1351 */ 1352 if (copied < write_bytes) 1353 nrptrs = 1; 1354 1355 if (copied == 0) { 1356 force_page_uptodate = true; 1357 dirty_sectors = 0; 1358 dirty_pages = 0; 1359 } else { 1360 force_page_uptodate = false; 1361 dirty_pages = DIV_ROUND_UP(copied + offset, 1362 PAGE_SIZE); 1363 } 1364 1365 if (num_sectors > dirty_sectors) { 1366 /* release everything except the sectors we dirtied */ 1367 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1368 if (only_release_metadata) { 1369 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1370 release_bytes, true); 1371 } else { 1372 u64 __pos; 1373 1374 __pos = round_down(pos, 1375 fs_info->sectorsize) + 1376 (dirty_pages << PAGE_SHIFT); 1377 btrfs_delalloc_release_space(BTRFS_I(inode), 1378 data_reserved, __pos, 1379 release_bytes, true); 1380 } 1381 } 1382 1383 release_bytes = round_up(copied + sector_offset, 1384 fs_info->sectorsize); 1385 1386 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1387 dirty_pages, pos, copied, 1388 &cached_state, only_release_metadata); 1389 1390 /* 1391 * If we have not locked the extent range, because the range's 1392 * start offset is >= i_size, we might still have a non-NULL 1393 * cached extent state, acquired while marking the extent range 1394 * as delalloc through btrfs_dirty_pages(). Therefore free any 1395 * possible cached extent state to avoid a memory leak. 1396 */ 1397 if (extents_locked) 1398 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 1399 lockend, &cached_state); 1400 else 1401 free_extent_state(cached_state); 1402 1403 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1404 if (ret) { 1405 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1406 break; 1407 } 1408 1409 release_bytes = 0; 1410 if (only_release_metadata) 1411 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1412 1413 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1414 1415 cond_resched(); 1416 1417 pos += copied; 1418 num_written += copied; 1419 } 1420 1421 kfree(pages); 1422 1423 if (release_bytes) { 1424 if (only_release_metadata) { 1425 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1426 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1427 release_bytes, true); 1428 } else { 1429 btrfs_delalloc_release_space(BTRFS_I(inode), 1430 data_reserved, 1431 round_down(pos, fs_info->sectorsize), 1432 release_bytes, true); 1433 } 1434 } 1435 1436 extent_changeset_free(data_reserved); 1437 if (num_written > 0) { 1438 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1439 iocb->ki_pos += num_written; 1440 } 1441 out: 1442 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1443 return num_written ? num_written : ret; 1444 } 1445 1446 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1447 const struct iov_iter *iter, loff_t offset) 1448 { 1449 const u32 blocksize_mask = fs_info->sectorsize - 1; 1450 1451 if (offset & blocksize_mask) 1452 return -EINVAL; 1453 1454 if (iov_iter_alignment(iter) & blocksize_mask) 1455 return -EINVAL; 1456 1457 return 0; 1458 } 1459 1460 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1461 { 1462 struct file *file = iocb->ki_filp; 1463 struct inode *inode = file_inode(file); 1464 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1465 loff_t pos; 1466 ssize_t written = 0; 1467 ssize_t written_buffered; 1468 size_t prev_left = 0; 1469 loff_t endbyte; 1470 ssize_t err; 1471 unsigned int ilock_flags = 0; 1472 struct iomap_dio *dio; 1473 1474 if (iocb->ki_flags & IOCB_NOWAIT) 1475 ilock_flags |= BTRFS_ILOCK_TRY; 1476 1477 /* 1478 * If the write DIO is within EOF, use a shared lock and also only if 1479 * security bits will likely not be dropped by file_remove_privs() called 1480 * from btrfs_write_check(). Either will need to be rechecked after the 1481 * lock was acquired. 1482 */ 1483 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode)) 1484 ilock_flags |= BTRFS_ILOCK_SHARED; 1485 1486 relock: 1487 err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1488 if (err < 0) 1489 return err; 1490 1491 /* Shared lock cannot be used with security bits set. */ 1492 if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) { 1493 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1494 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1495 goto relock; 1496 } 1497 1498 err = generic_write_checks(iocb, from); 1499 if (err <= 0) { 1500 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1501 return err; 1502 } 1503 1504 err = btrfs_write_check(iocb, from, err); 1505 if (err < 0) { 1506 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1507 goto out; 1508 } 1509 1510 pos = iocb->ki_pos; 1511 /* 1512 * Re-check since file size may have changed just before taking the 1513 * lock or pos may have changed because of O_APPEND in generic_write_check() 1514 */ 1515 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1516 pos + iov_iter_count(from) > i_size_read(inode)) { 1517 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1518 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1519 goto relock; 1520 } 1521 1522 if (check_direct_IO(fs_info, from, pos)) { 1523 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1524 goto buffered; 1525 } 1526 1527 /* 1528 * The iov_iter can be mapped to the same file range we are writing to. 1529 * If that's the case, then we will deadlock in the iomap code, because 1530 * it first calls our callback btrfs_dio_iomap_begin(), which will create 1531 * an ordered extent, and after that it will fault in the pages that the 1532 * iov_iter refers to. During the fault in we end up in the readahead 1533 * pages code (starting at btrfs_readahead()), which will lock the range, 1534 * find that ordered extent and then wait for it to complete (at 1535 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since 1536 * obviously the ordered extent can never complete as we didn't submit 1537 * yet the respective bio(s). This always happens when the buffer is 1538 * memory mapped to the same file range, since the iomap DIO code always 1539 * invalidates pages in the target file range (after starting and waiting 1540 * for any writeback). 1541 * 1542 * So here we disable page faults in the iov_iter and then retry if we 1543 * got -EFAULT, faulting in the pages before the retry. 1544 */ 1545 from->nofault = true; 1546 dio = btrfs_dio_write(iocb, from, written); 1547 from->nofault = false; 1548 1549 /* 1550 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync 1551 * iocb, and that needs to lock the inode. So unlock it before calling 1552 * iomap_dio_complete() to avoid a deadlock. 1553 */ 1554 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1555 1556 if (IS_ERR_OR_NULL(dio)) 1557 err = PTR_ERR_OR_ZERO(dio); 1558 else 1559 err = iomap_dio_complete(dio); 1560 1561 /* No increment (+=) because iomap returns a cumulative value. */ 1562 if (err > 0) 1563 written = err; 1564 1565 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) { 1566 const size_t left = iov_iter_count(from); 1567 /* 1568 * We have more data left to write. Try to fault in as many as 1569 * possible of the remainder pages and retry. We do this without 1570 * releasing and locking again the inode, to prevent races with 1571 * truncate. 1572 * 1573 * Also, in case the iov refers to pages in the file range of the 1574 * file we want to write to (due to a mmap), we could enter an 1575 * infinite loop if we retry after faulting the pages in, since 1576 * iomap will invalidate any pages in the range early on, before 1577 * it tries to fault in the pages of the iov. So we keep track of 1578 * how much was left of iov in the previous EFAULT and fallback 1579 * to buffered IO in case we haven't made any progress. 1580 */ 1581 if (left == prev_left) { 1582 err = -ENOTBLK; 1583 } else { 1584 fault_in_iov_iter_readable(from, left); 1585 prev_left = left; 1586 goto relock; 1587 } 1588 } 1589 1590 /* 1591 * If 'err' is -ENOTBLK or we have not written all data, then it means 1592 * we must fallback to buffered IO. 1593 */ 1594 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from)) 1595 goto out; 1596 1597 buffered: 1598 /* 1599 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller 1600 * it must retry the operation in a context where blocking is acceptable, 1601 * because even if we end up not blocking during the buffered IO attempt 1602 * below, we will block when flushing and waiting for the IO. 1603 */ 1604 if (iocb->ki_flags & IOCB_NOWAIT) { 1605 err = -EAGAIN; 1606 goto out; 1607 } 1608 1609 pos = iocb->ki_pos; 1610 written_buffered = btrfs_buffered_write(iocb, from); 1611 if (written_buffered < 0) { 1612 err = written_buffered; 1613 goto out; 1614 } 1615 /* 1616 * Ensure all data is persisted. We want the next direct IO read to be 1617 * able to read what was just written. 1618 */ 1619 endbyte = pos + written_buffered - 1; 1620 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1621 if (err) 1622 goto out; 1623 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1624 if (err) 1625 goto out; 1626 written += written_buffered; 1627 iocb->ki_pos = pos + written_buffered; 1628 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1629 endbyte >> PAGE_SHIFT); 1630 out: 1631 return err < 0 ? err : written; 1632 } 1633 1634 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 1635 const struct btrfs_ioctl_encoded_io_args *encoded) 1636 { 1637 struct file *file = iocb->ki_filp; 1638 struct inode *inode = file_inode(file); 1639 loff_t count; 1640 ssize_t ret; 1641 1642 btrfs_inode_lock(BTRFS_I(inode), 0); 1643 count = encoded->len; 1644 ret = generic_write_checks_count(iocb, &count); 1645 if (ret == 0 && count != encoded->len) { 1646 /* 1647 * The write got truncated by generic_write_checks_count(). We 1648 * can't do a partial encoded write. 1649 */ 1650 ret = -EFBIG; 1651 } 1652 if (ret || encoded->len == 0) 1653 goto out; 1654 1655 ret = btrfs_write_check(iocb, from, encoded->len); 1656 if (ret < 0) 1657 goto out; 1658 1659 ret = btrfs_do_encoded_write(iocb, from, encoded); 1660 out: 1661 btrfs_inode_unlock(BTRFS_I(inode), 0); 1662 return ret; 1663 } 1664 1665 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 1666 const struct btrfs_ioctl_encoded_io_args *encoded) 1667 { 1668 struct file *file = iocb->ki_filp; 1669 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1670 ssize_t num_written, num_sync; 1671 1672 /* 1673 * If the fs flips readonly due to some impossible error, although we 1674 * have opened a file as writable, we have to stop this write operation 1675 * to ensure consistency. 1676 */ 1677 if (BTRFS_FS_ERROR(inode->root->fs_info)) 1678 return -EROFS; 1679 1680 if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) 1681 return -EOPNOTSUPP; 1682 1683 if (encoded) { 1684 num_written = btrfs_encoded_write(iocb, from, encoded); 1685 num_sync = encoded->len; 1686 } else if (iocb->ki_flags & IOCB_DIRECT) { 1687 num_written = btrfs_direct_write(iocb, from); 1688 num_sync = num_written; 1689 } else { 1690 num_written = btrfs_buffered_write(iocb, from); 1691 num_sync = num_written; 1692 } 1693 1694 btrfs_set_inode_last_sub_trans(inode); 1695 1696 if (num_sync > 0) { 1697 num_sync = generic_write_sync(iocb, num_sync); 1698 if (num_sync < 0) 1699 num_written = num_sync; 1700 } 1701 1702 return num_written; 1703 } 1704 1705 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1706 { 1707 return btrfs_do_write_iter(iocb, from, NULL); 1708 } 1709 1710 int btrfs_release_file(struct inode *inode, struct file *filp) 1711 { 1712 struct btrfs_file_private *private = filp->private_data; 1713 1714 if (private) { 1715 kfree(private->filldir_buf); 1716 free_extent_state(private->llseek_cached_state); 1717 kfree(private); 1718 filp->private_data = NULL; 1719 } 1720 1721 /* 1722 * Set by setattr when we are about to truncate a file from a non-zero 1723 * size to a zero size. This tries to flush down new bytes that may 1724 * have been written if the application were using truncate to replace 1725 * a file in place. 1726 */ 1727 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 1728 &BTRFS_I(inode)->runtime_flags)) 1729 filemap_flush(inode->i_mapping); 1730 return 0; 1731 } 1732 1733 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 1734 { 1735 int ret; 1736 struct blk_plug plug; 1737 1738 /* 1739 * This is only called in fsync, which would do synchronous writes, so 1740 * a plug can merge adjacent IOs as much as possible. Esp. in case of 1741 * multiple disks using raid profile, a large IO can be split to 1742 * several segments of stripe length (currently 64K). 1743 */ 1744 blk_start_plug(&plug); 1745 ret = btrfs_fdatawrite_range(inode, start, end); 1746 blk_finish_plug(&plug); 1747 1748 return ret; 1749 } 1750 1751 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 1752 { 1753 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 1754 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1755 1756 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) && 1757 list_empty(&ctx->ordered_extents)) 1758 return true; 1759 1760 /* 1761 * If we are doing a fast fsync we can not bail out if the inode's 1762 * last_trans is <= then the last committed transaction, because we only 1763 * update the last_trans of the inode during ordered extent completion, 1764 * and for a fast fsync we don't wait for that, we only wait for the 1765 * writeback to complete. 1766 */ 1767 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) && 1768 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 1769 list_empty(&ctx->ordered_extents))) 1770 return true; 1771 1772 return false; 1773 } 1774 1775 /* 1776 * fsync call for both files and directories. This logs the inode into 1777 * the tree log instead of forcing full commits whenever possible. 1778 * 1779 * It needs to call filemap_fdatawait so that all ordered extent updates are 1780 * in the metadata btree are up to date for copying to the log. 1781 * 1782 * It drops the inode mutex before doing the tree log commit. This is an 1783 * important optimization for directories because holding the mutex prevents 1784 * new operations on the dir while we write to disk. 1785 */ 1786 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1787 { 1788 struct dentry *dentry = file_dentry(file); 1789 struct inode *inode = d_inode(dentry); 1790 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1791 struct btrfs_root *root = BTRFS_I(inode)->root; 1792 struct btrfs_trans_handle *trans; 1793 struct btrfs_log_ctx ctx; 1794 int ret = 0, err; 1795 u64 len; 1796 bool full_sync; 1797 1798 trace_btrfs_sync_file(file, datasync); 1799 1800 btrfs_init_log_ctx(&ctx, inode); 1801 1802 /* 1803 * Always set the range to a full range, otherwise we can get into 1804 * several problems, from missing file extent items to represent holes 1805 * when not using the NO_HOLES feature, to log tree corruption due to 1806 * races between hole detection during logging and completion of ordered 1807 * extents outside the range, to missing checksums due to ordered extents 1808 * for which we flushed only a subset of their pages. 1809 */ 1810 start = 0; 1811 end = LLONG_MAX; 1812 len = (u64)LLONG_MAX + 1; 1813 1814 /* 1815 * We write the dirty pages in the range and wait until they complete 1816 * out of the ->i_mutex. If so, we can flush the dirty pages by 1817 * multi-task, and make the performance up. See 1818 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1819 */ 1820 ret = start_ordered_ops(inode, start, end); 1821 if (ret) 1822 goto out; 1823 1824 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1825 1826 atomic_inc(&root->log_batch); 1827 1828 /* 1829 * Before we acquired the inode's lock and the mmap lock, someone may 1830 * have dirtied more pages in the target range. We need to make sure 1831 * that writeback for any such pages does not start while we are logging 1832 * the inode, because if it does, any of the following might happen when 1833 * we are not doing a full inode sync: 1834 * 1835 * 1) We log an extent after its writeback finishes but before its 1836 * checksums are added to the csum tree, leading to -EIO errors 1837 * when attempting to read the extent after a log replay. 1838 * 1839 * 2) We can end up logging an extent before its writeback finishes. 1840 * Therefore after the log replay we will have a file extent item 1841 * pointing to an unwritten extent (and no data checksums as well). 1842 * 1843 * So trigger writeback for any eventual new dirty pages and then we 1844 * wait for all ordered extents to complete below. 1845 */ 1846 ret = start_ordered_ops(inode, start, end); 1847 if (ret) { 1848 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1849 goto out; 1850 } 1851 1852 /* 1853 * Always check for the full sync flag while holding the inode's lock, 1854 * to avoid races with other tasks. The flag must be either set all the 1855 * time during logging or always off all the time while logging. 1856 * We check the flag here after starting delalloc above, because when 1857 * running delalloc the full sync flag may be set if we need to drop 1858 * extra extent map ranges due to temporary memory allocation failures. 1859 */ 1860 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1861 &BTRFS_I(inode)->runtime_flags); 1862 1863 /* 1864 * We have to do this here to avoid the priority inversion of waiting on 1865 * IO of a lower priority task while holding a transaction open. 1866 * 1867 * For a full fsync we wait for the ordered extents to complete while 1868 * for a fast fsync we wait just for writeback to complete, and then 1869 * attach the ordered extents to the transaction so that a transaction 1870 * commit waits for their completion, to avoid data loss if we fsync, 1871 * the current transaction commits before the ordered extents complete 1872 * and a power failure happens right after that. 1873 * 1874 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 1875 * logical address recorded in the ordered extent may change. We need 1876 * to wait for the IO to stabilize the logical address. 1877 */ 1878 if (full_sync || btrfs_is_zoned(fs_info)) { 1879 ret = btrfs_wait_ordered_range(inode, start, len); 1880 } else { 1881 /* 1882 * Get our ordered extents as soon as possible to avoid doing 1883 * checksum lookups in the csum tree, and use instead the 1884 * checksums attached to the ordered extents. 1885 */ 1886 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 1887 &ctx.ordered_extents); 1888 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 1889 } 1890 1891 if (ret) 1892 goto out_release_extents; 1893 1894 atomic_inc(&root->log_batch); 1895 1896 if (skip_inode_logging(&ctx)) { 1897 /* 1898 * We've had everything committed since the last time we were 1899 * modified so clear this flag in case it was set for whatever 1900 * reason, it's no longer relevant. 1901 */ 1902 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1903 &BTRFS_I(inode)->runtime_flags); 1904 /* 1905 * An ordered extent might have started before and completed 1906 * already with io errors, in which case the inode was not 1907 * updated and we end up here. So check the inode's mapping 1908 * for any errors that might have happened since we last 1909 * checked called fsync. 1910 */ 1911 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 1912 goto out_release_extents; 1913 } 1914 1915 /* 1916 * We use start here because we will need to wait on the IO to complete 1917 * in btrfs_sync_log, which could require joining a transaction (for 1918 * example checking cross references in the nocow path). If we use join 1919 * here we could get into a situation where we're waiting on IO to 1920 * happen that is blocked on a transaction trying to commit. With start 1921 * we inc the extwriter counter, so we wait for all extwriters to exit 1922 * before we start blocking joiners. This comment is to keep somebody 1923 * from thinking they are super smart and changing this to 1924 * btrfs_join_transaction *cough*Josef*cough*. 1925 */ 1926 trans = btrfs_start_transaction(root, 0); 1927 if (IS_ERR(trans)) { 1928 ret = PTR_ERR(trans); 1929 goto out_release_extents; 1930 } 1931 trans->in_fsync = true; 1932 1933 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 1934 btrfs_release_log_ctx_extents(&ctx); 1935 if (ret < 0) { 1936 /* Fallthrough and commit/free transaction. */ 1937 ret = BTRFS_LOG_FORCE_COMMIT; 1938 } 1939 1940 /* we've logged all the items and now have a consistent 1941 * version of the file in the log. It is possible that 1942 * someone will come in and modify the file, but that's 1943 * fine because the log is consistent on disk, and we 1944 * have references to all of the file's extents 1945 * 1946 * It is possible that someone will come in and log the 1947 * file again, but that will end up using the synchronization 1948 * inside btrfs_sync_log to keep things safe. 1949 */ 1950 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1951 1952 if (ret == BTRFS_NO_LOG_SYNC) { 1953 ret = btrfs_end_transaction(trans); 1954 goto out; 1955 } 1956 1957 /* We successfully logged the inode, attempt to sync the log. */ 1958 if (!ret) { 1959 ret = btrfs_sync_log(trans, root, &ctx); 1960 if (!ret) { 1961 ret = btrfs_end_transaction(trans); 1962 goto out; 1963 } 1964 } 1965 1966 /* 1967 * At this point we need to commit the transaction because we had 1968 * btrfs_need_log_full_commit() or some other error. 1969 * 1970 * If we didn't do a full sync we have to stop the trans handle, wait on 1971 * the ordered extents, start it again and commit the transaction. If 1972 * we attempt to wait on the ordered extents here we could deadlock with 1973 * something like fallocate() that is holding the extent lock trying to 1974 * start a transaction while some other thread is trying to commit the 1975 * transaction while we (fsync) are currently holding the transaction 1976 * open. 1977 */ 1978 if (!full_sync) { 1979 ret = btrfs_end_transaction(trans); 1980 if (ret) 1981 goto out; 1982 ret = btrfs_wait_ordered_range(inode, start, len); 1983 if (ret) 1984 goto out; 1985 1986 /* 1987 * This is safe to use here because we're only interested in 1988 * making sure the transaction that had the ordered extents is 1989 * committed. We aren't waiting on anything past this point, 1990 * we're purely getting the transaction and committing it. 1991 */ 1992 trans = btrfs_attach_transaction_barrier(root); 1993 if (IS_ERR(trans)) { 1994 ret = PTR_ERR(trans); 1995 1996 /* 1997 * We committed the transaction and there's no currently 1998 * running transaction, this means everything we care 1999 * about made it to disk and we are done. 2000 */ 2001 if (ret == -ENOENT) 2002 ret = 0; 2003 goto out; 2004 } 2005 } 2006 2007 ret = btrfs_commit_transaction(trans); 2008 out: 2009 ASSERT(list_empty(&ctx.list)); 2010 ASSERT(list_empty(&ctx.conflict_inodes)); 2011 err = file_check_and_advance_wb_err(file); 2012 if (!ret) 2013 ret = err; 2014 return ret > 0 ? -EIO : ret; 2015 2016 out_release_extents: 2017 btrfs_release_log_ctx_extents(&ctx); 2018 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2019 goto out; 2020 } 2021 2022 static const struct vm_operations_struct btrfs_file_vm_ops = { 2023 .fault = filemap_fault, 2024 .map_pages = filemap_map_pages, 2025 .page_mkwrite = btrfs_page_mkwrite, 2026 }; 2027 2028 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2029 { 2030 struct address_space *mapping = filp->f_mapping; 2031 2032 if (!mapping->a_ops->read_folio) 2033 return -ENOEXEC; 2034 2035 file_accessed(filp); 2036 vma->vm_ops = &btrfs_file_vm_ops; 2037 2038 return 0; 2039 } 2040 2041 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2042 int slot, u64 start, u64 end) 2043 { 2044 struct btrfs_file_extent_item *fi; 2045 struct btrfs_key key; 2046 2047 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2048 return 0; 2049 2050 btrfs_item_key_to_cpu(leaf, &key, slot); 2051 if (key.objectid != btrfs_ino(inode) || 2052 key.type != BTRFS_EXTENT_DATA_KEY) 2053 return 0; 2054 2055 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2056 2057 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2058 return 0; 2059 2060 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2061 return 0; 2062 2063 if (key.offset == end) 2064 return 1; 2065 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2066 return 1; 2067 return 0; 2068 } 2069 2070 static int fill_holes(struct btrfs_trans_handle *trans, 2071 struct btrfs_inode *inode, 2072 struct btrfs_path *path, u64 offset, u64 end) 2073 { 2074 struct btrfs_fs_info *fs_info = trans->fs_info; 2075 struct btrfs_root *root = inode->root; 2076 struct extent_buffer *leaf; 2077 struct btrfs_file_extent_item *fi; 2078 struct extent_map *hole_em; 2079 struct btrfs_key key; 2080 int ret; 2081 2082 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2083 goto out; 2084 2085 key.objectid = btrfs_ino(inode); 2086 key.type = BTRFS_EXTENT_DATA_KEY; 2087 key.offset = offset; 2088 2089 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2090 if (ret <= 0) { 2091 /* 2092 * We should have dropped this offset, so if we find it then 2093 * something has gone horribly wrong. 2094 */ 2095 if (ret == 0) 2096 ret = -EINVAL; 2097 return ret; 2098 } 2099 2100 leaf = path->nodes[0]; 2101 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2102 u64 num_bytes; 2103 2104 path->slots[0]--; 2105 fi = btrfs_item_ptr(leaf, path->slots[0], 2106 struct btrfs_file_extent_item); 2107 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2108 end - offset; 2109 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2110 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2111 btrfs_set_file_extent_offset(leaf, fi, 0); 2112 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2113 btrfs_mark_buffer_dirty(trans, leaf); 2114 goto out; 2115 } 2116 2117 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2118 u64 num_bytes; 2119 2120 key.offset = offset; 2121 btrfs_set_item_key_safe(trans, path, &key); 2122 fi = btrfs_item_ptr(leaf, path->slots[0], 2123 struct btrfs_file_extent_item); 2124 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2125 offset; 2126 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2127 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2128 btrfs_set_file_extent_offset(leaf, fi, 0); 2129 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2130 btrfs_mark_buffer_dirty(trans, leaf); 2131 goto out; 2132 } 2133 btrfs_release_path(path); 2134 2135 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, 2136 end - offset); 2137 if (ret) 2138 return ret; 2139 2140 out: 2141 btrfs_release_path(path); 2142 2143 hole_em = alloc_extent_map(); 2144 if (!hole_em) { 2145 btrfs_drop_extent_map_range(inode, offset, end - 1, false); 2146 btrfs_set_inode_full_sync(inode); 2147 } else { 2148 hole_em->start = offset; 2149 hole_em->len = end - offset; 2150 hole_em->ram_bytes = hole_em->len; 2151 hole_em->orig_start = offset; 2152 2153 hole_em->block_start = EXTENT_MAP_HOLE; 2154 hole_em->block_len = 0; 2155 hole_em->orig_block_len = 0; 2156 hole_em->generation = trans->transid; 2157 2158 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 2159 free_extent_map(hole_em); 2160 if (ret) 2161 btrfs_set_inode_full_sync(inode); 2162 } 2163 2164 return 0; 2165 } 2166 2167 /* 2168 * Find a hole extent on given inode and change start/len to the end of hole 2169 * extent.(hole/vacuum extent whose em->start <= start && 2170 * em->start + em->len > start) 2171 * When a hole extent is found, return 1 and modify start/len. 2172 */ 2173 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2174 { 2175 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2176 struct extent_map *em; 2177 int ret = 0; 2178 2179 em = btrfs_get_extent(inode, NULL, 0, 2180 round_down(*start, fs_info->sectorsize), 2181 round_up(*len, fs_info->sectorsize)); 2182 if (IS_ERR(em)) 2183 return PTR_ERR(em); 2184 2185 /* Hole or vacuum extent(only exists in no-hole mode) */ 2186 if (em->block_start == EXTENT_MAP_HOLE) { 2187 ret = 1; 2188 *len = em->start + em->len > *start + *len ? 2189 0 : *start + *len - em->start - em->len; 2190 *start = em->start + em->len; 2191 } 2192 free_extent_map(em); 2193 return ret; 2194 } 2195 2196 static void btrfs_punch_hole_lock_range(struct inode *inode, 2197 const u64 lockstart, 2198 const u64 lockend, 2199 struct extent_state **cached_state) 2200 { 2201 /* 2202 * For subpage case, if the range is not at page boundary, we could 2203 * have pages at the leading/tailing part of the range. 2204 * This could lead to dead loop since filemap_range_has_page() 2205 * will always return true. 2206 * So here we need to do extra page alignment for 2207 * filemap_range_has_page(). 2208 */ 2209 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2210 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2211 2212 while (1) { 2213 truncate_pagecache_range(inode, lockstart, lockend); 2214 2215 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2216 cached_state); 2217 /* 2218 * We can't have ordered extents in the range, nor dirty/writeback 2219 * pages, because we have locked the inode's VFS lock in exclusive 2220 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2221 * we have flushed all delalloc in the range and we have waited 2222 * for any ordered extents in the range to complete. 2223 * We can race with anyone reading pages from this range, so after 2224 * locking the range check if we have pages in the range, and if 2225 * we do, unlock the range and retry. 2226 */ 2227 if (!filemap_range_has_page(inode->i_mapping, page_lockstart, 2228 page_lockend)) 2229 break; 2230 2231 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2232 cached_state); 2233 } 2234 2235 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2236 } 2237 2238 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2239 struct btrfs_inode *inode, 2240 struct btrfs_path *path, 2241 struct btrfs_replace_extent_info *extent_info, 2242 const u64 replace_len, 2243 const u64 bytes_to_drop) 2244 { 2245 struct btrfs_fs_info *fs_info = trans->fs_info; 2246 struct btrfs_root *root = inode->root; 2247 struct btrfs_file_extent_item *extent; 2248 struct extent_buffer *leaf; 2249 struct btrfs_key key; 2250 int slot; 2251 struct btrfs_ref ref = { 0 }; 2252 int ret; 2253 2254 if (replace_len == 0) 2255 return 0; 2256 2257 if (extent_info->disk_offset == 0 && 2258 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2259 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2260 return 0; 2261 } 2262 2263 key.objectid = btrfs_ino(inode); 2264 key.type = BTRFS_EXTENT_DATA_KEY; 2265 key.offset = extent_info->file_offset; 2266 ret = btrfs_insert_empty_item(trans, root, path, &key, 2267 sizeof(struct btrfs_file_extent_item)); 2268 if (ret) 2269 return ret; 2270 leaf = path->nodes[0]; 2271 slot = path->slots[0]; 2272 write_extent_buffer(leaf, extent_info->extent_buf, 2273 btrfs_item_ptr_offset(leaf, slot), 2274 sizeof(struct btrfs_file_extent_item)); 2275 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2276 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2277 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2278 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2279 if (extent_info->is_new_extent) 2280 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2281 btrfs_mark_buffer_dirty(trans, leaf); 2282 btrfs_release_path(path); 2283 2284 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2285 replace_len); 2286 if (ret) 2287 return ret; 2288 2289 /* If it's a hole, nothing more needs to be done. */ 2290 if (extent_info->disk_offset == 0) { 2291 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2292 return 0; 2293 } 2294 2295 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2296 2297 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2298 key.objectid = extent_info->disk_offset; 2299 key.type = BTRFS_EXTENT_ITEM_KEY; 2300 key.offset = extent_info->disk_len; 2301 ret = btrfs_alloc_reserved_file_extent(trans, root, 2302 btrfs_ino(inode), 2303 extent_info->file_offset, 2304 extent_info->qgroup_reserved, 2305 &key); 2306 } else { 2307 u64 ref_offset; 2308 2309 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2310 extent_info->disk_offset, 2311 extent_info->disk_len, 0, 2312 root->root_key.objectid); 2313 ref_offset = extent_info->file_offset - extent_info->data_offset; 2314 btrfs_init_data_ref(&ref, root->root_key.objectid, 2315 btrfs_ino(inode), ref_offset, 0, false); 2316 ret = btrfs_inc_extent_ref(trans, &ref); 2317 } 2318 2319 extent_info->insertions++; 2320 2321 return ret; 2322 } 2323 2324 /* 2325 * The respective range must have been previously locked, as well as the inode. 2326 * The end offset is inclusive (last byte of the range). 2327 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2328 * the file range with an extent. 2329 * When not punching a hole, we don't want to end up in a state where we dropped 2330 * extents without inserting a new one, so we must abort the transaction to avoid 2331 * a corruption. 2332 */ 2333 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2334 struct btrfs_path *path, const u64 start, 2335 const u64 end, 2336 struct btrfs_replace_extent_info *extent_info, 2337 struct btrfs_trans_handle **trans_out) 2338 { 2339 struct btrfs_drop_extents_args drop_args = { 0 }; 2340 struct btrfs_root *root = inode->root; 2341 struct btrfs_fs_info *fs_info = root->fs_info; 2342 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2343 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2344 struct btrfs_trans_handle *trans = NULL; 2345 struct btrfs_block_rsv *rsv; 2346 unsigned int rsv_count; 2347 u64 cur_offset; 2348 u64 len = end - start; 2349 int ret = 0; 2350 2351 if (end <= start) 2352 return -EINVAL; 2353 2354 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2355 if (!rsv) { 2356 ret = -ENOMEM; 2357 goto out; 2358 } 2359 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2360 rsv->failfast = true; 2361 2362 /* 2363 * 1 - update the inode 2364 * 1 - removing the extents in the range 2365 * 1 - adding the hole extent if no_holes isn't set or if we are 2366 * replacing the range with a new extent 2367 */ 2368 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2369 rsv_count = 3; 2370 else 2371 rsv_count = 2; 2372 2373 trans = btrfs_start_transaction(root, rsv_count); 2374 if (IS_ERR(trans)) { 2375 ret = PTR_ERR(trans); 2376 trans = NULL; 2377 goto out_free; 2378 } 2379 2380 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2381 min_size, false); 2382 if (WARN_ON(ret)) 2383 goto out_trans; 2384 trans->block_rsv = rsv; 2385 2386 cur_offset = start; 2387 drop_args.path = path; 2388 drop_args.end = end + 1; 2389 drop_args.drop_cache = true; 2390 while (cur_offset < end) { 2391 drop_args.start = cur_offset; 2392 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2393 /* If we are punching a hole decrement the inode's byte count */ 2394 if (!extent_info) 2395 btrfs_update_inode_bytes(inode, 0, 2396 drop_args.bytes_found); 2397 if (ret != -ENOSPC) { 2398 /* 2399 * The only time we don't want to abort is if we are 2400 * attempting to clone a partial inline extent, in which 2401 * case we'll get EOPNOTSUPP. However if we aren't 2402 * clone we need to abort no matter what, because if we 2403 * got EOPNOTSUPP via prealloc then we messed up and 2404 * need to abort. 2405 */ 2406 if (ret && 2407 (ret != -EOPNOTSUPP || 2408 (extent_info && extent_info->is_new_extent))) 2409 btrfs_abort_transaction(trans, ret); 2410 break; 2411 } 2412 2413 trans->block_rsv = &fs_info->trans_block_rsv; 2414 2415 if (!extent_info && cur_offset < drop_args.drop_end && 2416 cur_offset < ino_size) { 2417 ret = fill_holes(trans, inode, path, cur_offset, 2418 drop_args.drop_end); 2419 if (ret) { 2420 /* 2421 * If we failed then we didn't insert our hole 2422 * entries for the area we dropped, so now the 2423 * fs is corrupted, so we must abort the 2424 * transaction. 2425 */ 2426 btrfs_abort_transaction(trans, ret); 2427 break; 2428 } 2429 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2430 /* 2431 * We are past the i_size here, but since we didn't 2432 * insert holes we need to clear the mapped area so we 2433 * know to not set disk_i_size in this area until a new 2434 * file extent is inserted here. 2435 */ 2436 ret = btrfs_inode_clear_file_extent_range(inode, 2437 cur_offset, 2438 drop_args.drop_end - cur_offset); 2439 if (ret) { 2440 /* 2441 * We couldn't clear our area, so we could 2442 * presumably adjust up and corrupt the fs, so 2443 * we need to abort. 2444 */ 2445 btrfs_abort_transaction(trans, ret); 2446 break; 2447 } 2448 } 2449 2450 if (extent_info && 2451 drop_args.drop_end > extent_info->file_offset) { 2452 u64 replace_len = drop_args.drop_end - 2453 extent_info->file_offset; 2454 2455 ret = btrfs_insert_replace_extent(trans, inode, path, 2456 extent_info, replace_len, 2457 drop_args.bytes_found); 2458 if (ret) { 2459 btrfs_abort_transaction(trans, ret); 2460 break; 2461 } 2462 extent_info->data_len -= replace_len; 2463 extent_info->data_offset += replace_len; 2464 extent_info->file_offset += replace_len; 2465 } 2466 2467 /* 2468 * We are releasing our handle on the transaction, balance the 2469 * dirty pages of the btree inode and flush delayed items, and 2470 * then get a new transaction handle, which may now point to a 2471 * new transaction in case someone else may have committed the 2472 * transaction we used to replace/drop file extent items. So 2473 * bump the inode's iversion and update mtime and ctime except 2474 * if we are called from a dedupe context. This is because a 2475 * power failure/crash may happen after the transaction is 2476 * committed and before we finish replacing/dropping all the 2477 * file extent items we need. 2478 */ 2479 inode_inc_iversion(&inode->vfs_inode); 2480 2481 if (!extent_info || extent_info->update_times) 2482 inode_set_mtime_to_ts(&inode->vfs_inode, 2483 inode_set_ctime_current(&inode->vfs_inode)); 2484 2485 ret = btrfs_update_inode(trans, inode); 2486 if (ret) 2487 break; 2488 2489 btrfs_end_transaction(trans); 2490 btrfs_btree_balance_dirty(fs_info); 2491 2492 trans = btrfs_start_transaction(root, rsv_count); 2493 if (IS_ERR(trans)) { 2494 ret = PTR_ERR(trans); 2495 trans = NULL; 2496 break; 2497 } 2498 2499 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2500 rsv, min_size, false); 2501 if (WARN_ON(ret)) 2502 break; 2503 trans->block_rsv = rsv; 2504 2505 cur_offset = drop_args.drop_end; 2506 len = end - cur_offset; 2507 if (!extent_info && len) { 2508 ret = find_first_non_hole(inode, &cur_offset, &len); 2509 if (unlikely(ret < 0)) 2510 break; 2511 if (ret && !len) { 2512 ret = 0; 2513 break; 2514 } 2515 } 2516 } 2517 2518 /* 2519 * If we were cloning, force the next fsync to be a full one since we 2520 * we replaced (or just dropped in the case of cloning holes when 2521 * NO_HOLES is enabled) file extent items and did not setup new extent 2522 * maps for the replacement extents (or holes). 2523 */ 2524 if (extent_info && !extent_info->is_new_extent) 2525 btrfs_set_inode_full_sync(inode); 2526 2527 if (ret) 2528 goto out_trans; 2529 2530 trans->block_rsv = &fs_info->trans_block_rsv; 2531 /* 2532 * If we are using the NO_HOLES feature we might have had already an 2533 * hole that overlaps a part of the region [lockstart, lockend] and 2534 * ends at (or beyond) lockend. Since we have no file extent items to 2535 * represent holes, drop_end can be less than lockend and so we must 2536 * make sure we have an extent map representing the existing hole (the 2537 * call to __btrfs_drop_extents() might have dropped the existing extent 2538 * map representing the existing hole), otherwise the fast fsync path 2539 * will not record the existence of the hole region 2540 * [existing_hole_start, lockend]. 2541 */ 2542 if (drop_args.drop_end <= end) 2543 drop_args.drop_end = end + 1; 2544 /* 2545 * Don't insert file hole extent item if it's for a range beyond eof 2546 * (because it's useless) or if it represents a 0 bytes range (when 2547 * cur_offset == drop_end). 2548 */ 2549 if (!extent_info && cur_offset < ino_size && 2550 cur_offset < drop_args.drop_end) { 2551 ret = fill_holes(trans, inode, path, cur_offset, 2552 drop_args.drop_end); 2553 if (ret) { 2554 /* Same comment as above. */ 2555 btrfs_abort_transaction(trans, ret); 2556 goto out_trans; 2557 } 2558 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2559 /* See the comment in the loop above for the reasoning here. */ 2560 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2561 drop_args.drop_end - cur_offset); 2562 if (ret) { 2563 btrfs_abort_transaction(trans, ret); 2564 goto out_trans; 2565 } 2566 2567 } 2568 if (extent_info) { 2569 ret = btrfs_insert_replace_extent(trans, inode, path, 2570 extent_info, extent_info->data_len, 2571 drop_args.bytes_found); 2572 if (ret) { 2573 btrfs_abort_transaction(trans, ret); 2574 goto out_trans; 2575 } 2576 } 2577 2578 out_trans: 2579 if (!trans) 2580 goto out_free; 2581 2582 trans->block_rsv = &fs_info->trans_block_rsv; 2583 if (ret) 2584 btrfs_end_transaction(trans); 2585 else 2586 *trans_out = trans; 2587 out_free: 2588 btrfs_free_block_rsv(fs_info, rsv); 2589 out: 2590 return ret; 2591 } 2592 2593 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2594 { 2595 struct inode *inode = file_inode(file); 2596 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2597 struct btrfs_root *root = BTRFS_I(inode)->root; 2598 struct extent_state *cached_state = NULL; 2599 struct btrfs_path *path; 2600 struct btrfs_trans_handle *trans = NULL; 2601 u64 lockstart; 2602 u64 lockend; 2603 u64 tail_start; 2604 u64 tail_len; 2605 u64 orig_start = offset; 2606 int ret = 0; 2607 bool same_block; 2608 u64 ino_size; 2609 bool truncated_block = false; 2610 bool updated_inode = false; 2611 2612 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2613 2614 ret = btrfs_wait_ordered_range(inode, offset, len); 2615 if (ret) 2616 goto out_only_mutex; 2617 2618 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2619 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2620 if (ret < 0) 2621 goto out_only_mutex; 2622 if (ret && !len) { 2623 /* Already in a large hole */ 2624 ret = 0; 2625 goto out_only_mutex; 2626 } 2627 2628 ret = file_modified(file); 2629 if (ret) 2630 goto out_only_mutex; 2631 2632 lockstart = round_up(offset, fs_info->sectorsize); 2633 lockend = round_down(offset + len, fs_info->sectorsize) - 1; 2634 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2635 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2636 /* 2637 * We needn't truncate any block which is beyond the end of the file 2638 * because we are sure there is no data there. 2639 */ 2640 /* 2641 * Only do this if we are in the same block and we aren't doing the 2642 * entire block. 2643 */ 2644 if (same_block && len < fs_info->sectorsize) { 2645 if (offset < ino_size) { 2646 truncated_block = true; 2647 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2648 0); 2649 } else { 2650 ret = 0; 2651 } 2652 goto out_only_mutex; 2653 } 2654 2655 /* zero back part of the first block */ 2656 if (offset < ino_size) { 2657 truncated_block = true; 2658 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2659 if (ret) { 2660 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2661 return ret; 2662 } 2663 } 2664 2665 /* Check the aligned pages after the first unaligned page, 2666 * if offset != orig_start, which means the first unaligned page 2667 * including several following pages are already in holes, 2668 * the extra check can be skipped */ 2669 if (offset == orig_start) { 2670 /* after truncate page, check hole again */ 2671 len = offset + len - lockstart; 2672 offset = lockstart; 2673 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2674 if (ret < 0) 2675 goto out_only_mutex; 2676 if (ret && !len) { 2677 ret = 0; 2678 goto out_only_mutex; 2679 } 2680 lockstart = offset; 2681 } 2682 2683 /* Check the tail unaligned part is in a hole */ 2684 tail_start = lockend + 1; 2685 tail_len = offset + len - tail_start; 2686 if (tail_len) { 2687 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2688 if (unlikely(ret < 0)) 2689 goto out_only_mutex; 2690 if (!ret) { 2691 /* zero the front end of the last page */ 2692 if (tail_start + tail_len < ino_size) { 2693 truncated_block = true; 2694 ret = btrfs_truncate_block(BTRFS_I(inode), 2695 tail_start + tail_len, 2696 0, 1); 2697 if (ret) 2698 goto out_only_mutex; 2699 } 2700 } 2701 } 2702 2703 if (lockend < lockstart) { 2704 ret = 0; 2705 goto out_only_mutex; 2706 } 2707 2708 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 2709 2710 path = btrfs_alloc_path(); 2711 if (!path) { 2712 ret = -ENOMEM; 2713 goto out; 2714 } 2715 2716 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 2717 lockend, NULL, &trans); 2718 btrfs_free_path(path); 2719 if (ret) 2720 goto out; 2721 2722 ASSERT(trans != NULL); 2723 inode_inc_iversion(inode); 2724 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2725 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2726 updated_inode = true; 2727 btrfs_end_transaction(trans); 2728 btrfs_btree_balance_dirty(fs_info); 2729 out: 2730 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2731 &cached_state); 2732 out_only_mutex: 2733 if (!updated_inode && truncated_block && !ret) { 2734 /* 2735 * If we only end up zeroing part of a page, we still need to 2736 * update the inode item, so that all the time fields are 2737 * updated as well as the necessary btrfs inode in memory fields 2738 * for detecting, at fsync time, if the inode isn't yet in the 2739 * log tree or it's there but not up to date. 2740 */ 2741 struct timespec64 now = inode_set_ctime_current(inode); 2742 2743 inode_inc_iversion(inode); 2744 inode_set_mtime_to_ts(inode, now); 2745 trans = btrfs_start_transaction(root, 1); 2746 if (IS_ERR(trans)) { 2747 ret = PTR_ERR(trans); 2748 } else { 2749 int ret2; 2750 2751 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2752 ret2 = btrfs_end_transaction(trans); 2753 if (!ret) 2754 ret = ret2; 2755 } 2756 } 2757 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2758 return ret; 2759 } 2760 2761 /* Helper structure to record which range is already reserved */ 2762 struct falloc_range { 2763 struct list_head list; 2764 u64 start; 2765 u64 len; 2766 }; 2767 2768 /* 2769 * Helper function to add falloc range 2770 * 2771 * Caller should have locked the larger range of extent containing 2772 * [start, len) 2773 */ 2774 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2775 { 2776 struct falloc_range *range = NULL; 2777 2778 if (!list_empty(head)) { 2779 /* 2780 * As fallocate iterates by bytenr order, we only need to check 2781 * the last range. 2782 */ 2783 range = list_last_entry(head, struct falloc_range, list); 2784 if (range->start + range->len == start) { 2785 range->len += len; 2786 return 0; 2787 } 2788 } 2789 2790 range = kmalloc(sizeof(*range), GFP_KERNEL); 2791 if (!range) 2792 return -ENOMEM; 2793 range->start = start; 2794 range->len = len; 2795 list_add_tail(&range->list, head); 2796 return 0; 2797 } 2798 2799 static int btrfs_fallocate_update_isize(struct inode *inode, 2800 const u64 end, 2801 const int mode) 2802 { 2803 struct btrfs_trans_handle *trans; 2804 struct btrfs_root *root = BTRFS_I(inode)->root; 2805 int ret; 2806 int ret2; 2807 2808 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2809 return 0; 2810 2811 trans = btrfs_start_transaction(root, 1); 2812 if (IS_ERR(trans)) 2813 return PTR_ERR(trans); 2814 2815 inode_set_ctime_current(inode); 2816 i_size_write(inode, end); 2817 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 2818 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2819 ret2 = btrfs_end_transaction(trans); 2820 2821 return ret ? ret : ret2; 2822 } 2823 2824 enum { 2825 RANGE_BOUNDARY_WRITTEN_EXTENT, 2826 RANGE_BOUNDARY_PREALLOC_EXTENT, 2827 RANGE_BOUNDARY_HOLE, 2828 }; 2829 2830 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 2831 u64 offset) 2832 { 2833 const u64 sectorsize = inode->root->fs_info->sectorsize; 2834 struct extent_map *em; 2835 int ret; 2836 2837 offset = round_down(offset, sectorsize); 2838 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); 2839 if (IS_ERR(em)) 2840 return PTR_ERR(em); 2841 2842 if (em->block_start == EXTENT_MAP_HOLE) 2843 ret = RANGE_BOUNDARY_HOLE; 2844 else if (em->flags & EXTENT_FLAG_PREALLOC) 2845 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2846 else 2847 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2848 2849 free_extent_map(em); 2850 return ret; 2851 } 2852 2853 static int btrfs_zero_range(struct inode *inode, 2854 loff_t offset, 2855 loff_t len, 2856 const int mode) 2857 { 2858 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2859 struct extent_map *em; 2860 struct extent_changeset *data_reserved = NULL; 2861 int ret; 2862 u64 alloc_hint = 0; 2863 const u64 sectorsize = fs_info->sectorsize; 2864 u64 alloc_start = round_down(offset, sectorsize); 2865 u64 alloc_end = round_up(offset + len, sectorsize); 2866 u64 bytes_to_reserve = 0; 2867 bool space_reserved = false; 2868 2869 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 2870 alloc_end - alloc_start); 2871 if (IS_ERR(em)) { 2872 ret = PTR_ERR(em); 2873 goto out; 2874 } 2875 2876 /* 2877 * Avoid hole punching and extent allocation for some cases. More cases 2878 * could be considered, but these are unlikely common and we keep things 2879 * as simple as possible for now. Also, intentionally, if the target 2880 * range contains one or more prealloc extents together with regular 2881 * extents and holes, we drop all the existing extents and allocate a 2882 * new prealloc extent, so that we get a larger contiguous disk extent. 2883 */ 2884 if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) { 2885 const u64 em_end = em->start + em->len; 2886 2887 if (em_end >= offset + len) { 2888 /* 2889 * The whole range is already a prealloc extent, 2890 * do nothing except updating the inode's i_size if 2891 * needed. 2892 */ 2893 free_extent_map(em); 2894 ret = btrfs_fallocate_update_isize(inode, offset + len, 2895 mode); 2896 goto out; 2897 } 2898 /* 2899 * Part of the range is already a prealloc extent, so operate 2900 * only on the remaining part of the range. 2901 */ 2902 alloc_start = em_end; 2903 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2904 len = offset + len - alloc_start; 2905 offset = alloc_start; 2906 alloc_hint = em->block_start + em->len; 2907 } 2908 free_extent_map(em); 2909 2910 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2911 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2912 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 2913 sectorsize); 2914 if (IS_ERR(em)) { 2915 ret = PTR_ERR(em); 2916 goto out; 2917 } 2918 2919 if (em->flags & EXTENT_FLAG_PREALLOC) { 2920 free_extent_map(em); 2921 ret = btrfs_fallocate_update_isize(inode, offset + len, 2922 mode); 2923 goto out; 2924 } 2925 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 2926 free_extent_map(em); 2927 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2928 0); 2929 if (!ret) 2930 ret = btrfs_fallocate_update_isize(inode, 2931 offset + len, 2932 mode); 2933 return ret; 2934 } 2935 free_extent_map(em); 2936 alloc_start = round_down(offset, sectorsize); 2937 alloc_end = alloc_start + sectorsize; 2938 goto reserve_space; 2939 } 2940 2941 alloc_start = round_up(offset, sectorsize); 2942 alloc_end = round_down(offset + len, sectorsize); 2943 2944 /* 2945 * For unaligned ranges, check the pages at the boundaries, they might 2946 * map to an extent, in which case we need to partially zero them, or 2947 * they might map to a hole, in which case we need our allocation range 2948 * to cover them. 2949 */ 2950 if (!IS_ALIGNED(offset, sectorsize)) { 2951 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2952 offset); 2953 if (ret < 0) 2954 goto out; 2955 if (ret == RANGE_BOUNDARY_HOLE) { 2956 alloc_start = round_down(offset, sectorsize); 2957 ret = 0; 2958 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2959 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2960 if (ret) 2961 goto out; 2962 } else { 2963 ret = 0; 2964 } 2965 } 2966 2967 if (!IS_ALIGNED(offset + len, sectorsize)) { 2968 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2969 offset + len); 2970 if (ret < 0) 2971 goto out; 2972 if (ret == RANGE_BOUNDARY_HOLE) { 2973 alloc_end = round_up(offset + len, sectorsize); 2974 ret = 0; 2975 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2976 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 2977 0, 1); 2978 if (ret) 2979 goto out; 2980 } else { 2981 ret = 0; 2982 } 2983 } 2984 2985 reserve_space: 2986 if (alloc_start < alloc_end) { 2987 struct extent_state *cached_state = NULL; 2988 const u64 lockstart = alloc_start; 2989 const u64 lockend = alloc_end - 1; 2990 2991 bytes_to_reserve = alloc_end - alloc_start; 2992 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 2993 bytes_to_reserve); 2994 if (ret < 0) 2995 goto out; 2996 space_reserved = true; 2997 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2998 &cached_state); 2999 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3000 alloc_start, bytes_to_reserve); 3001 if (ret) { 3002 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 3003 lockend, &cached_state); 3004 goto out; 3005 } 3006 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3007 alloc_end - alloc_start, 3008 i_blocksize(inode), 3009 offset + len, &alloc_hint); 3010 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3011 &cached_state); 3012 /* btrfs_prealloc_file_range releases reserved space on error */ 3013 if (ret) { 3014 space_reserved = false; 3015 goto out; 3016 } 3017 } 3018 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3019 out: 3020 if (ret && space_reserved) 3021 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3022 alloc_start, bytes_to_reserve); 3023 extent_changeset_free(data_reserved); 3024 3025 return ret; 3026 } 3027 3028 static long btrfs_fallocate(struct file *file, int mode, 3029 loff_t offset, loff_t len) 3030 { 3031 struct inode *inode = file_inode(file); 3032 struct extent_state *cached_state = NULL; 3033 struct extent_changeset *data_reserved = NULL; 3034 struct falloc_range *range; 3035 struct falloc_range *tmp; 3036 LIST_HEAD(reserve_list); 3037 u64 cur_offset; 3038 u64 last_byte; 3039 u64 alloc_start; 3040 u64 alloc_end; 3041 u64 alloc_hint = 0; 3042 u64 locked_end; 3043 u64 actual_end = 0; 3044 u64 data_space_needed = 0; 3045 u64 data_space_reserved = 0; 3046 u64 qgroup_reserved = 0; 3047 struct extent_map *em; 3048 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; 3049 int ret; 3050 3051 /* Do not allow fallocate in ZONED mode */ 3052 if (btrfs_is_zoned(btrfs_sb(inode->i_sb))) 3053 return -EOPNOTSUPP; 3054 3055 alloc_start = round_down(offset, blocksize); 3056 alloc_end = round_up(offset + len, blocksize); 3057 cur_offset = alloc_start; 3058 3059 /* Make sure we aren't being give some crap mode */ 3060 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3061 FALLOC_FL_ZERO_RANGE)) 3062 return -EOPNOTSUPP; 3063 3064 if (mode & FALLOC_FL_PUNCH_HOLE) 3065 return btrfs_punch_hole(file, offset, len); 3066 3067 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3068 3069 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3070 ret = inode_newsize_ok(inode, offset + len); 3071 if (ret) 3072 goto out; 3073 } 3074 3075 ret = file_modified(file); 3076 if (ret) 3077 goto out; 3078 3079 /* 3080 * TODO: Move these two operations after we have checked 3081 * accurate reserved space, or fallocate can still fail but 3082 * with page truncated or size expanded. 3083 * 3084 * But that's a minor problem and won't do much harm BTW. 3085 */ 3086 if (alloc_start > inode->i_size) { 3087 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3088 alloc_start); 3089 if (ret) 3090 goto out; 3091 } else if (offset + len > inode->i_size) { 3092 /* 3093 * If we are fallocating from the end of the file onward we 3094 * need to zero out the end of the block if i_size lands in the 3095 * middle of a block. 3096 */ 3097 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3098 if (ret) 3099 goto out; 3100 } 3101 3102 /* 3103 * We have locked the inode at the VFS level (in exclusive mode) and we 3104 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3105 * locking the file range, flush all dealloc in the range and wait for 3106 * all ordered extents in the range to complete. After this we can lock 3107 * the file range and, due to the previous locking we did, we know there 3108 * can't be more delalloc or ordered extents in the range. 3109 */ 3110 ret = btrfs_wait_ordered_range(inode, alloc_start, 3111 alloc_end - alloc_start); 3112 if (ret) 3113 goto out; 3114 3115 if (mode & FALLOC_FL_ZERO_RANGE) { 3116 ret = btrfs_zero_range(inode, offset, len, mode); 3117 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3118 return ret; 3119 } 3120 3121 locked_end = alloc_end - 1; 3122 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3123 &cached_state); 3124 3125 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3126 3127 /* First, check if we exceed the qgroup limit */ 3128 while (cur_offset < alloc_end) { 3129 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3130 alloc_end - cur_offset); 3131 if (IS_ERR(em)) { 3132 ret = PTR_ERR(em); 3133 break; 3134 } 3135 last_byte = min(extent_map_end(em), alloc_end); 3136 actual_end = min_t(u64, extent_map_end(em), offset + len); 3137 last_byte = ALIGN(last_byte, blocksize); 3138 if (em->block_start == EXTENT_MAP_HOLE || 3139 (cur_offset >= inode->i_size && 3140 !(em->flags & EXTENT_FLAG_PREALLOC))) { 3141 const u64 range_len = last_byte - cur_offset; 3142 3143 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3144 if (ret < 0) { 3145 free_extent_map(em); 3146 break; 3147 } 3148 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3149 &data_reserved, cur_offset, range_len); 3150 if (ret < 0) { 3151 free_extent_map(em); 3152 break; 3153 } 3154 qgroup_reserved += range_len; 3155 data_space_needed += range_len; 3156 } 3157 free_extent_map(em); 3158 cur_offset = last_byte; 3159 } 3160 3161 if (!ret && data_space_needed > 0) { 3162 /* 3163 * We are safe to reserve space here as we can't have delalloc 3164 * in the range, see above. 3165 */ 3166 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3167 data_space_needed); 3168 if (!ret) 3169 data_space_reserved = data_space_needed; 3170 } 3171 3172 /* 3173 * If ret is still 0, means we're OK to fallocate. 3174 * Or just cleanup the list and exit. 3175 */ 3176 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3177 if (!ret) { 3178 ret = btrfs_prealloc_file_range(inode, mode, 3179 range->start, 3180 range->len, i_blocksize(inode), 3181 offset + len, &alloc_hint); 3182 /* 3183 * btrfs_prealloc_file_range() releases space even 3184 * if it returns an error. 3185 */ 3186 data_space_reserved -= range->len; 3187 qgroup_reserved -= range->len; 3188 } else if (data_space_reserved > 0) { 3189 btrfs_free_reserved_data_space(BTRFS_I(inode), 3190 data_reserved, range->start, 3191 range->len); 3192 data_space_reserved -= range->len; 3193 qgroup_reserved -= range->len; 3194 } else if (qgroup_reserved > 0) { 3195 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3196 range->start, range->len, NULL); 3197 qgroup_reserved -= range->len; 3198 } 3199 list_del(&range->list); 3200 kfree(range); 3201 } 3202 if (ret < 0) 3203 goto out_unlock; 3204 3205 /* 3206 * We didn't need to allocate any more space, but we still extended the 3207 * size of the file so we need to update i_size and the inode item. 3208 */ 3209 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3210 out_unlock: 3211 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3212 &cached_state); 3213 out: 3214 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3215 extent_changeset_free(data_reserved); 3216 return ret; 3217 } 3218 3219 /* 3220 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range 3221 * that has unflushed and/or flushing delalloc. There might be other adjacent 3222 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps 3223 * looping while it gets adjacent subranges, and merging them together. 3224 */ 3225 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, 3226 struct extent_state **cached_state, 3227 bool *search_io_tree, 3228 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3229 { 3230 u64 len = end + 1 - start; 3231 u64 delalloc_len = 0; 3232 struct btrfs_ordered_extent *oe; 3233 u64 oe_start; 3234 u64 oe_end; 3235 3236 /* 3237 * Search the io tree first for EXTENT_DELALLOC. If we find any, it 3238 * means we have delalloc (dirty pages) for which writeback has not 3239 * started yet. 3240 */ 3241 if (*search_io_tree) { 3242 spin_lock(&inode->lock); 3243 if (inode->delalloc_bytes > 0) { 3244 spin_unlock(&inode->lock); 3245 *delalloc_start_ret = start; 3246 delalloc_len = count_range_bits(&inode->io_tree, 3247 delalloc_start_ret, end, 3248 len, EXTENT_DELALLOC, 1, 3249 cached_state); 3250 } else { 3251 spin_unlock(&inode->lock); 3252 } 3253 } 3254 3255 if (delalloc_len > 0) { 3256 /* 3257 * If delalloc was found then *delalloc_start_ret has a sector size 3258 * aligned value (rounded down). 3259 */ 3260 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; 3261 3262 if (*delalloc_start_ret == start) { 3263 /* Delalloc for the whole range, nothing more to do. */ 3264 if (*delalloc_end_ret == end) 3265 return true; 3266 /* Else trim our search range for ordered extents. */ 3267 start = *delalloc_end_ret + 1; 3268 len = end + 1 - start; 3269 } 3270 } else { 3271 /* No delalloc, future calls don't need to search again. */ 3272 *search_io_tree = false; 3273 } 3274 3275 /* 3276 * Now also check if there's any ordered extent in the range. 3277 * We do this because: 3278 * 3279 * 1) When delalloc is flushed, the file range is locked, we clear the 3280 * EXTENT_DELALLOC bit from the io tree and create an extent map and 3281 * an ordered extent for the write. So we might just have been called 3282 * after delalloc is flushed and before the ordered extent completes 3283 * and inserts the new file extent item in the subvolume's btree; 3284 * 3285 * 2) We may have an ordered extent created by flushing delalloc for a 3286 * subrange that starts before the subrange we found marked with 3287 * EXTENT_DELALLOC in the io tree. 3288 * 3289 * We could also use the extent map tree to find such delalloc that is 3290 * being flushed, but using the ordered extents tree is more efficient 3291 * because it's usually much smaller as ordered extents are removed from 3292 * the tree once they complete. With the extent maps, we mau have them 3293 * in the extent map tree for a very long time, and they were either 3294 * created by previous writes or loaded by read operations. 3295 */ 3296 oe = btrfs_lookup_first_ordered_range(inode, start, len); 3297 if (!oe) 3298 return (delalloc_len > 0); 3299 3300 /* The ordered extent may span beyond our search range. */ 3301 oe_start = max(oe->file_offset, start); 3302 oe_end = min(oe->file_offset + oe->num_bytes - 1, end); 3303 3304 btrfs_put_ordered_extent(oe); 3305 3306 /* Don't have unflushed delalloc, return the ordered extent range. */ 3307 if (delalloc_len == 0) { 3308 *delalloc_start_ret = oe_start; 3309 *delalloc_end_ret = oe_end; 3310 return true; 3311 } 3312 3313 /* 3314 * We have both unflushed delalloc (io_tree) and an ordered extent. 3315 * If the ranges are adjacent returned a combined range, otherwise 3316 * return the leftmost range. 3317 */ 3318 if (oe_start < *delalloc_start_ret) { 3319 if (oe_end < *delalloc_start_ret) 3320 *delalloc_end_ret = oe_end; 3321 *delalloc_start_ret = oe_start; 3322 } else if (*delalloc_end_ret + 1 == oe_start) { 3323 *delalloc_end_ret = oe_end; 3324 } 3325 3326 return true; 3327 } 3328 3329 /* 3330 * Check if there's delalloc in a given range. 3331 * 3332 * @inode: The inode. 3333 * @start: The start offset of the range. It does not need to be 3334 * sector size aligned. 3335 * @end: The end offset (inclusive value) of the search range. 3336 * It does not need to be sector size aligned. 3337 * @cached_state: Extent state record used for speeding up delalloc 3338 * searches in the inode's io_tree. Can be NULL. 3339 * @delalloc_start_ret: Output argument, set to the start offset of the 3340 * subrange found with delalloc (may not be sector size 3341 * aligned). 3342 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value) 3343 * of the subrange found with delalloc. 3344 * 3345 * Returns true if a subrange with delalloc is found within the given range, and 3346 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and 3347 * end offsets of the subrange. 3348 */ 3349 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3350 struct extent_state **cached_state, 3351 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3352 { 3353 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); 3354 u64 prev_delalloc_end = 0; 3355 bool search_io_tree = true; 3356 bool ret = false; 3357 3358 while (cur_offset <= end) { 3359 u64 delalloc_start; 3360 u64 delalloc_end; 3361 bool delalloc; 3362 3363 delalloc = find_delalloc_subrange(inode, cur_offset, end, 3364 cached_state, &search_io_tree, 3365 &delalloc_start, 3366 &delalloc_end); 3367 if (!delalloc) 3368 break; 3369 3370 if (prev_delalloc_end == 0) { 3371 /* First subrange found. */ 3372 *delalloc_start_ret = max(delalloc_start, start); 3373 *delalloc_end_ret = delalloc_end; 3374 ret = true; 3375 } else if (delalloc_start == prev_delalloc_end + 1) { 3376 /* Subrange adjacent to the previous one, merge them. */ 3377 *delalloc_end_ret = delalloc_end; 3378 } else { 3379 /* Subrange not adjacent to the previous one, exit. */ 3380 break; 3381 } 3382 3383 prev_delalloc_end = delalloc_end; 3384 cur_offset = delalloc_end + 1; 3385 cond_resched(); 3386 } 3387 3388 return ret; 3389 } 3390 3391 /* 3392 * Check if there's a hole or delalloc range in a range representing a hole (or 3393 * prealloc extent) found in the inode's subvolume btree. 3394 * 3395 * @inode: The inode. 3396 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE). 3397 * @start: Start offset of the hole region. It does not need to be sector 3398 * size aligned. 3399 * @end: End offset (inclusive value) of the hole region. It does not 3400 * need to be sector size aligned. 3401 * @start_ret: Return parameter, used to set the start of the subrange in the 3402 * hole that matches the search criteria (seek mode), if such 3403 * subrange is found (return value of the function is true). 3404 * The value returned here may not be sector size aligned. 3405 * 3406 * Returns true if a subrange matching the given seek mode is found, and if one 3407 * is found, it updates @start_ret with the start of the subrange. 3408 */ 3409 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, 3410 struct extent_state **cached_state, 3411 u64 start, u64 end, u64 *start_ret) 3412 { 3413 u64 delalloc_start; 3414 u64 delalloc_end; 3415 bool delalloc; 3416 3417 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state, 3418 &delalloc_start, &delalloc_end); 3419 if (delalloc && whence == SEEK_DATA) { 3420 *start_ret = delalloc_start; 3421 return true; 3422 } 3423 3424 if (delalloc && whence == SEEK_HOLE) { 3425 /* 3426 * We found delalloc but it starts after out start offset. So we 3427 * have a hole between our start offset and the delalloc start. 3428 */ 3429 if (start < delalloc_start) { 3430 *start_ret = start; 3431 return true; 3432 } 3433 /* 3434 * Delalloc range starts at our start offset. 3435 * If the delalloc range's length is smaller than our range, 3436 * then it means we have a hole that starts where the delalloc 3437 * subrange ends. 3438 */ 3439 if (delalloc_end < end) { 3440 *start_ret = delalloc_end + 1; 3441 return true; 3442 } 3443 3444 /* There's delalloc for the whole range. */ 3445 return false; 3446 } 3447 3448 if (!delalloc && whence == SEEK_HOLE) { 3449 *start_ret = start; 3450 return true; 3451 } 3452 3453 /* 3454 * No delalloc in the range and we are seeking for data. The caller has 3455 * to iterate to the next extent item in the subvolume btree. 3456 */ 3457 return false; 3458 } 3459 3460 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence) 3461 { 3462 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host); 3463 struct btrfs_file_private *private = file->private_data; 3464 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3465 struct extent_state *cached_state = NULL; 3466 struct extent_state **delalloc_cached_state; 3467 const loff_t i_size = i_size_read(&inode->vfs_inode); 3468 const u64 ino = btrfs_ino(inode); 3469 struct btrfs_root *root = inode->root; 3470 struct btrfs_path *path; 3471 struct btrfs_key key; 3472 u64 last_extent_end; 3473 u64 lockstart; 3474 u64 lockend; 3475 u64 start; 3476 int ret; 3477 bool found = false; 3478 3479 if (i_size == 0 || offset >= i_size) 3480 return -ENXIO; 3481 3482 /* 3483 * Quick path. If the inode has no prealloc extents and its number of 3484 * bytes used matches its i_size, then it can not have holes. 3485 */ 3486 if (whence == SEEK_HOLE && 3487 !(inode->flags & BTRFS_INODE_PREALLOC) && 3488 inode_get_bytes(&inode->vfs_inode) == i_size) 3489 return i_size; 3490 3491 if (!private) { 3492 private = kzalloc(sizeof(*private), GFP_KERNEL); 3493 /* 3494 * No worries if memory allocation failed. 3495 * The private structure is used only for speeding up multiple 3496 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc, 3497 * so everything will still be correct. 3498 */ 3499 file->private_data = private; 3500 } 3501 3502 if (private) 3503 delalloc_cached_state = &private->llseek_cached_state; 3504 else 3505 delalloc_cached_state = NULL; 3506 3507 /* 3508 * offset can be negative, in this case we start finding DATA/HOLE from 3509 * the very start of the file. 3510 */ 3511 start = max_t(loff_t, 0, offset); 3512 3513 lockstart = round_down(start, fs_info->sectorsize); 3514 lockend = round_up(i_size, fs_info->sectorsize); 3515 if (lockend <= lockstart) 3516 lockend = lockstart + fs_info->sectorsize; 3517 lockend--; 3518 3519 path = btrfs_alloc_path(); 3520 if (!path) 3521 return -ENOMEM; 3522 path->reada = READA_FORWARD; 3523 3524 key.objectid = ino; 3525 key.type = BTRFS_EXTENT_DATA_KEY; 3526 key.offset = start; 3527 3528 last_extent_end = lockstart; 3529 3530 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3531 3532 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3533 if (ret < 0) { 3534 goto out; 3535 } else if (ret > 0 && path->slots[0] > 0) { 3536 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3537 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3538 path->slots[0]--; 3539 } 3540 3541 while (start < i_size) { 3542 struct extent_buffer *leaf = path->nodes[0]; 3543 struct btrfs_file_extent_item *extent; 3544 u64 extent_end; 3545 u8 type; 3546 3547 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3548 ret = btrfs_next_leaf(root, path); 3549 if (ret < 0) 3550 goto out; 3551 else if (ret > 0) 3552 break; 3553 3554 leaf = path->nodes[0]; 3555 } 3556 3557 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3558 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3559 break; 3560 3561 extent_end = btrfs_file_extent_end(path); 3562 3563 /* 3564 * In the first iteration we may have a slot that points to an 3565 * extent that ends before our start offset, so skip it. 3566 */ 3567 if (extent_end <= start) { 3568 path->slots[0]++; 3569 continue; 3570 } 3571 3572 /* We have an implicit hole, NO_HOLES feature is likely set. */ 3573 if (last_extent_end < key.offset) { 3574 u64 search_start = last_extent_end; 3575 u64 found_start; 3576 3577 /* 3578 * First iteration, @start matches @offset and it's 3579 * within the hole. 3580 */ 3581 if (start == offset) 3582 search_start = offset; 3583 3584 found = find_desired_extent_in_hole(inode, whence, 3585 delalloc_cached_state, 3586 search_start, 3587 key.offset - 1, 3588 &found_start); 3589 if (found) { 3590 start = found_start; 3591 break; 3592 } 3593 /* 3594 * Didn't find data or a hole (due to delalloc) in the 3595 * implicit hole range, so need to analyze the extent. 3596 */ 3597 } 3598 3599 extent = btrfs_item_ptr(leaf, path->slots[0], 3600 struct btrfs_file_extent_item); 3601 type = btrfs_file_extent_type(leaf, extent); 3602 3603 /* 3604 * Can't access the extent's disk_bytenr field if this is an 3605 * inline extent, since at that offset, it's where the extent 3606 * data starts. 3607 */ 3608 if (type == BTRFS_FILE_EXTENT_PREALLOC || 3609 (type == BTRFS_FILE_EXTENT_REG && 3610 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) { 3611 /* 3612 * Explicit hole or prealloc extent, search for delalloc. 3613 * A prealloc extent is treated like a hole. 3614 */ 3615 u64 search_start = key.offset; 3616 u64 found_start; 3617 3618 /* 3619 * First iteration, @start matches @offset and it's 3620 * within the hole. 3621 */ 3622 if (start == offset) 3623 search_start = offset; 3624 3625 found = find_desired_extent_in_hole(inode, whence, 3626 delalloc_cached_state, 3627 search_start, 3628 extent_end - 1, 3629 &found_start); 3630 if (found) { 3631 start = found_start; 3632 break; 3633 } 3634 /* 3635 * Didn't find data or a hole (due to delalloc) in the 3636 * implicit hole range, so need to analyze the next 3637 * extent item. 3638 */ 3639 } else { 3640 /* 3641 * Found a regular or inline extent. 3642 * If we are seeking for data, adjust the start offset 3643 * and stop, we're done. 3644 */ 3645 if (whence == SEEK_DATA) { 3646 start = max_t(u64, key.offset, offset); 3647 found = true; 3648 break; 3649 } 3650 /* 3651 * Else, we are seeking for a hole, check the next file 3652 * extent item. 3653 */ 3654 } 3655 3656 start = extent_end; 3657 last_extent_end = extent_end; 3658 path->slots[0]++; 3659 if (fatal_signal_pending(current)) { 3660 ret = -EINTR; 3661 goto out; 3662 } 3663 cond_resched(); 3664 } 3665 3666 /* We have an implicit hole from the last extent found up to i_size. */ 3667 if (!found && start < i_size) { 3668 found = find_desired_extent_in_hole(inode, whence, 3669 delalloc_cached_state, start, 3670 i_size - 1, &start); 3671 if (!found) 3672 start = i_size; 3673 } 3674 3675 out: 3676 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3677 btrfs_free_path(path); 3678 3679 if (ret < 0) 3680 return ret; 3681 3682 if (whence == SEEK_DATA && start >= i_size) 3683 return -ENXIO; 3684 3685 return min_t(loff_t, start, i_size); 3686 } 3687 3688 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3689 { 3690 struct inode *inode = file->f_mapping->host; 3691 3692 switch (whence) { 3693 default: 3694 return generic_file_llseek(file, offset, whence); 3695 case SEEK_DATA: 3696 case SEEK_HOLE: 3697 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3698 offset = find_desired_extent(file, offset, whence); 3699 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3700 break; 3701 } 3702 3703 if (offset < 0) 3704 return offset; 3705 3706 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3707 } 3708 3709 static int btrfs_file_open(struct inode *inode, struct file *filp) 3710 { 3711 int ret; 3712 3713 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC | 3714 FMODE_CAN_ODIRECT; 3715 3716 ret = fsverity_file_open(inode, filp); 3717 if (ret) 3718 return ret; 3719 return generic_file_open(inode, filp); 3720 } 3721 3722 static int check_direct_read(struct btrfs_fs_info *fs_info, 3723 const struct iov_iter *iter, loff_t offset) 3724 { 3725 int ret; 3726 int i, seg; 3727 3728 ret = check_direct_IO(fs_info, iter, offset); 3729 if (ret < 0) 3730 return ret; 3731 3732 if (!iter_is_iovec(iter)) 3733 return 0; 3734 3735 for (seg = 0; seg < iter->nr_segs; seg++) { 3736 for (i = seg + 1; i < iter->nr_segs; i++) { 3737 const struct iovec *iov1 = iter_iov(iter) + seg; 3738 const struct iovec *iov2 = iter_iov(iter) + i; 3739 3740 if (iov1->iov_base == iov2->iov_base) 3741 return -EINVAL; 3742 } 3743 } 3744 return 0; 3745 } 3746 3747 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 3748 { 3749 struct inode *inode = file_inode(iocb->ki_filp); 3750 size_t prev_left = 0; 3751 ssize_t read = 0; 3752 ssize_t ret; 3753 3754 if (fsverity_active(inode)) 3755 return 0; 3756 3757 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos)) 3758 return 0; 3759 3760 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3761 again: 3762 /* 3763 * This is similar to what we do for direct IO writes, see the comment 3764 * at btrfs_direct_write(), but we also disable page faults in addition 3765 * to disabling them only at the iov_iter level. This is because when 3766 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(), 3767 * which can still trigger page fault ins despite having set ->nofault 3768 * to true of our 'to' iov_iter. 3769 * 3770 * The difference to direct IO writes is that we deadlock when trying 3771 * to lock the extent range in the inode's tree during he page reads 3772 * triggered by the fault in (while for writes it is due to waiting for 3773 * our own ordered extent). This is because for direct IO reads, 3774 * btrfs_dio_iomap_begin() returns with the extent range locked, which 3775 * is only unlocked in the endio callback (end_bio_extent_readpage()). 3776 */ 3777 pagefault_disable(); 3778 to->nofault = true; 3779 ret = btrfs_dio_read(iocb, to, read); 3780 to->nofault = false; 3781 pagefault_enable(); 3782 3783 /* No increment (+=) because iomap returns a cumulative value. */ 3784 if (ret > 0) 3785 read = ret; 3786 3787 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) { 3788 const size_t left = iov_iter_count(to); 3789 3790 if (left == prev_left) { 3791 /* 3792 * We didn't make any progress since the last attempt, 3793 * fallback to a buffered read for the remainder of the 3794 * range. This is just to avoid any possibility of looping 3795 * for too long. 3796 */ 3797 ret = read; 3798 } else { 3799 /* 3800 * We made some progress since the last retry or this is 3801 * the first time we are retrying. Fault in as many pages 3802 * as possible and retry. 3803 */ 3804 fault_in_iov_iter_writeable(to, left); 3805 prev_left = left; 3806 goto again; 3807 } 3808 } 3809 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3810 return ret < 0 ? ret : read; 3811 } 3812 3813 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3814 { 3815 ssize_t ret = 0; 3816 3817 if (iocb->ki_flags & IOCB_DIRECT) { 3818 ret = btrfs_direct_read(iocb, to); 3819 if (ret < 0 || !iov_iter_count(to) || 3820 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3821 return ret; 3822 } 3823 3824 return filemap_read(iocb, to, ret); 3825 } 3826 3827 const struct file_operations btrfs_file_operations = { 3828 .llseek = btrfs_file_llseek, 3829 .read_iter = btrfs_file_read_iter, 3830 .splice_read = filemap_splice_read, 3831 .write_iter = btrfs_file_write_iter, 3832 .splice_write = iter_file_splice_write, 3833 .mmap = btrfs_file_mmap, 3834 .open = btrfs_file_open, 3835 .release = btrfs_release_file, 3836 .get_unmapped_area = thp_get_unmapped_area, 3837 .fsync = btrfs_sync_file, 3838 .fallocate = btrfs_fallocate, 3839 .unlocked_ioctl = btrfs_ioctl, 3840 #ifdef CONFIG_COMPAT 3841 .compat_ioctl = btrfs_compat_ioctl, 3842 #endif 3843 .remap_file_range = btrfs_remap_file_range, 3844 }; 3845 3846 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3847 { 3848 int ret; 3849 3850 /* 3851 * So with compression we will find and lock a dirty page and clear the 3852 * first one as dirty, setup an async extent, and immediately return 3853 * with the entire range locked but with nobody actually marked with 3854 * writeback. So we can't just filemap_write_and_wait_range() and 3855 * expect it to work since it will just kick off a thread to do the 3856 * actual work. So we need to call filemap_fdatawrite_range _again_ 3857 * since it will wait on the page lock, which won't be unlocked until 3858 * after the pages have been marked as writeback and so we're good to go 3859 * from there. We have to do this otherwise we'll miss the ordered 3860 * extents and that results in badness. Please Josef, do not think you 3861 * know better and pull this out at some point in the future, it is 3862 * right and you are wrong. 3863 */ 3864 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3865 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3866 &BTRFS_I(inode)->runtime_flags)) 3867 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3868 3869 return ret; 3870 } 3871