xref: /linux/fs/btrfs/file.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
34 #include <linux/uio.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 #include "qgroup.h"
44 
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47  * when auto defrag is enabled we
48  * queue up these defrag structs to remember which
49  * inodes need defragging passes
50  */
51 struct inode_defrag {
52 	struct rb_node rb_node;
53 	/* objectid */
54 	u64 ino;
55 	/*
56 	 * transid where the defrag was added, we search for
57 	 * extents newer than this
58 	 */
59 	u64 transid;
60 
61 	/* root objectid */
62 	u64 root;
63 
64 	/* last offset we were able to defrag */
65 	u64 last_offset;
66 
67 	/* if we've wrapped around back to zero once already */
68 	int cycled;
69 };
70 
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 				  struct inode_defrag *defrag2)
73 {
74 	if (defrag1->root > defrag2->root)
75 		return 1;
76 	else if (defrag1->root < defrag2->root)
77 		return -1;
78 	else if (defrag1->ino > defrag2->ino)
79 		return 1;
80 	else if (defrag1->ino < defrag2->ino)
81 		return -1;
82 	else
83 		return 0;
84 }
85 
86 /* pop a record for an inode into the defrag tree.  The lock
87  * must be held already
88  *
89  * If you're inserting a record for an older transid than an
90  * existing record, the transid already in the tree is lowered
91  *
92  * If an existing record is found the defrag item you
93  * pass in is freed
94  */
95 static int __btrfs_add_inode_defrag(struct inode *inode,
96 				    struct inode_defrag *defrag)
97 {
98 	struct btrfs_root *root = BTRFS_I(inode)->root;
99 	struct inode_defrag *entry;
100 	struct rb_node **p;
101 	struct rb_node *parent = NULL;
102 	int ret;
103 
104 	p = &root->fs_info->defrag_inodes.rb_node;
105 	while (*p) {
106 		parent = *p;
107 		entry = rb_entry(parent, struct inode_defrag, rb_node);
108 
109 		ret = __compare_inode_defrag(defrag, entry);
110 		if (ret < 0)
111 			p = &parent->rb_left;
112 		else if (ret > 0)
113 			p = &parent->rb_right;
114 		else {
115 			/* if we're reinserting an entry for
116 			 * an old defrag run, make sure to
117 			 * lower the transid of our existing record
118 			 */
119 			if (defrag->transid < entry->transid)
120 				entry->transid = defrag->transid;
121 			if (defrag->last_offset > entry->last_offset)
122 				entry->last_offset = defrag->last_offset;
123 			return -EEXIST;
124 		}
125 	}
126 	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
127 	rb_link_node(&defrag->rb_node, parent, p);
128 	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
129 	return 0;
130 }
131 
132 static inline int __need_auto_defrag(struct btrfs_root *root)
133 {
134 	if (!btrfs_test_opt(root, AUTO_DEFRAG))
135 		return 0;
136 
137 	if (btrfs_fs_closing(root->fs_info))
138 		return 0;
139 
140 	return 1;
141 }
142 
143 /*
144  * insert a defrag record for this inode if auto defrag is
145  * enabled
146  */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 			   struct inode *inode)
149 {
150 	struct btrfs_root *root = BTRFS_I(inode)->root;
151 	struct inode_defrag *defrag;
152 	u64 transid;
153 	int ret;
154 
155 	if (!__need_auto_defrag(root))
156 		return 0;
157 
158 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
159 		return 0;
160 
161 	if (trans)
162 		transid = trans->transid;
163 	else
164 		transid = BTRFS_I(inode)->root->last_trans;
165 
166 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
167 	if (!defrag)
168 		return -ENOMEM;
169 
170 	defrag->ino = btrfs_ino(inode);
171 	defrag->transid = transid;
172 	defrag->root = root->root_key.objectid;
173 
174 	spin_lock(&root->fs_info->defrag_inodes_lock);
175 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176 		/*
177 		 * If we set IN_DEFRAG flag and evict the inode from memory,
178 		 * and then re-read this inode, this new inode doesn't have
179 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 		 */
181 		ret = __btrfs_add_inode_defrag(inode, defrag);
182 		if (ret)
183 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 	} else {
185 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
186 	}
187 	spin_unlock(&root->fs_info->defrag_inodes_lock);
188 	return 0;
189 }
190 
191 /*
192  * Requeue the defrag object. If there is a defrag object that points to
193  * the same inode in the tree, we will merge them together (by
194  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
195  */
196 static void btrfs_requeue_inode_defrag(struct inode *inode,
197 				       struct inode_defrag *defrag)
198 {
199 	struct btrfs_root *root = BTRFS_I(inode)->root;
200 	int ret;
201 
202 	if (!__need_auto_defrag(root))
203 		goto out;
204 
205 	/*
206 	 * Here we don't check the IN_DEFRAG flag, because we need merge
207 	 * them together.
208 	 */
209 	spin_lock(&root->fs_info->defrag_inodes_lock);
210 	ret = __btrfs_add_inode_defrag(inode, defrag);
211 	spin_unlock(&root->fs_info->defrag_inodes_lock);
212 	if (ret)
213 		goto out;
214 	return;
215 out:
216 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
217 }
218 
219 /*
220  * pick the defragable inode that we want, if it doesn't exist, we will get
221  * the next one.
222  */
223 static struct inode_defrag *
224 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
225 {
226 	struct inode_defrag *entry = NULL;
227 	struct inode_defrag tmp;
228 	struct rb_node *p;
229 	struct rb_node *parent = NULL;
230 	int ret;
231 
232 	tmp.ino = ino;
233 	tmp.root = root;
234 
235 	spin_lock(&fs_info->defrag_inodes_lock);
236 	p = fs_info->defrag_inodes.rb_node;
237 	while (p) {
238 		parent = p;
239 		entry = rb_entry(parent, struct inode_defrag, rb_node);
240 
241 		ret = __compare_inode_defrag(&tmp, entry);
242 		if (ret < 0)
243 			p = parent->rb_left;
244 		else if (ret > 0)
245 			p = parent->rb_right;
246 		else
247 			goto out;
248 	}
249 
250 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
251 		parent = rb_next(parent);
252 		if (parent)
253 			entry = rb_entry(parent, struct inode_defrag, rb_node);
254 		else
255 			entry = NULL;
256 	}
257 out:
258 	if (entry)
259 		rb_erase(parent, &fs_info->defrag_inodes);
260 	spin_unlock(&fs_info->defrag_inodes_lock);
261 	return entry;
262 }
263 
264 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
265 {
266 	struct inode_defrag *defrag;
267 	struct rb_node *node;
268 
269 	spin_lock(&fs_info->defrag_inodes_lock);
270 	node = rb_first(&fs_info->defrag_inodes);
271 	while (node) {
272 		rb_erase(node, &fs_info->defrag_inodes);
273 		defrag = rb_entry(node, struct inode_defrag, rb_node);
274 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275 
276 		cond_resched_lock(&fs_info->defrag_inodes_lock);
277 
278 		node = rb_first(&fs_info->defrag_inodes);
279 	}
280 	spin_unlock(&fs_info->defrag_inodes_lock);
281 }
282 
283 #define BTRFS_DEFRAG_BATCH	1024
284 
285 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
286 				    struct inode_defrag *defrag)
287 {
288 	struct btrfs_root *inode_root;
289 	struct inode *inode;
290 	struct btrfs_key key;
291 	struct btrfs_ioctl_defrag_range_args range;
292 	int num_defrag;
293 	int index;
294 	int ret;
295 
296 	/* get the inode */
297 	key.objectid = defrag->root;
298 	key.type = BTRFS_ROOT_ITEM_KEY;
299 	key.offset = (u64)-1;
300 
301 	index = srcu_read_lock(&fs_info->subvol_srcu);
302 
303 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
304 	if (IS_ERR(inode_root)) {
305 		ret = PTR_ERR(inode_root);
306 		goto cleanup;
307 	}
308 
309 	key.objectid = defrag->ino;
310 	key.type = BTRFS_INODE_ITEM_KEY;
311 	key.offset = 0;
312 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
313 	if (IS_ERR(inode)) {
314 		ret = PTR_ERR(inode);
315 		goto cleanup;
316 	}
317 	srcu_read_unlock(&fs_info->subvol_srcu, index);
318 
319 	/* do a chunk of defrag */
320 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
321 	memset(&range, 0, sizeof(range));
322 	range.len = (u64)-1;
323 	range.start = defrag->last_offset;
324 
325 	sb_start_write(fs_info->sb);
326 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
327 				       BTRFS_DEFRAG_BATCH);
328 	sb_end_write(fs_info->sb);
329 	/*
330 	 * if we filled the whole defrag batch, there
331 	 * must be more work to do.  Queue this defrag
332 	 * again
333 	 */
334 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
335 		defrag->last_offset = range.start;
336 		btrfs_requeue_inode_defrag(inode, defrag);
337 	} else if (defrag->last_offset && !defrag->cycled) {
338 		/*
339 		 * we didn't fill our defrag batch, but
340 		 * we didn't start at zero.  Make sure we loop
341 		 * around to the start of the file.
342 		 */
343 		defrag->last_offset = 0;
344 		defrag->cycled = 1;
345 		btrfs_requeue_inode_defrag(inode, defrag);
346 	} else {
347 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
348 	}
349 
350 	iput(inode);
351 	return 0;
352 cleanup:
353 	srcu_read_unlock(&fs_info->subvol_srcu, index);
354 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
355 	return ret;
356 }
357 
358 /*
359  * run through the list of inodes in the FS that need
360  * defragging
361  */
362 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
363 {
364 	struct inode_defrag *defrag;
365 	u64 first_ino = 0;
366 	u64 root_objectid = 0;
367 
368 	atomic_inc(&fs_info->defrag_running);
369 	while (1) {
370 		/* Pause the auto defragger. */
371 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
372 			     &fs_info->fs_state))
373 			break;
374 
375 		if (!__need_auto_defrag(fs_info->tree_root))
376 			break;
377 
378 		/* find an inode to defrag */
379 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
380 						 first_ino);
381 		if (!defrag) {
382 			if (root_objectid || first_ino) {
383 				root_objectid = 0;
384 				first_ino = 0;
385 				continue;
386 			} else {
387 				break;
388 			}
389 		}
390 
391 		first_ino = defrag->ino + 1;
392 		root_objectid = defrag->root;
393 
394 		__btrfs_run_defrag_inode(fs_info, defrag);
395 	}
396 	atomic_dec(&fs_info->defrag_running);
397 
398 	/*
399 	 * during unmount, we use the transaction_wait queue to
400 	 * wait for the defragger to stop
401 	 */
402 	wake_up(&fs_info->transaction_wait);
403 	return 0;
404 }
405 
406 /* simple helper to fault in pages and copy.  This should go away
407  * and be replaced with calls into generic code.
408  */
409 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
410 					 size_t write_bytes,
411 					 struct page **prepared_pages,
412 					 struct iov_iter *i)
413 {
414 	size_t copied = 0;
415 	size_t total_copied = 0;
416 	int pg = 0;
417 	int offset = pos & (PAGE_CACHE_SIZE - 1);
418 
419 	while (write_bytes > 0) {
420 		size_t count = min_t(size_t,
421 				     PAGE_CACHE_SIZE - offset, write_bytes);
422 		struct page *page = prepared_pages[pg];
423 		/*
424 		 * Copy data from userspace to the current page
425 		 */
426 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427 
428 		/* Flush processor's dcache for this page */
429 		flush_dcache_page(page);
430 
431 		/*
432 		 * if we get a partial write, we can end up with
433 		 * partially up to date pages.  These add
434 		 * a lot of complexity, so make sure they don't
435 		 * happen by forcing this copy to be retried.
436 		 *
437 		 * The rest of the btrfs_file_write code will fall
438 		 * back to page at a time copies after we return 0.
439 		 */
440 		if (!PageUptodate(page) && copied < count)
441 			copied = 0;
442 
443 		iov_iter_advance(i, copied);
444 		write_bytes -= copied;
445 		total_copied += copied;
446 
447 		/* Return to btrfs_file_write_iter to fault page */
448 		if (unlikely(copied == 0))
449 			break;
450 
451 		if (copied < PAGE_CACHE_SIZE - offset) {
452 			offset += copied;
453 		} else {
454 			pg++;
455 			offset = 0;
456 		}
457 	}
458 	return total_copied;
459 }
460 
461 /*
462  * unlocks pages after btrfs_file_write is done with them
463  */
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465 {
466 	size_t i;
467 	for (i = 0; i < num_pages; i++) {
468 		/* page checked is some magic around finding pages that
469 		 * have been modified without going through btrfs_set_page_dirty
470 		 * clear it here. There should be no need to mark the pages
471 		 * accessed as prepare_pages should have marked them accessed
472 		 * in prepare_pages via find_or_create_page()
473 		 */
474 		ClearPageChecked(pages[i]);
475 		unlock_page(pages[i]);
476 		page_cache_release(pages[i]);
477 	}
478 }
479 
480 /*
481  * after copy_from_user, pages need to be dirtied and we need to make
482  * sure holes are created between the current EOF and the start of
483  * any next extents (if required).
484  *
485  * this also makes the decision about creating an inline extent vs
486  * doing real data extents, marking pages dirty and delalloc as required.
487  */
488 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
489 			     struct page **pages, size_t num_pages,
490 			     loff_t pos, size_t write_bytes,
491 			     struct extent_state **cached)
492 {
493 	int err = 0;
494 	int i;
495 	u64 num_bytes;
496 	u64 start_pos;
497 	u64 end_of_last_block;
498 	u64 end_pos = pos + write_bytes;
499 	loff_t isize = i_size_read(inode);
500 
501 	start_pos = pos & ~((u64)root->sectorsize - 1);
502 	num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
503 
504 	end_of_last_block = start_pos + num_bytes - 1;
505 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
506 					cached);
507 	if (err)
508 		return err;
509 
510 	for (i = 0; i < num_pages; i++) {
511 		struct page *p = pages[i];
512 		SetPageUptodate(p);
513 		ClearPageChecked(p);
514 		set_page_dirty(p);
515 	}
516 
517 	/*
518 	 * we've only changed i_size in ram, and we haven't updated
519 	 * the disk i_size.  There is no need to log the inode
520 	 * at this time.
521 	 */
522 	if (end_pos > isize)
523 		i_size_write(inode, end_pos);
524 	return 0;
525 }
526 
527 /*
528  * this drops all the extents in the cache that intersect the range
529  * [start, end].  Existing extents are split as required.
530  */
531 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
532 			     int skip_pinned)
533 {
534 	struct extent_map *em;
535 	struct extent_map *split = NULL;
536 	struct extent_map *split2 = NULL;
537 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538 	u64 len = end - start + 1;
539 	u64 gen;
540 	int ret;
541 	int testend = 1;
542 	unsigned long flags;
543 	int compressed = 0;
544 	bool modified;
545 
546 	WARN_ON(end < start);
547 	if (end == (u64)-1) {
548 		len = (u64)-1;
549 		testend = 0;
550 	}
551 	while (1) {
552 		int no_splits = 0;
553 
554 		modified = false;
555 		if (!split)
556 			split = alloc_extent_map();
557 		if (!split2)
558 			split2 = alloc_extent_map();
559 		if (!split || !split2)
560 			no_splits = 1;
561 
562 		write_lock(&em_tree->lock);
563 		em = lookup_extent_mapping(em_tree, start, len);
564 		if (!em) {
565 			write_unlock(&em_tree->lock);
566 			break;
567 		}
568 		flags = em->flags;
569 		gen = em->generation;
570 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
571 			if (testend && em->start + em->len >= start + len) {
572 				free_extent_map(em);
573 				write_unlock(&em_tree->lock);
574 				break;
575 			}
576 			start = em->start + em->len;
577 			if (testend)
578 				len = start + len - (em->start + em->len);
579 			free_extent_map(em);
580 			write_unlock(&em_tree->lock);
581 			continue;
582 		}
583 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
584 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
585 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
586 		modified = !list_empty(&em->list);
587 		if (no_splits)
588 			goto next;
589 
590 		if (em->start < start) {
591 			split->start = em->start;
592 			split->len = start - em->start;
593 
594 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
595 				split->orig_start = em->orig_start;
596 				split->block_start = em->block_start;
597 
598 				if (compressed)
599 					split->block_len = em->block_len;
600 				else
601 					split->block_len = split->len;
602 				split->orig_block_len = max(split->block_len,
603 						em->orig_block_len);
604 				split->ram_bytes = em->ram_bytes;
605 			} else {
606 				split->orig_start = split->start;
607 				split->block_len = 0;
608 				split->block_start = em->block_start;
609 				split->orig_block_len = 0;
610 				split->ram_bytes = split->len;
611 			}
612 
613 			split->generation = gen;
614 			split->bdev = em->bdev;
615 			split->flags = flags;
616 			split->compress_type = em->compress_type;
617 			replace_extent_mapping(em_tree, em, split, modified);
618 			free_extent_map(split);
619 			split = split2;
620 			split2 = NULL;
621 		}
622 		if (testend && em->start + em->len > start + len) {
623 			u64 diff = start + len - em->start;
624 
625 			split->start = start + len;
626 			split->len = em->start + em->len - (start + len);
627 			split->bdev = em->bdev;
628 			split->flags = flags;
629 			split->compress_type = em->compress_type;
630 			split->generation = gen;
631 
632 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
633 				split->orig_block_len = max(em->block_len,
634 						    em->orig_block_len);
635 
636 				split->ram_bytes = em->ram_bytes;
637 				if (compressed) {
638 					split->block_len = em->block_len;
639 					split->block_start = em->block_start;
640 					split->orig_start = em->orig_start;
641 				} else {
642 					split->block_len = split->len;
643 					split->block_start = em->block_start
644 						+ diff;
645 					split->orig_start = em->orig_start;
646 				}
647 			} else {
648 				split->ram_bytes = split->len;
649 				split->orig_start = split->start;
650 				split->block_len = 0;
651 				split->block_start = em->block_start;
652 				split->orig_block_len = 0;
653 			}
654 
655 			if (extent_map_in_tree(em)) {
656 				replace_extent_mapping(em_tree, em, split,
657 						       modified);
658 			} else {
659 				ret = add_extent_mapping(em_tree, split,
660 							 modified);
661 				ASSERT(ret == 0); /* Logic error */
662 			}
663 			free_extent_map(split);
664 			split = NULL;
665 		}
666 next:
667 		if (extent_map_in_tree(em))
668 			remove_extent_mapping(em_tree, em);
669 		write_unlock(&em_tree->lock);
670 
671 		/* once for us */
672 		free_extent_map(em);
673 		/* once for the tree*/
674 		free_extent_map(em);
675 	}
676 	if (split)
677 		free_extent_map(split);
678 	if (split2)
679 		free_extent_map(split2);
680 }
681 
682 /*
683  * this is very complex, but the basic idea is to drop all extents
684  * in the range start - end.  hint_block is filled in with a block number
685  * that would be a good hint to the block allocator for this file.
686  *
687  * If an extent intersects the range but is not entirely inside the range
688  * it is either truncated or split.  Anything entirely inside the range
689  * is deleted from the tree.
690  */
691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
692 			 struct btrfs_root *root, struct inode *inode,
693 			 struct btrfs_path *path, u64 start, u64 end,
694 			 u64 *drop_end, int drop_cache,
695 			 int replace_extent,
696 			 u32 extent_item_size,
697 			 int *key_inserted)
698 {
699 	struct extent_buffer *leaf;
700 	struct btrfs_file_extent_item *fi;
701 	struct btrfs_key key;
702 	struct btrfs_key new_key;
703 	u64 ino = btrfs_ino(inode);
704 	u64 search_start = start;
705 	u64 disk_bytenr = 0;
706 	u64 num_bytes = 0;
707 	u64 extent_offset = 0;
708 	u64 extent_end = 0;
709 	int del_nr = 0;
710 	int del_slot = 0;
711 	int extent_type;
712 	int recow;
713 	int ret;
714 	int modify_tree = -1;
715 	int update_refs;
716 	int found = 0;
717 	int leafs_visited = 0;
718 
719 	if (drop_cache)
720 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
721 
722 	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
723 		modify_tree = 0;
724 
725 	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
726 		       root == root->fs_info->tree_root);
727 	while (1) {
728 		recow = 0;
729 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
730 					       search_start, modify_tree);
731 		if (ret < 0)
732 			break;
733 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734 			leaf = path->nodes[0];
735 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
736 			if (key.objectid == ino &&
737 			    key.type == BTRFS_EXTENT_DATA_KEY)
738 				path->slots[0]--;
739 		}
740 		ret = 0;
741 		leafs_visited++;
742 next_slot:
743 		leaf = path->nodes[0];
744 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745 			BUG_ON(del_nr > 0);
746 			ret = btrfs_next_leaf(root, path);
747 			if (ret < 0)
748 				break;
749 			if (ret > 0) {
750 				ret = 0;
751 				break;
752 			}
753 			leafs_visited++;
754 			leaf = path->nodes[0];
755 			recow = 1;
756 		}
757 
758 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
759 
760 		if (key.objectid > ino)
761 			break;
762 		if (WARN_ON_ONCE(key.objectid < ino) ||
763 		    key.type < BTRFS_EXTENT_DATA_KEY) {
764 			ASSERT(del_nr == 0);
765 			path->slots[0]++;
766 			goto next_slot;
767 		}
768 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
769 			break;
770 
771 		fi = btrfs_item_ptr(leaf, path->slots[0],
772 				    struct btrfs_file_extent_item);
773 		extent_type = btrfs_file_extent_type(leaf, fi);
774 
775 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
776 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
777 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
778 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
779 			extent_offset = btrfs_file_extent_offset(leaf, fi);
780 			extent_end = key.offset +
781 				btrfs_file_extent_num_bytes(leaf, fi);
782 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
783 			extent_end = key.offset +
784 				btrfs_file_extent_inline_len(leaf,
785 						     path->slots[0], fi);
786 		} else {
787 			/* can't happen */
788 			BUG();
789 		}
790 
791 		/*
792 		 * Don't skip extent items representing 0 byte lengths. They
793 		 * used to be created (bug) if while punching holes we hit
794 		 * -ENOSPC condition. So if we find one here, just ensure we
795 		 * delete it, otherwise we would insert a new file extent item
796 		 * with the same key (offset) as that 0 bytes length file
797 		 * extent item in the call to setup_items_for_insert() later
798 		 * in this function.
799 		 */
800 		if (extent_end == key.offset && extent_end >= search_start)
801 			goto delete_extent_item;
802 
803 		if (extent_end <= search_start) {
804 			path->slots[0]++;
805 			goto next_slot;
806 		}
807 
808 		found = 1;
809 		search_start = max(key.offset, start);
810 		if (recow || !modify_tree) {
811 			modify_tree = -1;
812 			btrfs_release_path(path);
813 			continue;
814 		}
815 
816 		/*
817 		 *     | - range to drop - |
818 		 *  | -------- extent -------- |
819 		 */
820 		if (start > key.offset && end < extent_end) {
821 			BUG_ON(del_nr > 0);
822 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
823 				ret = -EOPNOTSUPP;
824 				break;
825 			}
826 
827 			memcpy(&new_key, &key, sizeof(new_key));
828 			new_key.offset = start;
829 			ret = btrfs_duplicate_item(trans, root, path,
830 						   &new_key);
831 			if (ret == -EAGAIN) {
832 				btrfs_release_path(path);
833 				continue;
834 			}
835 			if (ret < 0)
836 				break;
837 
838 			leaf = path->nodes[0];
839 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
840 					    struct btrfs_file_extent_item);
841 			btrfs_set_file_extent_num_bytes(leaf, fi,
842 							start - key.offset);
843 
844 			fi = btrfs_item_ptr(leaf, path->slots[0],
845 					    struct btrfs_file_extent_item);
846 
847 			extent_offset += start - key.offset;
848 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
849 			btrfs_set_file_extent_num_bytes(leaf, fi,
850 							extent_end - start);
851 			btrfs_mark_buffer_dirty(leaf);
852 
853 			if (update_refs && disk_bytenr > 0) {
854 				ret = btrfs_inc_extent_ref(trans, root,
855 						disk_bytenr, num_bytes, 0,
856 						root->root_key.objectid,
857 						new_key.objectid,
858 						start - extent_offset);
859 				BUG_ON(ret); /* -ENOMEM */
860 			}
861 			key.offset = start;
862 		}
863 		/*
864 		 *  | ---- range to drop ----- |
865 		 *      | -------- extent -------- |
866 		 */
867 		if (start <= key.offset && end < extent_end) {
868 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
869 				ret = -EOPNOTSUPP;
870 				break;
871 			}
872 
873 			memcpy(&new_key, &key, sizeof(new_key));
874 			new_key.offset = end;
875 			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
876 
877 			extent_offset += end - key.offset;
878 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
879 			btrfs_set_file_extent_num_bytes(leaf, fi,
880 							extent_end - end);
881 			btrfs_mark_buffer_dirty(leaf);
882 			if (update_refs && disk_bytenr > 0)
883 				inode_sub_bytes(inode, end - key.offset);
884 			break;
885 		}
886 
887 		search_start = extent_end;
888 		/*
889 		 *       | ---- range to drop ----- |
890 		 *  | -------- extent -------- |
891 		 */
892 		if (start > key.offset && end >= extent_end) {
893 			BUG_ON(del_nr > 0);
894 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
895 				ret = -EOPNOTSUPP;
896 				break;
897 			}
898 
899 			btrfs_set_file_extent_num_bytes(leaf, fi,
900 							start - key.offset);
901 			btrfs_mark_buffer_dirty(leaf);
902 			if (update_refs && disk_bytenr > 0)
903 				inode_sub_bytes(inode, extent_end - start);
904 			if (end == extent_end)
905 				break;
906 
907 			path->slots[0]++;
908 			goto next_slot;
909 		}
910 
911 		/*
912 		 *  | ---- range to drop ----- |
913 		 *    | ------ extent ------ |
914 		 */
915 		if (start <= key.offset && end >= extent_end) {
916 delete_extent_item:
917 			if (del_nr == 0) {
918 				del_slot = path->slots[0];
919 				del_nr = 1;
920 			} else {
921 				BUG_ON(del_slot + del_nr != path->slots[0]);
922 				del_nr++;
923 			}
924 
925 			if (update_refs &&
926 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
927 				inode_sub_bytes(inode,
928 						extent_end - key.offset);
929 				extent_end = ALIGN(extent_end,
930 						   root->sectorsize);
931 			} else if (update_refs && disk_bytenr > 0) {
932 				ret = btrfs_free_extent(trans, root,
933 						disk_bytenr, num_bytes, 0,
934 						root->root_key.objectid,
935 						key.objectid, key.offset -
936 						extent_offset);
937 				BUG_ON(ret); /* -ENOMEM */
938 				inode_sub_bytes(inode,
939 						extent_end - key.offset);
940 			}
941 
942 			if (end == extent_end)
943 				break;
944 
945 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
946 				path->slots[0]++;
947 				goto next_slot;
948 			}
949 
950 			ret = btrfs_del_items(trans, root, path, del_slot,
951 					      del_nr);
952 			if (ret) {
953 				btrfs_abort_transaction(trans, root, ret);
954 				break;
955 			}
956 
957 			del_nr = 0;
958 			del_slot = 0;
959 
960 			btrfs_release_path(path);
961 			continue;
962 		}
963 
964 		BUG_ON(1);
965 	}
966 
967 	if (!ret && del_nr > 0) {
968 		/*
969 		 * Set path->slots[0] to first slot, so that after the delete
970 		 * if items are move off from our leaf to its immediate left or
971 		 * right neighbor leafs, we end up with a correct and adjusted
972 		 * path->slots[0] for our insertion (if replace_extent != 0).
973 		 */
974 		path->slots[0] = del_slot;
975 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
976 		if (ret)
977 			btrfs_abort_transaction(trans, root, ret);
978 	}
979 
980 	leaf = path->nodes[0];
981 	/*
982 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
983 	 * which case it unlocked our path, so check path->locks[0] matches a
984 	 * write lock.
985 	 */
986 	if (!ret && replace_extent && leafs_visited == 1 &&
987 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
988 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
989 	    btrfs_leaf_free_space(root, leaf) >=
990 	    sizeof(struct btrfs_item) + extent_item_size) {
991 
992 		key.objectid = ino;
993 		key.type = BTRFS_EXTENT_DATA_KEY;
994 		key.offset = start;
995 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
996 			struct btrfs_key slot_key;
997 
998 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
999 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1000 				path->slots[0]++;
1001 		}
1002 		setup_items_for_insert(root, path, &key,
1003 				       &extent_item_size,
1004 				       extent_item_size,
1005 				       sizeof(struct btrfs_item) +
1006 				       extent_item_size, 1);
1007 		*key_inserted = 1;
1008 	}
1009 
1010 	if (!replace_extent || !(*key_inserted))
1011 		btrfs_release_path(path);
1012 	if (drop_end)
1013 		*drop_end = found ? min(end, extent_end) : end;
1014 	return ret;
1015 }
1016 
1017 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1018 		       struct btrfs_root *root, struct inode *inode, u64 start,
1019 		       u64 end, int drop_cache)
1020 {
1021 	struct btrfs_path *path;
1022 	int ret;
1023 
1024 	path = btrfs_alloc_path();
1025 	if (!path)
1026 		return -ENOMEM;
1027 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1028 				   drop_cache, 0, 0, NULL);
1029 	btrfs_free_path(path);
1030 	return ret;
1031 }
1032 
1033 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1034 			    u64 objectid, u64 bytenr, u64 orig_offset,
1035 			    u64 *start, u64 *end)
1036 {
1037 	struct btrfs_file_extent_item *fi;
1038 	struct btrfs_key key;
1039 	u64 extent_end;
1040 
1041 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1042 		return 0;
1043 
1044 	btrfs_item_key_to_cpu(leaf, &key, slot);
1045 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1046 		return 0;
1047 
1048 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1049 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1050 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1051 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1052 	    btrfs_file_extent_compression(leaf, fi) ||
1053 	    btrfs_file_extent_encryption(leaf, fi) ||
1054 	    btrfs_file_extent_other_encoding(leaf, fi))
1055 		return 0;
1056 
1057 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1058 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1059 		return 0;
1060 
1061 	*start = key.offset;
1062 	*end = extent_end;
1063 	return 1;
1064 }
1065 
1066 /*
1067  * Mark extent in the range start - end as written.
1068  *
1069  * This changes extent type from 'pre-allocated' to 'regular'. If only
1070  * part of extent is marked as written, the extent will be split into
1071  * two or three.
1072  */
1073 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1074 			      struct inode *inode, u64 start, u64 end)
1075 {
1076 	struct btrfs_root *root = BTRFS_I(inode)->root;
1077 	struct extent_buffer *leaf;
1078 	struct btrfs_path *path;
1079 	struct btrfs_file_extent_item *fi;
1080 	struct btrfs_key key;
1081 	struct btrfs_key new_key;
1082 	u64 bytenr;
1083 	u64 num_bytes;
1084 	u64 extent_end;
1085 	u64 orig_offset;
1086 	u64 other_start;
1087 	u64 other_end;
1088 	u64 split;
1089 	int del_nr = 0;
1090 	int del_slot = 0;
1091 	int recow;
1092 	int ret;
1093 	u64 ino = btrfs_ino(inode);
1094 
1095 	path = btrfs_alloc_path();
1096 	if (!path)
1097 		return -ENOMEM;
1098 again:
1099 	recow = 0;
1100 	split = start;
1101 	key.objectid = ino;
1102 	key.type = BTRFS_EXTENT_DATA_KEY;
1103 	key.offset = split;
1104 
1105 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1106 	if (ret < 0)
1107 		goto out;
1108 	if (ret > 0 && path->slots[0] > 0)
1109 		path->slots[0]--;
1110 
1111 	leaf = path->nodes[0];
1112 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1113 	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1114 	fi = btrfs_item_ptr(leaf, path->slots[0],
1115 			    struct btrfs_file_extent_item);
1116 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1117 	       BTRFS_FILE_EXTENT_PREALLOC);
1118 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1119 	BUG_ON(key.offset > start || extent_end < end);
1120 
1121 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1122 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1123 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1124 	memcpy(&new_key, &key, sizeof(new_key));
1125 
1126 	if (start == key.offset && end < extent_end) {
1127 		other_start = 0;
1128 		other_end = start;
1129 		if (extent_mergeable(leaf, path->slots[0] - 1,
1130 				     ino, bytenr, orig_offset,
1131 				     &other_start, &other_end)) {
1132 			new_key.offset = end;
1133 			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1134 			fi = btrfs_item_ptr(leaf, path->slots[0],
1135 					    struct btrfs_file_extent_item);
1136 			btrfs_set_file_extent_generation(leaf, fi,
1137 							 trans->transid);
1138 			btrfs_set_file_extent_num_bytes(leaf, fi,
1139 							extent_end - end);
1140 			btrfs_set_file_extent_offset(leaf, fi,
1141 						     end - orig_offset);
1142 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1143 					    struct btrfs_file_extent_item);
1144 			btrfs_set_file_extent_generation(leaf, fi,
1145 							 trans->transid);
1146 			btrfs_set_file_extent_num_bytes(leaf, fi,
1147 							end - other_start);
1148 			btrfs_mark_buffer_dirty(leaf);
1149 			goto out;
1150 		}
1151 	}
1152 
1153 	if (start > key.offset && end == extent_end) {
1154 		other_start = end;
1155 		other_end = 0;
1156 		if (extent_mergeable(leaf, path->slots[0] + 1,
1157 				     ino, bytenr, orig_offset,
1158 				     &other_start, &other_end)) {
1159 			fi = btrfs_item_ptr(leaf, path->slots[0],
1160 					    struct btrfs_file_extent_item);
1161 			btrfs_set_file_extent_num_bytes(leaf, fi,
1162 							start - key.offset);
1163 			btrfs_set_file_extent_generation(leaf, fi,
1164 							 trans->transid);
1165 			path->slots[0]++;
1166 			new_key.offset = start;
1167 			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1168 
1169 			fi = btrfs_item_ptr(leaf, path->slots[0],
1170 					    struct btrfs_file_extent_item);
1171 			btrfs_set_file_extent_generation(leaf, fi,
1172 							 trans->transid);
1173 			btrfs_set_file_extent_num_bytes(leaf, fi,
1174 							other_end - start);
1175 			btrfs_set_file_extent_offset(leaf, fi,
1176 						     start - orig_offset);
1177 			btrfs_mark_buffer_dirty(leaf);
1178 			goto out;
1179 		}
1180 	}
1181 
1182 	while (start > key.offset || end < extent_end) {
1183 		if (key.offset == start)
1184 			split = end;
1185 
1186 		new_key.offset = split;
1187 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1188 		if (ret == -EAGAIN) {
1189 			btrfs_release_path(path);
1190 			goto again;
1191 		}
1192 		if (ret < 0) {
1193 			btrfs_abort_transaction(trans, root, ret);
1194 			goto out;
1195 		}
1196 
1197 		leaf = path->nodes[0];
1198 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1199 				    struct btrfs_file_extent_item);
1200 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1201 		btrfs_set_file_extent_num_bytes(leaf, fi,
1202 						split - key.offset);
1203 
1204 		fi = btrfs_item_ptr(leaf, path->slots[0],
1205 				    struct btrfs_file_extent_item);
1206 
1207 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1208 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1209 		btrfs_set_file_extent_num_bytes(leaf, fi,
1210 						extent_end - split);
1211 		btrfs_mark_buffer_dirty(leaf);
1212 
1213 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1214 					   root->root_key.objectid,
1215 					   ino, orig_offset);
1216 		BUG_ON(ret); /* -ENOMEM */
1217 
1218 		if (split == start) {
1219 			key.offset = start;
1220 		} else {
1221 			BUG_ON(start != key.offset);
1222 			path->slots[0]--;
1223 			extent_end = end;
1224 		}
1225 		recow = 1;
1226 	}
1227 
1228 	other_start = end;
1229 	other_end = 0;
1230 	if (extent_mergeable(leaf, path->slots[0] + 1,
1231 			     ino, bytenr, orig_offset,
1232 			     &other_start, &other_end)) {
1233 		if (recow) {
1234 			btrfs_release_path(path);
1235 			goto again;
1236 		}
1237 		extent_end = other_end;
1238 		del_slot = path->slots[0] + 1;
1239 		del_nr++;
1240 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1241 					0, root->root_key.objectid,
1242 					ino, orig_offset);
1243 		BUG_ON(ret); /* -ENOMEM */
1244 	}
1245 	other_start = 0;
1246 	other_end = start;
1247 	if (extent_mergeable(leaf, path->slots[0] - 1,
1248 			     ino, bytenr, orig_offset,
1249 			     &other_start, &other_end)) {
1250 		if (recow) {
1251 			btrfs_release_path(path);
1252 			goto again;
1253 		}
1254 		key.offset = other_start;
1255 		del_slot = path->slots[0];
1256 		del_nr++;
1257 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1258 					0, root->root_key.objectid,
1259 					ino, orig_offset);
1260 		BUG_ON(ret); /* -ENOMEM */
1261 	}
1262 	if (del_nr == 0) {
1263 		fi = btrfs_item_ptr(leaf, path->slots[0],
1264 			   struct btrfs_file_extent_item);
1265 		btrfs_set_file_extent_type(leaf, fi,
1266 					   BTRFS_FILE_EXTENT_REG);
1267 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1268 		btrfs_mark_buffer_dirty(leaf);
1269 	} else {
1270 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1271 			   struct btrfs_file_extent_item);
1272 		btrfs_set_file_extent_type(leaf, fi,
1273 					   BTRFS_FILE_EXTENT_REG);
1274 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1275 		btrfs_set_file_extent_num_bytes(leaf, fi,
1276 						extent_end - key.offset);
1277 		btrfs_mark_buffer_dirty(leaf);
1278 
1279 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1280 		if (ret < 0) {
1281 			btrfs_abort_transaction(trans, root, ret);
1282 			goto out;
1283 		}
1284 	}
1285 out:
1286 	btrfs_free_path(path);
1287 	return 0;
1288 }
1289 
1290 /*
1291  * on error we return an unlocked page and the error value
1292  * on success we return a locked page and 0
1293  */
1294 static int prepare_uptodate_page(struct page *page, u64 pos,
1295 				 bool force_uptodate)
1296 {
1297 	int ret = 0;
1298 
1299 	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1300 	    !PageUptodate(page)) {
1301 		ret = btrfs_readpage(NULL, page);
1302 		if (ret)
1303 			return ret;
1304 		lock_page(page);
1305 		if (!PageUptodate(page)) {
1306 			unlock_page(page);
1307 			return -EIO;
1308 		}
1309 	}
1310 	return 0;
1311 }
1312 
1313 /*
1314  * this just gets pages into the page cache and locks them down.
1315  */
1316 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1317 				  size_t num_pages, loff_t pos,
1318 				  size_t write_bytes, bool force_uptodate)
1319 {
1320 	int i;
1321 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
1322 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1323 	int err = 0;
1324 	int faili;
1325 
1326 	for (i = 0; i < num_pages; i++) {
1327 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1328 					       mask | __GFP_WRITE);
1329 		if (!pages[i]) {
1330 			faili = i - 1;
1331 			err = -ENOMEM;
1332 			goto fail;
1333 		}
1334 
1335 		if (i == 0)
1336 			err = prepare_uptodate_page(pages[i], pos,
1337 						    force_uptodate);
1338 		if (i == num_pages - 1)
1339 			err = prepare_uptodate_page(pages[i],
1340 						    pos + write_bytes, false);
1341 		if (err) {
1342 			page_cache_release(pages[i]);
1343 			faili = i - 1;
1344 			goto fail;
1345 		}
1346 		wait_on_page_writeback(pages[i]);
1347 	}
1348 
1349 	return 0;
1350 fail:
1351 	while (faili >= 0) {
1352 		unlock_page(pages[faili]);
1353 		page_cache_release(pages[faili]);
1354 		faili--;
1355 	}
1356 	return err;
1357 
1358 }
1359 
1360 /*
1361  * This function locks the extent and properly waits for data=ordered extents
1362  * to finish before allowing the pages to be modified if need.
1363  *
1364  * The return value:
1365  * 1 - the extent is locked
1366  * 0 - the extent is not locked, and everything is OK
1367  * -EAGAIN - need re-prepare the pages
1368  * the other < 0 number - Something wrong happens
1369  */
1370 static noinline int
1371 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1372 				size_t num_pages, loff_t pos,
1373 				u64 *lockstart, u64 *lockend,
1374 				struct extent_state **cached_state)
1375 {
1376 	u64 start_pos;
1377 	u64 last_pos;
1378 	int i;
1379 	int ret = 0;
1380 
1381 	start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1382 	last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1383 
1384 	if (start_pos < inode->i_size) {
1385 		struct btrfs_ordered_extent *ordered;
1386 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1387 				 start_pos, last_pos, 0, cached_state);
1388 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1389 						     last_pos - start_pos + 1);
1390 		if (ordered &&
1391 		    ordered->file_offset + ordered->len > start_pos &&
1392 		    ordered->file_offset <= last_pos) {
1393 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1394 					     start_pos, last_pos,
1395 					     cached_state, GFP_NOFS);
1396 			for (i = 0; i < num_pages; i++) {
1397 				unlock_page(pages[i]);
1398 				page_cache_release(pages[i]);
1399 			}
1400 			btrfs_start_ordered_extent(inode, ordered, 1);
1401 			btrfs_put_ordered_extent(ordered);
1402 			return -EAGAIN;
1403 		}
1404 		if (ordered)
1405 			btrfs_put_ordered_extent(ordered);
1406 
1407 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1408 				  last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1409 				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1410 				  0, 0, cached_state, GFP_NOFS);
1411 		*lockstart = start_pos;
1412 		*lockend = last_pos;
1413 		ret = 1;
1414 	}
1415 
1416 	for (i = 0; i < num_pages; i++) {
1417 		if (clear_page_dirty_for_io(pages[i]))
1418 			account_page_redirty(pages[i]);
1419 		set_page_extent_mapped(pages[i]);
1420 		WARN_ON(!PageLocked(pages[i]));
1421 	}
1422 
1423 	return ret;
1424 }
1425 
1426 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1427 				    size_t *write_bytes)
1428 {
1429 	struct btrfs_root *root = BTRFS_I(inode)->root;
1430 	struct btrfs_ordered_extent *ordered;
1431 	u64 lockstart, lockend;
1432 	u64 num_bytes;
1433 	int ret;
1434 
1435 	ret = btrfs_start_write_no_snapshoting(root);
1436 	if (!ret)
1437 		return -ENOSPC;
1438 
1439 	lockstart = round_down(pos, root->sectorsize);
1440 	lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1441 
1442 	while (1) {
1443 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1444 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1445 						     lockend - lockstart + 1);
1446 		if (!ordered) {
1447 			break;
1448 		}
1449 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1450 		btrfs_start_ordered_extent(inode, ordered, 1);
1451 		btrfs_put_ordered_extent(ordered);
1452 	}
1453 
1454 	num_bytes = lockend - lockstart + 1;
1455 	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1456 	if (ret <= 0) {
1457 		ret = 0;
1458 		btrfs_end_write_no_snapshoting(root);
1459 	} else {
1460 		*write_bytes = min_t(size_t, *write_bytes ,
1461 				     num_bytes - pos + lockstart);
1462 	}
1463 
1464 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1465 
1466 	return ret;
1467 }
1468 
1469 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1470 					       struct iov_iter *i,
1471 					       loff_t pos)
1472 {
1473 	struct inode *inode = file_inode(file);
1474 	struct btrfs_root *root = BTRFS_I(inode)->root;
1475 	struct page **pages = NULL;
1476 	struct extent_state *cached_state = NULL;
1477 	u64 release_bytes = 0;
1478 	u64 lockstart;
1479 	u64 lockend;
1480 	size_t num_written = 0;
1481 	int nrptrs;
1482 	int ret = 0;
1483 	bool only_release_metadata = false;
1484 	bool force_page_uptodate = false;
1485 	bool need_unlock;
1486 
1487 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE),
1488 			PAGE_CACHE_SIZE / (sizeof(struct page *)));
1489 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1490 	nrptrs = max(nrptrs, 8);
1491 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1492 	if (!pages)
1493 		return -ENOMEM;
1494 
1495 	while (iov_iter_count(i) > 0) {
1496 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1497 		size_t write_bytes = min(iov_iter_count(i),
1498 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1499 					 offset);
1500 		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1501 						PAGE_CACHE_SIZE);
1502 		size_t reserve_bytes;
1503 		size_t dirty_pages;
1504 		size_t copied;
1505 
1506 		WARN_ON(num_pages > nrptrs);
1507 
1508 		/*
1509 		 * Fault pages before locking them in prepare_pages
1510 		 * to avoid recursive lock
1511 		 */
1512 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1513 			ret = -EFAULT;
1514 			break;
1515 		}
1516 
1517 		reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1518 
1519 		if (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1520 					     BTRFS_INODE_PREALLOC)) {
1521 			ret = check_can_nocow(inode, pos, &write_bytes);
1522 			if (ret < 0)
1523 				break;
1524 			if (ret > 0) {
1525 				/*
1526 				 * For nodata cow case, no need to reserve
1527 				 * data space.
1528 				 */
1529 				only_release_metadata = true;
1530 				/*
1531 				 * our prealloc extent may be smaller than
1532 				 * write_bytes, so scale down.
1533 				 */
1534 				num_pages = DIV_ROUND_UP(write_bytes + offset,
1535 							 PAGE_CACHE_SIZE);
1536 				reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1537 				goto reserve_metadata;
1538 			}
1539 		}
1540 		ret = btrfs_check_data_free_space(inode, pos, write_bytes);
1541 		if (ret < 0)
1542 			break;
1543 
1544 reserve_metadata:
1545 		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1546 		if (ret) {
1547 			if (!only_release_metadata)
1548 				btrfs_free_reserved_data_space(inode, pos,
1549 							       write_bytes);
1550 			else
1551 				btrfs_end_write_no_snapshoting(root);
1552 			break;
1553 		}
1554 
1555 		release_bytes = reserve_bytes;
1556 		need_unlock = false;
1557 again:
1558 		/*
1559 		 * This is going to setup the pages array with the number of
1560 		 * pages we want, so we don't really need to worry about the
1561 		 * contents of pages from loop to loop
1562 		 */
1563 		ret = prepare_pages(inode, pages, num_pages,
1564 				    pos, write_bytes,
1565 				    force_page_uptodate);
1566 		if (ret)
1567 			break;
1568 
1569 		ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1570 						      pos, &lockstart, &lockend,
1571 						      &cached_state);
1572 		if (ret < 0) {
1573 			if (ret == -EAGAIN)
1574 				goto again;
1575 			break;
1576 		} else if (ret > 0) {
1577 			need_unlock = true;
1578 			ret = 0;
1579 		}
1580 
1581 		copied = btrfs_copy_from_user(pos, num_pages,
1582 					   write_bytes, pages, i);
1583 
1584 		/*
1585 		 * if we have trouble faulting in the pages, fall
1586 		 * back to one page at a time
1587 		 */
1588 		if (copied < write_bytes)
1589 			nrptrs = 1;
1590 
1591 		if (copied == 0) {
1592 			force_page_uptodate = true;
1593 			dirty_pages = 0;
1594 		} else {
1595 			force_page_uptodate = false;
1596 			dirty_pages = DIV_ROUND_UP(copied + offset,
1597 						   PAGE_CACHE_SIZE);
1598 		}
1599 
1600 		/*
1601 		 * If we had a short copy we need to release the excess delaloc
1602 		 * bytes we reserved.  We need to increment outstanding_extents
1603 		 * because btrfs_delalloc_release_space will decrement it, but
1604 		 * we still have an outstanding extent for the chunk we actually
1605 		 * managed to copy.
1606 		 */
1607 		if (num_pages > dirty_pages) {
1608 			release_bytes = (num_pages - dirty_pages) <<
1609 				PAGE_CACHE_SHIFT;
1610 			if (copied > 0) {
1611 				spin_lock(&BTRFS_I(inode)->lock);
1612 				BTRFS_I(inode)->outstanding_extents++;
1613 				spin_unlock(&BTRFS_I(inode)->lock);
1614 			}
1615 			if (only_release_metadata) {
1616 				btrfs_delalloc_release_metadata(inode,
1617 								release_bytes);
1618 			} else {
1619 				u64 __pos;
1620 
1621 				__pos = round_down(pos, root->sectorsize) +
1622 					(dirty_pages << PAGE_CACHE_SHIFT);
1623 				btrfs_delalloc_release_space(inode, __pos,
1624 							     release_bytes);
1625 			}
1626 		}
1627 
1628 		release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1629 
1630 		if (copied > 0)
1631 			ret = btrfs_dirty_pages(root, inode, pages,
1632 						dirty_pages, pos, copied,
1633 						NULL);
1634 		if (need_unlock)
1635 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1636 					     lockstart, lockend, &cached_state,
1637 					     GFP_NOFS);
1638 		if (ret) {
1639 			btrfs_drop_pages(pages, num_pages);
1640 			break;
1641 		}
1642 
1643 		release_bytes = 0;
1644 		if (only_release_metadata)
1645 			btrfs_end_write_no_snapshoting(root);
1646 
1647 		if (only_release_metadata && copied > 0) {
1648 			lockstart = round_down(pos, root->sectorsize);
1649 			lockend = lockstart +
1650 				(dirty_pages << PAGE_CACHE_SHIFT) - 1;
1651 
1652 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1653 				       lockend, EXTENT_NORESERVE, NULL,
1654 				       NULL, GFP_NOFS);
1655 			only_release_metadata = false;
1656 		}
1657 
1658 		btrfs_drop_pages(pages, num_pages);
1659 
1660 		cond_resched();
1661 
1662 		balance_dirty_pages_ratelimited(inode->i_mapping);
1663 		if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1)
1664 			btrfs_btree_balance_dirty(root);
1665 
1666 		pos += copied;
1667 		num_written += copied;
1668 	}
1669 
1670 	kfree(pages);
1671 
1672 	if (release_bytes) {
1673 		if (only_release_metadata) {
1674 			btrfs_end_write_no_snapshoting(root);
1675 			btrfs_delalloc_release_metadata(inode, release_bytes);
1676 		} else {
1677 			btrfs_delalloc_release_space(inode, pos, release_bytes);
1678 		}
1679 	}
1680 
1681 	return num_written ? num_written : ret;
1682 }
1683 
1684 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1685 				    struct iov_iter *from,
1686 				    loff_t pos)
1687 {
1688 	struct file *file = iocb->ki_filp;
1689 	struct inode *inode = file_inode(file);
1690 	ssize_t written;
1691 	ssize_t written_buffered;
1692 	loff_t endbyte;
1693 	int err;
1694 
1695 	written = generic_file_direct_write(iocb, from, pos);
1696 
1697 	if (written < 0 || !iov_iter_count(from))
1698 		return written;
1699 
1700 	pos += written;
1701 	written_buffered = __btrfs_buffered_write(file, from, pos);
1702 	if (written_buffered < 0) {
1703 		err = written_buffered;
1704 		goto out;
1705 	}
1706 	/*
1707 	 * Ensure all data is persisted. We want the next direct IO read to be
1708 	 * able to read what was just written.
1709 	 */
1710 	endbyte = pos + written_buffered - 1;
1711 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1712 	if (err)
1713 		goto out;
1714 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1715 	if (err)
1716 		goto out;
1717 	written += written_buffered;
1718 	iocb->ki_pos = pos + written_buffered;
1719 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1720 				 endbyte >> PAGE_CACHE_SHIFT);
1721 out:
1722 	return written ? written : err;
1723 }
1724 
1725 static void update_time_for_write(struct inode *inode)
1726 {
1727 	struct timespec now;
1728 
1729 	if (IS_NOCMTIME(inode))
1730 		return;
1731 
1732 	now = current_fs_time(inode->i_sb);
1733 	if (!timespec_equal(&inode->i_mtime, &now))
1734 		inode->i_mtime = now;
1735 
1736 	if (!timespec_equal(&inode->i_ctime, &now))
1737 		inode->i_ctime = now;
1738 
1739 	if (IS_I_VERSION(inode))
1740 		inode_inc_iversion(inode);
1741 }
1742 
1743 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1744 				    struct iov_iter *from)
1745 {
1746 	struct file *file = iocb->ki_filp;
1747 	struct inode *inode = file_inode(file);
1748 	struct btrfs_root *root = BTRFS_I(inode)->root;
1749 	u64 start_pos;
1750 	u64 end_pos;
1751 	ssize_t num_written = 0;
1752 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1753 	ssize_t err;
1754 	loff_t pos;
1755 	size_t count;
1756 
1757 	mutex_lock(&inode->i_mutex);
1758 	err = generic_write_checks(iocb, from);
1759 	if (err <= 0) {
1760 		mutex_unlock(&inode->i_mutex);
1761 		return err;
1762 	}
1763 
1764 	current->backing_dev_info = inode_to_bdi(inode);
1765 	err = file_remove_privs(file);
1766 	if (err) {
1767 		mutex_unlock(&inode->i_mutex);
1768 		goto out;
1769 	}
1770 
1771 	/*
1772 	 * If BTRFS flips readonly due to some impossible error
1773 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1774 	 * although we have opened a file as writable, we have
1775 	 * to stop this write operation to ensure FS consistency.
1776 	 */
1777 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1778 		mutex_unlock(&inode->i_mutex);
1779 		err = -EROFS;
1780 		goto out;
1781 	}
1782 
1783 	/*
1784 	 * We reserve space for updating the inode when we reserve space for the
1785 	 * extent we are going to write, so we will enospc out there.  We don't
1786 	 * need to start yet another transaction to update the inode as we will
1787 	 * update the inode when we finish writing whatever data we write.
1788 	 */
1789 	update_time_for_write(inode);
1790 
1791 	pos = iocb->ki_pos;
1792 	count = iov_iter_count(from);
1793 	start_pos = round_down(pos, root->sectorsize);
1794 	if (start_pos > i_size_read(inode)) {
1795 		/* Expand hole size to cover write data, preventing empty gap */
1796 		end_pos = round_up(pos + count, root->sectorsize);
1797 		err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
1798 		if (err) {
1799 			mutex_unlock(&inode->i_mutex);
1800 			goto out;
1801 		}
1802 	}
1803 
1804 	if (sync)
1805 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1806 
1807 	if (iocb->ki_flags & IOCB_DIRECT) {
1808 		num_written = __btrfs_direct_write(iocb, from, pos);
1809 	} else {
1810 		num_written = __btrfs_buffered_write(file, from, pos);
1811 		if (num_written > 0)
1812 			iocb->ki_pos = pos + num_written;
1813 	}
1814 
1815 	mutex_unlock(&inode->i_mutex);
1816 
1817 	/*
1818 	 * We also have to set last_sub_trans to the current log transid,
1819 	 * otherwise subsequent syncs to a file that's been synced in this
1820 	 * transaction will appear to have already occured.
1821 	 */
1822 	spin_lock(&BTRFS_I(inode)->lock);
1823 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1824 	spin_unlock(&BTRFS_I(inode)->lock);
1825 	if (num_written > 0) {
1826 		err = generic_write_sync(file, pos, num_written);
1827 		if (err < 0)
1828 			num_written = err;
1829 	}
1830 
1831 	if (sync)
1832 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1833 out:
1834 	current->backing_dev_info = NULL;
1835 	return num_written ? num_written : err;
1836 }
1837 
1838 int btrfs_release_file(struct inode *inode, struct file *filp)
1839 {
1840 	if (filp->private_data)
1841 		btrfs_ioctl_trans_end(filp);
1842 	/*
1843 	 * ordered_data_close is set by settattr when we are about to truncate
1844 	 * a file from a non-zero size to a zero size.  This tries to
1845 	 * flush down new bytes that may have been written if the
1846 	 * application were using truncate to replace a file in place.
1847 	 */
1848 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1849 			       &BTRFS_I(inode)->runtime_flags))
1850 			filemap_flush(inode->i_mapping);
1851 	return 0;
1852 }
1853 
1854 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1855 {
1856 	int ret;
1857 
1858 	atomic_inc(&BTRFS_I(inode)->sync_writers);
1859 	ret = btrfs_fdatawrite_range(inode, start, end);
1860 	atomic_dec(&BTRFS_I(inode)->sync_writers);
1861 
1862 	return ret;
1863 }
1864 
1865 /*
1866  * fsync call for both files and directories.  This logs the inode into
1867  * the tree log instead of forcing full commits whenever possible.
1868  *
1869  * It needs to call filemap_fdatawait so that all ordered extent updates are
1870  * in the metadata btree are up to date for copying to the log.
1871  *
1872  * It drops the inode mutex before doing the tree log commit.  This is an
1873  * important optimization for directories because holding the mutex prevents
1874  * new operations on the dir while we write to disk.
1875  */
1876 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1877 {
1878 	struct dentry *dentry = file->f_path.dentry;
1879 	struct inode *inode = d_inode(dentry);
1880 	struct btrfs_root *root = BTRFS_I(inode)->root;
1881 	struct btrfs_trans_handle *trans;
1882 	struct btrfs_log_ctx ctx;
1883 	int ret = 0;
1884 	bool full_sync = 0;
1885 	const u64 len = end - start + 1;
1886 
1887 	trace_btrfs_sync_file(file, datasync);
1888 
1889 	/*
1890 	 * We write the dirty pages in the range and wait until they complete
1891 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1892 	 * multi-task, and make the performance up.  See
1893 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1894 	 */
1895 	ret = start_ordered_ops(inode, start, end);
1896 	if (ret)
1897 		return ret;
1898 
1899 	mutex_lock(&inode->i_mutex);
1900 	atomic_inc(&root->log_batch);
1901 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1902 			     &BTRFS_I(inode)->runtime_flags);
1903 	/*
1904 	 * We might have have had more pages made dirty after calling
1905 	 * start_ordered_ops and before acquiring the inode's i_mutex.
1906 	 */
1907 	if (full_sync) {
1908 		/*
1909 		 * For a full sync, we need to make sure any ordered operations
1910 		 * start and finish before we start logging the inode, so that
1911 		 * all extents are persisted and the respective file extent
1912 		 * items are in the fs/subvol btree.
1913 		 */
1914 		ret = btrfs_wait_ordered_range(inode, start, len);
1915 	} else {
1916 		/*
1917 		 * Start any new ordered operations before starting to log the
1918 		 * inode. We will wait for them to finish in btrfs_sync_log().
1919 		 *
1920 		 * Right before acquiring the inode's mutex, we might have new
1921 		 * writes dirtying pages, which won't immediately start the
1922 		 * respective ordered operations - that is done through the
1923 		 * fill_delalloc callbacks invoked from the writepage and
1924 		 * writepages address space operations. So make sure we start
1925 		 * all ordered operations before starting to log our inode. Not
1926 		 * doing this means that while logging the inode, writeback
1927 		 * could start and invoke writepage/writepages, which would call
1928 		 * the fill_delalloc callbacks (cow_file_range,
1929 		 * submit_compressed_extents). These callbacks add first an
1930 		 * extent map to the modified list of extents and then create
1931 		 * the respective ordered operation, which means in
1932 		 * tree-log.c:btrfs_log_inode() we might capture all existing
1933 		 * ordered operations (with btrfs_get_logged_extents()) before
1934 		 * the fill_delalloc callback adds its ordered operation, and by
1935 		 * the time we visit the modified list of extent maps (with
1936 		 * btrfs_log_changed_extents()), we see and process the extent
1937 		 * map they created. We then use the extent map to construct a
1938 		 * file extent item for logging without waiting for the
1939 		 * respective ordered operation to finish - this file extent
1940 		 * item points to a disk location that might not have yet been
1941 		 * written to, containing random data - so after a crash a log
1942 		 * replay will make our inode have file extent items that point
1943 		 * to disk locations containing invalid data, as we returned
1944 		 * success to userspace without waiting for the respective
1945 		 * ordered operation to finish, because it wasn't captured by
1946 		 * btrfs_get_logged_extents().
1947 		 */
1948 		ret = start_ordered_ops(inode, start, end);
1949 	}
1950 	if (ret) {
1951 		mutex_unlock(&inode->i_mutex);
1952 		goto out;
1953 	}
1954 	atomic_inc(&root->log_batch);
1955 
1956 	/*
1957 	 * If the last transaction that changed this file was before the current
1958 	 * transaction and we have the full sync flag set in our inode, we can
1959 	 * bail out now without any syncing.
1960 	 *
1961 	 * Note that we can't bail out if the full sync flag isn't set. This is
1962 	 * because when the full sync flag is set we start all ordered extents
1963 	 * and wait for them to fully complete - when they complete they update
1964 	 * the inode's last_trans field through:
1965 	 *
1966 	 *     btrfs_finish_ordered_io() ->
1967 	 *         btrfs_update_inode_fallback() ->
1968 	 *             btrfs_update_inode() ->
1969 	 *                 btrfs_set_inode_last_trans()
1970 	 *
1971 	 * So we are sure that last_trans is up to date and can do this check to
1972 	 * bail out safely. For the fast path, when the full sync flag is not
1973 	 * set in our inode, we can not do it because we start only our ordered
1974 	 * extents and don't wait for them to complete (that is when
1975 	 * btrfs_finish_ordered_io runs), so here at this point their last_trans
1976 	 * value might be less than or equals to fs_info->last_trans_committed,
1977 	 * and setting a speculative last_trans for an inode when a buffered
1978 	 * write is made (such as fs_info->generation + 1 for example) would not
1979 	 * be reliable since after setting the value and before fsync is called
1980 	 * any number of transactions can start and commit (transaction kthread
1981 	 * commits the current transaction periodically), and a transaction
1982 	 * commit does not start nor waits for ordered extents to complete.
1983 	 */
1984 	smp_mb();
1985 	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1986 	    (BTRFS_I(inode)->last_trans <=
1987 	     root->fs_info->last_trans_committed &&
1988 	     (full_sync ||
1989 	      !btrfs_have_ordered_extents_in_range(inode, start, len)))) {
1990 		/*
1991 		 * We'v had everything committed since the last time we were
1992 		 * modified so clear this flag in case it was set for whatever
1993 		 * reason, it's no longer relevant.
1994 		 */
1995 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1996 			  &BTRFS_I(inode)->runtime_flags);
1997 		mutex_unlock(&inode->i_mutex);
1998 		goto out;
1999 	}
2000 
2001 	/*
2002 	 * ok we haven't committed the transaction yet, lets do a commit
2003 	 */
2004 	if (file->private_data)
2005 		btrfs_ioctl_trans_end(file);
2006 
2007 	/*
2008 	 * We use start here because we will need to wait on the IO to complete
2009 	 * in btrfs_sync_log, which could require joining a transaction (for
2010 	 * example checking cross references in the nocow path).  If we use join
2011 	 * here we could get into a situation where we're waiting on IO to
2012 	 * happen that is blocked on a transaction trying to commit.  With start
2013 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2014 	 * before we start blocking join'ers.  This comment is to keep somebody
2015 	 * from thinking they are super smart and changing this to
2016 	 * btrfs_join_transaction *cough*Josef*cough*.
2017 	 */
2018 	trans = btrfs_start_transaction(root, 0);
2019 	if (IS_ERR(trans)) {
2020 		ret = PTR_ERR(trans);
2021 		mutex_unlock(&inode->i_mutex);
2022 		goto out;
2023 	}
2024 	trans->sync = true;
2025 
2026 	btrfs_init_log_ctx(&ctx);
2027 
2028 	ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2029 	if (ret < 0) {
2030 		/* Fallthrough and commit/free transaction. */
2031 		ret = 1;
2032 	}
2033 
2034 	/* we've logged all the items and now have a consistent
2035 	 * version of the file in the log.  It is possible that
2036 	 * someone will come in and modify the file, but that's
2037 	 * fine because the log is consistent on disk, and we
2038 	 * have references to all of the file's extents
2039 	 *
2040 	 * It is possible that someone will come in and log the
2041 	 * file again, but that will end up using the synchronization
2042 	 * inside btrfs_sync_log to keep things safe.
2043 	 */
2044 	mutex_unlock(&inode->i_mutex);
2045 
2046 	/*
2047 	 * If any of the ordered extents had an error, just return it to user
2048 	 * space, so that the application knows some writes didn't succeed and
2049 	 * can take proper action (retry for e.g.). Blindly committing the
2050 	 * transaction in this case, would fool userspace that everything was
2051 	 * successful. And we also want to make sure our log doesn't contain
2052 	 * file extent items pointing to extents that weren't fully written to -
2053 	 * just like in the non fast fsync path, where we check for the ordered
2054 	 * operation's error flag before writing to the log tree and return -EIO
2055 	 * if any of them had this flag set (btrfs_wait_ordered_range) -
2056 	 * therefore we need to check for errors in the ordered operations,
2057 	 * which are indicated by ctx.io_err.
2058 	 */
2059 	if (ctx.io_err) {
2060 		btrfs_end_transaction(trans, root);
2061 		ret = ctx.io_err;
2062 		goto out;
2063 	}
2064 
2065 	if (ret != BTRFS_NO_LOG_SYNC) {
2066 		if (!ret) {
2067 			ret = btrfs_sync_log(trans, root, &ctx);
2068 			if (!ret) {
2069 				ret = btrfs_end_transaction(trans, root);
2070 				goto out;
2071 			}
2072 		}
2073 		if (!full_sync) {
2074 			ret = btrfs_wait_ordered_range(inode, start,
2075 						       end - start + 1);
2076 			if (ret) {
2077 				btrfs_end_transaction(trans, root);
2078 				goto out;
2079 			}
2080 		}
2081 		ret = btrfs_commit_transaction(trans, root);
2082 	} else {
2083 		ret = btrfs_end_transaction(trans, root);
2084 	}
2085 out:
2086 	return ret > 0 ? -EIO : ret;
2087 }
2088 
2089 static const struct vm_operations_struct btrfs_file_vm_ops = {
2090 	.fault		= filemap_fault,
2091 	.map_pages	= filemap_map_pages,
2092 	.page_mkwrite	= btrfs_page_mkwrite,
2093 };
2094 
2095 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2096 {
2097 	struct address_space *mapping = filp->f_mapping;
2098 
2099 	if (!mapping->a_ops->readpage)
2100 		return -ENOEXEC;
2101 
2102 	file_accessed(filp);
2103 	vma->vm_ops = &btrfs_file_vm_ops;
2104 
2105 	return 0;
2106 }
2107 
2108 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2109 			  int slot, u64 start, u64 end)
2110 {
2111 	struct btrfs_file_extent_item *fi;
2112 	struct btrfs_key key;
2113 
2114 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2115 		return 0;
2116 
2117 	btrfs_item_key_to_cpu(leaf, &key, slot);
2118 	if (key.objectid != btrfs_ino(inode) ||
2119 	    key.type != BTRFS_EXTENT_DATA_KEY)
2120 		return 0;
2121 
2122 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2123 
2124 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2125 		return 0;
2126 
2127 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2128 		return 0;
2129 
2130 	if (key.offset == end)
2131 		return 1;
2132 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2133 		return 1;
2134 	return 0;
2135 }
2136 
2137 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2138 		      struct btrfs_path *path, u64 offset, u64 end)
2139 {
2140 	struct btrfs_root *root = BTRFS_I(inode)->root;
2141 	struct extent_buffer *leaf;
2142 	struct btrfs_file_extent_item *fi;
2143 	struct extent_map *hole_em;
2144 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2145 	struct btrfs_key key;
2146 	int ret;
2147 
2148 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2149 		goto out;
2150 
2151 	key.objectid = btrfs_ino(inode);
2152 	key.type = BTRFS_EXTENT_DATA_KEY;
2153 	key.offset = offset;
2154 
2155 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2156 	if (ret < 0)
2157 		return ret;
2158 	BUG_ON(!ret);
2159 
2160 	leaf = path->nodes[0];
2161 	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2162 		u64 num_bytes;
2163 
2164 		path->slots[0]--;
2165 		fi = btrfs_item_ptr(leaf, path->slots[0],
2166 				    struct btrfs_file_extent_item);
2167 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2168 			end - offset;
2169 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2170 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2171 		btrfs_set_file_extent_offset(leaf, fi, 0);
2172 		btrfs_mark_buffer_dirty(leaf);
2173 		goto out;
2174 	}
2175 
2176 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2177 		u64 num_bytes;
2178 
2179 		key.offset = offset;
2180 		btrfs_set_item_key_safe(root->fs_info, path, &key);
2181 		fi = btrfs_item_ptr(leaf, path->slots[0],
2182 				    struct btrfs_file_extent_item);
2183 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2184 			offset;
2185 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2186 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2187 		btrfs_set_file_extent_offset(leaf, fi, 0);
2188 		btrfs_mark_buffer_dirty(leaf);
2189 		goto out;
2190 	}
2191 	btrfs_release_path(path);
2192 
2193 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2194 				       0, 0, end - offset, 0, end - offset,
2195 				       0, 0, 0);
2196 	if (ret)
2197 		return ret;
2198 
2199 out:
2200 	btrfs_release_path(path);
2201 
2202 	hole_em = alloc_extent_map();
2203 	if (!hole_em) {
2204 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2205 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2206 			&BTRFS_I(inode)->runtime_flags);
2207 	} else {
2208 		hole_em->start = offset;
2209 		hole_em->len = end - offset;
2210 		hole_em->ram_bytes = hole_em->len;
2211 		hole_em->orig_start = offset;
2212 
2213 		hole_em->block_start = EXTENT_MAP_HOLE;
2214 		hole_em->block_len = 0;
2215 		hole_em->orig_block_len = 0;
2216 		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2217 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2218 		hole_em->generation = trans->transid;
2219 
2220 		do {
2221 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2222 			write_lock(&em_tree->lock);
2223 			ret = add_extent_mapping(em_tree, hole_em, 1);
2224 			write_unlock(&em_tree->lock);
2225 		} while (ret == -EEXIST);
2226 		free_extent_map(hole_em);
2227 		if (ret)
2228 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2229 				&BTRFS_I(inode)->runtime_flags);
2230 	}
2231 
2232 	return 0;
2233 }
2234 
2235 /*
2236  * Find a hole extent on given inode and change start/len to the end of hole
2237  * extent.(hole/vacuum extent whose em->start <= start &&
2238  *	   em->start + em->len > start)
2239  * When a hole extent is found, return 1 and modify start/len.
2240  */
2241 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2242 {
2243 	struct extent_map *em;
2244 	int ret = 0;
2245 
2246 	em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2247 	if (IS_ERR_OR_NULL(em)) {
2248 		if (!em)
2249 			ret = -ENOMEM;
2250 		else
2251 			ret = PTR_ERR(em);
2252 		return ret;
2253 	}
2254 
2255 	/* Hole or vacuum extent(only exists in no-hole mode) */
2256 	if (em->block_start == EXTENT_MAP_HOLE) {
2257 		ret = 1;
2258 		*len = em->start + em->len > *start + *len ?
2259 		       0 : *start + *len - em->start - em->len;
2260 		*start = em->start + em->len;
2261 	}
2262 	free_extent_map(em);
2263 	return ret;
2264 }
2265 
2266 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2267 {
2268 	struct btrfs_root *root = BTRFS_I(inode)->root;
2269 	struct extent_state *cached_state = NULL;
2270 	struct btrfs_path *path;
2271 	struct btrfs_block_rsv *rsv;
2272 	struct btrfs_trans_handle *trans;
2273 	u64 lockstart;
2274 	u64 lockend;
2275 	u64 tail_start;
2276 	u64 tail_len;
2277 	u64 orig_start = offset;
2278 	u64 cur_offset;
2279 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2280 	u64 drop_end;
2281 	int ret = 0;
2282 	int err = 0;
2283 	unsigned int rsv_count;
2284 	bool same_page;
2285 	bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2286 	u64 ino_size;
2287 	bool truncated_page = false;
2288 	bool updated_inode = false;
2289 
2290 	ret = btrfs_wait_ordered_range(inode, offset, len);
2291 	if (ret)
2292 		return ret;
2293 
2294 	mutex_lock(&inode->i_mutex);
2295 	ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2296 	ret = find_first_non_hole(inode, &offset, &len);
2297 	if (ret < 0)
2298 		goto out_only_mutex;
2299 	if (ret && !len) {
2300 		/* Already in a large hole */
2301 		ret = 0;
2302 		goto out_only_mutex;
2303 	}
2304 
2305 	lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2306 	lockend = round_down(offset + len,
2307 			     BTRFS_I(inode)->root->sectorsize) - 1;
2308 	same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2309 		    ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2310 
2311 	/*
2312 	 * We needn't truncate any page which is beyond the end of the file
2313 	 * because we are sure there is no data there.
2314 	 */
2315 	/*
2316 	 * Only do this if we are in the same page and we aren't doing the
2317 	 * entire page.
2318 	 */
2319 	if (same_page && len < PAGE_CACHE_SIZE) {
2320 		if (offset < ino_size) {
2321 			truncated_page = true;
2322 			ret = btrfs_truncate_page(inode, offset, len, 0);
2323 		} else {
2324 			ret = 0;
2325 		}
2326 		goto out_only_mutex;
2327 	}
2328 
2329 	/* zero back part of the first page */
2330 	if (offset < ino_size) {
2331 		truncated_page = true;
2332 		ret = btrfs_truncate_page(inode, offset, 0, 0);
2333 		if (ret) {
2334 			mutex_unlock(&inode->i_mutex);
2335 			return ret;
2336 		}
2337 	}
2338 
2339 	/* Check the aligned pages after the first unaligned page,
2340 	 * if offset != orig_start, which means the first unaligned page
2341 	 * including serveral following pages are already in holes,
2342 	 * the extra check can be skipped */
2343 	if (offset == orig_start) {
2344 		/* after truncate page, check hole again */
2345 		len = offset + len - lockstart;
2346 		offset = lockstart;
2347 		ret = find_first_non_hole(inode, &offset, &len);
2348 		if (ret < 0)
2349 			goto out_only_mutex;
2350 		if (ret && !len) {
2351 			ret = 0;
2352 			goto out_only_mutex;
2353 		}
2354 		lockstart = offset;
2355 	}
2356 
2357 	/* Check the tail unaligned part is in a hole */
2358 	tail_start = lockend + 1;
2359 	tail_len = offset + len - tail_start;
2360 	if (tail_len) {
2361 		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2362 		if (unlikely(ret < 0))
2363 			goto out_only_mutex;
2364 		if (!ret) {
2365 			/* zero the front end of the last page */
2366 			if (tail_start + tail_len < ino_size) {
2367 				truncated_page = true;
2368 				ret = btrfs_truncate_page(inode,
2369 						tail_start + tail_len, 0, 1);
2370 				if (ret)
2371 					goto out_only_mutex;
2372 			}
2373 		}
2374 	}
2375 
2376 	if (lockend < lockstart) {
2377 		ret = 0;
2378 		goto out_only_mutex;
2379 	}
2380 
2381 	while (1) {
2382 		struct btrfs_ordered_extent *ordered;
2383 
2384 		truncate_pagecache_range(inode, lockstart, lockend);
2385 
2386 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2387 				 0, &cached_state);
2388 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2389 
2390 		/*
2391 		 * We need to make sure we have no ordered extents in this range
2392 		 * and nobody raced in and read a page in this range, if we did
2393 		 * we need to try again.
2394 		 */
2395 		if ((!ordered ||
2396 		    (ordered->file_offset + ordered->len <= lockstart ||
2397 		     ordered->file_offset > lockend)) &&
2398 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2399 			if (ordered)
2400 				btrfs_put_ordered_extent(ordered);
2401 			break;
2402 		}
2403 		if (ordered)
2404 			btrfs_put_ordered_extent(ordered);
2405 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2406 				     lockend, &cached_state, GFP_NOFS);
2407 		ret = btrfs_wait_ordered_range(inode, lockstart,
2408 					       lockend - lockstart + 1);
2409 		if (ret) {
2410 			mutex_unlock(&inode->i_mutex);
2411 			return ret;
2412 		}
2413 	}
2414 
2415 	path = btrfs_alloc_path();
2416 	if (!path) {
2417 		ret = -ENOMEM;
2418 		goto out;
2419 	}
2420 
2421 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2422 	if (!rsv) {
2423 		ret = -ENOMEM;
2424 		goto out_free;
2425 	}
2426 	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2427 	rsv->failfast = 1;
2428 
2429 	/*
2430 	 * 1 - update the inode
2431 	 * 1 - removing the extents in the range
2432 	 * 1 - adding the hole extent if no_holes isn't set
2433 	 */
2434 	rsv_count = no_holes ? 2 : 3;
2435 	trans = btrfs_start_transaction(root, rsv_count);
2436 	if (IS_ERR(trans)) {
2437 		err = PTR_ERR(trans);
2438 		goto out_free;
2439 	}
2440 
2441 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2442 				      min_size);
2443 	BUG_ON(ret);
2444 	trans->block_rsv = rsv;
2445 
2446 	cur_offset = lockstart;
2447 	len = lockend - cur_offset;
2448 	while (cur_offset < lockend) {
2449 		ret = __btrfs_drop_extents(trans, root, inode, path,
2450 					   cur_offset, lockend + 1,
2451 					   &drop_end, 1, 0, 0, NULL);
2452 		if (ret != -ENOSPC)
2453 			break;
2454 
2455 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2456 
2457 		if (cur_offset < ino_size) {
2458 			ret = fill_holes(trans, inode, path, cur_offset,
2459 					 drop_end);
2460 			if (ret) {
2461 				err = ret;
2462 				break;
2463 			}
2464 		}
2465 
2466 		cur_offset = drop_end;
2467 
2468 		ret = btrfs_update_inode(trans, root, inode);
2469 		if (ret) {
2470 			err = ret;
2471 			break;
2472 		}
2473 
2474 		btrfs_end_transaction(trans, root);
2475 		btrfs_btree_balance_dirty(root);
2476 
2477 		trans = btrfs_start_transaction(root, rsv_count);
2478 		if (IS_ERR(trans)) {
2479 			ret = PTR_ERR(trans);
2480 			trans = NULL;
2481 			break;
2482 		}
2483 
2484 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2485 					      rsv, min_size);
2486 		BUG_ON(ret);	/* shouldn't happen */
2487 		trans->block_rsv = rsv;
2488 
2489 		ret = find_first_non_hole(inode, &cur_offset, &len);
2490 		if (unlikely(ret < 0))
2491 			break;
2492 		if (ret && !len) {
2493 			ret = 0;
2494 			break;
2495 		}
2496 	}
2497 
2498 	if (ret) {
2499 		err = ret;
2500 		goto out_trans;
2501 	}
2502 
2503 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2504 	/*
2505 	 * If we are using the NO_HOLES feature we might have had already an
2506 	 * hole that overlaps a part of the region [lockstart, lockend] and
2507 	 * ends at (or beyond) lockend. Since we have no file extent items to
2508 	 * represent holes, drop_end can be less than lockend and so we must
2509 	 * make sure we have an extent map representing the existing hole (the
2510 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2511 	 * map representing the existing hole), otherwise the fast fsync path
2512 	 * will not record the existence of the hole region
2513 	 * [existing_hole_start, lockend].
2514 	 */
2515 	if (drop_end <= lockend)
2516 		drop_end = lockend + 1;
2517 	/*
2518 	 * Don't insert file hole extent item if it's for a range beyond eof
2519 	 * (because it's useless) or if it represents a 0 bytes range (when
2520 	 * cur_offset == drop_end).
2521 	 */
2522 	if (cur_offset < ino_size && cur_offset < drop_end) {
2523 		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2524 		if (ret) {
2525 			err = ret;
2526 			goto out_trans;
2527 		}
2528 	}
2529 
2530 out_trans:
2531 	if (!trans)
2532 		goto out_free;
2533 
2534 	inode_inc_iversion(inode);
2535 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2536 
2537 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2538 	ret = btrfs_update_inode(trans, root, inode);
2539 	updated_inode = true;
2540 	btrfs_end_transaction(trans, root);
2541 	btrfs_btree_balance_dirty(root);
2542 out_free:
2543 	btrfs_free_path(path);
2544 	btrfs_free_block_rsv(root, rsv);
2545 out:
2546 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2547 			     &cached_state, GFP_NOFS);
2548 out_only_mutex:
2549 	if (!updated_inode && truncated_page && !ret && !err) {
2550 		/*
2551 		 * If we only end up zeroing part of a page, we still need to
2552 		 * update the inode item, so that all the time fields are
2553 		 * updated as well as the necessary btrfs inode in memory fields
2554 		 * for detecting, at fsync time, if the inode isn't yet in the
2555 		 * log tree or it's there but not up to date.
2556 		 */
2557 		trans = btrfs_start_transaction(root, 1);
2558 		if (IS_ERR(trans)) {
2559 			err = PTR_ERR(trans);
2560 		} else {
2561 			err = btrfs_update_inode(trans, root, inode);
2562 			ret = btrfs_end_transaction(trans, root);
2563 		}
2564 	}
2565 	mutex_unlock(&inode->i_mutex);
2566 	if (ret && !err)
2567 		err = ret;
2568 	return err;
2569 }
2570 
2571 /* Helper structure to record which range is already reserved */
2572 struct falloc_range {
2573 	struct list_head list;
2574 	u64 start;
2575 	u64 len;
2576 };
2577 
2578 /*
2579  * Helper function to add falloc range
2580  *
2581  * Caller should have locked the larger range of extent containing
2582  * [start, len)
2583  */
2584 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2585 {
2586 	struct falloc_range *prev = NULL;
2587 	struct falloc_range *range = NULL;
2588 
2589 	if (list_empty(head))
2590 		goto insert;
2591 
2592 	/*
2593 	 * As fallocate iterate by bytenr order, we only need to check
2594 	 * the last range.
2595 	 */
2596 	prev = list_entry(head->prev, struct falloc_range, list);
2597 	if (prev->start + prev->len == start) {
2598 		prev->len += len;
2599 		return 0;
2600 	}
2601 insert:
2602 	range = kmalloc(sizeof(*range), GFP_NOFS);
2603 	if (!range)
2604 		return -ENOMEM;
2605 	range->start = start;
2606 	range->len = len;
2607 	list_add_tail(&range->list, head);
2608 	return 0;
2609 }
2610 
2611 static long btrfs_fallocate(struct file *file, int mode,
2612 			    loff_t offset, loff_t len)
2613 {
2614 	struct inode *inode = file_inode(file);
2615 	struct extent_state *cached_state = NULL;
2616 	struct falloc_range *range;
2617 	struct falloc_range *tmp;
2618 	struct list_head reserve_list;
2619 	u64 cur_offset;
2620 	u64 last_byte;
2621 	u64 alloc_start;
2622 	u64 alloc_end;
2623 	u64 alloc_hint = 0;
2624 	u64 locked_end;
2625 	u64 actual_end = 0;
2626 	struct extent_map *em;
2627 	int blocksize = BTRFS_I(inode)->root->sectorsize;
2628 	int ret;
2629 
2630 	alloc_start = round_down(offset, blocksize);
2631 	alloc_end = round_up(offset + len, blocksize);
2632 
2633 	/* Make sure we aren't being give some crap mode */
2634 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2635 		return -EOPNOTSUPP;
2636 
2637 	if (mode & FALLOC_FL_PUNCH_HOLE)
2638 		return btrfs_punch_hole(inode, offset, len);
2639 
2640 	/*
2641 	 * Only trigger disk allocation, don't trigger qgroup reserve
2642 	 *
2643 	 * For qgroup space, it will be checked later.
2644 	 */
2645 	ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2646 	if (ret < 0)
2647 		return ret;
2648 
2649 	mutex_lock(&inode->i_mutex);
2650 	ret = inode_newsize_ok(inode, alloc_end);
2651 	if (ret)
2652 		goto out;
2653 
2654 	/*
2655 	 * TODO: Move these two operations after we have checked
2656 	 * accurate reserved space, or fallocate can still fail but
2657 	 * with page truncated or size expanded.
2658 	 *
2659 	 * But that's a minor problem and won't do much harm BTW.
2660 	 */
2661 	if (alloc_start > inode->i_size) {
2662 		ret = btrfs_cont_expand(inode, i_size_read(inode),
2663 					alloc_start);
2664 		if (ret)
2665 			goto out;
2666 	} else if (offset + len > inode->i_size) {
2667 		/*
2668 		 * If we are fallocating from the end of the file onward we
2669 		 * need to zero out the end of the page if i_size lands in the
2670 		 * middle of a page.
2671 		 */
2672 		ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2673 		if (ret)
2674 			goto out;
2675 	}
2676 
2677 	/*
2678 	 * wait for ordered IO before we have any locks.  We'll loop again
2679 	 * below with the locks held.
2680 	 */
2681 	ret = btrfs_wait_ordered_range(inode, alloc_start,
2682 				       alloc_end - alloc_start);
2683 	if (ret)
2684 		goto out;
2685 
2686 	locked_end = alloc_end - 1;
2687 	while (1) {
2688 		struct btrfs_ordered_extent *ordered;
2689 
2690 		/* the extent lock is ordered inside the running
2691 		 * transaction
2692 		 */
2693 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2694 				 locked_end, 0, &cached_state);
2695 		ordered = btrfs_lookup_first_ordered_extent(inode,
2696 							    alloc_end - 1);
2697 		if (ordered &&
2698 		    ordered->file_offset + ordered->len > alloc_start &&
2699 		    ordered->file_offset < alloc_end) {
2700 			btrfs_put_ordered_extent(ordered);
2701 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2702 					     alloc_start, locked_end,
2703 					     &cached_state, GFP_NOFS);
2704 			/*
2705 			 * we can't wait on the range with the transaction
2706 			 * running or with the extent lock held
2707 			 */
2708 			ret = btrfs_wait_ordered_range(inode, alloc_start,
2709 						       alloc_end - alloc_start);
2710 			if (ret)
2711 				goto out;
2712 		} else {
2713 			if (ordered)
2714 				btrfs_put_ordered_extent(ordered);
2715 			break;
2716 		}
2717 	}
2718 
2719 	/* First, check if we exceed the qgroup limit */
2720 	INIT_LIST_HEAD(&reserve_list);
2721 	cur_offset = alloc_start;
2722 	while (1) {
2723 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2724 				      alloc_end - cur_offset, 0);
2725 		if (IS_ERR_OR_NULL(em)) {
2726 			if (!em)
2727 				ret = -ENOMEM;
2728 			else
2729 				ret = PTR_ERR(em);
2730 			break;
2731 		}
2732 		last_byte = min(extent_map_end(em), alloc_end);
2733 		actual_end = min_t(u64, extent_map_end(em), offset + len);
2734 		last_byte = ALIGN(last_byte, blocksize);
2735 		if (em->block_start == EXTENT_MAP_HOLE ||
2736 		    (cur_offset >= inode->i_size &&
2737 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2738 			ret = add_falloc_range(&reserve_list, cur_offset,
2739 					       last_byte - cur_offset);
2740 			if (ret < 0) {
2741 				free_extent_map(em);
2742 				break;
2743 			}
2744 			ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2745 					last_byte - cur_offset);
2746 			if (ret < 0)
2747 				break;
2748 		}
2749 		free_extent_map(em);
2750 		cur_offset = last_byte;
2751 		if (cur_offset >= alloc_end)
2752 			break;
2753 	}
2754 
2755 	/*
2756 	 * If ret is still 0, means we're OK to fallocate.
2757 	 * Or just cleanup the list and exit.
2758 	 */
2759 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2760 		if (!ret)
2761 			ret = btrfs_prealloc_file_range(inode, mode,
2762 					range->start,
2763 					range->len, 1 << inode->i_blkbits,
2764 					offset + len, &alloc_hint);
2765 		list_del(&range->list);
2766 		kfree(range);
2767 	}
2768 	if (ret < 0)
2769 		goto out_unlock;
2770 
2771 	if (actual_end > inode->i_size &&
2772 	    !(mode & FALLOC_FL_KEEP_SIZE)) {
2773 		struct btrfs_trans_handle *trans;
2774 		struct btrfs_root *root = BTRFS_I(inode)->root;
2775 
2776 		/*
2777 		 * We didn't need to allocate any more space, but we
2778 		 * still extended the size of the file so we need to
2779 		 * update i_size and the inode item.
2780 		 */
2781 		trans = btrfs_start_transaction(root, 1);
2782 		if (IS_ERR(trans)) {
2783 			ret = PTR_ERR(trans);
2784 		} else {
2785 			inode->i_ctime = CURRENT_TIME;
2786 			i_size_write(inode, actual_end);
2787 			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2788 			ret = btrfs_update_inode(trans, root, inode);
2789 			if (ret)
2790 				btrfs_end_transaction(trans, root);
2791 			else
2792 				ret = btrfs_end_transaction(trans, root);
2793 		}
2794 	}
2795 out_unlock:
2796 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2797 			     &cached_state, GFP_NOFS);
2798 out:
2799 	/*
2800 	 * As we waited the extent range, the data_rsv_map must be empty
2801 	 * in the range, as written data range will be released from it.
2802 	 * And for prealloacted extent, it will also be released when
2803 	 * its metadata is written.
2804 	 * So this is completely used as cleanup.
2805 	 */
2806 	btrfs_qgroup_free_data(inode, alloc_start, alloc_end - alloc_start);
2807 	mutex_unlock(&inode->i_mutex);
2808 	/* Let go of our reservation. */
2809 	btrfs_free_reserved_data_space(inode, alloc_start,
2810 				       alloc_end - alloc_start);
2811 	return ret;
2812 }
2813 
2814 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2815 {
2816 	struct btrfs_root *root = BTRFS_I(inode)->root;
2817 	struct extent_map *em = NULL;
2818 	struct extent_state *cached_state = NULL;
2819 	u64 lockstart;
2820 	u64 lockend;
2821 	u64 start;
2822 	u64 len;
2823 	int ret = 0;
2824 
2825 	if (inode->i_size == 0)
2826 		return -ENXIO;
2827 
2828 	/*
2829 	 * *offset can be negative, in this case we start finding DATA/HOLE from
2830 	 * the very start of the file.
2831 	 */
2832 	start = max_t(loff_t, 0, *offset);
2833 
2834 	lockstart = round_down(start, root->sectorsize);
2835 	lockend = round_up(i_size_read(inode), root->sectorsize);
2836 	if (lockend <= lockstart)
2837 		lockend = lockstart + root->sectorsize;
2838 	lockend--;
2839 	len = lockend - lockstart + 1;
2840 
2841 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2842 			 &cached_state);
2843 
2844 	while (start < inode->i_size) {
2845 		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2846 		if (IS_ERR(em)) {
2847 			ret = PTR_ERR(em);
2848 			em = NULL;
2849 			break;
2850 		}
2851 
2852 		if (whence == SEEK_HOLE &&
2853 		    (em->block_start == EXTENT_MAP_HOLE ||
2854 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2855 			break;
2856 		else if (whence == SEEK_DATA &&
2857 			   (em->block_start != EXTENT_MAP_HOLE &&
2858 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2859 			break;
2860 
2861 		start = em->start + em->len;
2862 		free_extent_map(em);
2863 		em = NULL;
2864 		cond_resched();
2865 	}
2866 	free_extent_map(em);
2867 	if (!ret) {
2868 		if (whence == SEEK_DATA && start >= inode->i_size)
2869 			ret = -ENXIO;
2870 		else
2871 			*offset = min_t(loff_t, start, inode->i_size);
2872 	}
2873 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2874 			     &cached_state, GFP_NOFS);
2875 	return ret;
2876 }
2877 
2878 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2879 {
2880 	struct inode *inode = file->f_mapping->host;
2881 	int ret;
2882 
2883 	mutex_lock(&inode->i_mutex);
2884 	switch (whence) {
2885 	case SEEK_END:
2886 	case SEEK_CUR:
2887 		offset = generic_file_llseek(file, offset, whence);
2888 		goto out;
2889 	case SEEK_DATA:
2890 	case SEEK_HOLE:
2891 		if (offset >= i_size_read(inode)) {
2892 			mutex_unlock(&inode->i_mutex);
2893 			return -ENXIO;
2894 		}
2895 
2896 		ret = find_desired_extent(inode, &offset, whence);
2897 		if (ret) {
2898 			mutex_unlock(&inode->i_mutex);
2899 			return ret;
2900 		}
2901 	}
2902 
2903 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2904 out:
2905 	mutex_unlock(&inode->i_mutex);
2906 	return offset;
2907 }
2908 
2909 const struct file_operations btrfs_file_operations = {
2910 	.llseek		= btrfs_file_llseek,
2911 	.read_iter      = generic_file_read_iter,
2912 	.splice_read	= generic_file_splice_read,
2913 	.write_iter	= btrfs_file_write_iter,
2914 	.mmap		= btrfs_file_mmap,
2915 	.open		= generic_file_open,
2916 	.release	= btrfs_release_file,
2917 	.fsync		= btrfs_sync_file,
2918 	.fallocate	= btrfs_fallocate,
2919 	.unlocked_ioctl	= btrfs_ioctl,
2920 #ifdef CONFIG_COMPAT
2921 	.compat_ioctl	= btrfs_ioctl,
2922 #endif
2923 };
2924 
2925 void btrfs_auto_defrag_exit(void)
2926 {
2927 	if (btrfs_inode_defrag_cachep)
2928 		kmem_cache_destroy(btrfs_inode_defrag_cachep);
2929 }
2930 
2931 int btrfs_auto_defrag_init(void)
2932 {
2933 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2934 					sizeof(struct inode_defrag), 0,
2935 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2936 					NULL);
2937 	if (!btrfs_inode_defrag_cachep)
2938 		return -ENOMEM;
2939 
2940 	return 0;
2941 }
2942 
2943 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
2944 {
2945 	int ret;
2946 
2947 	/*
2948 	 * So with compression we will find and lock a dirty page and clear the
2949 	 * first one as dirty, setup an async extent, and immediately return
2950 	 * with the entire range locked but with nobody actually marked with
2951 	 * writeback.  So we can't just filemap_write_and_wait_range() and
2952 	 * expect it to work since it will just kick off a thread to do the
2953 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
2954 	 * since it will wait on the page lock, which won't be unlocked until
2955 	 * after the pages have been marked as writeback and so we're good to go
2956 	 * from there.  We have to do this otherwise we'll miss the ordered
2957 	 * extents and that results in badness.  Please Josef, do not think you
2958 	 * know better and pull this out at some point in the future, it is
2959 	 * right and you are wrong.
2960 	 */
2961 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2962 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
2963 			     &BTRFS_I(inode)->runtime_flags))
2964 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2965 
2966 	return ret;
2967 }
2968