xref: /linux/fs/btrfs/file.c (revision 905e46acd3272d04566fec49afbd7ad9e2ed9ae3)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/compat.h>
31 #include <linux/slab.h>
32 #include <linux/btrfs.h>
33 #include <linux/uio.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "volumes.h"
42 #include "qgroup.h"
43 #include "compression.h"
44 
45 static struct kmem_cache *btrfs_inode_defrag_cachep;
46 /*
47  * when auto defrag is enabled we
48  * queue up these defrag structs to remember which
49  * inodes need defragging passes
50  */
51 struct inode_defrag {
52 	struct rb_node rb_node;
53 	/* objectid */
54 	u64 ino;
55 	/*
56 	 * transid where the defrag was added, we search for
57 	 * extents newer than this
58 	 */
59 	u64 transid;
60 
61 	/* root objectid */
62 	u64 root;
63 
64 	/* last offset we were able to defrag */
65 	u64 last_offset;
66 
67 	/* if we've wrapped around back to zero once already */
68 	int cycled;
69 };
70 
71 static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 				  struct inode_defrag *defrag2)
73 {
74 	if (defrag1->root > defrag2->root)
75 		return 1;
76 	else if (defrag1->root < defrag2->root)
77 		return -1;
78 	else if (defrag1->ino > defrag2->ino)
79 		return 1;
80 	else if (defrag1->ino < defrag2->ino)
81 		return -1;
82 	else
83 		return 0;
84 }
85 
86 /* pop a record for an inode into the defrag tree.  The lock
87  * must be held already
88  *
89  * If you're inserting a record for an older transid than an
90  * existing record, the transid already in the tree is lowered
91  *
92  * If an existing record is found the defrag item you
93  * pass in is freed
94  */
95 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
96 				    struct inode_defrag *defrag)
97 {
98 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
99 	struct inode_defrag *entry;
100 	struct rb_node **p;
101 	struct rb_node *parent = NULL;
102 	int ret;
103 
104 	p = &fs_info->defrag_inodes.rb_node;
105 	while (*p) {
106 		parent = *p;
107 		entry = rb_entry(parent, struct inode_defrag, rb_node);
108 
109 		ret = __compare_inode_defrag(defrag, entry);
110 		if (ret < 0)
111 			p = &parent->rb_left;
112 		else if (ret > 0)
113 			p = &parent->rb_right;
114 		else {
115 			/* if we're reinserting an entry for
116 			 * an old defrag run, make sure to
117 			 * lower the transid of our existing record
118 			 */
119 			if (defrag->transid < entry->transid)
120 				entry->transid = defrag->transid;
121 			if (defrag->last_offset > entry->last_offset)
122 				entry->last_offset = defrag->last_offset;
123 			return -EEXIST;
124 		}
125 	}
126 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
127 	rb_link_node(&defrag->rb_node, parent, p);
128 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
129 	return 0;
130 }
131 
132 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
133 {
134 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
135 		return 0;
136 
137 	if (btrfs_fs_closing(fs_info))
138 		return 0;
139 
140 	return 1;
141 }
142 
143 /*
144  * insert a defrag record for this inode if auto defrag is
145  * enabled
146  */
147 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 			   struct btrfs_inode *inode)
149 {
150 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
151 	struct btrfs_root *root = inode->root;
152 	struct inode_defrag *defrag;
153 	u64 transid;
154 	int ret;
155 
156 	if (!__need_auto_defrag(fs_info))
157 		return 0;
158 
159 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
160 		return 0;
161 
162 	if (trans)
163 		transid = trans->transid;
164 	else
165 		transid = inode->root->last_trans;
166 
167 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
168 	if (!defrag)
169 		return -ENOMEM;
170 
171 	defrag->ino = btrfs_ino(inode);
172 	defrag->transid = transid;
173 	defrag->root = root->root_key.objectid;
174 
175 	spin_lock(&fs_info->defrag_inodes_lock);
176 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
177 		/*
178 		 * If we set IN_DEFRAG flag and evict the inode from memory,
179 		 * and then re-read this inode, this new inode doesn't have
180 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 		 */
182 		ret = __btrfs_add_inode_defrag(inode, defrag);
183 		if (ret)
184 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 	} else {
186 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
187 	}
188 	spin_unlock(&fs_info->defrag_inodes_lock);
189 	return 0;
190 }
191 
192 /*
193  * Requeue the defrag object. If there is a defrag object that points to
194  * the same inode in the tree, we will merge them together (by
195  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196  */
197 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
198 				       struct inode_defrag *defrag)
199 {
200 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
201 	int ret;
202 
203 	if (!__need_auto_defrag(fs_info))
204 		goto out;
205 
206 	/*
207 	 * Here we don't check the IN_DEFRAG flag, because we need merge
208 	 * them together.
209 	 */
210 	spin_lock(&fs_info->defrag_inodes_lock);
211 	ret = __btrfs_add_inode_defrag(inode, defrag);
212 	spin_unlock(&fs_info->defrag_inodes_lock);
213 	if (ret)
214 		goto out;
215 	return;
216 out:
217 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
218 }
219 
220 /*
221  * pick the defragable inode that we want, if it doesn't exist, we will get
222  * the next one.
223  */
224 static struct inode_defrag *
225 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
226 {
227 	struct inode_defrag *entry = NULL;
228 	struct inode_defrag tmp;
229 	struct rb_node *p;
230 	struct rb_node *parent = NULL;
231 	int ret;
232 
233 	tmp.ino = ino;
234 	tmp.root = root;
235 
236 	spin_lock(&fs_info->defrag_inodes_lock);
237 	p = fs_info->defrag_inodes.rb_node;
238 	while (p) {
239 		parent = p;
240 		entry = rb_entry(parent, struct inode_defrag, rb_node);
241 
242 		ret = __compare_inode_defrag(&tmp, entry);
243 		if (ret < 0)
244 			p = parent->rb_left;
245 		else if (ret > 0)
246 			p = parent->rb_right;
247 		else
248 			goto out;
249 	}
250 
251 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252 		parent = rb_next(parent);
253 		if (parent)
254 			entry = rb_entry(parent, struct inode_defrag, rb_node);
255 		else
256 			entry = NULL;
257 	}
258 out:
259 	if (entry)
260 		rb_erase(parent, &fs_info->defrag_inodes);
261 	spin_unlock(&fs_info->defrag_inodes_lock);
262 	return entry;
263 }
264 
265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
266 {
267 	struct inode_defrag *defrag;
268 	struct rb_node *node;
269 
270 	spin_lock(&fs_info->defrag_inodes_lock);
271 	node = rb_first(&fs_info->defrag_inodes);
272 	while (node) {
273 		rb_erase(node, &fs_info->defrag_inodes);
274 		defrag = rb_entry(node, struct inode_defrag, rb_node);
275 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276 
277 		cond_resched_lock(&fs_info->defrag_inodes_lock);
278 
279 		node = rb_first(&fs_info->defrag_inodes);
280 	}
281 	spin_unlock(&fs_info->defrag_inodes_lock);
282 }
283 
284 #define BTRFS_DEFRAG_BATCH	1024
285 
286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287 				    struct inode_defrag *defrag)
288 {
289 	struct btrfs_root *inode_root;
290 	struct inode *inode;
291 	struct btrfs_key key;
292 	struct btrfs_ioctl_defrag_range_args range;
293 	int num_defrag;
294 	int index;
295 	int ret;
296 
297 	/* get the inode */
298 	key.objectid = defrag->root;
299 	key.type = BTRFS_ROOT_ITEM_KEY;
300 	key.offset = (u64)-1;
301 
302 	index = srcu_read_lock(&fs_info->subvol_srcu);
303 
304 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305 	if (IS_ERR(inode_root)) {
306 		ret = PTR_ERR(inode_root);
307 		goto cleanup;
308 	}
309 
310 	key.objectid = defrag->ino;
311 	key.type = BTRFS_INODE_ITEM_KEY;
312 	key.offset = 0;
313 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
314 	if (IS_ERR(inode)) {
315 		ret = PTR_ERR(inode);
316 		goto cleanup;
317 	}
318 	srcu_read_unlock(&fs_info->subvol_srcu, index);
319 
320 	/* do a chunk of defrag */
321 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
322 	memset(&range, 0, sizeof(range));
323 	range.len = (u64)-1;
324 	range.start = defrag->last_offset;
325 
326 	sb_start_write(fs_info->sb);
327 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
328 				       BTRFS_DEFRAG_BATCH);
329 	sb_end_write(fs_info->sb);
330 	/*
331 	 * if we filled the whole defrag batch, there
332 	 * must be more work to do.  Queue this defrag
333 	 * again
334 	 */
335 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
336 		defrag->last_offset = range.start;
337 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
338 	} else if (defrag->last_offset && !defrag->cycled) {
339 		/*
340 		 * we didn't fill our defrag batch, but
341 		 * we didn't start at zero.  Make sure we loop
342 		 * around to the start of the file.
343 		 */
344 		defrag->last_offset = 0;
345 		defrag->cycled = 1;
346 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
347 	} else {
348 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
349 	}
350 
351 	iput(inode);
352 	return 0;
353 cleanup:
354 	srcu_read_unlock(&fs_info->subvol_srcu, index);
355 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356 	return ret;
357 }
358 
359 /*
360  * run through the list of inodes in the FS that need
361  * defragging
362  */
363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364 {
365 	struct inode_defrag *defrag;
366 	u64 first_ino = 0;
367 	u64 root_objectid = 0;
368 
369 	atomic_inc(&fs_info->defrag_running);
370 	while (1) {
371 		/* Pause the auto defragger. */
372 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
373 			     &fs_info->fs_state))
374 			break;
375 
376 		if (!__need_auto_defrag(fs_info))
377 			break;
378 
379 		/* find an inode to defrag */
380 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
381 						 first_ino);
382 		if (!defrag) {
383 			if (root_objectid || first_ino) {
384 				root_objectid = 0;
385 				first_ino = 0;
386 				continue;
387 			} else {
388 				break;
389 			}
390 		}
391 
392 		first_ino = defrag->ino + 1;
393 		root_objectid = defrag->root;
394 
395 		__btrfs_run_defrag_inode(fs_info, defrag);
396 	}
397 	atomic_dec(&fs_info->defrag_running);
398 
399 	/*
400 	 * during unmount, we use the transaction_wait queue to
401 	 * wait for the defragger to stop
402 	 */
403 	wake_up(&fs_info->transaction_wait);
404 	return 0;
405 }
406 
407 /* simple helper to fault in pages and copy.  This should go away
408  * and be replaced with calls into generic code.
409  */
410 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
411 					 struct page **prepared_pages,
412 					 struct iov_iter *i)
413 {
414 	size_t copied = 0;
415 	size_t total_copied = 0;
416 	int pg = 0;
417 	int offset = pos & (PAGE_SIZE - 1);
418 
419 	while (write_bytes > 0) {
420 		size_t count = min_t(size_t,
421 				     PAGE_SIZE - offset, write_bytes);
422 		struct page *page = prepared_pages[pg];
423 		/*
424 		 * Copy data from userspace to the current page
425 		 */
426 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427 
428 		/* Flush processor's dcache for this page */
429 		flush_dcache_page(page);
430 
431 		/*
432 		 * if we get a partial write, we can end up with
433 		 * partially up to date pages.  These add
434 		 * a lot of complexity, so make sure they don't
435 		 * happen by forcing this copy to be retried.
436 		 *
437 		 * The rest of the btrfs_file_write code will fall
438 		 * back to page at a time copies after we return 0.
439 		 */
440 		if (!PageUptodate(page) && copied < count)
441 			copied = 0;
442 
443 		iov_iter_advance(i, copied);
444 		write_bytes -= copied;
445 		total_copied += copied;
446 
447 		/* Return to btrfs_file_write_iter to fault page */
448 		if (unlikely(copied == 0))
449 			break;
450 
451 		if (copied < PAGE_SIZE - offset) {
452 			offset += copied;
453 		} else {
454 			pg++;
455 			offset = 0;
456 		}
457 	}
458 	return total_copied;
459 }
460 
461 /*
462  * unlocks pages after btrfs_file_write is done with them
463  */
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465 {
466 	size_t i;
467 	for (i = 0; i < num_pages; i++) {
468 		/* page checked is some magic around finding pages that
469 		 * have been modified without going through btrfs_set_page_dirty
470 		 * clear it here. There should be no need to mark the pages
471 		 * accessed as prepare_pages should have marked them accessed
472 		 * in prepare_pages via find_or_create_page()
473 		 */
474 		ClearPageChecked(pages[i]);
475 		unlock_page(pages[i]);
476 		put_page(pages[i]);
477 	}
478 }
479 
480 /*
481  * after copy_from_user, pages need to be dirtied and we need to make
482  * sure holes are created between the current EOF and the start of
483  * any next extents (if required).
484  *
485  * this also makes the decision about creating an inline extent vs
486  * doing real data extents, marking pages dirty and delalloc as required.
487  */
488 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
489 		      size_t num_pages, loff_t pos, size_t write_bytes,
490 		      struct extent_state **cached)
491 {
492 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
493 	int err = 0;
494 	int i;
495 	u64 num_bytes;
496 	u64 start_pos;
497 	u64 end_of_last_block;
498 	u64 end_pos = pos + write_bytes;
499 	loff_t isize = i_size_read(inode);
500 
501 	start_pos = pos & ~((u64) fs_info->sectorsize - 1);
502 	num_bytes = round_up(write_bytes + pos - start_pos,
503 			     fs_info->sectorsize);
504 
505 	end_of_last_block = start_pos + num_bytes - 1;
506 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
507 					cached, 0);
508 	if (err)
509 		return err;
510 
511 	for (i = 0; i < num_pages; i++) {
512 		struct page *p = pages[i];
513 		SetPageUptodate(p);
514 		ClearPageChecked(p);
515 		set_page_dirty(p);
516 	}
517 
518 	/*
519 	 * we've only changed i_size in ram, and we haven't updated
520 	 * the disk i_size.  There is no need to log the inode
521 	 * at this time.
522 	 */
523 	if (end_pos > isize)
524 		i_size_write(inode, end_pos);
525 	return 0;
526 }
527 
528 /*
529  * this drops all the extents in the cache that intersect the range
530  * [start, end].  Existing extents are split as required.
531  */
532 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
533 			     int skip_pinned)
534 {
535 	struct extent_map *em;
536 	struct extent_map *split = NULL;
537 	struct extent_map *split2 = NULL;
538 	struct extent_map_tree *em_tree = &inode->extent_tree;
539 	u64 len = end - start + 1;
540 	u64 gen;
541 	int ret;
542 	int testend = 1;
543 	unsigned long flags;
544 	int compressed = 0;
545 	bool modified;
546 
547 	WARN_ON(end < start);
548 	if (end == (u64)-1) {
549 		len = (u64)-1;
550 		testend = 0;
551 	}
552 	while (1) {
553 		int no_splits = 0;
554 
555 		modified = false;
556 		if (!split)
557 			split = alloc_extent_map();
558 		if (!split2)
559 			split2 = alloc_extent_map();
560 		if (!split || !split2)
561 			no_splits = 1;
562 
563 		write_lock(&em_tree->lock);
564 		em = lookup_extent_mapping(em_tree, start, len);
565 		if (!em) {
566 			write_unlock(&em_tree->lock);
567 			break;
568 		}
569 		flags = em->flags;
570 		gen = em->generation;
571 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
572 			if (testend && em->start + em->len >= start + len) {
573 				free_extent_map(em);
574 				write_unlock(&em_tree->lock);
575 				break;
576 			}
577 			start = em->start + em->len;
578 			if (testend)
579 				len = start + len - (em->start + em->len);
580 			free_extent_map(em);
581 			write_unlock(&em_tree->lock);
582 			continue;
583 		}
584 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
585 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
586 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
587 		modified = !list_empty(&em->list);
588 		if (no_splits)
589 			goto next;
590 
591 		if (em->start < start) {
592 			split->start = em->start;
593 			split->len = start - em->start;
594 
595 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
596 				split->orig_start = em->orig_start;
597 				split->block_start = em->block_start;
598 
599 				if (compressed)
600 					split->block_len = em->block_len;
601 				else
602 					split->block_len = split->len;
603 				split->orig_block_len = max(split->block_len,
604 						em->orig_block_len);
605 				split->ram_bytes = em->ram_bytes;
606 			} else {
607 				split->orig_start = split->start;
608 				split->block_len = 0;
609 				split->block_start = em->block_start;
610 				split->orig_block_len = 0;
611 				split->ram_bytes = split->len;
612 			}
613 
614 			split->generation = gen;
615 			split->bdev = em->bdev;
616 			split->flags = flags;
617 			split->compress_type = em->compress_type;
618 			replace_extent_mapping(em_tree, em, split, modified);
619 			free_extent_map(split);
620 			split = split2;
621 			split2 = NULL;
622 		}
623 		if (testend && em->start + em->len > start + len) {
624 			u64 diff = start + len - em->start;
625 
626 			split->start = start + len;
627 			split->len = em->start + em->len - (start + len);
628 			split->bdev = em->bdev;
629 			split->flags = flags;
630 			split->compress_type = em->compress_type;
631 			split->generation = gen;
632 
633 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
634 				split->orig_block_len = max(em->block_len,
635 						    em->orig_block_len);
636 
637 				split->ram_bytes = em->ram_bytes;
638 				if (compressed) {
639 					split->block_len = em->block_len;
640 					split->block_start = em->block_start;
641 					split->orig_start = em->orig_start;
642 				} else {
643 					split->block_len = split->len;
644 					split->block_start = em->block_start
645 						+ diff;
646 					split->orig_start = em->orig_start;
647 				}
648 			} else {
649 				split->ram_bytes = split->len;
650 				split->orig_start = split->start;
651 				split->block_len = 0;
652 				split->block_start = em->block_start;
653 				split->orig_block_len = 0;
654 			}
655 
656 			if (extent_map_in_tree(em)) {
657 				replace_extent_mapping(em_tree, em, split,
658 						       modified);
659 			} else {
660 				ret = add_extent_mapping(em_tree, split,
661 							 modified);
662 				ASSERT(ret == 0); /* Logic error */
663 			}
664 			free_extent_map(split);
665 			split = NULL;
666 		}
667 next:
668 		if (extent_map_in_tree(em))
669 			remove_extent_mapping(em_tree, em);
670 		write_unlock(&em_tree->lock);
671 
672 		/* once for us */
673 		free_extent_map(em);
674 		/* once for the tree*/
675 		free_extent_map(em);
676 	}
677 	if (split)
678 		free_extent_map(split);
679 	if (split2)
680 		free_extent_map(split2);
681 }
682 
683 /*
684  * this is very complex, but the basic idea is to drop all extents
685  * in the range start - end.  hint_block is filled in with a block number
686  * that would be a good hint to the block allocator for this file.
687  *
688  * If an extent intersects the range but is not entirely inside the range
689  * it is either truncated or split.  Anything entirely inside the range
690  * is deleted from the tree.
691  */
692 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
693 			 struct btrfs_root *root, struct inode *inode,
694 			 struct btrfs_path *path, u64 start, u64 end,
695 			 u64 *drop_end, int drop_cache,
696 			 int replace_extent,
697 			 u32 extent_item_size,
698 			 int *key_inserted)
699 {
700 	struct btrfs_fs_info *fs_info = root->fs_info;
701 	struct extent_buffer *leaf;
702 	struct btrfs_file_extent_item *fi;
703 	struct btrfs_key key;
704 	struct btrfs_key new_key;
705 	u64 ino = btrfs_ino(BTRFS_I(inode));
706 	u64 search_start = start;
707 	u64 disk_bytenr = 0;
708 	u64 num_bytes = 0;
709 	u64 extent_offset = 0;
710 	u64 extent_end = 0;
711 	u64 last_end = start;
712 	int del_nr = 0;
713 	int del_slot = 0;
714 	int extent_type;
715 	int recow;
716 	int ret;
717 	int modify_tree = -1;
718 	int update_refs;
719 	int found = 0;
720 	int leafs_visited = 0;
721 
722 	if (drop_cache)
723 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
724 
725 	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
726 		modify_tree = 0;
727 
728 	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
729 		       root == fs_info->tree_root);
730 	while (1) {
731 		recow = 0;
732 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
733 					       search_start, modify_tree);
734 		if (ret < 0)
735 			break;
736 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
737 			leaf = path->nodes[0];
738 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
739 			if (key.objectid == ino &&
740 			    key.type == BTRFS_EXTENT_DATA_KEY)
741 				path->slots[0]--;
742 		}
743 		ret = 0;
744 		leafs_visited++;
745 next_slot:
746 		leaf = path->nodes[0];
747 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
748 			BUG_ON(del_nr > 0);
749 			ret = btrfs_next_leaf(root, path);
750 			if (ret < 0)
751 				break;
752 			if (ret > 0) {
753 				ret = 0;
754 				break;
755 			}
756 			leafs_visited++;
757 			leaf = path->nodes[0];
758 			recow = 1;
759 		}
760 
761 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
762 
763 		if (key.objectid > ino)
764 			break;
765 		if (WARN_ON_ONCE(key.objectid < ino) ||
766 		    key.type < BTRFS_EXTENT_DATA_KEY) {
767 			ASSERT(del_nr == 0);
768 			path->slots[0]++;
769 			goto next_slot;
770 		}
771 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
772 			break;
773 
774 		fi = btrfs_item_ptr(leaf, path->slots[0],
775 				    struct btrfs_file_extent_item);
776 		extent_type = btrfs_file_extent_type(leaf, fi);
777 
778 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
779 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
780 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
781 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
782 			extent_offset = btrfs_file_extent_offset(leaf, fi);
783 			extent_end = key.offset +
784 				btrfs_file_extent_num_bytes(leaf, fi);
785 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
786 			extent_end = key.offset +
787 				btrfs_file_extent_inline_len(leaf,
788 						     path->slots[0], fi);
789 		} else {
790 			/* can't happen */
791 			BUG();
792 		}
793 
794 		/*
795 		 * Don't skip extent items representing 0 byte lengths. They
796 		 * used to be created (bug) if while punching holes we hit
797 		 * -ENOSPC condition. So if we find one here, just ensure we
798 		 * delete it, otherwise we would insert a new file extent item
799 		 * with the same key (offset) as that 0 bytes length file
800 		 * extent item in the call to setup_items_for_insert() later
801 		 * in this function.
802 		 */
803 		if (extent_end == key.offset && extent_end >= search_start) {
804 			last_end = extent_end;
805 			goto delete_extent_item;
806 		}
807 
808 		if (extent_end <= search_start) {
809 			path->slots[0]++;
810 			goto next_slot;
811 		}
812 
813 		found = 1;
814 		search_start = max(key.offset, start);
815 		if (recow || !modify_tree) {
816 			modify_tree = -1;
817 			btrfs_release_path(path);
818 			continue;
819 		}
820 
821 		/*
822 		 *     | - range to drop - |
823 		 *  | -------- extent -------- |
824 		 */
825 		if (start > key.offset && end < extent_end) {
826 			BUG_ON(del_nr > 0);
827 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
828 				ret = -EOPNOTSUPP;
829 				break;
830 			}
831 
832 			memcpy(&new_key, &key, sizeof(new_key));
833 			new_key.offset = start;
834 			ret = btrfs_duplicate_item(trans, root, path,
835 						   &new_key);
836 			if (ret == -EAGAIN) {
837 				btrfs_release_path(path);
838 				continue;
839 			}
840 			if (ret < 0)
841 				break;
842 
843 			leaf = path->nodes[0];
844 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
845 					    struct btrfs_file_extent_item);
846 			btrfs_set_file_extent_num_bytes(leaf, fi,
847 							start - key.offset);
848 
849 			fi = btrfs_item_ptr(leaf, path->slots[0],
850 					    struct btrfs_file_extent_item);
851 
852 			extent_offset += start - key.offset;
853 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
854 			btrfs_set_file_extent_num_bytes(leaf, fi,
855 							extent_end - start);
856 			btrfs_mark_buffer_dirty(leaf);
857 
858 			if (update_refs && disk_bytenr > 0) {
859 				ret = btrfs_inc_extent_ref(trans, fs_info,
860 						disk_bytenr, num_bytes, 0,
861 						root->root_key.objectid,
862 						new_key.objectid,
863 						start - extent_offset);
864 				BUG_ON(ret); /* -ENOMEM */
865 			}
866 			key.offset = start;
867 		}
868 		/*
869 		 * From here on out we will have actually dropped something, so
870 		 * last_end can be updated.
871 		 */
872 		last_end = extent_end;
873 
874 		/*
875 		 *  | ---- range to drop ----- |
876 		 *      | -------- extent -------- |
877 		 */
878 		if (start <= key.offset && end < extent_end) {
879 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
880 				ret = -EOPNOTSUPP;
881 				break;
882 			}
883 
884 			memcpy(&new_key, &key, sizeof(new_key));
885 			new_key.offset = end;
886 			btrfs_set_item_key_safe(fs_info, path, &new_key);
887 
888 			extent_offset += end - key.offset;
889 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
890 			btrfs_set_file_extent_num_bytes(leaf, fi,
891 							extent_end - end);
892 			btrfs_mark_buffer_dirty(leaf);
893 			if (update_refs && disk_bytenr > 0)
894 				inode_sub_bytes(inode, end - key.offset);
895 			break;
896 		}
897 
898 		search_start = extent_end;
899 		/*
900 		 *       | ---- range to drop ----- |
901 		 *  | -------- extent -------- |
902 		 */
903 		if (start > key.offset && end >= extent_end) {
904 			BUG_ON(del_nr > 0);
905 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
906 				ret = -EOPNOTSUPP;
907 				break;
908 			}
909 
910 			btrfs_set_file_extent_num_bytes(leaf, fi,
911 							start - key.offset);
912 			btrfs_mark_buffer_dirty(leaf);
913 			if (update_refs && disk_bytenr > 0)
914 				inode_sub_bytes(inode, extent_end - start);
915 			if (end == extent_end)
916 				break;
917 
918 			path->slots[0]++;
919 			goto next_slot;
920 		}
921 
922 		/*
923 		 *  | ---- range to drop ----- |
924 		 *    | ------ extent ------ |
925 		 */
926 		if (start <= key.offset && end >= extent_end) {
927 delete_extent_item:
928 			if (del_nr == 0) {
929 				del_slot = path->slots[0];
930 				del_nr = 1;
931 			} else {
932 				BUG_ON(del_slot + del_nr != path->slots[0]);
933 				del_nr++;
934 			}
935 
936 			if (update_refs &&
937 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
938 				inode_sub_bytes(inode,
939 						extent_end - key.offset);
940 				extent_end = ALIGN(extent_end,
941 						   fs_info->sectorsize);
942 			} else if (update_refs && disk_bytenr > 0) {
943 				ret = btrfs_free_extent(trans, fs_info,
944 						disk_bytenr, num_bytes, 0,
945 						root->root_key.objectid,
946 						key.objectid, key.offset -
947 						extent_offset);
948 				BUG_ON(ret); /* -ENOMEM */
949 				inode_sub_bytes(inode,
950 						extent_end - key.offset);
951 			}
952 
953 			if (end == extent_end)
954 				break;
955 
956 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
957 				path->slots[0]++;
958 				goto next_slot;
959 			}
960 
961 			ret = btrfs_del_items(trans, root, path, del_slot,
962 					      del_nr);
963 			if (ret) {
964 				btrfs_abort_transaction(trans, ret);
965 				break;
966 			}
967 
968 			del_nr = 0;
969 			del_slot = 0;
970 
971 			btrfs_release_path(path);
972 			continue;
973 		}
974 
975 		BUG_ON(1);
976 	}
977 
978 	if (!ret && del_nr > 0) {
979 		/*
980 		 * Set path->slots[0] to first slot, so that after the delete
981 		 * if items are move off from our leaf to its immediate left or
982 		 * right neighbor leafs, we end up with a correct and adjusted
983 		 * path->slots[0] for our insertion (if replace_extent != 0).
984 		 */
985 		path->slots[0] = del_slot;
986 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
987 		if (ret)
988 			btrfs_abort_transaction(trans, ret);
989 	}
990 
991 	leaf = path->nodes[0];
992 	/*
993 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
994 	 * which case it unlocked our path, so check path->locks[0] matches a
995 	 * write lock.
996 	 */
997 	if (!ret && replace_extent && leafs_visited == 1 &&
998 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
999 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
1000 	    btrfs_leaf_free_space(fs_info, leaf) >=
1001 	    sizeof(struct btrfs_item) + extent_item_size) {
1002 
1003 		key.objectid = ino;
1004 		key.type = BTRFS_EXTENT_DATA_KEY;
1005 		key.offset = start;
1006 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1007 			struct btrfs_key slot_key;
1008 
1009 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1010 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1011 				path->slots[0]++;
1012 		}
1013 		setup_items_for_insert(root, path, &key,
1014 				       &extent_item_size,
1015 				       extent_item_size,
1016 				       sizeof(struct btrfs_item) +
1017 				       extent_item_size, 1);
1018 		*key_inserted = 1;
1019 	}
1020 
1021 	if (!replace_extent || !(*key_inserted))
1022 		btrfs_release_path(path);
1023 	if (drop_end)
1024 		*drop_end = found ? min(end, last_end) : end;
1025 	return ret;
1026 }
1027 
1028 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1029 		       struct btrfs_root *root, struct inode *inode, u64 start,
1030 		       u64 end, int drop_cache)
1031 {
1032 	struct btrfs_path *path;
1033 	int ret;
1034 
1035 	path = btrfs_alloc_path();
1036 	if (!path)
1037 		return -ENOMEM;
1038 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1039 				   drop_cache, 0, 0, NULL);
1040 	btrfs_free_path(path);
1041 	return ret;
1042 }
1043 
1044 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1045 			    u64 objectid, u64 bytenr, u64 orig_offset,
1046 			    u64 *start, u64 *end)
1047 {
1048 	struct btrfs_file_extent_item *fi;
1049 	struct btrfs_key key;
1050 	u64 extent_end;
1051 
1052 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1053 		return 0;
1054 
1055 	btrfs_item_key_to_cpu(leaf, &key, slot);
1056 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1057 		return 0;
1058 
1059 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1060 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1061 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1062 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1063 	    btrfs_file_extent_compression(leaf, fi) ||
1064 	    btrfs_file_extent_encryption(leaf, fi) ||
1065 	    btrfs_file_extent_other_encoding(leaf, fi))
1066 		return 0;
1067 
1068 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1069 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1070 		return 0;
1071 
1072 	*start = key.offset;
1073 	*end = extent_end;
1074 	return 1;
1075 }
1076 
1077 /*
1078  * Mark extent in the range start - end as written.
1079  *
1080  * This changes extent type from 'pre-allocated' to 'regular'. If only
1081  * part of extent is marked as written, the extent will be split into
1082  * two or three.
1083  */
1084 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1085 			      struct btrfs_inode *inode, u64 start, u64 end)
1086 {
1087 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1088 	struct btrfs_root *root = inode->root;
1089 	struct extent_buffer *leaf;
1090 	struct btrfs_path *path;
1091 	struct btrfs_file_extent_item *fi;
1092 	struct btrfs_key key;
1093 	struct btrfs_key new_key;
1094 	u64 bytenr;
1095 	u64 num_bytes;
1096 	u64 extent_end;
1097 	u64 orig_offset;
1098 	u64 other_start;
1099 	u64 other_end;
1100 	u64 split;
1101 	int del_nr = 0;
1102 	int del_slot = 0;
1103 	int recow;
1104 	int ret;
1105 	u64 ino = btrfs_ino(inode);
1106 
1107 	path = btrfs_alloc_path();
1108 	if (!path)
1109 		return -ENOMEM;
1110 again:
1111 	recow = 0;
1112 	split = start;
1113 	key.objectid = ino;
1114 	key.type = BTRFS_EXTENT_DATA_KEY;
1115 	key.offset = split;
1116 
1117 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1118 	if (ret < 0)
1119 		goto out;
1120 	if (ret > 0 && path->slots[0] > 0)
1121 		path->slots[0]--;
1122 
1123 	leaf = path->nodes[0];
1124 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1125 	if (key.objectid != ino ||
1126 	    key.type != BTRFS_EXTENT_DATA_KEY) {
1127 		ret = -EINVAL;
1128 		btrfs_abort_transaction(trans, ret);
1129 		goto out;
1130 	}
1131 	fi = btrfs_item_ptr(leaf, path->slots[0],
1132 			    struct btrfs_file_extent_item);
1133 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1134 		ret = -EINVAL;
1135 		btrfs_abort_transaction(trans, ret);
1136 		goto out;
1137 	}
1138 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1139 	if (key.offset > start || extent_end < end) {
1140 		ret = -EINVAL;
1141 		btrfs_abort_transaction(trans, ret);
1142 		goto out;
1143 	}
1144 
1145 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1146 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1147 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1148 	memcpy(&new_key, &key, sizeof(new_key));
1149 
1150 	if (start == key.offset && end < extent_end) {
1151 		other_start = 0;
1152 		other_end = start;
1153 		if (extent_mergeable(leaf, path->slots[0] - 1,
1154 				     ino, bytenr, orig_offset,
1155 				     &other_start, &other_end)) {
1156 			new_key.offset = end;
1157 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1158 			fi = btrfs_item_ptr(leaf, path->slots[0],
1159 					    struct btrfs_file_extent_item);
1160 			btrfs_set_file_extent_generation(leaf, fi,
1161 							 trans->transid);
1162 			btrfs_set_file_extent_num_bytes(leaf, fi,
1163 							extent_end - end);
1164 			btrfs_set_file_extent_offset(leaf, fi,
1165 						     end - orig_offset);
1166 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1167 					    struct btrfs_file_extent_item);
1168 			btrfs_set_file_extent_generation(leaf, fi,
1169 							 trans->transid);
1170 			btrfs_set_file_extent_num_bytes(leaf, fi,
1171 							end - other_start);
1172 			btrfs_mark_buffer_dirty(leaf);
1173 			goto out;
1174 		}
1175 	}
1176 
1177 	if (start > key.offset && end == extent_end) {
1178 		other_start = end;
1179 		other_end = 0;
1180 		if (extent_mergeable(leaf, path->slots[0] + 1,
1181 				     ino, bytenr, orig_offset,
1182 				     &other_start, &other_end)) {
1183 			fi = btrfs_item_ptr(leaf, path->slots[0],
1184 					    struct btrfs_file_extent_item);
1185 			btrfs_set_file_extent_num_bytes(leaf, fi,
1186 							start - key.offset);
1187 			btrfs_set_file_extent_generation(leaf, fi,
1188 							 trans->transid);
1189 			path->slots[0]++;
1190 			new_key.offset = start;
1191 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1192 
1193 			fi = btrfs_item_ptr(leaf, path->slots[0],
1194 					    struct btrfs_file_extent_item);
1195 			btrfs_set_file_extent_generation(leaf, fi,
1196 							 trans->transid);
1197 			btrfs_set_file_extent_num_bytes(leaf, fi,
1198 							other_end - start);
1199 			btrfs_set_file_extent_offset(leaf, fi,
1200 						     start - orig_offset);
1201 			btrfs_mark_buffer_dirty(leaf);
1202 			goto out;
1203 		}
1204 	}
1205 
1206 	while (start > key.offset || end < extent_end) {
1207 		if (key.offset == start)
1208 			split = end;
1209 
1210 		new_key.offset = split;
1211 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1212 		if (ret == -EAGAIN) {
1213 			btrfs_release_path(path);
1214 			goto again;
1215 		}
1216 		if (ret < 0) {
1217 			btrfs_abort_transaction(trans, ret);
1218 			goto out;
1219 		}
1220 
1221 		leaf = path->nodes[0];
1222 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1223 				    struct btrfs_file_extent_item);
1224 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1225 		btrfs_set_file_extent_num_bytes(leaf, fi,
1226 						split - key.offset);
1227 
1228 		fi = btrfs_item_ptr(leaf, path->slots[0],
1229 				    struct btrfs_file_extent_item);
1230 
1231 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1232 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1233 		btrfs_set_file_extent_num_bytes(leaf, fi,
1234 						extent_end - split);
1235 		btrfs_mark_buffer_dirty(leaf);
1236 
1237 		ret = btrfs_inc_extent_ref(trans, fs_info, bytenr, num_bytes,
1238 					   0, root->root_key.objectid,
1239 					   ino, orig_offset);
1240 		if (ret) {
1241 			btrfs_abort_transaction(trans, ret);
1242 			goto out;
1243 		}
1244 
1245 		if (split == start) {
1246 			key.offset = start;
1247 		} else {
1248 			if (start != key.offset) {
1249 				ret = -EINVAL;
1250 				btrfs_abort_transaction(trans, ret);
1251 				goto out;
1252 			}
1253 			path->slots[0]--;
1254 			extent_end = end;
1255 		}
1256 		recow = 1;
1257 	}
1258 
1259 	other_start = end;
1260 	other_end = 0;
1261 	if (extent_mergeable(leaf, path->slots[0] + 1,
1262 			     ino, bytenr, orig_offset,
1263 			     &other_start, &other_end)) {
1264 		if (recow) {
1265 			btrfs_release_path(path);
1266 			goto again;
1267 		}
1268 		extent_end = other_end;
1269 		del_slot = path->slots[0] + 1;
1270 		del_nr++;
1271 		ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
1272 					0, root->root_key.objectid,
1273 					ino, orig_offset);
1274 		if (ret) {
1275 			btrfs_abort_transaction(trans, ret);
1276 			goto out;
1277 		}
1278 	}
1279 	other_start = 0;
1280 	other_end = start;
1281 	if (extent_mergeable(leaf, path->slots[0] - 1,
1282 			     ino, bytenr, orig_offset,
1283 			     &other_start, &other_end)) {
1284 		if (recow) {
1285 			btrfs_release_path(path);
1286 			goto again;
1287 		}
1288 		key.offset = other_start;
1289 		del_slot = path->slots[0];
1290 		del_nr++;
1291 		ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
1292 					0, root->root_key.objectid,
1293 					ino, orig_offset);
1294 		if (ret) {
1295 			btrfs_abort_transaction(trans, ret);
1296 			goto out;
1297 		}
1298 	}
1299 	if (del_nr == 0) {
1300 		fi = btrfs_item_ptr(leaf, path->slots[0],
1301 			   struct btrfs_file_extent_item);
1302 		btrfs_set_file_extent_type(leaf, fi,
1303 					   BTRFS_FILE_EXTENT_REG);
1304 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1305 		btrfs_mark_buffer_dirty(leaf);
1306 	} else {
1307 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1308 			   struct btrfs_file_extent_item);
1309 		btrfs_set_file_extent_type(leaf, fi,
1310 					   BTRFS_FILE_EXTENT_REG);
1311 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1312 		btrfs_set_file_extent_num_bytes(leaf, fi,
1313 						extent_end - key.offset);
1314 		btrfs_mark_buffer_dirty(leaf);
1315 
1316 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1317 		if (ret < 0) {
1318 			btrfs_abort_transaction(trans, ret);
1319 			goto out;
1320 		}
1321 	}
1322 out:
1323 	btrfs_free_path(path);
1324 	return 0;
1325 }
1326 
1327 /*
1328  * on error we return an unlocked page and the error value
1329  * on success we return a locked page and 0
1330  */
1331 static int prepare_uptodate_page(struct inode *inode,
1332 				 struct page *page, u64 pos,
1333 				 bool force_uptodate)
1334 {
1335 	int ret = 0;
1336 
1337 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1338 	    !PageUptodate(page)) {
1339 		ret = btrfs_readpage(NULL, page);
1340 		if (ret)
1341 			return ret;
1342 		lock_page(page);
1343 		if (!PageUptodate(page)) {
1344 			unlock_page(page);
1345 			return -EIO;
1346 		}
1347 		if (page->mapping != inode->i_mapping) {
1348 			unlock_page(page);
1349 			return -EAGAIN;
1350 		}
1351 	}
1352 	return 0;
1353 }
1354 
1355 /*
1356  * this just gets pages into the page cache and locks them down.
1357  */
1358 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1359 				  size_t num_pages, loff_t pos,
1360 				  size_t write_bytes, bool force_uptodate)
1361 {
1362 	int i;
1363 	unsigned long index = pos >> PAGE_SHIFT;
1364 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1365 	int err = 0;
1366 	int faili;
1367 
1368 	for (i = 0; i < num_pages; i++) {
1369 again:
1370 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1371 					       mask | __GFP_WRITE);
1372 		if (!pages[i]) {
1373 			faili = i - 1;
1374 			err = -ENOMEM;
1375 			goto fail;
1376 		}
1377 
1378 		if (i == 0)
1379 			err = prepare_uptodate_page(inode, pages[i], pos,
1380 						    force_uptodate);
1381 		if (!err && i == num_pages - 1)
1382 			err = prepare_uptodate_page(inode, pages[i],
1383 						    pos + write_bytes, false);
1384 		if (err) {
1385 			put_page(pages[i]);
1386 			if (err == -EAGAIN) {
1387 				err = 0;
1388 				goto again;
1389 			}
1390 			faili = i - 1;
1391 			goto fail;
1392 		}
1393 		wait_on_page_writeback(pages[i]);
1394 	}
1395 
1396 	return 0;
1397 fail:
1398 	while (faili >= 0) {
1399 		unlock_page(pages[faili]);
1400 		put_page(pages[faili]);
1401 		faili--;
1402 	}
1403 	return err;
1404 
1405 }
1406 
1407 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
1408 					 const u64 start,
1409 					 const u64 len,
1410 					 struct extent_state **cached_state)
1411 {
1412 	u64 search_start = start;
1413 	const u64 end = start + len - 1;
1414 
1415 	while (search_start < end) {
1416 		const u64 search_len = end - search_start + 1;
1417 		struct extent_map *em;
1418 		u64 em_len;
1419 		int ret = 0;
1420 
1421 		em = btrfs_get_extent(inode, NULL, 0, search_start,
1422 				      search_len, 0);
1423 		if (IS_ERR(em))
1424 			return PTR_ERR(em);
1425 
1426 		if (em->block_start != EXTENT_MAP_HOLE)
1427 			goto next;
1428 
1429 		em_len = em->len;
1430 		if (em->start < search_start)
1431 			em_len -= search_start - em->start;
1432 		if (em_len > search_len)
1433 			em_len = search_len;
1434 
1435 		ret = set_extent_bit(&inode->io_tree, search_start,
1436 				     search_start + em_len - 1,
1437 				     EXTENT_DELALLOC_NEW,
1438 				     NULL, cached_state, GFP_NOFS);
1439 next:
1440 		search_start = extent_map_end(em);
1441 		free_extent_map(em);
1442 		if (ret)
1443 			return ret;
1444 	}
1445 	return 0;
1446 }
1447 
1448 /*
1449  * This function locks the extent and properly waits for data=ordered extents
1450  * to finish before allowing the pages to be modified if need.
1451  *
1452  * The return value:
1453  * 1 - the extent is locked
1454  * 0 - the extent is not locked, and everything is OK
1455  * -EAGAIN - need re-prepare the pages
1456  * the other < 0 number - Something wrong happens
1457  */
1458 static noinline int
1459 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1460 				size_t num_pages, loff_t pos,
1461 				size_t write_bytes,
1462 				u64 *lockstart, u64 *lockend,
1463 				struct extent_state **cached_state)
1464 {
1465 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1466 	u64 start_pos;
1467 	u64 last_pos;
1468 	int i;
1469 	int ret = 0;
1470 
1471 	start_pos = round_down(pos, fs_info->sectorsize);
1472 	last_pos = start_pos
1473 		+ round_up(pos + write_bytes - start_pos,
1474 			   fs_info->sectorsize) - 1;
1475 
1476 	if (start_pos < inode->vfs_inode.i_size ||
1477 	    (inode->flags & BTRFS_INODE_PREALLOC)) {
1478 		struct btrfs_ordered_extent *ordered;
1479 		unsigned int clear_bits;
1480 
1481 		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1482 				cached_state);
1483 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1484 						     last_pos - start_pos + 1);
1485 		if (ordered &&
1486 		    ordered->file_offset + ordered->len > start_pos &&
1487 		    ordered->file_offset <= last_pos) {
1488 			unlock_extent_cached(&inode->io_tree, start_pos,
1489 					last_pos, cached_state, GFP_NOFS);
1490 			for (i = 0; i < num_pages; i++) {
1491 				unlock_page(pages[i]);
1492 				put_page(pages[i]);
1493 			}
1494 			btrfs_start_ordered_extent(&inode->vfs_inode,
1495 					ordered, 1);
1496 			btrfs_put_ordered_extent(ordered);
1497 			return -EAGAIN;
1498 		}
1499 		if (ordered)
1500 			btrfs_put_ordered_extent(ordered);
1501 		ret = btrfs_find_new_delalloc_bytes(inode, start_pos,
1502 						    last_pos - start_pos + 1,
1503 						    cached_state);
1504 		clear_bits = EXTENT_DIRTY | EXTENT_DELALLOC |
1505 			EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG;
1506 		if (ret)
1507 			clear_bits |= EXTENT_DELALLOC_NEW | EXTENT_LOCKED;
1508 		clear_extent_bit(&inode->io_tree, start_pos,
1509 				 last_pos, clear_bits,
1510 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
1511 				 0, cached_state, GFP_NOFS);
1512 		if (ret)
1513 			return ret;
1514 		*lockstart = start_pos;
1515 		*lockend = last_pos;
1516 		ret = 1;
1517 	}
1518 
1519 	for (i = 0; i < num_pages; i++) {
1520 		if (clear_page_dirty_for_io(pages[i]))
1521 			account_page_redirty(pages[i]);
1522 		set_page_extent_mapped(pages[i]);
1523 		WARN_ON(!PageLocked(pages[i]));
1524 	}
1525 
1526 	return ret;
1527 }
1528 
1529 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1530 				    size_t *write_bytes)
1531 {
1532 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1533 	struct btrfs_root *root = inode->root;
1534 	struct btrfs_ordered_extent *ordered;
1535 	u64 lockstart, lockend;
1536 	u64 num_bytes;
1537 	int ret;
1538 
1539 	ret = btrfs_start_write_no_snapshoting(root);
1540 	if (!ret)
1541 		return -ENOSPC;
1542 
1543 	lockstart = round_down(pos, fs_info->sectorsize);
1544 	lockend = round_up(pos + *write_bytes,
1545 			   fs_info->sectorsize) - 1;
1546 
1547 	while (1) {
1548 		lock_extent(&inode->io_tree, lockstart, lockend);
1549 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1550 						     lockend - lockstart + 1);
1551 		if (!ordered) {
1552 			break;
1553 		}
1554 		unlock_extent(&inode->io_tree, lockstart, lockend);
1555 		btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1556 		btrfs_put_ordered_extent(ordered);
1557 	}
1558 
1559 	num_bytes = lockend - lockstart + 1;
1560 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1561 			NULL, NULL, NULL);
1562 	if (ret <= 0) {
1563 		ret = 0;
1564 		btrfs_end_write_no_snapshoting(root);
1565 	} else {
1566 		*write_bytes = min_t(size_t, *write_bytes ,
1567 				     num_bytes - pos + lockstart);
1568 	}
1569 
1570 	unlock_extent(&inode->io_tree, lockstart, lockend);
1571 
1572 	return ret;
1573 }
1574 
1575 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1576 					       struct iov_iter *i,
1577 					       loff_t pos)
1578 {
1579 	struct inode *inode = file_inode(file);
1580 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1581 	struct btrfs_root *root = BTRFS_I(inode)->root;
1582 	struct page **pages = NULL;
1583 	struct extent_state *cached_state = NULL;
1584 	u64 release_bytes = 0;
1585 	u64 lockstart;
1586 	u64 lockend;
1587 	size_t num_written = 0;
1588 	int nrptrs;
1589 	int ret = 0;
1590 	bool only_release_metadata = false;
1591 	bool force_page_uptodate = false;
1592 	bool need_unlock;
1593 
1594 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1595 			PAGE_SIZE / (sizeof(struct page *)));
1596 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1597 	nrptrs = max(nrptrs, 8);
1598 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1599 	if (!pages)
1600 		return -ENOMEM;
1601 
1602 	while (iov_iter_count(i) > 0) {
1603 		size_t offset = pos & (PAGE_SIZE - 1);
1604 		size_t sector_offset;
1605 		size_t write_bytes = min(iov_iter_count(i),
1606 					 nrptrs * (size_t)PAGE_SIZE -
1607 					 offset);
1608 		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1609 						PAGE_SIZE);
1610 		size_t reserve_bytes;
1611 		size_t dirty_pages;
1612 		size_t copied;
1613 		size_t dirty_sectors;
1614 		size_t num_sectors;
1615 
1616 		WARN_ON(num_pages > nrptrs);
1617 
1618 		/*
1619 		 * Fault pages before locking them in prepare_pages
1620 		 * to avoid recursive lock
1621 		 */
1622 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1623 			ret = -EFAULT;
1624 			break;
1625 		}
1626 
1627 		sector_offset = pos & (fs_info->sectorsize - 1);
1628 		reserve_bytes = round_up(write_bytes + sector_offset,
1629 				fs_info->sectorsize);
1630 
1631 		ret = btrfs_check_data_free_space(inode, pos, write_bytes);
1632 		if (ret < 0) {
1633 			if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1634 						      BTRFS_INODE_PREALLOC)) &&
1635 			    check_can_nocow(BTRFS_I(inode), pos,
1636 					&write_bytes) > 0) {
1637 				/*
1638 				 * For nodata cow case, no need to reserve
1639 				 * data space.
1640 				 */
1641 				only_release_metadata = true;
1642 				/*
1643 				 * our prealloc extent may be smaller than
1644 				 * write_bytes, so scale down.
1645 				 */
1646 				num_pages = DIV_ROUND_UP(write_bytes + offset,
1647 							 PAGE_SIZE);
1648 				reserve_bytes = round_up(write_bytes +
1649 							 sector_offset,
1650 							 fs_info->sectorsize);
1651 			} else {
1652 				break;
1653 			}
1654 		}
1655 
1656 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1657 				reserve_bytes);
1658 		if (ret) {
1659 			if (!only_release_metadata)
1660 				btrfs_free_reserved_data_space(inode, pos,
1661 							       write_bytes);
1662 			else
1663 				btrfs_end_write_no_snapshoting(root);
1664 			break;
1665 		}
1666 
1667 		release_bytes = reserve_bytes;
1668 		need_unlock = false;
1669 again:
1670 		/*
1671 		 * This is going to setup the pages array with the number of
1672 		 * pages we want, so we don't really need to worry about the
1673 		 * contents of pages from loop to loop
1674 		 */
1675 		ret = prepare_pages(inode, pages, num_pages,
1676 				    pos, write_bytes,
1677 				    force_page_uptodate);
1678 		if (ret)
1679 			break;
1680 
1681 		ret = lock_and_cleanup_extent_if_need(BTRFS_I(inode), pages,
1682 				num_pages, pos, write_bytes, &lockstart,
1683 				&lockend, &cached_state);
1684 		if (ret < 0) {
1685 			if (ret == -EAGAIN)
1686 				goto again;
1687 			break;
1688 		} else if (ret > 0) {
1689 			need_unlock = true;
1690 			ret = 0;
1691 		}
1692 
1693 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1694 
1695 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1696 		dirty_sectors = round_up(copied + sector_offset,
1697 					fs_info->sectorsize);
1698 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1699 
1700 		/*
1701 		 * if we have trouble faulting in the pages, fall
1702 		 * back to one page at a time
1703 		 */
1704 		if (copied < write_bytes)
1705 			nrptrs = 1;
1706 
1707 		if (copied == 0) {
1708 			force_page_uptodate = true;
1709 			dirty_sectors = 0;
1710 			dirty_pages = 0;
1711 		} else {
1712 			force_page_uptodate = false;
1713 			dirty_pages = DIV_ROUND_UP(copied + offset,
1714 						   PAGE_SIZE);
1715 		}
1716 
1717 		/*
1718 		 * If we had a short copy we need to release the excess delaloc
1719 		 * bytes we reserved.  We need to increment outstanding_extents
1720 		 * because btrfs_delalloc_release_space and
1721 		 * btrfs_delalloc_release_metadata will decrement it, but
1722 		 * we still have an outstanding extent for the chunk we actually
1723 		 * managed to copy.
1724 		 */
1725 		if (num_sectors > dirty_sectors) {
1726 			/* release everything except the sectors we dirtied */
1727 			release_bytes -= dirty_sectors <<
1728 						fs_info->sb->s_blocksize_bits;
1729 			if (copied > 0) {
1730 				spin_lock(&BTRFS_I(inode)->lock);
1731 				BTRFS_I(inode)->outstanding_extents++;
1732 				spin_unlock(&BTRFS_I(inode)->lock);
1733 			}
1734 			if (only_release_metadata) {
1735 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1736 								release_bytes);
1737 			} else {
1738 				u64 __pos;
1739 
1740 				__pos = round_down(pos,
1741 						   fs_info->sectorsize) +
1742 					(dirty_pages << PAGE_SHIFT);
1743 				btrfs_delalloc_release_space(inode, __pos,
1744 							     release_bytes);
1745 			}
1746 		}
1747 
1748 		release_bytes = round_up(copied + sector_offset,
1749 					fs_info->sectorsize);
1750 
1751 		if (copied > 0)
1752 			ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1753 						pos, copied, NULL);
1754 		if (need_unlock)
1755 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1756 					     lockstart, lockend, &cached_state,
1757 					     GFP_NOFS);
1758 		if (ret) {
1759 			btrfs_drop_pages(pages, num_pages);
1760 			break;
1761 		}
1762 
1763 		release_bytes = 0;
1764 		if (only_release_metadata)
1765 			btrfs_end_write_no_snapshoting(root);
1766 
1767 		if (only_release_metadata && copied > 0) {
1768 			lockstart = round_down(pos,
1769 					       fs_info->sectorsize);
1770 			lockend = round_up(pos + copied,
1771 					   fs_info->sectorsize) - 1;
1772 
1773 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1774 				       lockend, EXTENT_NORESERVE, NULL,
1775 				       NULL, GFP_NOFS);
1776 			only_release_metadata = false;
1777 		}
1778 
1779 		btrfs_drop_pages(pages, num_pages);
1780 
1781 		cond_resched();
1782 
1783 		balance_dirty_pages_ratelimited(inode->i_mapping);
1784 		if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1785 			btrfs_btree_balance_dirty(fs_info);
1786 
1787 		pos += copied;
1788 		num_written += copied;
1789 	}
1790 
1791 	kfree(pages);
1792 
1793 	if (release_bytes) {
1794 		if (only_release_metadata) {
1795 			btrfs_end_write_no_snapshoting(root);
1796 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1797 					release_bytes);
1798 		} else {
1799 			btrfs_delalloc_release_space(inode,
1800 						round_down(pos, fs_info->sectorsize),
1801 						release_bytes);
1802 		}
1803 	}
1804 
1805 	return num_written ? num_written : ret;
1806 }
1807 
1808 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1809 {
1810 	struct file *file = iocb->ki_filp;
1811 	struct inode *inode = file_inode(file);
1812 	loff_t pos = iocb->ki_pos;
1813 	ssize_t written;
1814 	ssize_t written_buffered;
1815 	loff_t endbyte;
1816 	int err;
1817 
1818 	written = generic_file_direct_write(iocb, from);
1819 
1820 	if (written < 0 || !iov_iter_count(from))
1821 		return written;
1822 
1823 	pos += written;
1824 	written_buffered = __btrfs_buffered_write(file, from, pos);
1825 	if (written_buffered < 0) {
1826 		err = written_buffered;
1827 		goto out;
1828 	}
1829 	/*
1830 	 * Ensure all data is persisted. We want the next direct IO read to be
1831 	 * able to read what was just written.
1832 	 */
1833 	endbyte = pos + written_buffered - 1;
1834 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1835 	if (err)
1836 		goto out;
1837 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1838 	if (err)
1839 		goto out;
1840 	written += written_buffered;
1841 	iocb->ki_pos = pos + written_buffered;
1842 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1843 				 endbyte >> PAGE_SHIFT);
1844 out:
1845 	return written ? written : err;
1846 }
1847 
1848 static void update_time_for_write(struct inode *inode)
1849 {
1850 	struct timespec now;
1851 
1852 	if (IS_NOCMTIME(inode))
1853 		return;
1854 
1855 	now = current_time(inode);
1856 	if (!timespec_equal(&inode->i_mtime, &now))
1857 		inode->i_mtime = now;
1858 
1859 	if (!timespec_equal(&inode->i_ctime, &now))
1860 		inode->i_ctime = now;
1861 
1862 	if (IS_I_VERSION(inode))
1863 		inode_inc_iversion(inode);
1864 }
1865 
1866 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1867 				    struct iov_iter *from)
1868 {
1869 	struct file *file = iocb->ki_filp;
1870 	struct inode *inode = file_inode(file);
1871 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1872 	struct btrfs_root *root = BTRFS_I(inode)->root;
1873 	u64 start_pos;
1874 	u64 end_pos;
1875 	ssize_t num_written = 0;
1876 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1877 	ssize_t err;
1878 	loff_t pos;
1879 	size_t count;
1880 	loff_t oldsize;
1881 	int clean_page = 0;
1882 
1883 	inode_lock(inode);
1884 	err = generic_write_checks(iocb, from);
1885 	if (err <= 0) {
1886 		inode_unlock(inode);
1887 		return err;
1888 	}
1889 
1890 	current->backing_dev_info = inode_to_bdi(inode);
1891 	err = file_remove_privs(file);
1892 	if (err) {
1893 		inode_unlock(inode);
1894 		goto out;
1895 	}
1896 
1897 	/*
1898 	 * If BTRFS flips readonly due to some impossible error
1899 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1900 	 * although we have opened a file as writable, we have
1901 	 * to stop this write operation to ensure FS consistency.
1902 	 */
1903 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1904 		inode_unlock(inode);
1905 		err = -EROFS;
1906 		goto out;
1907 	}
1908 
1909 	/*
1910 	 * We reserve space for updating the inode when we reserve space for the
1911 	 * extent we are going to write, so we will enospc out there.  We don't
1912 	 * need to start yet another transaction to update the inode as we will
1913 	 * update the inode when we finish writing whatever data we write.
1914 	 */
1915 	update_time_for_write(inode);
1916 
1917 	pos = iocb->ki_pos;
1918 	count = iov_iter_count(from);
1919 	start_pos = round_down(pos, fs_info->sectorsize);
1920 	oldsize = i_size_read(inode);
1921 	if (start_pos > oldsize) {
1922 		/* Expand hole size to cover write data, preventing empty gap */
1923 		end_pos = round_up(pos + count,
1924 				   fs_info->sectorsize);
1925 		err = btrfs_cont_expand(inode, oldsize, end_pos);
1926 		if (err) {
1927 			inode_unlock(inode);
1928 			goto out;
1929 		}
1930 		if (start_pos > round_up(oldsize, fs_info->sectorsize))
1931 			clean_page = 1;
1932 	}
1933 
1934 	if (sync)
1935 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1936 
1937 	if (iocb->ki_flags & IOCB_DIRECT) {
1938 		num_written = __btrfs_direct_write(iocb, from);
1939 	} else {
1940 		num_written = __btrfs_buffered_write(file, from, pos);
1941 		if (num_written > 0)
1942 			iocb->ki_pos = pos + num_written;
1943 		if (clean_page)
1944 			pagecache_isize_extended(inode, oldsize,
1945 						i_size_read(inode));
1946 	}
1947 
1948 	inode_unlock(inode);
1949 
1950 	/*
1951 	 * We also have to set last_sub_trans to the current log transid,
1952 	 * otherwise subsequent syncs to a file that's been synced in this
1953 	 * transaction will appear to have already occurred.
1954 	 */
1955 	spin_lock(&BTRFS_I(inode)->lock);
1956 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1957 	spin_unlock(&BTRFS_I(inode)->lock);
1958 	if (num_written > 0)
1959 		num_written = generic_write_sync(iocb, num_written);
1960 
1961 	if (sync)
1962 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1963 out:
1964 	current->backing_dev_info = NULL;
1965 	return num_written ? num_written : err;
1966 }
1967 
1968 int btrfs_release_file(struct inode *inode, struct file *filp)
1969 {
1970 	if (filp->private_data)
1971 		btrfs_ioctl_trans_end(filp);
1972 	/*
1973 	 * ordered_data_close is set by settattr when we are about to truncate
1974 	 * a file from a non-zero size to a zero size.  This tries to
1975 	 * flush down new bytes that may have been written if the
1976 	 * application were using truncate to replace a file in place.
1977 	 */
1978 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1979 			       &BTRFS_I(inode)->runtime_flags))
1980 			filemap_flush(inode->i_mapping);
1981 	return 0;
1982 }
1983 
1984 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1985 {
1986 	int ret;
1987 
1988 	atomic_inc(&BTRFS_I(inode)->sync_writers);
1989 	ret = btrfs_fdatawrite_range(inode, start, end);
1990 	atomic_dec(&BTRFS_I(inode)->sync_writers);
1991 
1992 	return ret;
1993 }
1994 
1995 /*
1996  * fsync call for both files and directories.  This logs the inode into
1997  * the tree log instead of forcing full commits whenever possible.
1998  *
1999  * It needs to call filemap_fdatawait so that all ordered extent updates are
2000  * in the metadata btree are up to date for copying to the log.
2001  *
2002  * It drops the inode mutex before doing the tree log commit.  This is an
2003  * important optimization for directories because holding the mutex prevents
2004  * new operations on the dir while we write to disk.
2005  */
2006 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2007 {
2008 	struct dentry *dentry = file_dentry(file);
2009 	struct inode *inode = d_inode(dentry);
2010 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2011 	struct btrfs_root *root = BTRFS_I(inode)->root;
2012 	struct btrfs_trans_handle *trans;
2013 	struct btrfs_log_ctx ctx;
2014 	int ret = 0;
2015 	bool full_sync = 0;
2016 	u64 len;
2017 
2018 	/*
2019 	 * The range length can be represented by u64, we have to do the typecasts
2020 	 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2021 	 */
2022 	len = (u64)end - (u64)start + 1;
2023 	trace_btrfs_sync_file(file, datasync);
2024 
2025 	/*
2026 	 * We write the dirty pages in the range and wait until they complete
2027 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2028 	 * multi-task, and make the performance up.  See
2029 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2030 	 */
2031 	ret = start_ordered_ops(inode, start, end);
2032 	if (ret)
2033 		return ret;
2034 
2035 	inode_lock(inode);
2036 	atomic_inc(&root->log_batch);
2037 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2038 			     &BTRFS_I(inode)->runtime_flags);
2039 	/*
2040 	 * We might have have had more pages made dirty after calling
2041 	 * start_ordered_ops and before acquiring the inode's i_mutex.
2042 	 */
2043 	if (full_sync) {
2044 		/*
2045 		 * For a full sync, we need to make sure any ordered operations
2046 		 * start and finish before we start logging the inode, so that
2047 		 * all extents are persisted and the respective file extent
2048 		 * items are in the fs/subvol btree.
2049 		 */
2050 		ret = btrfs_wait_ordered_range(inode, start, len);
2051 	} else {
2052 		/*
2053 		 * Start any new ordered operations before starting to log the
2054 		 * inode. We will wait for them to finish in btrfs_sync_log().
2055 		 *
2056 		 * Right before acquiring the inode's mutex, we might have new
2057 		 * writes dirtying pages, which won't immediately start the
2058 		 * respective ordered operations - that is done through the
2059 		 * fill_delalloc callbacks invoked from the writepage and
2060 		 * writepages address space operations. So make sure we start
2061 		 * all ordered operations before starting to log our inode. Not
2062 		 * doing this means that while logging the inode, writeback
2063 		 * could start and invoke writepage/writepages, which would call
2064 		 * the fill_delalloc callbacks (cow_file_range,
2065 		 * submit_compressed_extents). These callbacks add first an
2066 		 * extent map to the modified list of extents and then create
2067 		 * the respective ordered operation, which means in
2068 		 * tree-log.c:btrfs_log_inode() we might capture all existing
2069 		 * ordered operations (with btrfs_get_logged_extents()) before
2070 		 * the fill_delalloc callback adds its ordered operation, and by
2071 		 * the time we visit the modified list of extent maps (with
2072 		 * btrfs_log_changed_extents()), we see and process the extent
2073 		 * map they created. We then use the extent map to construct a
2074 		 * file extent item for logging without waiting for the
2075 		 * respective ordered operation to finish - this file extent
2076 		 * item points to a disk location that might not have yet been
2077 		 * written to, containing random data - so after a crash a log
2078 		 * replay will make our inode have file extent items that point
2079 		 * to disk locations containing invalid data, as we returned
2080 		 * success to userspace without waiting for the respective
2081 		 * ordered operation to finish, because it wasn't captured by
2082 		 * btrfs_get_logged_extents().
2083 		 */
2084 		ret = start_ordered_ops(inode, start, end);
2085 	}
2086 	if (ret) {
2087 		inode_unlock(inode);
2088 		goto out;
2089 	}
2090 	atomic_inc(&root->log_batch);
2091 
2092 	/*
2093 	 * If the last transaction that changed this file was before the current
2094 	 * transaction and we have the full sync flag set in our inode, we can
2095 	 * bail out now without any syncing.
2096 	 *
2097 	 * Note that we can't bail out if the full sync flag isn't set. This is
2098 	 * because when the full sync flag is set we start all ordered extents
2099 	 * and wait for them to fully complete - when they complete they update
2100 	 * the inode's last_trans field through:
2101 	 *
2102 	 *     btrfs_finish_ordered_io() ->
2103 	 *         btrfs_update_inode_fallback() ->
2104 	 *             btrfs_update_inode() ->
2105 	 *                 btrfs_set_inode_last_trans()
2106 	 *
2107 	 * So we are sure that last_trans is up to date and can do this check to
2108 	 * bail out safely. For the fast path, when the full sync flag is not
2109 	 * set in our inode, we can not do it because we start only our ordered
2110 	 * extents and don't wait for them to complete (that is when
2111 	 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2112 	 * value might be less than or equals to fs_info->last_trans_committed,
2113 	 * and setting a speculative last_trans for an inode when a buffered
2114 	 * write is made (such as fs_info->generation + 1 for example) would not
2115 	 * be reliable since after setting the value and before fsync is called
2116 	 * any number of transactions can start and commit (transaction kthread
2117 	 * commits the current transaction periodically), and a transaction
2118 	 * commit does not start nor waits for ordered extents to complete.
2119 	 */
2120 	smp_mb();
2121 	if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2122 	    (full_sync && BTRFS_I(inode)->last_trans <=
2123 	     fs_info->last_trans_committed) ||
2124 	    (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2125 	     BTRFS_I(inode)->last_trans
2126 	     <= fs_info->last_trans_committed)) {
2127 		/*
2128 		 * We've had everything committed since the last time we were
2129 		 * modified so clear this flag in case it was set for whatever
2130 		 * reason, it's no longer relevant.
2131 		 */
2132 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2133 			  &BTRFS_I(inode)->runtime_flags);
2134 		/*
2135 		 * An ordered extent might have started before and completed
2136 		 * already with io errors, in which case the inode was not
2137 		 * updated and we end up here. So check the inode's mapping
2138 		 * flags for any errors that might have happened while doing
2139 		 * writeback of file data.
2140 		 */
2141 		ret = filemap_check_errors(inode->i_mapping);
2142 		inode_unlock(inode);
2143 		goto out;
2144 	}
2145 
2146 	/*
2147 	 * ok we haven't committed the transaction yet, lets do a commit
2148 	 */
2149 	if (file->private_data)
2150 		btrfs_ioctl_trans_end(file);
2151 
2152 	/*
2153 	 * We use start here because we will need to wait on the IO to complete
2154 	 * in btrfs_sync_log, which could require joining a transaction (for
2155 	 * example checking cross references in the nocow path).  If we use join
2156 	 * here we could get into a situation where we're waiting on IO to
2157 	 * happen that is blocked on a transaction trying to commit.  With start
2158 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2159 	 * before we start blocking join'ers.  This comment is to keep somebody
2160 	 * from thinking they are super smart and changing this to
2161 	 * btrfs_join_transaction *cough*Josef*cough*.
2162 	 */
2163 	trans = btrfs_start_transaction(root, 0);
2164 	if (IS_ERR(trans)) {
2165 		ret = PTR_ERR(trans);
2166 		inode_unlock(inode);
2167 		goto out;
2168 	}
2169 	trans->sync = true;
2170 
2171 	btrfs_init_log_ctx(&ctx, inode);
2172 
2173 	ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2174 	if (ret < 0) {
2175 		/* Fallthrough and commit/free transaction. */
2176 		ret = 1;
2177 	}
2178 
2179 	/* we've logged all the items and now have a consistent
2180 	 * version of the file in the log.  It is possible that
2181 	 * someone will come in and modify the file, but that's
2182 	 * fine because the log is consistent on disk, and we
2183 	 * have references to all of the file's extents
2184 	 *
2185 	 * It is possible that someone will come in and log the
2186 	 * file again, but that will end up using the synchronization
2187 	 * inside btrfs_sync_log to keep things safe.
2188 	 */
2189 	inode_unlock(inode);
2190 
2191 	/*
2192 	 * If any of the ordered extents had an error, just return it to user
2193 	 * space, so that the application knows some writes didn't succeed and
2194 	 * can take proper action (retry for e.g.). Blindly committing the
2195 	 * transaction in this case, would fool userspace that everything was
2196 	 * successful. And we also want to make sure our log doesn't contain
2197 	 * file extent items pointing to extents that weren't fully written to -
2198 	 * just like in the non fast fsync path, where we check for the ordered
2199 	 * operation's error flag before writing to the log tree and return -EIO
2200 	 * if any of them had this flag set (btrfs_wait_ordered_range) -
2201 	 * therefore we need to check for errors in the ordered operations,
2202 	 * which are indicated by ctx.io_err.
2203 	 */
2204 	if (ctx.io_err) {
2205 		btrfs_end_transaction(trans);
2206 		ret = ctx.io_err;
2207 		goto out;
2208 	}
2209 
2210 	if (ret != BTRFS_NO_LOG_SYNC) {
2211 		if (!ret) {
2212 			ret = btrfs_sync_log(trans, root, &ctx);
2213 			if (!ret) {
2214 				ret = btrfs_end_transaction(trans);
2215 				goto out;
2216 			}
2217 		}
2218 		if (!full_sync) {
2219 			ret = btrfs_wait_ordered_range(inode, start, len);
2220 			if (ret) {
2221 				btrfs_end_transaction(trans);
2222 				goto out;
2223 			}
2224 		}
2225 		ret = btrfs_commit_transaction(trans);
2226 	} else {
2227 		ret = btrfs_end_transaction(trans);
2228 	}
2229 out:
2230 	return ret > 0 ? -EIO : ret;
2231 }
2232 
2233 static const struct vm_operations_struct btrfs_file_vm_ops = {
2234 	.fault		= filemap_fault,
2235 	.map_pages	= filemap_map_pages,
2236 	.page_mkwrite	= btrfs_page_mkwrite,
2237 };
2238 
2239 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2240 {
2241 	struct address_space *mapping = filp->f_mapping;
2242 
2243 	if (!mapping->a_ops->readpage)
2244 		return -ENOEXEC;
2245 
2246 	file_accessed(filp);
2247 	vma->vm_ops = &btrfs_file_vm_ops;
2248 
2249 	return 0;
2250 }
2251 
2252 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2253 			  int slot, u64 start, u64 end)
2254 {
2255 	struct btrfs_file_extent_item *fi;
2256 	struct btrfs_key key;
2257 
2258 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2259 		return 0;
2260 
2261 	btrfs_item_key_to_cpu(leaf, &key, slot);
2262 	if (key.objectid != btrfs_ino(inode) ||
2263 	    key.type != BTRFS_EXTENT_DATA_KEY)
2264 		return 0;
2265 
2266 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2267 
2268 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2269 		return 0;
2270 
2271 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2272 		return 0;
2273 
2274 	if (key.offset == end)
2275 		return 1;
2276 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2277 		return 1;
2278 	return 0;
2279 }
2280 
2281 static int fill_holes(struct btrfs_trans_handle *trans,
2282 		struct btrfs_inode *inode,
2283 		struct btrfs_path *path, u64 offset, u64 end)
2284 {
2285 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
2286 	struct btrfs_root *root = inode->root;
2287 	struct extent_buffer *leaf;
2288 	struct btrfs_file_extent_item *fi;
2289 	struct extent_map *hole_em;
2290 	struct extent_map_tree *em_tree = &inode->extent_tree;
2291 	struct btrfs_key key;
2292 	int ret;
2293 
2294 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2295 		goto out;
2296 
2297 	key.objectid = btrfs_ino(inode);
2298 	key.type = BTRFS_EXTENT_DATA_KEY;
2299 	key.offset = offset;
2300 
2301 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2302 	if (ret <= 0) {
2303 		/*
2304 		 * We should have dropped this offset, so if we find it then
2305 		 * something has gone horribly wrong.
2306 		 */
2307 		if (ret == 0)
2308 			ret = -EINVAL;
2309 		return ret;
2310 	}
2311 
2312 	leaf = path->nodes[0];
2313 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2314 		u64 num_bytes;
2315 
2316 		path->slots[0]--;
2317 		fi = btrfs_item_ptr(leaf, path->slots[0],
2318 				    struct btrfs_file_extent_item);
2319 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2320 			end - offset;
2321 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2322 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2323 		btrfs_set_file_extent_offset(leaf, fi, 0);
2324 		btrfs_mark_buffer_dirty(leaf);
2325 		goto out;
2326 	}
2327 
2328 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2329 		u64 num_bytes;
2330 
2331 		key.offset = offset;
2332 		btrfs_set_item_key_safe(fs_info, path, &key);
2333 		fi = btrfs_item_ptr(leaf, path->slots[0],
2334 				    struct btrfs_file_extent_item);
2335 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2336 			offset;
2337 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2338 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2339 		btrfs_set_file_extent_offset(leaf, fi, 0);
2340 		btrfs_mark_buffer_dirty(leaf);
2341 		goto out;
2342 	}
2343 	btrfs_release_path(path);
2344 
2345 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2346 			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2347 	if (ret)
2348 		return ret;
2349 
2350 out:
2351 	btrfs_release_path(path);
2352 
2353 	hole_em = alloc_extent_map();
2354 	if (!hole_em) {
2355 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2356 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2357 	} else {
2358 		hole_em->start = offset;
2359 		hole_em->len = end - offset;
2360 		hole_em->ram_bytes = hole_em->len;
2361 		hole_em->orig_start = offset;
2362 
2363 		hole_em->block_start = EXTENT_MAP_HOLE;
2364 		hole_em->block_len = 0;
2365 		hole_em->orig_block_len = 0;
2366 		hole_em->bdev = fs_info->fs_devices->latest_bdev;
2367 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2368 		hole_em->generation = trans->transid;
2369 
2370 		do {
2371 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2372 			write_lock(&em_tree->lock);
2373 			ret = add_extent_mapping(em_tree, hole_em, 1);
2374 			write_unlock(&em_tree->lock);
2375 		} while (ret == -EEXIST);
2376 		free_extent_map(hole_em);
2377 		if (ret)
2378 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2379 					&inode->runtime_flags);
2380 	}
2381 
2382 	return 0;
2383 }
2384 
2385 /*
2386  * Find a hole extent on given inode and change start/len to the end of hole
2387  * extent.(hole/vacuum extent whose em->start <= start &&
2388  *	   em->start + em->len > start)
2389  * When a hole extent is found, return 1 and modify start/len.
2390  */
2391 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2392 {
2393 	struct extent_map *em;
2394 	int ret = 0;
2395 
2396 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, *start, *len, 0);
2397 	if (IS_ERR(em))
2398 		return PTR_ERR(em);
2399 
2400 	/* Hole or vacuum extent(only exists in no-hole mode) */
2401 	if (em->block_start == EXTENT_MAP_HOLE) {
2402 		ret = 1;
2403 		*len = em->start + em->len > *start + *len ?
2404 		       0 : *start + *len - em->start - em->len;
2405 		*start = em->start + em->len;
2406 	}
2407 	free_extent_map(em);
2408 	return ret;
2409 }
2410 
2411 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2412 {
2413 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2414 	struct btrfs_root *root = BTRFS_I(inode)->root;
2415 	struct extent_state *cached_state = NULL;
2416 	struct btrfs_path *path;
2417 	struct btrfs_block_rsv *rsv;
2418 	struct btrfs_trans_handle *trans;
2419 	u64 lockstart;
2420 	u64 lockend;
2421 	u64 tail_start;
2422 	u64 tail_len;
2423 	u64 orig_start = offset;
2424 	u64 cur_offset;
2425 	u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2426 	u64 drop_end;
2427 	int ret = 0;
2428 	int err = 0;
2429 	unsigned int rsv_count;
2430 	bool same_block;
2431 	bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2432 	u64 ino_size;
2433 	bool truncated_block = false;
2434 	bool updated_inode = false;
2435 
2436 	ret = btrfs_wait_ordered_range(inode, offset, len);
2437 	if (ret)
2438 		return ret;
2439 
2440 	inode_lock(inode);
2441 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2442 	ret = find_first_non_hole(inode, &offset, &len);
2443 	if (ret < 0)
2444 		goto out_only_mutex;
2445 	if (ret && !len) {
2446 		/* Already in a large hole */
2447 		ret = 0;
2448 		goto out_only_mutex;
2449 	}
2450 
2451 	lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2452 	lockend = round_down(offset + len,
2453 			     btrfs_inode_sectorsize(inode)) - 1;
2454 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2455 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2456 	/*
2457 	 * We needn't truncate any block which is beyond the end of the file
2458 	 * because we are sure there is no data there.
2459 	 */
2460 	/*
2461 	 * Only do this if we are in the same block and we aren't doing the
2462 	 * entire block.
2463 	 */
2464 	if (same_block && len < fs_info->sectorsize) {
2465 		if (offset < ino_size) {
2466 			truncated_block = true;
2467 			ret = btrfs_truncate_block(inode, offset, len, 0);
2468 		} else {
2469 			ret = 0;
2470 		}
2471 		goto out_only_mutex;
2472 	}
2473 
2474 	/* zero back part of the first block */
2475 	if (offset < ino_size) {
2476 		truncated_block = true;
2477 		ret = btrfs_truncate_block(inode, offset, 0, 0);
2478 		if (ret) {
2479 			inode_unlock(inode);
2480 			return ret;
2481 		}
2482 	}
2483 
2484 	/* Check the aligned pages after the first unaligned page,
2485 	 * if offset != orig_start, which means the first unaligned page
2486 	 * including several following pages are already in holes,
2487 	 * the extra check can be skipped */
2488 	if (offset == orig_start) {
2489 		/* after truncate page, check hole again */
2490 		len = offset + len - lockstart;
2491 		offset = lockstart;
2492 		ret = find_first_non_hole(inode, &offset, &len);
2493 		if (ret < 0)
2494 			goto out_only_mutex;
2495 		if (ret && !len) {
2496 			ret = 0;
2497 			goto out_only_mutex;
2498 		}
2499 		lockstart = offset;
2500 	}
2501 
2502 	/* Check the tail unaligned part is in a hole */
2503 	tail_start = lockend + 1;
2504 	tail_len = offset + len - tail_start;
2505 	if (tail_len) {
2506 		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2507 		if (unlikely(ret < 0))
2508 			goto out_only_mutex;
2509 		if (!ret) {
2510 			/* zero the front end of the last page */
2511 			if (tail_start + tail_len < ino_size) {
2512 				truncated_block = true;
2513 				ret = btrfs_truncate_block(inode,
2514 							tail_start + tail_len,
2515 							0, 1);
2516 				if (ret)
2517 					goto out_only_mutex;
2518 			}
2519 		}
2520 	}
2521 
2522 	if (lockend < lockstart) {
2523 		ret = 0;
2524 		goto out_only_mutex;
2525 	}
2526 
2527 	while (1) {
2528 		struct btrfs_ordered_extent *ordered;
2529 
2530 		truncate_pagecache_range(inode, lockstart, lockend);
2531 
2532 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2533 				 &cached_state);
2534 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2535 
2536 		/*
2537 		 * We need to make sure we have no ordered extents in this range
2538 		 * and nobody raced in and read a page in this range, if we did
2539 		 * we need to try again.
2540 		 */
2541 		if ((!ordered ||
2542 		    (ordered->file_offset + ordered->len <= lockstart ||
2543 		     ordered->file_offset > lockend)) &&
2544 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2545 			if (ordered)
2546 				btrfs_put_ordered_extent(ordered);
2547 			break;
2548 		}
2549 		if (ordered)
2550 			btrfs_put_ordered_extent(ordered);
2551 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2552 				     lockend, &cached_state, GFP_NOFS);
2553 		ret = btrfs_wait_ordered_range(inode, lockstart,
2554 					       lockend - lockstart + 1);
2555 		if (ret) {
2556 			inode_unlock(inode);
2557 			return ret;
2558 		}
2559 	}
2560 
2561 	path = btrfs_alloc_path();
2562 	if (!path) {
2563 		ret = -ENOMEM;
2564 		goto out;
2565 	}
2566 
2567 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2568 	if (!rsv) {
2569 		ret = -ENOMEM;
2570 		goto out_free;
2571 	}
2572 	rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2573 	rsv->failfast = 1;
2574 
2575 	/*
2576 	 * 1 - update the inode
2577 	 * 1 - removing the extents in the range
2578 	 * 1 - adding the hole extent if no_holes isn't set
2579 	 */
2580 	rsv_count = no_holes ? 2 : 3;
2581 	trans = btrfs_start_transaction(root, rsv_count);
2582 	if (IS_ERR(trans)) {
2583 		err = PTR_ERR(trans);
2584 		goto out_free;
2585 	}
2586 
2587 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2588 				      min_size, 0);
2589 	BUG_ON(ret);
2590 	trans->block_rsv = rsv;
2591 
2592 	cur_offset = lockstart;
2593 	len = lockend - cur_offset;
2594 	while (cur_offset < lockend) {
2595 		ret = __btrfs_drop_extents(trans, root, inode, path,
2596 					   cur_offset, lockend + 1,
2597 					   &drop_end, 1, 0, 0, NULL);
2598 		if (ret != -ENOSPC)
2599 			break;
2600 
2601 		trans->block_rsv = &fs_info->trans_block_rsv;
2602 
2603 		if (cur_offset < drop_end && cur_offset < ino_size) {
2604 			ret = fill_holes(trans, BTRFS_I(inode), path,
2605 					cur_offset, drop_end);
2606 			if (ret) {
2607 				/*
2608 				 * If we failed then we didn't insert our hole
2609 				 * entries for the area we dropped, so now the
2610 				 * fs is corrupted, so we must abort the
2611 				 * transaction.
2612 				 */
2613 				btrfs_abort_transaction(trans, ret);
2614 				err = ret;
2615 				break;
2616 			}
2617 		}
2618 
2619 		cur_offset = drop_end;
2620 
2621 		ret = btrfs_update_inode(trans, root, inode);
2622 		if (ret) {
2623 			err = ret;
2624 			break;
2625 		}
2626 
2627 		btrfs_end_transaction(trans);
2628 		btrfs_btree_balance_dirty(fs_info);
2629 
2630 		trans = btrfs_start_transaction(root, rsv_count);
2631 		if (IS_ERR(trans)) {
2632 			ret = PTR_ERR(trans);
2633 			trans = NULL;
2634 			break;
2635 		}
2636 
2637 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2638 					      rsv, min_size, 0);
2639 		BUG_ON(ret);	/* shouldn't happen */
2640 		trans->block_rsv = rsv;
2641 
2642 		ret = find_first_non_hole(inode, &cur_offset, &len);
2643 		if (unlikely(ret < 0))
2644 			break;
2645 		if (ret && !len) {
2646 			ret = 0;
2647 			break;
2648 		}
2649 	}
2650 
2651 	if (ret) {
2652 		err = ret;
2653 		goto out_trans;
2654 	}
2655 
2656 	trans->block_rsv = &fs_info->trans_block_rsv;
2657 	/*
2658 	 * If we are using the NO_HOLES feature we might have had already an
2659 	 * hole that overlaps a part of the region [lockstart, lockend] and
2660 	 * ends at (or beyond) lockend. Since we have no file extent items to
2661 	 * represent holes, drop_end can be less than lockend and so we must
2662 	 * make sure we have an extent map representing the existing hole (the
2663 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2664 	 * map representing the existing hole), otherwise the fast fsync path
2665 	 * will not record the existence of the hole region
2666 	 * [existing_hole_start, lockend].
2667 	 */
2668 	if (drop_end <= lockend)
2669 		drop_end = lockend + 1;
2670 	/*
2671 	 * Don't insert file hole extent item if it's for a range beyond eof
2672 	 * (because it's useless) or if it represents a 0 bytes range (when
2673 	 * cur_offset == drop_end).
2674 	 */
2675 	if (cur_offset < ino_size && cur_offset < drop_end) {
2676 		ret = fill_holes(trans, BTRFS_I(inode), path,
2677 				cur_offset, drop_end);
2678 		if (ret) {
2679 			/* Same comment as above. */
2680 			btrfs_abort_transaction(trans, ret);
2681 			err = ret;
2682 			goto out_trans;
2683 		}
2684 	}
2685 
2686 out_trans:
2687 	if (!trans)
2688 		goto out_free;
2689 
2690 	inode_inc_iversion(inode);
2691 	inode->i_mtime = inode->i_ctime = current_time(inode);
2692 
2693 	trans->block_rsv = &fs_info->trans_block_rsv;
2694 	ret = btrfs_update_inode(trans, root, inode);
2695 	updated_inode = true;
2696 	btrfs_end_transaction(trans);
2697 	btrfs_btree_balance_dirty(fs_info);
2698 out_free:
2699 	btrfs_free_path(path);
2700 	btrfs_free_block_rsv(fs_info, rsv);
2701 out:
2702 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2703 			     &cached_state, GFP_NOFS);
2704 out_only_mutex:
2705 	if (!updated_inode && truncated_block && !ret && !err) {
2706 		/*
2707 		 * If we only end up zeroing part of a page, we still need to
2708 		 * update the inode item, so that all the time fields are
2709 		 * updated as well as the necessary btrfs inode in memory fields
2710 		 * for detecting, at fsync time, if the inode isn't yet in the
2711 		 * log tree or it's there but not up to date.
2712 		 */
2713 		trans = btrfs_start_transaction(root, 1);
2714 		if (IS_ERR(trans)) {
2715 			err = PTR_ERR(trans);
2716 		} else {
2717 			err = btrfs_update_inode(trans, root, inode);
2718 			ret = btrfs_end_transaction(trans);
2719 		}
2720 	}
2721 	inode_unlock(inode);
2722 	if (ret && !err)
2723 		err = ret;
2724 	return err;
2725 }
2726 
2727 /* Helper structure to record which range is already reserved */
2728 struct falloc_range {
2729 	struct list_head list;
2730 	u64 start;
2731 	u64 len;
2732 };
2733 
2734 /*
2735  * Helper function to add falloc range
2736  *
2737  * Caller should have locked the larger range of extent containing
2738  * [start, len)
2739  */
2740 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2741 {
2742 	struct falloc_range *prev = NULL;
2743 	struct falloc_range *range = NULL;
2744 
2745 	if (list_empty(head))
2746 		goto insert;
2747 
2748 	/*
2749 	 * As fallocate iterate by bytenr order, we only need to check
2750 	 * the last range.
2751 	 */
2752 	prev = list_entry(head->prev, struct falloc_range, list);
2753 	if (prev->start + prev->len == start) {
2754 		prev->len += len;
2755 		return 0;
2756 	}
2757 insert:
2758 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2759 	if (!range)
2760 		return -ENOMEM;
2761 	range->start = start;
2762 	range->len = len;
2763 	list_add_tail(&range->list, head);
2764 	return 0;
2765 }
2766 
2767 static long btrfs_fallocate(struct file *file, int mode,
2768 			    loff_t offset, loff_t len)
2769 {
2770 	struct inode *inode = file_inode(file);
2771 	struct extent_state *cached_state = NULL;
2772 	struct falloc_range *range;
2773 	struct falloc_range *tmp;
2774 	struct list_head reserve_list;
2775 	u64 cur_offset;
2776 	u64 last_byte;
2777 	u64 alloc_start;
2778 	u64 alloc_end;
2779 	u64 alloc_hint = 0;
2780 	u64 locked_end;
2781 	u64 actual_end = 0;
2782 	struct extent_map *em;
2783 	int blocksize = btrfs_inode_sectorsize(inode);
2784 	int ret;
2785 
2786 	alloc_start = round_down(offset, blocksize);
2787 	alloc_end = round_up(offset + len, blocksize);
2788 	cur_offset = alloc_start;
2789 
2790 	/* Make sure we aren't being give some crap mode */
2791 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2792 		return -EOPNOTSUPP;
2793 
2794 	if (mode & FALLOC_FL_PUNCH_HOLE)
2795 		return btrfs_punch_hole(inode, offset, len);
2796 
2797 	/*
2798 	 * Only trigger disk allocation, don't trigger qgroup reserve
2799 	 *
2800 	 * For qgroup space, it will be checked later.
2801 	 */
2802 	ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2803 			alloc_end - alloc_start);
2804 	if (ret < 0)
2805 		return ret;
2806 
2807 	inode_lock(inode);
2808 
2809 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2810 		ret = inode_newsize_ok(inode, offset + len);
2811 		if (ret)
2812 			goto out;
2813 	}
2814 
2815 	/*
2816 	 * TODO: Move these two operations after we have checked
2817 	 * accurate reserved space, or fallocate can still fail but
2818 	 * with page truncated or size expanded.
2819 	 *
2820 	 * But that's a minor problem and won't do much harm BTW.
2821 	 */
2822 	if (alloc_start > inode->i_size) {
2823 		ret = btrfs_cont_expand(inode, i_size_read(inode),
2824 					alloc_start);
2825 		if (ret)
2826 			goto out;
2827 	} else if (offset + len > inode->i_size) {
2828 		/*
2829 		 * If we are fallocating from the end of the file onward we
2830 		 * need to zero out the end of the block if i_size lands in the
2831 		 * middle of a block.
2832 		 */
2833 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2834 		if (ret)
2835 			goto out;
2836 	}
2837 
2838 	/*
2839 	 * wait for ordered IO before we have any locks.  We'll loop again
2840 	 * below with the locks held.
2841 	 */
2842 	ret = btrfs_wait_ordered_range(inode, alloc_start,
2843 				       alloc_end - alloc_start);
2844 	if (ret)
2845 		goto out;
2846 
2847 	locked_end = alloc_end - 1;
2848 	while (1) {
2849 		struct btrfs_ordered_extent *ordered;
2850 
2851 		/* the extent lock is ordered inside the running
2852 		 * transaction
2853 		 */
2854 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2855 				 locked_end, &cached_state);
2856 		ordered = btrfs_lookup_first_ordered_extent(inode,
2857 							    alloc_end - 1);
2858 		if (ordered &&
2859 		    ordered->file_offset + ordered->len > alloc_start &&
2860 		    ordered->file_offset < alloc_end) {
2861 			btrfs_put_ordered_extent(ordered);
2862 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2863 					     alloc_start, locked_end,
2864 					     &cached_state, GFP_KERNEL);
2865 			/*
2866 			 * we can't wait on the range with the transaction
2867 			 * running or with the extent lock held
2868 			 */
2869 			ret = btrfs_wait_ordered_range(inode, alloc_start,
2870 						       alloc_end - alloc_start);
2871 			if (ret)
2872 				goto out;
2873 		} else {
2874 			if (ordered)
2875 				btrfs_put_ordered_extent(ordered);
2876 			break;
2877 		}
2878 	}
2879 
2880 	/* First, check if we exceed the qgroup limit */
2881 	INIT_LIST_HEAD(&reserve_list);
2882 	while (1) {
2883 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
2884 				      alloc_end - cur_offset, 0);
2885 		if (IS_ERR(em)) {
2886 			ret = PTR_ERR(em);
2887 			break;
2888 		}
2889 		last_byte = min(extent_map_end(em), alloc_end);
2890 		actual_end = min_t(u64, extent_map_end(em), offset + len);
2891 		last_byte = ALIGN(last_byte, blocksize);
2892 		if (em->block_start == EXTENT_MAP_HOLE ||
2893 		    (cur_offset >= inode->i_size &&
2894 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2895 			ret = add_falloc_range(&reserve_list, cur_offset,
2896 					       last_byte - cur_offset);
2897 			if (ret < 0) {
2898 				free_extent_map(em);
2899 				break;
2900 			}
2901 			ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2902 					last_byte - cur_offset);
2903 			if (ret < 0) {
2904 				free_extent_map(em);
2905 				break;
2906 			}
2907 		} else {
2908 			/*
2909 			 * Do not need to reserve unwritten extent for this
2910 			 * range, free reserved data space first, otherwise
2911 			 * it'll result in false ENOSPC error.
2912 			 */
2913 			btrfs_free_reserved_data_space(inode, cur_offset,
2914 				last_byte - cur_offset);
2915 		}
2916 		free_extent_map(em);
2917 		cur_offset = last_byte;
2918 		if (cur_offset >= alloc_end)
2919 			break;
2920 	}
2921 
2922 	/*
2923 	 * If ret is still 0, means we're OK to fallocate.
2924 	 * Or just cleanup the list and exit.
2925 	 */
2926 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2927 		if (!ret)
2928 			ret = btrfs_prealloc_file_range(inode, mode,
2929 					range->start,
2930 					range->len, i_blocksize(inode),
2931 					offset + len, &alloc_hint);
2932 		else
2933 			btrfs_free_reserved_data_space(inode, range->start,
2934 						       range->len);
2935 		list_del(&range->list);
2936 		kfree(range);
2937 	}
2938 	if (ret < 0)
2939 		goto out_unlock;
2940 
2941 	if (actual_end > inode->i_size &&
2942 	    !(mode & FALLOC_FL_KEEP_SIZE)) {
2943 		struct btrfs_trans_handle *trans;
2944 		struct btrfs_root *root = BTRFS_I(inode)->root;
2945 
2946 		/*
2947 		 * We didn't need to allocate any more space, but we
2948 		 * still extended the size of the file so we need to
2949 		 * update i_size and the inode item.
2950 		 */
2951 		trans = btrfs_start_transaction(root, 1);
2952 		if (IS_ERR(trans)) {
2953 			ret = PTR_ERR(trans);
2954 		} else {
2955 			inode->i_ctime = current_time(inode);
2956 			i_size_write(inode, actual_end);
2957 			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2958 			ret = btrfs_update_inode(trans, root, inode);
2959 			if (ret)
2960 				btrfs_end_transaction(trans);
2961 			else
2962 				ret = btrfs_end_transaction(trans);
2963 		}
2964 	}
2965 out_unlock:
2966 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2967 			     &cached_state, GFP_KERNEL);
2968 out:
2969 	inode_unlock(inode);
2970 	/* Let go of our reservation. */
2971 	if (ret != 0)
2972 		btrfs_free_reserved_data_space(inode, alloc_start,
2973 				       alloc_end - cur_offset);
2974 	return ret;
2975 }
2976 
2977 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2978 {
2979 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2980 	struct extent_map *em = NULL;
2981 	struct extent_state *cached_state = NULL;
2982 	u64 lockstart;
2983 	u64 lockend;
2984 	u64 start;
2985 	u64 len;
2986 	int ret = 0;
2987 
2988 	if (inode->i_size == 0)
2989 		return -ENXIO;
2990 
2991 	/*
2992 	 * *offset can be negative, in this case we start finding DATA/HOLE from
2993 	 * the very start of the file.
2994 	 */
2995 	start = max_t(loff_t, 0, *offset);
2996 
2997 	lockstart = round_down(start, fs_info->sectorsize);
2998 	lockend = round_up(i_size_read(inode),
2999 			   fs_info->sectorsize);
3000 	if (lockend <= lockstart)
3001 		lockend = lockstart + fs_info->sectorsize;
3002 	lockend--;
3003 	len = lockend - lockstart + 1;
3004 
3005 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3006 			 &cached_state);
3007 
3008 	while (start < inode->i_size) {
3009 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3010 				start, len, 0);
3011 		if (IS_ERR(em)) {
3012 			ret = PTR_ERR(em);
3013 			em = NULL;
3014 			break;
3015 		}
3016 
3017 		if (whence == SEEK_HOLE &&
3018 		    (em->block_start == EXTENT_MAP_HOLE ||
3019 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3020 			break;
3021 		else if (whence == SEEK_DATA &&
3022 			   (em->block_start != EXTENT_MAP_HOLE &&
3023 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3024 			break;
3025 
3026 		start = em->start + em->len;
3027 		free_extent_map(em);
3028 		em = NULL;
3029 		cond_resched();
3030 	}
3031 	free_extent_map(em);
3032 	if (!ret) {
3033 		if (whence == SEEK_DATA && start >= inode->i_size)
3034 			ret = -ENXIO;
3035 		else
3036 			*offset = min_t(loff_t, start, inode->i_size);
3037 	}
3038 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3039 			     &cached_state, GFP_NOFS);
3040 	return ret;
3041 }
3042 
3043 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3044 {
3045 	struct inode *inode = file->f_mapping->host;
3046 	int ret;
3047 
3048 	inode_lock(inode);
3049 	switch (whence) {
3050 	case SEEK_END:
3051 	case SEEK_CUR:
3052 		offset = generic_file_llseek(file, offset, whence);
3053 		goto out;
3054 	case SEEK_DATA:
3055 	case SEEK_HOLE:
3056 		if (offset >= i_size_read(inode)) {
3057 			inode_unlock(inode);
3058 			return -ENXIO;
3059 		}
3060 
3061 		ret = find_desired_extent(inode, &offset, whence);
3062 		if (ret) {
3063 			inode_unlock(inode);
3064 			return ret;
3065 		}
3066 	}
3067 
3068 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3069 out:
3070 	inode_unlock(inode);
3071 	return offset;
3072 }
3073 
3074 const struct file_operations btrfs_file_operations = {
3075 	.llseek		= btrfs_file_llseek,
3076 	.read_iter      = generic_file_read_iter,
3077 	.splice_read	= generic_file_splice_read,
3078 	.write_iter	= btrfs_file_write_iter,
3079 	.mmap		= btrfs_file_mmap,
3080 	.open		= generic_file_open,
3081 	.release	= btrfs_release_file,
3082 	.fsync		= btrfs_sync_file,
3083 	.fallocate	= btrfs_fallocate,
3084 	.unlocked_ioctl	= btrfs_ioctl,
3085 #ifdef CONFIG_COMPAT
3086 	.compat_ioctl	= btrfs_compat_ioctl,
3087 #endif
3088 	.clone_file_range = btrfs_clone_file_range,
3089 	.dedupe_file_range = btrfs_dedupe_file_range,
3090 };
3091 
3092 void btrfs_auto_defrag_exit(void)
3093 {
3094 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3095 }
3096 
3097 int btrfs_auto_defrag_init(void)
3098 {
3099 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3100 					sizeof(struct inode_defrag), 0,
3101 					SLAB_MEM_SPREAD,
3102 					NULL);
3103 	if (!btrfs_inode_defrag_cachep)
3104 		return -ENOMEM;
3105 
3106 	return 0;
3107 }
3108 
3109 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3110 {
3111 	int ret;
3112 
3113 	/*
3114 	 * So with compression we will find and lock a dirty page and clear the
3115 	 * first one as dirty, setup an async extent, and immediately return
3116 	 * with the entire range locked but with nobody actually marked with
3117 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3118 	 * expect it to work since it will just kick off a thread to do the
3119 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3120 	 * since it will wait on the page lock, which won't be unlocked until
3121 	 * after the pages have been marked as writeback and so we're good to go
3122 	 * from there.  We have to do this otherwise we'll miss the ordered
3123 	 * extents and that results in badness.  Please Josef, do not think you
3124 	 * know better and pull this out at some point in the future, it is
3125 	 * right and you are wrong.
3126 	 */
3127 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3128 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3129 			     &BTRFS_I(inode)->runtime_flags))
3130 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3131 
3132 	return ret;
3133 }
3134