1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/highmem.h> 9 #include <linux/time.h> 10 #include <linux/init.h> 11 #include <linux/string.h> 12 #include <linux/backing-dev.h> 13 #include <linux/mpage.h> 14 #include <linux/falloc.h> 15 #include <linux/swap.h> 16 #include <linux/writeback.h> 17 #include <linux/compat.h> 18 #include <linux/slab.h> 19 #include <linux/btrfs.h> 20 #include <linux/uio.h> 21 #include <linux/iversion.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "print-tree.h" 27 #include "tree-log.h" 28 #include "locking.h" 29 #include "volumes.h" 30 #include "qgroup.h" 31 #include "compression.h" 32 33 static struct kmem_cache *btrfs_inode_defrag_cachep; 34 /* 35 * when auto defrag is enabled we 36 * queue up these defrag structs to remember which 37 * inodes need defragging passes 38 */ 39 struct inode_defrag { 40 struct rb_node rb_node; 41 /* objectid */ 42 u64 ino; 43 /* 44 * transid where the defrag was added, we search for 45 * extents newer than this 46 */ 47 u64 transid; 48 49 /* root objectid */ 50 u64 root; 51 52 /* last offset we were able to defrag */ 53 u64 last_offset; 54 55 /* if we've wrapped around back to zero once already */ 56 int cycled; 57 }; 58 59 static int __compare_inode_defrag(struct inode_defrag *defrag1, 60 struct inode_defrag *defrag2) 61 { 62 if (defrag1->root > defrag2->root) 63 return 1; 64 else if (defrag1->root < defrag2->root) 65 return -1; 66 else if (defrag1->ino > defrag2->ino) 67 return 1; 68 else if (defrag1->ino < defrag2->ino) 69 return -1; 70 else 71 return 0; 72 } 73 74 /* pop a record for an inode into the defrag tree. The lock 75 * must be held already 76 * 77 * If you're inserting a record for an older transid than an 78 * existing record, the transid already in the tree is lowered 79 * 80 * If an existing record is found the defrag item you 81 * pass in is freed 82 */ 83 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 84 struct inode_defrag *defrag) 85 { 86 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 87 struct inode_defrag *entry; 88 struct rb_node **p; 89 struct rb_node *parent = NULL; 90 int ret; 91 92 p = &fs_info->defrag_inodes.rb_node; 93 while (*p) { 94 parent = *p; 95 entry = rb_entry(parent, struct inode_defrag, rb_node); 96 97 ret = __compare_inode_defrag(defrag, entry); 98 if (ret < 0) 99 p = &parent->rb_left; 100 else if (ret > 0) 101 p = &parent->rb_right; 102 else { 103 /* if we're reinserting an entry for 104 * an old defrag run, make sure to 105 * lower the transid of our existing record 106 */ 107 if (defrag->transid < entry->transid) 108 entry->transid = defrag->transid; 109 if (defrag->last_offset > entry->last_offset) 110 entry->last_offset = defrag->last_offset; 111 return -EEXIST; 112 } 113 } 114 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 115 rb_link_node(&defrag->rb_node, parent, p); 116 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 117 return 0; 118 } 119 120 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 121 { 122 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 123 return 0; 124 125 if (btrfs_fs_closing(fs_info)) 126 return 0; 127 128 return 1; 129 } 130 131 /* 132 * insert a defrag record for this inode if auto defrag is 133 * enabled 134 */ 135 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 136 struct btrfs_inode *inode) 137 { 138 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 139 struct btrfs_root *root = inode->root; 140 struct inode_defrag *defrag; 141 u64 transid; 142 int ret; 143 144 if (!__need_auto_defrag(fs_info)) 145 return 0; 146 147 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 148 return 0; 149 150 if (trans) 151 transid = trans->transid; 152 else 153 transid = inode->root->last_trans; 154 155 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 156 if (!defrag) 157 return -ENOMEM; 158 159 defrag->ino = btrfs_ino(inode); 160 defrag->transid = transid; 161 defrag->root = root->root_key.objectid; 162 163 spin_lock(&fs_info->defrag_inodes_lock); 164 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 165 /* 166 * If we set IN_DEFRAG flag and evict the inode from memory, 167 * and then re-read this inode, this new inode doesn't have 168 * IN_DEFRAG flag. At the case, we may find the existed defrag. 169 */ 170 ret = __btrfs_add_inode_defrag(inode, defrag); 171 if (ret) 172 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 173 } else { 174 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 175 } 176 spin_unlock(&fs_info->defrag_inodes_lock); 177 return 0; 178 } 179 180 /* 181 * Requeue the defrag object. If there is a defrag object that points to 182 * the same inode in the tree, we will merge them together (by 183 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 184 */ 185 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, 186 struct inode_defrag *defrag) 187 { 188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 189 int ret; 190 191 if (!__need_auto_defrag(fs_info)) 192 goto out; 193 194 /* 195 * Here we don't check the IN_DEFRAG flag, because we need merge 196 * them together. 197 */ 198 spin_lock(&fs_info->defrag_inodes_lock); 199 ret = __btrfs_add_inode_defrag(inode, defrag); 200 spin_unlock(&fs_info->defrag_inodes_lock); 201 if (ret) 202 goto out; 203 return; 204 out: 205 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 206 } 207 208 /* 209 * pick the defragable inode that we want, if it doesn't exist, we will get 210 * the next one. 211 */ 212 static struct inode_defrag * 213 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 214 { 215 struct inode_defrag *entry = NULL; 216 struct inode_defrag tmp; 217 struct rb_node *p; 218 struct rb_node *parent = NULL; 219 int ret; 220 221 tmp.ino = ino; 222 tmp.root = root; 223 224 spin_lock(&fs_info->defrag_inodes_lock); 225 p = fs_info->defrag_inodes.rb_node; 226 while (p) { 227 parent = p; 228 entry = rb_entry(parent, struct inode_defrag, rb_node); 229 230 ret = __compare_inode_defrag(&tmp, entry); 231 if (ret < 0) 232 p = parent->rb_left; 233 else if (ret > 0) 234 p = parent->rb_right; 235 else 236 goto out; 237 } 238 239 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 240 parent = rb_next(parent); 241 if (parent) 242 entry = rb_entry(parent, struct inode_defrag, rb_node); 243 else 244 entry = NULL; 245 } 246 out: 247 if (entry) 248 rb_erase(parent, &fs_info->defrag_inodes); 249 spin_unlock(&fs_info->defrag_inodes_lock); 250 return entry; 251 } 252 253 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 254 { 255 struct inode_defrag *defrag; 256 struct rb_node *node; 257 258 spin_lock(&fs_info->defrag_inodes_lock); 259 node = rb_first(&fs_info->defrag_inodes); 260 while (node) { 261 rb_erase(node, &fs_info->defrag_inodes); 262 defrag = rb_entry(node, struct inode_defrag, rb_node); 263 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 264 265 cond_resched_lock(&fs_info->defrag_inodes_lock); 266 267 node = rb_first(&fs_info->defrag_inodes); 268 } 269 spin_unlock(&fs_info->defrag_inodes_lock); 270 } 271 272 #define BTRFS_DEFRAG_BATCH 1024 273 274 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 275 struct inode_defrag *defrag) 276 { 277 struct btrfs_root *inode_root; 278 struct inode *inode; 279 struct btrfs_key key; 280 struct btrfs_ioctl_defrag_range_args range; 281 int num_defrag; 282 int index; 283 int ret; 284 285 /* get the inode */ 286 key.objectid = defrag->root; 287 key.type = BTRFS_ROOT_ITEM_KEY; 288 key.offset = (u64)-1; 289 290 index = srcu_read_lock(&fs_info->subvol_srcu); 291 292 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 293 if (IS_ERR(inode_root)) { 294 ret = PTR_ERR(inode_root); 295 goto cleanup; 296 } 297 298 key.objectid = defrag->ino; 299 key.type = BTRFS_INODE_ITEM_KEY; 300 key.offset = 0; 301 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 302 if (IS_ERR(inode)) { 303 ret = PTR_ERR(inode); 304 goto cleanup; 305 } 306 srcu_read_unlock(&fs_info->subvol_srcu, index); 307 308 /* do a chunk of defrag */ 309 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 310 memset(&range, 0, sizeof(range)); 311 range.len = (u64)-1; 312 range.start = defrag->last_offset; 313 314 sb_start_write(fs_info->sb); 315 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 316 BTRFS_DEFRAG_BATCH); 317 sb_end_write(fs_info->sb); 318 /* 319 * if we filled the whole defrag batch, there 320 * must be more work to do. Queue this defrag 321 * again 322 */ 323 if (num_defrag == BTRFS_DEFRAG_BATCH) { 324 defrag->last_offset = range.start; 325 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 326 } else if (defrag->last_offset && !defrag->cycled) { 327 /* 328 * we didn't fill our defrag batch, but 329 * we didn't start at zero. Make sure we loop 330 * around to the start of the file. 331 */ 332 defrag->last_offset = 0; 333 defrag->cycled = 1; 334 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 335 } else { 336 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 337 } 338 339 iput(inode); 340 return 0; 341 cleanup: 342 srcu_read_unlock(&fs_info->subvol_srcu, index); 343 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 344 return ret; 345 } 346 347 /* 348 * run through the list of inodes in the FS that need 349 * defragging 350 */ 351 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 352 { 353 struct inode_defrag *defrag; 354 u64 first_ino = 0; 355 u64 root_objectid = 0; 356 357 atomic_inc(&fs_info->defrag_running); 358 while (1) { 359 /* Pause the auto defragger. */ 360 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 361 &fs_info->fs_state)) 362 break; 363 364 if (!__need_auto_defrag(fs_info)) 365 break; 366 367 /* find an inode to defrag */ 368 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 369 first_ino); 370 if (!defrag) { 371 if (root_objectid || first_ino) { 372 root_objectid = 0; 373 first_ino = 0; 374 continue; 375 } else { 376 break; 377 } 378 } 379 380 first_ino = defrag->ino + 1; 381 root_objectid = defrag->root; 382 383 __btrfs_run_defrag_inode(fs_info, defrag); 384 } 385 atomic_dec(&fs_info->defrag_running); 386 387 /* 388 * during unmount, we use the transaction_wait queue to 389 * wait for the defragger to stop 390 */ 391 wake_up(&fs_info->transaction_wait); 392 return 0; 393 } 394 395 /* simple helper to fault in pages and copy. This should go away 396 * and be replaced with calls into generic code. 397 */ 398 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 399 struct page **prepared_pages, 400 struct iov_iter *i) 401 { 402 size_t copied = 0; 403 size_t total_copied = 0; 404 int pg = 0; 405 int offset = pos & (PAGE_SIZE - 1); 406 407 while (write_bytes > 0) { 408 size_t count = min_t(size_t, 409 PAGE_SIZE - offset, write_bytes); 410 struct page *page = prepared_pages[pg]; 411 /* 412 * Copy data from userspace to the current page 413 */ 414 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 415 416 /* Flush processor's dcache for this page */ 417 flush_dcache_page(page); 418 419 /* 420 * if we get a partial write, we can end up with 421 * partially up to date pages. These add 422 * a lot of complexity, so make sure they don't 423 * happen by forcing this copy to be retried. 424 * 425 * The rest of the btrfs_file_write code will fall 426 * back to page at a time copies after we return 0. 427 */ 428 if (!PageUptodate(page) && copied < count) 429 copied = 0; 430 431 iov_iter_advance(i, copied); 432 write_bytes -= copied; 433 total_copied += copied; 434 435 /* Return to btrfs_file_write_iter to fault page */ 436 if (unlikely(copied == 0)) 437 break; 438 439 if (copied < PAGE_SIZE - offset) { 440 offset += copied; 441 } else { 442 pg++; 443 offset = 0; 444 } 445 } 446 return total_copied; 447 } 448 449 /* 450 * unlocks pages after btrfs_file_write is done with them 451 */ 452 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 453 { 454 size_t i; 455 for (i = 0; i < num_pages; i++) { 456 /* page checked is some magic around finding pages that 457 * have been modified without going through btrfs_set_page_dirty 458 * clear it here. There should be no need to mark the pages 459 * accessed as prepare_pages should have marked them accessed 460 * in prepare_pages via find_or_create_page() 461 */ 462 ClearPageChecked(pages[i]); 463 unlock_page(pages[i]); 464 put_page(pages[i]); 465 } 466 } 467 468 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 469 const u64 start, 470 const u64 len, 471 struct extent_state **cached_state) 472 { 473 u64 search_start = start; 474 const u64 end = start + len - 1; 475 476 while (search_start < end) { 477 const u64 search_len = end - search_start + 1; 478 struct extent_map *em; 479 u64 em_len; 480 int ret = 0; 481 482 em = btrfs_get_extent(inode, NULL, 0, search_start, 483 search_len, 0); 484 if (IS_ERR(em)) 485 return PTR_ERR(em); 486 487 if (em->block_start != EXTENT_MAP_HOLE) 488 goto next; 489 490 em_len = em->len; 491 if (em->start < search_start) 492 em_len -= search_start - em->start; 493 if (em_len > search_len) 494 em_len = search_len; 495 496 ret = set_extent_bit(&inode->io_tree, search_start, 497 search_start + em_len - 1, 498 EXTENT_DELALLOC_NEW, 499 NULL, cached_state, GFP_NOFS); 500 next: 501 search_start = extent_map_end(em); 502 free_extent_map(em); 503 if (ret) 504 return ret; 505 } 506 return 0; 507 } 508 509 /* 510 * after copy_from_user, pages need to be dirtied and we need to make 511 * sure holes are created between the current EOF and the start of 512 * any next extents (if required). 513 * 514 * this also makes the decision about creating an inline extent vs 515 * doing real data extents, marking pages dirty and delalloc as required. 516 */ 517 int btrfs_dirty_pages(struct inode *inode, struct page **pages, 518 size_t num_pages, loff_t pos, size_t write_bytes, 519 struct extent_state **cached) 520 { 521 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 522 int err = 0; 523 int i; 524 u64 num_bytes; 525 u64 start_pos; 526 u64 end_of_last_block; 527 u64 end_pos = pos + write_bytes; 528 loff_t isize = i_size_read(inode); 529 unsigned int extra_bits = 0; 530 531 start_pos = pos & ~((u64) fs_info->sectorsize - 1); 532 num_bytes = round_up(write_bytes + pos - start_pos, 533 fs_info->sectorsize); 534 535 end_of_last_block = start_pos + num_bytes - 1; 536 537 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) { 538 if (start_pos >= isize && 539 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) { 540 /* 541 * There can't be any extents following eof in this case 542 * so just set the delalloc new bit for the range 543 * directly. 544 */ 545 extra_bits |= EXTENT_DELALLOC_NEW; 546 } else { 547 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode), 548 start_pos, 549 num_bytes, cached); 550 if (err) 551 return err; 552 } 553 } 554 555 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 556 extra_bits, cached, 0); 557 if (err) 558 return err; 559 560 for (i = 0; i < num_pages; i++) { 561 struct page *p = pages[i]; 562 SetPageUptodate(p); 563 ClearPageChecked(p); 564 set_page_dirty(p); 565 } 566 567 /* 568 * we've only changed i_size in ram, and we haven't updated 569 * the disk i_size. There is no need to log the inode 570 * at this time. 571 */ 572 if (end_pos > isize) 573 i_size_write(inode, end_pos); 574 return 0; 575 } 576 577 /* 578 * this drops all the extents in the cache that intersect the range 579 * [start, end]. Existing extents are split as required. 580 */ 581 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 582 int skip_pinned) 583 { 584 struct extent_map *em; 585 struct extent_map *split = NULL; 586 struct extent_map *split2 = NULL; 587 struct extent_map_tree *em_tree = &inode->extent_tree; 588 u64 len = end - start + 1; 589 u64 gen; 590 int ret; 591 int testend = 1; 592 unsigned long flags; 593 int compressed = 0; 594 bool modified; 595 596 WARN_ON(end < start); 597 if (end == (u64)-1) { 598 len = (u64)-1; 599 testend = 0; 600 } 601 while (1) { 602 int no_splits = 0; 603 604 modified = false; 605 if (!split) 606 split = alloc_extent_map(); 607 if (!split2) 608 split2 = alloc_extent_map(); 609 if (!split || !split2) 610 no_splits = 1; 611 612 write_lock(&em_tree->lock); 613 em = lookup_extent_mapping(em_tree, start, len); 614 if (!em) { 615 write_unlock(&em_tree->lock); 616 break; 617 } 618 flags = em->flags; 619 gen = em->generation; 620 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 621 if (testend && em->start + em->len >= start + len) { 622 free_extent_map(em); 623 write_unlock(&em_tree->lock); 624 break; 625 } 626 start = em->start + em->len; 627 if (testend) 628 len = start + len - (em->start + em->len); 629 free_extent_map(em); 630 write_unlock(&em_tree->lock); 631 continue; 632 } 633 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 634 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 635 clear_bit(EXTENT_FLAG_LOGGING, &flags); 636 modified = !list_empty(&em->list); 637 if (no_splits) 638 goto next; 639 640 if (em->start < start) { 641 split->start = em->start; 642 split->len = start - em->start; 643 644 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 645 split->orig_start = em->orig_start; 646 split->block_start = em->block_start; 647 648 if (compressed) 649 split->block_len = em->block_len; 650 else 651 split->block_len = split->len; 652 split->orig_block_len = max(split->block_len, 653 em->orig_block_len); 654 split->ram_bytes = em->ram_bytes; 655 } else { 656 split->orig_start = split->start; 657 split->block_len = 0; 658 split->block_start = em->block_start; 659 split->orig_block_len = 0; 660 split->ram_bytes = split->len; 661 } 662 663 split->generation = gen; 664 split->bdev = em->bdev; 665 split->flags = flags; 666 split->compress_type = em->compress_type; 667 replace_extent_mapping(em_tree, em, split, modified); 668 free_extent_map(split); 669 split = split2; 670 split2 = NULL; 671 } 672 if (testend && em->start + em->len > start + len) { 673 u64 diff = start + len - em->start; 674 675 split->start = start + len; 676 split->len = em->start + em->len - (start + len); 677 split->bdev = em->bdev; 678 split->flags = flags; 679 split->compress_type = em->compress_type; 680 split->generation = gen; 681 682 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 683 split->orig_block_len = max(em->block_len, 684 em->orig_block_len); 685 686 split->ram_bytes = em->ram_bytes; 687 if (compressed) { 688 split->block_len = em->block_len; 689 split->block_start = em->block_start; 690 split->orig_start = em->orig_start; 691 } else { 692 split->block_len = split->len; 693 split->block_start = em->block_start 694 + diff; 695 split->orig_start = em->orig_start; 696 } 697 } else { 698 split->ram_bytes = split->len; 699 split->orig_start = split->start; 700 split->block_len = 0; 701 split->block_start = em->block_start; 702 split->orig_block_len = 0; 703 } 704 705 if (extent_map_in_tree(em)) { 706 replace_extent_mapping(em_tree, em, split, 707 modified); 708 } else { 709 ret = add_extent_mapping(em_tree, split, 710 modified); 711 ASSERT(ret == 0); /* Logic error */ 712 } 713 free_extent_map(split); 714 split = NULL; 715 } 716 next: 717 if (extent_map_in_tree(em)) 718 remove_extent_mapping(em_tree, em); 719 write_unlock(&em_tree->lock); 720 721 /* once for us */ 722 free_extent_map(em); 723 /* once for the tree*/ 724 free_extent_map(em); 725 } 726 if (split) 727 free_extent_map(split); 728 if (split2) 729 free_extent_map(split2); 730 } 731 732 /* 733 * this is very complex, but the basic idea is to drop all extents 734 * in the range start - end. hint_block is filled in with a block number 735 * that would be a good hint to the block allocator for this file. 736 * 737 * If an extent intersects the range but is not entirely inside the range 738 * it is either truncated or split. Anything entirely inside the range 739 * is deleted from the tree. 740 */ 741 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 742 struct btrfs_root *root, struct inode *inode, 743 struct btrfs_path *path, u64 start, u64 end, 744 u64 *drop_end, int drop_cache, 745 int replace_extent, 746 u32 extent_item_size, 747 int *key_inserted) 748 { 749 struct btrfs_fs_info *fs_info = root->fs_info; 750 struct extent_buffer *leaf; 751 struct btrfs_file_extent_item *fi; 752 struct btrfs_key key; 753 struct btrfs_key new_key; 754 u64 ino = btrfs_ino(BTRFS_I(inode)); 755 u64 search_start = start; 756 u64 disk_bytenr = 0; 757 u64 num_bytes = 0; 758 u64 extent_offset = 0; 759 u64 extent_end = 0; 760 u64 last_end = start; 761 int del_nr = 0; 762 int del_slot = 0; 763 int extent_type; 764 int recow; 765 int ret; 766 int modify_tree = -1; 767 int update_refs; 768 int found = 0; 769 int leafs_visited = 0; 770 771 if (drop_cache) 772 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0); 773 774 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 775 modify_tree = 0; 776 777 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 778 root == fs_info->tree_root); 779 while (1) { 780 recow = 0; 781 ret = btrfs_lookup_file_extent(trans, root, path, ino, 782 search_start, modify_tree); 783 if (ret < 0) 784 break; 785 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 786 leaf = path->nodes[0]; 787 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 788 if (key.objectid == ino && 789 key.type == BTRFS_EXTENT_DATA_KEY) 790 path->slots[0]--; 791 } 792 ret = 0; 793 leafs_visited++; 794 next_slot: 795 leaf = path->nodes[0]; 796 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 797 BUG_ON(del_nr > 0); 798 ret = btrfs_next_leaf(root, path); 799 if (ret < 0) 800 break; 801 if (ret > 0) { 802 ret = 0; 803 break; 804 } 805 leafs_visited++; 806 leaf = path->nodes[0]; 807 recow = 1; 808 } 809 810 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 811 812 if (key.objectid > ino) 813 break; 814 if (WARN_ON_ONCE(key.objectid < ino) || 815 key.type < BTRFS_EXTENT_DATA_KEY) { 816 ASSERT(del_nr == 0); 817 path->slots[0]++; 818 goto next_slot; 819 } 820 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 821 break; 822 823 fi = btrfs_item_ptr(leaf, path->slots[0], 824 struct btrfs_file_extent_item); 825 extent_type = btrfs_file_extent_type(leaf, fi); 826 827 if (extent_type == BTRFS_FILE_EXTENT_REG || 828 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 829 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 830 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 831 extent_offset = btrfs_file_extent_offset(leaf, fi); 832 extent_end = key.offset + 833 btrfs_file_extent_num_bytes(leaf, fi); 834 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 835 extent_end = key.offset + 836 btrfs_file_extent_inline_len(leaf, 837 path->slots[0], fi); 838 } else { 839 /* can't happen */ 840 BUG(); 841 } 842 843 /* 844 * Don't skip extent items representing 0 byte lengths. They 845 * used to be created (bug) if while punching holes we hit 846 * -ENOSPC condition. So if we find one here, just ensure we 847 * delete it, otherwise we would insert a new file extent item 848 * with the same key (offset) as that 0 bytes length file 849 * extent item in the call to setup_items_for_insert() later 850 * in this function. 851 */ 852 if (extent_end == key.offset && extent_end >= search_start) { 853 last_end = extent_end; 854 goto delete_extent_item; 855 } 856 857 if (extent_end <= search_start) { 858 path->slots[0]++; 859 goto next_slot; 860 } 861 862 found = 1; 863 search_start = max(key.offset, start); 864 if (recow || !modify_tree) { 865 modify_tree = -1; 866 btrfs_release_path(path); 867 continue; 868 } 869 870 /* 871 * | - range to drop - | 872 * | -------- extent -------- | 873 */ 874 if (start > key.offset && end < extent_end) { 875 BUG_ON(del_nr > 0); 876 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 877 ret = -EOPNOTSUPP; 878 break; 879 } 880 881 memcpy(&new_key, &key, sizeof(new_key)); 882 new_key.offset = start; 883 ret = btrfs_duplicate_item(trans, root, path, 884 &new_key); 885 if (ret == -EAGAIN) { 886 btrfs_release_path(path); 887 continue; 888 } 889 if (ret < 0) 890 break; 891 892 leaf = path->nodes[0]; 893 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 894 struct btrfs_file_extent_item); 895 btrfs_set_file_extent_num_bytes(leaf, fi, 896 start - key.offset); 897 898 fi = btrfs_item_ptr(leaf, path->slots[0], 899 struct btrfs_file_extent_item); 900 901 extent_offset += start - key.offset; 902 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 903 btrfs_set_file_extent_num_bytes(leaf, fi, 904 extent_end - start); 905 btrfs_mark_buffer_dirty(leaf); 906 907 if (update_refs && disk_bytenr > 0) { 908 ret = btrfs_inc_extent_ref(trans, root, 909 disk_bytenr, num_bytes, 0, 910 root->root_key.objectid, 911 new_key.objectid, 912 start - extent_offset); 913 BUG_ON(ret); /* -ENOMEM */ 914 } 915 key.offset = start; 916 } 917 /* 918 * From here on out we will have actually dropped something, so 919 * last_end can be updated. 920 */ 921 last_end = extent_end; 922 923 /* 924 * | ---- range to drop ----- | 925 * | -------- extent -------- | 926 */ 927 if (start <= key.offset && end < extent_end) { 928 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 929 ret = -EOPNOTSUPP; 930 break; 931 } 932 933 memcpy(&new_key, &key, sizeof(new_key)); 934 new_key.offset = end; 935 btrfs_set_item_key_safe(fs_info, path, &new_key); 936 937 extent_offset += end - key.offset; 938 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 939 btrfs_set_file_extent_num_bytes(leaf, fi, 940 extent_end - end); 941 btrfs_mark_buffer_dirty(leaf); 942 if (update_refs && disk_bytenr > 0) 943 inode_sub_bytes(inode, end - key.offset); 944 break; 945 } 946 947 search_start = extent_end; 948 /* 949 * | ---- range to drop ----- | 950 * | -------- extent -------- | 951 */ 952 if (start > key.offset && end >= extent_end) { 953 BUG_ON(del_nr > 0); 954 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 955 ret = -EOPNOTSUPP; 956 break; 957 } 958 959 btrfs_set_file_extent_num_bytes(leaf, fi, 960 start - key.offset); 961 btrfs_mark_buffer_dirty(leaf); 962 if (update_refs && disk_bytenr > 0) 963 inode_sub_bytes(inode, extent_end - start); 964 if (end == extent_end) 965 break; 966 967 path->slots[0]++; 968 goto next_slot; 969 } 970 971 /* 972 * | ---- range to drop ----- | 973 * | ------ extent ------ | 974 */ 975 if (start <= key.offset && end >= extent_end) { 976 delete_extent_item: 977 if (del_nr == 0) { 978 del_slot = path->slots[0]; 979 del_nr = 1; 980 } else { 981 BUG_ON(del_slot + del_nr != path->slots[0]); 982 del_nr++; 983 } 984 985 if (update_refs && 986 extent_type == BTRFS_FILE_EXTENT_INLINE) { 987 inode_sub_bytes(inode, 988 extent_end - key.offset); 989 extent_end = ALIGN(extent_end, 990 fs_info->sectorsize); 991 } else if (update_refs && disk_bytenr > 0) { 992 ret = btrfs_free_extent(trans, root, 993 disk_bytenr, num_bytes, 0, 994 root->root_key.objectid, 995 key.objectid, key.offset - 996 extent_offset); 997 BUG_ON(ret); /* -ENOMEM */ 998 inode_sub_bytes(inode, 999 extent_end - key.offset); 1000 } 1001 1002 if (end == extent_end) 1003 break; 1004 1005 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 1006 path->slots[0]++; 1007 goto next_slot; 1008 } 1009 1010 ret = btrfs_del_items(trans, root, path, del_slot, 1011 del_nr); 1012 if (ret) { 1013 btrfs_abort_transaction(trans, ret); 1014 break; 1015 } 1016 1017 del_nr = 0; 1018 del_slot = 0; 1019 1020 btrfs_release_path(path); 1021 continue; 1022 } 1023 1024 BUG_ON(1); 1025 } 1026 1027 if (!ret && del_nr > 0) { 1028 /* 1029 * Set path->slots[0] to first slot, so that after the delete 1030 * if items are move off from our leaf to its immediate left or 1031 * right neighbor leafs, we end up with a correct and adjusted 1032 * path->slots[0] for our insertion (if replace_extent != 0). 1033 */ 1034 path->slots[0] = del_slot; 1035 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1036 if (ret) 1037 btrfs_abort_transaction(trans, ret); 1038 } 1039 1040 leaf = path->nodes[0]; 1041 /* 1042 * If btrfs_del_items() was called, it might have deleted a leaf, in 1043 * which case it unlocked our path, so check path->locks[0] matches a 1044 * write lock. 1045 */ 1046 if (!ret && replace_extent && leafs_visited == 1 && 1047 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 1048 path->locks[0] == BTRFS_WRITE_LOCK) && 1049 btrfs_leaf_free_space(fs_info, leaf) >= 1050 sizeof(struct btrfs_item) + extent_item_size) { 1051 1052 key.objectid = ino; 1053 key.type = BTRFS_EXTENT_DATA_KEY; 1054 key.offset = start; 1055 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 1056 struct btrfs_key slot_key; 1057 1058 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 1059 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1060 path->slots[0]++; 1061 } 1062 setup_items_for_insert(root, path, &key, 1063 &extent_item_size, 1064 extent_item_size, 1065 sizeof(struct btrfs_item) + 1066 extent_item_size, 1); 1067 *key_inserted = 1; 1068 } 1069 1070 if (!replace_extent || !(*key_inserted)) 1071 btrfs_release_path(path); 1072 if (drop_end) 1073 *drop_end = found ? min(end, last_end) : end; 1074 return ret; 1075 } 1076 1077 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1078 struct btrfs_root *root, struct inode *inode, u64 start, 1079 u64 end, int drop_cache) 1080 { 1081 struct btrfs_path *path; 1082 int ret; 1083 1084 path = btrfs_alloc_path(); 1085 if (!path) 1086 return -ENOMEM; 1087 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1088 drop_cache, 0, 0, NULL); 1089 btrfs_free_path(path); 1090 return ret; 1091 } 1092 1093 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1094 u64 objectid, u64 bytenr, u64 orig_offset, 1095 u64 *start, u64 *end) 1096 { 1097 struct btrfs_file_extent_item *fi; 1098 struct btrfs_key key; 1099 u64 extent_end; 1100 1101 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1102 return 0; 1103 1104 btrfs_item_key_to_cpu(leaf, &key, slot); 1105 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1106 return 0; 1107 1108 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1109 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1110 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1111 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1112 btrfs_file_extent_compression(leaf, fi) || 1113 btrfs_file_extent_encryption(leaf, fi) || 1114 btrfs_file_extent_other_encoding(leaf, fi)) 1115 return 0; 1116 1117 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1118 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1119 return 0; 1120 1121 *start = key.offset; 1122 *end = extent_end; 1123 return 1; 1124 } 1125 1126 /* 1127 * Mark extent in the range start - end as written. 1128 * 1129 * This changes extent type from 'pre-allocated' to 'regular'. If only 1130 * part of extent is marked as written, the extent will be split into 1131 * two or three. 1132 */ 1133 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1134 struct btrfs_inode *inode, u64 start, u64 end) 1135 { 1136 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1137 struct btrfs_root *root = inode->root; 1138 struct extent_buffer *leaf; 1139 struct btrfs_path *path; 1140 struct btrfs_file_extent_item *fi; 1141 struct btrfs_key key; 1142 struct btrfs_key new_key; 1143 u64 bytenr; 1144 u64 num_bytes; 1145 u64 extent_end; 1146 u64 orig_offset; 1147 u64 other_start; 1148 u64 other_end; 1149 u64 split; 1150 int del_nr = 0; 1151 int del_slot = 0; 1152 int recow; 1153 int ret; 1154 u64 ino = btrfs_ino(inode); 1155 1156 path = btrfs_alloc_path(); 1157 if (!path) 1158 return -ENOMEM; 1159 again: 1160 recow = 0; 1161 split = start; 1162 key.objectid = ino; 1163 key.type = BTRFS_EXTENT_DATA_KEY; 1164 key.offset = split; 1165 1166 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1167 if (ret < 0) 1168 goto out; 1169 if (ret > 0 && path->slots[0] > 0) 1170 path->slots[0]--; 1171 1172 leaf = path->nodes[0]; 1173 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1174 if (key.objectid != ino || 1175 key.type != BTRFS_EXTENT_DATA_KEY) { 1176 ret = -EINVAL; 1177 btrfs_abort_transaction(trans, ret); 1178 goto out; 1179 } 1180 fi = btrfs_item_ptr(leaf, path->slots[0], 1181 struct btrfs_file_extent_item); 1182 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1183 ret = -EINVAL; 1184 btrfs_abort_transaction(trans, ret); 1185 goto out; 1186 } 1187 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1188 if (key.offset > start || extent_end < end) { 1189 ret = -EINVAL; 1190 btrfs_abort_transaction(trans, ret); 1191 goto out; 1192 } 1193 1194 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1195 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1196 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1197 memcpy(&new_key, &key, sizeof(new_key)); 1198 1199 if (start == key.offset && end < extent_end) { 1200 other_start = 0; 1201 other_end = start; 1202 if (extent_mergeable(leaf, path->slots[0] - 1, 1203 ino, bytenr, orig_offset, 1204 &other_start, &other_end)) { 1205 new_key.offset = end; 1206 btrfs_set_item_key_safe(fs_info, path, &new_key); 1207 fi = btrfs_item_ptr(leaf, path->slots[0], 1208 struct btrfs_file_extent_item); 1209 btrfs_set_file_extent_generation(leaf, fi, 1210 trans->transid); 1211 btrfs_set_file_extent_num_bytes(leaf, fi, 1212 extent_end - end); 1213 btrfs_set_file_extent_offset(leaf, fi, 1214 end - orig_offset); 1215 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1216 struct btrfs_file_extent_item); 1217 btrfs_set_file_extent_generation(leaf, fi, 1218 trans->transid); 1219 btrfs_set_file_extent_num_bytes(leaf, fi, 1220 end - other_start); 1221 btrfs_mark_buffer_dirty(leaf); 1222 goto out; 1223 } 1224 } 1225 1226 if (start > key.offset && end == extent_end) { 1227 other_start = end; 1228 other_end = 0; 1229 if (extent_mergeable(leaf, path->slots[0] + 1, 1230 ino, bytenr, orig_offset, 1231 &other_start, &other_end)) { 1232 fi = btrfs_item_ptr(leaf, path->slots[0], 1233 struct btrfs_file_extent_item); 1234 btrfs_set_file_extent_num_bytes(leaf, fi, 1235 start - key.offset); 1236 btrfs_set_file_extent_generation(leaf, fi, 1237 trans->transid); 1238 path->slots[0]++; 1239 new_key.offset = start; 1240 btrfs_set_item_key_safe(fs_info, path, &new_key); 1241 1242 fi = btrfs_item_ptr(leaf, path->slots[0], 1243 struct btrfs_file_extent_item); 1244 btrfs_set_file_extent_generation(leaf, fi, 1245 trans->transid); 1246 btrfs_set_file_extent_num_bytes(leaf, fi, 1247 other_end - start); 1248 btrfs_set_file_extent_offset(leaf, fi, 1249 start - orig_offset); 1250 btrfs_mark_buffer_dirty(leaf); 1251 goto out; 1252 } 1253 } 1254 1255 while (start > key.offset || end < extent_end) { 1256 if (key.offset == start) 1257 split = end; 1258 1259 new_key.offset = split; 1260 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1261 if (ret == -EAGAIN) { 1262 btrfs_release_path(path); 1263 goto again; 1264 } 1265 if (ret < 0) { 1266 btrfs_abort_transaction(trans, ret); 1267 goto out; 1268 } 1269 1270 leaf = path->nodes[0]; 1271 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1272 struct btrfs_file_extent_item); 1273 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1274 btrfs_set_file_extent_num_bytes(leaf, fi, 1275 split - key.offset); 1276 1277 fi = btrfs_item_ptr(leaf, path->slots[0], 1278 struct btrfs_file_extent_item); 1279 1280 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1281 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1282 btrfs_set_file_extent_num_bytes(leaf, fi, 1283 extent_end - split); 1284 btrfs_mark_buffer_dirty(leaf); 1285 1286 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 1287 0, root->root_key.objectid, 1288 ino, orig_offset); 1289 if (ret) { 1290 btrfs_abort_transaction(trans, ret); 1291 goto out; 1292 } 1293 1294 if (split == start) { 1295 key.offset = start; 1296 } else { 1297 if (start != key.offset) { 1298 ret = -EINVAL; 1299 btrfs_abort_transaction(trans, ret); 1300 goto out; 1301 } 1302 path->slots[0]--; 1303 extent_end = end; 1304 } 1305 recow = 1; 1306 } 1307 1308 other_start = end; 1309 other_end = 0; 1310 if (extent_mergeable(leaf, path->slots[0] + 1, 1311 ino, bytenr, orig_offset, 1312 &other_start, &other_end)) { 1313 if (recow) { 1314 btrfs_release_path(path); 1315 goto again; 1316 } 1317 extent_end = other_end; 1318 del_slot = path->slots[0] + 1; 1319 del_nr++; 1320 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1321 0, root->root_key.objectid, 1322 ino, orig_offset); 1323 if (ret) { 1324 btrfs_abort_transaction(trans, ret); 1325 goto out; 1326 } 1327 } 1328 other_start = 0; 1329 other_end = start; 1330 if (extent_mergeable(leaf, path->slots[0] - 1, 1331 ino, bytenr, orig_offset, 1332 &other_start, &other_end)) { 1333 if (recow) { 1334 btrfs_release_path(path); 1335 goto again; 1336 } 1337 key.offset = other_start; 1338 del_slot = path->slots[0]; 1339 del_nr++; 1340 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1341 0, root->root_key.objectid, 1342 ino, orig_offset); 1343 if (ret) { 1344 btrfs_abort_transaction(trans, ret); 1345 goto out; 1346 } 1347 } 1348 if (del_nr == 0) { 1349 fi = btrfs_item_ptr(leaf, path->slots[0], 1350 struct btrfs_file_extent_item); 1351 btrfs_set_file_extent_type(leaf, fi, 1352 BTRFS_FILE_EXTENT_REG); 1353 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1354 btrfs_mark_buffer_dirty(leaf); 1355 } else { 1356 fi = btrfs_item_ptr(leaf, del_slot - 1, 1357 struct btrfs_file_extent_item); 1358 btrfs_set_file_extent_type(leaf, fi, 1359 BTRFS_FILE_EXTENT_REG); 1360 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1361 btrfs_set_file_extent_num_bytes(leaf, fi, 1362 extent_end - key.offset); 1363 btrfs_mark_buffer_dirty(leaf); 1364 1365 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1366 if (ret < 0) { 1367 btrfs_abort_transaction(trans, ret); 1368 goto out; 1369 } 1370 } 1371 out: 1372 btrfs_free_path(path); 1373 return 0; 1374 } 1375 1376 /* 1377 * on error we return an unlocked page and the error value 1378 * on success we return a locked page and 0 1379 */ 1380 static int prepare_uptodate_page(struct inode *inode, 1381 struct page *page, u64 pos, 1382 bool force_uptodate) 1383 { 1384 int ret = 0; 1385 1386 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1387 !PageUptodate(page)) { 1388 ret = btrfs_readpage(NULL, page); 1389 if (ret) 1390 return ret; 1391 lock_page(page); 1392 if (!PageUptodate(page)) { 1393 unlock_page(page); 1394 return -EIO; 1395 } 1396 if (page->mapping != inode->i_mapping) { 1397 unlock_page(page); 1398 return -EAGAIN; 1399 } 1400 } 1401 return 0; 1402 } 1403 1404 /* 1405 * this just gets pages into the page cache and locks them down. 1406 */ 1407 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1408 size_t num_pages, loff_t pos, 1409 size_t write_bytes, bool force_uptodate) 1410 { 1411 int i; 1412 unsigned long index = pos >> PAGE_SHIFT; 1413 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1414 int err = 0; 1415 int faili; 1416 1417 for (i = 0; i < num_pages; i++) { 1418 again: 1419 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1420 mask | __GFP_WRITE); 1421 if (!pages[i]) { 1422 faili = i - 1; 1423 err = -ENOMEM; 1424 goto fail; 1425 } 1426 1427 if (i == 0) 1428 err = prepare_uptodate_page(inode, pages[i], pos, 1429 force_uptodate); 1430 if (!err && i == num_pages - 1) 1431 err = prepare_uptodate_page(inode, pages[i], 1432 pos + write_bytes, false); 1433 if (err) { 1434 put_page(pages[i]); 1435 if (err == -EAGAIN) { 1436 err = 0; 1437 goto again; 1438 } 1439 faili = i - 1; 1440 goto fail; 1441 } 1442 wait_on_page_writeback(pages[i]); 1443 } 1444 1445 return 0; 1446 fail: 1447 while (faili >= 0) { 1448 unlock_page(pages[faili]); 1449 put_page(pages[faili]); 1450 faili--; 1451 } 1452 return err; 1453 1454 } 1455 1456 /* 1457 * This function locks the extent and properly waits for data=ordered extents 1458 * to finish before allowing the pages to be modified if need. 1459 * 1460 * The return value: 1461 * 1 - the extent is locked 1462 * 0 - the extent is not locked, and everything is OK 1463 * -EAGAIN - need re-prepare the pages 1464 * the other < 0 number - Something wrong happens 1465 */ 1466 static noinline int 1467 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1468 size_t num_pages, loff_t pos, 1469 size_t write_bytes, 1470 u64 *lockstart, u64 *lockend, 1471 struct extent_state **cached_state) 1472 { 1473 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1474 u64 start_pos; 1475 u64 last_pos; 1476 int i; 1477 int ret = 0; 1478 1479 start_pos = round_down(pos, fs_info->sectorsize); 1480 last_pos = start_pos 1481 + round_up(pos + write_bytes - start_pos, 1482 fs_info->sectorsize) - 1; 1483 1484 if (start_pos < inode->vfs_inode.i_size) { 1485 struct btrfs_ordered_extent *ordered; 1486 1487 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1488 cached_state); 1489 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1490 last_pos - start_pos + 1); 1491 if (ordered && 1492 ordered->file_offset + ordered->len > start_pos && 1493 ordered->file_offset <= last_pos) { 1494 unlock_extent_cached(&inode->io_tree, start_pos, 1495 last_pos, cached_state); 1496 for (i = 0; i < num_pages; i++) { 1497 unlock_page(pages[i]); 1498 put_page(pages[i]); 1499 } 1500 btrfs_start_ordered_extent(&inode->vfs_inode, 1501 ordered, 1); 1502 btrfs_put_ordered_extent(ordered); 1503 return -EAGAIN; 1504 } 1505 if (ordered) 1506 btrfs_put_ordered_extent(ordered); 1507 clear_extent_bit(&inode->io_tree, start_pos, last_pos, 1508 EXTENT_DIRTY | EXTENT_DELALLOC | 1509 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1510 0, 0, cached_state); 1511 *lockstart = start_pos; 1512 *lockend = last_pos; 1513 ret = 1; 1514 } 1515 1516 for (i = 0; i < num_pages; i++) { 1517 if (clear_page_dirty_for_io(pages[i])) 1518 account_page_redirty(pages[i]); 1519 set_page_extent_mapped(pages[i]); 1520 WARN_ON(!PageLocked(pages[i])); 1521 } 1522 1523 return ret; 1524 } 1525 1526 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1527 size_t *write_bytes) 1528 { 1529 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1530 struct btrfs_root *root = inode->root; 1531 struct btrfs_ordered_extent *ordered; 1532 u64 lockstart, lockend; 1533 u64 num_bytes; 1534 int ret; 1535 1536 ret = btrfs_start_write_no_snapshotting(root); 1537 if (!ret) 1538 return -ENOSPC; 1539 1540 lockstart = round_down(pos, fs_info->sectorsize); 1541 lockend = round_up(pos + *write_bytes, 1542 fs_info->sectorsize) - 1; 1543 1544 while (1) { 1545 lock_extent(&inode->io_tree, lockstart, lockend); 1546 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1547 lockend - lockstart + 1); 1548 if (!ordered) { 1549 break; 1550 } 1551 unlock_extent(&inode->io_tree, lockstart, lockend); 1552 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1); 1553 btrfs_put_ordered_extent(ordered); 1554 } 1555 1556 num_bytes = lockend - lockstart + 1; 1557 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1558 NULL, NULL, NULL); 1559 if (ret <= 0) { 1560 ret = 0; 1561 btrfs_end_write_no_snapshotting(root); 1562 } else { 1563 *write_bytes = min_t(size_t, *write_bytes , 1564 num_bytes - pos + lockstart); 1565 } 1566 1567 unlock_extent(&inode->io_tree, lockstart, lockend); 1568 1569 return ret; 1570 } 1571 1572 static noinline ssize_t __btrfs_buffered_write(struct file *file, 1573 struct iov_iter *i, 1574 loff_t pos) 1575 { 1576 struct inode *inode = file_inode(file); 1577 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1578 struct btrfs_root *root = BTRFS_I(inode)->root; 1579 struct page **pages = NULL; 1580 struct extent_state *cached_state = NULL; 1581 struct extent_changeset *data_reserved = NULL; 1582 u64 release_bytes = 0; 1583 u64 lockstart; 1584 u64 lockend; 1585 size_t num_written = 0; 1586 int nrptrs; 1587 int ret = 0; 1588 bool only_release_metadata = false; 1589 bool force_page_uptodate = false; 1590 1591 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1592 PAGE_SIZE / (sizeof(struct page *))); 1593 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1594 nrptrs = max(nrptrs, 8); 1595 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1596 if (!pages) 1597 return -ENOMEM; 1598 1599 while (iov_iter_count(i) > 0) { 1600 size_t offset = pos & (PAGE_SIZE - 1); 1601 size_t sector_offset; 1602 size_t write_bytes = min(iov_iter_count(i), 1603 nrptrs * (size_t)PAGE_SIZE - 1604 offset); 1605 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1606 PAGE_SIZE); 1607 size_t reserve_bytes; 1608 size_t dirty_pages; 1609 size_t copied; 1610 size_t dirty_sectors; 1611 size_t num_sectors; 1612 int extents_locked; 1613 1614 WARN_ON(num_pages > nrptrs); 1615 1616 /* 1617 * Fault pages before locking them in prepare_pages 1618 * to avoid recursive lock 1619 */ 1620 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1621 ret = -EFAULT; 1622 break; 1623 } 1624 1625 sector_offset = pos & (fs_info->sectorsize - 1); 1626 reserve_bytes = round_up(write_bytes + sector_offset, 1627 fs_info->sectorsize); 1628 1629 extent_changeset_release(data_reserved); 1630 ret = btrfs_check_data_free_space(inode, &data_reserved, pos, 1631 write_bytes); 1632 if (ret < 0) { 1633 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1634 BTRFS_INODE_PREALLOC)) && 1635 check_can_nocow(BTRFS_I(inode), pos, 1636 &write_bytes) > 0) { 1637 /* 1638 * For nodata cow case, no need to reserve 1639 * data space. 1640 */ 1641 only_release_metadata = true; 1642 /* 1643 * our prealloc extent may be smaller than 1644 * write_bytes, so scale down. 1645 */ 1646 num_pages = DIV_ROUND_UP(write_bytes + offset, 1647 PAGE_SIZE); 1648 reserve_bytes = round_up(write_bytes + 1649 sector_offset, 1650 fs_info->sectorsize); 1651 } else { 1652 break; 1653 } 1654 } 1655 1656 WARN_ON(reserve_bytes == 0); 1657 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1658 reserve_bytes); 1659 if (ret) { 1660 if (!only_release_metadata) 1661 btrfs_free_reserved_data_space(inode, 1662 data_reserved, pos, 1663 write_bytes); 1664 else 1665 btrfs_end_write_no_snapshotting(root); 1666 break; 1667 } 1668 1669 release_bytes = reserve_bytes; 1670 again: 1671 /* 1672 * This is going to setup the pages array with the number of 1673 * pages we want, so we don't really need to worry about the 1674 * contents of pages from loop to loop 1675 */ 1676 ret = prepare_pages(inode, pages, num_pages, 1677 pos, write_bytes, 1678 force_page_uptodate); 1679 if (ret) { 1680 btrfs_delalloc_release_extents(BTRFS_I(inode), 1681 reserve_bytes, true); 1682 break; 1683 } 1684 1685 extents_locked = lock_and_cleanup_extent_if_need( 1686 BTRFS_I(inode), pages, 1687 num_pages, pos, write_bytes, &lockstart, 1688 &lockend, &cached_state); 1689 if (extents_locked < 0) { 1690 if (extents_locked == -EAGAIN) 1691 goto again; 1692 btrfs_delalloc_release_extents(BTRFS_I(inode), 1693 reserve_bytes, true); 1694 ret = extents_locked; 1695 break; 1696 } 1697 1698 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1699 1700 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1701 dirty_sectors = round_up(copied + sector_offset, 1702 fs_info->sectorsize); 1703 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1704 1705 /* 1706 * if we have trouble faulting in the pages, fall 1707 * back to one page at a time 1708 */ 1709 if (copied < write_bytes) 1710 nrptrs = 1; 1711 1712 if (copied == 0) { 1713 force_page_uptodate = true; 1714 dirty_sectors = 0; 1715 dirty_pages = 0; 1716 } else { 1717 force_page_uptodate = false; 1718 dirty_pages = DIV_ROUND_UP(copied + offset, 1719 PAGE_SIZE); 1720 } 1721 1722 if (num_sectors > dirty_sectors) { 1723 /* release everything except the sectors we dirtied */ 1724 release_bytes -= dirty_sectors << 1725 fs_info->sb->s_blocksize_bits; 1726 if (only_release_metadata) { 1727 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1728 release_bytes, true); 1729 } else { 1730 u64 __pos; 1731 1732 __pos = round_down(pos, 1733 fs_info->sectorsize) + 1734 (dirty_pages << PAGE_SHIFT); 1735 btrfs_delalloc_release_space(inode, 1736 data_reserved, __pos, 1737 release_bytes, true); 1738 } 1739 } 1740 1741 release_bytes = round_up(copied + sector_offset, 1742 fs_info->sectorsize); 1743 1744 if (copied > 0) 1745 ret = btrfs_dirty_pages(inode, pages, dirty_pages, 1746 pos, copied, &cached_state); 1747 if (extents_locked) 1748 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1749 lockstart, lockend, &cached_state); 1750 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes, 1751 true); 1752 if (ret) { 1753 btrfs_drop_pages(pages, num_pages); 1754 break; 1755 } 1756 1757 release_bytes = 0; 1758 if (only_release_metadata) 1759 btrfs_end_write_no_snapshotting(root); 1760 1761 if (only_release_metadata && copied > 0) { 1762 lockstart = round_down(pos, 1763 fs_info->sectorsize); 1764 lockend = round_up(pos + copied, 1765 fs_info->sectorsize) - 1; 1766 1767 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1768 lockend, EXTENT_NORESERVE, NULL, 1769 NULL, GFP_NOFS); 1770 only_release_metadata = false; 1771 } 1772 1773 btrfs_drop_pages(pages, num_pages); 1774 1775 cond_resched(); 1776 1777 balance_dirty_pages_ratelimited(inode->i_mapping); 1778 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1) 1779 btrfs_btree_balance_dirty(fs_info); 1780 1781 pos += copied; 1782 num_written += copied; 1783 } 1784 1785 kfree(pages); 1786 1787 if (release_bytes) { 1788 if (only_release_metadata) { 1789 btrfs_end_write_no_snapshotting(root); 1790 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1791 release_bytes, true); 1792 } else { 1793 btrfs_delalloc_release_space(inode, data_reserved, 1794 round_down(pos, fs_info->sectorsize), 1795 release_bytes, true); 1796 } 1797 } 1798 1799 extent_changeset_free(data_reserved); 1800 return num_written ? num_written : ret; 1801 } 1802 1803 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1804 { 1805 struct file *file = iocb->ki_filp; 1806 struct inode *inode = file_inode(file); 1807 loff_t pos = iocb->ki_pos; 1808 ssize_t written; 1809 ssize_t written_buffered; 1810 loff_t endbyte; 1811 int err; 1812 1813 written = generic_file_direct_write(iocb, from); 1814 1815 if (written < 0 || !iov_iter_count(from)) 1816 return written; 1817 1818 pos += written; 1819 written_buffered = __btrfs_buffered_write(file, from, pos); 1820 if (written_buffered < 0) { 1821 err = written_buffered; 1822 goto out; 1823 } 1824 /* 1825 * Ensure all data is persisted. We want the next direct IO read to be 1826 * able to read what was just written. 1827 */ 1828 endbyte = pos + written_buffered - 1; 1829 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1830 if (err) 1831 goto out; 1832 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1833 if (err) 1834 goto out; 1835 written += written_buffered; 1836 iocb->ki_pos = pos + written_buffered; 1837 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1838 endbyte >> PAGE_SHIFT); 1839 out: 1840 return written ? written : err; 1841 } 1842 1843 static void update_time_for_write(struct inode *inode) 1844 { 1845 struct timespec64 now; 1846 1847 if (IS_NOCMTIME(inode)) 1848 return; 1849 1850 now = current_time(inode); 1851 if (!timespec64_equal(&inode->i_mtime, &now)) 1852 inode->i_mtime = now; 1853 1854 if (!timespec64_equal(&inode->i_ctime, &now)) 1855 inode->i_ctime = now; 1856 1857 if (IS_I_VERSION(inode)) 1858 inode_inc_iversion(inode); 1859 } 1860 1861 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1862 struct iov_iter *from) 1863 { 1864 struct file *file = iocb->ki_filp; 1865 struct inode *inode = file_inode(file); 1866 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1867 struct btrfs_root *root = BTRFS_I(inode)->root; 1868 u64 start_pos; 1869 u64 end_pos; 1870 ssize_t num_written = 0; 1871 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1872 ssize_t err; 1873 loff_t pos; 1874 size_t count = iov_iter_count(from); 1875 loff_t oldsize; 1876 int clean_page = 0; 1877 1878 if (!(iocb->ki_flags & IOCB_DIRECT) && 1879 (iocb->ki_flags & IOCB_NOWAIT)) 1880 return -EOPNOTSUPP; 1881 1882 if (!inode_trylock(inode)) { 1883 if (iocb->ki_flags & IOCB_NOWAIT) 1884 return -EAGAIN; 1885 inode_lock(inode); 1886 } 1887 1888 err = generic_write_checks(iocb, from); 1889 if (err <= 0) { 1890 inode_unlock(inode); 1891 return err; 1892 } 1893 1894 pos = iocb->ki_pos; 1895 if (iocb->ki_flags & IOCB_NOWAIT) { 1896 /* 1897 * We will allocate space in case nodatacow is not set, 1898 * so bail 1899 */ 1900 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1901 BTRFS_INODE_PREALLOC)) || 1902 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) { 1903 inode_unlock(inode); 1904 return -EAGAIN; 1905 } 1906 } 1907 1908 current->backing_dev_info = inode_to_bdi(inode); 1909 err = file_remove_privs(file); 1910 if (err) { 1911 inode_unlock(inode); 1912 goto out; 1913 } 1914 1915 /* 1916 * If BTRFS flips readonly due to some impossible error 1917 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1918 * although we have opened a file as writable, we have 1919 * to stop this write operation to ensure FS consistency. 1920 */ 1921 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1922 inode_unlock(inode); 1923 err = -EROFS; 1924 goto out; 1925 } 1926 1927 /* 1928 * We reserve space for updating the inode when we reserve space for the 1929 * extent we are going to write, so we will enospc out there. We don't 1930 * need to start yet another transaction to update the inode as we will 1931 * update the inode when we finish writing whatever data we write. 1932 */ 1933 update_time_for_write(inode); 1934 1935 start_pos = round_down(pos, fs_info->sectorsize); 1936 oldsize = i_size_read(inode); 1937 if (start_pos > oldsize) { 1938 /* Expand hole size to cover write data, preventing empty gap */ 1939 end_pos = round_up(pos + count, 1940 fs_info->sectorsize); 1941 err = btrfs_cont_expand(inode, oldsize, end_pos); 1942 if (err) { 1943 inode_unlock(inode); 1944 goto out; 1945 } 1946 if (start_pos > round_up(oldsize, fs_info->sectorsize)) 1947 clean_page = 1; 1948 } 1949 1950 if (sync) 1951 atomic_inc(&BTRFS_I(inode)->sync_writers); 1952 1953 if (iocb->ki_flags & IOCB_DIRECT) { 1954 num_written = __btrfs_direct_write(iocb, from); 1955 } else { 1956 num_written = __btrfs_buffered_write(file, from, pos); 1957 if (num_written > 0) 1958 iocb->ki_pos = pos + num_written; 1959 if (clean_page) 1960 pagecache_isize_extended(inode, oldsize, 1961 i_size_read(inode)); 1962 } 1963 1964 inode_unlock(inode); 1965 1966 /* 1967 * We also have to set last_sub_trans to the current log transid, 1968 * otherwise subsequent syncs to a file that's been synced in this 1969 * transaction will appear to have already occurred. 1970 */ 1971 spin_lock(&BTRFS_I(inode)->lock); 1972 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1973 spin_unlock(&BTRFS_I(inode)->lock); 1974 if (num_written > 0) 1975 num_written = generic_write_sync(iocb, num_written); 1976 1977 if (sync) 1978 atomic_dec(&BTRFS_I(inode)->sync_writers); 1979 out: 1980 current->backing_dev_info = NULL; 1981 return num_written ? num_written : err; 1982 } 1983 1984 int btrfs_release_file(struct inode *inode, struct file *filp) 1985 { 1986 struct btrfs_file_private *private = filp->private_data; 1987 1988 if (private && private->filldir_buf) 1989 kfree(private->filldir_buf); 1990 kfree(private); 1991 filp->private_data = NULL; 1992 1993 /* 1994 * ordered_data_close is set by settattr when we are about to truncate 1995 * a file from a non-zero size to a zero size. This tries to 1996 * flush down new bytes that may have been written if the 1997 * application were using truncate to replace a file in place. 1998 */ 1999 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 2000 &BTRFS_I(inode)->runtime_flags)) 2001 filemap_flush(inode->i_mapping); 2002 return 0; 2003 } 2004 2005 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2006 { 2007 int ret; 2008 struct blk_plug plug; 2009 2010 /* 2011 * This is only called in fsync, which would do synchronous writes, so 2012 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2013 * multiple disks using raid profile, a large IO can be split to 2014 * several segments of stripe length (currently 64K). 2015 */ 2016 blk_start_plug(&plug); 2017 atomic_inc(&BTRFS_I(inode)->sync_writers); 2018 ret = btrfs_fdatawrite_range(inode, start, end); 2019 atomic_dec(&BTRFS_I(inode)->sync_writers); 2020 blk_finish_plug(&plug); 2021 2022 return ret; 2023 } 2024 2025 /* 2026 * fsync call for both files and directories. This logs the inode into 2027 * the tree log instead of forcing full commits whenever possible. 2028 * 2029 * It needs to call filemap_fdatawait so that all ordered extent updates are 2030 * in the metadata btree are up to date for copying to the log. 2031 * 2032 * It drops the inode mutex before doing the tree log commit. This is an 2033 * important optimization for directories because holding the mutex prevents 2034 * new operations on the dir while we write to disk. 2035 */ 2036 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2037 { 2038 struct dentry *dentry = file_dentry(file); 2039 struct inode *inode = d_inode(dentry); 2040 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2041 struct btrfs_root *root = BTRFS_I(inode)->root; 2042 struct btrfs_trans_handle *trans; 2043 struct btrfs_log_ctx ctx; 2044 int ret = 0, err; 2045 bool full_sync = false; 2046 u64 len; 2047 2048 /* 2049 * The range length can be represented by u64, we have to do the typecasts 2050 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync() 2051 */ 2052 len = (u64)end - (u64)start + 1; 2053 trace_btrfs_sync_file(file, datasync); 2054 2055 btrfs_init_log_ctx(&ctx, inode); 2056 2057 /* 2058 * We write the dirty pages in the range and wait until they complete 2059 * out of the ->i_mutex. If so, we can flush the dirty pages by 2060 * multi-task, and make the performance up. See 2061 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2062 */ 2063 ret = start_ordered_ops(inode, start, end); 2064 if (ret) 2065 goto out; 2066 2067 inode_lock(inode); 2068 atomic_inc(&root->log_batch); 2069 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2070 &BTRFS_I(inode)->runtime_flags); 2071 /* 2072 * We might have have had more pages made dirty after calling 2073 * start_ordered_ops and before acquiring the inode's i_mutex. 2074 */ 2075 if (full_sync) { 2076 /* 2077 * For a full sync, we need to make sure any ordered operations 2078 * start and finish before we start logging the inode, so that 2079 * all extents are persisted and the respective file extent 2080 * items are in the fs/subvol btree. 2081 */ 2082 ret = btrfs_wait_ordered_range(inode, start, len); 2083 } else { 2084 /* 2085 * Start any new ordered operations before starting to log the 2086 * inode. We will wait for them to finish in btrfs_sync_log(). 2087 * 2088 * Right before acquiring the inode's mutex, we might have new 2089 * writes dirtying pages, which won't immediately start the 2090 * respective ordered operations - that is done through the 2091 * fill_delalloc callbacks invoked from the writepage and 2092 * writepages address space operations. So make sure we start 2093 * all ordered operations before starting to log our inode. Not 2094 * doing this means that while logging the inode, writeback 2095 * could start and invoke writepage/writepages, which would call 2096 * the fill_delalloc callbacks (cow_file_range, 2097 * submit_compressed_extents). These callbacks add first an 2098 * extent map to the modified list of extents and then create 2099 * the respective ordered operation, which means in 2100 * tree-log.c:btrfs_log_inode() we might capture all existing 2101 * ordered operations (with btrfs_get_logged_extents()) before 2102 * the fill_delalloc callback adds its ordered operation, and by 2103 * the time we visit the modified list of extent maps (with 2104 * btrfs_log_changed_extents()), we see and process the extent 2105 * map they created. We then use the extent map to construct a 2106 * file extent item for logging without waiting for the 2107 * respective ordered operation to finish - this file extent 2108 * item points to a disk location that might not have yet been 2109 * written to, containing random data - so after a crash a log 2110 * replay will make our inode have file extent items that point 2111 * to disk locations containing invalid data, as we returned 2112 * success to userspace without waiting for the respective 2113 * ordered operation to finish, because it wasn't captured by 2114 * btrfs_get_logged_extents(). 2115 */ 2116 ret = start_ordered_ops(inode, start, end); 2117 } 2118 if (ret) { 2119 inode_unlock(inode); 2120 goto out; 2121 } 2122 atomic_inc(&root->log_batch); 2123 2124 /* 2125 * If the last transaction that changed this file was before the current 2126 * transaction and we have the full sync flag set in our inode, we can 2127 * bail out now without any syncing. 2128 * 2129 * Note that we can't bail out if the full sync flag isn't set. This is 2130 * because when the full sync flag is set we start all ordered extents 2131 * and wait for them to fully complete - when they complete they update 2132 * the inode's last_trans field through: 2133 * 2134 * btrfs_finish_ordered_io() -> 2135 * btrfs_update_inode_fallback() -> 2136 * btrfs_update_inode() -> 2137 * btrfs_set_inode_last_trans() 2138 * 2139 * So we are sure that last_trans is up to date and can do this check to 2140 * bail out safely. For the fast path, when the full sync flag is not 2141 * set in our inode, we can not do it because we start only our ordered 2142 * extents and don't wait for them to complete (that is when 2143 * btrfs_finish_ordered_io runs), so here at this point their last_trans 2144 * value might be less than or equals to fs_info->last_trans_committed, 2145 * and setting a speculative last_trans for an inode when a buffered 2146 * write is made (such as fs_info->generation + 1 for example) would not 2147 * be reliable since after setting the value and before fsync is called 2148 * any number of transactions can start and commit (transaction kthread 2149 * commits the current transaction periodically), and a transaction 2150 * commit does not start nor waits for ordered extents to complete. 2151 */ 2152 smp_mb(); 2153 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) || 2154 (full_sync && BTRFS_I(inode)->last_trans <= 2155 fs_info->last_trans_committed) || 2156 (!btrfs_have_ordered_extents_in_range(inode, start, len) && 2157 BTRFS_I(inode)->last_trans 2158 <= fs_info->last_trans_committed)) { 2159 /* 2160 * We've had everything committed since the last time we were 2161 * modified so clear this flag in case it was set for whatever 2162 * reason, it's no longer relevant. 2163 */ 2164 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2165 &BTRFS_I(inode)->runtime_flags); 2166 /* 2167 * An ordered extent might have started before and completed 2168 * already with io errors, in which case the inode was not 2169 * updated and we end up here. So check the inode's mapping 2170 * for any errors that might have happened since we last 2171 * checked called fsync. 2172 */ 2173 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2174 inode_unlock(inode); 2175 goto out; 2176 } 2177 2178 /* 2179 * We use start here because we will need to wait on the IO to complete 2180 * in btrfs_sync_log, which could require joining a transaction (for 2181 * example checking cross references in the nocow path). If we use join 2182 * here we could get into a situation where we're waiting on IO to 2183 * happen that is blocked on a transaction trying to commit. With start 2184 * we inc the extwriter counter, so we wait for all extwriters to exit 2185 * before we start blocking join'ers. This comment is to keep somebody 2186 * from thinking they are super smart and changing this to 2187 * btrfs_join_transaction *cough*Josef*cough*. 2188 */ 2189 trans = btrfs_start_transaction(root, 0); 2190 if (IS_ERR(trans)) { 2191 ret = PTR_ERR(trans); 2192 inode_unlock(inode); 2193 goto out; 2194 } 2195 trans->sync = true; 2196 2197 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx); 2198 if (ret < 0) { 2199 /* Fallthrough and commit/free transaction. */ 2200 ret = 1; 2201 } 2202 2203 /* we've logged all the items and now have a consistent 2204 * version of the file in the log. It is possible that 2205 * someone will come in and modify the file, but that's 2206 * fine because the log is consistent on disk, and we 2207 * have references to all of the file's extents 2208 * 2209 * It is possible that someone will come in and log the 2210 * file again, but that will end up using the synchronization 2211 * inside btrfs_sync_log to keep things safe. 2212 */ 2213 inode_unlock(inode); 2214 2215 /* 2216 * If any of the ordered extents had an error, just return it to user 2217 * space, so that the application knows some writes didn't succeed and 2218 * can take proper action (retry for e.g.). Blindly committing the 2219 * transaction in this case, would fool userspace that everything was 2220 * successful. And we also want to make sure our log doesn't contain 2221 * file extent items pointing to extents that weren't fully written to - 2222 * just like in the non fast fsync path, where we check for the ordered 2223 * operation's error flag before writing to the log tree and return -EIO 2224 * if any of them had this flag set (btrfs_wait_ordered_range) - 2225 * therefore we need to check for errors in the ordered operations, 2226 * which are indicated by ctx.io_err. 2227 */ 2228 if (ctx.io_err) { 2229 btrfs_end_transaction(trans); 2230 ret = ctx.io_err; 2231 goto out; 2232 } 2233 2234 if (ret != BTRFS_NO_LOG_SYNC) { 2235 if (!ret) { 2236 ret = btrfs_sync_log(trans, root, &ctx); 2237 if (!ret) { 2238 ret = btrfs_end_transaction(trans); 2239 goto out; 2240 } 2241 } 2242 if (!full_sync) { 2243 ret = btrfs_wait_ordered_range(inode, start, len); 2244 if (ret) { 2245 btrfs_end_transaction(trans); 2246 goto out; 2247 } 2248 } 2249 ret = btrfs_commit_transaction(trans); 2250 } else { 2251 ret = btrfs_end_transaction(trans); 2252 } 2253 out: 2254 ASSERT(list_empty(&ctx.list)); 2255 err = file_check_and_advance_wb_err(file); 2256 if (!ret) 2257 ret = err; 2258 return ret > 0 ? -EIO : ret; 2259 } 2260 2261 static const struct vm_operations_struct btrfs_file_vm_ops = { 2262 .fault = filemap_fault, 2263 .map_pages = filemap_map_pages, 2264 .page_mkwrite = btrfs_page_mkwrite, 2265 }; 2266 2267 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2268 { 2269 struct address_space *mapping = filp->f_mapping; 2270 2271 if (!mapping->a_ops->readpage) 2272 return -ENOEXEC; 2273 2274 file_accessed(filp); 2275 vma->vm_ops = &btrfs_file_vm_ops; 2276 2277 return 0; 2278 } 2279 2280 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2281 int slot, u64 start, u64 end) 2282 { 2283 struct btrfs_file_extent_item *fi; 2284 struct btrfs_key key; 2285 2286 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2287 return 0; 2288 2289 btrfs_item_key_to_cpu(leaf, &key, slot); 2290 if (key.objectid != btrfs_ino(inode) || 2291 key.type != BTRFS_EXTENT_DATA_KEY) 2292 return 0; 2293 2294 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2295 2296 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2297 return 0; 2298 2299 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2300 return 0; 2301 2302 if (key.offset == end) 2303 return 1; 2304 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2305 return 1; 2306 return 0; 2307 } 2308 2309 static int fill_holes(struct btrfs_trans_handle *trans, 2310 struct btrfs_inode *inode, 2311 struct btrfs_path *path, u64 offset, u64 end) 2312 { 2313 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 2314 struct btrfs_root *root = inode->root; 2315 struct extent_buffer *leaf; 2316 struct btrfs_file_extent_item *fi; 2317 struct extent_map *hole_em; 2318 struct extent_map_tree *em_tree = &inode->extent_tree; 2319 struct btrfs_key key; 2320 int ret; 2321 2322 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2323 goto out; 2324 2325 key.objectid = btrfs_ino(inode); 2326 key.type = BTRFS_EXTENT_DATA_KEY; 2327 key.offset = offset; 2328 2329 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2330 if (ret <= 0) { 2331 /* 2332 * We should have dropped this offset, so if we find it then 2333 * something has gone horribly wrong. 2334 */ 2335 if (ret == 0) 2336 ret = -EINVAL; 2337 return ret; 2338 } 2339 2340 leaf = path->nodes[0]; 2341 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2342 u64 num_bytes; 2343 2344 path->slots[0]--; 2345 fi = btrfs_item_ptr(leaf, path->slots[0], 2346 struct btrfs_file_extent_item); 2347 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2348 end - offset; 2349 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2350 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2351 btrfs_set_file_extent_offset(leaf, fi, 0); 2352 btrfs_mark_buffer_dirty(leaf); 2353 goto out; 2354 } 2355 2356 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2357 u64 num_bytes; 2358 2359 key.offset = offset; 2360 btrfs_set_item_key_safe(fs_info, path, &key); 2361 fi = btrfs_item_ptr(leaf, path->slots[0], 2362 struct btrfs_file_extent_item); 2363 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2364 offset; 2365 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2366 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2367 btrfs_set_file_extent_offset(leaf, fi, 0); 2368 btrfs_mark_buffer_dirty(leaf); 2369 goto out; 2370 } 2371 btrfs_release_path(path); 2372 2373 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2374 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2375 if (ret) 2376 return ret; 2377 2378 out: 2379 btrfs_release_path(path); 2380 2381 hole_em = alloc_extent_map(); 2382 if (!hole_em) { 2383 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2384 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2385 } else { 2386 hole_em->start = offset; 2387 hole_em->len = end - offset; 2388 hole_em->ram_bytes = hole_em->len; 2389 hole_em->orig_start = offset; 2390 2391 hole_em->block_start = EXTENT_MAP_HOLE; 2392 hole_em->block_len = 0; 2393 hole_em->orig_block_len = 0; 2394 hole_em->bdev = fs_info->fs_devices->latest_bdev; 2395 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2396 hole_em->generation = trans->transid; 2397 2398 do { 2399 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2400 write_lock(&em_tree->lock); 2401 ret = add_extent_mapping(em_tree, hole_em, 1); 2402 write_unlock(&em_tree->lock); 2403 } while (ret == -EEXIST); 2404 free_extent_map(hole_em); 2405 if (ret) 2406 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2407 &inode->runtime_flags); 2408 } 2409 2410 return 0; 2411 } 2412 2413 /* 2414 * Find a hole extent on given inode and change start/len to the end of hole 2415 * extent.(hole/vacuum extent whose em->start <= start && 2416 * em->start + em->len > start) 2417 * When a hole extent is found, return 1 and modify start/len. 2418 */ 2419 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2420 { 2421 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2422 struct extent_map *em; 2423 int ret = 0; 2424 2425 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2426 round_down(*start, fs_info->sectorsize), 2427 round_up(*len, fs_info->sectorsize), 0); 2428 if (IS_ERR(em)) 2429 return PTR_ERR(em); 2430 2431 /* Hole or vacuum extent(only exists in no-hole mode) */ 2432 if (em->block_start == EXTENT_MAP_HOLE) { 2433 ret = 1; 2434 *len = em->start + em->len > *start + *len ? 2435 0 : *start + *len - em->start - em->len; 2436 *start = em->start + em->len; 2437 } 2438 free_extent_map(em); 2439 return ret; 2440 } 2441 2442 static int btrfs_punch_hole_lock_range(struct inode *inode, 2443 const u64 lockstart, 2444 const u64 lockend, 2445 struct extent_state **cached_state) 2446 { 2447 while (1) { 2448 struct btrfs_ordered_extent *ordered; 2449 int ret; 2450 2451 truncate_pagecache_range(inode, lockstart, lockend); 2452 2453 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2454 cached_state); 2455 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2456 2457 /* 2458 * We need to make sure we have no ordered extents in this range 2459 * and nobody raced in and read a page in this range, if we did 2460 * we need to try again. 2461 */ 2462 if ((!ordered || 2463 (ordered->file_offset + ordered->len <= lockstart || 2464 ordered->file_offset > lockend)) && 2465 !filemap_range_has_page(inode->i_mapping, 2466 lockstart, lockend)) { 2467 if (ordered) 2468 btrfs_put_ordered_extent(ordered); 2469 break; 2470 } 2471 if (ordered) 2472 btrfs_put_ordered_extent(ordered); 2473 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2474 lockend, cached_state); 2475 ret = btrfs_wait_ordered_range(inode, lockstart, 2476 lockend - lockstart + 1); 2477 if (ret) 2478 return ret; 2479 } 2480 return 0; 2481 } 2482 2483 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2484 { 2485 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2486 struct btrfs_root *root = BTRFS_I(inode)->root; 2487 struct extent_state *cached_state = NULL; 2488 struct btrfs_path *path; 2489 struct btrfs_block_rsv *rsv; 2490 struct btrfs_trans_handle *trans; 2491 u64 lockstart; 2492 u64 lockend; 2493 u64 tail_start; 2494 u64 tail_len; 2495 u64 orig_start = offset; 2496 u64 cur_offset; 2497 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1); 2498 u64 drop_end; 2499 int ret = 0; 2500 int err = 0; 2501 unsigned int rsv_count; 2502 bool same_block; 2503 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES); 2504 u64 ino_size; 2505 bool truncated_block = false; 2506 bool updated_inode = false; 2507 2508 ret = btrfs_wait_ordered_range(inode, offset, len); 2509 if (ret) 2510 return ret; 2511 2512 inode_lock(inode); 2513 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2514 ret = find_first_non_hole(inode, &offset, &len); 2515 if (ret < 0) 2516 goto out_only_mutex; 2517 if (ret && !len) { 2518 /* Already in a large hole */ 2519 ret = 0; 2520 goto out_only_mutex; 2521 } 2522 2523 lockstart = round_up(offset, btrfs_inode_sectorsize(inode)); 2524 lockend = round_down(offset + len, 2525 btrfs_inode_sectorsize(inode)) - 1; 2526 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2527 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2528 /* 2529 * We needn't truncate any block which is beyond the end of the file 2530 * because we are sure there is no data there. 2531 */ 2532 /* 2533 * Only do this if we are in the same block and we aren't doing the 2534 * entire block. 2535 */ 2536 if (same_block && len < fs_info->sectorsize) { 2537 if (offset < ino_size) { 2538 truncated_block = true; 2539 ret = btrfs_truncate_block(inode, offset, len, 0); 2540 } else { 2541 ret = 0; 2542 } 2543 goto out_only_mutex; 2544 } 2545 2546 /* zero back part of the first block */ 2547 if (offset < ino_size) { 2548 truncated_block = true; 2549 ret = btrfs_truncate_block(inode, offset, 0, 0); 2550 if (ret) { 2551 inode_unlock(inode); 2552 return ret; 2553 } 2554 } 2555 2556 /* Check the aligned pages after the first unaligned page, 2557 * if offset != orig_start, which means the first unaligned page 2558 * including several following pages are already in holes, 2559 * the extra check can be skipped */ 2560 if (offset == orig_start) { 2561 /* after truncate page, check hole again */ 2562 len = offset + len - lockstart; 2563 offset = lockstart; 2564 ret = find_first_non_hole(inode, &offset, &len); 2565 if (ret < 0) 2566 goto out_only_mutex; 2567 if (ret && !len) { 2568 ret = 0; 2569 goto out_only_mutex; 2570 } 2571 lockstart = offset; 2572 } 2573 2574 /* Check the tail unaligned part is in a hole */ 2575 tail_start = lockend + 1; 2576 tail_len = offset + len - tail_start; 2577 if (tail_len) { 2578 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2579 if (unlikely(ret < 0)) 2580 goto out_only_mutex; 2581 if (!ret) { 2582 /* zero the front end of the last page */ 2583 if (tail_start + tail_len < ino_size) { 2584 truncated_block = true; 2585 ret = btrfs_truncate_block(inode, 2586 tail_start + tail_len, 2587 0, 1); 2588 if (ret) 2589 goto out_only_mutex; 2590 } 2591 } 2592 } 2593 2594 if (lockend < lockstart) { 2595 ret = 0; 2596 goto out_only_mutex; 2597 } 2598 2599 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2600 &cached_state); 2601 if (ret) { 2602 inode_unlock(inode); 2603 goto out_only_mutex; 2604 } 2605 2606 path = btrfs_alloc_path(); 2607 if (!path) { 2608 ret = -ENOMEM; 2609 goto out; 2610 } 2611 2612 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2613 if (!rsv) { 2614 ret = -ENOMEM; 2615 goto out_free; 2616 } 2617 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1); 2618 rsv->failfast = 1; 2619 2620 /* 2621 * 1 - update the inode 2622 * 1 - removing the extents in the range 2623 * 1 - adding the hole extent if no_holes isn't set 2624 */ 2625 rsv_count = no_holes ? 2 : 3; 2626 trans = btrfs_start_transaction(root, rsv_count); 2627 if (IS_ERR(trans)) { 2628 err = PTR_ERR(trans); 2629 goto out_free; 2630 } 2631 2632 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2633 min_size, 0); 2634 BUG_ON(ret); 2635 trans->block_rsv = rsv; 2636 2637 cur_offset = lockstart; 2638 len = lockend - cur_offset; 2639 while (cur_offset < lockend) { 2640 ret = __btrfs_drop_extents(trans, root, inode, path, 2641 cur_offset, lockend + 1, 2642 &drop_end, 1, 0, 0, NULL); 2643 if (ret != -ENOSPC) 2644 break; 2645 2646 trans->block_rsv = &fs_info->trans_block_rsv; 2647 2648 if (cur_offset < drop_end && cur_offset < ino_size) { 2649 ret = fill_holes(trans, BTRFS_I(inode), path, 2650 cur_offset, drop_end); 2651 if (ret) { 2652 /* 2653 * If we failed then we didn't insert our hole 2654 * entries for the area we dropped, so now the 2655 * fs is corrupted, so we must abort the 2656 * transaction. 2657 */ 2658 btrfs_abort_transaction(trans, ret); 2659 err = ret; 2660 break; 2661 } 2662 } 2663 2664 cur_offset = drop_end; 2665 2666 ret = btrfs_update_inode(trans, root, inode); 2667 if (ret) { 2668 err = ret; 2669 break; 2670 } 2671 2672 btrfs_end_transaction(trans); 2673 btrfs_btree_balance_dirty(fs_info); 2674 2675 trans = btrfs_start_transaction(root, rsv_count); 2676 if (IS_ERR(trans)) { 2677 ret = PTR_ERR(trans); 2678 trans = NULL; 2679 break; 2680 } 2681 2682 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2683 rsv, min_size, 0); 2684 BUG_ON(ret); /* shouldn't happen */ 2685 trans->block_rsv = rsv; 2686 2687 ret = find_first_non_hole(inode, &cur_offset, &len); 2688 if (unlikely(ret < 0)) 2689 break; 2690 if (ret && !len) { 2691 ret = 0; 2692 break; 2693 } 2694 } 2695 2696 if (ret) { 2697 err = ret; 2698 goto out_trans; 2699 } 2700 2701 trans->block_rsv = &fs_info->trans_block_rsv; 2702 /* 2703 * If we are using the NO_HOLES feature we might have had already an 2704 * hole that overlaps a part of the region [lockstart, lockend] and 2705 * ends at (or beyond) lockend. Since we have no file extent items to 2706 * represent holes, drop_end can be less than lockend and so we must 2707 * make sure we have an extent map representing the existing hole (the 2708 * call to __btrfs_drop_extents() might have dropped the existing extent 2709 * map representing the existing hole), otherwise the fast fsync path 2710 * will not record the existence of the hole region 2711 * [existing_hole_start, lockend]. 2712 */ 2713 if (drop_end <= lockend) 2714 drop_end = lockend + 1; 2715 /* 2716 * Don't insert file hole extent item if it's for a range beyond eof 2717 * (because it's useless) or if it represents a 0 bytes range (when 2718 * cur_offset == drop_end). 2719 */ 2720 if (cur_offset < ino_size && cur_offset < drop_end) { 2721 ret = fill_holes(trans, BTRFS_I(inode), path, 2722 cur_offset, drop_end); 2723 if (ret) { 2724 /* Same comment as above. */ 2725 btrfs_abort_transaction(trans, ret); 2726 err = ret; 2727 goto out_trans; 2728 } 2729 } 2730 2731 out_trans: 2732 if (!trans) 2733 goto out_free; 2734 2735 inode_inc_iversion(inode); 2736 inode->i_mtime = inode->i_ctime = current_time(inode); 2737 2738 trans->block_rsv = &fs_info->trans_block_rsv; 2739 ret = btrfs_update_inode(trans, root, inode); 2740 updated_inode = true; 2741 btrfs_end_transaction(trans); 2742 btrfs_btree_balance_dirty(fs_info); 2743 out_free: 2744 btrfs_free_path(path); 2745 btrfs_free_block_rsv(fs_info, rsv); 2746 out: 2747 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2748 &cached_state); 2749 out_only_mutex: 2750 if (!updated_inode && truncated_block && !ret && !err) { 2751 /* 2752 * If we only end up zeroing part of a page, we still need to 2753 * update the inode item, so that all the time fields are 2754 * updated as well as the necessary btrfs inode in memory fields 2755 * for detecting, at fsync time, if the inode isn't yet in the 2756 * log tree or it's there but not up to date. 2757 */ 2758 trans = btrfs_start_transaction(root, 1); 2759 if (IS_ERR(trans)) { 2760 err = PTR_ERR(trans); 2761 } else { 2762 err = btrfs_update_inode(trans, root, inode); 2763 ret = btrfs_end_transaction(trans); 2764 } 2765 } 2766 inode_unlock(inode); 2767 if (ret && !err) 2768 err = ret; 2769 return err; 2770 } 2771 2772 /* Helper structure to record which range is already reserved */ 2773 struct falloc_range { 2774 struct list_head list; 2775 u64 start; 2776 u64 len; 2777 }; 2778 2779 /* 2780 * Helper function to add falloc range 2781 * 2782 * Caller should have locked the larger range of extent containing 2783 * [start, len) 2784 */ 2785 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2786 { 2787 struct falloc_range *prev = NULL; 2788 struct falloc_range *range = NULL; 2789 2790 if (list_empty(head)) 2791 goto insert; 2792 2793 /* 2794 * As fallocate iterate by bytenr order, we only need to check 2795 * the last range. 2796 */ 2797 prev = list_entry(head->prev, struct falloc_range, list); 2798 if (prev->start + prev->len == start) { 2799 prev->len += len; 2800 return 0; 2801 } 2802 insert: 2803 range = kmalloc(sizeof(*range), GFP_KERNEL); 2804 if (!range) 2805 return -ENOMEM; 2806 range->start = start; 2807 range->len = len; 2808 list_add_tail(&range->list, head); 2809 return 0; 2810 } 2811 2812 static int btrfs_fallocate_update_isize(struct inode *inode, 2813 const u64 end, 2814 const int mode) 2815 { 2816 struct btrfs_trans_handle *trans; 2817 struct btrfs_root *root = BTRFS_I(inode)->root; 2818 int ret; 2819 int ret2; 2820 2821 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2822 return 0; 2823 2824 trans = btrfs_start_transaction(root, 1); 2825 if (IS_ERR(trans)) 2826 return PTR_ERR(trans); 2827 2828 inode->i_ctime = current_time(inode); 2829 i_size_write(inode, end); 2830 btrfs_ordered_update_i_size(inode, end, NULL); 2831 ret = btrfs_update_inode(trans, root, inode); 2832 ret2 = btrfs_end_transaction(trans); 2833 2834 return ret ? ret : ret2; 2835 } 2836 2837 enum { 2838 RANGE_BOUNDARY_WRITTEN_EXTENT = 0, 2839 RANGE_BOUNDARY_PREALLOC_EXTENT = 1, 2840 RANGE_BOUNDARY_HOLE = 2, 2841 }; 2842 2843 static int btrfs_zero_range_check_range_boundary(struct inode *inode, 2844 u64 offset) 2845 { 2846 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2847 struct extent_map *em; 2848 int ret; 2849 2850 offset = round_down(offset, sectorsize); 2851 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0); 2852 if (IS_ERR(em)) 2853 return PTR_ERR(em); 2854 2855 if (em->block_start == EXTENT_MAP_HOLE) 2856 ret = RANGE_BOUNDARY_HOLE; 2857 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2858 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2859 else 2860 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2861 2862 free_extent_map(em); 2863 return ret; 2864 } 2865 2866 static int btrfs_zero_range(struct inode *inode, 2867 loff_t offset, 2868 loff_t len, 2869 const int mode) 2870 { 2871 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2872 struct extent_map *em; 2873 struct extent_changeset *data_reserved = NULL; 2874 int ret; 2875 u64 alloc_hint = 0; 2876 const u64 sectorsize = btrfs_inode_sectorsize(inode); 2877 u64 alloc_start = round_down(offset, sectorsize); 2878 u64 alloc_end = round_up(offset + len, sectorsize); 2879 u64 bytes_to_reserve = 0; 2880 bool space_reserved = false; 2881 2882 inode_dio_wait(inode); 2883 2884 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2885 alloc_start, alloc_end - alloc_start, 0); 2886 if (IS_ERR(em)) { 2887 ret = PTR_ERR(em); 2888 goto out; 2889 } 2890 2891 /* 2892 * Avoid hole punching and extent allocation for some cases. More cases 2893 * could be considered, but these are unlikely common and we keep things 2894 * as simple as possible for now. Also, intentionally, if the target 2895 * range contains one or more prealloc extents together with regular 2896 * extents and holes, we drop all the existing extents and allocate a 2897 * new prealloc extent, so that we get a larger contiguous disk extent. 2898 */ 2899 if (em->start <= alloc_start && 2900 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2901 const u64 em_end = em->start + em->len; 2902 2903 if (em_end >= offset + len) { 2904 /* 2905 * The whole range is already a prealloc extent, 2906 * do nothing except updating the inode's i_size if 2907 * needed. 2908 */ 2909 free_extent_map(em); 2910 ret = btrfs_fallocate_update_isize(inode, offset + len, 2911 mode); 2912 goto out; 2913 } 2914 /* 2915 * Part of the range is already a prealloc extent, so operate 2916 * only on the remaining part of the range. 2917 */ 2918 alloc_start = em_end; 2919 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2920 len = offset + len - alloc_start; 2921 offset = alloc_start; 2922 alloc_hint = em->block_start + em->len; 2923 } 2924 free_extent_map(em); 2925 2926 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2927 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2928 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, 2929 alloc_start, sectorsize, 0); 2930 if (IS_ERR(em)) { 2931 ret = PTR_ERR(em); 2932 goto out; 2933 } 2934 2935 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2936 free_extent_map(em); 2937 ret = btrfs_fallocate_update_isize(inode, offset + len, 2938 mode); 2939 goto out; 2940 } 2941 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 2942 free_extent_map(em); 2943 ret = btrfs_truncate_block(inode, offset, len, 0); 2944 if (!ret) 2945 ret = btrfs_fallocate_update_isize(inode, 2946 offset + len, 2947 mode); 2948 return ret; 2949 } 2950 free_extent_map(em); 2951 alloc_start = round_down(offset, sectorsize); 2952 alloc_end = alloc_start + sectorsize; 2953 goto reserve_space; 2954 } 2955 2956 alloc_start = round_up(offset, sectorsize); 2957 alloc_end = round_down(offset + len, sectorsize); 2958 2959 /* 2960 * For unaligned ranges, check the pages at the boundaries, they might 2961 * map to an extent, in which case we need to partially zero them, or 2962 * they might map to a hole, in which case we need our allocation range 2963 * to cover them. 2964 */ 2965 if (!IS_ALIGNED(offset, sectorsize)) { 2966 ret = btrfs_zero_range_check_range_boundary(inode, offset); 2967 if (ret < 0) 2968 goto out; 2969 if (ret == RANGE_BOUNDARY_HOLE) { 2970 alloc_start = round_down(offset, sectorsize); 2971 ret = 0; 2972 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2973 ret = btrfs_truncate_block(inode, offset, 0, 0); 2974 if (ret) 2975 goto out; 2976 } else { 2977 ret = 0; 2978 } 2979 } 2980 2981 if (!IS_ALIGNED(offset + len, sectorsize)) { 2982 ret = btrfs_zero_range_check_range_boundary(inode, 2983 offset + len); 2984 if (ret < 0) 2985 goto out; 2986 if (ret == RANGE_BOUNDARY_HOLE) { 2987 alloc_end = round_up(offset + len, sectorsize); 2988 ret = 0; 2989 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2990 ret = btrfs_truncate_block(inode, offset + len, 0, 1); 2991 if (ret) 2992 goto out; 2993 } else { 2994 ret = 0; 2995 } 2996 } 2997 2998 reserve_space: 2999 if (alloc_start < alloc_end) { 3000 struct extent_state *cached_state = NULL; 3001 const u64 lockstart = alloc_start; 3002 const u64 lockend = alloc_end - 1; 3003 3004 bytes_to_reserve = alloc_end - alloc_start; 3005 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3006 bytes_to_reserve); 3007 if (ret < 0) 3008 goto out; 3009 space_reserved = true; 3010 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 3011 alloc_start, bytes_to_reserve); 3012 if (ret) 3013 goto out; 3014 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3015 &cached_state); 3016 if (ret) 3017 goto out; 3018 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3019 alloc_end - alloc_start, 3020 i_blocksize(inode), 3021 offset + len, &alloc_hint); 3022 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3023 lockend, &cached_state); 3024 /* btrfs_prealloc_file_range releases reserved space on error */ 3025 if (ret) { 3026 space_reserved = false; 3027 goto out; 3028 } 3029 } 3030 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3031 out: 3032 if (ret && space_reserved) 3033 btrfs_free_reserved_data_space(inode, data_reserved, 3034 alloc_start, bytes_to_reserve); 3035 extent_changeset_free(data_reserved); 3036 3037 return ret; 3038 } 3039 3040 static long btrfs_fallocate(struct file *file, int mode, 3041 loff_t offset, loff_t len) 3042 { 3043 struct inode *inode = file_inode(file); 3044 struct extent_state *cached_state = NULL; 3045 struct extent_changeset *data_reserved = NULL; 3046 struct falloc_range *range; 3047 struct falloc_range *tmp; 3048 struct list_head reserve_list; 3049 u64 cur_offset; 3050 u64 last_byte; 3051 u64 alloc_start; 3052 u64 alloc_end; 3053 u64 alloc_hint = 0; 3054 u64 locked_end; 3055 u64 actual_end = 0; 3056 struct extent_map *em; 3057 int blocksize = btrfs_inode_sectorsize(inode); 3058 int ret; 3059 3060 alloc_start = round_down(offset, blocksize); 3061 alloc_end = round_up(offset + len, blocksize); 3062 cur_offset = alloc_start; 3063 3064 /* Make sure we aren't being give some crap mode */ 3065 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3066 FALLOC_FL_ZERO_RANGE)) 3067 return -EOPNOTSUPP; 3068 3069 if (mode & FALLOC_FL_PUNCH_HOLE) 3070 return btrfs_punch_hole(inode, offset, len); 3071 3072 /* 3073 * Only trigger disk allocation, don't trigger qgroup reserve 3074 * 3075 * For qgroup space, it will be checked later. 3076 */ 3077 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 3078 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3079 alloc_end - alloc_start); 3080 if (ret < 0) 3081 return ret; 3082 } 3083 3084 inode_lock(inode); 3085 3086 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3087 ret = inode_newsize_ok(inode, offset + len); 3088 if (ret) 3089 goto out; 3090 } 3091 3092 /* 3093 * TODO: Move these two operations after we have checked 3094 * accurate reserved space, or fallocate can still fail but 3095 * with page truncated or size expanded. 3096 * 3097 * But that's a minor problem and won't do much harm BTW. 3098 */ 3099 if (alloc_start > inode->i_size) { 3100 ret = btrfs_cont_expand(inode, i_size_read(inode), 3101 alloc_start); 3102 if (ret) 3103 goto out; 3104 } else if (offset + len > inode->i_size) { 3105 /* 3106 * If we are fallocating from the end of the file onward we 3107 * need to zero out the end of the block if i_size lands in the 3108 * middle of a block. 3109 */ 3110 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 3111 if (ret) 3112 goto out; 3113 } 3114 3115 /* 3116 * wait for ordered IO before we have any locks. We'll loop again 3117 * below with the locks held. 3118 */ 3119 ret = btrfs_wait_ordered_range(inode, alloc_start, 3120 alloc_end - alloc_start); 3121 if (ret) 3122 goto out; 3123 3124 if (mode & FALLOC_FL_ZERO_RANGE) { 3125 ret = btrfs_zero_range(inode, offset, len, mode); 3126 inode_unlock(inode); 3127 return ret; 3128 } 3129 3130 locked_end = alloc_end - 1; 3131 while (1) { 3132 struct btrfs_ordered_extent *ordered; 3133 3134 /* the extent lock is ordered inside the running 3135 * transaction 3136 */ 3137 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3138 locked_end, &cached_state); 3139 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end); 3140 3141 if (ordered && 3142 ordered->file_offset + ordered->len > alloc_start && 3143 ordered->file_offset < alloc_end) { 3144 btrfs_put_ordered_extent(ordered); 3145 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3146 alloc_start, locked_end, 3147 &cached_state); 3148 /* 3149 * we can't wait on the range with the transaction 3150 * running or with the extent lock held 3151 */ 3152 ret = btrfs_wait_ordered_range(inode, alloc_start, 3153 alloc_end - alloc_start); 3154 if (ret) 3155 goto out; 3156 } else { 3157 if (ordered) 3158 btrfs_put_ordered_extent(ordered); 3159 break; 3160 } 3161 } 3162 3163 /* First, check if we exceed the qgroup limit */ 3164 INIT_LIST_HEAD(&reserve_list); 3165 while (cur_offset < alloc_end) { 3166 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3167 alloc_end - cur_offset, 0); 3168 if (IS_ERR(em)) { 3169 ret = PTR_ERR(em); 3170 break; 3171 } 3172 last_byte = min(extent_map_end(em), alloc_end); 3173 actual_end = min_t(u64, extent_map_end(em), offset + len); 3174 last_byte = ALIGN(last_byte, blocksize); 3175 if (em->block_start == EXTENT_MAP_HOLE || 3176 (cur_offset >= inode->i_size && 3177 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3178 ret = add_falloc_range(&reserve_list, cur_offset, 3179 last_byte - cur_offset); 3180 if (ret < 0) { 3181 free_extent_map(em); 3182 break; 3183 } 3184 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, 3185 cur_offset, last_byte - cur_offset); 3186 if (ret < 0) { 3187 free_extent_map(em); 3188 break; 3189 } 3190 } else { 3191 /* 3192 * Do not need to reserve unwritten extent for this 3193 * range, free reserved data space first, otherwise 3194 * it'll result in false ENOSPC error. 3195 */ 3196 btrfs_free_reserved_data_space(inode, data_reserved, 3197 cur_offset, last_byte - cur_offset); 3198 } 3199 free_extent_map(em); 3200 cur_offset = last_byte; 3201 } 3202 3203 /* 3204 * If ret is still 0, means we're OK to fallocate. 3205 * Or just cleanup the list and exit. 3206 */ 3207 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3208 if (!ret) 3209 ret = btrfs_prealloc_file_range(inode, mode, 3210 range->start, 3211 range->len, i_blocksize(inode), 3212 offset + len, &alloc_hint); 3213 else 3214 btrfs_free_reserved_data_space(inode, 3215 data_reserved, range->start, 3216 range->len); 3217 list_del(&range->list); 3218 kfree(range); 3219 } 3220 if (ret < 0) 3221 goto out_unlock; 3222 3223 /* 3224 * We didn't need to allocate any more space, but we still extended the 3225 * size of the file so we need to update i_size and the inode item. 3226 */ 3227 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3228 out_unlock: 3229 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3230 &cached_state); 3231 out: 3232 inode_unlock(inode); 3233 /* Let go of our reservation. */ 3234 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3235 btrfs_free_reserved_data_space(inode, data_reserved, 3236 alloc_start, alloc_end - cur_offset); 3237 extent_changeset_free(data_reserved); 3238 return ret; 3239 } 3240 3241 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 3242 { 3243 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3244 struct extent_map *em = NULL; 3245 struct extent_state *cached_state = NULL; 3246 u64 lockstart; 3247 u64 lockend; 3248 u64 start; 3249 u64 len; 3250 int ret = 0; 3251 3252 if (inode->i_size == 0) 3253 return -ENXIO; 3254 3255 /* 3256 * *offset can be negative, in this case we start finding DATA/HOLE from 3257 * the very start of the file. 3258 */ 3259 start = max_t(loff_t, 0, *offset); 3260 3261 lockstart = round_down(start, fs_info->sectorsize); 3262 lockend = round_up(i_size_read(inode), 3263 fs_info->sectorsize); 3264 if (lockend <= lockstart) 3265 lockend = lockstart + fs_info->sectorsize; 3266 lockend--; 3267 len = lockend - lockstart + 1; 3268 3269 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3270 &cached_state); 3271 3272 while (start < inode->i_size) { 3273 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, 3274 start, len, 0); 3275 if (IS_ERR(em)) { 3276 ret = PTR_ERR(em); 3277 em = NULL; 3278 break; 3279 } 3280 3281 if (whence == SEEK_HOLE && 3282 (em->block_start == EXTENT_MAP_HOLE || 3283 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3284 break; 3285 else if (whence == SEEK_DATA && 3286 (em->block_start != EXTENT_MAP_HOLE && 3287 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3288 break; 3289 3290 start = em->start + em->len; 3291 free_extent_map(em); 3292 em = NULL; 3293 cond_resched(); 3294 } 3295 free_extent_map(em); 3296 if (!ret) { 3297 if (whence == SEEK_DATA && start >= inode->i_size) 3298 ret = -ENXIO; 3299 else 3300 *offset = min_t(loff_t, start, inode->i_size); 3301 } 3302 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3303 &cached_state); 3304 return ret; 3305 } 3306 3307 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3308 { 3309 struct inode *inode = file->f_mapping->host; 3310 int ret; 3311 3312 inode_lock(inode); 3313 switch (whence) { 3314 case SEEK_END: 3315 case SEEK_CUR: 3316 offset = generic_file_llseek(file, offset, whence); 3317 goto out; 3318 case SEEK_DATA: 3319 case SEEK_HOLE: 3320 if (offset >= i_size_read(inode)) { 3321 inode_unlock(inode); 3322 return -ENXIO; 3323 } 3324 3325 ret = find_desired_extent(inode, &offset, whence); 3326 if (ret) { 3327 inode_unlock(inode); 3328 return ret; 3329 } 3330 } 3331 3332 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3333 out: 3334 inode_unlock(inode); 3335 return offset; 3336 } 3337 3338 static int btrfs_file_open(struct inode *inode, struct file *filp) 3339 { 3340 filp->f_mode |= FMODE_NOWAIT; 3341 return generic_file_open(inode, filp); 3342 } 3343 3344 const struct file_operations btrfs_file_operations = { 3345 .llseek = btrfs_file_llseek, 3346 .read_iter = generic_file_read_iter, 3347 .splice_read = generic_file_splice_read, 3348 .write_iter = btrfs_file_write_iter, 3349 .mmap = btrfs_file_mmap, 3350 .open = btrfs_file_open, 3351 .release = btrfs_release_file, 3352 .fsync = btrfs_sync_file, 3353 .fallocate = btrfs_fallocate, 3354 .unlocked_ioctl = btrfs_ioctl, 3355 #ifdef CONFIG_COMPAT 3356 .compat_ioctl = btrfs_compat_ioctl, 3357 #endif 3358 .clone_file_range = btrfs_clone_file_range, 3359 .dedupe_file_range = btrfs_dedupe_file_range, 3360 }; 3361 3362 void __cold btrfs_auto_defrag_exit(void) 3363 { 3364 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3365 } 3366 3367 int __init btrfs_auto_defrag_init(void) 3368 { 3369 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3370 sizeof(struct inode_defrag), 0, 3371 SLAB_MEM_SPREAD, 3372 NULL); 3373 if (!btrfs_inode_defrag_cachep) 3374 return -ENOMEM; 3375 3376 return 0; 3377 } 3378 3379 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3380 { 3381 int ret; 3382 3383 /* 3384 * So with compression we will find and lock a dirty page and clear the 3385 * first one as dirty, setup an async extent, and immediately return 3386 * with the entire range locked but with nobody actually marked with 3387 * writeback. So we can't just filemap_write_and_wait_range() and 3388 * expect it to work since it will just kick off a thread to do the 3389 * actual work. So we need to call filemap_fdatawrite_range _again_ 3390 * since it will wait on the page lock, which won't be unlocked until 3391 * after the pages have been marked as writeback and so we're good to go 3392 * from there. We have to do this otherwise we'll miss the ordered 3393 * extents and that results in badness. Please Josef, do not think you 3394 * know better and pull this out at some point in the future, it is 3395 * right and you are wrong. 3396 */ 3397 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3398 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3399 &BTRFS_I(inode)->runtime_flags)) 3400 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3401 3402 return ret; 3403 } 3404