xref: /linux/fs/btrfs/file.c (revision 9da8320bb97768e35f2e64fa7642015271d672eb)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
34 #include <linux/uio.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 #include "qgroup.h"
44 
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47  * when auto defrag is enabled we
48  * queue up these defrag structs to remember which
49  * inodes need defragging passes
50  */
51 struct inode_defrag {
52 	struct rb_node rb_node;
53 	/* objectid */
54 	u64 ino;
55 	/*
56 	 * transid where the defrag was added, we search for
57 	 * extents newer than this
58 	 */
59 	u64 transid;
60 
61 	/* root objectid */
62 	u64 root;
63 
64 	/* last offset we were able to defrag */
65 	u64 last_offset;
66 
67 	/* if we've wrapped around back to zero once already */
68 	int cycled;
69 };
70 
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 				  struct inode_defrag *defrag2)
73 {
74 	if (defrag1->root > defrag2->root)
75 		return 1;
76 	else if (defrag1->root < defrag2->root)
77 		return -1;
78 	else if (defrag1->ino > defrag2->ino)
79 		return 1;
80 	else if (defrag1->ino < defrag2->ino)
81 		return -1;
82 	else
83 		return 0;
84 }
85 
86 /* pop a record for an inode into the defrag tree.  The lock
87  * must be held already
88  *
89  * If you're inserting a record for an older transid than an
90  * existing record, the transid already in the tree is lowered
91  *
92  * If an existing record is found the defrag item you
93  * pass in is freed
94  */
95 static int __btrfs_add_inode_defrag(struct inode *inode,
96 				    struct inode_defrag *defrag)
97 {
98 	struct btrfs_root *root = BTRFS_I(inode)->root;
99 	struct inode_defrag *entry;
100 	struct rb_node **p;
101 	struct rb_node *parent = NULL;
102 	int ret;
103 
104 	p = &root->fs_info->defrag_inodes.rb_node;
105 	while (*p) {
106 		parent = *p;
107 		entry = rb_entry(parent, struct inode_defrag, rb_node);
108 
109 		ret = __compare_inode_defrag(defrag, entry);
110 		if (ret < 0)
111 			p = &parent->rb_left;
112 		else if (ret > 0)
113 			p = &parent->rb_right;
114 		else {
115 			/* if we're reinserting an entry for
116 			 * an old defrag run, make sure to
117 			 * lower the transid of our existing record
118 			 */
119 			if (defrag->transid < entry->transid)
120 				entry->transid = defrag->transid;
121 			if (defrag->last_offset > entry->last_offset)
122 				entry->last_offset = defrag->last_offset;
123 			return -EEXIST;
124 		}
125 	}
126 	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
127 	rb_link_node(&defrag->rb_node, parent, p);
128 	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
129 	return 0;
130 }
131 
132 static inline int __need_auto_defrag(struct btrfs_root *root)
133 {
134 	if (!btrfs_test_opt(root, AUTO_DEFRAG))
135 		return 0;
136 
137 	if (btrfs_fs_closing(root->fs_info))
138 		return 0;
139 
140 	return 1;
141 }
142 
143 /*
144  * insert a defrag record for this inode if auto defrag is
145  * enabled
146  */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 			   struct inode *inode)
149 {
150 	struct btrfs_root *root = BTRFS_I(inode)->root;
151 	struct inode_defrag *defrag;
152 	u64 transid;
153 	int ret;
154 
155 	if (!__need_auto_defrag(root))
156 		return 0;
157 
158 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
159 		return 0;
160 
161 	if (trans)
162 		transid = trans->transid;
163 	else
164 		transid = BTRFS_I(inode)->root->last_trans;
165 
166 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
167 	if (!defrag)
168 		return -ENOMEM;
169 
170 	defrag->ino = btrfs_ino(inode);
171 	defrag->transid = transid;
172 	defrag->root = root->root_key.objectid;
173 
174 	spin_lock(&root->fs_info->defrag_inodes_lock);
175 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176 		/*
177 		 * If we set IN_DEFRAG flag and evict the inode from memory,
178 		 * and then re-read this inode, this new inode doesn't have
179 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 		 */
181 		ret = __btrfs_add_inode_defrag(inode, defrag);
182 		if (ret)
183 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 	} else {
185 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
186 	}
187 	spin_unlock(&root->fs_info->defrag_inodes_lock);
188 	return 0;
189 }
190 
191 /*
192  * Requeue the defrag object. If there is a defrag object that points to
193  * the same inode in the tree, we will merge them together (by
194  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
195  */
196 static void btrfs_requeue_inode_defrag(struct inode *inode,
197 				       struct inode_defrag *defrag)
198 {
199 	struct btrfs_root *root = BTRFS_I(inode)->root;
200 	int ret;
201 
202 	if (!__need_auto_defrag(root))
203 		goto out;
204 
205 	/*
206 	 * Here we don't check the IN_DEFRAG flag, because we need merge
207 	 * them together.
208 	 */
209 	spin_lock(&root->fs_info->defrag_inodes_lock);
210 	ret = __btrfs_add_inode_defrag(inode, defrag);
211 	spin_unlock(&root->fs_info->defrag_inodes_lock);
212 	if (ret)
213 		goto out;
214 	return;
215 out:
216 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
217 }
218 
219 /*
220  * pick the defragable inode that we want, if it doesn't exist, we will get
221  * the next one.
222  */
223 static struct inode_defrag *
224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
225 {
226 	struct inode_defrag *entry = NULL;
227 	struct inode_defrag tmp;
228 	struct rb_node *p;
229 	struct rb_node *parent = NULL;
230 	int ret;
231 
232 	tmp.ino = ino;
233 	tmp.root = root;
234 
235 	spin_lock(&fs_info->defrag_inodes_lock);
236 	p = fs_info->defrag_inodes.rb_node;
237 	while (p) {
238 		parent = p;
239 		entry = rb_entry(parent, struct inode_defrag, rb_node);
240 
241 		ret = __compare_inode_defrag(&tmp, entry);
242 		if (ret < 0)
243 			p = parent->rb_left;
244 		else if (ret > 0)
245 			p = parent->rb_right;
246 		else
247 			goto out;
248 	}
249 
250 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
251 		parent = rb_next(parent);
252 		if (parent)
253 			entry = rb_entry(parent, struct inode_defrag, rb_node);
254 		else
255 			entry = NULL;
256 	}
257 out:
258 	if (entry)
259 		rb_erase(parent, &fs_info->defrag_inodes);
260 	spin_unlock(&fs_info->defrag_inodes_lock);
261 	return entry;
262 }
263 
264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
265 {
266 	struct inode_defrag *defrag;
267 	struct rb_node *node;
268 
269 	spin_lock(&fs_info->defrag_inodes_lock);
270 	node = rb_first(&fs_info->defrag_inodes);
271 	while (node) {
272 		rb_erase(node, &fs_info->defrag_inodes);
273 		defrag = rb_entry(node, struct inode_defrag, rb_node);
274 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275 
276 		cond_resched_lock(&fs_info->defrag_inodes_lock);
277 
278 		node = rb_first(&fs_info->defrag_inodes);
279 	}
280 	spin_unlock(&fs_info->defrag_inodes_lock);
281 }
282 
283 #define BTRFS_DEFRAG_BATCH	1024
284 
285 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
286 				    struct inode_defrag *defrag)
287 {
288 	struct btrfs_root *inode_root;
289 	struct inode *inode;
290 	struct btrfs_key key;
291 	struct btrfs_ioctl_defrag_range_args range;
292 	int num_defrag;
293 	int index;
294 	int ret;
295 
296 	/* get the inode */
297 	key.objectid = defrag->root;
298 	key.type = BTRFS_ROOT_ITEM_KEY;
299 	key.offset = (u64)-1;
300 
301 	index = srcu_read_lock(&fs_info->subvol_srcu);
302 
303 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
304 	if (IS_ERR(inode_root)) {
305 		ret = PTR_ERR(inode_root);
306 		goto cleanup;
307 	}
308 
309 	key.objectid = defrag->ino;
310 	key.type = BTRFS_INODE_ITEM_KEY;
311 	key.offset = 0;
312 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
313 	if (IS_ERR(inode)) {
314 		ret = PTR_ERR(inode);
315 		goto cleanup;
316 	}
317 	srcu_read_unlock(&fs_info->subvol_srcu, index);
318 
319 	/* do a chunk of defrag */
320 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
321 	memset(&range, 0, sizeof(range));
322 	range.len = (u64)-1;
323 	range.start = defrag->last_offset;
324 
325 	sb_start_write(fs_info->sb);
326 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
327 				       BTRFS_DEFRAG_BATCH);
328 	sb_end_write(fs_info->sb);
329 	/*
330 	 * if we filled the whole defrag batch, there
331 	 * must be more work to do.  Queue this defrag
332 	 * again
333 	 */
334 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
335 		defrag->last_offset = range.start;
336 		btrfs_requeue_inode_defrag(inode, defrag);
337 	} else if (defrag->last_offset && !defrag->cycled) {
338 		/*
339 		 * we didn't fill our defrag batch, but
340 		 * we didn't start at zero.  Make sure we loop
341 		 * around to the start of the file.
342 		 */
343 		defrag->last_offset = 0;
344 		defrag->cycled = 1;
345 		btrfs_requeue_inode_defrag(inode, defrag);
346 	} else {
347 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
348 	}
349 
350 	iput(inode);
351 	return 0;
352 cleanup:
353 	srcu_read_unlock(&fs_info->subvol_srcu, index);
354 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
355 	return ret;
356 }
357 
358 /*
359  * run through the list of inodes in the FS that need
360  * defragging
361  */
362 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
363 {
364 	struct inode_defrag *defrag;
365 	u64 first_ino = 0;
366 	u64 root_objectid = 0;
367 
368 	atomic_inc(&fs_info->defrag_running);
369 	while (1) {
370 		/* Pause the auto defragger. */
371 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
372 			     &fs_info->fs_state))
373 			break;
374 
375 		if (!__need_auto_defrag(fs_info->tree_root))
376 			break;
377 
378 		/* find an inode to defrag */
379 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
380 						 first_ino);
381 		if (!defrag) {
382 			if (root_objectid || first_ino) {
383 				root_objectid = 0;
384 				first_ino = 0;
385 				continue;
386 			} else {
387 				break;
388 			}
389 		}
390 
391 		first_ino = defrag->ino + 1;
392 		root_objectid = defrag->root;
393 
394 		__btrfs_run_defrag_inode(fs_info, defrag);
395 	}
396 	atomic_dec(&fs_info->defrag_running);
397 
398 	/*
399 	 * during unmount, we use the transaction_wait queue to
400 	 * wait for the defragger to stop
401 	 */
402 	wake_up(&fs_info->transaction_wait);
403 	return 0;
404 }
405 
406 /* simple helper to fault in pages and copy.  This should go away
407  * and be replaced with calls into generic code.
408  */
409 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
410 					 size_t write_bytes,
411 					 struct page **prepared_pages,
412 					 struct iov_iter *i)
413 {
414 	size_t copied = 0;
415 	size_t total_copied = 0;
416 	int pg = 0;
417 	int offset = pos & (PAGE_CACHE_SIZE - 1);
418 
419 	while (write_bytes > 0) {
420 		size_t count = min_t(size_t,
421 				     PAGE_CACHE_SIZE - offset, write_bytes);
422 		struct page *page = prepared_pages[pg];
423 		/*
424 		 * Copy data from userspace to the current page
425 		 */
426 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427 
428 		/* Flush processor's dcache for this page */
429 		flush_dcache_page(page);
430 
431 		/*
432 		 * if we get a partial write, we can end up with
433 		 * partially up to date pages.  These add
434 		 * a lot of complexity, so make sure they don't
435 		 * happen by forcing this copy to be retried.
436 		 *
437 		 * The rest of the btrfs_file_write code will fall
438 		 * back to page at a time copies after we return 0.
439 		 */
440 		if (!PageUptodate(page) && copied < count)
441 			copied = 0;
442 
443 		iov_iter_advance(i, copied);
444 		write_bytes -= copied;
445 		total_copied += copied;
446 
447 		/* Return to btrfs_file_write_iter to fault page */
448 		if (unlikely(copied == 0))
449 			break;
450 
451 		if (copied < PAGE_CACHE_SIZE - offset) {
452 			offset += copied;
453 		} else {
454 			pg++;
455 			offset = 0;
456 		}
457 	}
458 	return total_copied;
459 }
460 
461 /*
462  * unlocks pages after btrfs_file_write is done with them
463  */
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465 {
466 	size_t i;
467 	for (i = 0; i < num_pages; i++) {
468 		/* page checked is some magic around finding pages that
469 		 * have been modified without going through btrfs_set_page_dirty
470 		 * clear it here. There should be no need to mark the pages
471 		 * accessed as prepare_pages should have marked them accessed
472 		 * in prepare_pages via find_or_create_page()
473 		 */
474 		ClearPageChecked(pages[i]);
475 		unlock_page(pages[i]);
476 		page_cache_release(pages[i]);
477 	}
478 }
479 
480 /*
481  * after copy_from_user, pages need to be dirtied and we need to make
482  * sure holes are created between the current EOF and the start of
483  * any next extents (if required).
484  *
485  * this also makes the decision about creating an inline extent vs
486  * doing real data extents, marking pages dirty and delalloc as required.
487  */
488 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
489 			     struct page **pages, size_t num_pages,
490 			     loff_t pos, size_t write_bytes,
491 			     struct extent_state **cached)
492 {
493 	int err = 0;
494 	int i;
495 	u64 num_bytes;
496 	u64 start_pos;
497 	u64 end_of_last_block;
498 	u64 end_pos = pos + write_bytes;
499 	loff_t isize = i_size_read(inode);
500 
501 	start_pos = pos & ~((u64)root->sectorsize - 1);
502 	num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
503 
504 	end_of_last_block = start_pos + num_bytes - 1;
505 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
506 					cached);
507 	if (err)
508 		return err;
509 
510 	for (i = 0; i < num_pages; i++) {
511 		struct page *p = pages[i];
512 		SetPageUptodate(p);
513 		ClearPageChecked(p);
514 		set_page_dirty(p);
515 	}
516 
517 	/*
518 	 * we've only changed i_size in ram, and we haven't updated
519 	 * the disk i_size.  There is no need to log the inode
520 	 * at this time.
521 	 */
522 	if (end_pos > isize)
523 		i_size_write(inode, end_pos);
524 	return 0;
525 }
526 
527 /*
528  * this drops all the extents in the cache that intersect the range
529  * [start, end].  Existing extents are split as required.
530  */
531 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
532 			     int skip_pinned)
533 {
534 	struct extent_map *em;
535 	struct extent_map *split = NULL;
536 	struct extent_map *split2 = NULL;
537 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538 	u64 len = end - start + 1;
539 	u64 gen;
540 	int ret;
541 	int testend = 1;
542 	unsigned long flags;
543 	int compressed = 0;
544 	bool modified;
545 
546 	WARN_ON(end < start);
547 	if (end == (u64)-1) {
548 		len = (u64)-1;
549 		testend = 0;
550 	}
551 	while (1) {
552 		int no_splits = 0;
553 
554 		modified = false;
555 		if (!split)
556 			split = alloc_extent_map();
557 		if (!split2)
558 			split2 = alloc_extent_map();
559 		if (!split || !split2)
560 			no_splits = 1;
561 
562 		write_lock(&em_tree->lock);
563 		em = lookup_extent_mapping(em_tree, start, len);
564 		if (!em) {
565 			write_unlock(&em_tree->lock);
566 			break;
567 		}
568 		flags = em->flags;
569 		gen = em->generation;
570 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
571 			if (testend && em->start + em->len >= start + len) {
572 				free_extent_map(em);
573 				write_unlock(&em_tree->lock);
574 				break;
575 			}
576 			start = em->start + em->len;
577 			if (testend)
578 				len = start + len - (em->start + em->len);
579 			free_extent_map(em);
580 			write_unlock(&em_tree->lock);
581 			continue;
582 		}
583 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
584 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
585 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
586 		modified = !list_empty(&em->list);
587 		if (no_splits)
588 			goto next;
589 
590 		if (em->start < start) {
591 			split->start = em->start;
592 			split->len = start - em->start;
593 
594 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
595 				split->orig_start = em->orig_start;
596 				split->block_start = em->block_start;
597 
598 				if (compressed)
599 					split->block_len = em->block_len;
600 				else
601 					split->block_len = split->len;
602 				split->orig_block_len = max(split->block_len,
603 						em->orig_block_len);
604 				split->ram_bytes = em->ram_bytes;
605 			} else {
606 				split->orig_start = split->start;
607 				split->block_len = 0;
608 				split->block_start = em->block_start;
609 				split->orig_block_len = 0;
610 				split->ram_bytes = split->len;
611 			}
612 
613 			split->generation = gen;
614 			split->bdev = em->bdev;
615 			split->flags = flags;
616 			split->compress_type = em->compress_type;
617 			replace_extent_mapping(em_tree, em, split, modified);
618 			free_extent_map(split);
619 			split = split2;
620 			split2 = NULL;
621 		}
622 		if (testend && em->start + em->len > start + len) {
623 			u64 diff = start + len - em->start;
624 
625 			split->start = start + len;
626 			split->len = em->start + em->len - (start + len);
627 			split->bdev = em->bdev;
628 			split->flags = flags;
629 			split->compress_type = em->compress_type;
630 			split->generation = gen;
631 
632 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
633 				split->orig_block_len = max(em->block_len,
634 						    em->orig_block_len);
635 
636 				split->ram_bytes = em->ram_bytes;
637 				if (compressed) {
638 					split->block_len = em->block_len;
639 					split->block_start = em->block_start;
640 					split->orig_start = em->orig_start;
641 				} else {
642 					split->block_len = split->len;
643 					split->block_start = em->block_start
644 						+ diff;
645 					split->orig_start = em->orig_start;
646 				}
647 			} else {
648 				split->ram_bytes = split->len;
649 				split->orig_start = split->start;
650 				split->block_len = 0;
651 				split->block_start = em->block_start;
652 				split->orig_block_len = 0;
653 			}
654 
655 			if (extent_map_in_tree(em)) {
656 				replace_extent_mapping(em_tree, em, split,
657 						       modified);
658 			} else {
659 				ret = add_extent_mapping(em_tree, split,
660 							 modified);
661 				ASSERT(ret == 0); /* Logic error */
662 			}
663 			free_extent_map(split);
664 			split = NULL;
665 		}
666 next:
667 		if (extent_map_in_tree(em))
668 			remove_extent_mapping(em_tree, em);
669 		write_unlock(&em_tree->lock);
670 
671 		/* once for us */
672 		free_extent_map(em);
673 		/* once for the tree*/
674 		free_extent_map(em);
675 	}
676 	if (split)
677 		free_extent_map(split);
678 	if (split2)
679 		free_extent_map(split2);
680 }
681 
682 /*
683  * this is very complex, but the basic idea is to drop all extents
684  * in the range start - end.  hint_block is filled in with a block number
685  * that would be a good hint to the block allocator for this file.
686  *
687  * If an extent intersects the range but is not entirely inside the range
688  * it is either truncated or split.  Anything entirely inside the range
689  * is deleted from the tree.
690  */
691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
692 			 struct btrfs_root *root, struct inode *inode,
693 			 struct btrfs_path *path, u64 start, u64 end,
694 			 u64 *drop_end, int drop_cache,
695 			 int replace_extent,
696 			 u32 extent_item_size,
697 			 int *key_inserted)
698 {
699 	struct extent_buffer *leaf;
700 	struct btrfs_file_extent_item *fi;
701 	struct btrfs_key key;
702 	struct btrfs_key new_key;
703 	u64 ino = btrfs_ino(inode);
704 	u64 search_start = start;
705 	u64 disk_bytenr = 0;
706 	u64 num_bytes = 0;
707 	u64 extent_offset = 0;
708 	u64 extent_end = 0;
709 	int del_nr = 0;
710 	int del_slot = 0;
711 	int extent_type;
712 	int recow;
713 	int ret;
714 	int modify_tree = -1;
715 	int update_refs;
716 	int found = 0;
717 	int leafs_visited = 0;
718 
719 	if (drop_cache)
720 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
721 
722 	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
723 		modify_tree = 0;
724 
725 	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
726 		       root == root->fs_info->tree_root);
727 	while (1) {
728 		recow = 0;
729 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
730 					       search_start, modify_tree);
731 		if (ret < 0)
732 			break;
733 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734 			leaf = path->nodes[0];
735 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
736 			if (key.objectid == ino &&
737 			    key.type == BTRFS_EXTENT_DATA_KEY)
738 				path->slots[0]--;
739 		}
740 		ret = 0;
741 		leafs_visited++;
742 next_slot:
743 		leaf = path->nodes[0];
744 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745 			BUG_ON(del_nr > 0);
746 			ret = btrfs_next_leaf(root, path);
747 			if (ret < 0)
748 				break;
749 			if (ret > 0) {
750 				ret = 0;
751 				break;
752 			}
753 			leafs_visited++;
754 			leaf = path->nodes[0];
755 			recow = 1;
756 		}
757 
758 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
759 
760 		if (key.objectid > ino)
761 			break;
762 		if (WARN_ON_ONCE(key.objectid < ino) ||
763 		    key.type < BTRFS_EXTENT_DATA_KEY) {
764 			ASSERT(del_nr == 0);
765 			path->slots[0]++;
766 			goto next_slot;
767 		}
768 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
769 			break;
770 
771 		fi = btrfs_item_ptr(leaf, path->slots[0],
772 				    struct btrfs_file_extent_item);
773 		extent_type = btrfs_file_extent_type(leaf, fi);
774 
775 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
776 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
777 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
778 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
779 			extent_offset = btrfs_file_extent_offset(leaf, fi);
780 			extent_end = key.offset +
781 				btrfs_file_extent_num_bytes(leaf, fi);
782 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
783 			extent_end = key.offset +
784 				btrfs_file_extent_inline_len(leaf,
785 						     path->slots[0], fi);
786 		} else {
787 			/* can't happen */
788 			BUG();
789 		}
790 
791 		/*
792 		 * Don't skip extent items representing 0 byte lengths. They
793 		 * used to be created (bug) if while punching holes we hit
794 		 * -ENOSPC condition. So if we find one here, just ensure we
795 		 * delete it, otherwise we would insert a new file extent item
796 		 * with the same key (offset) as that 0 bytes length file
797 		 * extent item in the call to setup_items_for_insert() later
798 		 * in this function.
799 		 */
800 		if (extent_end == key.offset && extent_end >= search_start)
801 			goto delete_extent_item;
802 
803 		if (extent_end <= search_start) {
804 			path->slots[0]++;
805 			goto next_slot;
806 		}
807 
808 		found = 1;
809 		search_start = max(key.offset, start);
810 		if (recow || !modify_tree) {
811 			modify_tree = -1;
812 			btrfs_release_path(path);
813 			continue;
814 		}
815 
816 		/*
817 		 *     | - range to drop - |
818 		 *  | -------- extent -------- |
819 		 */
820 		if (start > key.offset && end < extent_end) {
821 			BUG_ON(del_nr > 0);
822 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
823 				ret = -EOPNOTSUPP;
824 				break;
825 			}
826 
827 			memcpy(&new_key, &key, sizeof(new_key));
828 			new_key.offset = start;
829 			ret = btrfs_duplicate_item(trans, root, path,
830 						   &new_key);
831 			if (ret == -EAGAIN) {
832 				btrfs_release_path(path);
833 				continue;
834 			}
835 			if (ret < 0)
836 				break;
837 
838 			leaf = path->nodes[0];
839 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
840 					    struct btrfs_file_extent_item);
841 			btrfs_set_file_extent_num_bytes(leaf, fi,
842 							start - key.offset);
843 
844 			fi = btrfs_item_ptr(leaf, path->slots[0],
845 					    struct btrfs_file_extent_item);
846 
847 			extent_offset += start - key.offset;
848 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
849 			btrfs_set_file_extent_num_bytes(leaf, fi,
850 							extent_end - start);
851 			btrfs_mark_buffer_dirty(leaf);
852 
853 			if (update_refs && disk_bytenr > 0) {
854 				ret = btrfs_inc_extent_ref(trans, root,
855 						disk_bytenr, num_bytes, 0,
856 						root->root_key.objectid,
857 						new_key.objectid,
858 						start - extent_offset);
859 				BUG_ON(ret); /* -ENOMEM */
860 			}
861 			key.offset = start;
862 		}
863 		/*
864 		 *  | ---- range to drop ----- |
865 		 *      | -------- extent -------- |
866 		 */
867 		if (start <= key.offset && end < extent_end) {
868 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
869 				ret = -EOPNOTSUPP;
870 				break;
871 			}
872 
873 			memcpy(&new_key, &key, sizeof(new_key));
874 			new_key.offset = end;
875 			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
876 
877 			extent_offset += end - key.offset;
878 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
879 			btrfs_set_file_extent_num_bytes(leaf, fi,
880 							extent_end - end);
881 			btrfs_mark_buffer_dirty(leaf);
882 			if (update_refs && disk_bytenr > 0)
883 				inode_sub_bytes(inode, end - key.offset);
884 			break;
885 		}
886 
887 		search_start = extent_end;
888 		/*
889 		 *       | ---- range to drop ----- |
890 		 *  | -------- extent -------- |
891 		 */
892 		if (start > key.offset && end >= extent_end) {
893 			BUG_ON(del_nr > 0);
894 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
895 				ret = -EOPNOTSUPP;
896 				break;
897 			}
898 
899 			btrfs_set_file_extent_num_bytes(leaf, fi,
900 							start - key.offset);
901 			btrfs_mark_buffer_dirty(leaf);
902 			if (update_refs && disk_bytenr > 0)
903 				inode_sub_bytes(inode, extent_end - start);
904 			if (end == extent_end)
905 				break;
906 
907 			path->slots[0]++;
908 			goto next_slot;
909 		}
910 
911 		/*
912 		 *  | ---- range to drop ----- |
913 		 *    | ------ extent ------ |
914 		 */
915 		if (start <= key.offset && end >= extent_end) {
916 delete_extent_item:
917 			if (del_nr == 0) {
918 				del_slot = path->slots[0];
919 				del_nr = 1;
920 			} else {
921 				BUG_ON(del_slot + del_nr != path->slots[0]);
922 				del_nr++;
923 			}
924 
925 			if (update_refs &&
926 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
927 				inode_sub_bytes(inode,
928 						extent_end - key.offset);
929 				extent_end = ALIGN(extent_end,
930 						   root->sectorsize);
931 			} else if (update_refs && disk_bytenr > 0) {
932 				ret = btrfs_free_extent(trans, root,
933 						disk_bytenr, num_bytes, 0,
934 						root->root_key.objectid,
935 						key.objectid, key.offset -
936 						extent_offset);
937 				BUG_ON(ret); /* -ENOMEM */
938 				inode_sub_bytes(inode,
939 						extent_end - key.offset);
940 			}
941 
942 			if (end == extent_end)
943 				break;
944 
945 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
946 				path->slots[0]++;
947 				goto next_slot;
948 			}
949 
950 			ret = btrfs_del_items(trans, root, path, del_slot,
951 					      del_nr);
952 			if (ret) {
953 				btrfs_abort_transaction(trans, root, ret);
954 				break;
955 			}
956 
957 			del_nr = 0;
958 			del_slot = 0;
959 
960 			btrfs_release_path(path);
961 			continue;
962 		}
963 
964 		BUG_ON(1);
965 	}
966 
967 	if (!ret && del_nr > 0) {
968 		/*
969 		 * Set path->slots[0] to first slot, so that after the delete
970 		 * if items are move off from our leaf to its immediate left or
971 		 * right neighbor leafs, we end up with a correct and adjusted
972 		 * path->slots[0] for our insertion (if replace_extent != 0).
973 		 */
974 		path->slots[0] = del_slot;
975 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
976 		if (ret)
977 			btrfs_abort_transaction(trans, root, ret);
978 	}
979 
980 	leaf = path->nodes[0];
981 	/*
982 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
983 	 * which case it unlocked our path, so check path->locks[0] matches a
984 	 * write lock.
985 	 */
986 	if (!ret && replace_extent && leafs_visited == 1 &&
987 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
988 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
989 	    btrfs_leaf_free_space(root, leaf) >=
990 	    sizeof(struct btrfs_item) + extent_item_size) {
991 
992 		key.objectid = ino;
993 		key.type = BTRFS_EXTENT_DATA_KEY;
994 		key.offset = start;
995 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
996 			struct btrfs_key slot_key;
997 
998 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
999 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1000 				path->slots[0]++;
1001 		}
1002 		setup_items_for_insert(root, path, &key,
1003 				       &extent_item_size,
1004 				       extent_item_size,
1005 				       sizeof(struct btrfs_item) +
1006 				       extent_item_size, 1);
1007 		*key_inserted = 1;
1008 	}
1009 
1010 	if (!replace_extent || !(*key_inserted))
1011 		btrfs_release_path(path);
1012 	if (drop_end)
1013 		*drop_end = found ? min(end, extent_end) : end;
1014 	return ret;
1015 }
1016 
1017 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1018 		       struct btrfs_root *root, struct inode *inode, u64 start,
1019 		       u64 end, int drop_cache)
1020 {
1021 	struct btrfs_path *path;
1022 	int ret;
1023 
1024 	path = btrfs_alloc_path();
1025 	if (!path)
1026 		return -ENOMEM;
1027 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1028 				   drop_cache, 0, 0, NULL);
1029 	btrfs_free_path(path);
1030 	return ret;
1031 }
1032 
1033 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1034 			    u64 objectid, u64 bytenr, u64 orig_offset,
1035 			    u64 *start, u64 *end)
1036 {
1037 	struct btrfs_file_extent_item *fi;
1038 	struct btrfs_key key;
1039 	u64 extent_end;
1040 
1041 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1042 		return 0;
1043 
1044 	btrfs_item_key_to_cpu(leaf, &key, slot);
1045 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1046 		return 0;
1047 
1048 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1049 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1050 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1051 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1052 	    btrfs_file_extent_compression(leaf, fi) ||
1053 	    btrfs_file_extent_encryption(leaf, fi) ||
1054 	    btrfs_file_extent_other_encoding(leaf, fi))
1055 		return 0;
1056 
1057 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1058 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1059 		return 0;
1060 
1061 	*start = key.offset;
1062 	*end = extent_end;
1063 	return 1;
1064 }
1065 
1066 /*
1067  * Mark extent in the range start - end as written.
1068  *
1069  * This changes extent type from 'pre-allocated' to 'regular'. If only
1070  * part of extent is marked as written, the extent will be split into
1071  * two or three.
1072  */
1073 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1074 			      struct inode *inode, u64 start, u64 end)
1075 {
1076 	struct btrfs_root *root = BTRFS_I(inode)->root;
1077 	struct extent_buffer *leaf;
1078 	struct btrfs_path *path;
1079 	struct btrfs_file_extent_item *fi;
1080 	struct btrfs_key key;
1081 	struct btrfs_key new_key;
1082 	u64 bytenr;
1083 	u64 num_bytes;
1084 	u64 extent_end;
1085 	u64 orig_offset;
1086 	u64 other_start;
1087 	u64 other_end;
1088 	u64 split;
1089 	int del_nr = 0;
1090 	int del_slot = 0;
1091 	int recow;
1092 	int ret;
1093 	u64 ino = btrfs_ino(inode);
1094 
1095 	path = btrfs_alloc_path();
1096 	if (!path)
1097 		return -ENOMEM;
1098 again:
1099 	recow = 0;
1100 	split = start;
1101 	key.objectid = ino;
1102 	key.type = BTRFS_EXTENT_DATA_KEY;
1103 	key.offset = split;
1104 
1105 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1106 	if (ret < 0)
1107 		goto out;
1108 	if (ret > 0 && path->slots[0] > 0)
1109 		path->slots[0]--;
1110 
1111 	leaf = path->nodes[0];
1112 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1113 	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1114 	fi = btrfs_item_ptr(leaf, path->slots[0],
1115 			    struct btrfs_file_extent_item);
1116 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1117 	       BTRFS_FILE_EXTENT_PREALLOC);
1118 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1119 	BUG_ON(key.offset > start || extent_end < end);
1120 
1121 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1122 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1123 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1124 	memcpy(&new_key, &key, sizeof(new_key));
1125 
1126 	if (start == key.offset && end < extent_end) {
1127 		other_start = 0;
1128 		other_end = start;
1129 		if (extent_mergeable(leaf, path->slots[0] - 1,
1130 				     ino, bytenr, orig_offset,
1131 				     &other_start, &other_end)) {
1132 			new_key.offset = end;
1133 			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1134 			fi = btrfs_item_ptr(leaf, path->slots[0],
1135 					    struct btrfs_file_extent_item);
1136 			btrfs_set_file_extent_generation(leaf, fi,
1137 							 trans->transid);
1138 			btrfs_set_file_extent_num_bytes(leaf, fi,
1139 							extent_end - end);
1140 			btrfs_set_file_extent_offset(leaf, fi,
1141 						     end - orig_offset);
1142 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1143 					    struct btrfs_file_extent_item);
1144 			btrfs_set_file_extent_generation(leaf, fi,
1145 							 trans->transid);
1146 			btrfs_set_file_extent_num_bytes(leaf, fi,
1147 							end - other_start);
1148 			btrfs_mark_buffer_dirty(leaf);
1149 			goto out;
1150 		}
1151 	}
1152 
1153 	if (start > key.offset && end == extent_end) {
1154 		other_start = end;
1155 		other_end = 0;
1156 		if (extent_mergeable(leaf, path->slots[0] + 1,
1157 				     ino, bytenr, orig_offset,
1158 				     &other_start, &other_end)) {
1159 			fi = btrfs_item_ptr(leaf, path->slots[0],
1160 					    struct btrfs_file_extent_item);
1161 			btrfs_set_file_extent_num_bytes(leaf, fi,
1162 							start - key.offset);
1163 			btrfs_set_file_extent_generation(leaf, fi,
1164 							 trans->transid);
1165 			path->slots[0]++;
1166 			new_key.offset = start;
1167 			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1168 
1169 			fi = btrfs_item_ptr(leaf, path->slots[0],
1170 					    struct btrfs_file_extent_item);
1171 			btrfs_set_file_extent_generation(leaf, fi,
1172 							 trans->transid);
1173 			btrfs_set_file_extent_num_bytes(leaf, fi,
1174 							other_end - start);
1175 			btrfs_set_file_extent_offset(leaf, fi,
1176 						     start - orig_offset);
1177 			btrfs_mark_buffer_dirty(leaf);
1178 			goto out;
1179 		}
1180 	}
1181 
1182 	while (start > key.offset || end < extent_end) {
1183 		if (key.offset == start)
1184 			split = end;
1185 
1186 		new_key.offset = split;
1187 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1188 		if (ret == -EAGAIN) {
1189 			btrfs_release_path(path);
1190 			goto again;
1191 		}
1192 		if (ret < 0) {
1193 			btrfs_abort_transaction(trans, root, ret);
1194 			goto out;
1195 		}
1196 
1197 		leaf = path->nodes[0];
1198 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1199 				    struct btrfs_file_extent_item);
1200 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1201 		btrfs_set_file_extent_num_bytes(leaf, fi,
1202 						split - key.offset);
1203 
1204 		fi = btrfs_item_ptr(leaf, path->slots[0],
1205 				    struct btrfs_file_extent_item);
1206 
1207 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1208 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1209 		btrfs_set_file_extent_num_bytes(leaf, fi,
1210 						extent_end - split);
1211 		btrfs_mark_buffer_dirty(leaf);
1212 
1213 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1214 					   root->root_key.objectid,
1215 					   ino, orig_offset);
1216 		BUG_ON(ret); /* -ENOMEM */
1217 
1218 		if (split == start) {
1219 			key.offset = start;
1220 		} else {
1221 			BUG_ON(start != key.offset);
1222 			path->slots[0]--;
1223 			extent_end = end;
1224 		}
1225 		recow = 1;
1226 	}
1227 
1228 	other_start = end;
1229 	other_end = 0;
1230 	if (extent_mergeable(leaf, path->slots[0] + 1,
1231 			     ino, bytenr, orig_offset,
1232 			     &other_start, &other_end)) {
1233 		if (recow) {
1234 			btrfs_release_path(path);
1235 			goto again;
1236 		}
1237 		extent_end = other_end;
1238 		del_slot = path->slots[0] + 1;
1239 		del_nr++;
1240 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1241 					0, root->root_key.objectid,
1242 					ino, orig_offset);
1243 		BUG_ON(ret); /* -ENOMEM */
1244 	}
1245 	other_start = 0;
1246 	other_end = start;
1247 	if (extent_mergeable(leaf, path->slots[0] - 1,
1248 			     ino, bytenr, orig_offset,
1249 			     &other_start, &other_end)) {
1250 		if (recow) {
1251 			btrfs_release_path(path);
1252 			goto again;
1253 		}
1254 		key.offset = other_start;
1255 		del_slot = path->slots[0];
1256 		del_nr++;
1257 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1258 					0, root->root_key.objectid,
1259 					ino, orig_offset);
1260 		BUG_ON(ret); /* -ENOMEM */
1261 	}
1262 	if (del_nr == 0) {
1263 		fi = btrfs_item_ptr(leaf, path->slots[0],
1264 			   struct btrfs_file_extent_item);
1265 		btrfs_set_file_extent_type(leaf, fi,
1266 					   BTRFS_FILE_EXTENT_REG);
1267 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1268 		btrfs_mark_buffer_dirty(leaf);
1269 	} else {
1270 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1271 			   struct btrfs_file_extent_item);
1272 		btrfs_set_file_extent_type(leaf, fi,
1273 					   BTRFS_FILE_EXTENT_REG);
1274 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1275 		btrfs_set_file_extent_num_bytes(leaf, fi,
1276 						extent_end - key.offset);
1277 		btrfs_mark_buffer_dirty(leaf);
1278 
1279 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1280 		if (ret < 0) {
1281 			btrfs_abort_transaction(trans, root, ret);
1282 			goto out;
1283 		}
1284 	}
1285 out:
1286 	btrfs_free_path(path);
1287 	return 0;
1288 }
1289 
1290 /*
1291  * on error we return an unlocked page and the error value
1292  * on success we return a locked page and 0
1293  */
1294 static int prepare_uptodate_page(struct inode *inode,
1295 				 struct page *page, u64 pos,
1296 				 bool force_uptodate)
1297 {
1298 	int ret = 0;
1299 
1300 	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1301 	    !PageUptodate(page)) {
1302 		ret = btrfs_readpage(NULL, page);
1303 		if (ret)
1304 			return ret;
1305 		lock_page(page);
1306 		if (!PageUptodate(page)) {
1307 			unlock_page(page);
1308 			return -EIO;
1309 		}
1310 		if (page->mapping != inode->i_mapping) {
1311 			unlock_page(page);
1312 			return -EAGAIN;
1313 		}
1314 	}
1315 	return 0;
1316 }
1317 
1318 /*
1319  * this just gets pages into the page cache and locks them down.
1320  */
1321 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1322 				  size_t num_pages, loff_t pos,
1323 				  size_t write_bytes, bool force_uptodate)
1324 {
1325 	int i;
1326 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
1327 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1328 	int err = 0;
1329 	int faili;
1330 
1331 	for (i = 0; i < num_pages; i++) {
1332 again:
1333 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1334 					       mask | __GFP_WRITE);
1335 		if (!pages[i]) {
1336 			faili = i - 1;
1337 			err = -ENOMEM;
1338 			goto fail;
1339 		}
1340 
1341 		if (i == 0)
1342 			err = prepare_uptodate_page(inode, pages[i], pos,
1343 						    force_uptodate);
1344 		if (!err && i == num_pages - 1)
1345 			err = prepare_uptodate_page(inode, pages[i],
1346 						    pos + write_bytes, false);
1347 		if (err) {
1348 			page_cache_release(pages[i]);
1349 			if (err == -EAGAIN) {
1350 				err = 0;
1351 				goto again;
1352 			}
1353 			faili = i - 1;
1354 			goto fail;
1355 		}
1356 		wait_on_page_writeback(pages[i]);
1357 	}
1358 
1359 	return 0;
1360 fail:
1361 	while (faili >= 0) {
1362 		unlock_page(pages[faili]);
1363 		page_cache_release(pages[faili]);
1364 		faili--;
1365 	}
1366 	return err;
1367 
1368 }
1369 
1370 /*
1371  * This function locks the extent and properly waits for data=ordered extents
1372  * to finish before allowing the pages to be modified if need.
1373  *
1374  * The return value:
1375  * 1 - the extent is locked
1376  * 0 - the extent is not locked, and everything is OK
1377  * -EAGAIN - need re-prepare the pages
1378  * the other < 0 number - Something wrong happens
1379  */
1380 static noinline int
1381 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1382 				size_t num_pages, loff_t pos,
1383 				u64 *lockstart, u64 *lockend,
1384 				struct extent_state **cached_state)
1385 {
1386 	u64 start_pos;
1387 	u64 last_pos;
1388 	int i;
1389 	int ret = 0;
1390 
1391 	start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1392 	last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1393 
1394 	if (start_pos < inode->i_size) {
1395 		struct btrfs_ordered_extent *ordered;
1396 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1397 				 start_pos, last_pos, 0, cached_state);
1398 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1399 						     last_pos - start_pos + 1);
1400 		if (ordered &&
1401 		    ordered->file_offset + ordered->len > start_pos &&
1402 		    ordered->file_offset <= last_pos) {
1403 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1404 					     start_pos, last_pos,
1405 					     cached_state, GFP_NOFS);
1406 			for (i = 0; i < num_pages; i++) {
1407 				unlock_page(pages[i]);
1408 				page_cache_release(pages[i]);
1409 			}
1410 			btrfs_start_ordered_extent(inode, ordered, 1);
1411 			btrfs_put_ordered_extent(ordered);
1412 			return -EAGAIN;
1413 		}
1414 		if (ordered)
1415 			btrfs_put_ordered_extent(ordered);
1416 
1417 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1418 				  last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1419 				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1420 				  0, 0, cached_state, GFP_NOFS);
1421 		*lockstart = start_pos;
1422 		*lockend = last_pos;
1423 		ret = 1;
1424 	}
1425 
1426 	for (i = 0; i < num_pages; i++) {
1427 		if (clear_page_dirty_for_io(pages[i]))
1428 			account_page_redirty(pages[i]);
1429 		set_page_extent_mapped(pages[i]);
1430 		WARN_ON(!PageLocked(pages[i]));
1431 	}
1432 
1433 	return ret;
1434 }
1435 
1436 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1437 				    size_t *write_bytes)
1438 {
1439 	struct btrfs_root *root = BTRFS_I(inode)->root;
1440 	struct btrfs_ordered_extent *ordered;
1441 	u64 lockstart, lockend;
1442 	u64 num_bytes;
1443 	int ret;
1444 
1445 	ret = btrfs_start_write_no_snapshoting(root);
1446 	if (!ret)
1447 		return -ENOSPC;
1448 
1449 	lockstart = round_down(pos, root->sectorsize);
1450 	lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1451 
1452 	while (1) {
1453 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1454 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1455 						     lockend - lockstart + 1);
1456 		if (!ordered) {
1457 			break;
1458 		}
1459 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1460 		btrfs_start_ordered_extent(inode, ordered, 1);
1461 		btrfs_put_ordered_extent(ordered);
1462 	}
1463 
1464 	num_bytes = lockend - lockstart + 1;
1465 	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1466 	if (ret <= 0) {
1467 		ret = 0;
1468 		btrfs_end_write_no_snapshoting(root);
1469 	} else {
1470 		*write_bytes = min_t(size_t, *write_bytes ,
1471 				     num_bytes - pos + lockstart);
1472 	}
1473 
1474 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1475 
1476 	return ret;
1477 }
1478 
1479 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1480 					       struct iov_iter *i,
1481 					       loff_t pos)
1482 {
1483 	struct inode *inode = file_inode(file);
1484 	struct btrfs_root *root = BTRFS_I(inode)->root;
1485 	struct page **pages = NULL;
1486 	struct extent_state *cached_state = NULL;
1487 	u64 release_bytes = 0;
1488 	u64 lockstart;
1489 	u64 lockend;
1490 	size_t num_written = 0;
1491 	int nrptrs;
1492 	int ret = 0;
1493 	bool only_release_metadata = false;
1494 	bool force_page_uptodate = false;
1495 	bool need_unlock;
1496 
1497 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE),
1498 			PAGE_CACHE_SIZE / (sizeof(struct page *)));
1499 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1500 	nrptrs = max(nrptrs, 8);
1501 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1502 	if (!pages)
1503 		return -ENOMEM;
1504 
1505 	while (iov_iter_count(i) > 0) {
1506 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1507 		size_t write_bytes = min(iov_iter_count(i),
1508 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1509 					 offset);
1510 		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1511 						PAGE_CACHE_SIZE);
1512 		size_t reserve_bytes;
1513 		size_t dirty_pages;
1514 		size_t copied;
1515 
1516 		WARN_ON(num_pages > nrptrs);
1517 
1518 		/*
1519 		 * Fault pages before locking them in prepare_pages
1520 		 * to avoid recursive lock
1521 		 */
1522 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1523 			ret = -EFAULT;
1524 			break;
1525 		}
1526 
1527 		reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1528 
1529 		if (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1530 					     BTRFS_INODE_PREALLOC)) {
1531 			ret = check_can_nocow(inode, pos, &write_bytes);
1532 			if (ret < 0)
1533 				break;
1534 			if (ret > 0) {
1535 				/*
1536 				 * For nodata cow case, no need to reserve
1537 				 * data space.
1538 				 */
1539 				only_release_metadata = true;
1540 				/*
1541 				 * our prealloc extent may be smaller than
1542 				 * write_bytes, so scale down.
1543 				 */
1544 				num_pages = DIV_ROUND_UP(write_bytes + offset,
1545 							 PAGE_CACHE_SIZE);
1546 				reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1547 				goto reserve_metadata;
1548 			}
1549 		}
1550 		ret = btrfs_check_data_free_space(inode, pos, write_bytes);
1551 		if (ret < 0)
1552 			break;
1553 
1554 reserve_metadata:
1555 		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1556 		if (ret) {
1557 			if (!only_release_metadata)
1558 				btrfs_free_reserved_data_space(inode, pos,
1559 							       write_bytes);
1560 			else
1561 				btrfs_end_write_no_snapshoting(root);
1562 			break;
1563 		}
1564 
1565 		release_bytes = reserve_bytes;
1566 		need_unlock = false;
1567 again:
1568 		/*
1569 		 * This is going to setup the pages array with the number of
1570 		 * pages we want, so we don't really need to worry about the
1571 		 * contents of pages from loop to loop
1572 		 */
1573 		ret = prepare_pages(inode, pages, num_pages,
1574 				    pos, write_bytes,
1575 				    force_page_uptodate);
1576 		if (ret)
1577 			break;
1578 
1579 		ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1580 						      pos, &lockstart, &lockend,
1581 						      &cached_state);
1582 		if (ret < 0) {
1583 			if (ret == -EAGAIN)
1584 				goto again;
1585 			break;
1586 		} else if (ret > 0) {
1587 			need_unlock = true;
1588 			ret = 0;
1589 		}
1590 
1591 		copied = btrfs_copy_from_user(pos, num_pages,
1592 					   write_bytes, pages, i);
1593 
1594 		/*
1595 		 * if we have trouble faulting in the pages, fall
1596 		 * back to one page at a time
1597 		 */
1598 		if (copied < write_bytes)
1599 			nrptrs = 1;
1600 
1601 		if (copied == 0) {
1602 			force_page_uptodate = true;
1603 			dirty_pages = 0;
1604 		} else {
1605 			force_page_uptodate = false;
1606 			dirty_pages = DIV_ROUND_UP(copied + offset,
1607 						   PAGE_CACHE_SIZE);
1608 		}
1609 
1610 		/*
1611 		 * If we had a short copy we need to release the excess delaloc
1612 		 * bytes we reserved.  We need to increment outstanding_extents
1613 		 * because btrfs_delalloc_release_space will decrement it, but
1614 		 * we still have an outstanding extent for the chunk we actually
1615 		 * managed to copy.
1616 		 */
1617 		if (num_pages > dirty_pages) {
1618 			release_bytes = (num_pages - dirty_pages) <<
1619 				PAGE_CACHE_SHIFT;
1620 			if (copied > 0) {
1621 				spin_lock(&BTRFS_I(inode)->lock);
1622 				BTRFS_I(inode)->outstanding_extents++;
1623 				spin_unlock(&BTRFS_I(inode)->lock);
1624 			}
1625 			if (only_release_metadata) {
1626 				btrfs_delalloc_release_metadata(inode,
1627 								release_bytes);
1628 			} else {
1629 				u64 __pos;
1630 
1631 				__pos = round_down(pos, root->sectorsize) +
1632 					(dirty_pages << PAGE_CACHE_SHIFT);
1633 				btrfs_delalloc_release_space(inode, __pos,
1634 							     release_bytes);
1635 			}
1636 		}
1637 
1638 		release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1639 
1640 		if (copied > 0)
1641 			ret = btrfs_dirty_pages(root, inode, pages,
1642 						dirty_pages, pos, copied,
1643 						NULL);
1644 		if (need_unlock)
1645 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1646 					     lockstart, lockend, &cached_state,
1647 					     GFP_NOFS);
1648 		if (ret) {
1649 			btrfs_drop_pages(pages, num_pages);
1650 			break;
1651 		}
1652 
1653 		release_bytes = 0;
1654 		if (only_release_metadata)
1655 			btrfs_end_write_no_snapshoting(root);
1656 
1657 		if (only_release_metadata && copied > 0) {
1658 			lockstart = round_down(pos, root->sectorsize);
1659 			lockend = lockstart +
1660 				(dirty_pages << PAGE_CACHE_SHIFT) - 1;
1661 
1662 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1663 				       lockend, EXTENT_NORESERVE, NULL,
1664 				       NULL, GFP_NOFS);
1665 			only_release_metadata = false;
1666 		}
1667 
1668 		btrfs_drop_pages(pages, num_pages);
1669 
1670 		cond_resched();
1671 
1672 		balance_dirty_pages_ratelimited(inode->i_mapping);
1673 		if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1)
1674 			btrfs_btree_balance_dirty(root);
1675 
1676 		pos += copied;
1677 		num_written += copied;
1678 	}
1679 
1680 	kfree(pages);
1681 
1682 	if (release_bytes) {
1683 		if (only_release_metadata) {
1684 			btrfs_end_write_no_snapshoting(root);
1685 			btrfs_delalloc_release_metadata(inode, release_bytes);
1686 		} else {
1687 			btrfs_delalloc_release_space(inode, pos, release_bytes);
1688 		}
1689 	}
1690 
1691 	return num_written ? num_written : ret;
1692 }
1693 
1694 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1695 				    struct iov_iter *from,
1696 				    loff_t pos)
1697 {
1698 	struct file *file = iocb->ki_filp;
1699 	struct inode *inode = file_inode(file);
1700 	ssize_t written;
1701 	ssize_t written_buffered;
1702 	loff_t endbyte;
1703 	int err;
1704 
1705 	written = generic_file_direct_write(iocb, from, pos);
1706 
1707 	if (written < 0 || !iov_iter_count(from))
1708 		return written;
1709 
1710 	pos += written;
1711 	written_buffered = __btrfs_buffered_write(file, from, pos);
1712 	if (written_buffered < 0) {
1713 		err = written_buffered;
1714 		goto out;
1715 	}
1716 	/*
1717 	 * Ensure all data is persisted. We want the next direct IO read to be
1718 	 * able to read what was just written.
1719 	 */
1720 	endbyte = pos + written_buffered - 1;
1721 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1722 	if (err)
1723 		goto out;
1724 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1725 	if (err)
1726 		goto out;
1727 	written += written_buffered;
1728 	iocb->ki_pos = pos + written_buffered;
1729 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1730 				 endbyte >> PAGE_CACHE_SHIFT);
1731 out:
1732 	return written ? written : err;
1733 }
1734 
1735 static void update_time_for_write(struct inode *inode)
1736 {
1737 	struct timespec now;
1738 
1739 	if (IS_NOCMTIME(inode))
1740 		return;
1741 
1742 	now = current_fs_time(inode->i_sb);
1743 	if (!timespec_equal(&inode->i_mtime, &now))
1744 		inode->i_mtime = now;
1745 
1746 	if (!timespec_equal(&inode->i_ctime, &now))
1747 		inode->i_ctime = now;
1748 
1749 	if (IS_I_VERSION(inode))
1750 		inode_inc_iversion(inode);
1751 }
1752 
1753 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1754 				    struct iov_iter *from)
1755 {
1756 	struct file *file = iocb->ki_filp;
1757 	struct inode *inode = file_inode(file);
1758 	struct btrfs_root *root = BTRFS_I(inode)->root;
1759 	u64 start_pos;
1760 	u64 end_pos;
1761 	ssize_t num_written = 0;
1762 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1763 	ssize_t err;
1764 	loff_t pos;
1765 	size_t count;
1766 
1767 	mutex_lock(&inode->i_mutex);
1768 	err = generic_write_checks(iocb, from);
1769 	if (err <= 0) {
1770 		mutex_unlock(&inode->i_mutex);
1771 		return err;
1772 	}
1773 
1774 	current->backing_dev_info = inode_to_bdi(inode);
1775 	err = file_remove_privs(file);
1776 	if (err) {
1777 		mutex_unlock(&inode->i_mutex);
1778 		goto out;
1779 	}
1780 
1781 	/*
1782 	 * If BTRFS flips readonly due to some impossible error
1783 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1784 	 * although we have opened a file as writable, we have
1785 	 * to stop this write operation to ensure FS consistency.
1786 	 */
1787 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1788 		mutex_unlock(&inode->i_mutex);
1789 		err = -EROFS;
1790 		goto out;
1791 	}
1792 
1793 	/*
1794 	 * We reserve space for updating the inode when we reserve space for the
1795 	 * extent we are going to write, so we will enospc out there.  We don't
1796 	 * need to start yet another transaction to update the inode as we will
1797 	 * update the inode when we finish writing whatever data we write.
1798 	 */
1799 	update_time_for_write(inode);
1800 
1801 	pos = iocb->ki_pos;
1802 	count = iov_iter_count(from);
1803 	start_pos = round_down(pos, root->sectorsize);
1804 	if (start_pos > i_size_read(inode)) {
1805 		/* Expand hole size to cover write data, preventing empty gap */
1806 		end_pos = round_up(pos + count, root->sectorsize);
1807 		err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
1808 		if (err) {
1809 			mutex_unlock(&inode->i_mutex);
1810 			goto out;
1811 		}
1812 	}
1813 
1814 	if (sync)
1815 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1816 
1817 	if (iocb->ki_flags & IOCB_DIRECT) {
1818 		num_written = __btrfs_direct_write(iocb, from, pos);
1819 	} else {
1820 		num_written = __btrfs_buffered_write(file, from, pos);
1821 		if (num_written > 0)
1822 			iocb->ki_pos = pos + num_written;
1823 	}
1824 
1825 	mutex_unlock(&inode->i_mutex);
1826 
1827 	/*
1828 	 * We also have to set last_sub_trans to the current log transid,
1829 	 * otherwise subsequent syncs to a file that's been synced in this
1830 	 * transaction will appear to have already occured.
1831 	 */
1832 	spin_lock(&BTRFS_I(inode)->lock);
1833 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1834 	spin_unlock(&BTRFS_I(inode)->lock);
1835 	if (num_written > 0) {
1836 		err = generic_write_sync(file, pos, num_written);
1837 		if (err < 0)
1838 			num_written = err;
1839 	}
1840 
1841 	if (sync)
1842 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1843 out:
1844 	current->backing_dev_info = NULL;
1845 	return num_written ? num_written : err;
1846 }
1847 
1848 int btrfs_release_file(struct inode *inode, struct file *filp)
1849 {
1850 	if (filp->private_data)
1851 		btrfs_ioctl_trans_end(filp);
1852 	/*
1853 	 * ordered_data_close is set by settattr when we are about to truncate
1854 	 * a file from a non-zero size to a zero size.  This tries to
1855 	 * flush down new bytes that may have been written if the
1856 	 * application were using truncate to replace a file in place.
1857 	 */
1858 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1859 			       &BTRFS_I(inode)->runtime_flags))
1860 			filemap_flush(inode->i_mapping);
1861 	return 0;
1862 }
1863 
1864 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1865 {
1866 	int ret;
1867 
1868 	atomic_inc(&BTRFS_I(inode)->sync_writers);
1869 	ret = btrfs_fdatawrite_range(inode, start, end);
1870 	atomic_dec(&BTRFS_I(inode)->sync_writers);
1871 
1872 	return ret;
1873 }
1874 
1875 /*
1876  * fsync call for both files and directories.  This logs the inode into
1877  * the tree log instead of forcing full commits whenever possible.
1878  *
1879  * It needs to call filemap_fdatawait so that all ordered extent updates are
1880  * in the metadata btree are up to date for copying to the log.
1881  *
1882  * It drops the inode mutex before doing the tree log commit.  This is an
1883  * important optimization for directories because holding the mutex prevents
1884  * new operations on the dir while we write to disk.
1885  */
1886 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1887 {
1888 	struct dentry *dentry = file->f_path.dentry;
1889 	struct inode *inode = d_inode(dentry);
1890 	struct btrfs_root *root = BTRFS_I(inode)->root;
1891 	struct btrfs_trans_handle *trans;
1892 	struct btrfs_log_ctx ctx;
1893 	int ret = 0;
1894 	bool full_sync = 0;
1895 	u64 len;
1896 
1897 	/*
1898 	 * The range length can be represented by u64, we have to do the typecasts
1899 	 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1900 	 */
1901 	len = (u64)end - (u64)start + 1;
1902 	trace_btrfs_sync_file(file, datasync);
1903 
1904 	/*
1905 	 * We write the dirty pages in the range and wait until they complete
1906 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1907 	 * multi-task, and make the performance up.  See
1908 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1909 	 */
1910 	ret = start_ordered_ops(inode, start, end);
1911 	if (ret)
1912 		return ret;
1913 
1914 	mutex_lock(&inode->i_mutex);
1915 	atomic_inc(&root->log_batch);
1916 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1917 			     &BTRFS_I(inode)->runtime_flags);
1918 	/*
1919 	 * We might have have had more pages made dirty after calling
1920 	 * start_ordered_ops and before acquiring the inode's i_mutex.
1921 	 */
1922 	if (full_sync) {
1923 		/*
1924 		 * For a full sync, we need to make sure any ordered operations
1925 		 * start and finish before we start logging the inode, so that
1926 		 * all extents are persisted and the respective file extent
1927 		 * items are in the fs/subvol btree.
1928 		 */
1929 		ret = btrfs_wait_ordered_range(inode, start, len);
1930 	} else {
1931 		/*
1932 		 * Start any new ordered operations before starting to log the
1933 		 * inode. We will wait for them to finish in btrfs_sync_log().
1934 		 *
1935 		 * Right before acquiring the inode's mutex, we might have new
1936 		 * writes dirtying pages, which won't immediately start the
1937 		 * respective ordered operations - that is done through the
1938 		 * fill_delalloc callbacks invoked from the writepage and
1939 		 * writepages address space operations. So make sure we start
1940 		 * all ordered operations before starting to log our inode. Not
1941 		 * doing this means that while logging the inode, writeback
1942 		 * could start and invoke writepage/writepages, which would call
1943 		 * the fill_delalloc callbacks (cow_file_range,
1944 		 * submit_compressed_extents). These callbacks add first an
1945 		 * extent map to the modified list of extents and then create
1946 		 * the respective ordered operation, which means in
1947 		 * tree-log.c:btrfs_log_inode() we might capture all existing
1948 		 * ordered operations (with btrfs_get_logged_extents()) before
1949 		 * the fill_delalloc callback adds its ordered operation, and by
1950 		 * the time we visit the modified list of extent maps (with
1951 		 * btrfs_log_changed_extents()), we see and process the extent
1952 		 * map they created. We then use the extent map to construct a
1953 		 * file extent item for logging without waiting for the
1954 		 * respective ordered operation to finish - this file extent
1955 		 * item points to a disk location that might not have yet been
1956 		 * written to, containing random data - so after a crash a log
1957 		 * replay will make our inode have file extent items that point
1958 		 * to disk locations containing invalid data, as we returned
1959 		 * success to userspace without waiting for the respective
1960 		 * ordered operation to finish, because it wasn't captured by
1961 		 * btrfs_get_logged_extents().
1962 		 */
1963 		ret = start_ordered_ops(inode, start, end);
1964 	}
1965 	if (ret) {
1966 		mutex_unlock(&inode->i_mutex);
1967 		goto out;
1968 	}
1969 	atomic_inc(&root->log_batch);
1970 
1971 	/*
1972 	 * If the last transaction that changed this file was before the current
1973 	 * transaction and we have the full sync flag set in our inode, we can
1974 	 * bail out now without any syncing.
1975 	 *
1976 	 * Note that we can't bail out if the full sync flag isn't set. This is
1977 	 * because when the full sync flag is set we start all ordered extents
1978 	 * and wait for them to fully complete - when they complete they update
1979 	 * the inode's last_trans field through:
1980 	 *
1981 	 *     btrfs_finish_ordered_io() ->
1982 	 *         btrfs_update_inode_fallback() ->
1983 	 *             btrfs_update_inode() ->
1984 	 *                 btrfs_set_inode_last_trans()
1985 	 *
1986 	 * So we are sure that last_trans is up to date and can do this check to
1987 	 * bail out safely. For the fast path, when the full sync flag is not
1988 	 * set in our inode, we can not do it because we start only our ordered
1989 	 * extents and don't wait for them to complete (that is when
1990 	 * btrfs_finish_ordered_io runs), so here at this point their last_trans
1991 	 * value might be less than or equals to fs_info->last_trans_committed,
1992 	 * and setting a speculative last_trans for an inode when a buffered
1993 	 * write is made (such as fs_info->generation + 1 for example) would not
1994 	 * be reliable since after setting the value and before fsync is called
1995 	 * any number of transactions can start and commit (transaction kthread
1996 	 * commits the current transaction periodically), and a transaction
1997 	 * commit does not start nor waits for ordered extents to complete.
1998 	 */
1999 	smp_mb();
2000 	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
2001 	    (BTRFS_I(inode)->last_trans <=
2002 	     root->fs_info->last_trans_committed &&
2003 	     (full_sync ||
2004 	      !btrfs_have_ordered_extents_in_range(inode, start, len)))) {
2005 		/*
2006 		 * We'v had everything committed since the last time we were
2007 		 * modified so clear this flag in case it was set for whatever
2008 		 * reason, it's no longer relevant.
2009 		 */
2010 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2011 			  &BTRFS_I(inode)->runtime_flags);
2012 		mutex_unlock(&inode->i_mutex);
2013 		goto out;
2014 	}
2015 
2016 	/*
2017 	 * ok we haven't committed the transaction yet, lets do a commit
2018 	 */
2019 	if (file->private_data)
2020 		btrfs_ioctl_trans_end(file);
2021 
2022 	/*
2023 	 * We use start here because we will need to wait on the IO to complete
2024 	 * in btrfs_sync_log, which could require joining a transaction (for
2025 	 * example checking cross references in the nocow path).  If we use join
2026 	 * here we could get into a situation where we're waiting on IO to
2027 	 * happen that is blocked on a transaction trying to commit.  With start
2028 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2029 	 * before we start blocking join'ers.  This comment is to keep somebody
2030 	 * from thinking they are super smart and changing this to
2031 	 * btrfs_join_transaction *cough*Josef*cough*.
2032 	 */
2033 	trans = btrfs_start_transaction(root, 0);
2034 	if (IS_ERR(trans)) {
2035 		ret = PTR_ERR(trans);
2036 		mutex_unlock(&inode->i_mutex);
2037 		goto out;
2038 	}
2039 	trans->sync = true;
2040 
2041 	btrfs_init_log_ctx(&ctx);
2042 
2043 	ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2044 	if (ret < 0) {
2045 		/* Fallthrough and commit/free transaction. */
2046 		ret = 1;
2047 	}
2048 
2049 	/* we've logged all the items and now have a consistent
2050 	 * version of the file in the log.  It is possible that
2051 	 * someone will come in and modify the file, but that's
2052 	 * fine because the log is consistent on disk, and we
2053 	 * have references to all of the file's extents
2054 	 *
2055 	 * It is possible that someone will come in and log the
2056 	 * file again, but that will end up using the synchronization
2057 	 * inside btrfs_sync_log to keep things safe.
2058 	 */
2059 	mutex_unlock(&inode->i_mutex);
2060 
2061 	/*
2062 	 * If any of the ordered extents had an error, just return it to user
2063 	 * space, so that the application knows some writes didn't succeed and
2064 	 * can take proper action (retry for e.g.). Blindly committing the
2065 	 * transaction in this case, would fool userspace that everything was
2066 	 * successful. And we also want to make sure our log doesn't contain
2067 	 * file extent items pointing to extents that weren't fully written to -
2068 	 * just like in the non fast fsync path, where we check for the ordered
2069 	 * operation's error flag before writing to the log tree and return -EIO
2070 	 * if any of them had this flag set (btrfs_wait_ordered_range) -
2071 	 * therefore we need to check for errors in the ordered operations,
2072 	 * which are indicated by ctx.io_err.
2073 	 */
2074 	if (ctx.io_err) {
2075 		btrfs_end_transaction(trans, root);
2076 		ret = ctx.io_err;
2077 		goto out;
2078 	}
2079 
2080 	if (ret != BTRFS_NO_LOG_SYNC) {
2081 		if (!ret) {
2082 			ret = btrfs_sync_log(trans, root, &ctx);
2083 			if (!ret) {
2084 				ret = btrfs_end_transaction(trans, root);
2085 				goto out;
2086 			}
2087 		}
2088 		if (!full_sync) {
2089 			ret = btrfs_wait_ordered_range(inode, start, len);
2090 			if (ret) {
2091 				btrfs_end_transaction(trans, root);
2092 				goto out;
2093 			}
2094 		}
2095 		ret = btrfs_commit_transaction(trans, root);
2096 	} else {
2097 		ret = btrfs_end_transaction(trans, root);
2098 	}
2099 out:
2100 	return ret > 0 ? -EIO : ret;
2101 }
2102 
2103 static const struct vm_operations_struct btrfs_file_vm_ops = {
2104 	.fault		= filemap_fault,
2105 	.map_pages	= filemap_map_pages,
2106 	.page_mkwrite	= btrfs_page_mkwrite,
2107 };
2108 
2109 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2110 {
2111 	struct address_space *mapping = filp->f_mapping;
2112 
2113 	if (!mapping->a_ops->readpage)
2114 		return -ENOEXEC;
2115 
2116 	file_accessed(filp);
2117 	vma->vm_ops = &btrfs_file_vm_ops;
2118 
2119 	return 0;
2120 }
2121 
2122 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2123 			  int slot, u64 start, u64 end)
2124 {
2125 	struct btrfs_file_extent_item *fi;
2126 	struct btrfs_key key;
2127 
2128 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2129 		return 0;
2130 
2131 	btrfs_item_key_to_cpu(leaf, &key, slot);
2132 	if (key.objectid != btrfs_ino(inode) ||
2133 	    key.type != BTRFS_EXTENT_DATA_KEY)
2134 		return 0;
2135 
2136 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2137 
2138 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2139 		return 0;
2140 
2141 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2142 		return 0;
2143 
2144 	if (key.offset == end)
2145 		return 1;
2146 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2147 		return 1;
2148 	return 0;
2149 }
2150 
2151 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2152 		      struct btrfs_path *path, u64 offset, u64 end)
2153 {
2154 	struct btrfs_root *root = BTRFS_I(inode)->root;
2155 	struct extent_buffer *leaf;
2156 	struct btrfs_file_extent_item *fi;
2157 	struct extent_map *hole_em;
2158 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2159 	struct btrfs_key key;
2160 	int ret;
2161 
2162 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2163 		goto out;
2164 
2165 	key.objectid = btrfs_ino(inode);
2166 	key.type = BTRFS_EXTENT_DATA_KEY;
2167 	key.offset = offset;
2168 
2169 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2170 	if (ret < 0)
2171 		return ret;
2172 	BUG_ON(!ret);
2173 
2174 	leaf = path->nodes[0];
2175 	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2176 		u64 num_bytes;
2177 
2178 		path->slots[0]--;
2179 		fi = btrfs_item_ptr(leaf, path->slots[0],
2180 				    struct btrfs_file_extent_item);
2181 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2182 			end - offset;
2183 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2184 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2185 		btrfs_set_file_extent_offset(leaf, fi, 0);
2186 		btrfs_mark_buffer_dirty(leaf);
2187 		goto out;
2188 	}
2189 
2190 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2191 		u64 num_bytes;
2192 
2193 		key.offset = offset;
2194 		btrfs_set_item_key_safe(root->fs_info, path, &key);
2195 		fi = btrfs_item_ptr(leaf, path->slots[0],
2196 				    struct btrfs_file_extent_item);
2197 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2198 			offset;
2199 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2200 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2201 		btrfs_set_file_extent_offset(leaf, fi, 0);
2202 		btrfs_mark_buffer_dirty(leaf);
2203 		goto out;
2204 	}
2205 	btrfs_release_path(path);
2206 
2207 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2208 				       0, 0, end - offset, 0, end - offset,
2209 				       0, 0, 0);
2210 	if (ret)
2211 		return ret;
2212 
2213 out:
2214 	btrfs_release_path(path);
2215 
2216 	hole_em = alloc_extent_map();
2217 	if (!hole_em) {
2218 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2219 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2220 			&BTRFS_I(inode)->runtime_flags);
2221 	} else {
2222 		hole_em->start = offset;
2223 		hole_em->len = end - offset;
2224 		hole_em->ram_bytes = hole_em->len;
2225 		hole_em->orig_start = offset;
2226 
2227 		hole_em->block_start = EXTENT_MAP_HOLE;
2228 		hole_em->block_len = 0;
2229 		hole_em->orig_block_len = 0;
2230 		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2231 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2232 		hole_em->generation = trans->transid;
2233 
2234 		do {
2235 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2236 			write_lock(&em_tree->lock);
2237 			ret = add_extent_mapping(em_tree, hole_em, 1);
2238 			write_unlock(&em_tree->lock);
2239 		} while (ret == -EEXIST);
2240 		free_extent_map(hole_em);
2241 		if (ret)
2242 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2243 				&BTRFS_I(inode)->runtime_flags);
2244 	}
2245 
2246 	return 0;
2247 }
2248 
2249 /*
2250  * Find a hole extent on given inode and change start/len to the end of hole
2251  * extent.(hole/vacuum extent whose em->start <= start &&
2252  *	   em->start + em->len > start)
2253  * When a hole extent is found, return 1 and modify start/len.
2254  */
2255 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2256 {
2257 	struct extent_map *em;
2258 	int ret = 0;
2259 
2260 	em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2261 	if (IS_ERR_OR_NULL(em)) {
2262 		if (!em)
2263 			ret = -ENOMEM;
2264 		else
2265 			ret = PTR_ERR(em);
2266 		return ret;
2267 	}
2268 
2269 	/* Hole or vacuum extent(only exists in no-hole mode) */
2270 	if (em->block_start == EXTENT_MAP_HOLE) {
2271 		ret = 1;
2272 		*len = em->start + em->len > *start + *len ?
2273 		       0 : *start + *len - em->start - em->len;
2274 		*start = em->start + em->len;
2275 	}
2276 	free_extent_map(em);
2277 	return ret;
2278 }
2279 
2280 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2281 {
2282 	struct btrfs_root *root = BTRFS_I(inode)->root;
2283 	struct extent_state *cached_state = NULL;
2284 	struct btrfs_path *path;
2285 	struct btrfs_block_rsv *rsv;
2286 	struct btrfs_trans_handle *trans;
2287 	u64 lockstart;
2288 	u64 lockend;
2289 	u64 tail_start;
2290 	u64 tail_len;
2291 	u64 orig_start = offset;
2292 	u64 cur_offset;
2293 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2294 	u64 drop_end;
2295 	int ret = 0;
2296 	int err = 0;
2297 	unsigned int rsv_count;
2298 	bool same_page;
2299 	bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2300 	u64 ino_size;
2301 	bool truncated_page = false;
2302 	bool updated_inode = false;
2303 
2304 	ret = btrfs_wait_ordered_range(inode, offset, len);
2305 	if (ret)
2306 		return ret;
2307 
2308 	mutex_lock(&inode->i_mutex);
2309 	ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2310 	ret = find_first_non_hole(inode, &offset, &len);
2311 	if (ret < 0)
2312 		goto out_only_mutex;
2313 	if (ret && !len) {
2314 		/* Already in a large hole */
2315 		ret = 0;
2316 		goto out_only_mutex;
2317 	}
2318 
2319 	lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2320 	lockend = round_down(offset + len,
2321 			     BTRFS_I(inode)->root->sectorsize) - 1;
2322 	same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2323 		    ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2324 
2325 	/*
2326 	 * We needn't truncate any page which is beyond the end of the file
2327 	 * because we are sure there is no data there.
2328 	 */
2329 	/*
2330 	 * Only do this if we are in the same page and we aren't doing the
2331 	 * entire page.
2332 	 */
2333 	if (same_page && len < PAGE_CACHE_SIZE) {
2334 		if (offset < ino_size) {
2335 			truncated_page = true;
2336 			ret = btrfs_truncate_page(inode, offset, len, 0);
2337 		} else {
2338 			ret = 0;
2339 		}
2340 		goto out_only_mutex;
2341 	}
2342 
2343 	/* zero back part of the first page */
2344 	if (offset < ino_size) {
2345 		truncated_page = true;
2346 		ret = btrfs_truncate_page(inode, offset, 0, 0);
2347 		if (ret) {
2348 			mutex_unlock(&inode->i_mutex);
2349 			return ret;
2350 		}
2351 	}
2352 
2353 	/* Check the aligned pages after the first unaligned page,
2354 	 * if offset != orig_start, which means the first unaligned page
2355 	 * including serveral following pages are already in holes,
2356 	 * the extra check can be skipped */
2357 	if (offset == orig_start) {
2358 		/* after truncate page, check hole again */
2359 		len = offset + len - lockstart;
2360 		offset = lockstart;
2361 		ret = find_first_non_hole(inode, &offset, &len);
2362 		if (ret < 0)
2363 			goto out_only_mutex;
2364 		if (ret && !len) {
2365 			ret = 0;
2366 			goto out_only_mutex;
2367 		}
2368 		lockstart = offset;
2369 	}
2370 
2371 	/* Check the tail unaligned part is in a hole */
2372 	tail_start = lockend + 1;
2373 	tail_len = offset + len - tail_start;
2374 	if (tail_len) {
2375 		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2376 		if (unlikely(ret < 0))
2377 			goto out_only_mutex;
2378 		if (!ret) {
2379 			/* zero the front end of the last page */
2380 			if (tail_start + tail_len < ino_size) {
2381 				truncated_page = true;
2382 				ret = btrfs_truncate_page(inode,
2383 						tail_start + tail_len, 0, 1);
2384 				if (ret)
2385 					goto out_only_mutex;
2386 			}
2387 		}
2388 	}
2389 
2390 	if (lockend < lockstart) {
2391 		ret = 0;
2392 		goto out_only_mutex;
2393 	}
2394 
2395 	while (1) {
2396 		struct btrfs_ordered_extent *ordered;
2397 
2398 		truncate_pagecache_range(inode, lockstart, lockend);
2399 
2400 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2401 				 0, &cached_state);
2402 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2403 
2404 		/*
2405 		 * We need to make sure we have no ordered extents in this range
2406 		 * and nobody raced in and read a page in this range, if we did
2407 		 * we need to try again.
2408 		 */
2409 		if ((!ordered ||
2410 		    (ordered->file_offset + ordered->len <= lockstart ||
2411 		     ordered->file_offset > lockend)) &&
2412 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2413 			if (ordered)
2414 				btrfs_put_ordered_extent(ordered);
2415 			break;
2416 		}
2417 		if (ordered)
2418 			btrfs_put_ordered_extent(ordered);
2419 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2420 				     lockend, &cached_state, GFP_NOFS);
2421 		ret = btrfs_wait_ordered_range(inode, lockstart,
2422 					       lockend - lockstart + 1);
2423 		if (ret) {
2424 			mutex_unlock(&inode->i_mutex);
2425 			return ret;
2426 		}
2427 	}
2428 
2429 	path = btrfs_alloc_path();
2430 	if (!path) {
2431 		ret = -ENOMEM;
2432 		goto out;
2433 	}
2434 
2435 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2436 	if (!rsv) {
2437 		ret = -ENOMEM;
2438 		goto out_free;
2439 	}
2440 	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2441 	rsv->failfast = 1;
2442 
2443 	/*
2444 	 * 1 - update the inode
2445 	 * 1 - removing the extents in the range
2446 	 * 1 - adding the hole extent if no_holes isn't set
2447 	 */
2448 	rsv_count = no_holes ? 2 : 3;
2449 	trans = btrfs_start_transaction(root, rsv_count);
2450 	if (IS_ERR(trans)) {
2451 		err = PTR_ERR(trans);
2452 		goto out_free;
2453 	}
2454 
2455 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2456 				      min_size);
2457 	BUG_ON(ret);
2458 	trans->block_rsv = rsv;
2459 
2460 	cur_offset = lockstart;
2461 	len = lockend - cur_offset;
2462 	while (cur_offset < lockend) {
2463 		ret = __btrfs_drop_extents(trans, root, inode, path,
2464 					   cur_offset, lockend + 1,
2465 					   &drop_end, 1, 0, 0, NULL);
2466 		if (ret != -ENOSPC)
2467 			break;
2468 
2469 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2470 
2471 		if (cur_offset < ino_size) {
2472 			ret = fill_holes(trans, inode, path, cur_offset,
2473 					 drop_end);
2474 			if (ret) {
2475 				err = ret;
2476 				break;
2477 			}
2478 		}
2479 
2480 		cur_offset = drop_end;
2481 
2482 		ret = btrfs_update_inode(trans, root, inode);
2483 		if (ret) {
2484 			err = ret;
2485 			break;
2486 		}
2487 
2488 		btrfs_end_transaction(trans, root);
2489 		btrfs_btree_balance_dirty(root);
2490 
2491 		trans = btrfs_start_transaction(root, rsv_count);
2492 		if (IS_ERR(trans)) {
2493 			ret = PTR_ERR(trans);
2494 			trans = NULL;
2495 			break;
2496 		}
2497 
2498 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2499 					      rsv, min_size);
2500 		BUG_ON(ret);	/* shouldn't happen */
2501 		trans->block_rsv = rsv;
2502 
2503 		ret = find_first_non_hole(inode, &cur_offset, &len);
2504 		if (unlikely(ret < 0))
2505 			break;
2506 		if (ret && !len) {
2507 			ret = 0;
2508 			break;
2509 		}
2510 	}
2511 
2512 	if (ret) {
2513 		err = ret;
2514 		goto out_trans;
2515 	}
2516 
2517 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2518 	/*
2519 	 * If we are using the NO_HOLES feature we might have had already an
2520 	 * hole that overlaps a part of the region [lockstart, lockend] and
2521 	 * ends at (or beyond) lockend. Since we have no file extent items to
2522 	 * represent holes, drop_end can be less than lockend and so we must
2523 	 * make sure we have an extent map representing the existing hole (the
2524 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2525 	 * map representing the existing hole), otherwise the fast fsync path
2526 	 * will not record the existence of the hole region
2527 	 * [existing_hole_start, lockend].
2528 	 */
2529 	if (drop_end <= lockend)
2530 		drop_end = lockend + 1;
2531 	/*
2532 	 * Don't insert file hole extent item if it's for a range beyond eof
2533 	 * (because it's useless) or if it represents a 0 bytes range (when
2534 	 * cur_offset == drop_end).
2535 	 */
2536 	if (cur_offset < ino_size && cur_offset < drop_end) {
2537 		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2538 		if (ret) {
2539 			err = ret;
2540 			goto out_trans;
2541 		}
2542 	}
2543 
2544 out_trans:
2545 	if (!trans)
2546 		goto out_free;
2547 
2548 	inode_inc_iversion(inode);
2549 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2550 
2551 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2552 	ret = btrfs_update_inode(trans, root, inode);
2553 	updated_inode = true;
2554 	btrfs_end_transaction(trans, root);
2555 	btrfs_btree_balance_dirty(root);
2556 out_free:
2557 	btrfs_free_path(path);
2558 	btrfs_free_block_rsv(root, rsv);
2559 out:
2560 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2561 			     &cached_state, GFP_NOFS);
2562 out_only_mutex:
2563 	if (!updated_inode && truncated_page && !ret && !err) {
2564 		/*
2565 		 * If we only end up zeroing part of a page, we still need to
2566 		 * update the inode item, so that all the time fields are
2567 		 * updated as well as the necessary btrfs inode in memory fields
2568 		 * for detecting, at fsync time, if the inode isn't yet in the
2569 		 * log tree or it's there but not up to date.
2570 		 */
2571 		trans = btrfs_start_transaction(root, 1);
2572 		if (IS_ERR(trans)) {
2573 			err = PTR_ERR(trans);
2574 		} else {
2575 			err = btrfs_update_inode(trans, root, inode);
2576 			ret = btrfs_end_transaction(trans, root);
2577 		}
2578 	}
2579 	mutex_unlock(&inode->i_mutex);
2580 	if (ret && !err)
2581 		err = ret;
2582 	return err;
2583 }
2584 
2585 /* Helper structure to record which range is already reserved */
2586 struct falloc_range {
2587 	struct list_head list;
2588 	u64 start;
2589 	u64 len;
2590 };
2591 
2592 /*
2593  * Helper function to add falloc range
2594  *
2595  * Caller should have locked the larger range of extent containing
2596  * [start, len)
2597  */
2598 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2599 {
2600 	struct falloc_range *prev = NULL;
2601 	struct falloc_range *range = NULL;
2602 
2603 	if (list_empty(head))
2604 		goto insert;
2605 
2606 	/*
2607 	 * As fallocate iterate by bytenr order, we only need to check
2608 	 * the last range.
2609 	 */
2610 	prev = list_entry(head->prev, struct falloc_range, list);
2611 	if (prev->start + prev->len == start) {
2612 		prev->len += len;
2613 		return 0;
2614 	}
2615 insert:
2616 	range = kmalloc(sizeof(*range), GFP_NOFS);
2617 	if (!range)
2618 		return -ENOMEM;
2619 	range->start = start;
2620 	range->len = len;
2621 	list_add_tail(&range->list, head);
2622 	return 0;
2623 }
2624 
2625 static long btrfs_fallocate(struct file *file, int mode,
2626 			    loff_t offset, loff_t len)
2627 {
2628 	struct inode *inode = file_inode(file);
2629 	struct extent_state *cached_state = NULL;
2630 	struct falloc_range *range;
2631 	struct falloc_range *tmp;
2632 	struct list_head reserve_list;
2633 	u64 cur_offset;
2634 	u64 last_byte;
2635 	u64 alloc_start;
2636 	u64 alloc_end;
2637 	u64 alloc_hint = 0;
2638 	u64 locked_end;
2639 	u64 actual_end = 0;
2640 	struct extent_map *em;
2641 	int blocksize = BTRFS_I(inode)->root->sectorsize;
2642 	int ret;
2643 
2644 	alloc_start = round_down(offset, blocksize);
2645 	alloc_end = round_up(offset + len, blocksize);
2646 
2647 	/* Make sure we aren't being give some crap mode */
2648 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2649 		return -EOPNOTSUPP;
2650 
2651 	if (mode & FALLOC_FL_PUNCH_HOLE)
2652 		return btrfs_punch_hole(inode, offset, len);
2653 
2654 	/*
2655 	 * Only trigger disk allocation, don't trigger qgroup reserve
2656 	 *
2657 	 * For qgroup space, it will be checked later.
2658 	 */
2659 	ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2660 	if (ret < 0)
2661 		return ret;
2662 
2663 	mutex_lock(&inode->i_mutex);
2664 	ret = inode_newsize_ok(inode, alloc_end);
2665 	if (ret)
2666 		goto out;
2667 
2668 	/*
2669 	 * TODO: Move these two operations after we have checked
2670 	 * accurate reserved space, or fallocate can still fail but
2671 	 * with page truncated or size expanded.
2672 	 *
2673 	 * But that's a minor problem and won't do much harm BTW.
2674 	 */
2675 	if (alloc_start > inode->i_size) {
2676 		ret = btrfs_cont_expand(inode, i_size_read(inode),
2677 					alloc_start);
2678 		if (ret)
2679 			goto out;
2680 	} else if (offset + len > inode->i_size) {
2681 		/*
2682 		 * If we are fallocating from the end of the file onward we
2683 		 * need to zero out the end of the page if i_size lands in the
2684 		 * middle of a page.
2685 		 */
2686 		ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2687 		if (ret)
2688 			goto out;
2689 	}
2690 
2691 	/*
2692 	 * wait for ordered IO before we have any locks.  We'll loop again
2693 	 * below with the locks held.
2694 	 */
2695 	ret = btrfs_wait_ordered_range(inode, alloc_start,
2696 				       alloc_end - alloc_start);
2697 	if (ret)
2698 		goto out;
2699 
2700 	locked_end = alloc_end - 1;
2701 	while (1) {
2702 		struct btrfs_ordered_extent *ordered;
2703 
2704 		/* the extent lock is ordered inside the running
2705 		 * transaction
2706 		 */
2707 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2708 				 locked_end, 0, &cached_state);
2709 		ordered = btrfs_lookup_first_ordered_extent(inode,
2710 							    alloc_end - 1);
2711 		if (ordered &&
2712 		    ordered->file_offset + ordered->len > alloc_start &&
2713 		    ordered->file_offset < alloc_end) {
2714 			btrfs_put_ordered_extent(ordered);
2715 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2716 					     alloc_start, locked_end,
2717 					     &cached_state, GFP_NOFS);
2718 			/*
2719 			 * we can't wait on the range with the transaction
2720 			 * running or with the extent lock held
2721 			 */
2722 			ret = btrfs_wait_ordered_range(inode, alloc_start,
2723 						       alloc_end - alloc_start);
2724 			if (ret)
2725 				goto out;
2726 		} else {
2727 			if (ordered)
2728 				btrfs_put_ordered_extent(ordered);
2729 			break;
2730 		}
2731 	}
2732 
2733 	/* First, check if we exceed the qgroup limit */
2734 	INIT_LIST_HEAD(&reserve_list);
2735 	cur_offset = alloc_start;
2736 	while (1) {
2737 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2738 				      alloc_end - cur_offset, 0);
2739 		if (IS_ERR_OR_NULL(em)) {
2740 			if (!em)
2741 				ret = -ENOMEM;
2742 			else
2743 				ret = PTR_ERR(em);
2744 			break;
2745 		}
2746 		last_byte = min(extent_map_end(em), alloc_end);
2747 		actual_end = min_t(u64, extent_map_end(em), offset + len);
2748 		last_byte = ALIGN(last_byte, blocksize);
2749 		if (em->block_start == EXTENT_MAP_HOLE ||
2750 		    (cur_offset >= inode->i_size &&
2751 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2752 			ret = add_falloc_range(&reserve_list, cur_offset,
2753 					       last_byte - cur_offset);
2754 			if (ret < 0) {
2755 				free_extent_map(em);
2756 				break;
2757 			}
2758 			ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2759 					last_byte - cur_offset);
2760 			if (ret < 0)
2761 				break;
2762 		}
2763 		free_extent_map(em);
2764 		cur_offset = last_byte;
2765 		if (cur_offset >= alloc_end)
2766 			break;
2767 	}
2768 
2769 	/*
2770 	 * If ret is still 0, means we're OK to fallocate.
2771 	 * Or just cleanup the list and exit.
2772 	 */
2773 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2774 		if (!ret)
2775 			ret = btrfs_prealloc_file_range(inode, mode,
2776 					range->start,
2777 					range->len, 1 << inode->i_blkbits,
2778 					offset + len, &alloc_hint);
2779 		list_del(&range->list);
2780 		kfree(range);
2781 	}
2782 	if (ret < 0)
2783 		goto out_unlock;
2784 
2785 	if (actual_end > inode->i_size &&
2786 	    !(mode & FALLOC_FL_KEEP_SIZE)) {
2787 		struct btrfs_trans_handle *trans;
2788 		struct btrfs_root *root = BTRFS_I(inode)->root;
2789 
2790 		/*
2791 		 * We didn't need to allocate any more space, but we
2792 		 * still extended the size of the file so we need to
2793 		 * update i_size and the inode item.
2794 		 */
2795 		trans = btrfs_start_transaction(root, 1);
2796 		if (IS_ERR(trans)) {
2797 			ret = PTR_ERR(trans);
2798 		} else {
2799 			inode->i_ctime = CURRENT_TIME;
2800 			i_size_write(inode, actual_end);
2801 			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2802 			ret = btrfs_update_inode(trans, root, inode);
2803 			if (ret)
2804 				btrfs_end_transaction(trans, root);
2805 			else
2806 				ret = btrfs_end_transaction(trans, root);
2807 		}
2808 	}
2809 out_unlock:
2810 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2811 			     &cached_state, GFP_NOFS);
2812 out:
2813 	/*
2814 	 * As we waited the extent range, the data_rsv_map must be empty
2815 	 * in the range, as written data range will be released from it.
2816 	 * And for prealloacted extent, it will also be released when
2817 	 * its metadata is written.
2818 	 * So this is completely used as cleanup.
2819 	 */
2820 	btrfs_qgroup_free_data(inode, alloc_start, alloc_end - alloc_start);
2821 	mutex_unlock(&inode->i_mutex);
2822 	/* Let go of our reservation. */
2823 	btrfs_free_reserved_data_space(inode, alloc_start,
2824 				       alloc_end - alloc_start);
2825 	return ret;
2826 }
2827 
2828 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2829 {
2830 	struct btrfs_root *root = BTRFS_I(inode)->root;
2831 	struct extent_map *em = NULL;
2832 	struct extent_state *cached_state = NULL;
2833 	u64 lockstart;
2834 	u64 lockend;
2835 	u64 start;
2836 	u64 len;
2837 	int ret = 0;
2838 
2839 	if (inode->i_size == 0)
2840 		return -ENXIO;
2841 
2842 	/*
2843 	 * *offset can be negative, in this case we start finding DATA/HOLE from
2844 	 * the very start of the file.
2845 	 */
2846 	start = max_t(loff_t, 0, *offset);
2847 
2848 	lockstart = round_down(start, root->sectorsize);
2849 	lockend = round_up(i_size_read(inode), root->sectorsize);
2850 	if (lockend <= lockstart)
2851 		lockend = lockstart + root->sectorsize;
2852 	lockend--;
2853 	len = lockend - lockstart + 1;
2854 
2855 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2856 			 &cached_state);
2857 
2858 	while (start < inode->i_size) {
2859 		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2860 		if (IS_ERR(em)) {
2861 			ret = PTR_ERR(em);
2862 			em = NULL;
2863 			break;
2864 		}
2865 
2866 		if (whence == SEEK_HOLE &&
2867 		    (em->block_start == EXTENT_MAP_HOLE ||
2868 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2869 			break;
2870 		else if (whence == SEEK_DATA &&
2871 			   (em->block_start != EXTENT_MAP_HOLE &&
2872 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2873 			break;
2874 
2875 		start = em->start + em->len;
2876 		free_extent_map(em);
2877 		em = NULL;
2878 		cond_resched();
2879 	}
2880 	free_extent_map(em);
2881 	if (!ret) {
2882 		if (whence == SEEK_DATA && start >= inode->i_size)
2883 			ret = -ENXIO;
2884 		else
2885 			*offset = min_t(loff_t, start, inode->i_size);
2886 	}
2887 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2888 			     &cached_state, GFP_NOFS);
2889 	return ret;
2890 }
2891 
2892 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2893 {
2894 	struct inode *inode = file->f_mapping->host;
2895 	int ret;
2896 
2897 	mutex_lock(&inode->i_mutex);
2898 	switch (whence) {
2899 	case SEEK_END:
2900 	case SEEK_CUR:
2901 		offset = generic_file_llseek(file, offset, whence);
2902 		goto out;
2903 	case SEEK_DATA:
2904 	case SEEK_HOLE:
2905 		if (offset >= i_size_read(inode)) {
2906 			mutex_unlock(&inode->i_mutex);
2907 			return -ENXIO;
2908 		}
2909 
2910 		ret = find_desired_extent(inode, &offset, whence);
2911 		if (ret) {
2912 			mutex_unlock(&inode->i_mutex);
2913 			return ret;
2914 		}
2915 	}
2916 
2917 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2918 out:
2919 	mutex_unlock(&inode->i_mutex);
2920 	return offset;
2921 }
2922 
2923 const struct file_operations btrfs_file_operations = {
2924 	.llseek		= btrfs_file_llseek,
2925 	.read_iter      = generic_file_read_iter,
2926 	.splice_read	= generic_file_splice_read,
2927 	.write_iter	= btrfs_file_write_iter,
2928 	.mmap		= btrfs_file_mmap,
2929 	.open		= generic_file_open,
2930 	.release	= btrfs_release_file,
2931 	.fsync		= btrfs_sync_file,
2932 	.fallocate	= btrfs_fallocate,
2933 	.unlocked_ioctl	= btrfs_ioctl,
2934 #ifdef CONFIG_COMPAT
2935 	.compat_ioctl	= btrfs_ioctl,
2936 #endif
2937 };
2938 
2939 void btrfs_auto_defrag_exit(void)
2940 {
2941 	if (btrfs_inode_defrag_cachep)
2942 		kmem_cache_destroy(btrfs_inode_defrag_cachep);
2943 }
2944 
2945 int btrfs_auto_defrag_init(void)
2946 {
2947 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2948 					sizeof(struct inode_defrag), 0,
2949 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2950 					NULL);
2951 	if (!btrfs_inode_defrag_cachep)
2952 		return -ENOMEM;
2953 
2954 	return 0;
2955 }
2956 
2957 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
2958 {
2959 	int ret;
2960 
2961 	/*
2962 	 * So with compression we will find and lock a dirty page and clear the
2963 	 * first one as dirty, setup an async extent, and immediately return
2964 	 * with the entire range locked but with nobody actually marked with
2965 	 * writeback.  So we can't just filemap_write_and_wait_range() and
2966 	 * expect it to work since it will just kick off a thread to do the
2967 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
2968 	 * since it will wait on the page lock, which won't be unlocked until
2969 	 * after the pages have been marked as writeback and so we're good to go
2970 	 * from there.  We have to do this otherwise we'll miss the ordered
2971 	 * extents and that results in badness.  Please Josef, do not think you
2972 	 * know better and pull this out at some point in the future, it is
2973 	 * right and you are wrong.
2974 	 */
2975 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2976 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
2977 			     &BTRFS_I(inode)->runtime_flags))
2978 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2979 
2980 	return ret;
2981 }
2982