1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include "ctree.h" 21 #include "direct-io.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "btrfs_inode.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "qgroup.h" 28 #include "compression.h" 29 #include "delalloc-space.h" 30 #include "reflink.h" 31 #include "subpage.h" 32 #include "fs.h" 33 #include "accessors.h" 34 #include "extent-tree.h" 35 #include "file-item.h" 36 #include "ioctl.h" 37 #include "file.h" 38 #include "super.h" 39 40 /* simple helper to fault in pages and copy. This should go away 41 * and be replaced with calls into generic code. 42 */ 43 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 44 struct page **prepared_pages, 45 struct iov_iter *i) 46 { 47 size_t copied = 0; 48 size_t total_copied = 0; 49 int pg = 0; 50 int offset = offset_in_page(pos); 51 52 while (write_bytes > 0) { 53 size_t count = min_t(size_t, 54 PAGE_SIZE - offset, write_bytes); 55 struct page *page = prepared_pages[pg]; 56 /* 57 * Copy data from userspace to the current page 58 */ 59 copied = copy_page_from_iter_atomic(page, offset, count, i); 60 61 /* Flush processor's dcache for this page */ 62 flush_dcache_page(page); 63 64 /* 65 * if we get a partial write, we can end up with 66 * partially up to date pages. These add 67 * a lot of complexity, so make sure they don't 68 * happen by forcing this copy to be retried. 69 * 70 * The rest of the btrfs_file_write code will fall 71 * back to page at a time copies after we return 0. 72 */ 73 if (unlikely(copied < count)) { 74 if (!PageUptodate(page)) { 75 iov_iter_revert(i, copied); 76 copied = 0; 77 } 78 if (!copied) 79 break; 80 } 81 82 write_bytes -= copied; 83 total_copied += copied; 84 offset += copied; 85 if (offset == PAGE_SIZE) { 86 pg++; 87 offset = 0; 88 } 89 } 90 return total_copied; 91 } 92 93 /* 94 * unlocks pages after btrfs_file_write is done with them 95 */ 96 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 97 struct page **pages, size_t num_pages, 98 u64 pos, u64 copied) 99 { 100 size_t i; 101 u64 block_start = round_down(pos, fs_info->sectorsize); 102 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 103 104 ASSERT(block_len <= U32_MAX); 105 for (i = 0; i < num_pages; i++) { 106 /* page checked is some magic around finding pages that 107 * have been modified without going through btrfs_set_page_dirty 108 * clear it here. There should be no need to mark the pages 109 * accessed as prepare_pages should have marked them accessed 110 * in prepare_pages via find_or_create_page() 111 */ 112 btrfs_folio_clamp_clear_checked(fs_info, page_folio(pages[i]), 113 block_start, block_len); 114 unlock_page(pages[i]); 115 put_page(pages[i]); 116 } 117 } 118 119 /* 120 * After btrfs_copy_from_user(), update the following things for delalloc: 121 * - Mark newly dirtied pages as DELALLOC in the io tree. 122 * Used to advise which range is to be written back. 123 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 124 * - Update inode size for past EOF write 125 */ 126 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 127 size_t num_pages, loff_t pos, size_t write_bytes, 128 struct extent_state **cached, bool noreserve) 129 { 130 struct btrfs_fs_info *fs_info = inode->root->fs_info; 131 int ret = 0; 132 int i; 133 u64 num_bytes; 134 u64 start_pos; 135 u64 end_of_last_block; 136 u64 end_pos = pos + write_bytes; 137 loff_t isize = i_size_read(&inode->vfs_inode); 138 unsigned int extra_bits = 0; 139 140 if (write_bytes == 0) 141 return 0; 142 143 if (noreserve) 144 extra_bits |= EXTENT_NORESERVE; 145 146 start_pos = round_down(pos, fs_info->sectorsize); 147 num_bytes = round_up(write_bytes + pos - start_pos, 148 fs_info->sectorsize); 149 ASSERT(num_bytes <= U32_MAX); 150 151 end_of_last_block = start_pos + num_bytes - 1; 152 153 /* 154 * The pages may have already been dirty, clear out old accounting so 155 * we can set things up properly 156 */ 157 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 158 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 159 cached); 160 161 ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 162 extra_bits, cached); 163 if (ret) 164 return ret; 165 166 for (i = 0; i < num_pages; i++) { 167 struct page *p = pages[i]; 168 169 btrfs_folio_clamp_set_uptodate(fs_info, page_folio(p), 170 start_pos, num_bytes); 171 btrfs_folio_clamp_clear_checked(fs_info, page_folio(p), 172 start_pos, num_bytes); 173 btrfs_folio_clamp_set_dirty(fs_info, page_folio(p), 174 start_pos, num_bytes); 175 } 176 177 /* 178 * we've only changed i_size in ram, and we haven't updated 179 * the disk i_size. There is no need to log the inode 180 * at this time. 181 */ 182 if (end_pos > isize) 183 i_size_write(&inode->vfs_inode, end_pos); 184 return 0; 185 } 186 187 /* 188 * this is very complex, but the basic idea is to drop all extents 189 * in the range start - end. hint_block is filled in with a block number 190 * that would be a good hint to the block allocator for this file. 191 * 192 * If an extent intersects the range but is not entirely inside the range 193 * it is either truncated or split. Anything entirely inside the range 194 * is deleted from the tree. 195 * 196 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 197 * to deal with that. We set the field 'bytes_found' of the arguments structure 198 * with the number of allocated bytes found in the target range, so that the 199 * caller can update the inode's number of bytes in an atomic way when 200 * replacing extents in a range to avoid races with stat(2). 201 */ 202 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 203 struct btrfs_root *root, struct btrfs_inode *inode, 204 struct btrfs_drop_extents_args *args) 205 { 206 struct btrfs_fs_info *fs_info = root->fs_info; 207 struct extent_buffer *leaf; 208 struct btrfs_file_extent_item *fi; 209 struct btrfs_key key; 210 struct btrfs_key new_key; 211 u64 ino = btrfs_ino(inode); 212 u64 search_start = args->start; 213 u64 disk_bytenr = 0; 214 u64 num_bytes = 0; 215 u64 extent_offset = 0; 216 u64 extent_end = 0; 217 u64 last_end = args->start; 218 int del_nr = 0; 219 int del_slot = 0; 220 int extent_type; 221 int recow; 222 int ret; 223 int modify_tree = -1; 224 int update_refs; 225 int found = 0; 226 struct btrfs_path *path = args->path; 227 228 args->bytes_found = 0; 229 args->extent_inserted = false; 230 231 /* Must always have a path if ->replace_extent is true */ 232 ASSERT(!(args->replace_extent && !args->path)); 233 234 if (!path) { 235 path = btrfs_alloc_path(); 236 if (!path) { 237 ret = -ENOMEM; 238 goto out; 239 } 240 } 241 242 if (args->drop_cache) 243 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); 244 245 if (args->start >= inode->disk_i_size && !args->replace_extent) 246 modify_tree = 0; 247 248 update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID); 249 while (1) { 250 recow = 0; 251 ret = btrfs_lookup_file_extent(trans, root, path, ino, 252 search_start, modify_tree); 253 if (ret < 0) 254 break; 255 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 256 leaf = path->nodes[0]; 257 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 258 if (key.objectid == ino && 259 key.type == BTRFS_EXTENT_DATA_KEY) 260 path->slots[0]--; 261 } 262 ret = 0; 263 next_slot: 264 leaf = path->nodes[0]; 265 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 266 BUG_ON(del_nr > 0); 267 ret = btrfs_next_leaf(root, path); 268 if (ret < 0) 269 break; 270 if (ret > 0) { 271 ret = 0; 272 break; 273 } 274 leaf = path->nodes[0]; 275 recow = 1; 276 } 277 278 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 279 280 if (key.objectid > ino) 281 break; 282 if (WARN_ON_ONCE(key.objectid < ino) || 283 key.type < BTRFS_EXTENT_DATA_KEY) { 284 ASSERT(del_nr == 0); 285 path->slots[0]++; 286 goto next_slot; 287 } 288 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 289 break; 290 291 fi = btrfs_item_ptr(leaf, path->slots[0], 292 struct btrfs_file_extent_item); 293 extent_type = btrfs_file_extent_type(leaf, fi); 294 295 if (extent_type == BTRFS_FILE_EXTENT_REG || 296 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 297 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 298 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 299 extent_offset = btrfs_file_extent_offset(leaf, fi); 300 extent_end = key.offset + 301 btrfs_file_extent_num_bytes(leaf, fi); 302 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 303 extent_end = key.offset + 304 btrfs_file_extent_ram_bytes(leaf, fi); 305 } else { 306 /* can't happen */ 307 BUG(); 308 } 309 310 /* 311 * Don't skip extent items representing 0 byte lengths. They 312 * used to be created (bug) if while punching holes we hit 313 * -ENOSPC condition. So if we find one here, just ensure we 314 * delete it, otherwise we would insert a new file extent item 315 * with the same key (offset) as that 0 bytes length file 316 * extent item in the call to setup_items_for_insert() later 317 * in this function. 318 */ 319 if (extent_end == key.offset && extent_end >= search_start) { 320 last_end = extent_end; 321 goto delete_extent_item; 322 } 323 324 if (extent_end <= search_start) { 325 path->slots[0]++; 326 goto next_slot; 327 } 328 329 found = 1; 330 search_start = max(key.offset, args->start); 331 if (recow || !modify_tree) { 332 modify_tree = -1; 333 btrfs_release_path(path); 334 continue; 335 } 336 337 /* 338 * | - range to drop - | 339 * | -------- extent -------- | 340 */ 341 if (args->start > key.offset && args->end < extent_end) { 342 BUG_ON(del_nr > 0); 343 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 344 ret = -EOPNOTSUPP; 345 break; 346 } 347 348 memcpy(&new_key, &key, sizeof(new_key)); 349 new_key.offset = args->start; 350 ret = btrfs_duplicate_item(trans, root, path, 351 &new_key); 352 if (ret == -EAGAIN) { 353 btrfs_release_path(path); 354 continue; 355 } 356 if (ret < 0) 357 break; 358 359 leaf = path->nodes[0]; 360 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 361 struct btrfs_file_extent_item); 362 btrfs_set_file_extent_num_bytes(leaf, fi, 363 args->start - key.offset); 364 365 fi = btrfs_item_ptr(leaf, path->slots[0], 366 struct btrfs_file_extent_item); 367 368 extent_offset += args->start - key.offset; 369 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 370 btrfs_set_file_extent_num_bytes(leaf, fi, 371 extent_end - args->start); 372 btrfs_mark_buffer_dirty(trans, leaf); 373 374 if (update_refs && disk_bytenr > 0) { 375 struct btrfs_ref ref = { 376 .action = BTRFS_ADD_DELAYED_REF, 377 .bytenr = disk_bytenr, 378 .num_bytes = num_bytes, 379 .parent = 0, 380 .owning_root = btrfs_root_id(root), 381 .ref_root = btrfs_root_id(root), 382 }; 383 btrfs_init_data_ref(&ref, new_key.objectid, 384 args->start - extent_offset, 385 0, false); 386 ret = btrfs_inc_extent_ref(trans, &ref); 387 if (ret) { 388 btrfs_abort_transaction(trans, ret); 389 break; 390 } 391 } 392 key.offset = args->start; 393 } 394 /* 395 * From here on out we will have actually dropped something, so 396 * last_end can be updated. 397 */ 398 last_end = extent_end; 399 400 /* 401 * | ---- range to drop ----- | 402 * | -------- extent -------- | 403 */ 404 if (args->start <= key.offset && args->end < extent_end) { 405 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 406 ret = -EOPNOTSUPP; 407 break; 408 } 409 410 memcpy(&new_key, &key, sizeof(new_key)); 411 new_key.offset = args->end; 412 btrfs_set_item_key_safe(trans, path, &new_key); 413 414 extent_offset += args->end - key.offset; 415 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 416 btrfs_set_file_extent_num_bytes(leaf, fi, 417 extent_end - args->end); 418 btrfs_mark_buffer_dirty(trans, leaf); 419 if (update_refs && disk_bytenr > 0) 420 args->bytes_found += args->end - key.offset; 421 break; 422 } 423 424 search_start = extent_end; 425 /* 426 * | ---- range to drop ----- | 427 * | -------- extent -------- | 428 */ 429 if (args->start > key.offset && args->end >= extent_end) { 430 BUG_ON(del_nr > 0); 431 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 432 ret = -EOPNOTSUPP; 433 break; 434 } 435 436 btrfs_set_file_extent_num_bytes(leaf, fi, 437 args->start - key.offset); 438 btrfs_mark_buffer_dirty(trans, leaf); 439 if (update_refs && disk_bytenr > 0) 440 args->bytes_found += extent_end - args->start; 441 if (args->end == extent_end) 442 break; 443 444 path->slots[0]++; 445 goto next_slot; 446 } 447 448 /* 449 * | ---- range to drop ----- | 450 * | ------ extent ------ | 451 */ 452 if (args->start <= key.offset && args->end >= extent_end) { 453 delete_extent_item: 454 if (del_nr == 0) { 455 del_slot = path->slots[0]; 456 del_nr = 1; 457 } else { 458 BUG_ON(del_slot + del_nr != path->slots[0]); 459 del_nr++; 460 } 461 462 if (update_refs && 463 extent_type == BTRFS_FILE_EXTENT_INLINE) { 464 args->bytes_found += extent_end - key.offset; 465 extent_end = ALIGN(extent_end, 466 fs_info->sectorsize); 467 } else if (update_refs && disk_bytenr > 0) { 468 struct btrfs_ref ref = { 469 .action = BTRFS_DROP_DELAYED_REF, 470 .bytenr = disk_bytenr, 471 .num_bytes = num_bytes, 472 .parent = 0, 473 .owning_root = btrfs_root_id(root), 474 .ref_root = btrfs_root_id(root), 475 }; 476 btrfs_init_data_ref(&ref, key.objectid, 477 key.offset - extent_offset, 478 0, false); 479 ret = btrfs_free_extent(trans, &ref); 480 if (ret) { 481 btrfs_abort_transaction(trans, ret); 482 break; 483 } 484 args->bytes_found += extent_end - key.offset; 485 } 486 487 if (args->end == extent_end) 488 break; 489 490 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 491 path->slots[0]++; 492 goto next_slot; 493 } 494 495 ret = btrfs_del_items(trans, root, path, del_slot, 496 del_nr); 497 if (ret) { 498 btrfs_abort_transaction(trans, ret); 499 break; 500 } 501 502 del_nr = 0; 503 del_slot = 0; 504 505 btrfs_release_path(path); 506 continue; 507 } 508 509 BUG(); 510 } 511 512 if (!ret && del_nr > 0) { 513 /* 514 * Set path->slots[0] to first slot, so that after the delete 515 * if items are move off from our leaf to its immediate left or 516 * right neighbor leafs, we end up with a correct and adjusted 517 * path->slots[0] for our insertion (if args->replace_extent). 518 */ 519 path->slots[0] = del_slot; 520 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 521 if (ret) 522 btrfs_abort_transaction(trans, ret); 523 } 524 525 leaf = path->nodes[0]; 526 /* 527 * If btrfs_del_items() was called, it might have deleted a leaf, in 528 * which case it unlocked our path, so check path->locks[0] matches a 529 * write lock. 530 */ 531 if (!ret && args->replace_extent && 532 path->locks[0] == BTRFS_WRITE_LOCK && 533 btrfs_leaf_free_space(leaf) >= 534 sizeof(struct btrfs_item) + args->extent_item_size) { 535 536 key.objectid = ino; 537 key.type = BTRFS_EXTENT_DATA_KEY; 538 key.offset = args->start; 539 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 540 struct btrfs_key slot_key; 541 542 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 543 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 544 path->slots[0]++; 545 } 546 btrfs_setup_item_for_insert(trans, root, path, &key, 547 args->extent_item_size); 548 args->extent_inserted = true; 549 } 550 551 if (!args->path) 552 btrfs_free_path(path); 553 else if (!args->extent_inserted) 554 btrfs_release_path(path); 555 out: 556 args->drop_end = found ? min(args->end, last_end) : args->end; 557 558 return ret; 559 } 560 561 static int extent_mergeable(struct extent_buffer *leaf, int slot, 562 u64 objectid, u64 bytenr, u64 orig_offset, 563 u64 *start, u64 *end) 564 { 565 struct btrfs_file_extent_item *fi; 566 struct btrfs_key key; 567 u64 extent_end; 568 569 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 570 return 0; 571 572 btrfs_item_key_to_cpu(leaf, &key, slot); 573 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 574 return 0; 575 576 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 577 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 578 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 579 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 580 btrfs_file_extent_compression(leaf, fi) || 581 btrfs_file_extent_encryption(leaf, fi) || 582 btrfs_file_extent_other_encoding(leaf, fi)) 583 return 0; 584 585 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 586 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 587 return 0; 588 589 *start = key.offset; 590 *end = extent_end; 591 return 1; 592 } 593 594 /* 595 * Mark extent in the range start - end as written. 596 * 597 * This changes extent type from 'pre-allocated' to 'regular'. If only 598 * part of extent is marked as written, the extent will be split into 599 * two or three. 600 */ 601 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 602 struct btrfs_inode *inode, u64 start, u64 end) 603 { 604 struct btrfs_root *root = inode->root; 605 struct extent_buffer *leaf; 606 struct btrfs_path *path; 607 struct btrfs_file_extent_item *fi; 608 struct btrfs_ref ref = { 0 }; 609 struct btrfs_key key; 610 struct btrfs_key new_key; 611 u64 bytenr; 612 u64 num_bytes; 613 u64 extent_end; 614 u64 orig_offset; 615 u64 other_start; 616 u64 other_end; 617 u64 split; 618 int del_nr = 0; 619 int del_slot = 0; 620 int recow; 621 int ret = 0; 622 u64 ino = btrfs_ino(inode); 623 624 path = btrfs_alloc_path(); 625 if (!path) 626 return -ENOMEM; 627 again: 628 recow = 0; 629 split = start; 630 key.objectid = ino; 631 key.type = BTRFS_EXTENT_DATA_KEY; 632 key.offset = split; 633 634 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 635 if (ret < 0) 636 goto out; 637 if (ret > 0 && path->slots[0] > 0) 638 path->slots[0]--; 639 640 leaf = path->nodes[0]; 641 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 642 if (key.objectid != ino || 643 key.type != BTRFS_EXTENT_DATA_KEY) { 644 ret = -EINVAL; 645 btrfs_abort_transaction(trans, ret); 646 goto out; 647 } 648 fi = btrfs_item_ptr(leaf, path->slots[0], 649 struct btrfs_file_extent_item); 650 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 651 ret = -EINVAL; 652 btrfs_abort_transaction(trans, ret); 653 goto out; 654 } 655 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 656 if (key.offset > start || extent_end < end) { 657 ret = -EINVAL; 658 btrfs_abort_transaction(trans, ret); 659 goto out; 660 } 661 662 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 663 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 664 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 665 memcpy(&new_key, &key, sizeof(new_key)); 666 667 if (start == key.offset && end < extent_end) { 668 other_start = 0; 669 other_end = start; 670 if (extent_mergeable(leaf, path->slots[0] - 1, 671 ino, bytenr, orig_offset, 672 &other_start, &other_end)) { 673 new_key.offset = end; 674 btrfs_set_item_key_safe(trans, path, &new_key); 675 fi = btrfs_item_ptr(leaf, path->slots[0], 676 struct btrfs_file_extent_item); 677 btrfs_set_file_extent_generation(leaf, fi, 678 trans->transid); 679 btrfs_set_file_extent_num_bytes(leaf, fi, 680 extent_end - end); 681 btrfs_set_file_extent_offset(leaf, fi, 682 end - orig_offset); 683 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 684 struct btrfs_file_extent_item); 685 btrfs_set_file_extent_generation(leaf, fi, 686 trans->transid); 687 btrfs_set_file_extent_num_bytes(leaf, fi, 688 end - other_start); 689 btrfs_mark_buffer_dirty(trans, leaf); 690 goto out; 691 } 692 } 693 694 if (start > key.offset && end == extent_end) { 695 other_start = end; 696 other_end = 0; 697 if (extent_mergeable(leaf, path->slots[0] + 1, 698 ino, bytenr, orig_offset, 699 &other_start, &other_end)) { 700 fi = btrfs_item_ptr(leaf, path->slots[0], 701 struct btrfs_file_extent_item); 702 btrfs_set_file_extent_num_bytes(leaf, fi, 703 start - key.offset); 704 btrfs_set_file_extent_generation(leaf, fi, 705 trans->transid); 706 path->slots[0]++; 707 new_key.offset = start; 708 btrfs_set_item_key_safe(trans, path, &new_key); 709 710 fi = btrfs_item_ptr(leaf, path->slots[0], 711 struct btrfs_file_extent_item); 712 btrfs_set_file_extent_generation(leaf, fi, 713 trans->transid); 714 btrfs_set_file_extent_num_bytes(leaf, fi, 715 other_end - start); 716 btrfs_set_file_extent_offset(leaf, fi, 717 start - orig_offset); 718 btrfs_mark_buffer_dirty(trans, leaf); 719 goto out; 720 } 721 } 722 723 while (start > key.offset || end < extent_end) { 724 if (key.offset == start) 725 split = end; 726 727 new_key.offset = split; 728 ret = btrfs_duplicate_item(trans, root, path, &new_key); 729 if (ret == -EAGAIN) { 730 btrfs_release_path(path); 731 goto again; 732 } 733 if (ret < 0) { 734 btrfs_abort_transaction(trans, ret); 735 goto out; 736 } 737 738 leaf = path->nodes[0]; 739 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 740 struct btrfs_file_extent_item); 741 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 742 btrfs_set_file_extent_num_bytes(leaf, fi, 743 split - key.offset); 744 745 fi = btrfs_item_ptr(leaf, path->slots[0], 746 struct btrfs_file_extent_item); 747 748 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 749 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 750 btrfs_set_file_extent_num_bytes(leaf, fi, 751 extent_end - split); 752 btrfs_mark_buffer_dirty(trans, leaf); 753 754 ref.action = BTRFS_ADD_DELAYED_REF; 755 ref.bytenr = bytenr; 756 ref.num_bytes = num_bytes; 757 ref.parent = 0; 758 ref.owning_root = btrfs_root_id(root); 759 ref.ref_root = btrfs_root_id(root); 760 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false); 761 ret = btrfs_inc_extent_ref(trans, &ref); 762 if (ret) { 763 btrfs_abort_transaction(trans, ret); 764 goto out; 765 } 766 767 if (split == start) { 768 key.offset = start; 769 } else { 770 if (start != key.offset) { 771 ret = -EINVAL; 772 btrfs_abort_transaction(trans, ret); 773 goto out; 774 } 775 path->slots[0]--; 776 extent_end = end; 777 } 778 recow = 1; 779 } 780 781 other_start = end; 782 other_end = 0; 783 784 ref.action = BTRFS_DROP_DELAYED_REF; 785 ref.bytenr = bytenr; 786 ref.num_bytes = num_bytes; 787 ref.parent = 0; 788 ref.owning_root = btrfs_root_id(root); 789 ref.ref_root = btrfs_root_id(root); 790 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false); 791 if (extent_mergeable(leaf, path->slots[0] + 1, 792 ino, bytenr, orig_offset, 793 &other_start, &other_end)) { 794 if (recow) { 795 btrfs_release_path(path); 796 goto again; 797 } 798 extent_end = other_end; 799 del_slot = path->slots[0] + 1; 800 del_nr++; 801 ret = btrfs_free_extent(trans, &ref); 802 if (ret) { 803 btrfs_abort_transaction(trans, ret); 804 goto out; 805 } 806 } 807 other_start = 0; 808 other_end = start; 809 if (extent_mergeable(leaf, path->slots[0] - 1, 810 ino, bytenr, orig_offset, 811 &other_start, &other_end)) { 812 if (recow) { 813 btrfs_release_path(path); 814 goto again; 815 } 816 key.offset = other_start; 817 del_slot = path->slots[0]; 818 del_nr++; 819 ret = btrfs_free_extent(trans, &ref); 820 if (ret) { 821 btrfs_abort_transaction(trans, ret); 822 goto out; 823 } 824 } 825 if (del_nr == 0) { 826 fi = btrfs_item_ptr(leaf, path->slots[0], 827 struct btrfs_file_extent_item); 828 btrfs_set_file_extent_type(leaf, fi, 829 BTRFS_FILE_EXTENT_REG); 830 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 831 btrfs_mark_buffer_dirty(trans, leaf); 832 } else { 833 fi = btrfs_item_ptr(leaf, del_slot - 1, 834 struct btrfs_file_extent_item); 835 btrfs_set_file_extent_type(leaf, fi, 836 BTRFS_FILE_EXTENT_REG); 837 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 838 btrfs_set_file_extent_num_bytes(leaf, fi, 839 extent_end - key.offset); 840 btrfs_mark_buffer_dirty(trans, leaf); 841 842 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 843 if (ret < 0) { 844 btrfs_abort_transaction(trans, ret); 845 goto out; 846 } 847 } 848 out: 849 btrfs_free_path(path); 850 return ret; 851 } 852 853 /* 854 * on error we return an unlocked page and the error value 855 * on success we return a locked page and 0 856 */ 857 static int prepare_uptodate_page(struct inode *inode, 858 struct page *page, u64 pos, 859 bool force_uptodate) 860 { 861 struct folio *folio = page_folio(page); 862 int ret = 0; 863 864 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 865 !PageUptodate(page)) { 866 ret = btrfs_read_folio(NULL, folio); 867 if (ret) 868 return ret; 869 lock_page(page); 870 if (!PageUptodate(page)) { 871 unlock_page(page); 872 return -EIO; 873 } 874 875 /* 876 * Since btrfs_read_folio() will unlock the folio before it 877 * returns, there is a window where btrfs_release_folio() can be 878 * called to release the page. Here we check both inode 879 * mapping and PagePrivate() to make sure the page was not 880 * released. 881 * 882 * The private flag check is essential for subpage as we need 883 * to store extra bitmap using folio private. 884 */ 885 if (page->mapping != inode->i_mapping || !folio_test_private(folio)) { 886 unlock_page(page); 887 return -EAGAIN; 888 } 889 } 890 return 0; 891 } 892 893 static fgf_t get_prepare_fgp_flags(bool nowait) 894 { 895 fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT; 896 897 if (nowait) 898 fgp_flags |= FGP_NOWAIT; 899 900 return fgp_flags; 901 } 902 903 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) 904 { 905 gfp_t gfp; 906 907 gfp = btrfs_alloc_write_mask(inode->i_mapping); 908 if (nowait) { 909 gfp &= ~__GFP_DIRECT_RECLAIM; 910 gfp |= GFP_NOWAIT; 911 } 912 913 return gfp; 914 } 915 916 /* 917 * this just gets pages into the page cache and locks them down. 918 */ 919 static noinline int prepare_pages(struct inode *inode, struct page **pages, 920 size_t num_pages, loff_t pos, 921 size_t write_bytes, bool force_uptodate, 922 bool nowait) 923 { 924 int i; 925 unsigned long index = pos >> PAGE_SHIFT; 926 gfp_t mask = get_prepare_gfp_flags(inode, nowait); 927 fgf_t fgp_flags = get_prepare_fgp_flags(nowait); 928 int ret = 0; 929 int faili; 930 931 for (i = 0; i < num_pages; i++) { 932 again: 933 pages[i] = pagecache_get_page(inode->i_mapping, index + i, 934 fgp_flags, mask | __GFP_WRITE); 935 if (!pages[i]) { 936 faili = i - 1; 937 if (nowait) 938 ret = -EAGAIN; 939 else 940 ret = -ENOMEM; 941 goto fail; 942 } 943 944 ret = set_page_extent_mapped(pages[i]); 945 if (ret < 0) { 946 faili = i; 947 goto fail; 948 } 949 950 if (i == 0) 951 ret = prepare_uptodate_page(inode, pages[i], pos, 952 force_uptodate); 953 if (!ret && i == num_pages - 1) 954 ret = prepare_uptodate_page(inode, pages[i], 955 pos + write_bytes, false); 956 if (ret) { 957 put_page(pages[i]); 958 if (!nowait && ret == -EAGAIN) { 959 ret = 0; 960 goto again; 961 } 962 faili = i - 1; 963 goto fail; 964 } 965 wait_on_page_writeback(pages[i]); 966 } 967 968 return 0; 969 fail: 970 while (faili >= 0) { 971 unlock_page(pages[faili]); 972 put_page(pages[faili]); 973 faili--; 974 } 975 return ret; 976 977 } 978 979 /* 980 * This function locks the extent and properly waits for data=ordered extents 981 * to finish before allowing the pages to be modified if need. 982 * 983 * The return value: 984 * 1 - the extent is locked 985 * 0 - the extent is not locked, and everything is OK 986 * -EAGAIN - need re-prepare the pages 987 * the other < 0 number - Something wrong happens 988 */ 989 static noinline int 990 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 991 size_t num_pages, loff_t pos, 992 size_t write_bytes, 993 u64 *lockstart, u64 *lockend, bool nowait, 994 struct extent_state **cached_state) 995 { 996 struct btrfs_fs_info *fs_info = inode->root->fs_info; 997 u64 start_pos; 998 u64 last_pos; 999 int i; 1000 int ret = 0; 1001 1002 start_pos = round_down(pos, fs_info->sectorsize); 1003 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 1004 1005 if (start_pos < inode->vfs_inode.i_size) { 1006 struct btrfs_ordered_extent *ordered; 1007 1008 if (nowait) { 1009 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos, 1010 cached_state)) { 1011 for (i = 0; i < num_pages; i++) { 1012 unlock_page(pages[i]); 1013 put_page(pages[i]); 1014 pages[i] = NULL; 1015 } 1016 1017 return -EAGAIN; 1018 } 1019 } else { 1020 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state); 1021 } 1022 1023 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1024 last_pos - start_pos + 1); 1025 if (ordered && 1026 ordered->file_offset + ordered->num_bytes > start_pos && 1027 ordered->file_offset <= last_pos) { 1028 unlock_extent(&inode->io_tree, start_pos, last_pos, 1029 cached_state); 1030 for (i = 0; i < num_pages; i++) { 1031 unlock_page(pages[i]); 1032 put_page(pages[i]); 1033 } 1034 btrfs_start_ordered_extent(ordered); 1035 btrfs_put_ordered_extent(ordered); 1036 return -EAGAIN; 1037 } 1038 if (ordered) 1039 btrfs_put_ordered_extent(ordered); 1040 1041 *lockstart = start_pos; 1042 *lockend = last_pos; 1043 ret = 1; 1044 } 1045 1046 /* 1047 * We should be called after prepare_pages() which should have locked 1048 * all pages in the range. 1049 */ 1050 for (i = 0; i < num_pages; i++) 1051 WARN_ON(!PageLocked(pages[i])); 1052 1053 return ret; 1054 } 1055 1056 /* 1057 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1058 * 1059 * @pos: File offset. 1060 * @write_bytes: The length to write, will be updated to the nocow writeable 1061 * range. 1062 * 1063 * This function will flush ordered extents in the range to ensure proper 1064 * nocow checks. 1065 * 1066 * Return: 1067 * > 0 If we can nocow, and updates @write_bytes. 1068 * 0 If we can't do a nocow write. 1069 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's 1070 * root is in progress. 1071 * < 0 If an error happened. 1072 * 1073 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 1074 */ 1075 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1076 size_t *write_bytes, bool nowait) 1077 { 1078 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1079 struct btrfs_root *root = inode->root; 1080 struct extent_state *cached_state = NULL; 1081 u64 lockstart, lockend; 1082 u64 num_bytes; 1083 int ret; 1084 1085 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1086 return 0; 1087 1088 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1089 return -EAGAIN; 1090 1091 lockstart = round_down(pos, fs_info->sectorsize); 1092 lockend = round_up(pos + *write_bytes, 1093 fs_info->sectorsize) - 1; 1094 num_bytes = lockend - lockstart + 1; 1095 1096 if (nowait) { 1097 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend, 1098 &cached_state)) { 1099 btrfs_drew_write_unlock(&root->snapshot_lock); 1100 return -EAGAIN; 1101 } 1102 } else { 1103 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, 1104 &cached_state); 1105 } 1106 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1107 NULL, nowait, false); 1108 if (ret <= 0) 1109 btrfs_drew_write_unlock(&root->snapshot_lock); 1110 else 1111 *write_bytes = min_t(size_t, *write_bytes , 1112 num_bytes - pos + lockstart); 1113 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 1114 1115 return ret; 1116 } 1117 1118 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1119 { 1120 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1121 } 1122 1123 static void update_time_for_write(struct inode *inode) 1124 { 1125 struct timespec64 now, ts; 1126 1127 if (IS_NOCMTIME(inode)) 1128 return; 1129 1130 now = current_time(inode); 1131 ts = inode_get_mtime(inode); 1132 if (!timespec64_equal(&ts, &now)) 1133 inode_set_mtime_to_ts(inode, now); 1134 1135 ts = inode_get_ctime(inode); 1136 if (!timespec64_equal(&ts, &now)) 1137 inode_set_ctime_to_ts(inode, now); 1138 1139 if (IS_I_VERSION(inode)) 1140 inode_inc_iversion(inode); 1141 } 1142 1143 int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, size_t count) 1144 { 1145 struct file *file = iocb->ki_filp; 1146 struct inode *inode = file_inode(file); 1147 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1148 loff_t pos = iocb->ki_pos; 1149 int ret; 1150 loff_t oldsize; 1151 loff_t start_pos; 1152 1153 /* 1154 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1155 * prealloc flags, as without those flags we always have to COW. We will 1156 * later check if we can really COW into the target range (using 1157 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1158 */ 1159 if ((iocb->ki_flags & IOCB_NOWAIT) && 1160 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1161 return -EAGAIN; 1162 1163 ret = file_remove_privs(file); 1164 if (ret) 1165 return ret; 1166 1167 /* 1168 * We reserve space for updating the inode when we reserve space for the 1169 * extent we are going to write, so we will enospc out there. We don't 1170 * need to start yet another transaction to update the inode as we will 1171 * update the inode when we finish writing whatever data we write. 1172 */ 1173 update_time_for_write(inode); 1174 1175 start_pos = round_down(pos, fs_info->sectorsize); 1176 oldsize = i_size_read(inode); 1177 if (start_pos > oldsize) { 1178 /* Expand hole size to cover write data, preventing empty gap */ 1179 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1180 1181 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1182 if (ret) 1183 return ret; 1184 } 1185 1186 return 0; 1187 } 1188 1189 ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *i) 1190 { 1191 struct file *file = iocb->ki_filp; 1192 loff_t pos; 1193 struct inode *inode = file_inode(file); 1194 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1195 struct page **pages = NULL; 1196 struct extent_changeset *data_reserved = NULL; 1197 u64 release_bytes = 0; 1198 u64 lockstart; 1199 u64 lockend; 1200 size_t num_written = 0; 1201 int nrptrs; 1202 ssize_t ret; 1203 bool only_release_metadata = false; 1204 bool force_page_uptodate = false; 1205 loff_t old_isize = i_size_read(inode); 1206 unsigned int ilock_flags = 0; 1207 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 1208 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); 1209 1210 if (nowait) 1211 ilock_flags |= BTRFS_ILOCK_TRY; 1212 1213 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1214 if (ret < 0) 1215 return ret; 1216 1217 ret = generic_write_checks(iocb, i); 1218 if (ret <= 0) 1219 goto out; 1220 1221 ret = btrfs_write_check(iocb, i, ret); 1222 if (ret < 0) 1223 goto out; 1224 1225 pos = iocb->ki_pos; 1226 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1227 PAGE_SIZE / (sizeof(struct page *))); 1228 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1229 nrptrs = max(nrptrs, 8); 1230 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1231 if (!pages) { 1232 ret = -ENOMEM; 1233 goto out; 1234 } 1235 1236 while (iov_iter_count(i) > 0) { 1237 struct extent_state *cached_state = NULL; 1238 size_t offset = offset_in_page(pos); 1239 size_t sector_offset; 1240 size_t write_bytes = min(iov_iter_count(i), 1241 nrptrs * (size_t)PAGE_SIZE - 1242 offset); 1243 size_t num_pages; 1244 size_t reserve_bytes; 1245 size_t dirty_pages; 1246 size_t copied; 1247 size_t dirty_sectors; 1248 size_t num_sectors; 1249 int extents_locked; 1250 1251 /* 1252 * Fault pages before locking them in prepare_pages 1253 * to avoid recursive lock 1254 */ 1255 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1256 ret = -EFAULT; 1257 break; 1258 } 1259 1260 only_release_metadata = false; 1261 sector_offset = pos & (fs_info->sectorsize - 1); 1262 1263 extent_changeset_release(data_reserved); 1264 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1265 &data_reserved, pos, 1266 write_bytes, nowait); 1267 if (ret < 0) { 1268 int can_nocow; 1269 1270 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) { 1271 ret = -EAGAIN; 1272 break; 1273 } 1274 1275 /* 1276 * If we don't have to COW at the offset, reserve 1277 * metadata only. write_bytes may get smaller than 1278 * requested here. 1279 */ 1280 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1281 &write_bytes, nowait); 1282 if (can_nocow < 0) 1283 ret = can_nocow; 1284 if (can_nocow > 0) 1285 ret = 0; 1286 if (ret) 1287 break; 1288 only_release_metadata = true; 1289 } 1290 1291 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1292 WARN_ON(num_pages > nrptrs); 1293 reserve_bytes = round_up(write_bytes + sector_offset, 1294 fs_info->sectorsize); 1295 WARN_ON(reserve_bytes == 0); 1296 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1297 reserve_bytes, 1298 reserve_bytes, nowait); 1299 if (ret) { 1300 if (!only_release_metadata) 1301 btrfs_free_reserved_data_space(BTRFS_I(inode), 1302 data_reserved, pos, 1303 write_bytes); 1304 else 1305 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1306 1307 if (nowait && ret == -ENOSPC) 1308 ret = -EAGAIN; 1309 break; 1310 } 1311 1312 release_bytes = reserve_bytes; 1313 again: 1314 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags); 1315 if (ret) { 1316 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1317 break; 1318 } 1319 1320 /* 1321 * This is going to setup the pages array with the number of 1322 * pages we want, so we don't really need to worry about the 1323 * contents of pages from loop to loop 1324 */ 1325 ret = prepare_pages(inode, pages, num_pages, 1326 pos, write_bytes, force_page_uptodate, false); 1327 if (ret) { 1328 btrfs_delalloc_release_extents(BTRFS_I(inode), 1329 reserve_bytes); 1330 break; 1331 } 1332 1333 extents_locked = lock_and_cleanup_extent_if_need( 1334 BTRFS_I(inode), pages, 1335 num_pages, pos, write_bytes, &lockstart, 1336 &lockend, nowait, &cached_state); 1337 if (extents_locked < 0) { 1338 if (!nowait && extents_locked == -EAGAIN) 1339 goto again; 1340 1341 btrfs_delalloc_release_extents(BTRFS_I(inode), 1342 reserve_bytes); 1343 ret = extents_locked; 1344 break; 1345 } 1346 1347 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1348 1349 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1350 dirty_sectors = round_up(copied + sector_offset, 1351 fs_info->sectorsize); 1352 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1353 1354 /* 1355 * if we have trouble faulting in the pages, fall 1356 * back to one page at a time 1357 */ 1358 if (copied < write_bytes) 1359 nrptrs = 1; 1360 1361 if (copied == 0) { 1362 force_page_uptodate = true; 1363 dirty_sectors = 0; 1364 dirty_pages = 0; 1365 } else { 1366 force_page_uptodate = false; 1367 dirty_pages = DIV_ROUND_UP(copied + offset, 1368 PAGE_SIZE); 1369 } 1370 1371 if (num_sectors > dirty_sectors) { 1372 /* release everything except the sectors we dirtied */ 1373 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1374 if (only_release_metadata) { 1375 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1376 release_bytes, true); 1377 } else { 1378 u64 __pos; 1379 1380 __pos = round_down(pos, 1381 fs_info->sectorsize) + 1382 (dirty_pages << PAGE_SHIFT); 1383 btrfs_delalloc_release_space(BTRFS_I(inode), 1384 data_reserved, __pos, 1385 release_bytes, true); 1386 } 1387 } 1388 1389 release_bytes = round_up(copied + sector_offset, 1390 fs_info->sectorsize); 1391 1392 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1393 dirty_pages, pos, copied, 1394 &cached_state, only_release_metadata); 1395 1396 /* 1397 * If we have not locked the extent range, because the range's 1398 * start offset is >= i_size, we might still have a non-NULL 1399 * cached extent state, acquired while marking the extent range 1400 * as delalloc through btrfs_dirty_pages(). Therefore free any 1401 * possible cached extent state to avoid a memory leak. 1402 */ 1403 if (extents_locked) 1404 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 1405 lockend, &cached_state); 1406 else 1407 free_extent_state(cached_state); 1408 1409 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1410 if (ret) { 1411 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1412 break; 1413 } 1414 1415 release_bytes = 0; 1416 if (only_release_metadata) 1417 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1418 1419 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1420 1421 cond_resched(); 1422 1423 pos += copied; 1424 num_written += copied; 1425 } 1426 1427 kfree(pages); 1428 1429 if (release_bytes) { 1430 if (only_release_metadata) { 1431 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1432 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1433 release_bytes, true); 1434 } else { 1435 btrfs_delalloc_release_space(BTRFS_I(inode), 1436 data_reserved, 1437 round_down(pos, fs_info->sectorsize), 1438 release_bytes, true); 1439 } 1440 } 1441 1442 extent_changeset_free(data_reserved); 1443 if (num_written > 0) { 1444 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1445 iocb->ki_pos += num_written; 1446 } 1447 out: 1448 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1449 return num_written ? num_written : ret; 1450 } 1451 1452 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 1453 const struct btrfs_ioctl_encoded_io_args *encoded) 1454 { 1455 struct file *file = iocb->ki_filp; 1456 struct inode *inode = file_inode(file); 1457 loff_t count; 1458 ssize_t ret; 1459 1460 btrfs_inode_lock(BTRFS_I(inode), 0); 1461 count = encoded->len; 1462 ret = generic_write_checks_count(iocb, &count); 1463 if (ret == 0 && count != encoded->len) { 1464 /* 1465 * The write got truncated by generic_write_checks_count(). We 1466 * can't do a partial encoded write. 1467 */ 1468 ret = -EFBIG; 1469 } 1470 if (ret || encoded->len == 0) 1471 goto out; 1472 1473 ret = btrfs_write_check(iocb, from, encoded->len); 1474 if (ret < 0) 1475 goto out; 1476 1477 ret = btrfs_do_encoded_write(iocb, from, encoded); 1478 out: 1479 btrfs_inode_unlock(BTRFS_I(inode), 0); 1480 return ret; 1481 } 1482 1483 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 1484 const struct btrfs_ioctl_encoded_io_args *encoded) 1485 { 1486 struct file *file = iocb->ki_filp; 1487 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1488 ssize_t num_written, num_sync; 1489 1490 /* 1491 * If the fs flips readonly due to some impossible error, although we 1492 * have opened a file as writable, we have to stop this write operation 1493 * to ensure consistency. 1494 */ 1495 if (BTRFS_FS_ERROR(inode->root->fs_info)) 1496 return -EROFS; 1497 1498 if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) 1499 return -EOPNOTSUPP; 1500 1501 if (encoded) { 1502 num_written = btrfs_encoded_write(iocb, from, encoded); 1503 num_sync = encoded->len; 1504 } else if (iocb->ki_flags & IOCB_DIRECT) { 1505 num_written = btrfs_direct_write(iocb, from); 1506 num_sync = num_written; 1507 } else { 1508 num_written = btrfs_buffered_write(iocb, from); 1509 num_sync = num_written; 1510 } 1511 1512 btrfs_set_inode_last_sub_trans(inode); 1513 1514 if (num_sync > 0) { 1515 num_sync = generic_write_sync(iocb, num_sync); 1516 if (num_sync < 0) 1517 num_written = num_sync; 1518 } 1519 1520 return num_written; 1521 } 1522 1523 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1524 { 1525 return btrfs_do_write_iter(iocb, from, NULL); 1526 } 1527 1528 int btrfs_release_file(struct inode *inode, struct file *filp) 1529 { 1530 struct btrfs_file_private *private = filp->private_data; 1531 1532 if (private) { 1533 kfree(private->filldir_buf); 1534 free_extent_state(private->llseek_cached_state); 1535 kfree(private); 1536 filp->private_data = NULL; 1537 } 1538 1539 /* 1540 * Set by setattr when we are about to truncate a file from a non-zero 1541 * size to a zero size. This tries to flush down new bytes that may 1542 * have been written if the application were using truncate to replace 1543 * a file in place. 1544 */ 1545 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 1546 &BTRFS_I(inode)->runtime_flags)) 1547 filemap_flush(inode->i_mapping); 1548 return 0; 1549 } 1550 1551 static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end) 1552 { 1553 int ret; 1554 struct blk_plug plug; 1555 1556 /* 1557 * This is only called in fsync, which would do synchronous writes, so 1558 * a plug can merge adjacent IOs as much as possible. Esp. in case of 1559 * multiple disks using raid profile, a large IO can be split to 1560 * several segments of stripe length (currently 64K). 1561 */ 1562 blk_start_plug(&plug); 1563 ret = btrfs_fdatawrite_range(inode, start, end); 1564 blk_finish_plug(&plug); 1565 1566 return ret; 1567 } 1568 1569 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 1570 { 1571 struct btrfs_inode *inode = ctx->inode; 1572 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1573 1574 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) && 1575 list_empty(&ctx->ordered_extents)) 1576 return true; 1577 1578 /* 1579 * If we are doing a fast fsync we can not bail out if the inode's 1580 * last_trans is <= then the last committed transaction, because we only 1581 * update the last_trans of the inode during ordered extent completion, 1582 * and for a fast fsync we don't wait for that, we only wait for the 1583 * writeback to complete. 1584 */ 1585 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) && 1586 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 1587 list_empty(&ctx->ordered_extents))) 1588 return true; 1589 1590 return false; 1591 } 1592 1593 /* 1594 * fsync call for both files and directories. This logs the inode into 1595 * the tree log instead of forcing full commits whenever possible. 1596 * 1597 * It needs to call filemap_fdatawait so that all ordered extent updates are 1598 * in the metadata btree are up to date for copying to the log. 1599 * 1600 * It drops the inode mutex before doing the tree log commit. This is an 1601 * important optimization for directories because holding the mutex prevents 1602 * new operations on the dir while we write to disk. 1603 */ 1604 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1605 { 1606 struct btrfs_file_private *private = file->private_data; 1607 struct dentry *dentry = file_dentry(file); 1608 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 1609 struct btrfs_root *root = inode->root; 1610 struct btrfs_fs_info *fs_info = root->fs_info; 1611 struct btrfs_trans_handle *trans; 1612 struct btrfs_log_ctx ctx; 1613 int ret = 0, err; 1614 u64 len; 1615 bool full_sync; 1616 const bool skip_ilock = (private ? private->fsync_skip_inode_lock : false); 1617 1618 trace_btrfs_sync_file(file, datasync); 1619 1620 btrfs_init_log_ctx(&ctx, inode); 1621 1622 /* 1623 * Always set the range to a full range, otherwise we can get into 1624 * several problems, from missing file extent items to represent holes 1625 * when not using the NO_HOLES feature, to log tree corruption due to 1626 * races between hole detection during logging and completion of ordered 1627 * extents outside the range, to missing checksums due to ordered extents 1628 * for which we flushed only a subset of their pages. 1629 */ 1630 start = 0; 1631 end = LLONG_MAX; 1632 len = (u64)LLONG_MAX + 1; 1633 1634 /* 1635 * We write the dirty pages in the range and wait until they complete 1636 * out of the ->i_mutex. If so, we can flush the dirty pages by 1637 * multi-task, and make the performance up. See 1638 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1639 */ 1640 ret = start_ordered_ops(inode, start, end); 1641 if (ret) 1642 goto out; 1643 1644 if (skip_ilock) 1645 down_write(&inode->i_mmap_lock); 1646 else 1647 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 1648 1649 atomic_inc(&root->log_batch); 1650 1651 /* 1652 * Before we acquired the inode's lock and the mmap lock, someone may 1653 * have dirtied more pages in the target range. We need to make sure 1654 * that writeback for any such pages does not start while we are logging 1655 * the inode, because if it does, any of the following might happen when 1656 * we are not doing a full inode sync: 1657 * 1658 * 1) We log an extent after its writeback finishes but before its 1659 * checksums are added to the csum tree, leading to -EIO errors 1660 * when attempting to read the extent after a log replay. 1661 * 1662 * 2) We can end up logging an extent before its writeback finishes. 1663 * Therefore after the log replay we will have a file extent item 1664 * pointing to an unwritten extent (and no data checksums as well). 1665 * 1666 * So trigger writeback for any eventual new dirty pages and then we 1667 * wait for all ordered extents to complete below. 1668 */ 1669 ret = start_ordered_ops(inode, start, end); 1670 if (ret) { 1671 if (skip_ilock) 1672 up_write(&inode->i_mmap_lock); 1673 else 1674 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 1675 goto out; 1676 } 1677 1678 /* 1679 * Always check for the full sync flag while holding the inode's lock, 1680 * to avoid races with other tasks. The flag must be either set all the 1681 * time during logging or always off all the time while logging. 1682 * We check the flag here after starting delalloc above, because when 1683 * running delalloc the full sync flag may be set if we need to drop 1684 * extra extent map ranges due to temporary memory allocation failures. 1685 */ 1686 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 1687 1688 /* 1689 * We have to do this here to avoid the priority inversion of waiting on 1690 * IO of a lower priority task while holding a transaction open. 1691 * 1692 * For a full fsync we wait for the ordered extents to complete while 1693 * for a fast fsync we wait just for writeback to complete, and then 1694 * attach the ordered extents to the transaction so that a transaction 1695 * commit waits for their completion, to avoid data loss if we fsync, 1696 * the current transaction commits before the ordered extents complete 1697 * and a power failure happens right after that. 1698 * 1699 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 1700 * logical address recorded in the ordered extent may change. We need 1701 * to wait for the IO to stabilize the logical address. 1702 */ 1703 if (full_sync || btrfs_is_zoned(fs_info)) { 1704 ret = btrfs_wait_ordered_range(inode, start, len); 1705 clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags); 1706 } else { 1707 /* 1708 * Get our ordered extents as soon as possible to avoid doing 1709 * checksum lookups in the csum tree, and use instead the 1710 * checksums attached to the ordered extents. 1711 */ 1712 btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents); 1713 ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end); 1714 if (ret) 1715 goto out_release_extents; 1716 1717 /* 1718 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after 1719 * starting and waiting for writeback, because for buffered IO 1720 * it may have been set during the end IO callback 1721 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in 1722 * case an error happened and we need to wait for ordered 1723 * extents to complete so that any extent maps that point to 1724 * unwritten locations are dropped and we don't log them. 1725 */ 1726 if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags)) 1727 ret = btrfs_wait_ordered_range(inode, start, len); 1728 } 1729 1730 if (ret) 1731 goto out_release_extents; 1732 1733 atomic_inc(&root->log_batch); 1734 1735 if (skip_inode_logging(&ctx)) { 1736 /* 1737 * We've had everything committed since the last time we were 1738 * modified so clear this flag in case it was set for whatever 1739 * reason, it's no longer relevant. 1740 */ 1741 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 1742 /* 1743 * An ordered extent might have started before and completed 1744 * already with io errors, in which case the inode was not 1745 * updated and we end up here. So check the inode's mapping 1746 * for any errors that might have happened since we last 1747 * checked called fsync. 1748 */ 1749 ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err); 1750 goto out_release_extents; 1751 } 1752 1753 btrfs_init_log_ctx_scratch_eb(&ctx); 1754 1755 /* 1756 * We use start here because we will need to wait on the IO to complete 1757 * in btrfs_sync_log, which could require joining a transaction (for 1758 * example checking cross references in the nocow path). If we use join 1759 * here we could get into a situation where we're waiting on IO to 1760 * happen that is blocked on a transaction trying to commit. With start 1761 * we inc the extwriter counter, so we wait for all extwriters to exit 1762 * before we start blocking joiners. This comment is to keep somebody 1763 * from thinking they are super smart and changing this to 1764 * btrfs_join_transaction *cough*Josef*cough*. 1765 */ 1766 trans = btrfs_start_transaction(root, 0); 1767 if (IS_ERR(trans)) { 1768 ret = PTR_ERR(trans); 1769 goto out_release_extents; 1770 } 1771 trans->in_fsync = true; 1772 1773 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 1774 /* 1775 * Scratch eb no longer needed, release before syncing log or commit 1776 * transaction, to avoid holding unnecessary memory during such long 1777 * operations. 1778 */ 1779 if (ctx.scratch_eb) { 1780 free_extent_buffer(ctx.scratch_eb); 1781 ctx.scratch_eb = NULL; 1782 } 1783 btrfs_release_log_ctx_extents(&ctx); 1784 if (ret < 0) { 1785 /* Fallthrough and commit/free transaction. */ 1786 ret = BTRFS_LOG_FORCE_COMMIT; 1787 } 1788 1789 /* we've logged all the items and now have a consistent 1790 * version of the file in the log. It is possible that 1791 * someone will come in and modify the file, but that's 1792 * fine because the log is consistent on disk, and we 1793 * have references to all of the file's extents 1794 * 1795 * It is possible that someone will come in and log the 1796 * file again, but that will end up using the synchronization 1797 * inside btrfs_sync_log to keep things safe. 1798 */ 1799 if (skip_ilock) 1800 up_write(&inode->i_mmap_lock); 1801 else 1802 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 1803 1804 if (ret == BTRFS_NO_LOG_SYNC) { 1805 ret = btrfs_end_transaction(trans); 1806 goto out; 1807 } 1808 1809 /* We successfully logged the inode, attempt to sync the log. */ 1810 if (!ret) { 1811 ret = btrfs_sync_log(trans, root, &ctx); 1812 if (!ret) { 1813 ret = btrfs_end_transaction(trans); 1814 goto out; 1815 } 1816 } 1817 1818 /* 1819 * At this point we need to commit the transaction because we had 1820 * btrfs_need_log_full_commit() or some other error. 1821 * 1822 * If we didn't do a full sync we have to stop the trans handle, wait on 1823 * the ordered extents, start it again and commit the transaction. If 1824 * we attempt to wait on the ordered extents here we could deadlock with 1825 * something like fallocate() that is holding the extent lock trying to 1826 * start a transaction while some other thread is trying to commit the 1827 * transaction while we (fsync) are currently holding the transaction 1828 * open. 1829 */ 1830 if (!full_sync) { 1831 ret = btrfs_end_transaction(trans); 1832 if (ret) 1833 goto out; 1834 ret = btrfs_wait_ordered_range(inode, start, len); 1835 if (ret) 1836 goto out; 1837 1838 /* 1839 * This is safe to use here because we're only interested in 1840 * making sure the transaction that had the ordered extents is 1841 * committed. We aren't waiting on anything past this point, 1842 * we're purely getting the transaction and committing it. 1843 */ 1844 trans = btrfs_attach_transaction_barrier(root); 1845 if (IS_ERR(trans)) { 1846 ret = PTR_ERR(trans); 1847 1848 /* 1849 * We committed the transaction and there's no currently 1850 * running transaction, this means everything we care 1851 * about made it to disk and we are done. 1852 */ 1853 if (ret == -ENOENT) 1854 ret = 0; 1855 goto out; 1856 } 1857 } 1858 1859 ret = btrfs_commit_transaction(trans); 1860 out: 1861 free_extent_buffer(ctx.scratch_eb); 1862 ASSERT(list_empty(&ctx.list)); 1863 ASSERT(list_empty(&ctx.conflict_inodes)); 1864 err = file_check_and_advance_wb_err(file); 1865 if (!ret) 1866 ret = err; 1867 return ret > 0 ? -EIO : ret; 1868 1869 out_release_extents: 1870 btrfs_release_log_ctx_extents(&ctx); 1871 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 1872 goto out; 1873 } 1874 1875 /* 1876 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 1877 * called from a page fault handler when a page is first dirtied. Hence we must 1878 * be careful to check for EOF conditions here. We set the page up correctly 1879 * for a written page which means we get ENOSPC checking when writing into 1880 * holes and correct delalloc and unwritten extent mapping on filesystems that 1881 * support these features. 1882 * 1883 * We are not allowed to take the i_mutex here so we have to play games to 1884 * protect against truncate races as the page could now be beyond EOF. Because 1885 * truncate_setsize() writes the inode size before removing pages, once we have 1886 * the page lock we can determine safely if the page is beyond EOF. If it is not 1887 * beyond EOF, then the page is guaranteed safe against truncation until we 1888 * unlock the page. 1889 */ 1890 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 1891 { 1892 struct page *page = vmf->page; 1893 struct folio *folio = page_folio(page); 1894 struct inode *inode = file_inode(vmf->vma->vm_file); 1895 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1896 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1897 struct btrfs_ordered_extent *ordered; 1898 struct extent_state *cached_state = NULL; 1899 struct extent_changeset *data_reserved = NULL; 1900 unsigned long zero_start; 1901 loff_t size; 1902 vm_fault_t ret; 1903 int ret2; 1904 int reserved = 0; 1905 u64 reserved_space; 1906 u64 page_start; 1907 u64 page_end; 1908 u64 end; 1909 1910 ASSERT(folio_order(folio) == 0); 1911 1912 reserved_space = PAGE_SIZE; 1913 1914 sb_start_pagefault(inode->i_sb); 1915 page_start = page_offset(page); 1916 page_end = page_start + PAGE_SIZE - 1; 1917 end = page_end; 1918 1919 /* 1920 * Reserving delalloc space after obtaining the page lock can lead to 1921 * deadlock. For example, if a dirty page is locked by this function 1922 * and the call to btrfs_delalloc_reserve_space() ends up triggering 1923 * dirty page write out, then the btrfs_writepages() function could 1924 * end up waiting indefinitely to get a lock on the page currently 1925 * being processed by btrfs_page_mkwrite() function. 1926 */ 1927 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 1928 page_start, reserved_space); 1929 if (!ret2) { 1930 ret2 = file_update_time(vmf->vma->vm_file); 1931 reserved = 1; 1932 } 1933 if (ret2) { 1934 ret = vmf_error(ret2); 1935 if (reserved) 1936 goto out; 1937 goto out_noreserve; 1938 } 1939 1940 /* Make the VM retry the fault. */ 1941 ret = VM_FAULT_NOPAGE; 1942 again: 1943 down_read(&BTRFS_I(inode)->i_mmap_lock); 1944 lock_page(page); 1945 size = i_size_read(inode); 1946 1947 if ((page->mapping != inode->i_mapping) || 1948 (page_start >= size)) { 1949 /* Page got truncated out from underneath us. */ 1950 goto out_unlock; 1951 } 1952 wait_on_page_writeback(page); 1953 1954 lock_extent(io_tree, page_start, page_end, &cached_state); 1955 ret2 = set_page_extent_mapped(page); 1956 if (ret2 < 0) { 1957 ret = vmf_error(ret2); 1958 unlock_extent(io_tree, page_start, page_end, &cached_state); 1959 goto out_unlock; 1960 } 1961 1962 /* 1963 * We can't set the delalloc bits if there are pending ordered 1964 * extents. Drop our locks and wait for them to finish. 1965 */ 1966 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE); 1967 if (ordered) { 1968 unlock_extent(io_tree, page_start, page_end, &cached_state); 1969 unlock_page(page); 1970 up_read(&BTRFS_I(inode)->i_mmap_lock); 1971 btrfs_start_ordered_extent(ordered); 1972 btrfs_put_ordered_extent(ordered); 1973 goto again; 1974 } 1975 1976 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 1977 reserved_space = round_up(size - page_start, fs_info->sectorsize); 1978 if (reserved_space < PAGE_SIZE) { 1979 end = page_start + reserved_space - 1; 1980 btrfs_delalloc_release_space(BTRFS_I(inode), 1981 data_reserved, page_start, 1982 PAGE_SIZE - reserved_space, true); 1983 } 1984 } 1985 1986 /* 1987 * page_mkwrite gets called when the page is firstly dirtied after it's 1988 * faulted in, but write(2) could also dirty a page and set delalloc 1989 * bits, thus in this case for space account reason, we still need to 1990 * clear any delalloc bits within this page range since we have to 1991 * reserve data&meta space before lock_page() (see above comments). 1992 */ 1993 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 1994 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1995 EXTENT_DEFRAG, &cached_state); 1996 1997 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 1998 &cached_state); 1999 if (ret2) { 2000 unlock_extent(io_tree, page_start, page_end, &cached_state); 2001 ret = VM_FAULT_SIGBUS; 2002 goto out_unlock; 2003 } 2004 2005 /* Page is wholly or partially inside EOF. */ 2006 if (page_start + PAGE_SIZE > size) 2007 zero_start = offset_in_page(size); 2008 else 2009 zero_start = PAGE_SIZE; 2010 2011 if (zero_start != PAGE_SIZE) 2012 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 2013 2014 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2015 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start); 2016 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start); 2017 2018 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 2019 2020 unlock_extent(io_tree, page_start, page_end, &cached_state); 2021 up_read(&BTRFS_I(inode)->i_mmap_lock); 2022 2023 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2024 sb_end_pagefault(inode->i_sb); 2025 extent_changeset_free(data_reserved); 2026 return VM_FAULT_LOCKED; 2027 2028 out_unlock: 2029 unlock_page(page); 2030 up_read(&BTRFS_I(inode)->i_mmap_lock); 2031 out: 2032 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2033 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 2034 reserved_space, (ret != 0)); 2035 out_noreserve: 2036 sb_end_pagefault(inode->i_sb); 2037 extent_changeset_free(data_reserved); 2038 return ret; 2039 } 2040 2041 static const struct vm_operations_struct btrfs_file_vm_ops = { 2042 .fault = filemap_fault, 2043 .map_pages = filemap_map_pages, 2044 .page_mkwrite = btrfs_page_mkwrite, 2045 }; 2046 2047 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2048 { 2049 struct address_space *mapping = filp->f_mapping; 2050 2051 if (!mapping->a_ops->read_folio) 2052 return -ENOEXEC; 2053 2054 file_accessed(filp); 2055 vma->vm_ops = &btrfs_file_vm_ops; 2056 2057 return 0; 2058 } 2059 2060 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2061 int slot, u64 start, u64 end) 2062 { 2063 struct btrfs_file_extent_item *fi; 2064 struct btrfs_key key; 2065 2066 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2067 return 0; 2068 2069 btrfs_item_key_to_cpu(leaf, &key, slot); 2070 if (key.objectid != btrfs_ino(inode) || 2071 key.type != BTRFS_EXTENT_DATA_KEY) 2072 return 0; 2073 2074 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2075 2076 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2077 return 0; 2078 2079 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2080 return 0; 2081 2082 if (key.offset == end) 2083 return 1; 2084 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2085 return 1; 2086 return 0; 2087 } 2088 2089 static int fill_holes(struct btrfs_trans_handle *trans, 2090 struct btrfs_inode *inode, 2091 struct btrfs_path *path, u64 offset, u64 end) 2092 { 2093 struct btrfs_fs_info *fs_info = trans->fs_info; 2094 struct btrfs_root *root = inode->root; 2095 struct extent_buffer *leaf; 2096 struct btrfs_file_extent_item *fi; 2097 struct extent_map *hole_em; 2098 struct btrfs_key key; 2099 int ret; 2100 2101 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2102 goto out; 2103 2104 key.objectid = btrfs_ino(inode); 2105 key.type = BTRFS_EXTENT_DATA_KEY; 2106 key.offset = offset; 2107 2108 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2109 if (ret <= 0) { 2110 /* 2111 * We should have dropped this offset, so if we find it then 2112 * something has gone horribly wrong. 2113 */ 2114 if (ret == 0) 2115 ret = -EINVAL; 2116 return ret; 2117 } 2118 2119 leaf = path->nodes[0]; 2120 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2121 u64 num_bytes; 2122 2123 path->slots[0]--; 2124 fi = btrfs_item_ptr(leaf, path->slots[0], 2125 struct btrfs_file_extent_item); 2126 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2127 end - offset; 2128 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2129 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2130 btrfs_set_file_extent_offset(leaf, fi, 0); 2131 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2132 btrfs_mark_buffer_dirty(trans, leaf); 2133 goto out; 2134 } 2135 2136 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2137 u64 num_bytes; 2138 2139 key.offset = offset; 2140 btrfs_set_item_key_safe(trans, path, &key); 2141 fi = btrfs_item_ptr(leaf, path->slots[0], 2142 struct btrfs_file_extent_item); 2143 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2144 offset; 2145 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2146 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2147 btrfs_set_file_extent_offset(leaf, fi, 0); 2148 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2149 btrfs_mark_buffer_dirty(trans, leaf); 2150 goto out; 2151 } 2152 btrfs_release_path(path); 2153 2154 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, 2155 end - offset); 2156 if (ret) 2157 return ret; 2158 2159 out: 2160 btrfs_release_path(path); 2161 2162 hole_em = alloc_extent_map(); 2163 if (!hole_em) { 2164 btrfs_drop_extent_map_range(inode, offset, end - 1, false); 2165 btrfs_set_inode_full_sync(inode); 2166 } else { 2167 hole_em->start = offset; 2168 hole_em->len = end - offset; 2169 hole_em->ram_bytes = hole_em->len; 2170 2171 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 2172 hole_em->disk_num_bytes = 0; 2173 hole_em->generation = trans->transid; 2174 2175 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 2176 free_extent_map(hole_em); 2177 if (ret) 2178 btrfs_set_inode_full_sync(inode); 2179 } 2180 2181 return 0; 2182 } 2183 2184 /* 2185 * Find a hole extent on given inode and change start/len to the end of hole 2186 * extent.(hole/vacuum extent whose em->start <= start && 2187 * em->start + em->len > start) 2188 * When a hole extent is found, return 1 and modify start/len. 2189 */ 2190 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2191 { 2192 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2193 struct extent_map *em; 2194 int ret = 0; 2195 2196 em = btrfs_get_extent(inode, NULL, 2197 round_down(*start, fs_info->sectorsize), 2198 round_up(*len, fs_info->sectorsize)); 2199 if (IS_ERR(em)) 2200 return PTR_ERR(em); 2201 2202 /* Hole or vacuum extent(only exists in no-hole mode) */ 2203 if (em->disk_bytenr == EXTENT_MAP_HOLE) { 2204 ret = 1; 2205 *len = em->start + em->len > *start + *len ? 2206 0 : *start + *len - em->start - em->len; 2207 *start = em->start + em->len; 2208 } 2209 free_extent_map(em); 2210 return ret; 2211 } 2212 2213 static void btrfs_punch_hole_lock_range(struct inode *inode, 2214 const u64 lockstart, 2215 const u64 lockend, 2216 struct extent_state **cached_state) 2217 { 2218 /* 2219 * For subpage case, if the range is not at page boundary, we could 2220 * have pages at the leading/tailing part of the range. 2221 * This could lead to dead loop since filemap_range_has_page() 2222 * will always return true. 2223 * So here we need to do extra page alignment for 2224 * filemap_range_has_page(). 2225 */ 2226 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2227 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2228 2229 while (1) { 2230 truncate_pagecache_range(inode, lockstart, lockend); 2231 2232 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2233 cached_state); 2234 /* 2235 * We can't have ordered extents in the range, nor dirty/writeback 2236 * pages, because we have locked the inode's VFS lock in exclusive 2237 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2238 * we have flushed all delalloc in the range and we have waited 2239 * for any ordered extents in the range to complete. 2240 * We can race with anyone reading pages from this range, so after 2241 * locking the range check if we have pages in the range, and if 2242 * we do, unlock the range and retry. 2243 */ 2244 if (!filemap_range_has_page(inode->i_mapping, page_lockstart, 2245 page_lockend)) 2246 break; 2247 2248 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2249 cached_state); 2250 } 2251 2252 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2253 } 2254 2255 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2256 struct btrfs_inode *inode, 2257 struct btrfs_path *path, 2258 struct btrfs_replace_extent_info *extent_info, 2259 const u64 replace_len, 2260 const u64 bytes_to_drop) 2261 { 2262 struct btrfs_fs_info *fs_info = trans->fs_info; 2263 struct btrfs_root *root = inode->root; 2264 struct btrfs_file_extent_item *extent; 2265 struct extent_buffer *leaf; 2266 struct btrfs_key key; 2267 int slot; 2268 int ret; 2269 2270 if (replace_len == 0) 2271 return 0; 2272 2273 if (extent_info->disk_offset == 0 && 2274 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2275 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2276 return 0; 2277 } 2278 2279 key.objectid = btrfs_ino(inode); 2280 key.type = BTRFS_EXTENT_DATA_KEY; 2281 key.offset = extent_info->file_offset; 2282 ret = btrfs_insert_empty_item(trans, root, path, &key, 2283 sizeof(struct btrfs_file_extent_item)); 2284 if (ret) 2285 return ret; 2286 leaf = path->nodes[0]; 2287 slot = path->slots[0]; 2288 write_extent_buffer(leaf, extent_info->extent_buf, 2289 btrfs_item_ptr_offset(leaf, slot), 2290 sizeof(struct btrfs_file_extent_item)); 2291 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2292 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2293 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2294 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2295 if (extent_info->is_new_extent) 2296 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2297 btrfs_mark_buffer_dirty(trans, leaf); 2298 btrfs_release_path(path); 2299 2300 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2301 replace_len); 2302 if (ret) 2303 return ret; 2304 2305 /* If it's a hole, nothing more needs to be done. */ 2306 if (extent_info->disk_offset == 0) { 2307 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2308 return 0; 2309 } 2310 2311 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2312 2313 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2314 key.objectid = extent_info->disk_offset; 2315 key.type = BTRFS_EXTENT_ITEM_KEY; 2316 key.offset = extent_info->disk_len; 2317 ret = btrfs_alloc_reserved_file_extent(trans, root, 2318 btrfs_ino(inode), 2319 extent_info->file_offset, 2320 extent_info->qgroup_reserved, 2321 &key); 2322 } else { 2323 struct btrfs_ref ref = { 2324 .action = BTRFS_ADD_DELAYED_REF, 2325 .bytenr = extent_info->disk_offset, 2326 .num_bytes = extent_info->disk_len, 2327 .owning_root = btrfs_root_id(root), 2328 .ref_root = btrfs_root_id(root), 2329 }; 2330 u64 ref_offset; 2331 2332 ref_offset = extent_info->file_offset - extent_info->data_offset; 2333 btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false); 2334 ret = btrfs_inc_extent_ref(trans, &ref); 2335 } 2336 2337 extent_info->insertions++; 2338 2339 return ret; 2340 } 2341 2342 /* 2343 * The respective range must have been previously locked, as well as the inode. 2344 * The end offset is inclusive (last byte of the range). 2345 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2346 * the file range with an extent. 2347 * When not punching a hole, we don't want to end up in a state where we dropped 2348 * extents without inserting a new one, so we must abort the transaction to avoid 2349 * a corruption. 2350 */ 2351 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2352 struct btrfs_path *path, const u64 start, 2353 const u64 end, 2354 struct btrfs_replace_extent_info *extent_info, 2355 struct btrfs_trans_handle **trans_out) 2356 { 2357 struct btrfs_drop_extents_args drop_args = { 0 }; 2358 struct btrfs_root *root = inode->root; 2359 struct btrfs_fs_info *fs_info = root->fs_info; 2360 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2361 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2362 struct btrfs_trans_handle *trans = NULL; 2363 struct btrfs_block_rsv *rsv; 2364 unsigned int rsv_count; 2365 u64 cur_offset; 2366 u64 len = end - start; 2367 int ret = 0; 2368 2369 if (end <= start) 2370 return -EINVAL; 2371 2372 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2373 if (!rsv) { 2374 ret = -ENOMEM; 2375 goto out; 2376 } 2377 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2378 rsv->failfast = true; 2379 2380 /* 2381 * 1 - update the inode 2382 * 1 - removing the extents in the range 2383 * 1 - adding the hole extent if no_holes isn't set or if we are 2384 * replacing the range with a new extent 2385 */ 2386 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2387 rsv_count = 3; 2388 else 2389 rsv_count = 2; 2390 2391 trans = btrfs_start_transaction(root, rsv_count); 2392 if (IS_ERR(trans)) { 2393 ret = PTR_ERR(trans); 2394 trans = NULL; 2395 goto out_free; 2396 } 2397 2398 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2399 min_size, false); 2400 if (WARN_ON(ret)) 2401 goto out_trans; 2402 trans->block_rsv = rsv; 2403 2404 cur_offset = start; 2405 drop_args.path = path; 2406 drop_args.end = end + 1; 2407 drop_args.drop_cache = true; 2408 while (cur_offset < end) { 2409 drop_args.start = cur_offset; 2410 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2411 /* If we are punching a hole decrement the inode's byte count */ 2412 if (!extent_info) 2413 btrfs_update_inode_bytes(inode, 0, 2414 drop_args.bytes_found); 2415 if (ret != -ENOSPC) { 2416 /* 2417 * The only time we don't want to abort is if we are 2418 * attempting to clone a partial inline extent, in which 2419 * case we'll get EOPNOTSUPP. However if we aren't 2420 * clone we need to abort no matter what, because if we 2421 * got EOPNOTSUPP via prealloc then we messed up and 2422 * need to abort. 2423 */ 2424 if (ret && 2425 (ret != -EOPNOTSUPP || 2426 (extent_info && extent_info->is_new_extent))) 2427 btrfs_abort_transaction(trans, ret); 2428 break; 2429 } 2430 2431 trans->block_rsv = &fs_info->trans_block_rsv; 2432 2433 if (!extent_info && cur_offset < drop_args.drop_end && 2434 cur_offset < ino_size) { 2435 ret = fill_holes(trans, inode, path, cur_offset, 2436 drop_args.drop_end); 2437 if (ret) { 2438 /* 2439 * If we failed then we didn't insert our hole 2440 * entries for the area we dropped, so now the 2441 * fs is corrupted, so we must abort the 2442 * transaction. 2443 */ 2444 btrfs_abort_transaction(trans, ret); 2445 break; 2446 } 2447 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2448 /* 2449 * We are past the i_size here, but since we didn't 2450 * insert holes we need to clear the mapped area so we 2451 * know to not set disk_i_size in this area until a new 2452 * file extent is inserted here. 2453 */ 2454 ret = btrfs_inode_clear_file_extent_range(inode, 2455 cur_offset, 2456 drop_args.drop_end - cur_offset); 2457 if (ret) { 2458 /* 2459 * We couldn't clear our area, so we could 2460 * presumably adjust up and corrupt the fs, so 2461 * we need to abort. 2462 */ 2463 btrfs_abort_transaction(trans, ret); 2464 break; 2465 } 2466 } 2467 2468 if (extent_info && 2469 drop_args.drop_end > extent_info->file_offset) { 2470 u64 replace_len = drop_args.drop_end - 2471 extent_info->file_offset; 2472 2473 ret = btrfs_insert_replace_extent(trans, inode, path, 2474 extent_info, replace_len, 2475 drop_args.bytes_found); 2476 if (ret) { 2477 btrfs_abort_transaction(trans, ret); 2478 break; 2479 } 2480 extent_info->data_len -= replace_len; 2481 extent_info->data_offset += replace_len; 2482 extent_info->file_offset += replace_len; 2483 } 2484 2485 /* 2486 * We are releasing our handle on the transaction, balance the 2487 * dirty pages of the btree inode and flush delayed items, and 2488 * then get a new transaction handle, which may now point to a 2489 * new transaction in case someone else may have committed the 2490 * transaction we used to replace/drop file extent items. So 2491 * bump the inode's iversion and update mtime and ctime except 2492 * if we are called from a dedupe context. This is because a 2493 * power failure/crash may happen after the transaction is 2494 * committed and before we finish replacing/dropping all the 2495 * file extent items we need. 2496 */ 2497 inode_inc_iversion(&inode->vfs_inode); 2498 2499 if (!extent_info || extent_info->update_times) 2500 inode_set_mtime_to_ts(&inode->vfs_inode, 2501 inode_set_ctime_current(&inode->vfs_inode)); 2502 2503 ret = btrfs_update_inode(trans, inode); 2504 if (ret) 2505 break; 2506 2507 btrfs_end_transaction(trans); 2508 btrfs_btree_balance_dirty(fs_info); 2509 2510 trans = btrfs_start_transaction(root, rsv_count); 2511 if (IS_ERR(trans)) { 2512 ret = PTR_ERR(trans); 2513 trans = NULL; 2514 break; 2515 } 2516 2517 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2518 rsv, min_size, false); 2519 if (WARN_ON(ret)) 2520 break; 2521 trans->block_rsv = rsv; 2522 2523 cur_offset = drop_args.drop_end; 2524 len = end - cur_offset; 2525 if (!extent_info && len) { 2526 ret = find_first_non_hole(inode, &cur_offset, &len); 2527 if (unlikely(ret < 0)) 2528 break; 2529 if (ret && !len) { 2530 ret = 0; 2531 break; 2532 } 2533 } 2534 } 2535 2536 /* 2537 * If we were cloning, force the next fsync to be a full one since we 2538 * we replaced (or just dropped in the case of cloning holes when 2539 * NO_HOLES is enabled) file extent items and did not setup new extent 2540 * maps for the replacement extents (or holes). 2541 */ 2542 if (extent_info && !extent_info->is_new_extent) 2543 btrfs_set_inode_full_sync(inode); 2544 2545 if (ret) 2546 goto out_trans; 2547 2548 trans->block_rsv = &fs_info->trans_block_rsv; 2549 /* 2550 * If we are using the NO_HOLES feature we might have had already an 2551 * hole that overlaps a part of the region [lockstart, lockend] and 2552 * ends at (or beyond) lockend. Since we have no file extent items to 2553 * represent holes, drop_end can be less than lockend and so we must 2554 * make sure we have an extent map representing the existing hole (the 2555 * call to __btrfs_drop_extents() might have dropped the existing extent 2556 * map representing the existing hole), otherwise the fast fsync path 2557 * will not record the existence of the hole region 2558 * [existing_hole_start, lockend]. 2559 */ 2560 if (drop_args.drop_end <= end) 2561 drop_args.drop_end = end + 1; 2562 /* 2563 * Don't insert file hole extent item if it's for a range beyond eof 2564 * (because it's useless) or if it represents a 0 bytes range (when 2565 * cur_offset == drop_end). 2566 */ 2567 if (!extent_info && cur_offset < ino_size && 2568 cur_offset < drop_args.drop_end) { 2569 ret = fill_holes(trans, inode, path, cur_offset, 2570 drop_args.drop_end); 2571 if (ret) { 2572 /* Same comment as above. */ 2573 btrfs_abort_transaction(trans, ret); 2574 goto out_trans; 2575 } 2576 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2577 /* See the comment in the loop above for the reasoning here. */ 2578 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2579 drop_args.drop_end - cur_offset); 2580 if (ret) { 2581 btrfs_abort_transaction(trans, ret); 2582 goto out_trans; 2583 } 2584 2585 } 2586 if (extent_info) { 2587 ret = btrfs_insert_replace_extent(trans, inode, path, 2588 extent_info, extent_info->data_len, 2589 drop_args.bytes_found); 2590 if (ret) { 2591 btrfs_abort_transaction(trans, ret); 2592 goto out_trans; 2593 } 2594 } 2595 2596 out_trans: 2597 if (!trans) 2598 goto out_free; 2599 2600 trans->block_rsv = &fs_info->trans_block_rsv; 2601 if (ret) 2602 btrfs_end_transaction(trans); 2603 else 2604 *trans_out = trans; 2605 out_free: 2606 btrfs_free_block_rsv(fs_info, rsv); 2607 out: 2608 return ret; 2609 } 2610 2611 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2612 { 2613 struct inode *inode = file_inode(file); 2614 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2615 struct btrfs_root *root = BTRFS_I(inode)->root; 2616 struct extent_state *cached_state = NULL; 2617 struct btrfs_path *path; 2618 struct btrfs_trans_handle *trans = NULL; 2619 u64 lockstart; 2620 u64 lockend; 2621 u64 tail_start; 2622 u64 tail_len; 2623 u64 orig_start = offset; 2624 int ret = 0; 2625 bool same_block; 2626 u64 ino_size; 2627 bool truncated_block = false; 2628 bool updated_inode = false; 2629 2630 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2631 2632 ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len); 2633 if (ret) 2634 goto out_only_mutex; 2635 2636 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2637 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2638 if (ret < 0) 2639 goto out_only_mutex; 2640 if (ret && !len) { 2641 /* Already in a large hole */ 2642 ret = 0; 2643 goto out_only_mutex; 2644 } 2645 2646 ret = file_modified(file); 2647 if (ret) 2648 goto out_only_mutex; 2649 2650 lockstart = round_up(offset, fs_info->sectorsize); 2651 lockend = round_down(offset + len, fs_info->sectorsize) - 1; 2652 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2653 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2654 /* 2655 * We needn't truncate any block which is beyond the end of the file 2656 * because we are sure there is no data there. 2657 */ 2658 /* 2659 * Only do this if we are in the same block and we aren't doing the 2660 * entire block. 2661 */ 2662 if (same_block && len < fs_info->sectorsize) { 2663 if (offset < ino_size) { 2664 truncated_block = true; 2665 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2666 0); 2667 } else { 2668 ret = 0; 2669 } 2670 goto out_only_mutex; 2671 } 2672 2673 /* zero back part of the first block */ 2674 if (offset < ino_size) { 2675 truncated_block = true; 2676 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2677 if (ret) { 2678 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2679 return ret; 2680 } 2681 } 2682 2683 /* Check the aligned pages after the first unaligned page, 2684 * if offset != orig_start, which means the first unaligned page 2685 * including several following pages are already in holes, 2686 * the extra check can be skipped */ 2687 if (offset == orig_start) { 2688 /* after truncate page, check hole again */ 2689 len = offset + len - lockstart; 2690 offset = lockstart; 2691 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2692 if (ret < 0) 2693 goto out_only_mutex; 2694 if (ret && !len) { 2695 ret = 0; 2696 goto out_only_mutex; 2697 } 2698 lockstart = offset; 2699 } 2700 2701 /* Check the tail unaligned part is in a hole */ 2702 tail_start = lockend + 1; 2703 tail_len = offset + len - tail_start; 2704 if (tail_len) { 2705 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2706 if (unlikely(ret < 0)) 2707 goto out_only_mutex; 2708 if (!ret) { 2709 /* zero the front end of the last page */ 2710 if (tail_start + tail_len < ino_size) { 2711 truncated_block = true; 2712 ret = btrfs_truncate_block(BTRFS_I(inode), 2713 tail_start + tail_len, 2714 0, 1); 2715 if (ret) 2716 goto out_only_mutex; 2717 } 2718 } 2719 } 2720 2721 if (lockend < lockstart) { 2722 ret = 0; 2723 goto out_only_mutex; 2724 } 2725 2726 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 2727 2728 path = btrfs_alloc_path(); 2729 if (!path) { 2730 ret = -ENOMEM; 2731 goto out; 2732 } 2733 2734 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 2735 lockend, NULL, &trans); 2736 btrfs_free_path(path); 2737 if (ret) 2738 goto out; 2739 2740 ASSERT(trans != NULL); 2741 inode_inc_iversion(inode); 2742 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2743 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2744 updated_inode = true; 2745 btrfs_end_transaction(trans); 2746 btrfs_btree_balance_dirty(fs_info); 2747 out: 2748 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2749 &cached_state); 2750 out_only_mutex: 2751 if (!updated_inode && truncated_block && !ret) { 2752 /* 2753 * If we only end up zeroing part of a page, we still need to 2754 * update the inode item, so that all the time fields are 2755 * updated as well as the necessary btrfs inode in memory fields 2756 * for detecting, at fsync time, if the inode isn't yet in the 2757 * log tree or it's there but not up to date. 2758 */ 2759 struct timespec64 now = inode_set_ctime_current(inode); 2760 2761 inode_inc_iversion(inode); 2762 inode_set_mtime_to_ts(inode, now); 2763 trans = btrfs_start_transaction(root, 1); 2764 if (IS_ERR(trans)) { 2765 ret = PTR_ERR(trans); 2766 } else { 2767 int ret2; 2768 2769 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2770 ret2 = btrfs_end_transaction(trans); 2771 if (!ret) 2772 ret = ret2; 2773 } 2774 } 2775 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2776 return ret; 2777 } 2778 2779 /* Helper structure to record which range is already reserved */ 2780 struct falloc_range { 2781 struct list_head list; 2782 u64 start; 2783 u64 len; 2784 }; 2785 2786 /* 2787 * Helper function to add falloc range 2788 * 2789 * Caller should have locked the larger range of extent containing 2790 * [start, len) 2791 */ 2792 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2793 { 2794 struct falloc_range *range = NULL; 2795 2796 if (!list_empty(head)) { 2797 /* 2798 * As fallocate iterates by bytenr order, we only need to check 2799 * the last range. 2800 */ 2801 range = list_last_entry(head, struct falloc_range, list); 2802 if (range->start + range->len == start) { 2803 range->len += len; 2804 return 0; 2805 } 2806 } 2807 2808 range = kmalloc(sizeof(*range), GFP_KERNEL); 2809 if (!range) 2810 return -ENOMEM; 2811 range->start = start; 2812 range->len = len; 2813 list_add_tail(&range->list, head); 2814 return 0; 2815 } 2816 2817 static int btrfs_fallocate_update_isize(struct inode *inode, 2818 const u64 end, 2819 const int mode) 2820 { 2821 struct btrfs_trans_handle *trans; 2822 struct btrfs_root *root = BTRFS_I(inode)->root; 2823 int ret; 2824 int ret2; 2825 2826 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2827 return 0; 2828 2829 trans = btrfs_start_transaction(root, 1); 2830 if (IS_ERR(trans)) 2831 return PTR_ERR(trans); 2832 2833 inode_set_ctime_current(inode); 2834 i_size_write(inode, end); 2835 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 2836 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2837 ret2 = btrfs_end_transaction(trans); 2838 2839 return ret ? ret : ret2; 2840 } 2841 2842 enum { 2843 RANGE_BOUNDARY_WRITTEN_EXTENT, 2844 RANGE_BOUNDARY_PREALLOC_EXTENT, 2845 RANGE_BOUNDARY_HOLE, 2846 }; 2847 2848 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 2849 u64 offset) 2850 { 2851 const u64 sectorsize = inode->root->fs_info->sectorsize; 2852 struct extent_map *em; 2853 int ret; 2854 2855 offset = round_down(offset, sectorsize); 2856 em = btrfs_get_extent(inode, NULL, offset, sectorsize); 2857 if (IS_ERR(em)) 2858 return PTR_ERR(em); 2859 2860 if (em->disk_bytenr == EXTENT_MAP_HOLE) 2861 ret = RANGE_BOUNDARY_HOLE; 2862 else if (em->flags & EXTENT_FLAG_PREALLOC) 2863 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2864 else 2865 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2866 2867 free_extent_map(em); 2868 return ret; 2869 } 2870 2871 static int btrfs_zero_range(struct inode *inode, 2872 loff_t offset, 2873 loff_t len, 2874 const int mode) 2875 { 2876 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2877 struct extent_map *em; 2878 struct extent_changeset *data_reserved = NULL; 2879 int ret; 2880 u64 alloc_hint = 0; 2881 const u64 sectorsize = fs_info->sectorsize; 2882 u64 alloc_start = round_down(offset, sectorsize); 2883 u64 alloc_end = round_up(offset + len, sectorsize); 2884 u64 bytes_to_reserve = 0; 2885 bool space_reserved = false; 2886 2887 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, 2888 alloc_end - alloc_start); 2889 if (IS_ERR(em)) { 2890 ret = PTR_ERR(em); 2891 goto out; 2892 } 2893 2894 /* 2895 * Avoid hole punching and extent allocation for some cases. More cases 2896 * could be considered, but these are unlikely common and we keep things 2897 * as simple as possible for now. Also, intentionally, if the target 2898 * range contains one or more prealloc extents together with regular 2899 * extents and holes, we drop all the existing extents and allocate a 2900 * new prealloc extent, so that we get a larger contiguous disk extent. 2901 */ 2902 if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) { 2903 const u64 em_end = em->start + em->len; 2904 2905 if (em_end >= offset + len) { 2906 /* 2907 * The whole range is already a prealloc extent, 2908 * do nothing except updating the inode's i_size if 2909 * needed. 2910 */ 2911 free_extent_map(em); 2912 ret = btrfs_fallocate_update_isize(inode, offset + len, 2913 mode); 2914 goto out; 2915 } 2916 /* 2917 * Part of the range is already a prealloc extent, so operate 2918 * only on the remaining part of the range. 2919 */ 2920 alloc_start = em_end; 2921 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2922 len = offset + len - alloc_start; 2923 offset = alloc_start; 2924 alloc_hint = extent_map_block_start(em) + em->len; 2925 } 2926 free_extent_map(em); 2927 2928 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2929 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2930 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize); 2931 if (IS_ERR(em)) { 2932 ret = PTR_ERR(em); 2933 goto out; 2934 } 2935 2936 if (em->flags & EXTENT_FLAG_PREALLOC) { 2937 free_extent_map(em); 2938 ret = btrfs_fallocate_update_isize(inode, offset + len, 2939 mode); 2940 goto out; 2941 } 2942 if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) { 2943 free_extent_map(em); 2944 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2945 0); 2946 if (!ret) 2947 ret = btrfs_fallocate_update_isize(inode, 2948 offset + len, 2949 mode); 2950 return ret; 2951 } 2952 free_extent_map(em); 2953 alloc_start = round_down(offset, sectorsize); 2954 alloc_end = alloc_start + sectorsize; 2955 goto reserve_space; 2956 } 2957 2958 alloc_start = round_up(offset, sectorsize); 2959 alloc_end = round_down(offset + len, sectorsize); 2960 2961 /* 2962 * For unaligned ranges, check the pages at the boundaries, they might 2963 * map to an extent, in which case we need to partially zero them, or 2964 * they might map to a hole, in which case we need our allocation range 2965 * to cover them. 2966 */ 2967 if (!IS_ALIGNED(offset, sectorsize)) { 2968 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2969 offset); 2970 if (ret < 0) 2971 goto out; 2972 if (ret == RANGE_BOUNDARY_HOLE) { 2973 alloc_start = round_down(offset, sectorsize); 2974 ret = 0; 2975 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2976 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2977 if (ret) 2978 goto out; 2979 } else { 2980 ret = 0; 2981 } 2982 } 2983 2984 if (!IS_ALIGNED(offset + len, sectorsize)) { 2985 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2986 offset + len); 2987 if (ret < 0) 2988 goto out; 2989 if (ret == RANGE_BOUNDARY_HOLE) { 2990 alloc_end = round_up(offset + len, sectorsize); 2991 ret = 0; 2992 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2993 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 2994 0, 1); 2995 if (ret) 2996 goto out; 2997 } else { 2998 ret = 0; 2999 } 3000 } 3001 3002 reserve_space: 3003 if (alloc_start < alloc_end) { 3004 struct extent_state *cached_state = NULL; 3005 const u64 lockstart = alloc_start; 3006 const u64 lockend = alloc_end - 1; 3007 3008 bytes_to_reserve = alloc_end - alloc_start; 3009 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3010 bytes_to_reserve); 3011 if (ret < 0) 3012 goto out; 3013 space_reserved = true; 3014 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3015 &cached_state); 3016 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3017 alloc_start, bytes_to_reserve); 3018 if (ret) { 3019 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 3020 lockend, &cached_state); 3021 goto out; 3022 } 3023 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3024 alloc_end - alloc_start, 3025 fs_info->sectorsize, 3026 offset + len, &alloc_hint); 3027 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3028 &cached_state); 3029 /* btrfs_prealloc_file_range releases reserved space on error */ 3030 if (ret) { 3031 space_reserved = false; 3032 goto out; 3033 } 3034 } 3035 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3036 out: 3037 if (ret && space_reserved) 3038 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3039 alloc_start, bytes_to_reserve); 3040 extent_changeset_free(data_reserved); 3041 3042 return ret; 3043 } 3044 3045 static long btrfs_fallocate(struct file *file, int mode, 3046 loff_t offset, loff_t len) 3047 { 3048 struct inode *inode = file_inode(file); 3049 struct extent_state *cached_state = NULL; 3050 struct extent_changeset *data_reserved = NULL; 3051 struct falloc_range *range; 3052 struct falloc_range *tmp; 3053 LIST_HEAD(reserve_list); 3054 u64 cur_offset; 3055 u64 last_byte; 3056 u64 alloc_start; 3057 u64 alloc_end; 3058 u64 alloc_hint = 0; 3059 u64 locked_end; 3060 u64 actual_end = 0; 3061 u64 data_space_needed = 0; 3062 u64 data_space_reserved = 0; 3063 u64 qgroup_reserved = 0; 3064 struct extent_map *em; 3065 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; 3066 int ret; 3067 3068 /* Do not allow fallocate in ZONED mode */ 3069 if (btrfs_is_zoned(inode_to_fs_info(inode))) 3070 return -EOPNOTSUPP; 3071 3072 alloc_start = round_down(offset, blocksize); 3073 alloc_end = round_up(offset + len, blocksize); 3074 cur_offset = alloc_start; 3075 3076 /* Make sure we aren't being give some crap mode */ 3077 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3078 FALLOC_FL_ZERO_RANGE)) 3079 return -EOPNOTSUPP; 3080 3081 if (mode & FALLOC_FL_PUNCH_HOLE) 3082 return btrfs_punch_hole(file, offset, len); 3083 3084 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3085 3086 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3087 ret = inode_newsize_ok(inode, offset + len); 3088 if (ret) 3089 goto out; 3090 } 3091 3092 ret = file_modified(file); 3093 if (ret) 3094 goto out; 3095 3096 /* 3097 * TODO: Move these two operations after we have checked 3098 * accurate reserved space, or fallocate can still fail but 3099 * with page truncated or size expanded. 3100 * 3101 * But that's a minor problem and won't do much harm BTW. 3102 */ 3103 if (alloc_start > inode->i_size) { 3104 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3105 alloc_start); 3106 if (ret) 3107 goto out; 3108 } else if (offset + len > inode->i_size) { 3109 /* 3110 * If we are fallocating from the end of the file onward we 3111 * need to zero out the end of the block if i_size lands in the 3112 * middle of a block. 3113 */ 3114 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3115 if (ret) 3116 goto out; 3117 } 3118 3119 /* 3120 * We have locked the inode at the VFS level (in exclusive mode) and we 3121 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3122 * locking the file range, flush all dealloc in the range and wait for 3123 * all ordered extents in the range to complete. After this we can lock 3124 * the file range and, due to the previous locking we did, we know there 3125 * can't be more delalloc or ordered extents in the range. 3126 */ 3127 ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start, 3128 alloc_end - alloc_start); 3129 if (ret) 3130 goto out; 3131 3132 if (mode & FALLOC_FL_ZERO_RANGE) { 3133 ret = btrfs_zero_range(inode, offset, len, mode); 3134 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3135 return ret; 3136 } 3137 3138 locked_end = alloc_end - 1; 3139 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3140 &cached_state); 3141 3142 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3143 3144 /* First, check if we exceed the qgroup limit */ 3145 while (cur_offset < alloc_end) { 3146 em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset, 3147 alloc_end - cur_offset); 3148 if (IS_ERR(em)) { 3149 ret = PTR_ERR(em); 3150 break; 3151 } 3152 last_byte = min(extent_map_end(em), alloc_end); 3153 actual_end = min_t(u64, extent_map_end(em), offset + len); 3154 last_byte = ALIGN(last_byte, blocksize); 3155 if (em->disk_bytenr == EXTENT_MAP_HOLE || 3156 (cur_offset >= inode->i_size && 3157 !(em->flags & EXTENT_FLAG_PREALLOC))) { 3158 const u64 range_len = last_byte - cur_offset; 3159 3160 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3161 if (ret < 0) { 3162 free_extent_map(em); 3163 break; 3164 } 3165 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3166 &data_reserved, cur_offset, range_len); 3167 if (ret < 0) { 3168 free_extent_map(em); 3169 break; 3170 } 3171 qgroup_reserved += range_len; 3172 data_space_needed += range_len; 3173 } 3174 free_extent_map(em); 3175 cur_offset = last_byte; 3176 } 3177 3178 if (!ret && data_space_needed > 0) { 3179 /* 3180 * We are safe to reserve space here as we can't have delalloc 3181 * in the range, see above. 3182 */ 3183 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3184 data_space_needed); 3185 if (!ret) 3186 data_space_reserved = data_space_needed; 3187 } 3188 3189 /* 3190 * If ret is still 0, means we're OK to fallocate. 3191 * Or just cleanup the list and exit. 3192 */ 3193 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3194 if (!ret) { 3195 ret = btrfs_prealloc_file_range(inode, mode, 3196 range->start, 3197 range->len, blocksize, 3198 offset + len, &alloc_hint); 3199 /* 3200 * btrfs_prealloc_file_range() releases space even 3201 * if it returns an error. 3202 */ 3203 data_space_reserved -= range->len; 3204 qgroup_reserved -= range->len; 3205 } else if (data_space_reserved > 0) { 3206 btrfs_free_reserved_data_space(BTRFS_I(inode), 3207 data_reserved, range->start, 3208 range->len); 3209 data_space_reserved -= range->len; 3210 qgroup_reserved -= range->len; 3211 } else if (qgroup_reserved > 0) { 3212 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3213 range->start, range->len, NULL); 3214 qgroup_reserved -= range->len; 3215 } 3216 list_del(&range->list); 3217 kfree(range); 3218 } 3219 if (ret < 0) 3220 goto out_unlock; 3221 3222 /* 3223 * We didn't need to allocate any more space, but we still extended the 3224 * size of the file so we need to update i_size and the inode item. 3225 */ 3226 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3227 out_unlock: 3228 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3229 &cached_state); 3230 out: 3231 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3232 extent_changeset_free(data_reserved); 3233 return ret; 3234 } 3235 3236 /* 3237 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range 3238 * that has unflushed and/or flushing delalloc. There might be other adjacent 3239 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps 3240 * looping while it gets adjacent subranges, and merging them together. 3241 */ 3242 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, 3243 struct extent_state **cached_state, 3244 bool *search_io_tree, 3245 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3246 { 3247 u64 len = end + 1 - start; 3248 u64 delalloc_len = 0; 3249 struct btrfs_ordered_extent *oe; 3250 u64 oe_start; 3251 u64 oe_end; 3252 3253 /* 3254 * Search the io tree first for EXTENT_DELALLOC. If we find any, it 3255 * means we have delalloc (dirty pages) for which writeback has not 3256 * started yet. 3257 */ 3258 if (*search_io_tree) { 3259 spin_lock(&inode->lock); 3260 if (inode->delalloc_bytes > 0) { 3261 spin_unlock(&inode->lock); 3262 *delalloc_start_ret = start; 3263 delalloc_len = count_range_bits(&inode->io_tree, 3264 delalloc_start_ret, end, 3265 len, EXTENT_DELALLOC, 1, 3266 cached_state); 3267 } else { 3268 spin_unlock(&inode->lock); 3269 } 3270 } 3271 3272 if (delalloc_len > 0) { 3273 /* 3274 * If delalloc was found then *delalloc_start_ret has a sector size 3275 * aligned value (rounded down). 3276 */ 3277 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; 3278 3279 if (*delalloc_start_ret == start) { 3280 /* Delalloc for the whole range, nothing more to do. */ 3281 if (*delalloc_end_ret == end) 3282 return true; 3283 /* Else trim our search range for ordered extents. */ 3284 start = *delalloc_end_ret + 1; 3285 len = end + 1 - start; 3286 } 3287 } else { 3288 /* No delalloc, future calls don't need to search again. */ 3289 *search_io_tree = false; 3290 } 3291 3292 /* 3293 * Now also check if there's any ordered extent in the range. 3294 * We do this because: 3295 * 3296 * 1) When delalloc is flushed, the file range is locked, we clear the 3297 * EXTENT_DELALLOC bit from the io tree and create an extent map and 3298 * an ordered extent for the write. So we might just have been called 3299 * after delalloc is flushed and before the ordered extent completes 3300 * and inserts the new file extent item in the subvolume's btree; 3301 * 3302 * 2) We may have an ordered extent created by flushing delalloc for a 3303 * subrange that starts before the subrange we found marked with 3304 * EXTENT_DELALLOC in the io tree. 3305 * 3306 * We could also use the extent map tree to find such delalloc that is 3307 * being flushed, but using the ordered extents tree is more efficient 3308 * because it's usually much smaller as ordered extents are removed from 3309 * the tree once they complete. With the extent maps, we mau have them 3310 * in the extent map tree for a very long time, and they were either 3311 * created by previous writes or loaded by read operations. 3312 */ 3313 oe = btrfs_lookup_first_ordered_range(inode, start, len); 3314 if (!oe) 3315 return (delalloc_len > 0); 3316 3317 /* The ordered extent may span beyond our search range. */ 3318 oe_start = max(oe->file_offset, start); 3319 oe_end = min(oe->file_offset + oe->num_bytes - 1, end); 3320 3321 btrfs_put_ordered_extent(oe); 3322 3323 /* Don't have unflushed delalloc, return the ordered extent range. */ 3324 if (delalloc_len == 0) { 3325 *delalloc_start_ret = oe_start; 3326 *delalloc_end_ret = oe_end; 3327 return true; 3328 } 3329 3330 /* 3331 * We have both unflushed delalloc (io_tree) and an ordered extent. 3332 * If the ranges are adjacent returned a combined range, otherwise 3333 * return the leftmost range. 3334 */ 3335 if (oe_start < *delalloc_start_ret) { 3336 if (oe_end < *delalloc_start_ret) 3337 *delalloc_end_ret = oe_end; 3338 *delalloc_start_ret = oe_start; 3339 } else if (*delalloc_end_ret + 1 == oe_start) { 3340 *delalloc_end_ret = oe_end; 3341 } 3342 3343 return true; 3344 } 3345 3346 /* 3347 * Check if there's delalloc in a given range. 3348 * 3349 * @inode: The inode. 3350 * @start: The start offset of the range. It does not need to be 3351 * sector size aligned. 3352 * @end: The end offset (inclusive value) of the search range. 3353 * It does not need to be sector size aligned. 3354 * @cached_state: Extent state record used for speeding up delalloc 3355 * searches in the inode's io_tree. Can be NULL. 3356 * @delalloc_start_ret: Output argument, set to the start offset of the 3357 * subrange found with delalloc (may not be sector size 3358 * aligned). 3359 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value) 3360 * of the subrange found with delalloc. 3361 * 3362 * Returns true if a subrange with delalloc is found within the given range, and 3363 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and 3364 * end offsets of the subrange. 3365 */ 3366 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3367 struct extent_state **cached_state, 3368 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3369 { 3370 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); 3371 u64 prev_delalloc_end = 0; 3372 bool search_io_tree = true; 3373 bool ret = false; 3374 3375 while (cur_offset <= end) { 3376 u64 delalloc_start; 3377 u64 delalloc_end; 3378 bool delalloc; 3379 3380 delalloc = find_delalloc_subrange(inode, cur_offset, end, 3381 cached_state, &search_io_tree, 3382 &delalloc_start, 3383 &delalloc_end); 3384 if (!delalloc) 3385 break; 3386 3387 if (prev_delalloc_end == 0) { 3388 /* First subrange found. */ 3389 *delalloc_start_ret = max(delalloc_start, start); 3390 *delalloc_end_ret = delalloc_end; 3391 ret = true; 3392 } else if (delalloc_start == prev_delalloc_end + 1) { 3393 /* Subrange adjacent to the previous one, merge them. */ 3394 *delalloc_end_ret = delalloc_end; 3395 } else { 3396 /* Subrange not adjacent to the previous one, exit. */ 3397 break; 3398 } 3399 3400 prev_delalloc_end = delalloc_end; 3401 cur_offset = delalloc_end + 1; 3402 cond_resched(); 3403 } 3404 3405 return ret; 3406 } 3407 3408 /* 3409 * Check if there's a hole or delalloc range in a range representing a hole (or 3410 * prealloc extent) found in the inode's subvolume btree. 3411 * 3412 * @inode: The inode. 3413 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE). 3414 * @start: Start offset of the hole region. It does not need to be sector 3415 * size aligned. 3416 * @end: End offset (inclusive value) of the hole region. It does not 3417 * need to be sector size aligned. 3418 * @start_ret: Return parameter, used to set the start of the subrange in the 3419 * hole that matches the search criteria (seek mode), if such 3420 * subrange is found (return value of the function is true). 3421 * The value returned here may not be sector size aligned. 3422 * 3423 * Returns true if a subrange matching the given seek mode is found, and if one 3424 * is found, it updates @start_ret with the start of the subrange. 3425 */ 3426 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, 3427 struct extent_state **cached_state, 3428 u64 start, u64 end, u64 *start_ret) 3429 { 3430 u64 delalloc_start; 3431 u64 delalloc_end; 3432 bool delalloc; 3433 3434 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state, 3435 &delalloc_start, &delalloc_end); 3436 if (delalloc && whence == SEEK_DATA) { 3437 *start_ret = delalloc_start; 3438 return true; 3439 } 3440 3441 if (delalloc && whence == SEEK_HOLE) { 3442 /* 3443 * We found delalloc but it starts after out start offset. So we 3444 * have a hole between our start offset and the delalloc start. 3445 */ 3446 if (start < delalloc_start) { 3447 *start_ret = start; 3448 return true; 3449 } 3450 /* 3451 * Delalloc range starts at our start offset. 3452 * If the delalloc range's length is smaller than our range, 3453 * then it means we have a hole that starts where the delalloc 3454 * subrange ends. 3455 */ 3456 if (delalloc_end < end) { 3457 *start_ret = delalloc_end + 1; 3458 return true; 3459 } 3460 3461 /* There's delalloc for the whole range. */ 3462 return false; 3463 } 3464 3465 if (!delalloc && whence == SEEK_HOLE) { 3466 *start_ret = start; 3467 return true; 3468 } 3469 3470 /* 3471 * No delalloc in the range and we are seeking for data. The caller has 3472 * to iterate to the next extent item in the subvolume btree. 3473 */ 3474 return false; 3475 } 3476 3477 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence) 3478 { 3479 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host); 3480 struct btrfs_file_private *private = file->private_data; 3481 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3482 struct extent_state *cached_state = NULL; 3483 struct extent_state **delalloc_cached_state; 3484 const loff_t i_size = i_size_read(&inode->vfs_inode); 3485 const u64 ino = btrfs_ino(inode); 3486 struct btrfs_root *root = inode->root; 3487 struct btrfs_path *path; 3488 struct btrfs_key key; 3489 u64 last_extent_end; 3490 u64 lockstart; 3491 u64 lockend; 3492 u64 start; 3493 int ret; 3494 bool found = false; 3495 3496 if (i_size == 0 || offset >= i_size) 3497 return -ENXIO; 3498 3499 /* 3500 * Quick path. If the inode has no prealloc extents and its number of 3501 * bytes used matches its i_size, then it can not have holes. 3502 */ 3503 if (whence == SEEK_HOLE && 3504 !(inode->flags & BTRFS_INODE_PREALLOC) && 3505 inode_get_bytes(&inode->vfs_inode) == i_size) 3506 return i_size; 3507 3508 if (!private) { 3509 private = kzalloc(sizeof(*private), GFP_KERNEL); 3510 /* 3511 * No worries if memory allocation failed. 3512 * The private structure is used only for speeding up multiple 3513 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc, 3514 * so everything will still be correct. 3515 */ 3516 file->private_data = private; 3517 } 3518 3519 if (private) 3520 delalloc_cached_state = &private->llseek_cached_state; 3521 else 3522 delalloc_cached_state = NULL; 3523 3524 /* 3525 * offset can be negative, in this case we start finding DATA/HOLE from 3526 * the very start of the file. 3527 */ 3528 start = max_t(loff_t, 0, offset); 3529 3530 lockstart = round_down(start, fs_info->sectorsize); 3531 lockend = round_up(i_size, fs_info->sectorsize); 3532 if (lockend <= lockstart) 3533 lockend = lockstart + fs_info->sectorsize; 3534 lockend--; 3535 3536 path = btrfs_alloc_path(); 3537 if (!path) 3538 return -ENOMEM; 3539 path->reada = READA_FORWARD; 3540 3541 key.objectid = ino; 3542 key.type = BTRFS_EXTENT_DATA_KEY; 3543 key.offset = start; 3544 3545 last_extent_end = lockstart; 3546 3547 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3548 3549 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3550 if (ret < 0) { 3551 goto out; 3552 } else if (ret > 0 && path->slots[0] > 0) { 3553 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3554 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3555 path->slots[0]--; 3556 } 3557 3558 while (start < i_size) { 3559 struct extent_buffer *leaf = path->nodes[0]; 3560 struct btrfs_file_extent_item *extent; 3561 u64 extent_end; 3562 u8 type; 3563 3564 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3565 ret = btrfs_next_leaf(root, path); 3566 if (ret < 0) 3567 goto out; 3568 else if (ret > 0) 3569 break; 3570 3571 leaf = path->nodes[0]; 3572 } 3573 3574 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3575 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3576 break; 3577 3578 extent_end = btrfs_file_extent_end(path); 3579 3580 /* 3581 * In the first iteration we may have a slot that points to an 3582 * extent that ends before our start offset, so skip it. 3583 */ 3584 if (extent_end <= start) { 3585 path->slots[0]++; 3586 continue; 3587 } 3588 3589 /* We have an implicit hole, NO_HOLES feature is likely set. */ 3590 if (last_extent_end < key.offset) { 3591 u64 search_start = last_extent_end; 3592 u64 found_start; 3593 3594 /* 3595 * First iteration, @start matches @offset and it's 3596 * within the hole. 3597 */ 3598 if (start == offset) 3599 search_start = offset; 3600 3601 found = find_desired_extent_in_hole(inode, whence, 3602 delalloc_cached_state, 3603 search_start, 3604 key.offset - 1, 3605 &found_start); 3606 if (found) { 3607 start = found_start; 3608 break; 3609 } 3610 /* 3611 * Didn't find data or a hole (due to delalloc) in the 3612 * implicit hole range, so need to analyze the extent. 3613 */ 3614 } 3615 3616 extent = btrfs_item_ptr(leaf, path->slots[0], 3617 struct btrfs_file_extent_item); 3618 type = btrfs_file_extent_type(leaf, extent); 3619 3620 /* 3621 * Can't access the extent's disk_bytenr field if this is an 3622 * inline extent, since at that offset, it's where the extent 3623 * data starts. 3624 */ 3625 if (type == BTRFS_FILE_EXTENT_PREALLOC || 3626 (type == BTRFS_FILE_EXTENT_REG && 3627 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) { 3628 /* 3629 * Explicit hole or prealloc extent, search for delalloc. 3630 * A prealloc extent is treated like a hole. 3631 */ 3632 u64 search_start = key.offset; 3633 u64 found_start; 3634 3635 /* 3636 * First iteration, @start matches @offset and it's 3637 * within the hole. 3638 */ 3639 if (start == offset) 3640 search_start = offset; 3641 3642 found = find_desired_extent_in_hole(inode, whence, 3643 delalloc_cached_state, 3644 search_start, 3645 extent_end - 1, 3646 &found_start); 3647 if (found) { 3648 start = found_start; 3649 break; 3650 } 3651 /* 3652 * Didn't find data or a hole (due to delalloc) in the 3653 * implicit hole range, so need to analyze the next 3654 * extent item. 3655 */ 3656 } else { 3657 /* 3658 * Found a regular or inline extent. 3659 * If we are seeking for data, adjust the start offset 3660 * and stop, we're done. 3661 */ 3662 if (whence == SEEK_DATA) { 3663 start = max_t(u64, key.offset, offset); 3664 found = true; 3665 break; 3666 } 3667 /* 3668 * Else, we are seeking for a hole, check the next file 3669 * extent item. 3670 */ 3671 } 3672 3673 start = extent_end; 3674 last_extent_end = extent_end; 3675 path->slots[0]++; 3676 if (fatal_signal_pending(current)) { 3677 ret = -EINTR; 3678 goto out; 3679 } 3680 cond_resched(); 3681 } 3682 3683 /* We have an implicit hole from the last extent found up to i_size. */ 3684 if (!found && start < i_size) { 3685 found = find_desired_extent_in_hole(inode, whence, 3686 delalloc_cached_state, start, 3687 i_size - 1, &start); 3688 if (!found) 3689 start = i_size; 3690 } 3691 3692 out: 3693 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3694 btrfs_free_path(path); 3695 3696 if (ret < 0) 3697 return ret; 3698 3699 if (whence == SEEK_DATA && start >= i_size) 3700 return -ENXIO; 3701 3702 return min_t(loff_t, start, i_size); 3703 } 3704 3705 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3706 { 3707 struct inode *inode = file->f_mapping->host; 3708 3709 switch (whence) { 3710 default: 3711 return generic_file_llseek(file, offset, whence); 3712 case SEEK_DATA: 3713 case SEEK_HOLE: 3714 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3715 offset = find_desired_extent(file, offset, whence); 3716 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3717 break; 3718 } 3719 3720 if (offset < 0) 3721 return offset; 3722 3723 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3724 } 3725 3726 static int btrfs_file_open(struct inode *inode, struct file *filp) 3727 { 3728 int ret; 3729 3730 filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT; 3731 3732 ret = fsverity_file_open(inode, filp); 3733 if (ret) 3734 return ret; 3735 return generic_file_open(inode, filp); 3736 } 3737 3738 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3739 { 3740 ssize_t ret = 0; 3741 3742 if (iocb->ki_flags & IOCB_DIRECT) { 3743 ret = btrfs_direct_read(iocb, to); 3744 if (ret < 0 || !iov_iter_count(to) || 3745 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3746 return ret; 3747 } 3748 3749 return filemap_read(iocb, to, ret); 3750 } 3751 3752 const struct file_operations btrfs_file_operations = { 3753 .llseek = btrfs_file_llseek, 3754 .read_iter = btrfs_file_read_iter, 3755 .splice_read = filemap_splice_read, 3756 .write_iter = btrfs_file_write_iter, 3757 .splice_write = iter_file_splice_write, 3758 .mmap = btrfs_file_mmap, 3759 .open = btrfs_file_open, 3760 .release = btrfs_release_file, 3761 .get_unmapped_area = thp_get_unmapped_area, 3762 .fsync = btrfs_sync_file, 3763 .fallocate = btrfs_fallocate, 3764 .unlocked_ioctl = btrfs_ioctl, 3765 #ifdef CONFIG_COMPAT 3766 .compat_ioctl = btrfs_compat_ioctl, 3767 #endif 3768 .remap_file_range = btrfs_remap_file_range, 3769 .fop_flags = FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC, 3770 }; 3771 3772 int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end) 3773 { 3774 struct address_space *mapping = inode->vfs_inode.i_mapping; 3775 int ret; 3776 3777 /* 3778 * So with compression we will find and lock a dirty page and clear the 3779 * first one as dirty, setup an async extent, and immediately return 3780 * with the entire range locked but with nobody actually marked with 3781 * writeback. So we can't just filemap_write_and_wait_range() and 3782 * expect it to work since it will just kick off a thread to do the 3783 * actual work. So we need to call filemap_fdatawrite_range _again_ 3784 * since it will wait on the page lock, which won't be unlocked until 3785 * after the pages have been marked as writeback and so we're good to go 3786 * from there. We have to do this otherwise we'll miss the ordered 3787 * extents and that results in badness. Please Josef, do not think you 3788 * know better and pull this out at some point in the future, it is 3789 * right and you are wrong. 3790 */ 3791 ret = filemap_fdatawrite_range(mapping, start, end); 3792 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags)) 3793 ret = filemap_fdatawrite_range(mapping, start, end); 3794 3795 return ret; 3796 } 3797