xref: /linux/fs/btrfs/file.c (revision 8b1935e6a36b0967efc593d67ed3aebbfbc1f5b1)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/statfs.h>
30 #include <linux/compat.h>
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "ioctl.h"
36 #include "print-tree.h"
37 #include "tree-log.h"
38 #include "locking.h"
39 #include "compat.h"
40 
41 
42 /* simple helper to fault in pages and copy.  This should go away
43  * and be replaced with calls into generic code.
44  */
45 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
46 					 int write_bytes,
47 					 struct page **prepared_pages,
48 					 const char __user *buf)
49 {
50 	long page_fault = 0;
51 	int i;
52 	int offset = pos & (PAGE_CACHE_SIZE - 1);
53 
54 	for (i = 0; i < num_pages && write_bytes > 0; i++, offset = 0) {
55 		size_t count = min_t(size_t,
56 				     PAGE_CACHE_SIZE - offset, write_bytes);
57 		struct page *page = prepared_pages[i];
58 		fault_in_pages_readable(buf, count);
59 
60 		/* Copy data from userspace to the current page */
61 		kmap(page);
62 		page_fault = __copy_from_user(page_address(page) + offset,
63 					      buf, count);
64 		/* Flush processor's dcache for this page */
65 		flush_dcache_page(page);
66 		kunmap(page);
67 		buf += count;
68 		write_bytes -= count;
69 
70 		if (page_fault)
71 			break;
72 	}
73 	return page_fault ? -EFAULT : 0;
74 }
75 
76 /*
77  * unlocks pages after btrfs_file_write is done with them
78  */
79 static noinline void btrfs_drop_pages(struct page **pages, size_t num_pages)
80 {
81 	size_t i;
82 	for (i = 0; i < num_pages; i++) {
83 		if (!pages[i])
84 			break;
85 		/* page checked is some magic around finding pages that
86 		 * have been modified without going through btrfs_set_page_dirty
87 		 * clear it here
88 		 */
89 		ClearPageChecked(pages[i]);
90 		unlock_page(pages[i]);
91 		mark_page_accessed(pages[i]);
92 		page_cache_release(pages[i]);
93 	}
94 }
95 
96 /*
97  * after copy_from_user, pages need to be dirtied and we need to make
98  * sure holes are created between the current EOF and the start of
99  * any next extents (if required).
100  *
101  * this also makes the decision about creating an inline extent vs
102  * doing real data extents, marking pages dirty and delalloc as required.
103  */
104 static noinline int dirty_and_release_pages(struct btrfs_trans_handle *trans,
105 				   struct btrfs_root *root,
106 				   struct file *file,
107 				   struct page **pages,
108 				   size_t num_pages,
109 				   loff_t pos,
110 				   size_t write_bytes)
111 {
112 	int err = 0;
113 	int i;
114 	struct inode *inode = fdentry(file)->d_inode;
115 	u64 num_bytes;
116 	u64 start_pos;
117 	u64 end_of_last_block;
118 	u64 end_pos = pos + write_bytes;
119 	loff_t isize = i_size_read(inode);
120 
121 	start_pos = pos & ~((u64)root->sectorsize - 1);
122 	num_bytes = (write_bytes + pos - start_pos +
123 		    root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
124 
125 	end_of_last_block = start_pos + num_bytes - 1;
126 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block);
127 	if (err)
128 		return err;
129 
130 	for (i = 0; i < num_pages; i++) {
131 		struct page *p = pages[i];
132 		SetPageUptodate(p);
133 		ClearPageChecked(p);
134 		set_page_dirty(p);
135 	}
136 	if (end_pos > isize) {
137 		i_size_write(inode, end_pos);
138 		/* we've only changed i_size in ram, and we haven't updated
139 		 * the disk i_size.  There is no need to log the inode
140 		 * at this time.
141 		 */
142 	}
143 	return err;
144 }
145 
146 /*
147  * this drops all the extents in the cache that intersect the range
148  * [start, end].  Existing extents are split as required.
149  */
150 int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
151 			    int skip_pinned)
152 {
153 	struct extent_map *em;
154 	struct extent_map *split = NULL;
155 	struct extent_map *split2 = NULL;
156 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
157 	u64 len = end - start + 1;
158 	int ret;
159 	int testend = 1;
160 	unsigned long flags;
161 	int compressed = 0;
162 
163 	WARN_ON(end < start);
164 	if (end == (u64)-1) {
165 		len = (u64)-1;
166 		testend = 0;
167 	}
168 	while (1) {
169 		if (!split)
170 			split = alloc_extent_map(GFP_NOFS);
171 		if (!split2)
172 			split2 = alloc_extent_map(GFP_NOFS);
173 
174 		write_lock(&em_tree->lock);
175 		em = lookup_extent_mapping(em_tree, start, len);
176 		if (!em) {
177 			write_unlock(&em_tree->lock);
178 			break;
179 		}
180 		flags = em->flags;
181 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
182 			if (testend && em->start + em->len >= start + len) {
183 				free_extent_map(em);
184 				write_unlock(&em_tree->lock);
185 				break;
186 			}
187 			start = em->start + em->len;
188 			if (testend)
189 				len = start + len - (em->start + em->len);
190 			free_extent_map(em);
191 			write_unlock(&em_tree->lock);
192 			continue;
193 		}
194 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
195 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
196 		remove_extent_mapping(em_tree, em);
197 
198 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
199 		    em->start < start) {
200 			split->start = em->start;
201 			split->len = start - em->start;
202 			split->orig_start = em->orig_start;
203 			split->block_start = em->block_start;
204 
205 			if (compressed)
206 				split->block_len = em->block_len;
207 			else
208 				split->block_len = split->len;
209 
210 			split->bdev = em->bdev;
211 			split->flags = flags;
212 			ret = add_extent_mapping(em_tree, split);
213 			BUG_ON(ret);
214 			free_extent_map(split);
215 			split = split2;
216 			split2 = NULL;
217 		}
218 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
219 		    testend && em->start + em->len > start + len) {
220 			u64 diff = start + len - em->start;
221 
222 			split->start = start + len;
223 			split->len = em->start + em->len - (start + len);
224 			split->bdev = em->bdev;
225 			split->flags = flags;
226 
227 			if (compressed) {
228 				split->block_len = em->block_len;
229 				split->block_start = em->block_start;
230 				split->orig_start = em->orig_start;
231 			} else {
232 				split->block_len = split->len;
233 				split->block_start = em->block_start + diff;
234 				split->orig_start = split->start;
235 			}
236 
237 			ret = add_extent_mapping(em_tree, split);
238 			BUG_ON(ret);
239 			free_extent_map(split);
240 			split = NULL;
241 		}
242 		write_unlock(&em_tree->lock);
243 
244 		/* once for us */
245 		free_extent_map(em);
246 		/* once for the tree*/
247 		free_extent_map(em);
248 	}
249 	if (split)
250 		free_extent_map(split);
251 	if (split2)
252 		free_extent_map(split2);
253 	return 0;
254 }
255 
256 /*
257  * this is very complex, but the basic idea is to drop all extents
258  * in the range start - end.  hint_block is filled in with a block number
259  * that would be a good hint to the block allocator for this file.
260  *
261  * If an extent intersects the range but is not entirely inside the range
262  * it is either truncated or split.  Anything entirely inside the range
263  * is deleted from the tree.
264  */
265 int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
266 		       u64 start, u64 end, u64 *hint_byte, int drop_cache)
267 {
268 	struct btrfs_root *root = BTRFS_I(inode)->root;
269 	struct extent_buffer *leaf;
270 	struct btrfs_file_extent_item *fi;
271 	struct btrfs_path *path;
272 	struct btrfs_key key;
273 	struct btrfs_key new_key;
274 	u64 search_start = start;
275 	u64 disk_bytenr = 0;
276 	u64 num_bytes = 0;
277 	u64 extent_offset = 0;
278 	u64 extent_end = 0;
279 	int del_nr = 0;
280 	int del_slot = 0;
281 	int extent_type;
282 	int recow;
283 	int ret;
284 
285 	if (drop_cache)
286 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
287 
288 	path = btrfs_alloc_path();
289 	if (!path)
290 		return -ENOMEM;
291 
292 	while (1) {
293 		recow = 0;
294 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
295 					       search_start, -1);
296 		if (ret < 0)
297 			break;
298 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
299 			leaf = path->nodes[0];
300 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
301 			if (key.objectid == inode->i_ino &&
302 			    key.type == BTRFS_EXTENT_DATA_KEY)
303 				path->slots[0]--;
304 		}
305 		ret = 0;
306 next_slot:
307 		leaf = path->nodes[0];
308 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
309 			BUG_ON(del_nr > 0);
310 			ret = btrfs_next_leaf(root, path);
311 			if (ret < 0)
312 				break;
313 			if (ret > 0) {
314 				ret = 0;
315 				break;
316 			}
317 			leaf = path->nodes[0];
318 			recow = 1;
319 		}
320 
321 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
322 		if (key.objectid > inode->i_ino ||
323 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
324 			break;
325 
326 		fi = btrfs_item_ptr(leaf, path->slots[0],
327 				    struct btrfs_file_extent_item);
328 		extent_type = btrfs_file_extent_type(leaf, fi);
329 
330 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
331 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
332 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
333 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
334 			extent_offset = btrfs_file_extent_offset(leaf, fi);
335 			extent_end = key.offset +
336 				btrfs_file_extent_num_bytes(leaf, fi);
337 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
338 			extent_end = key.offset +
339 				btrfs_file_extent_inline_len(leaf, fi);
340 		} else {
341 			WARN_ON(1);
342 			extent_end = search_start;
343 		}
344 
345 		if (extent_end <= search_start) {
346 			path->slots[0]++;
347 			goto next_slot;
348 		}
349 
350 		search_start = max(key.offset, start);
351 		if (recow) {
352 			btrfs_release_path(root, path);
353 			continue;
354 		}
355 
356 		/*
357 		 *     | - range to drop - |
358 		 *  | -------- extent -------- |
359 		 */
360 		if (start > key.offset && end < extent_end) {
361 			BUG_ON(del_nr > 0);
362 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
363 
364 			memcpy(&new_key, &key, sizeof(new_key));
365 			new_key.offset = start;
366 			ret = btrfs_duplicate_item(trans, root, path,
367 						   &new_key);
368 			if (ret == -EAGAIN) {
369 				btrfs_release_path(root, path);
370 				continue;
371 			}
372 			if (ret < 0)
373 				break;
374 
375 			leaf = path->nodes[0];
376 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
377 					    struct btrfs_file_extent_item);
378 			btrfs_set_file_extent_num_bytes(leaf, fi,
379 							start - key.offset);
380 
381 			fi = btrfs_item_ptr(leaf, path->slots[0],
382 					    struct btrfs_file_extent_item);
383 
384 			extent_offset += start - key.offset;
385 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
386 			btrfs_set_file_extent_num_bytes(leaf, fi,
387 							extent_end - start);
388 			btrfs_mark_buffer_dirty(leaf);
389 
390 			if (disk_bytenr > 0) {
391 				ret = btrfs_inc_extent_ref(trans, root,
392 						disk_bytenr, num_bytes, 0,
393 						root->root_key.objectid,
394 						new_key.objectid,
395 						start - extent_offset);
396 				BUG_ON(ret);
397 				*hint_byte = disk_bytenr;
398 			}
399 			key.offset = start;
400 		}
401 		/*
402 		 *  | ---- range to drop ----- |
403 		 *      | -------- extent -------- |
404 		 */
405 		if (start <= key.offset && end < extent_end) {
406 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
407 
408 			memcpy(&new_key, &key, sizeof(new_key));
409 			new_key.offset = end;
410 			btrfs_set_item_key_safe(trans, root, path, &new_key);
411 
412 			extent_offset += end - key.offset;
413 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
414 			btrfs_set_file_extent_num_bytes(leaf, fi,
415 							extent_end - end);
416 			btrfs_mark_buffer_dirty(leaf);
417 			if (disk_bytenr > 0) {
418 				inode_sub_bytes(inode, end - key.offset);
419 				*hint_byte = disk_bytenr;
420 			}
421 			break;
422 		}
423 
424 		search_start = extent_end;
425 		/*
426 		 *       | ---- range to drop ----- |
427 		 *  | -------- extent -------- |
428 		 */
429 		if (start > key.offset && end >= extent_end) {
430 			BUG_ON(del_nr > 0);
431 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
432 
433 			btrfs_set_file_extent_num_bytes(leaf, fi,
434 							start - key.offset);
435 			btrfs_mark_buffer_dirty(leaf);
436 			if (disk_bytenr > 0) {
437 				inode_sub_bytes(inode, extent_end - start);
438 				*hint_byte = disk_bytenr;
439 			}
440 			if (end == extent_end)
441 				break;
442 
443 			path->slots[0]++;
444 			goto next_slot;
445 		}
446 
447 		/*
448 		 *  | ---- range to drop ----- |
449 		 *    | ------ extent ------ |
450 		 */
451 		if (start <= key.offset && end >= extent_end) {
452 			if (del_nr == 0) {
453 				del_slot = path->slots[0];
454 				del_nr = 1;
455 			} else {
456 				BUG_ON(del_slot + del_nr != path->slots[0]);
457 				del_nr++;
458 			}
459 
460 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
461 				inode_sub_bytes(inode,
462 						extent_end - key.offset);
463 				extent_end = ALIGN(extent_end,
464 						   root->sectorsize);
465 			} else if (disk_bytenr > 0) {
466 				ret = btrfs_free_extent(trans, root,
467 						disk_bytenr, num_bytes, 0,
468 						root->root_key.objectid,
469 						key.objectid, key.offset -
470 						extent_offset);
471 				BUG_ON(ret);
472 				inode_sub_bytes(inode,
473 						extent_end - key.offset);
474 				*hint_byte = disk_bytenr;
475 			}
476 
477 			if (end == extent_end)
478 				break;
479 
480 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
481 				path->slots[0]++;
482 				goto next_slot;
483 			}
484 
485 			ret = btrfs_del_items(trans, root, path, del_slot,
486 					      del_nr);
487 			BUG_ON(ret);
488 
489 			del_nr = 0;
490 			del_slot = 0;
491 
492 			btrfs_release_path(root, path);
493 			continue;
494 		}
495 
496 		BUG_ON(1);
497 	}
498 
499 	if (del_nr > 0) {
500 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
501 		BUG_ON(ret);
502 	}
503 
504 	btrfs_free_path(path);
505 	return ret;
506 }
507 
508 static int extent_mergeable(struct extent_buffer *leaf, int slot,
509 			    u64 objectid, u64 bytenr, u64 orig_offset,
510 			    u64 *start, u64 *end)
511 {
512 	struct btrfs_file_extent_item *fi;
513 	struct btrfs_key key;
514 	u64 extent_end;
515 
516 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
517 		return 0;
518 
519 	btrfs_item_key_to_cpu(leaf, &key, slot);
520 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
521 		return 0;
522 
523 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
524 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
525 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
526 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
527 	    btrfs_file_extent_compression(leaf, fi) ||
528 	    btrfs_file_extent_encryption(leaf, fi) ||
529 	    btrfs_file_extent_other_encoding(leaf, fi))
530 		return 0;
531 
532 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
533 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
534 		return 0;
535 
536 	*start = key.offset;
537 	*end = extent_end;
538 	return 1;
539 }
540 
541 /*
542  * Mark extent in the range start - end as written.
543  *
544  * This changes extent type from 'pre-allocated' to 'regular'. If only
545  * part of extent is marked as written, the extent will be split into
546  * two or three.
547  */
548 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
549 			      struct inode *inode, u64 start, u64 end)
550 {
551 	struct btrfs_root *root = BTRFS_I(inode)->root;
552 	struct extent_buffer *leaf;
553 	struct btrfs_path *path;
554 	struct btrfs_file_extent_item *fi;
555 	struct btrfs_key key;
556 	struct btrfs_key new_key;
557 	u64 bytenr;
558 	u64 num_bytes;
559 	u64 extent_end;
560 	u64 orig_offset;
561 	u64 other_start;
562 	u64 other_end;
563 	u64 split;
564 	int del_nr = 0;
565 	int del_slot = 0;
566 	int recow;
567 	int ret;
568 
569 	btrfs_drop_extent_cache(inode, start, end - 1, 0);
570 
571 	path = btrfs_alloc_path();
572 	BUG_ON(!path);
573 again:
574 	recow = 0;
575 	split = start;
576 	key.objectid = inode->i_ino;
577 	key.type = BTRFS_EXTENT_DATA_KEY;
578 	key.offset = split;
579 
580 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
581 	if (ret > 0 && path->slots[0] > 0)
582 		path->slots[0]--;
583 
584 	leaf = path->nodes[0];
585 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
586 	BUG_ON(key.objectid != inode->i_ino ||
587 	       key.type != BTRFS_EXTENT_DATA_KEY);
588 	fi = btrfs_item_ptr(leaf, path->slots[0],
589 			    struct btrfs_file_extent_item);
590 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
591 	       BTRFS_FILE_EXTENT_PREALLOC);
592 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
593 	BUG_ON(key.offset > start || extent_end < end);
594 
595 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
596 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
597 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
598 	memcpy(&new_key, &key, sizeof(new_key));
599 
600 	if (start == key.offset && end < extent_end) {
601 		other_start = 0;
602 		other_end = start;
603 		if (extent_mergeable(leaf, path->slots[0] - 1,
604 				     inode->i_ino, bytenr, orig_offset,
605 				     &other_start, &other_end)) {
606 			new_key.offset = end;
607 			btrfs_set_item_key_safe(trans, root, path, &new_key);
608 			fi = btrfs_item_ptr(leaf, path->slots[0],
609 					    struct btrfs_file_extent_item);
610 			btrfs_set_file_extent_num_bytes(leaf, fi,
611 							extent_end - end);
612 			btrfs_set_file_extent_offset(leaf, fi,
613 						     end - orig_offset);
614 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
615 					    struct btrfs_file_extent_item);
616 			btrfs_set_file_extent_num_bytes(leaf, fi,
617 							end - other_start);
618 			btrfs_mark_buffer_dirty(leaf);
619 			goto out;
620 		}
621 	}
622 
623 	if (start > key.offset && end == extent_end) {
624 		other_start = end;
625 		other_end = 0;
626 		if (extent_mergeable(leaf, path->slots[0] + 1,
627 				     inode->i_ino, bytenr, orig_offset,
628 				     &other_start, &other_end)) {
629 			fi = btrfs_item_ptr(leaf, path->slots[0],
630 					    struct btrfs_file_extent_item);
631 			btrfs_set_file_extent_num_bytes(leaf, fi,
632 							start - key.offset);
633 			path->slots[0]++;
634 			new_key.offset = start;
635 			btrfs_set_item_key_safe(trans, root, path, &new_key);
636 
637 			fi = btrfs_item_ptr(leaf, path->slots[0],
638 					    struct btrfs_file_extent_item);
639 			btrfs_set_file_extent_num_bytes(leaf, fi,
640 							other_end - start);
641 			btrfs_set_file_extent_offset(leaf, fi,
642 						     start - orig_offset);
643 			btrfs_mark_buffer_dirty(leaf);
644 			goto out;
645 		}
646 	}
647 
648 	while (start > key.offset || end < extent_end) {
649 		if (key.offset == start)
650 			split = end;
651 
652 		new_key.offset = split;
653 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
654 		if (ret == -EAGAIN) {
655 			btrfs_release_path(root, path);
656 			goto again;
657 		}
658 		BUG_ON(ret < 0);
659 
660 		leaf = path->nodes[0];
661 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
662 				    struct btrfs_file_extent_item);
663 		btrfs_set_file_extent_num_bytes(leaf, fi,
664 						split - key.offset);
665 
666 		fi = btrfs_item_ptr(leaf, path->slots[0],
667 				    struct btrfs_file_extent_item);
668 
669 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
670 		btrfs_set_file_extent_num_bytes(leaf, fi,
671 						extent_end - split);
672 		btrfs_mark_buffer_dirty(leaf);
673 
674 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
675 					   root->root_key.objectid,
676 					   inode->i_ino, orig_offset);
677 		BUG_ON(ret);
678 
679 		if (split == start) {
680 			key.offset = start;
681 		} else {
682 			BUG_ON(start != key.offset);
683 			path->slots[0]--;
684 			extent_end = end;
685 		}
686 		recow = 1;
687 	}
688 
689 	other_start = end;
690 	other_end = 0;
691 	if (extent_mergeable(leaf, path->slots[0] + 1,
692 			     inode->i_ino, bytenr, orig_offset,
693 			     &other_start, &other_end)) {
694 		if (recow) {
695 			btrfs_release_path(root, path);
696 			goto again;
697 		}
698 		extent_end = other_end;
699 		del_slot = path->slots[0] + 1;
700 		del_nr++;
701 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
702 					0, root->root_key.objectid,
703 					inode->i_ino, orig_offset);
704 		BUG_ON(ret);
705 	}
706 	other_start = 0;
707 	other_end = start;
708 	if (extent_mergeable(leaf, path->slots[0] - 1,
709 			     inode->i_ino, bytenr, orig_offset,
710 			     &other_start, &other_end)) {
711 		if (recow) {
712 			btrfs_release_path(root, path);
713 			goto again;
714 		}
715 		key.offset = other_start;
716 		del_slot = path->slots[0];
717 		del_nr++;
718 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
719 					0, root->root_key.objectid,
720 					inode->i_ino, orig_offset);
721 		BUG_ON(ret);
722 	}
723 	if (del_nr == 0) {
724 		fi = btrfs_item_ptr(leaf, path->slots[0],
725 			   struct btrfs_file_extent_item);
726 		btrfs_set_file_extent_type(leaf, fi,
727 					   BTRFS_FILE_EXTENT_REG);
728 		btrfs_mark_buffer_dirty(leaf);
729 	} else {
730 		fi = btrfs_item_ptr(leaf, del_slot - 1,
731 			   struct btrfs_file_extent_item);
732 		btrfs_set_file_extent_type(leaf, fi,
733 					   BTRFS_FILE_EXTENT_REG);
734 		btrfs_set_file_extent_num_bytes(leaf, fi,
735 						extent_end - key.offset);
736 		btrfs_mark_buffer_dirty(leaf);
737 
738 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
739 		BUG_ON(ret);
740 	}
741 out:
742 	btrfs_free_path(path);
743 	return 0;
744 }
745 
746 /*
747  * this gets pages into the page cache and locks them down, it also properly
748  * waits for data=ordered extents to finish before allowing the pages to be
749  * modified.
750  */
751 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
752 			 struct page **pages, size_t num_pages,
753 			 loff_t pos, unsigned long first_index,
754 			 unsigned long last_index, size_t write_bytes)
755 {
756 	int i;
757 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
758 	struct inode *inode = fdentry(file)->d_inode;
759 	int err = 0;
760 	u64 start_pos;
761 	u64 last_pos;
762 
763 	start_pos = pos & ~((u64)root->sectorsize - 1);
764 	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
765 
766 	if (start_pos > inode->i_size) {
767 		err = btrfs_cont_expand(inode, start_pos);
768 		if (err)
769 			return err;
770 	}
771 
772 	memset(pages, 0, num_pages * sizeof(struct page *));
773 again:
774 	for (i = 0; i < num_pages; i++) {
775 		pages[i] = grab_cache_page(inode->i_mapping, index + i);
776 		if (!pages[i]) {
777 			err = -ENOMEM;
778 			BUG_ON(1);
779 		}
780 		wait_on_page_writeback(pages[i]);
781 	}
782 	if (start_pos < inode->i_size) {
783 		struct btrfs_ordered_extent *ordered;
784 		lock_extent(&BTRFS_I(inode)->io_tree,
785 			    start_pos, last_pos - 1, GFP_NOFS);
786 		ordered = btrfs_lookup_first_ordered_extent(inode,
787 							    last_pos - 1);
788 		if (ordered &&
789 		    ordered->file_offset + ordered->len > start_pos &&
790 		    ordered->file_offset < last_pos) {
791 			btrfs_put_ordered_extent(ordered);
792 			unlock_extent(&BTRFS_I(inode)->io_tree,
793 				      start_pos, last_pos - 1, GFP_NOFS);
794 			for (i = 0; i < num_pages; i++) {
795 				unlock_page(pages[i]);
796 				page_cache_release(pages[i]);
797 			}
798 			btrfs_wait_ordered_range(inode, start_pos,
799 						 last_pos - start_pos);
800 			goto again;
801 		}
802 		if (ordered)
803 			btrfs_put_ordered_extent(ordered);
804 
805 		clear_extent_bits(&BTRFS_I(inode)->io_tree, start_pos,
806 				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
807 				  EXTENT_DO_ACCOUNTING,
808 				  GFP_NOFS);
809 		unlock_extent(&BTRFS_I(inode)->io_tree,
810 			      start_pos, last_pos - 1, GFP_NOFS);
811 	}
812 	for (i = 0; i < num_pages; i++) {
813 		clear_page_dirty_for_io(pages[i]);
814 		set_page_extent_mapped(pages[i]);
815 		WARN_ON(!PageLocked(pages[i]));
816 	}
817 	return 0;
818 }
819 
820 static ssize_t btrfs_file_write(struct file *file, const char __user *buf,
821 				size_t count, loff_t *ppos)
822 {
823 	loff_t pos;
824 	loff_t start_pos;
825 	ssize_t num_written = 0;
826 	ssize_t err = 0;
827 	int ret = 0;
828 	struct inode *inode = fdentry(file)->d_inode;
829 	struct btrfs_root *root = BTRFS_I(inode)->root;
830 	struct page **pages = NULL;
831 	int nrptrs;
832 	struct page *pinned[2];
833 	unsigned long first_index;
834 	unsigned long last_index;
835 	int will_write;
836 
837 	will_write = ((file->f_flags & O_DSYNC) || IS_SYNC(inode) ||
838 		      (file->f_flags & O_DIRECT));
839 
840 	nrptrs = min((count + PAGE_CACHE_SIZE - 1) / PAGE_CACHE_SIZE,
841 		     PAGE_CACHE_SIZE / (sizeof(struct page *)));
842 	pinned[0] = NULL;
843 	pinned[1] = NULL;
844 
845 	pos = *ppos;
846 	start_pos = pos;
847 
848 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
849 
850 	/* do the reserve before the mutex lock in case we have to do some
851 	 * flushing.  We wouldn't deadlock, but this is more polite.
852 	 */
853 	err = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
854 	if (err)
855 		goto out_nolock;
856 
857 	mutex_lock(&inode->i_mutex);
858 
859 	current->backing_dev_info = inode->i_mapping->backing_dev_info;
860 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
861 	if (err)
862 		goto out;
863 
864 	if (count == 0)
865 		goto out;
866 
867 	err = file_remove_suid(file);
868 	if (err)
869 		goto out;
870 
871 	file_update_time(file);
872 
873 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
874 
875 	/* generic_write_checks can change our pos */
876 	start_pos = pos;
877 
878 	BTRFS_I(inode)->sequence++;
879 	first_index = pos >> PAGE_CACHE_SHIFT;
880 	last_index = (pos + count) >> PAGE_CACHE_SHIFT;
881 
882 	/*
883 	 * there are lots of better ways to do this, but this code
884 	 * makes sure the first and last page in the file range are
885 	 * up to date and ready for cow
886 	 */
887 	if ((pos & (PAGE_CACHE_SIZE - 1))) {
888 		pinned[0] = grab_cache_page(inode->i_mapping, first_index);
889 		if (!PageUptodate(pinned[0])) {
890 			ret = btrfs_readpage(NULL, pinned[0]);
891 			BUG_ON(ret);
892 			wait_on_page_locked(pinned[0]);
893 		} else {
894 			unlock_page(pinned[0]);
895 		}
896 	}
897 	if ((pos + count) & (PAGE_CACHE_SIZE - 1)) {
898 		pinned[1] = grab_cache_page(inode->i_mapping, last_index);
899 		if (!PageUptodate(pinned[1])) {
900 			ret = btrfs_readpage(NULL, pinned[1]);
901 			BUG_ON(ret);
902 			wait_on_page_locked(pinned[1]);
903 		} else {
904 			unlock_page(pinned[1]);
905 		}
906 	}
907 
908 	while (count > 0) {
909 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
910 		size_t write_bytes = min(count, nrptrs *
911 					(size_t)PAGE_CACHE_SIZE -
912 					 offset);
913 		size_t num_pages = (write_bytes + PAGE_CACHE_SIZE - 1) >>
914 					PAGE_CACHE_SHIFT;
915 
916 		WARN_ON(num_pages > nrptrs);
917 		memset(pages, 0, sizeof(struct page *) * nrptrs);
918 
919 		ret = btrfs_check_data_free_space(root, inode, write_bytes);
920 		if (ret)
921 			goto out;
922 
923 		ret = prepare_pages(root, file, pages, num_pages,
924 				    pos, first_index, last_index,
925 				    write_bytes);
926 		if (ret) {
927 			btrfs_free_reserved_data_space(root, inode,
928 						       write_bytes);
929 			goto out;
930 		}
931 
932 		ret = btrfs_copy_from_user(pos, num_pages,
933 					   write_bytes, pages, buf);
934 		if (ret) {
935 			btrfs_free_reserved_data_space(root, inode,
936 						       write_bytes);
937 			btrfs_drop_pages(pages, num_pages);
938 			goto out;
939 		}
940 
941 		ret = dirty_and_release_pages(NULL, root, file, pages,
942 					      num_pages, pos, write_bytes);
943 		btrfs_drop_pages(pages, num_pages);
944 		if (ret) {
945 			btrfs_free_reserved_data_space(root, inode,
946 						       write_bytes);
947 			goto out;
948 		}
949 
950 		if (will_write) {
951 			filemap_fdatawrite_range(inode->i_mapping, pos,
952 						 pos + write_bytes - 1);
953 		} else {
954 			balance_dirty_pages_ratelimited_nr(inode->i_mapping,
955 							   num_pages);
956 			if (num_pages <
957 			    (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
958 				btrfs_btree_balance_dirty(root, 1);
959 			btrfs_throttle(root);
960 		}
961 
962 		buf += write_bytes;
963 		count -= write_bytes;
964 		pos += write_bytes;
965 		num_written += write_bytes;
966 
967 		cond_resched();
968 	}
969 out:
970 	mutex_unlock(&inode->i_mutex);
971 	if (ret)
972 		err = ret;
973 	btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
974 
975 out_nolock:
976 	kfree(pages);
977 	if (pinned[0])
978 		page_cache_release(pinned[0]);
979 	if (pinned[1])
980 		page_cache_release(pinned[1]);
981 	*ppos = pos;
982 
983 	/*
984 	 * we want to make sure fsync finds this change
985 	 * but we haven't joined a transaction running right now.
986 	 *
987 	 * Later on, someone is sure to update the inode and get the
988 	 * real transid recorded.
989 	 *
990 	 * We set last_trans now to the fs_info generation + 1,
991 	 * this will either be one more than the running transaction
992 	 * or the generation used for the next transaction if there isn't
993 	 * one running right now.
994 	 */
995 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
996 
997 	if (num_written > 0 && will_write) {
998 		struct btrfs_trans_handle *trans;
999 
1000 		err = btrfs_wait_ordered_range(inode, start_pos, num_written);
1001 		if (err)
1002 			num_written = err;
1003 
1004 		if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
1005 			trans = btrfs_start_transaction(root, 1);
1006 			ret = btrfs_log_dentry_safe(trans, root,
1007 						    file->f_dentry);
1008 			if (ret == 0) {
1009 				ret = btrfs_sync_log(trans, root);
1010 				if (ret == 0)
1011 					btrfs_end_transaction(trans, root);
1012 				else
1013 					btrfs_commit_transaction(trans, root);
1014 			} else if (ret != BTRFS_NO_LOG_SYNC) {
1015 				btrfs_commit_transaction(trans, root);
1016 			} else {
1017 				btrfs_end_transaction(trans, root);
1018 			}
1019 		}
1020 		if (file->f_flags & O_DIRECT) {
1021 			invalidate_mapping_pages(inode->i_mapping,
1022 			      start_pos >> PAGE_CACHE_SHIFT,
1023 			     (start_pos + num_written - 1) >> PAGE_CACHE_SHIFT);
1024 		}
1025 	}
1026 	current->backing_dev_info = NULL;
1027 	return num_written ? num_written : err;
1028 }
1029 
1030 int btrfs_release_file(struct inode *inode, struct file *filp)
1031 {
1032 	/*
1033 	 * ordered_data_close is set by settattr when we are about to truncate
1034 	 * a file from a non-zero size to a zero size.  This tries to
1035 	 * flush down new bytes that may have been written if the
1036 	 * application were using truncate to replace a file in place.
1037 	 */
1038 	if (BTRFS_I(inode)->ordered_data_close) {
1039 		BTRFS_I(inode)->ordered_data_close = 0;
1040 		btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1041 		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1042 			filemap_flush(inode->i_mapping);
1043 	}
1044 	if (filp->private_data)
1045 		btrfs_ioctl_trans_end(filp);
1046 	return 0;
1047 }
1048 
1049 /*
1050  * fsync call for both files and directories.  This logs the inode into
1051  * the tree log instead of forcing full commits whenever possible.
1052  *
1053  * It needs to call filemap_fdatawait so that all ordered extent updates are
1054  * in the metadata btree are up to date for copying to the log.
1055  *
1056  * It drops the inode mutex before doing the tree log commit.  This is an
1057  * important optimization for directories because holding the mutex prevents
1058  * new operations on the dir while we write to disk.
1059  */
1060 int btrfs_sync_file(struct file *file, struct dentry *dentry, int datasync)
1061 {
1062 	struct inode *inode = dentry->d_inode;
1063 	struct btrfs_root *root = BTRFS_I(inode)->root;
1064 	int ret = 0;
1065 	struct btrfs_trans_handle *trans;
1066 
1067 
1068 	/* we wait first, since the writeback may change the inode */
1069 	root->log_batch++;
1070 	/* the VFS called filemap_fdatawrite for us */
1071 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
1072 	root->log_batch++;
1073 
1074 	/*
1075 	 * check the transaction that last modified this inode
1076 	 * and see if its already been committed
1077 	 */
1078 	if (!BTRFS_I(inode)->last_trans)
1079 		goto out;
1080 
1081 	/*
1082 	 * if the last transaction that changed this file was before
1083 	 * the current transaction, we can bail out now without any
1084 	 * syncing
1085 	 */
1086 	mutex_lock(&root->fs_info->trans_mutex);
1087 	if (BTRFS_I(inode)->last_trans <=
1088 	    root->fs_info->last_trans_committed) {
1089 		BTRFS_I(inode)->last_trans = 0;
1090 		mutex_unlock(&root->fs_info->trans_mutex);
1091 		goto out;
1092 	}
1093 	mutex_unlock(&root->fs_info->trans_mutex);
1094 
1095 	/*
1096 	 * ok we haven't committed the transaction yet, lets do a commit
1097 	 */
1098 	if (file && file->private_data)
1099 		btrfs_ioctl_trans_end(file);
1100 
1101 	trans = btrfs_start_transaction(root, 1);
1102 	if (!trans) {
1103 		ret = -ENOMEM;
1104 		goto out;
1105 	}
1106 
1107 	ret = btrfs_log_dentry_safe(trans, root, dentry);
1108 	if (ret < 0)
1109 		goto out;
1110 
1111 	/* we've logged all the items and now have a consistent
1112 	 * version of the file in the log.  It is possible that
1113 	 * someone will come in and modify the file, but that's
1114 	 * fine because the log is consistent on disk, and we
1115 	 * have references to all of the file's extents
1116 	 *
1117 	 * It is possible that someone will come in and log the
1118 	 * file again, but that will end up using the synchronization
1119 	 * inside btrfs_sync_log to keep things safe.
1120 	 */
1121 	mutex_unlock(&dentry->d_inode->i_mutex);
1122 
1123 	if (ret != BTRFS_NO_LOG_SYNC) {
1124 		if (ret > 0) {
1125 			ret = btrfs_commit_transaction(trans, root);
1126 		} else {
1127 			ret = btrfs_sync_log(trans, root);
1128 			if (ret == 0)
1129 				ret = btrfs_end_transaction(trans, root);
1130 			else
1131 				ret = btrfs_commit_transaction(trans, root);
1132 		}
1133 	} else {
1134 		ret = btrfs_end_transaction(trans, root);
1135 	}
1136 	mutex_lock(&dentry->d_inode->i_mutex);
1137 out:
1138 	return ret > 0 ? -EIO : ret;
1139 }
1140 
1141 static const struct vm_operations_struct btrfs_file_vm_ops = {
1142 	.fault		= filemap_fault,
1143 	.page_mkwrite	= btrfs_page_mkwrite,
1144 };
1145 
1146 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1147 {
1148 	vma->vm_ops = &btrfs_file_vm_ops;
1149 	file_accessed(filp);
1150 	return 0;
1151 }
1152 
1153 const struct file_operations btrfs_file_operations = {
1154 	.llseek		= generic_file_llseek,
1155 	.read		= do_sync_read,
1156 	.aio_read       = generic_file_aio_read,
1157 	.splice_read	= generic_file_splice_read,
1158 	.write		= btrfs_file_write,
1159 	.mmap		= btrfs_file_mmap,
1160 	.open		= generic_file_open,
1161 	.release	= btrfs_release_file,
1162 	.fsync		= btrfs_sync_file,
1163 	.unlocked_ioctl	= btrfs_ioctl,
1164 #ifdef CONFIG_COMPAT
1165 	.compat_ioctl	= btrfs_ioctl,
1166 #endif
1167 };
1168