1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/time.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/backing-dev.h> 26 #include <linux/mpage.h> 27 #include <linux/falloc.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/statfs.h> 31 #include <linux/compat.h> 32 #include <linux/slab.h> 33 #include <linux/btrfs.h> 34 #include <linux/uio.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "print-tree.h" 40 #include "tree-log.h" 41 #include "locking.h" 42 #include "volumes.h" 43 #include "qgroup.h" 44 45 static struct kmem_cache *btrfs_inode_defrag_cachep; 46 /* 47 * when auto defrag is enabled we 48 * queue up these defrag structs to remember which 49 * inodes need defragging passes 50 */ 51 struct inode_defrag { 52 struct rb_node rb_node; 53 /* objectid */ 54 u64 ino; 55 /* 56 * transid where the defrag was added, we search for 57 * extents newer than this 58 */ 59 u64 transid; 60 61 /* root objectid */ 62 u64 root; 63 64 /* last offset we were able to defrag */ 65 u64 last_offset; 66 67 /* if we've wrapped around back to zero once already */ 68 int cycled; 69 }; 70 71 static int __compare_inode_defrag(struct inode_defrag *defrag1, 72 struct inode_defrag *defrag2) 73 { 74 if (defrag1->root > defrag2->root) 75 return 1; 76 else if (defrag1->root < defrag2->root) 77 return -1; 78 else if (defrag1->ino > defrag2->ino) 79 return 1; 80 else if (defrag1->ino < defrag2->ino) 81 return -1; 82 else 83 return 0; 84 } 85 86 /* pop a record for an inode into the defrag tree. The lock 87 * must be held already 88 * 89 * If you're inserting a record for an older transid than an 90 * existing record, the transid already in the tree is lowered 91 * 92 * If an existing record is found the defrag item you 93 * pass in is freed 94 */ 95 static int __btrfs_add_inode_defrag(struct inode *inode, 96 struct inode_defrag *defrag) 97 { 98 struct btrfs_root *root = BTRFS_I(inode)->root; 99 struct inode_defrag *entry; 100 struct rb_node **p; 101 struct rb_node *parent = NULL; 102 int ret; 103 104 p = &root->fs_info->defrag_inodes.rb_node; 105 while (*p) { 106 parent = *p; 107 entry = rb_entry(parent, struct inode_defrag, rb_node); 108 109 ret = __compare_inode_defrag(defrag, entry); 110 if (ret < 0) 111 p = &parent->rb_left; 112 else if (ret > 0) 113 p = &parent->rb_right; 114 else { 115 /* if we're reinserting an entry for 116 * an old defrag run, make sure to 117 * lower the transid of our existing record 118 */ 119 if (defrag->transid < entry->transid) 120 entry->transid = defrag->transid; 121 if (defrag->last_offset > entry->last_offset) 122 entry->last_offset = defrag->last_offset; 123 return -EEXIST; 124 } 125 } 126 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 127 rb_link_node(&defrag->rb_node, parent, p); 128 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes); 129 return 0; 130 } 131 132 static inline int __need_auto_defrag(struct btrfs_root *root) 133 { 134 if (!btrfs_test_opt(root, AUTO_DEFRAG)) 135 return 0; 136 137 if (btrfs_fs_closing(root->fs_info)) 138 return 0; 139 140 return 1; 141 } 142 143 /* 144 * insert a defrag record for this inode if auto defrag is 145 * enabled 146 */ 147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 148 struct inode *inode) 149 { 150 struct btrfs_root *root = BTRFS_I(inode)->root; 151 struct inode_defrag *defrag; 152 u64 transid; 153 int ret; 154 155 if (!__need_auto_defrag(root)) 156 return 0; 157 158 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) 159 return 0; 160 161 if (trans) 162 transid = trans->transid; 163 else 164 transid = BTRFS_I(inode)->root->last_trans; 165 166 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 167 if (!defrag) 168 return -ENOMEM; 169 170 defrag->ino = btrfs_ino(inode); 171 defrag->transid = transid; 172 defrag->root = root->root_key.objectid; 173 174 spin_lock(&root->fs_info->defrag_inodes_lock); 175 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) { 176 /* 177 * If we set IN_DEFRAG flag and evict the inode from memory, 178 * and then re-read this inode, this new inode doesn't have 179 * IN_DEFRAG flag. At the case, we may find the existed defrag. 180 */ 181 ret = __btrfs_add_inode_defrag(inode, defrag); 182 if (ret) 183 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 184 } else { 185 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 186 } 187 spin_unlock(&root->fs_info->defrag_inodes_lock); 188 return 0; 189 } 190 191 /* 192 * Requeue the defrag object. If there is a defrag object that points to 193 * the same inode in the tree, we will merge them together (by 194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 195 */ 196 static void btrfs_requeue_inode_defrag(struct inode *inode, 197 struct inode_defrag *defrag) 198 { 199 struct btrfs_root *root = BTRFS_I(inode)->root; 200 int ret; 201 202 if (!__need_auto_defrag(root)) 203 goto out; 204 205 /* 206 * Here we don't check the IN_DEFRAG flag, because we need merge 207 * them together. 208 */ 209 spin_lock(&root->fs_info->defrag_inodes_lock); 210 ret = __btrfs_add_inode_defrag(inode, defrag); 211 spin_unlock(&root->fs_info->defrag_inodes_lock); 212 if (ret) 213 goto out; 214 return; 215 out: 216 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 217 } 218 219 /* 220 * pick the defragable inode that we want, if it doesn't exist, we will get 221 * the next one. 222 */ 223 static struct inode_defrag * 224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 225 { 226 struct inode_defrag *entry = NULL; 227 struct inode_defrag tmp; 228 struct rb_node *p; 229 struct rb_node *parent = NULL; 230 int ret; 231 232 tmp.ino = ino; 233 tmp.root = root; 234 235 spin_lock(&fs_info->defrag_inodes_lock); 236 p = fs_info->defrag_inodes.rb_node; 237 while (p) { 238 parent = p; 239 entry = rb_entry(parent, struct inode_defrag, rb_node); 240 241 ret = __compare_inode_defrag(&tmp, entry); 242 if (ret < 0) 243 p = parent->rb_left; 244 else if (ret > 0) 245 p = parent->rb_right; 246 else 247 goto out; 248 } 249 250 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 251 parent = rb_next(parent); 252 if (parent) 253 entry = rb_entry(parent, struct inode_defrag, rb_node); 254 else 255 entry = NULL; 256 } 257 out: 258 if (entry) 259 rb_erase(parent, &fs_info->defrag_inodes); 260 spin_unlock(&fs_info->defrag_inodes_lock); 261 return entry; 262 } 263 264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 265 { 266 struct inode_defrag *defrag; 267 struct rb_node *node; 268 269 spin_lock(&fs_info->defrag_inodes_lock); 270 node = rb_first(&fs_info->defrag_inodes); 271 while (node) { 272 rb_erase(node, &fs_info->defrag_inodes); 273 defrag = rb_entry(node, struct inode_defrag, rb_node); 274 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 275 276 cond_resched_lock(&fs_info->defrag_inodes_lock); 277 278 node = rb_first(&fs_info->defrag_inodes); 279 } 280 spin_unlock(&fs_info->defrag_inodes_lock); 281 } 282 283 #define BTRFS_DEFRAG_BATCH 1024 284 285 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 286 struct inode_defrag *defrag) 287 { 288 struct btrfs_root *inode_root; 289 struct inode *inode; 290 struct btrfs_key key; 291 struct btrfs_ioctl_defrag_range_args range; 292 int num_defrag; 293 int index; 294 int ret; 295 296 /* get the inode */ 297 key.objectid = defrag->root; 298 key.type = BTRFS_ROOT_ITEM_KEY; 299 key.offset = (u64)-1; 300 301 index = srcu_read_lock(&fs_info->subvol_srcu); 302 303 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 304 if (IS_ERR(inode_root)) { 305 ret = PTR_ERR(inode_root); 306 goto cleanup; 307 } 308 309 key.objectid = defrag->ino; 310 key.type = BTRFS_INODE_ITEM_KEY; 311 key.offset = 0; 312 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 313 if (IS_ERR(inode)) { 314 ret = PTR_ERR(inode); 315 goto cleanup; 316 } 317 srcu_read_unlock(&fs_info->subvol_srcu, index); 318 319 /* do a chunk of defrag */ 320 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 321 memset(&range, 0, sizeof(range)); 322 range.len = (u64)-1; 323 range.start = defrag->last_offset; 324 325 sb_start_write(fs_info->sb); 326 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 327 BTRFS_DEFRAG_BATCH); 328 sb_end_write(fs_info->sb); 329 /* 330 * if we filled the whole defrag batch, there 331 * must be more work to do. Queue this defrag 332 * again 333 */ 334 if (num_defrag == BTRFS_DEFRAG_BATCH) { 335 defrag->last_offset = range.start; 336 btrfs_requeue_inode_defrag(inode, defrag); 337 } else if (defrag->last_offset && !defrag->cycled) { 338 /* 339 * we didn't fill our defrag batch, but 340 * we didn't start at zero. Make sure we loop 341 * around to the start of the file. 342 */ 343 defrag->last_offset = 0; 344 defrag->cycled = 1; 345 btrfs_requeue_inode_defrag(inode, defrag); 346 } else { 347 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 348 } 349 350 iput(inode); 351 return 0; 352 cleanup: 353 srcu_read_unlock(&fs_info->subvol_srcu, index); 354 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 355 return ret; 356 } 357 358 /* 359 * run through the list of inodes in the FS that need 360 * defragging 361 */ 362 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 363 { 364 struct inode_defrag *defrag; 365 u64 first_ino = 0; 366 u64 root_objectid = 0; 367 368 atomic_inc(&fs_info->defrag_running); 369 while (1) { 370 /* Pause the auto defragger. */ 371 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 372 &fs_info->fs_state)) 373 break; 374 375 if (!__need_auto_defrag(fs_info->tree_root)) 376 break; 377 378 /* find an inode to defrag */ 379 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 380 first_ino); 381 if (!defrag) { 382 if (root_objectid || first_ino) { 383 root_objectid = 0; 384 first_ino = 0; 385 continue; 386 } else { 387 break; 388 } 389 } 390 391 first_ino = defrag->ino + 1; 392 root_objectid = defrag->root; 393 394 __btrfs_run_defrag_inode(fs_info, defrag); 395 } 396 atomic_dec(&fs_info->defrag_running); 397 398 /* 399 * during unmount, we use the transaction_wait queue to 400 * wait for the defragger to stop 401 */ 402 wake_up(&fs_info->transaction_wait); 403 return 0; 404 } 405 406 /* simple helper to fault in pages and copy. This should go away 407 * and be replaced with calls into generic code. 408 */ 409 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages, 410 size_t write_bytes, 411 struct page **prepared_pages, 412 struct iov_iter *i) 413 { 414 size_t copied = 0; 415 size_t total_copied = 0; 416 int pg = 0; 417 int offset = pos & (PAGE_CACHE_SIZE - 1); 418 419 while (write_bytes > 0) { 420 size_t count = min_t(size_t, 421 PAGE_CACHE_SIZE - offset, write_bytes); 422 struct page *page = prepared_pages[pg]; 423 /* 424 * Copy data from userspace to the current page 425 */ 426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 427 428 /* Flush processor's dcache for this page */ 429 flush_dcache_page(page); 430 431 /* 432 * if we get a partial write, we can end up with 433 * partially up to date pages. These add 434 * a lot of complexity, so make sure they don't 435 * happen by forcing this copy to be retried. 436 * 437 * The rest of the btrfs_file_write code will fall 438 * back to page at a time copies after we return 0. 439 */ 440 if (!PageUptodate(page) && copied < count) 441 copied = 0; 442 443 iov_iter_advance(i, copied); 444 write_bytes -= copied; 445 total_copied += copied; 446 447 /* Return to btrfs_file_write_iter to fault page */ 448 if (unlikely(copied == 0)) 449 break; 450 451 if (copied < PAGE_CACHE_SIZE - offset) { 452 offset += copied; 453 } else { 454 pg++; 455 offset = 0; 456 } 457 } 458 return total_copied; 459 } 460 461 /* 462 * unlocks pages after btrfs_file_write is done with them 463 */ 464 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 465 { 466 size_t i; 467 for (i = 0; i < num_pages; i++) { 468 /* page checked is some magic around finding pages that 469 * have been modified without going through btrfs_set_page_dirty 470 * clear it here. There should be no need to mark the pages 471 * accessed as prepare_pages should have marked them accessed 472 * in prepare_pages via find_or_create_page() 473 */ 474 ClearPageChecked(pages[i]); 475 unlock_page(pages[i]); 476 page_cache_release(pages[i]); 477 } 478 } 479 480 /* 481 * after copy_from_user, pages need to be dirtied and we need to make 482 * sure holes are created between the current EOF and the start of 483 * any next extents (if required). 484 * 485 * this also makes the decision about creating an inline extent vs 486 * doing real data extents, marking pages dirty and delalloc as required. 487 */ 488 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, 489 struct page **pages, size_t num_pages, 490 loff_t pos, size_t write_bytes, 491 struct extent_state **cached) 492 { 493 int err = 0; 494 int i; 495 u64 num_bytes; 496 u64 start_pos; 497 u64 end_of_last_block; 498 u64 end_pos = pos + write_bytes; 499 loff_t isize = i_size_read(inode); 500 501 start_pos = pos & ~((u64)root->sectorsize - 1); 502 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize); 503 504 end_of_last_block = start_pos + num_bytes - 1; 505 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 506 cached); 507 if (err) 508 return err; 509 510 for (i = 0; i < num_pages; i++) { 511 struct page *p = pages[i]; 512 SetPageUptodate(p); 513 ClearPageChecked(p); 514 set_page_dirty(p); 515 } 516 517 /* 518 * we've only changed i_size in ram, and we haven't updated 519 * the disk i_size. There is no need to log the inode 520 * at this time. 521 */ 522 if (end_pos > isize) 523 i_size_write(inode, end_pos); 524 return 0; 525 } 526 527 /* 528 * this drops all the extents in the cache that intersect the range 529 * [start, end]. Existing extents are split as required. 530 */ 531 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, 532 int skip_pinned) 533 { 534 struct extent_map *em; 535 struct extent_map *split = NULL; 536 struct extent_map *split2 = NULL; 537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 538 u64 len = end - start + 1; 539 u64 gen; 540 int ret; 541 int testend = 1; 542 unsigned long flags; 543 int compressed = 0; 544 bool modified; 545 546 WARN_ON(end < start); 547 if (end == (u64)-1) { 548 len = (u64)-1; 549 testend = 0; 550 } 551 while (1) { 552 int no_splits = 0; 553 554 modified = false; 555 if (!split) 556 split = alloc_extent_map(); 557 if (!split2) 558 split2 = alloc_extent_map(); 559 if (!split || !split2) 560 no_splits = 1; 561 562 write_lock(&em_tree->lock); 563 em = lookup_extent_mapping(em_tree, start, len); 564 if (!em) { 565 write_unlock(&em_tree->lock); 566 break; 567 } 568 flags = em->flags; 569 gen = em->generation; 570 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 571 if (testend && em->start + em->len >= start + len) { 572 free_extent_map(em); 573 write_unlock(&em_tree->lock); 574 break; 575 } 576 start = em->start + em->len; 577 if (testend) 578 len = start + len - (em->start + em->len); 579 free_extent_map(em); 580 write_unlock(&em_tree->lock); 581 continue; 582 } 583 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 584 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 585 clear_bit(EXTENT_FLAG_LOGGING, &flags); 586 modified = !list_empty(&em->list); 587 if (no_splits) 588 goto next; 589 590 if (em->start < start) { 591 split->start = em->start; 592 split->len = start - em->start; 593 594 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 595 split->orig_start = em->orig_start; 596 split->block_start = em->block_start; 597 598 if (compressed) 599 split->block_len = em->block_len; 600 else 601 split->block_len = split->len; 602 split->orig_block_len = max(split->block_len, 603 em->orig_block_len); 604 split->ram_bytes = em->ram_bytes; 605 } else { 606 split->orig_start = split->start; 607 split->block_len = 0; 608 split->block_start = em->block_start; 609 split->orig_block_len = 0; 610 split->ram_bytes = split->len; 611 } 612 613 split->generation = gen; 614 split->bdev = em->bdev; 615 split->flags = flags; 616 split->compress_type = em->compress_type; 617 replace_extent_mapping(em_tree, em, split, modified); 618 free_extent_map(split); 619 split = split2; 620 split2 = NULL; 621 } 622 if (testend && em->start + em->len > start + len) { 623 u64 diff = start + len - em->start; 624 625 split->start = start + len; 626 split->len = em->start + em->len - (start + len); 627 split->bdev = em->bdev; 628 split->flags = flags; 629 split->compress_type = em->compress_type; 630 split->generation = gen; 631 632 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 633 split->orig_block_len = max(em->block_len, 634 em->orig_block_len); 635 636 split->ram_bytes = em->ram_bytes; 637 if (compressed) { 638 split->block_len = em->block_len; 639 split->block_start = em->block_start; 640 split->orig_start = em->orig_start; 641 } else { 642 split->block_len = split->len; 643 split->block_start = em->block_start 644 + diff; 645 split->orig_start = em->orig_start; 646 } 647 } else { 648 split->ram_bytes = split->len; 649 split->orig_start = split->start; 650 split->block_len = 0; 651 split->block_start = em->block_start; 652 split->orig_block_len = 0; 653 } 654 655 if (extent_map_in_tree(em)) { 656 replace_extent_mapping(em_tree, em, split, 657 modified); 658 } else { 659 ret = add_extent_mapping(em_tree, split, 660 modified); 661 ASSERT(ret == 0); /* Logic error */ 662 } 663 free_extent_map(split); 664 split = NULL; 665 } 666 next: 667 if (extent_map_in_tree(em)) 668 remove_extent_mapping(em_tree, em); 669 write_unlock(&em_tree->lock); 670 671 /* once for us */ 672 free_extent_map(em); 673 /* once for the tree*/ 674 free_extent_map(em); 675 } 676 if (split) 677 free_extent_map(split); 678 if (split2) 679 free_extent_map(split2); 680 } 681 682 /* 683 * this is very complex, but the basic idea is to drop all extents 684 * in the range start - end. hint_block is filled in with a block number 685 * that would be a good hint to the block allocator for this file. 686 * 687 * If an extent intersects the range but is not entirely inside the range 688 * it is either truncated or split. Anything entirely inside the range 689 * is deleted from the tree. 690 */ 691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 692 struct btrfs_root *root, struct inode *inode, 693 struct btrfs_path *path, u64 start, u64 end, 694 u64 *drop_end, int drop_cache, 695 int replace_extent, 696 u32 extent_item_size, 697 int *key_inserted) 698 { 699 struct extent_buffer *leaf; 700 struct btrfs_file_extent_item *fi; 701 struct btrfs_key key; 702 struct btrfs_key new_key; 703 u64 ino = btrfs_ino(inode); 704 u64 search_start = start; 705 u64 disk_bytenr = 0; 706 u64 num_bytes = 0; 707 u64 extent_offset = 0; 708 u64 extent_end = 0; 709 int del_nr = 0; 710 int del_slot = 0; 711 int extent_type; 712 int recow; 713 int ret; 714 int modify_tree = -1; 715 int update_refs; 716 int found = 0; 717 int leafs_visited = 0; 718 719 if (drop_cache) 720 btrfs_drop_extent_cache(inode, start, end - 1, 0); 721 722 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 723 modify_tree = 0; 724 725 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 726 root == root->fs_info->tree_root); 727 while (1) { 728 recow = 0; 729 ret = btrfs_lookup_file_extent(trans, root, path, ino, 730 search_start, modify_tree); 731 if (ret < 0) 732 break; 733 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 734 leaf = path->nodes[0]; 735 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 736 if (key.objectid == ino && 737 key.type == BTRFS_EXTENT_DATA_KEY) 738 path->slots[0]--; 739 } 740 ret = 0; 741 leafs_visited++; 742 next_slot: 743 leaf = path->nodes[0]; 744 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 745 BUG_ON(del_nr > 0); 746 ret = btrfs_next_leaf(root, path); 747 if (ret < 0) 748 break; 749 if (ret > 0) { 750 ret = 0; 751 break; 752 } 753 leafs_visited++; 754 leaf = path->nodes[0]; 755 recow = 1; 756 } 757 758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 759 760 if (key.objectid > ino) 761 break; 762 if (WARN_ON_ONCE(key.objectid < ino) || 763 key.type < BTRFS_EXTENT_DATA_KEY) { 764 ASSERT(del_nr == 0); 765 path->slots[0]++; 766 goto next_slot; 767 } 768 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 769 break; 770 771 fi = btrfs_item_ptr(leaf, path->slots[0], 772 struct btrfs_file_extent_item); 773 extent_type = btrfs_file_extent_type(leaf, fi); 774 775 if (extent_type == BTRFS_FILE_EXTENT_REG || 776 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 777 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 778 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 779 extent_offset = btrfs_file_extent_offset(leaf, fi); 780 extent_end = key.offset + 781 btrfs_file_extent_num_bytes(leaf, fi); 782 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 783 extent_end = key.offset + 784 btrfs_file_extent_inline_len(leaf, 785 path->slots[0], fi); 786 } else { 787 /* can't happen */ 788 BUG(); 789 } 790 791 /* 792 * Don't skip extent items representing 0 byte lengths. They 793 * used to be created (bug) if while punching holes we hit 794 * -ENOSPC condition. So if we find one here, just ensure we 795 * delete it, otherwise we would insert a new file extent item 796 * with the same key (offset) as that 0 bytes length file 797 * extent item in the call to setup_items_for_insert() later 798 * in this function. 799 */ 800 if (extent_end == key.offset && extent_end >= search_start) 801 goto delete_extent_item; 802 803 if (extent_end <= search_start) { 804 path->slots[0]++; 805 goto next_slot; 806 } 807 808 found = 1; 809 search_start = max(key.offset, start); 810 if (recow || !modify_tree) { 811 modify_tree = -1; 812 btrfs_release_path(path); 813 continue; 814 } 815 816 /* 817 * | - range to drop - | 818 * | -------- extent -------- | 819 */ 820 if (start > key.offset && end < extent_end) { 821 BUG_ON(del_nr > 0); 822 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 823 ret = -EOPNOTSUPP; 824 break; 825 } 826 827 memcpy(&new_key, &key, sizeof(new_key)); 828 new_key.offset = start; 829 ret = btrfs_duplicate_item(trans, root, path, 830 &new_key); 831 if (ret == -EAGAIN) { 832 btrfs_release_path(path); 833 continue; 834 } 835 if (ret < 0) 836 break; 837 838 leaf = path->nodes[0]; 839 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 840 struct btrfs_file_extent_item); 841 btrfs_set_file_extent_num_bytes(leaf, fi, 842 start - key.offset); 843 844 fi = btrfs_item_ptr(leaf, path->slots[0], 845 struct btrfs_file_extent_item); 846 847 extent_offset += start - key.offset; 848 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 849 btrfs_set_file_extent_num_bytes(leaf, fi, 850 extent_end - start); 851 btrfs_mark_buffer_dirty(leaf); 852 853 if (update_refs && disk_bytenr > 0) { 854 ret = btrfs_inc_extent_ref(trans, root, 855 disk_bytenr, num_bytes, 0, 856 root->root_key.objectid, 857 new_key.objectid, 858 start - extent_offset); 859 BUG_ON(ret); /* -ENOMEM */ 860 } 861 key.offset = start; 862 } 863 /* 864 * | ---- range to drop ----- | 865 * | -------- extent -------- | 866 */ 867 if (start <= key.offset && end < extent_end) { 868 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 869 ret = -EOPNOTSUPP; 870 break; 871 } 872 873 memcpy(&new_key, &key, sizeof(new_key)); 874 new_key.offset = end; 875 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 876 877 extent_offset += end - key.offset; 878 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 879 btrfs_set_file_extent_num_bytes(leaf, fi, 880 extent_end - end); 881 btrfs_mark_buffer_dirty(leaf); 882 if (update_refs && disk_bytenr > 0) 883 inode_sub_bytes(inode, end - key.offset); 884 break; 885 } 886 887 search_start = extent_end; 888 /* 889 * | ---- range to drop ----- | 890 * | -------- extent -------- | 891 */ 892 if (start > key.offset && end >= extent_end) { 893 BUG_ON(del_nr > 0); 894 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 895 ret = -EOPNOTSUPP; 896 break; 897 } 898 899 btrfs_set_file_extent_num_bytes(leaf, fi, 900 start - key.offset); 901 btrfs_mark_buffer_dirty(leaf); 902 if (update_refs && disk_bytenr > 0) 903 inode_sub_bytes(inode, extent_end - start); 904 if (end == extent_end) 905 break; 906 907 path->slots[0]++; 908 goto next_slot; 909 } 910 911 /* 912 * | ---- range to drop ----- | 913 * | ------ extent ------ | 914 */ 915 if (start <= key.offset && end >= extent_end) { 916 delete_extent_item: 917 if (del_nr == 0) { 918 del_slot = path->slots[0]; 919 del_nr = 1; 920 } else { 921 BUG_ON(del_slot + del_nr != path->slots[0]); 922 del_nr++; 923 } 924 925 if (update_refs && 926 extent_type == BTRFS_FILE_EXTENT_INLINE) { 927 inode_sub_bytes(inode, 928 extent_end - key.offset); 929 extent_end = ALIGN(extent_end, 930 root->sectorsize); 931 } else if (update_refs && disk_bytenr > 0) { 932 ret = btrfs_free_extent(trans, root, 933 disk_bytenr, num_bytes, 0, 934 root->root_key.objectid, 935 key.objectid, key.offset - 936 extent_offset); 937 BUG_ON(ret); /* -ENOMEM */ 938 inode_sub_bytes(inode, 939 extent_end - key.offset); 940 } 941 942 if (end == extent_end) 943 break; 944 945 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 946 path->slots[0]++; 947 goto next_slot; 948 } 949 950 ret = btrfs_del_items(trans, root, path, del_slot, 951 del_nr); 952 if (ret) { 953 btrfs_abort_transaction(trans, root, ret); 954 break; 955 } 956 957 del_nr = 0; 958 del_slot = 0; 959 960 btrfs_release_path(path); 961 continue; 962 } 963 964 BUG_ON(1); 965 } 966 967 if (!ret && del_nr > 0) { 968 /* 969 * Set path->slots[0] to first slot, so that after the delete 970 * if items are move off from our leaf to its immediate left or 971 * right neighbor leafs, we end up with a correct and adjusted 972 * path->slots[0] for our insertion (if replace_extent != 0). 973 */ 974 path->slots[0] = del_slot; 975 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 976 if (ret) 977 btrfs_abort_transaction(trans, root, ret); 978 } 979 980 leaf = path->nodes[0]; 981 /* 982 * If btrfs_del_items() was called, it might have deleted a leaf, in 983 * which case it unlocked our path, so check path->locks[0] matches a 984 * write lock. 985 */ 986 if (!ret && replace_extent && leafs_visited == 1 && 987 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 988 path->locks[0] == BTRFS_WRITE_LOCK) && 989 btrfs_leaf_free_space(root, leaf) >= 990 sizeof(struct btrfs_item) + extent_item_size) { 991 992 key.objectid = ino; 993 key.type = BTRFS_EXTENT_DATA_KEY; 994 key.offset = start; 995 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 996 struct btrfs_key slot_key; 997 998 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 999 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1000 path->slots[0]++; 1001 } 1002 setup_items_for_insert(root, path, &key, 1003 &extent_item_size, 1004 extent_item_size, 1005 sizeof(struct btrfs_item) + 1006 extent_item_size, 1); 1007 *key_inserted = 1; 1008 } 1009 1010 if (!replace_extent || !(*key_inserted)) 1011 btrfs_release_path(path); 1012 if (drop_end) 1013 *drop_end = found ? min(end, extent_end) : end; 1014 return ret; 1015 } 1016 1017 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1018 struct btrfs_root *root, struct inode *inode, u64 start, 1019 u64 end, int drop_cache) 1020 { 1021 struct btrfs_path *path; 1022 int ret; 1023 1024 path = btrfs_alloc_path(); 1025 if (!path) 1026 return -ENOMEM; 1027 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1028 drop_cache, 0, 0, NULL); 1029 btrfs_free_path(path); 1030 return ret; 1031 } 1032 1033 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1034 u64 objectid, u64 bytenr, u64 orig_offset, 1035 u64 *start, u64 *end) 1036 { 1037 struct btrfs_file_extent_item *fi; 1038 struct btrfs_key key; 1039 u64 extent_end; 1040 1041 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1042 return 0; 1043 1044 btrfs_item_key_to_cpu(leaf, &key, slot); 1045 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1046 return 0; 1047 1048 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1049 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1050 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1051 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1052 btrfs_file_extent_compression(leaf, fi) || 1053 btrfs_file_extent_encryption(leaf, fi) || 1054 btrfs_file_extent_other_encoding(leaf, fi)) 1055 return 0; 1056 1057 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1058 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1059 return 0; 1060 1061 *start = key.offset; 1062 *end = extent_end; 1063 return 1; 1064 } 1065 1066 /* 1067 * Mark extent in the range start - end as written. 1068 * 1069 * This changes extent type from 'pre-allocated' to 'regular'. If only 1070 * part of extent is marked as written, the extent will be split into 1071 * two or three. 1072 */ 1073 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1074 struct inode *inode, u64 start, u64 end) 1075 { 1076 struct btrfs_root *root = BTRFS_I(inode)->root; 1077 struct extent_buffer *leaf; 1078 struct btrfs_path *path; 1079 struct btrfs_file_extent_item *fi; 1080 struct btrfs_key key; 1081 struct btrfs_key new_key; 1082 u64 bytenr; 1083 u64 num_bytes; 1084 u64 extent_end; 1085 u64 orig_offset; 1086 u64 other_start; 1087 u64 other_end; 1088 u64 split; 1089 int del_nr = 0; 1090 int del_slot = 0; 1091 int recow; 1092 int ret; 1093 u64 ino = btrfs_ino(inode); 1094 1095 path = btrfs_alloc_path(); 1096 if (!path) 1097 return -ENOMEM; 1098 again: 1099 recow = 0; 1100 split = start; 1101 key.objectid = ino; 1102 key.type = BTRFS_EXTENT_DATA_KEY; 1103 key.offset = split; 1104 1105 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1106 if (ret < 0) 1107 goto out; 1108 if (ret > 0 && path->slots[0] > 0) 1109 path->slots[0]--; 1110 1111 leaf = path->nodes[0]; 1112 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1113 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY); 1114 fi = btrfs_item_ptr(leaf, path->slots[0], 1115 struct btrfs_file_extent_item); 1116 BUG_ON(btrfs_file_extent_type(leaf, fi) != 1117 BTRFS_FILE_EXTENT_PREALLOC); 1118 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1119 BUG_ON(key.offset > start || extent_end < end); 1120 1121 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1122 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1123 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1124 memcpy(&new_key, &key, sizeof(new_key)); 1125 1126 if (start == key.offset && end < extent_end) { 1127 other_start = 0; 1128 other_end = start; 1129 if (extent_mergeable(leaf, path->slots[0] - 1, 1130 ino, bytenr, orig_offset, 1131 &other_start, &other_end)) { 1132 new_key.offset = end; 1133 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 1134 fi = btrfs_item_ptr(leaf, path->slots[0], 1135 struct btrfs_file_extent_item); 1136 btrfs_set_file_extent_generation(leaf, fi, 1137 trans->transid); 1138 btrfs_set_file_extent_num_bytes(leaf, fi, 1139 extent_end - end); 1140 btrfs_set_file_extent_offset(leaf, fi, 1141 end - orig_offset); 1142 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1143 struct btrfs_file_extent_item); 1144 btrfs_set_file_extent_generation(leaf, fi, 1145 trans->transid); 1146 btrfs_set_file_extent_num_bytes(leaf, fi, 1147 end - other_start); 1148 btrfs_mark_buffer_dirty(leaf); 1149 goto out; 1150 } 1151 } 1152 1153 if (start > key.offset && end == extent_end) { 1154 other_start = end; 1155 other_end = 0; 1156 if (extent_mergeable(leaf, path->slots[0] + 1, 1157 ino, bytenr, orig_offset, 1158 &other_start, &other_end)) { 1159 fi = btrfs_item_ptr(leaf, path->slots[0], 1160 struct btrfs_file_extent_item); 1161 btrfs_set_file_extent_num_bytes(leaf, fi, 1162 start - key.offset); 1163 btrfs_set_file_extent_generation(leaf, fi, 1164 trans->transid); 1165 path->slots[0]++; 1166 new_key.offset = start; 1167 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 1168 1169 fi = btrfs_item_ptr(leaf, path->slots[0], 1170 struct btrfs_file_extent_item); 1171 btrfs_set_file_extent_generation(leaf, fi, 1172 trans->transid); 1173 btrfs_set_file_extent_num_bytes(leaf, fi, 1174 other_end - start); 1175 btrfs_set_file_extent_offset(leaf, fi, 1176 start - orig_offset); 1177 btrfs_mark_buffer_dirty(leaf); 1178 goto out; 1179 } 1180 } 1181 1182 while (start > key.offset || end < extent_end) { 1183 if (key.offset == start) 1184 split = end; 1185 1186 new_key.offset = split; 1187 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1188 if (ret == -EAGAIN) { 1189 btrfs_release_path(path); 1190 goto again; 1191 } 1192 if (ret < 0) { 1193 btrfs_abort_transaction(trans, root, ret); 1194 goto out; 1195 } 1196 1197 leaf = path->nodes[0]; 1198 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1199 struct btrfs_file_extent_item); 1200 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1201 btrfs_set_file_extent_num_bytes(leaf, fi, 1202 split - key.offset); 1203 1204 fi = btrfs_item_ptr(leaf, path->slots[0], 1205 struct btrfs_file_extent_item); 1206 1207 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1208 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1209 btrfs_set_file_extent_num_bytes(leaf, fi, 1210 extent_end - split); 1211 btrfs_mark_buffer_dirty(leaf); 1212 1213 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, 1214 root->root_key.objectid, 1215 ino, orig_offset); 1216 BUG_ON(ret); /* -ENOMEM */ 1217 1218 if (split == start) { 1219 key.offset = start; 1220 } else { 1221 BUG_ON(start != key.offset); 1222 path->slots[0]--; 1223 extent_end = end; 1224 } 1225 recow = 1; 1226 } 1227 1228 other_start = end; 1229 other_end = 0; 1230 if (extent_mergeable(leaf, path->slots[0] + 1, 1231 ino, bytenr, orig_offset, 1232 &other_start, &other_end)) { 1233 if (recow) { 1234 btrfs_release_path(path); 1235 goto again; 1236 } 1237 extent_end = other_end; 1238 del_slot = path->slots[0] + 1; 1239 del_nr++; 1240 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1241 0, root->root_key.objectid, 1242 ino, orig_offset); 1243 BUG_ON(ret); /* -ENOMEM */ 1244 } 1245 other_start = 0; 1246 other_end = start; 1247 if (extent_mergeable(leaf, path->slots[0] - 1, 1248 ino, bytenr, orig_offset, 1249 &other_start, &other_end)) { 1250 if (recow) { 1251 btrfs_release_path(path); 1252 goto again; 1253 } 1254 key.offset = other_start; 1255 del_slot = path->slots[0]; 1256 del_nr++; 1257 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1258 0, root->root_key.objectid, 1259 ino, orig_offset); 1260 BUG_ON(ret); /* -ENOMEM */ 1261 } 1262 if (del_nr == 0) { 1263 fi = btrfs_item_ptr(leaf, path->slots[0], 1264 struct btrfs_file_extent_item); 1265 btrfs_set_file_extent_type(leaf, fi, 1266 BTRFS_FILE_EXTENT_REG); 1267 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1268 btrfs_mark_buffer_dirty(leaf); 1269 } else { 1270 fi = btrfs_item_ptr(leaf, del_slot - 1, 1271 struct btrfs_file_extent_item); 1272 btrfs_set_file_extent_type(leaf, fi, 1273 BTRFS_FILE_EXTENT_REG); 1274 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1275 btrfs_set_file_extent_num_bytes(leaf, fi, 1276 extent_end - key.offset); 1277 btrfs_mark_buffer_dirty(leaf); 1278 1279 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1280 if (ret < 0) { 1281 btrfs_abort_transaction(trans, root, ret); 1282 goto out; 1283 } 1284 } 1285 out: 1286 btrfs_free_path(path); 1287 return 0; 1288 } 1289 1290 /* 1291 * on error we return an unlocked page and the error value 1292 * on success we return a locked page and 0 1293 */ 1294 static int prepare_uptodate_page(struct page *page, u64 pos, 1295 bool force_uptodate) 1296 { 1297 int ret = 0; 1298 1299 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) && 1300 !PageUptodate(page)) { 1301 ret = btrfs_readpage(NULL, page); 1302 if (ret) 1303 return ret; 1304 lock_page(page); 1305 if (!PageUptodate(page)) { 1306 unlock_page(page); 1307 return -EIO; 1308 } 1309 } 1310 return 0; 1311 } 1312 1313 /* 1314 * this just gets pages into the page cache and locks them down. 1315 */ 1316 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1317 size_t num_pages, loff_t pos, 1318 size_t write_bytes, bool force_uptodate) 1319 { 1320 int i; 1321 unsigned long index = pos >> PAGE_CACHE_SHIFT; 1322 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1323 int err = 0; 1324 int faili; 1325 1326 for (i = 0; i < num_pages; i++) { 1327 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1328 mask | __GFP_WRITE); 1329 if (!pages[i]) { 1330 faili = i - 1; 1331 err = -ENOMEM; 1332 goto fail; 1333 } 1334 1335 if (i == 0) 1336 err = prepare_uptodate_page(pages[i], pos, 1337 force_uptodate); 1338 if (i == num_pages - 1) 1339 err = prepare_uptodate_page(pages[i], 1340 pos + write_bytes, false); 1341 if (err) { 1342 page_cache_release(pages[i]); 1343 faili = i - 1; 1344 goto fail; 1345 } 1346 wait_on_page_writeback(pages[i]); 1347 } 1348 1349 return 0; 1350 fail: 1351 while (faili >= 0) { 1352 unlock_page(pages[faili]); 1353 page_cache_release(pages[faili]); 1354 faili--; 1355 } 1356 return err; 1357 1358 } 1359 1360 /* 1361 * This function locks the extent and properly waits for data=ordered extents 1362 * to finish before allowing the pages to be modified if need. 1363 * 1364 * The return value: 1365 * 1 - the extent is locked 1366 * 0 - the extent is not locked, and everything is OK 1367 * -EAGAIN - need re-prepare the pages 1368 * the other < 0 number - Something wrong happens 1369 */ 1370 static noinline int 1371 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages, 1372 size_t num_pages, loff_t pos, 1373 u64 *lockstart, u64 *lockend, 1374 struct extent_state **cached_state) 1375 { 1376 u64 start_pos; 1377 u64 last_pos; 1378 int i; 1379 int ret = 0; 1380 1381 start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1); 1382 last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1; 1383 1384 if (start_pos < inode->i_size) { 1385 struct btrfs_ordered_extent *ordered; 1386 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1387 start_pos, last_pos, 0, cached_state); 1388 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1389 last_pos - start_pos + 1); 1390 if (ordered && 1391 ordered->file_offset + ordered->len > start_pos && 1392 ordered->file_offset <= last_pos) { 1393 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1394 start_pos, last_pos, 1395 cached_state, GFP_NOFS); 1396 for (i = 0; i < num_pages; i++) { 1397 unlock_page(pages[i]); 1398 page_cache_release(pages[i]); 1399 } 1400 btrfs_start_ordered_extent(inode, ordered, 1); 1401 btrfs_put_ordered_extent(ordered); 1402 return -EAGAIN; 1403 } 1404 if (ordered) 1405 btrfs_put_ordered_extent(ordered); 1406 1407 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, 1408 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC | 1409 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1410 0, 0, cached_state, GFP_NOFS); 1411 *lockstart = start_pos; 1412 *lockend = last_pos; 1413 ret = 1; 1414 } 1415 1416 for (i = 0; i < num_pages; i++) { 1417 if (clear_page_dirty_for_io(pages[i])) 1418 account_page_redirty(pages[i]); 1419 set_page_extent_mapped(pages[i]); 1420 WARN_ON(!PageLocked(pages[i])); 1421 } 1422 1423 return ret; 1424 } 1425 1426 static noinline int check_can_nocow(struct inode *inode, loff_t pos, 1427 size_t *write_bytes) 1428 { 1429 struct btrfs_root *root = BTRFS_I(inode)->root; 1430 struct btrfs_ordered_extent *ordered; 1431 u64 lockstart, lockend; 1432 u64 num_bytes; 1433 int ret; 1434 1435 ret = btrfs_start_write_no_snapshoting(root); 1436 if (!ret) 1437 return -ENOSPC; 1438 1439 lockstart = round_down(pos, root->sectorsize); 1440 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1; 1441 1442 while (1) { 1443 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1444 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1445 lockend - lockstart + 1); 1446 if (!ordered) { 1447 break; 1448 } 1449 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1450 btrfs_start_ordered_extent(inode, ordered, 1); 1451 btrfs_put_ordered_extent(ordered); 1452 } 1453 1454 num_bytes = lockend - lockstart + 1; 1455 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL); 1456 if (ret <= 0) { 1457 ret = 0; 1458 btrfs_end_write_no_snapshoting(root); 1459 } else { 1460 *write_bytes = min_t(size_t, *write_bytes , 1461 num_bytes - pos + lockstart); 1462 } 1463 1464 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1465 1466 return ret; 1467 } 1468 1469 static noinline ssize_t __btrfs_buffered_write(struct file *file, 1470 struct iov_iter *i, 1471 loff_t pos) 1472 { 1473 struct inode *inode = file_inode(file); 1474 struct btrfs_root *root = BTRFS_I(inode)->root; 1475 struct page **pages = NULL; 1476 struct extent_state *cached_state = NULL; 1477 u64 release_bytes = 0; 1478 u64 lockstart; 1479 u64 lockend; 1480 size_t num_written = 0; 1481 int nrptrs; 1482 int ret = 0; 1483 bool only_release_metadata = false; 1484 bool force_page_uptodate = false; 1485 bool need_unlock; 1486 1487 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE), 1488 PAGE_CACHE_SIZE / (sizeof(struct page *))); 1489 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1490 nrptrs = max(nrptrs, 8); 1491 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1492 if (!pages) 1493 return -ENOMEM; 1494 1495 while (iov_iter_count(i) > 0) { 1496 size_t offset = pos & (PAGE_CACHE_SIZE - 1); 1497 size_t write_bytes = min(iov_iter_count(i), 1498 nrptrs * (size_t)PAGE_CACHE_SIZE - 1499 offset); 1500 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1501 PAGE_CACHE_SIZE); 1502 size_t reserve_bytes; 1503 size_t dirty_pages; 1504 size_t copied; 1505 1506 WARN_ON(num_pages > nrptrs); 1507 1508 /* 1509 * Fault pages before locking them in prepare_pages 1510 * to avoid recursive lock 1511 */ 1512 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1513 ret = -EFAULT; 1514 break; 1515 } 1516 1517 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1518 1519 if (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1520 BTRFS_INODE_PREALLOC)) { 1521 ret = check_can_nocow(inode, pos, &write_bytes); 1522 if (ret < 0) 1523 break; 1524 if (ret > 0) { 1525 /* 1526 * For nodata cow case, no need to reserve 1527 * data space. 1528 */ 1529 only_release_metadata = true; 1530 /* 1531 * our prealloc extent may be smaller than 1532 * write_bytes, so scale down. 1533 */ 1534 num_pages = DIV_ROUND_UP(write_bytes + offset, 1535 PAGE_CACHE_SIZE); 1536 reserve_bytes = num_pages << PAGE_CACHE_SHIFT; 1537 goto reserve_metadata; 1538 } 1539 } 1540 ret = btrfs_check_data_free_space(inode, pos, write_bytes); 1541 if (ret < 0) 1542 break; 1543 1544 reserve_metadata: 1545 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes); 1546 if (ret) { 1547 if (!only_release_metadata) 1548 btrfs_free_reserved_data_space(inode, pos, 1549 write_bytes); 1550 else 1551 btrfs_end_write_no_snapshoting(root); 1552 break; 1553 } 1554 1555 release_bytes = reserve_bytes; 1556 need_unlock = false; 1557 again: 1558 /* 1559 * This is going to setup the pages array with the number of 1560 * pages we want, so we don't really need to worry about the 1561 * contents of pages from loop to loop 1562 */ 1563 ret = prepare_pages(inode, pages, num_pages, 1564 pos, write_bytes, 1565 force_page_uptodate); 1566 if (ret) 1567 break; 1568 1569 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages, 1570 pos, &lockstart, &lockend, 1571 &cached_state); 1572 if (ret < 0) { 1573 if (ret == -EAGAIN) 1574 goto again; 1575 break; 1576 } else if (ret > 0) { 1577 need_unlock = true; 1578 ret = 0; 1579 } 1580 1581 copied = btrfs_copy_from_user(pos, num_pages, 1582 write_bytes, pages, i); 1583 1584 /* 1585 * if we have trouble faulting in the pages, fall 1586 * back to one page at a time 1587 */ 1588 if (copied < write_bytes) 1589 nrptrs = 1; 1590 1591 if (copied == 0) { 1592 force_page_uptodate = true; 1593 dirty_pages = 0; 1594 } else { 1595 force_page_uptodate = false; 1596 dirty_pages = DIV_ROUND_UP(copied + offset, 1597 PAGE_CACHE_SIZE); 1598 } 1599 1600 /* 1601 * If we had a short copy we need to release the excess delaloc 1602 * bytes we reserved. We need to increment outstanding_extents 1603 * because btrfs_delalloc_release_space will decrement it, but 1604 * we still have an outstanding extent for the chunk we actually 1605 * managed to copy. 1606 */ 1607 if (num_pages > dirty_pages) { 1608 release_bytes = (num_pages - dirty_pages) << 1609 PAGE_CACHE_SHIFT; 1610 if (copied > 0) { 1611 spin_lock(&BTRFS_I(inode)->lock); 1612 BTRFS_I(inode)->outstanding_extents++; 1613 spin_unlock(&BTRFS_I(inode)->lock); 1614 } 1615 if (only_release_metadata) { 1616 btrfs_delalloc_release_metadata(inode, 1617 release_bytes); 1618 } else { 1619 u64 __pos; 1620 1621 __pos = round_down(pos, root->sectorsize) + 1622 (dirty_pages << PAGE_CACHE_SHIFT); 1623 btrfs_delalloc_release_space(inode, __pos, 1624 release_bytes); 1625 } 1626 } 1627 1628 release_bytes = dirty_pages << PAGE_CACHE_SHIFT; 1629 1630 if (copied > 0) 1631 ret = btrfs_dirty_pages(root, inode, pages, 1632 dirty_pages, pos, copied, 1633 NULL); 1634 if (need_unlock) 1635 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1636 lockstart, lockend, &cached_state, 1637 GFP_NOFS); 1638 if (ret) { 1639 btrfs_drop_pages(pages, num_pages); 1640 break; 1641 } 1642 1643 release_bytes = 0; 1644 if (only_release_metadata) 1645 btrfs_end_write_no_snapshoting(root); 1646 1647 if (only_release_metadata && copied > 0) { 1648 lockstart = round_down(pos, root->sectorsize); 1649 lockend = lockstart + 1650 (dirty_pages << PAGE_CACHE_SHIFT) - 1; 1651 1652 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1653 lockend, EXTENT_NORESERVE, NULL, 1654 NULL, GFP_NOFS); 1655 only_release_metadata = false; 1656 } 1657 1658 btrfs_drop_pages(pages, num_pages); 1659 1660 cond_resched(); 1661 1662 balance_dirty_pages_ratelimited(inode->i_mapping); 1663 if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1) 1664 btrfs_btree_balance_dirty(root); 1665 1666 pos += copied; 1667 num_written += copied; 1668 } 1669 1670 kfree(pages); 1671 1672 if (release_bytes) { 1673 if (only_release_metadata) { 1674 btrfs_end_write_no_snapshoting(root); 1675 btrfs_delalloc_release_metadata(inode, release_bytes); 1676 } else { 1677 btrfs_delalloc_release_space(inode, pos, release_bytes); 1678 } 1679 } 1680 1681 return num_written ? num_written : ret; 1682 } 1683 1684 static ssize_t __btrfs_direct_write(struct kiocb *iocb, 1685 struct iov_iter *from, 1686 loff_t pos) 1687 { 1688 struct file *file = iocb->ki_filp; 1689 struct inode *inode = file_inode(file); 1690 ssize_t written; 1691 ssize_t written_buffered; 1692 loff_t endbyte; 1693 int err; 1694 1695 written = generic_file_direct_write(iocb, from, pos); 1696 1697 if (written < 0 || !iov_iter_count(from)) 1698 return written; 1699 1700 pos += written; 1701 written_buffered = __btrfs_buffered_write(file, from, pos); 1702 if (written_buffered < 0) { 1703 err = written_buffered; 1704 goto out; 1705 } 1706 /* 1707 * Ensure all data is persisted. We want the next direct IO read to be 1708 * able to read what was just written. 1709 */ 1710 endbyte = pos + written_buffered - 1; 1711 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1712 if (err) 1713 goto out; 1714 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1715 if (err) 1716 goto out; 1717 written += written_buffered; 1718 iocb->ki_pos = pos + written_buffered; 1719 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT, 1720 endbyte >> PAGE_CACHE_SHIFT); 1721 out: 1722 return written ? written : err; 1723 } 1724 1725 static void update_time_for_write(struct inode *inode) 1726 { 1727 struct timespec now; 1728 1729 if (IS_NOCMTIME(inode)) 1730 return; 1731 1732 now = current_fs_time(inode->i_sb); 1733 if (!timespec_equal(&inode->i_mtime, &now)) 1734 inode->i_mtime = now; 1735 1736 if (!timespec_equal(&inode->i_ctime, &now)) 1737 inode->i_ctime = now; 1738 1739 if (IS_I_VERSION(inode)) 1740 inode_inc_iversion(inode); 1741 } 1742 1743 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1744 struct iov_iter *from) 1745 { 1746 struct file *file = iocb->ki_filp; 1747 struct inode *inode = file_inode(file); 1748 struct btrfs_root *root = BTRFS_I(inode)->root; 1749 u64 start_pos; 1750 u64 end_pos; 1751 ssize_t num_written = 0; 1752 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1753 ssize_t err; 1754 loff_t pos; 1755 size_t count; 1756 1757 mutex_lock(&inode->i_mutex); 1758 err = generic_write_checks(iocb, from); 1759 if (err <= 0) { 1760 mutex_unlock(&inode->i_mutex); 1761 return err; 1762 } 1763 1764 current->backing_dev_info = inode_to_bdi(inode); 1765 err = file_remove_privs(file); 1766 if (err) { 1767 mutex_unlock(&inode->i_mutex); 1768 goto out; 1769 } 1770 1771 /* 1772 * If BTRFS flips readonly due to some impossible error 1773 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1774 * although we have opened a file as writable, we have 1775 * to stop this write operation to ensure FS consistency. 1776 */ 1777 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1778 mutex_unlock(&inode->i_mutex); 1779 err = -EROFS; 1780 goto out; 1781 } 1782 1783 /* 1784 * We reserve space for updating the inode when we reserve space for the 1785 * extent we are going to write, so we will enospc out there. We don't 1786 * need to start yet another transaction to update the inode as we will 1787 * update the inode when we finish writing whatever data we write. 1788 */ 1789 update_time_for_write(inode); 1790 1791 pos = iocb->ki_pos; 1792 count = iov_iter_count(from); 1793 start_pos = round_down(pos, root->sectorsize); 1794 if (start_pos > i_size_read(inode)) { 1795 /* Expand hole size to cover write data, preventing empty gap */ 1796 end_pos = round_up(pos + count, root->sectorsize); 1797 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos); 1798 if (err) { 1799 mutex_unlock(&inode->i_mutex); 1800 goto out; 1801 } 1802 } 1803 1804 if (sync) 1805 atomic_inc(&BTRFS_I(inode)->sync_writers); 1806 1807 if (iocb->ki_flags & IOCB_DIRECT) { 1808 num_written = __btrfs_direct_write(iocb, from, pos); 1809 } else { 1810 num_written = __btrfs_buffered_write(file, from, pos); 1811 if (num_written > 0) 1812 iocb->ki_pos = pos + num_written; 1813 } 1814 1815 mutex_unlock(&inode->i_mutex); 1816 1817 /* 1818 * We also have to set last_sub_trans to the current log transid, 1819 * otherwise subsequent syncs to a file that's been synced in this 1820 * transaction will appear to have already occured. 1821 */ 1822 spin_lock(&BTRFS_I(inode)->lock); 1823 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1824 spin_unlock(&BTRFS_I(inode)->lock); 1825 if (num_written > 0) { 1826 err = generic_write_sync(file, pos, num_written); 1827 if (err < 0) 1828 num_written = err; 1829 } 1830 1831 if (sync) 1832 atomic_dec(&BTRFS_I(inode)->sync_writers); 1833 out: 1834 current->backing_dev_info = NULL; 1835 return num_written ? num_written : err; 1836 } 1837 1838 int btrfs_release_file(struct inode *inode, struct file *filp) 1839 { 1840 if (filp->private_data) 1841 btrfs_ioctl_trans_end(filp); 1842 /* 1843 * ordered_data_close is set by settattr when we are about to truncate 1844 * a file from a non-zero size to a zero size. This tries to 1845 * flush down new bytes that may have been written if the 1846 * application were using truncate to replace a file in place. 1847 */ 1848 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 1849 &BTRFS_I(inode)->runtime_flags)) 1850 filemap_flush(inode->i_mapping); 1851 return 0; 1852 } 1853 1854 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 1855 { 1856 int ret; 1857 1858 atomic_inc(&BTRFS_I(inode)->sync_writers); 1859 ret = btrfs_fdatawrite_range(inode, start, end); 1860 atomic_dec(&BTRFS_I(inode)->sync_writers); 1861 1862 return ret; 1863 } 1864 1865 /* 1866 * fsync call for both files and directories. This logs the inode into 1867 * the tree log instead of forcing full commits whenever possible. 1868 * 1869 * It needs to call filemap_fdatawait so that all ordered extent updates are 1870 * in the metadata btree are up to date for copying to the log. 1871 * 1872 * It drops the inode mutex before doing the tree log commit. This is an 1873 * important optimization for directories because holding the mutex prevents 1874 * new operations on the dir while we write to disk. 1875 */ 1876 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1877 { 1878 struct dentry *dentry = file->f_path.dentry; 1879 struct inode *inode = d_inode(dentry); 1880 struct btrfs_root *root = BTRFS_I(inode)->root; 1881 struct btrfs_trans_handle *trans; 1882 struct btrfs_log_ctx ctx; 1883 int ret = 0; 1884 bool full_sync = 0; 1885 const u64 len = end - start + 1; 1886 1887 trace_btrfs_sync_file(file, datasync); 1888 1889 /* 1890 * We write the dirty pages in the range and wait until they complete 1891 * out of the ->i_mutex. If so, we can flush the dirty pages by 1892 * multi-task, and make the performance up. See 1893 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1894 */ 1895 ret = start_ordered_ops(inode, start, end); 1896 if (ret) 1897 return ret; 1898 1899 mutex_lock(&inode->i_mutex); 1900 atomic_inc(&root->log_batch); 1901 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1902 &BTRFS_I(inode)->runtime_flags); 1903 /* 1904 * We might have have had more pages made dirty after calling 1905 * start_ordered_ops and before acquiring the inode's i_mutex. 1906 */ 1907 if (full_sync) { 1908 /* 1909 * For a full sync, we need to make sure any ordered operations 1910 * start and finish before we start logging the inode, so that 1911 * all extents are persisted and the respective file extent 1912 * items are in the fs/subvol btree. 1913 */ 1914 ret = btrfs_wait_ordered_range(inode, start, len); 1915 } else { 1916 /* 1917 * Start any new ordered operations before starting to log the 1918 * inode. We will wait for them to finish in btrfs_sync_log(). 1919 * 1920 * Right before acquiring the inode's mutex, we might have new 1921 * writes dirtying pages, which won't immediately start the 1922 * respective ordered operations - that is done through the 1923 * fill_delalloc callbacks invoked from the writepage and 1924 * writepages address space operations. So make sure we start 1925 * all ordered operations before starting to log our inode. Not 1926 * doing this means that while logging the inode, writeback 1927 * could start and invoke writepage/writepages, which would call 1928 * the fill_delalloc callbacks (cow_file_range, 1929 * submit_compressed_extents). These callbacks add first an 1930 * extent map to the modified list of extents and then create 1931 * the respective ordered operation, which means in 1932 * tree-log.c:btrfs_log_inode() we might capture all existing 1933 * ordered operations (with btrfs_get_logged_extents()) before 1934 * the fill_delalloc callback adds its ordered operation, and by 1935 * the time we visit the modified list of extent maps (with 1936 * btrfs_log_changed_extents()), we see and process the extent 1937 * map they created. We then use the extent map to construct a 1938 * file extent item for logging without waiting for the 1939 * respective ordered operation to finish - this file extent 1940 * item points to a disk location that might not have yet been 1941 * written to, containing random data - so after a crash a log 1942 * replay will make our inode have file extent items that point 1943 * to disk locations containing invalid data, as we returned 1944 * success to userspace without waiting for the respective 1945 * ordered operation to finish, because it wasn't captured by 1946 * btrfs_get_logged_extents(). 1947 */ 1948 ret = start_ordered_ops(inode, start, end); 1949 } 1950 if (ret) { 1951 mutex_unlock(&inode->i_mutex); 1952 goto out; 1953 } 1954 atomic_inc(&root->log_batch); 1955 1956 /* 1957 * If the last transaction that changed this file was before the current 1958 * transaction and we have the full sync flag set in our inode, we can 1959 * bail out now without any syncing. 1960 * 1961 * Note that we can't bail out if the full sync flag isn't set. This is 1962 * because when the full sync flag is set we start all ordered extents 1963 * and wait for them to fully complete - when they complete they update 1964 * the inode's last_trans field through: 1965 * 1966 * btrfs_finish_ordered_io() -> 1967 * btrfs_update_inode_fallback() -> 1968 * btrfs_update_inode() -> 1969 * btrfs_set_inode_last_trans() 1970 * 1971 * So we are sure that last_trans is up to date and can do this check to 1972 * bail out safely. For the fast path, when the full sync flag is not 1973 * set in our inode, we can not do it because we start only our ordered 1974 * extents and don't wait for them to complete (that is when 1975 * btrfs_finish_ordered_io runs), so here at this point their last_trans 1976 * value might be less than or equals to fs_info->last_trans_committed, 1977 * and setting a speculative last_trans for an inode when a buffered 1978 * write is made (such as fs_info->generation + 1 for example) would not 1979 * be reliable since after setting the value and before fsync is called 1980 * any number of transactions can start and commit (transaction kthread 1981 * commits the current transaction periodically), and a transaction 1982 * commit does not start nor waits for ordered extents to complete. 1983 */ 1984 smp_mb(); 1985 if (btrfs_inode_in_log(inode, root->fs_info->generation) || 1986 (BTRFS_I(inode)->last_trans <= 1987 root->fs_info->last_trans_committed && 1988 (full_sync || 1989 !btrfs_have_ordered_extents_in_range(inode, start, len)))) { 1990 /* 1991 * We'v had everything committed since the last time we were 1992 * modified so clear this flag in case it was set for whatever 1993 * reason, it's no longer relevant. 1994 */ 1995 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1996 &BTRFS_I(inode)->runtime_flags); 1997 mutex_unlock(&inode->i_mutex); 1998 goto out; 1999 } 2000 2001 /* 2002 * ok we haven't committed the transaction yet, lets do a commit 2003 */ 2004 if (file->private_data) 2005 btrfs_ioctl_trans_end(file); 2006 2007 /* 2008 * We use start here because we will need to wait on the IO to complete 2009 * in btrfs_sync_log, which could require joining a transaction (for 2010 * example checking cross references in the nocow path). If we use join 2011 * here we could get into a situation where we're waiting on IO to 2012 * happen that is blocked on a transaction trying to commit. With start 2013 * we inc the extwriter counter, so we wait for all extwriters to exit 2014 * before we start blocking join'ers. This comment is to keep somebody 2015 * from thinking they are super smart and changing this to 2016 * btrfs_join_transaction *cough*Josef*cough*. 2017 */ 2018 trans = btrfs_start_transaction(root, 0); 2019 if (IS_ERR(trans)) { 2020 ret = PTR_ERR(trans); 2021 mutex_unlock(&inode->i_mutex); 2022 goto out; 2023 } 2024 trans->sync = true; 2025 2026 btrfs_init_log_ctx(&ctx); 2027 2028 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx); 2029 if (ret < 0) { 2030 /* Fallthrough and commit/free transaction. */ 2031 ret = 1; 2032 } 2033 2034 /* we've logged all the items and now have a consistent 2035 * version of the file in the log. It is possible that 2036 * someone will come in and modify the file, but that's 2037 * fine because the log is consistent on disk, and we 2038 * have references to all of the file's extents 2039 * 2040 * It is possible that someone will come in and log the 2041 * file again, but that will end up using the synchronization 2042 * inside btrfs_sync_log to keep things safe. 2043 */ 2044 mutex_unlock(&inode->i_mutex); 2045 2046 /* 2047 * If any of the ordered extents had an error, just return it to user 2048 * space, so that the application knows some writes didn't succeed and 2049 * can take proper action (retry for e.g.). Blindly committing the 2050 * transaction in this case, would fool userspace that everything was 2051 * successful. And we also want to make sure our log doesn't contain 2052 * file extent items pointing to extents that weren't fully written to - 2053 * just like in the non fast fsync path, where we check for the ordered 2054 * operation's error flag before writing to the log tree and return -EIO 2055 * if any of them had this flag set (btrfs_wait_ordered_range) - 2056 * therefore we need to check for errors in the ordered operations, 2057 * which are indicated by ctx.io_err. 2058 */ 2059 if (ctx.io_err) { 2060 btrfs_end_transaction(trans, root); 2061 ret = ctx.io_err; 2062 goto out; 2063 } 2064 2065 if (ret != BTRFS_NO_LOG_SYNC) { 2066 if (!ret) { 2067 ret = btrfs_sync_log(trans, root, &ctx); 2068 if (!ret) { 2069 ret = btrfs_end_transaction(trans, root); 2070 goto out; 2071 } 2072 } 2073 if (!full_sync) { 2074 ret = btrfs_wait_ordered_range(inode, start, 2075 end - start + 1); 2076 if (ret) { 2077 btrfs_end_transaction(trans, root); 2078 goto out; 2079 } 2080 } 2081 ret = btrfs_commit_transaction(trans, root); 2082 } else { 2083 ret = btrfs_end_transaction(trans, root); 2084 } 2085 out: 2086 return ret > 0 ? -EIO : ret; 2087 } 2088 2089 static const struct vm_operations_struct btrfs_file_vm_ops = { 2090 .fault = filemap_fault, 2091 .map_pages = filemap_map_pages, 2092 .page_mkwrite = btrfs_page_mkwrite, 2093 }; 2094 2095 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2096 { 2097 struct address_space *mapping = filp->f_mapping; 2098 2099 if (!mapping->a_ops->readpage) 2100 return -ENOEXEC; 2101 2102 file_accessed(filp); 2103 vma->vm_ops = &btrfs_file_vm_ops; 2104 2105 return 0; 2106 } 2107 2108 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf, 2109 int slot, u64 start, u64 end) 2110 { 2111 struct btrfs_file_extent_item *fi; 2112 struct btrfs_key key; 2113 2114 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2115 return 0; 2116 2117 btrfs_item_key_to_cpu(leaf, &key, slot); 2118 if (key.objectid != btrfs_ino(inode) || 2119 key.type != BTRFS_EXTENT_DATA_KEY) 2120 return 0; 2121 2122 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2123 2124 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2125 return 0; 2126 2127 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2128 return 0; 2129 2130 if (key.offset == end) 2131 return 1; 2132 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2133 return 1; 2134 return 0; 2135 } 2136 2137 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode, 2138 struct btrfs_path *path, u64 offset, u64 end) 2139 { 2140 struct btrfs_root *root = BTRFS_I(inode)->root; 2141 struct extent_buffer *leaf; 2142 struct btrfs_file_extent_item *fi; 2143 struct extent_map *hole_em; 2144 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2145 struct btrfs_key key; 2146 int ret; 2147 2148 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) 2149 goto out; 2150 2151 key.objectid = btrfs_ino(inode); 2152 key.type = BTRFS_EXTENT_DATA_KEY; 2153 key.offset = offset; 2154 2155 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2156 if (ret < 0) 2157 return ret; 2158 BUG_ON(!ret); 2159 2160 leaf = path->nodes[0]; 2161 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) { 2162 u64 num_bytes; 2163 2164 path->slots[0]--; 2165 fi = btrfs_item_ptr(leaf, path->slots[0], 2166 struct btrfs_file_extent_item); 2167 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2168 end - offset; 2169 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2170 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2171 btrfs_set_file_extent_offset(leaf, fi, 0); 2172 btrfs_mark_buffer_dirty(leaf); 2173 goto out; 2174 } 2175 2176 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2177 u64 num_bytes; 2178 2179 key.offset = offset; 2180 btrfs_set_item_key_safe(root->fs_info, path, &key); 2181 fi = btrfs_item_ptr(leaf, path->slots[0], 2182 struct btrfs_file_extent_item); 2183 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2184 offset; 2185 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2186 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2187 btrfs_set_file_extent_offset(leaf, fi, 0); 2188 btrfs_mark_buffer_dirty(leaf); 2189 goto out; 2190 } 2191 btrfs_release_path(path); 2192 2193 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 2194 0, 0, end - offset, 0, end - offset, 2195 0, 0, 0); 2196 if (ret) 2197 return ret; 2198 2199 out: 2200 btrfs_release_path(path); 2201 2202 hole_em = alloc_extent_map(); 2203 if (!hole_em) { 2204 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2205 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2206 &BTRFS_I(inode)->runtime_flags); 2207 } else { 2208 hole_em->start = offset; 2209 hole_em->len = end - offset; 2210 hole_em->ram_bytes = hole_em->len; 2211 hole_em->orig_start = offset; 2212 2213 hole_em->block_start = EXTENT_MAP_HOLE; 2214 hole_em->block_len = 0; 2215 hole_em->orig_block_len = 0; 2216 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 2217 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2218 hole_em->generation = trans->transid; 2219 2220 do { 2221 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2222 write_lock(&em_tree->lock); 2223 ret = add_extent_mapping(em_tree, hole_em, 1); 2224 write_unlock(&em_tree->lock); 2225 } while (ret == -EEXIST); 2226 free_extent_map(hole_em); 2227 if (ret) 2228 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2229 &BTRFS_I(inode)->runtime_flags); 2230 } 2231 2232 return 0; 2233 } 2234 2235 /* 2236 * Find a hole extent on given inode and change start/len to the end of hole 2237 * extent.(hole/vacuum extent whose em->start <= start && 2238 * em->start + em->len > start) 2239 * When a hole extent is found, return 1 and modify start/len. 2240 */ 2241 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2242 { 2243 struct extent_map *em; 2244 int ret = 0; 2245 2246 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0); 2247 if (IS_ERR_OR_NULL(em)) { 2248 if (!em) 2249 ret = -ENOMEM; 2250 else 2251 ret = PTR_ERR(em); 2252 return ret; 2253 } 2254 2255 /* Hole or vacuum extent(only exists in no-hole mode) */ 2256 if (em->block_start == EXTENT_MAP_HOLE) { 2257 ret = 1; 2258 *len = em->start + em->len > *start + *len ? 2259 0 : *start + *len - em->start - em->len; 2260 *start = em->start + em->len; 2261 } 2262 free_extent_map(em); 2263 return ret; 2264 } 2265 2266 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2267 { 2268 struct btrfs_root *root = BTRFS_I(inode)->root; 2269 struct extent_state *cached_state = NULL; 2270 struct btrfs_path *path; 2271 struct btrfs_block_rsv *rsv; 2272 struct btrfs_trans_handle *trans; 2273 u64 lockstart; 2274 u64 lockend; 2275 u64 tail_start; 2276 u64 tail_len; 2277 u64 orig_start = offset; 2278 u64 cur_offset; 2279 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 2280 u64 drop_end; 2281 int ret = 0; 2282 int err = 0; 2283 unsigned int rsv_count; 2284 bool same_page; 2285 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES); 2286 u64 ino_size; 2287 bool truncated_page = false; 2288 bool updated_inode = false; 2289 2290 ret = btrfs_wait_ordered_range(inode, offset, len); 2291 if (ret) 2292 return ret; 2293 2294 mutex_lock(&inode->i_mutex); 2295 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE); 2296 ret = find_first_non_hole(inode, &offset, &len); 2297 if (ret < 0) 2298 goto out_only_mutex; 2299 if (ret && !len) { 2300 /* Already in a large hole */ 2301 ret = 0; 2302 goto out_only_mutex; 2303 } 2304 2305 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize); 2306 lockend = round_down(offset + len, 2307 BTRFS_I(inode)->root->sectorsize) - 1; 2308 same_page = ((offset >> PAGE_CACHE_SHIFT) == 2309 ((offset + len - 1) >> PAGE_CACHE_SHIFT)); 2310 2311 /* 2312 * We needn't truncate any page which is beyond the end of the file 2313 * because we are sure there is no data there. 2314 */ 2315 /* 2316 * Only do this if we are in the same page and we aren't doing the 2317 * entire page. 2318 */ 2319 if (same_page && len < PAGE_CACHE_SIZE) { 2320 if (offset < ino_size) { 2321 truncated_page = true; 2322 ret = btrfs_truncate_page(inode, offset, len, 0); 2323 } else { 2324 ret = 0; 2325 } 2326 goto out_only_mutex; 2327 } 2328 2329 /* zero back part of the first page */ 2330 if (offset < ino_size) { 2331 truncated_page = true; 2332 ret = btrfs_truncate_page(inode, offset, 0, 0); 2333 if (ret) { 2334 mutex_unlock(&inode->i_mutex); 2335 return ret; 2336 } 2337 } 2338 2339 /* Check the aligned pages after the first unaligned page, 2340 * if offset != orig_start, which means the first unaligned page 2341 * including serveral following pages are already in holes, 2342 * the extra check can be skipped */ 2343 if (offset == orig_start) { 2344 /* after truncate page, check hole again */ 2345 len = offset + len - lockstart; 2346 offset = lockstart; 2347 ret = find_first_non_hole(inode, &offset, &len); 2348 if (ret < 0) 2349 goto out_only_mutex; 2350 if (ret && !len) { 2351 ret = 0; 2352 goto out_only_mutex; 2353 } 2354 lockstart = offset; 2355 } 2356 2357 /* Check the tail unaligned part is in a hole */ 2358 tail_start = lockend + 1; 2359 tail_len = offset + len - tail_start; 2360 if (tail_len) { 2361 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2362 if (unlikely(ret < 0)) 2363 goto out_only_mutex; 2364 if (!ret) { 2365 /* zero the front end of the last page */ 2366 if (tail_start + tail_len < ino_size) { 2367 truncated_page = true; 2368 ret = btrfs_truncate_page(inode, 2369 tail_start + tail_len, 0, 1); 2370 if (ret) 2371 goto out_only_mutex; 2372 } 2373 } 2374 } 2375 2376 if (lockend < lockstart) { 2377 ret = 0; 2378 goto out_only_mutex; 2379 } 2380 2381 while (1) { 2382 struct btrfs_ordered_extent *ordered; 2383 2384 truncate_pagecache_range(inode, lockstart, lockend); 2385 2386 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2387 0, &cached_state); 2388 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2389 2390 /* 2391 * We need to make sure we have no ordered extents in this range 2392 * and nobody raced in and read a page in this range, if we did 2393 * we need to try again. 2394 */ 2395 if ((!ordered || 2396 (ordered->file_offset + ordered->len <= lockstart || 2397 ordered->file_offset > lockend)) && 2398 !btrfs_page_exists_in_range(inode, lockstart, lockend)) { 2399 if (ordered) 2400 btrfs_put_ordered_extent(ordered); 2401 break; 2402 } 2403 if (ordered) 2404 btrfs_put_ordered_extent(ordered); 2405 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2406 lockend, &cached_state, GFP_NOFS); 2407 ret = btrfs_wait_ordered_range(inode, lockstart, 2408 lockend - lockstart + 1); 2409 if (ret) { 2410 mutex_unlock(&inode->i_mutex); 2411 return ret; 2412 } 2413 } 2414 2415 path = btrfs_alloc_path(); 2416 if (!path) { 2417 ret = -ENOMEM; 2418 goto out; 2419 } 2420 2421 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2422 if (!rsv) { 2423 ret = -ENOMEM; 2424 goto out_free; 2425 } 2426 rsv->size = btrfs_calc_trunc_metadata_size(root, 1); 2427 rsv->failfast = 1; 2428 2429 /* 2430 * 1 - update the inode 2431 * 1 - removing the extents in the range 2432 * 1 - adding the hole extent if no_holes isn't set 2433 */ 2434 rsv_count = no_holes ? 2 : 3; 2435 trans = btrfs_start_transaction(root, rsv_count); 2436 if (IS_ERR(trans)) { 2437 err = PTR_ERR(trans); 2438 goto out_free; 2439 } 2440 2441 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 2442 min_size); 2443 BUG_ON(ret); 2444 trans->block_rsv = rsv; 2445 2446 cur_offset = lockstart; 2447 len = lockend - cur_offset; 2448 while (cur_offset < lockend) { 2449 ret = __btrfs_drop_extents(trans, root, inode, path, 2450 cur_offset, lockend + 1, 2451 &drop_end, 1, 0, 0, NULL); 2452 if (ret != -ENOSPC) 2453 break; 2454 2455 trans->block_rsv = &root->fs_info->trans_block_rsv; 2456 2457 if (cur_offset < ino_size) { 2458 ret = fill_holes(trans, inode, path, cur_offset, 2459 drop_end); 2460 if (ret) { 2461 err = ret; 2462 break; 2463 } 2464 } 2465 2466 cur_offset = drop_end; 2467 2468 ret = btrfs_update_inode(trans, root, inode); 2469 if (ret) { 2470 err = ret; 2471 break; 2472 } 2473 2474 btrfs_end_transaction(trans, root); 2475 btrfs_btree_balance_dirty(root); 2476 2477 trans = btrfs_start_transaction(root, rsv_count); 2478 if (IS_ERR(trans)) { 2479 ret = PTR_ERR(trans); 2480 trans = NULL; 2481 break; 2482 } 2483 2484 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 2485 rsv, min_size); 2486 BUG_ON(ret); /* shouldn't happen */ 2487 trans->block_rsv = rsv; 2488 2489 ret = find_first_non_hole(inode, &cur_offset, &len); 2490 if (unlikely(ret < 0)) 2491 break; 2492 if (ret && !len) { 2493 ret = 0; 2494 break; 2495 } 2496 } 2497 2498 if (ret) { 2499 err = ret; 2500 goto out_trans; 2501 } 2502 2503 trans->block_rsv = &root->fs_info->trans_block_rsv; 2504 /* 2505 * If we are using the NO_HOLES feature we might have had already an 2506 * hole that overlaps a part of the region [lockstart, lockend] and 2507 * ends at (or beyond) lockend. Since we have no file extent items to 2508 * represent holes, drop_end can be less than lockend and so we must 2509 * make sure we have an extent map representing the existing hole (the 2510 * call to __btrfs_drop_extents() might have dropped the existing extent 2511 * map representing the existing hole), otherwise the fast fsync path 2512 * will not record the existence of the hole region 2513 * [existing_hole_start, lockend]. 2514 */ 2515 if (drop_end <= lockend) 2516 drop_end = lockend + 1; 2517 /* 2518 * Don't insert file hole extent item if it's for a range beyond eof 2519 * (because it's useless) or if it represents a 0 bytes range (when 2520 * cur_offset == drop_end). 2521 */ 2522 if (cur_offset < ino_size && cur_offset < drop_end) { 2523 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2524 if (ret) { 2525 err = ret; 2526 goto out_trans; 2527 } 2528 } 2529 2530 out_trans: 2531 if (!trans) 2532 goto out_free; 2533 2534 inode_inc_iversion(inode); 2535 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2536 2537 trans->block_rsv = &root->fs_info->trans_block_rsv; 2538 ret = btrfs_update_inode(trans, root, inode); 2539 updated_inode = true; 2540 btrfs_end_transaction(trans, root); 2541 btrfs_btree_balance_dirty(root); 2542 out_free: 2543 btrfs_free_path(path); 2544 btrfs_free_block_rsv(root, rsv); 2545 out: 2546 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2547 &cached_state, GFP_NOFS); 2548 out_only_mutex: 2549 if (!updated_inode && truncated_page && !ret && !err) { 2550 /* 2551 * If we only end up zeroing part of a page, we still need to 2552 * update the inode item, so that all the time fields are 2553 * updated as well as the necessary btrfs inode in memory fields 2554 * for detecting, at fsync time, if the inode isn't yet in the 2555 * log tree or it's there but not up to date. 2556 */ 2557 trans = btrfs_start_transaction(root, 1); 2558 if (IS_ERR(trans)) { 2559 err = PTR_ERR(trans); 2560 } else { 2561 err = btrfs_update_inode(trans, root, inode); 2562 ret = btrfs_end_transaction(trans, root); 2563 } 2564 } 2565 mutex_unlock(&inode->i_mutex); 2566 if (ret && !err) 2567 err = ret; 2568 return err; 2569 } 2570 2571 /* Helper structure to record which range is already reserved */ 2572 struct falloc_range { 2573 struct list_head list; 2574 u64 start; 2575 u64 len; 2576 }; 2577 2578 /* 2579 * Helper function to add falloc range 2580 * 2581 * Caller should have locked the larger range of extent containing 2582 * [start, len) 2583 */ 2584 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2585 { 2586 struct falloc_range *prev = NULL; 2587 struct falloc_range *range = NULL; 2588 2589 if (list_empty(head)) 2590 goto insert; 2591 2592 /* 2593 * As fallocate iterate by bytenr order, we only need to check 2594 * the last range. 2595 */ 2596 prev = list_entry(head->prev, struct falloc_range, list); 2597 if (prev->start + prev->len == start) { 2598 prev->len += len; 2599 return 0; 2600 } 2601 insert: 2602 range = kmalloc(sizeof(*range), GFP_NOFS); 2603 if (!range) 2604 return -ENOMEM; 2605 range->start = start; 2606 range->len = len; 2607 list_add_tail(&range->list, head); 2608 return 0; 2609 } 2610 2611 static long btrfs_fallocate(struct file *file, int mode, 2612 loff_t offset, loff_t len) 2613 { 2614 struct inode *inode = file_inode(file); 2615 struct extent_state *cached_state = NULL; 2616 struct falloc_range *range; 2617 struct falloc_range *tmp; 2618 struct list_head reserve_list; 2619 u64 cur_offset; 2620 u64 last_byte; 2621 u64 alloc_start; 2622 u64 alloc_end; 2623 u64 alloc_hint = 0; 2624 u64 locked_end; 2625 u64 actual_end = 0; 2626 struct extent_map *em; 2627 int blocksize = BTRFS_I(inode)->root->sectorsize; 2628 int ret; 2629 2630 alloc_start = round_down(offset, blocksize); 2631 alloc_end = round_up(offset + len, blocksize); 2632 2633 /* Make sure we aren't being give some crap mode */ 2634 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2635 return -EOPNOTSUPP; 2636 2637 if (mode & FALLOC_FL_PUNCH_HOLE) 2638 return btrfs_punch_hole(inode, offset, len); 2639 2640 /* 2641 * Only trigger disk allocation, don't trigger qgroup reserve 2642 * 2643 * For qgroup space, it will be checked later. 2644 */ 2645 ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start); 2646 if (ret < 0) 2647 return ret; 2648 2649 mutex_lock(&inode->i_mutex); 2650 ret = inode_newsize_ok(inode, alloc_end); 2651 if (ret) 2652 goto out; 2653 2654 /* 2655 * TODO: Move these two operations after we have checked 2656 * accurate reserved space, or fallocate can still fail but 2657 * with page truncated or size expanded. 2658 * 2659 * But that's a minor problem and won't do much harm BTW. 2660 */ 2661 if (alloc_start > inode->i_size) { 2662 ret = btrfs_cont_expand(inode, i_size_read(inode), 2663 alloc_start); 2664 if (ret) 2665 goto out; 2666 } else if (offset + len > inode->i_size) { 2667 /* 2668 * If we are fallocating from the end of the file onward we 2669 * need to zero out the end of the page if i_size lands in the 2670 * middle of a page. 2671 */ 2672 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0); 2673 if (ret) 2674 goto out; 2675 } 2676 2677 /* 2678 * wait for ordered IO before we have any locks. We'll loop again 2679 * below with the locks held. 2680 */ 2681 ret = btrfs_wait_ordered_range(inode, alloc_start, 2682 alloc_end - alloc_start); 2683 if (ret) 2684 goto out; 2685 2686 locked_end = alloc_end - 1; 2687 while (1) { 2688 struct btrfs_ordered_extent *ordered; 2689 2690 /* the extent lock is ordered inside the running 2691 * transaction 2692 */ 2693 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 2694 locked_end, 0, &cached_state); 2695 ordered = btrfs_lookup_first_ordered_extent(inode, 2696 alloc_end - 1); 2697 if (ordered && 2698 ordered->file_offset + ordered->len > alloc_start && 2699 ordered->file_offset < alloc_end) { 2700 btrfs_put_ordered_extent(ordered); 2701 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 2702 alloc_start, locked_end, 2703 &cached_state, GFP_NOFS); 2704 /* 2705 * we can't wait on the range with the transaction 2706 * running or with the extent lock held 2707 */ 2708 ret = btrfs_wait_ordered_range(inode, alloc_start, 2709 alloc_end - alloc_start); 2710 if (ret) 2711 goto out; 2712 } else { 2713 if (ordered) 2714 btrfs_put_ordered_extent(ordered); 2715 break; 2716 } 2717 } 2718 2719 /* First, check if we exceed the qgroup limit */ 2720 INIT_LIST_HEAD(&reserve_list); 2721 cur_offset = alloc_start; 2722 while (1) { 2723 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2724 alloc_end - cur_offset, 0); 2725 if (IS_ERR_OR_NULL(em)) { 2726 if (!em) 2727 ret = -ENOMEM; 2728 else 2729 ret = PTR_ERR(em); 2730 break; 2731 } 2732 last_byte = min(extent_map_end(em), alloc_end); 2733 actual_end = min_t(u64, extent_map_end(em), offset + len); 2734 last_byte = ALIGN(last_byte, blocksize); 2735 if (em->block_start == EXTENT_MAP_HOLE || 2736 (cur_offset >= inode->i_size && 2737 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 2738 ret = add_falloc_range(&reserve_list, cur_offset, 2739 last_byte - cur_offset); 2740 if (ret < 0) { 2741 free_extent_map(em); 2742 break; 2743 } 2744 ret = btrfs_qgroup_reserve_data(inode, cur_offset, 2745 last_byte - cur_offset); 2746 if (ret < 0) 2747 break; 2748 } 2749 free_extent_map(em); 2750 cur_offset = last_byte; 2751 if (cur_offset >= alloc_end) 2752 break; 2753 } 2754 2755 /* 2756 * If ret is still 0, means we're OK to fallocate. 2757 * Or just cleanup the list and exit. 2758 */ 2759 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 2760 if (!ret) 2761 ret = btrfs_prealloc_file_range(inode, mode, 2762 range->start, 2763 range->len, 1 << inode->i_blkbits, 2764 offset + len, &alloc_hint); 2765 list_del(&range->list); 2766 kfree(range); 2767 } 2768 if (ret < 0) 2769 goto out_unlock; 2770 2771 if (actual_end > inode->i_size && 2772 !(mode & FALLOC_FL_KEEP_SIZE)) { 2773 struct btrfs_trans_handle *trans; 2774 struct btrfs_root *root = BTRFS_I(inode)->root; 2775 2776 /* 2777 * We didn't need to allocate any more space, but we 2778 * still extended the size of the file so we need to 2779 * update i_size and the inode item. 2780 */ 2781 trans = btrfs_start_transaction(root, 1); 2782 if (IS_ERR(trans)) { 2783 ret = PTR_ERR(trans); 2784 } else { 2785 inode->i_ctime = CURRENT_TIME; 2786 i_size_write(inode, actual_end); 2787 btrfs_ordered_update_i_size(inode, actual_end, NULL); 2788 ret = btrfs_update_inode(trans, root, inode); 2789 if (ret) 2790 btrfs_end_transaction(trans, root); 2791 else 2792 ret = btrfs_end_transaction(trans, root); 2793 } 2794 } 2795 out_unlock: 2796 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 2797 &cached_state, GFP_NOFS); 2798 out: 2799 /* 2800 * As we waited the extent range, the data_rsv_map must be empty 2801 * in the range, as written data range will be released from it. 2802 * And for prealloacted extent, it will also be released when 2803 * its metadata is written. 2804 * So this is completely used as cleanup. 2805 */ 2806 btrfs_qgroup_free_data(inode, alloc_start, alloc_end - alloc_start); 2807 mutex_unlock(&inode->i_mutex); 2808 /* Let go of our reservation. */ 2809 btrfs_free_reserved_data_space(inode, alloc_start, 2810 alloc_end - alloc_start); 2811 return ret; 2812 } 2813 2814 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 2815 { 2816 struct btrfs_root *root = BTRFS_I(inode)->root; 2817 struct extent_map *em = NULL; 2818 struct extent_state *cached_state = NULL; 2819 u64 lockstart; 2820 u64 lockend; 2821 u64 start; 2822 u64 len; 2823 int ret = 0; 2824 2825 if (inode->i_size == 0) 2826 return -ENXIO; 2827 2828 /* 2829 * *offset can be negative, in this case we start finding DATA/HOLE from 2830 * the very start of the file. 2831 */ 2832 start = max_t(loff_t, 0, *offset); 2833 2834 lockstart = round_down(start, root->sectorsize); 2835 lockend = round_up(i_size_read(inode), root->sectorsize); 2836 if (lockend <= lockstart) 2837 lockend = lockstart + root->sectorsize; 2838 lockend--; 2839 len = lockend - lockstart + 1; 2840 2841 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0, 2842 &cached_state); 2843 2844 while (start < inode->i_size) { 2845 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0); 2846 if (IS_ERR(em)) { 2847 ret = PTR_ERR(em); 2848 em = NULL; 2849 break; 2850 } 2851 2852 if (whence == SEEK_HOLE && 2853 (em->block_start == EXTENT_MAP_HOLE || 2854 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2855 break; 2856 else if (whence == SEEK_DATA && 2857 (em->block_start != EXTENT_MAP_HOLE && 2858 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2859 break; 2860 2861 start = em->start + em->len; 2862 free_extent_map(em); 2863 em = NULL; 2864 cond_resched(); 2865 } 2866 free_extent_map(em); 2867 if (!ret) { 2868 if (whence == SEEK_DATA && start >= inode->i_size) 2869 ret = -ENXIO; 2870 else 2871 *offset = min_t(loff_t, start, inode->i_size); 2872 } 2873 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2874 &cached_state, GFP_NOFS); 2875 return ret; 2876 } 2877 2878 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 2879 { 2880 struct inode *inode = file->f_mapping->host; 2881 int ret; 2882 2883 mutex_lock(&inode->i_mutex); 2884 switch (whence) { 2885 case SEEK_END: 2886 case SEEK_CUR: 2887 offset = generic_file_llseek(file, offset, whence); 2888 goto out; 2889 case SEEK_DATA: 2890 case SEEK_HOLE: 2891 if (offset >= i_size_read(inode)) { 2892 mutex_unlock(&inode->i_mutex); 2893 return -ENXIO; 2894 } 2895 2896 ret = find_desired_extent(inode, &offset, whence); 2897 if (ret) { 2898 mutex_unlock(&inode->i_mutex); 2899 return ret; 2900 } 2901 } 2902 2903 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2904 out: 2905 mutex_unlock(&inode->i_mutex); 2906 return offset; 2907 } 2908 2909 const struct file_operations btrfs_file_operations = { 2910 .llseek = btrfs_file_llseek, 2911 .read_iter = generic_file_read_iter, 2912 .splice_read = generic_file_splice_read, 2913 .write_iter = btrfs_file_write_iter, 2914 .mmap = btrfs_file_mmap, 2915 .open = generic_file_open, 2916 .release = btrfs_release_file, 2917 .fsync = btrfs_sync_file, 2918 .fallocate = btrfs_fallocate, 2919 .unlocked_ioctl = btrfs_ioctl, 2920 #ifdef CONFIG_COMPAT 2921 .compat_ioctl = btrfs_ioctl, 2922 #endif 2923 }; 2924 2925 void btrfs_auto_defrag_exit(void) 2926 { 2927 if (btrfs_inode_defrag_cachep) 2928 kmem_cache_destroy(btrfs_inode_defrag_cachep); 2929 } 2930 2931 int btrfs_auto_defrag_init(void) 2932 { 2933 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 2934 sizeof(struct inode_defrag), 0, 2935 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 2936 NULL); 2937 if (!btrfs_inode_defrag_cachep) 2938 return -ENOMEM; 2939 2940 return 0; 2941 } 2942 2943 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 2944 { 2945 int ret; 2946 2947 /* 2948 * So with compression we will find and lock a dirty page and clear the 2949 * first one as dirty, setup an async extent, and immediately return 2950 * with the entire range locked but with nobody actually marked with 2951 * writeback. So we can't just filemap_write_and_wait_range() and 2952 * expect it to work since it will just kick off a thread to do the 2953 * actual work. So we need to call filemap_fdatawrite_range _again_ 2954 * since it will wait on the page lock, which won't be unlocked until 2955 * after the pages have been marked as writeback and so we're good to go 2956 * from there. We have to do this otherwise we'll miss the ordered 2957 * extents and that results in badness. Please Josef, do not think you 2958 * know better and pull this out at some point in the future, it is 2959 * right and you are wrong. 2960 */ 2961 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 2962 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 2963 &BTRFS_I(inode)->runtime_flags)) 2964 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 2965 2966 return ret; 2967 } 2968