xref: /linux/fs/btrfs/file.c (revision 856e7c4b619af622d56b3b454f7bec32a170ac99)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/time.h>
10 #include <linux/init.h>
11 #include <linux/string.h>
12 #include <linux/backing-dev.h>
13 #include <linux/mpage.h>
14 #include <linux/falloc.h>
15 #include <linux/swap.h>
16 #include <linux/writeback.h>
17 #include <linux/compat.h>
18 #include <linux/slab.h>
19 #include <linux/btrfs.h>
20 #include <linux/uio.h>
21 #include <linux/iversion.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "print-tree.h"
27 #include "tree-log.h"
28 #include "locking.h"
29 #include "volumes.h"
30 #include "qgroup.h"
31 #include "compression.h"
32 
33 static struct kmem_cache *btrfs_inode_defrag_cachep;
34 /*
35  * when auto defrag is enabled we
36  * queue up these defrag structs to remember which
37  * inodes need defragging passes
38  */
39 struct inode_defrag {
40 	struct rb_node rb_node;
41 	/* objectid */
42 	u64 ino;
43 	/*
44 	 * transid where the defrag was added, we search for
45 	 * extents newer than this
46 	 */
47 	u64 transid;
48 
49 	/* root objectid */
50 	u64 root;
51 
52 	/* last offset we were able to defrag */
53 	u64 last_offset;
54 
55 	/* if we've wrapped around back to zero once already */
56 	int cycled;
57 };
58 
59 static int __compare_inode_defrag(struct inode_defrag *defrag1,
60 				  struct inode_defrag *defrag2)
61 {
62 	if (defrag1->root > defrag2->root)
63 		return 1;
64 	else if (defrag1->root < defrag2->root)
65 		return -1;
66 	else if (defrag1->ino > defrag2->ino)
67 		return 1;
68 	else if (defrag1->ino < defrag2->ino)
69 		return -1;
70 	else
71 		return 0;
72 }
73 
74 /* pop a record for an inode into the defrag tree.  The lock
75  * must be held already
76  *
77  * If you're inserting a record for an older transid than an
78  * existing record, the transid already in the tree is lowered
79  *
80  * If an existing record is found the defrag item you
81  * pass in is freed
82  */
83 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
84 				    struct inode_defrag *defrag)
85 {
86 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
87 	struct inode_defrag *entry;
88 	struct rb_node **p;
89 	struct rb_node *parent = NULL;
90 	int ret;
91 
92 	p = &fs_info->defrag_inodes.rb_node;
93 	while (*p) {
94 		parent = *p;
95 		entry = rb_entry(parent, struct inode_defrag, rb_node);
96 
97 		ret = __compare_inode_defrag(defrag, entry);
98 		if (ret < 0)
99 			p = &parent->rb_left;
100 		else if (ret > 0)
101 			p = &parent->rb_right;
102 		else {
103 			/* if we're reinserting an entry for
104 			 * an old defrag run, make sure to
105 			 * lower the transid of our existing record
106 			 */
107 			if (defrag->transid < entry->transid)
108 				entry->transid = defrag->transid;
109 			if (defrag->last_offset > entry->last_offset)
110 				entry->last_offset = defrag->last_offset;
111 			return -EEXIST;
112 		}
113 	}
114 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
115 	rb_link_node(&defrag->rb_node, parent, p);
116 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
117 	return 0;
118 }
119 
120 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
121 {
122 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
123 		return 0;
124 
125 	if (btrfs_fs_closing(fs_info))
126 		return 0;
127 
128 	return 1;
129 }
130 
131 /*
132  * insert a defrag record for this inode if auto defrag is
133  * enabled
134  */
135 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
136 			   struct btrfs_inode *inode)
137 {
138 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
139 	struct btrfs_root *root = inode->root;
140 	struct inode_defrag *defrag;
141 	u64 transid;
142 	int ret;
143 
144 	if (!__need_auto_defrag(fs_info))
145 		return 0;
146 
147 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
148 		return 0;
149 
150 	if (trans)
151 		transid = trans->transid;
152 	else
153 		transid = inode->root->last_trans;
154 
155 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
156 	if (!defrag)
157 		return -ENOMEM;
158 
159 	defrag->ino = btrfs_ino(inode);
160 	defrag->transid = transid;
161 	defrag->root = root->root_key.objectid;
162 
163 	spin_lock(&fs_info->defrag_inodes_lock);
164 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
165 		/*
166 		 * If we set IN_DEFRAG flag and evict the inode from memory,
167 		 * and then re-read this inode, this new inode doesn't have
168 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
169 		 */
170 		ret = __btrfs_add_inode_defrag(inode, defrag);
171 		if (ret)
172 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
173 	} else {
174 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
175 	}
176 	spin_unlock(&fs_info->defrag_inodes_lock);
177 	return 0;
178 }
179 
180 /*
181  * Requeue the defrag object. If there is a defrag object that points to
182  * the same inode in the tree, we will merge them together (by
183  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
184  */
185 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
186 				       struct inode_defrag *defrag)
187 {
188 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
189 	int ret;
190 
191 	if (!__need_auto_defrag(fs_info))
192 		goto out;
193 
194 	/*
195 	 * Here we don't check the IN_DEFRAG flag, because we need merge
196 	 * them together.
197 	 */
198 	spin_lock(&fs_info->defrag_inodes_lock);
199 	ret = __btrfs_add_inode_defrag(inode, defrag);
200 	spin_unlock(&fs_info->defrag_inodes_lock);
201 	if (ret)
202 		goto out;
203 	return;
204 out:
205 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
206 }
207 
208 /*
209  * pick the defragable inode that we want, if it doesn't exist, we will get
210  * the next one.
211  */
212 static struct inode_defrag *
213 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
214 {
215 	struct inode_defrag *entry = NULL;
216 	struct inode_defrag tmp;
217 	struct rb_node *p;
218 	struct rb_node *parent = NULL;
219 	int ret;
220 
221 	tmp.ino = ino;
222 	tmp.root = root;
223 
224 	spin_lock(&fs_info->defrag_inodes_lock);
225 	p = fs_info->defrag_inodes.rb_node;
226 	while (p) {
227 		parent = p;
228 		entry = rb_entry(parent, struct inode_defrag, rb_node);
229 
230 		ret = __compare_inode_defrag(&tmp, entry);
231 		if (ret < 0)
232 			p = parent->rb_left;
233 		else if (ret > 0)
234 			p = parent->rb_right;
235 		else
236 			goto out;
237 	}
238 
239 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
240 		parent = rb_next(parent);
241 		if (parent)
242 			entry = rb_entry(parent, struct inode_defrag, rb_node);
243 		else
244 			entry = NULL;
245 	}
246 out:
247 	if (entry)
248 		rb_erase(parent, &fs_info->defrag_inodes);
249 	spin_unlock(&fs_info->defrag_inodes_lock);
250 	return entry;
251 }
252 
253 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
254 {
255 	struct inode_defrag *defrag;
256 	struct rb_node *node;
257 
258 	spin_lock(&fs_info->defrag_inodes_lock);
259 	node = rb_first(&fs_info->defrag_inodes);
260 	while (node) {
261 		rb_erase(node, &fs_info->defrag_inodes);
262 		defrag = rb_entry(node, struct inode_defrag, rb_node);
263 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
264 
265 		cond_resched_lock(&fs_info->defrag_inodes_lock);
266 
267 		node = rb_first(&fs_info->defrag_inodes);
268 	}
269 	spin_unlock(&fs_info->defrag_inodes_lock);
270 }
271 
272 #define BTRFS_DEFRAG_BATCH	1024
273 
274 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
275 				    struct inode_defrag *defrag)
276 {
277 	struct btrfs_root *inode_root;
278 	struct inode *inode;
279 	struct btrfs_key key;
280 	struct btrfs_ioctl_defrag_range_args range;
281 	int num_defrag;
282 	int index;
283 	int ret;
284 
285 	/* get the inode */
286 	key.objectid = defrag->root;
287 	key.type = BTRFS_ROOT_ITEM_KEY;
288 	key.offset = (u64)-1;
289 
290 	index = srcu_read_lock(&fs_info->subvol_srcu);
291 
292 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
293 	if (IS_ERR(inode_root)) {
294 		ret = PTR_ERR(inode_root);
295 		goto cleanup;
296 	}
297 
298 	key.objectid = defrag->ino;
299 	key.type = BTRFS_INODE_ITEM_KEY;
300 	key.offset = 0;
301 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
302 	if (IS_ERR(inode)) {
303 		ret = PTR_ERR(inode);
304 		goto cleanup;
305 	}
306 	srcu_read_unlock(&fs_info->subvol_srcu, index);
307 
308 	/* do a chunk of defrag */
309 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
310 	memset(&range, 0, sizeof(range));
311 	range.len = (u64)-1;
312 	range.start = defrag->last_offset;
313 
314 	sb_start_write(fs_info->sb);
315 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
316 				       BTRFS_DEFRAG_BATCH);
317 	sb_end_write(fs_info->sb);
318 	/*
319 	 * if we filled the whole defrag batch, there
320 	 * must be more work to do.  Queue this defrag
321 	 * again
322 	 */
323 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
324 		defrag->last_offset = range.start;
325 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
326 	} else if (defrag->last_offset && !defrag->cycled) {
327 		/*
328 		 * we didn't fill our defrag batch, but
329 		 * we didn't start at zero.  Make sure we loop
330 		 * around to the start of the file.
331 		 */
332 		defrag->last_offset = 0;
333 		defrag->cycled = 1;
334 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
335 	} else {
336 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
337 	}
338 
339 	iput(inode);
340 	return 0;
341 cleanup:
342 	srcu_read_unlock(&fs_info->subvol_srcu, index);
343 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
344 	return ret;
345 }
346 
347 /*
348  * run through the list of inodes in the FS that need
349  * defragging
350  */
351 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
352 {
353 	struct inode_defrag *defrag;
354 	u64 first_ino = 0;
355 	u64 root_objectid = 0;
356 
357 	atomic_inc(&fs_info->defrag_running);
358 	while (1) {
359 		/* Pause the auto defragger. */
360 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
361 			     &fs_info->fs_state))
362 			break;
363 
364 		if (!__need_auto_defrag(fs_info))
365 			break;
366 
367 		/* find an inode to defrag */
368 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
369 						 first_ino);
370 		if (!defrag) {
371 			if (root_objectid || first_ino) {
372 				root_objectid = 0;
373 				first_ino = 0;
374 				continue;
375 			} else {
376 				break;
377 			}
378 		}
379 
380 		first_ino = defrag->ino + 1;
381 		root_objectid = defrag->root;
382 
383 		__btrfs_run_defrag_inode(fs_info, defrag);
384 	}
385 	atomic_dec(&fs_info->defrag_running);
386 
387 	/*
388 	 * during unmount, we use the transaction_wait queue to
389 	 * wait for the defragger to stop
390 	 */
391 	wake_up(&fs_info->transaction_wait);
392 	return 0;
393 }
394 
395 /* simple helper to fault in pages and copy.  This should go away
396  * and be replaced with calls into generic code.
397  */
398 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
399 					 struct page **prepared_pages,
400 					 struct iov_iter *i)
401 {
402 	size_t copied = 0;
403 	size_t total_copied = 0;
404 	int pg = 0;
405 	int offset = pos & (PAGE_SIZE - 1);
406 
407 	while (write_bytes > 0) {
408 		size_t count = min_t(size_t,
409 				     PAGE_SIZE - offset, write_bytes);
410 		struct page *page = prepared_pages[pg];
411 		/*
412 		 * Copy data from userspace to the current page
413 		 */
414 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
415 
416 		/* Flush processor's dcache for this page */
417 		flush_dcache_page(page);
418 
419 		/*
420 		 * if we get a partial write, we can end up with
421 		 * partially up to date pages.  These add
422 		 * a lot of complexity, so make sure they don't
423 		 * happen by forcing this copy to be retried.
424 		 *
425 		 * The rest of the btrfs_file_write code will fall
426 		 * back to page at a time copies after we return 0.
427 		 */
428 		if (!PageUptodate(page) && copied < count)
429 			copied = 0;
430 
431 		iov_iter_advance(i, copied);
432 		write_bytes -= copied;
433 		total_copied += copied;
434 
435 		/* Return to btrfs_file_write_iter to fault page */
436 		if (unlikely(copied == 0))
437 			break;
438 
439 		if (copied < PAGE_SIZE - offset) {
440 			offset += copied;
441 		} else {
442 			pg++;
443 			offset = 0;
444 		}
445 	}
446 	return total_copied;
447 }
448 
449 /*
450  * unlocks pages after btrfs_file_write is done with them
451  */
452 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
453 {
454 	size_t i;
455 	for (i = 0; i < num_pages; i++) {
456 		/* page checked is some magic around finding pages that
457 		 * have been modified without going through btrfs_set_page_dirty
458 		 * clear it here. There should be no need to mark the pages
459 		 * accessed as prepare_pages should have marked them accessed
460 		 * in prepare_pages via find_or_create_page()
461 		 */
462 		ClearPageChecked(pages[i]);
463 		unlock_page(pages[i]);
464 		put_page(pages[i]);
465 	}
466 }
467 
468 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
469 					 const u64 start,
470 					 const u64 len,
471 					 struct extent_state **cached_state)
472 {
473 	u64 search_start = start;
474 	const u64 end = start + len - 1;
475 
476 	while (search_start < end) {
477 		const u64 search_len = end - search_start + 1;
478 		struct extent_map *em;
479 		u64 em_len;
480 		int ret = 0;
481 
482 		em = btrfs_get_extent(inode, NULL, 0, search_start,
483 				      search_len, 0);
484 		if (IS_ERR(em))
485 			return PTR_ERR(em);
486 
487 		if (em->block_start != EXTENT_MAP_HOLE)
488 			goto next;
489 
490 		em_len = em->len;
491 		if (em->start < search_start)
492 			em_len -= search_start - em->start;
493 		if (em_len > search_len)
494 			em_len = search_len;
495 
496 		ret = set_extent_bit(&inode->io_tree, search_start,
497 				     search_start + em_len - 1,
498 				     EXTENT_DELALLOC_NEW,
499 				     NULL, cached_state, GFP_NOFS);
500 next:
501 		search_start = extent_map_end(em);
502 		free_extent_map(em);
503 		if (ret)
504 			return ret;
505 	}
506 	return 0;
507 }
508 
509 /*
510  * after copy_from_user, pages need to be dirtied and we need to make
511  * sure holes are created between the current EOF and the start of
512  * any next extents (if required).
513  *
514  * this also makes the decision about creating an inline extent vs
515  * doing real data extents, marking pages dirty and delalloc as required.
516  */
517 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
518 		      size_t num_pages, loff_t pos, size_t write_bytes,
519 		      struct extent_state **cached)
520 {
521 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
522 	int err = 0;
523 	int i;
524 	u64 num_bytes;
525 	u64 start_pos;
526 	u64 end_of_last_block;
527 	u64 end_pos = pos + write_bytes;
528 	loff_t isize = i_size_read(inode);
529 	unsigned int extra_bits = 0;
530 
531 	start_pos = pos & ~((u64) fs_info->sectorsize - 1);
532 	num_bytes = round_up(write_bytes + pos - start_pos,
533 			     fs_info->sectorsize);
534 
535 	end_of_last_block = start_pos + num_bytes - 1;
536 
537 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
538 		if (start_pos >= isize &&
539 		    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
540 			/*
541 			 * There can't be any extents following eof in this case
542 			 * so just set the delalloc new bit for the range
543 			 * directly.
544 			 */
545 			extra_bits |= EXTENT_DELALLOC_NEW;
546 		} else {
547 			err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
548 							    start_pos,
549 							    num_bytes, cached);
550 			if (err)
551 				return err;
552 		}
553 	}
554 
555 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
556 					extra_bits, cached, 0);
557 	if (err)
558 		return err;
559 
560 	for (i = 0; i < num_pages; i++) {
561 		struct page *p = pages[i];
562 		SetPageUptodate(p);
563 		ClearPageChecked(p);
564 		set_page_dirty(p);
565 	}
566 
567 	/*
568 	 * we've only changed i_size in ram, and we haven't updated
569 	 * the disk i_size.  There is no need to log the inode
570 	 * at this time.
571 	 */
572 	if (end_pos > isize)
573 		i_size_write(inode, end_pos);
574 	return 0;
575 }
576 
577 /*
578  * this drops all the extents in the cache that intersect the range
579  * [start, end].  Existing extents are split as required.
580  */
581 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
582 			     int skip_pinned)
583 {
584 	struct extent_map *em;
585 	struct extent_map *split = NULL;
586 	struct extent_map *split2 = NULL;
587 	struct extent_map_tree *em_tree = &inode->extent_tree;
588 	u64 len = end - start + 1;
589 	u64 gen;
590 	int ret;
591 	int testend = 1;
592 	unsigned long flags;
593 	int compressed = 0;
594 	bool modified;
595 
596 	WARN_ON(end < start);
597 	if (end == (u64)-1) {
598 		len = (u64)-1;
599 		testend = 0;
600 	}
601 	while (1) {
602 		int no_splits = 0;
603 
604 		modified = false;
605 		if (!split)
606 			split = alloc_extent_map();
607 		if (!split2)
608 			split2 = alloc_extent_map();
609 		if (!split || !split2)
610 			no_splits = 1;
611 
612 		write_lock(&em_tree->lock);
613 		em = lookup_extent_mapping(em_tree, start, len);
614 		if (!em) {
615 			write_unlock(&em_tree->lock);
616 			break;
617 		}
618 		flags = em->flags;
619 		gen = em->generation;
620 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
621 			if (testend && em->start + em->len >= start + len) {
622 				free_extent_map(em);
623 				write_unlock(&em_tree->lock);
624 				break;
625 			}
626 			start = em->start + em->len;
627 			if (testend)
628 				len = start + len - (em->start + em->len);
629 			free_extent_map(em);
630 			write_unlock(&em_tree->lock);
631 			continue;
632 		}
633 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
634 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
635 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
636 		modified = !list_empty(&em->list);
637 		if (no_splits)
638 			goto next;
639 
640 		if (em->start < start) {
641 			split->start = em->start;
642 			split->len = start - em->start;
643 
644 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
645 				split->orig_start = em->orig_start;
646 				split->block_start = em->block_start;
647 
648 				if (compressed)
649 					split->block_len = em->block_len;
650 				else
651 					split->block_len = split->len;
652 				split->orig_block_len = max(split->block_len,
653 						em->orig_block_len);
654 				split->ram_bytes = em->ram_bytes;
655 			} else {
656 				split->orig_start = split->start;
657 				split->block_len = 0;
658 				split->block_start = em->block_start;
659 				split->orig_block_len = 0;
660 				split->ram_bytes = split->len;
661 			}
662 
663 			split->generation = gen;
664 			split->bdev = em->bdev;
665 			split->flags = flags;
666 			split->compress_type = em->compress_type;
667 			replace_extent_mapping(em_tree, em, split, modified);
668 			free_extent_map(split);
669 			split = split2;
670 			split2 = NULL;
671 		}
672 		if (testend && em->start + em->len > start + len) {
673 			u64 diff = start + len - em->start;
674 
675 			split->start = start + len;
676 			split->len = em->start + em->len - (start + len);
677 			split->bdev = em->bdev;
678 			split->flags = flags;
679 			split->compress_type = em->compress_type;
680 			split->generation = gen;
681 
682 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
683 				split->orig_block_len = max(em->block_len,
684 						    em->orig_block_len);
685 
686 				split->ram_bytes = em->ram_bytes;
687 				if (compressed) {
688 					split->block_len = em->block_len;
689 					split->block_start = em->block_start;
690 					split->orig_start = em->orig_start;
691 				} else {
692 					split->block_len = split->len;
693 					split->block_start = em->block_start
694 						+ diff;
695 					split->orig_start = em->orig_start;
696 				}
697 			} else {
698 				split->ram_bytes = split->len;
699 				split->orig_start = split->start;
700 				split->block_len = 0;
701 				split->block_start = em->block_start;
702 				split->orig_block_len = 0;
703 			}
704 
705 			if (extent_map_in_tree(em)) {
706 				replace_extent_mapping(em_tree, em, split,
707 						       modified);
708 			} else {
709 				ret = add_extent_mapping(em_tree, split,
710 							 modified);
711 				ASSERT(ret == 0); /* Logic error */
712 			}
713 			free_extent_map(split);
714 			split = NULL;
715 		}
716 next:
717 		if (extent_map_in_tree(em))
718 			remove_extent_mapping(em_tree, em);
719 		write_unlock(&em_tree->lock);
720 
721 		/* once for us */
722 		free_extent_map(em);
723 		/* once for the tree*/
724 		free_extent_map(em);
725 	}
726 	if (split)
727 		free_extent_map(split);
728 	if (split2)
729 		free_extent_map(split2);
730 }
731 
732 /*
733  * this is very complex, but the basic idea is to drop all extents
734  * in the range start - end.  hint_block is filled in with a block number
735  * that would be a good hint to the block allocator for this file.
736  *
737  * If an extent intersects the range but is not entirely inside the range
738  * it is either truncated or split.  Anything entirely inside the range
739  * is deleted from the tree.
740  */
741 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
742 			 struct btrfs_root *root, struct inode *inode,
743 			 struct btrfs_path *path, u64 start, u64 end,
744 			 u64 *drop_end, int drop_cache,
745 			 int replace_extent,
746 			 u32 extent_item_size,
747 			 int *key_inserted)
748 {
749 	struct btrfs_fs_info *fs_info = root->fs_info;
750 	struct extent_buffer *leaf;
751 	struct btrfs_file_extent_item *fi;
752 	struct btrfs_key key;
753 	struct btrfs_key new_key;
754 	u64 ino = btrfs_ino(BTRFS_I(inode));
755 	u64 search_start = start;
756 	u64 disk_bytenr = 0;
757 	u64 num_bytes = 0;
758 	u64 extent_offset = 0;
759 	u64 extent_end = 0;
760 	u64 last_end = start;
761 	int del_nr = 0;
762 	int del_slot = 0;
763 	int extent_type;
764 	int recow;
765 	int ret;
766 	int modify_tree = -1;
767 	int update_refs;
768 	int found = 0;
769 	int leafs_visited = 0;
770 
771 	if (drop_cache)
772 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
773 
774 	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
775 		modify_tree = 0;
776 
777 	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
778 		       root == fs_info->tree_root);
779 	while (1) {
780 		recow = 0;
781 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
782 					       search_start, modify_tree);
783 		if (ret < 0)
784 			break;
785 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
786 			leaf = path->nodes[0];
787 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
788 			if (key.objectid == ino &&
789 			    key.type == BTRFS_EXTENT_DATA_KEY)
790 				path->slots[0]--;
791 		}
792 		ret = 0;
793 		leafs_visited++;
794 next_slot:
795 		leaf = path->nodes[0];
796 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
797 			BUG_ON(del_nr > 0);
798 			ret = btrfs_next_leaf(root, path);
799 			if (ret < 0)
800 				break;
801 			if (ret > 0) {
802 				ret = 0;
803 				break;
804 			}
805 			leafs_visited++;
806 			leaf = path->nodes[0];
807 			recow = 1;
808 		}
809 
810 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
811 
812 		if (key.objectid > ino)
813 			break;
814 		if (WARN_ON_ONCE(key.objectid < ino) ||
815 		    key.type < BTRFS_EXTENT_DATA_KEY) {
816 			ASSERT(del_nr == 0);
817 			path->slots[0]++;
818 			goto next_slot;
819 		}
820 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
821 			break;
822 
823 		fi = btrfs_item_ptr(leaf, path->slots[0],
824 				    struct btrfs_file_extent_item);
825 		extent_type = btrfs_file_extent_type(leaf, fi);
826 
827 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
828 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
829 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
830 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
831 			extent_offset = btrfs_file_extent_offset(leaf, fi);
832 			extent_end = key.offset +
833 				btrfs_file_extent_num_bytes(leaf, fi);
834 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
835 			extent_end = key.offset +
836 				btrfs_file_extent_inline_len(leaf,
837 						     path->slots[0], fi);
838 		} else {
839 			/* can't happen */
840 			BUG();
841 		}
842 
843 		/*
844 		 * Don't skip extent items representing 0 byte lengths. They
845 		 * used to be created (bug) if while punching holes we hit
846 		 * -ENOSPC condition. So if we find one here, just ensure we
847 		 * delete it, otherwise we would insert a new file extent item
848 		 * with the same key (offset) as that 0 bytes length file
849 		 * extent item in the call to setup_items_for_insert() later
850 		 * in this function.
851 		 */
852 		if (extent_end == key.offset && extent_end >= search_start) {
853 			last_end = extent_end;
854 			goto delete_extent_item;
855 		}
856 
857 		if (extent_end <= search_start) {
858 			path->slots[0]++;
859 			goto next_slot;
860 		}
861 
862 		found = 1;
863 		search_start = max(key.offset, start);
864 		if (recow || !modify_tree) {
865 			modify_tree = -1;
866 			btrfs_release_path(path);
867 			continue;
868 		}
869 
870 		/*
871 		 *     | - range to drop - |
872 		 *  | -------- extent -------- |
873 		 */
874 		if (start > key.offset && end < extent_end) {
875 			BUG_ON(del_nr > 0);
876 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
877 				ret = -EOPNOTSUPP;
878 				break;
879 			}
880 
881 			memcpy(&new_key, &key, sizeof(new_key));
882 			new_key.offset = start;
883 			ret = btrfs_duplicate_item(trans, root, path,
884 						   &new_key);
885 			if (ret == -EAGAIN) {
886 				btrfs_release_path(path);
887 				continue;
888 			}
889 			if (ret < 0)
890 				break;
891 
892 			leaf = path->nodes[0];
893 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
894 					    struct btrfs_file_extent_item);
895 			btrfs_set_file_extent_num_bytes(leaf, fi,
896 							start - key.offset);
897 
898 			fi = btrfs_item_ptr(leaf, path->slots[0],
899 					    struct btrfs_file_extent_item);
900 
901 			extent_offset += start - key.offset;
902 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
903 			btrfs_set_file_extent_num_bytes(leaf, fi,
904 							extent_end - start);
905 			btrfs_mark_buffer_dirty(leaf);
906 
907 			if (update_refs && disk_bytenr > 0) {
908 				ret = btrfs_inc_extent_ref(trans, root,
909 						disk_bytenr, num_bytes, 0,
910 						root->root_key.objectid,
911 						new_key.objectid,
912 						start - extent_offset);
913 				BUG_ON(ret); /* -ENOMEM */
914 			}
915 			key.offset = start;
916 		}
917 		/*
918 		 * From here on out we will have actually dropped something, so
919 		 * last_end can be updated.
920 		 */
921 		last_end = extent_end;
922 
923 		/*
924 		 *  | ---- range to drop ----- |
925 		 *      | -------- extent -------- |
926 		 */
927 		if (start <= key.offset && end < extent_end) {
928 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
929 				ret = -EOPNOTSUPP;
930 				break;
931 			}
932 
933 			memcpy(&new_key, &key, sizeof(new_key));
934 			new_key.offset = end;
935 			btrfs_set_item_key_safe(fs_info, path, &new_key);
936 
937 			extent_offset += end - key.offset;
938 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
939 			btrfs_set_file_extent_num_bytes(leaf, fi,
940 							extent_end - end);
941 			btrfs_mark_buffer_dirty(leaf);
942 			if (update_refs && disk_bytenr > 0)
943 				inode_sub_bytes(inode, end - key.offset);
944 			break;
945 		}
946 
947 		search_start = extent_end;
948 		/*
949 		 *       | ---- range to drop ----- |
950 		 *  | -------- extent -------- |
951 		 */
952 		if (start > key.offset && end >= extent_end) {
953 			BUG_ON(del_nr > 0);
954 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
955 				ret = -EOPNOTSUPP;
956 				break;
957 			}
958 
959 			btrfs_set_file_extent_num_bytes(leaf, fi,
960 							start - key.offset);
961 			btrfs_mark_buffer_dirty(leaf);
962 			if (update_refs && disk_bytenr > 0)
963 				inode_sub_bytes(inode, extent_end - start);
964 			if (end == extent_end)
965 				break;
966 
967 			path->slots[0]++;
968 			goto next_slot;
969 		}
970 
971 		/*
972 		 *  | ---- range to drop ----- |
973 		 *    | ------ extent ------ |
974 		 */
975 		if (start <= key.offset && end >= extent_end) {
976 delete_extent_item:
977 			if (del_nr == 0) {
978 				del_slot = path->slots[0];
979 				del_nr = 1;
980 			} else {
981 				BUG_ON(del_slot + del_nr != path->slots[0]);
982 				del_nr++;
983 			}
984 
985 			if (update_refs &&
986 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
987 				inode_sub_bytes(inode,
988 						extent_end - key.offset);
989 				extent_end = ALIGN(extent_end,
990 						   fs_info->sectorsize);
991 			} else if (update_refs && disk_bytenr > 0) {
992 				ret = btrfs_free_extent(trans, root,
993 						disk_bytenr, num_bytes, 0,
994 						root->root_key.objectid,
995 						key.objectid, key.offset -
996 						extent_offset);
997 				BUG_ON(ret); /* -ENOMEM */
998 				inode_sub_bytes(inode,
999 						extent_end - key.offset);
1000 			}
1001 
1002 			if (end == extent_end)
1003 				break;
1004 
1005 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1006 				path->slots[0]++;
1007 				goto next_slot;
1008 			}
1009 
1010 			ret = btrfs_del_items(trans, root, path, del_slot,
1011 					      del_nr);
1012 			if (ret) {
1013 				btrfs_abort_transaction(trans, ret);
1014 				break;
1015 			}
1016 
1017 			del_nr = 0;
1018 			del_slot = 0;
1019 
1020 			btrfs_release_path(path);
1021 			continue;
1022 		}
1023 
1024 		BUG_ON(1);
1025 	}
1026 
1027 	if (!ret && del_nr > 0) {
1028 		/*
1029 		 * Set path->slots[0] to first slot, so that after the delete
1030 		 * if items are move off from our leaf to its immediate left or
1031 		 * right neighbor leafs, we end up with a correct and adjusted
1032 		 * path->slots[0] for our insertion (if replace_extent != 0).
1033 		 */
1034 		path->slots[0] = del_slot;
1035 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1036 		if (ret)
1037 			btrfs_abort_transaction(trans, ret);
1038 	}
1039 
1040 	leaf = path->nodes[0];
1041 	/*
1042 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
1043 	 * which case it unlocked our path, so check path->locks[0] matches a
1044 	 * write lock.
1045 	 */
1046 	if (!ret && replace_extent && leafs_visited == 1 &&
1047 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1048 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
1049 	    btrfs_leaf_free_space(fs_info, leaf) >=
1050 	    sizeof(struct btrfs_item) + extent_item_size) {
1051 
1052 		key.objectid = ino;
1053 		key.type = BTRFS_EXTENT_DATA_KEY;
1054 		key.offset = start;
1055 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1056 			struct btrfs_key slot_key;
1057 
1058 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1059 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1060 				path->slots[0]++;
1061 		}
1062 		setup_items_for_insert(root, path, &key,
1063 				       &extent_item_size,
1064 				       extent_item_size,
1065 				       sizeof(struct btrfs_item) +
1066 				       extent_item_size, 1);
1067 		*key_inserted = 1;
1068 	}
1069 
1070 	if (!replace_extent || !(*key_inserted))
1071 		btrfs_release_path(path);
1072 	if (drop_end)
1073 		*drop_end = found ? min(end, last_end) : end;
1074 	return ret;
1075 }
1076 
1077 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1078 		       struct btrfs_root *root, struct inode *inode, u64 start,
1079 		       u64 end, int drop_cache)
1080 {
1081 	struct btrfs_path *path;
1082 	int ret;
1083 
1084 	path = btrfs_alloc_path();
1085 	if (!path)
1086 		return -ENOMEM;
1087 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1088 				   drop_cache, 0, 0, NULL);
1089 	btrfs_free_path(path);
1090 	return ret;
1091 }
1092 
1093 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1094 			    u64 objectid, u64 bytenr, u64 orig_offset,
1095 			    u64 *start, u64 *end)
1096 {
1097 	struct btrfs_file_extent_item *fi;
1098 	struct btrfs_key key;
1099 	u64 extent_end;
1100 
1101 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1102 		return 0;
1103 
1104 	btrfs_item_key_to_cpu(leaf, &key, slot);
1105 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1106 		return 0;
1107 
1108 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1109 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1110 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1111 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1112 	    btrfs_file_extent_compression(leaf, fi) ||
1113 	    btrfs_file_extent_encryption(leaf, fi) ||
1114 	    btrfs_file_extent_other_encoding(leaf, fi))
1115 		return 0;
1116 
1117 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1118 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1119 		return 0;
1120 
1121 	*start = key.offset;
1122 	*end = extent_end;
1123 	return 1;
1124 }
1125 
1126 /*
1127  * Mark extent in the range start - end as written.
1128  *
1129  * This changes extent type from 'pre-allocated' to 'regular'. If only
1130  * part of extent is marked as written, the extent will be split into
1131  * two or three.
1132  */
1133 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1134 			      struct btrfs_inode *inode, u64 start, u64 end)
1135 {
1136 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1137 	struct btrfs_root *root = inode->root;
1138 	struct extent_buffer *leaf;
1139 	struct btrfs_path *path;
1140 	struct btrfs_file_extent_item *fi;
1141 	struct btrfs_key key;
1142 	struct btrfs_key new_key;
1143 	u64 bytenr;
1144 	u64 num_bytes;
1145 	u64 extent_end;
1146 	u64 orig_offset;
1147 	u64 other_start;
1148 	u64 other_end;
1149 	u64 split;
1150 	int del_nr = 0;
1151 	int del_slot = 0;
1152 	int recow;
1153 	int ret;
1154 	u64 ino = btrfs_ino(inode);
1155 
1156 	path = btrfs_alloc_path();
1157 	if (!path)
1158 		return -ENOMEM;
1159 again:
1160 	recow = 0;
1161 	split = start;
1162 	key.objectid = ino;
1163 	key.type = BTRFS_EXTENT_DATA_KEY;
1164 	key.offset = split;
1165 
1166 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1167 	if (ret < 0)
1168 		goto out;
1169 	if (ret > 0 && path->slots[0] > 0)
1170 		path->slots[0]--;
1171 
1172 	leaf = path->nodes[0];
1173 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1174 	if (key.objectid != ino ||
1175 	    key.type != BTRFS_EXTENT_DATA_KEY) {
1176 		ret = -EINVAL;
1177 		btrfs_abort_transaction(trans, ret);
1178 		goto out;
1179 	}
1180 	fi = btrfs_item_ptr(leaf, path->slots[0],
1181 			    struct btrfs_file_extent_item);
1182 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1183 		ret = -EINVAL;
1184 		btrfs_abort_transaction(trans, ret);
1185 		goto out;
1186 	}
1187 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1188 	if (key.offset > start || extent_end < end) {
1189 		ret = -EINVAL;
1190 		btrfs_abort_transaction(trans, ret);
1191 		goto out;
1192 	}
1193 
1194 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1195 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1196 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1197 	memcpy(&new_key, &key, sizeof(new_key));
1198 
1199 	if (start == key.offset && end < extent_end) {
1200 		other_start = 0;
1201 		other_end = start;
1202 		if (extent_mergeable(leaf, path->slots[0] - 1,
1203 				     ino, bytenr, orig_offset,
1204 				     &other_start, &other_end)) {
1205 			new_key.offset = end;
1206 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1207 			fi = btrfs_item_ptr(leaf, path->slots[0],
1208 					    struct btrfs_file_extent_item);
1209 			btrfs_set_file_extent_generation(leaf, fi,
1210 							 trans->transid);
1211 			btrfs_set_file_extent_num_bytes(leaf, fi,
1212 							extent_end - end);
1213 			btrfs_set_file_extent_offset(leaf, fi,
1214 						     end - orig_offset);
1215 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1216 					    struct btrfs_file_extent_item);
1217 			btrfs_set_file_extent_generation(leaf, fi,
1218 							 trans->transid);
1219 			btrfs_set_file_extent_num_bytes(leaf, fi,
1220 							end - other_start);
1221 			btrfs_mark_buffer_dirty(leaf);
1222 			goto out;
1223 		}
1224 	}
1225 
1226 	if (start > key.offset && end == extent_end) {
1227 		other_start = end;
1228 		other_end = 0;
1229 		if (extent_mergeable(leaf, path->slots[0] + 1,
1230 				     ino, bytenr, orig_offset,
1231 				     &other_start, &other_end)) {
1232 			fi = btrfs_item_ptr(leaf, path->slots[0],
1233 					    struct btrfs_file_extent_item);
1234 			btrfs_set_file_extent_num_bytes(leaf, fi,
1235 							start - key.offset);
1236 			btrfs_set_file_extent_generation(leaf, fi,
1237 							 trans->transid);
1238 			path->slots[0]++;
1239 			new_key.offset = start;
1240 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1241 
1242 			fi = btrfs_item_ptr(leaf, path->slots[0],
1243 					    struct btrfs_file_extent_item);
1244 			btrfs_set_file_extent_generation(leaf, fi,
1245 							 trans->transid);
1246 			btrfs_set_file_extent_num_bytes(leaf, fi,
1247 							other_end - start);
1248 			btrfs_set_file_extent_offset(leaf, fi,
1249 						     start - orig_offset);
1250 			btrfs_mark_buffer_dirty(leaf);
1251 			goto out;
1252 		}
1253 	}
1254 
1255 	while (start > key.offset || end < extent_end) {
1256 		if (key.offset == start)
1257 			split = end;
1258 
1259 		new_key.offset = split;
1260 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1261 		if (ret == -EAGAIN) {
1262 			btrfs_release_path(path);
1263 			goto again;
1264 		}
1265 		if (ret < 0) {
1266 			btrfs_abort_transaction(trans, ret);
1267 			goto out;
1268 		}
1269 
1270 		leaf = path->nodes[0];
1271 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1272 				    struct btrfs_file_extent_item);
1273 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1274 		btrfs_set_file_extent_num_bytes(leaf, fi,
1275 						split - key.offset);
1276 
1277 		fi = btrfs_item_ptr(leaf, path->slots[0],
1278 				    struct btrfs_file_extent_item);
1279 
1280 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1281 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1282 		btrfs_set_file_extent_num_bytes(leaf, fi,
1283 						extent_end - split);
1284 		btrfs_mark_buffer_dirty(leaf);
1285 
1286 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
1287 					   0, root->root_key.objectid,
1288 					   ino, orig_offset);
1289 		if (ret) {
1290 			btrfs_abort_transaction(trans, ret);
1291 			goto out;
1292 		}
1293 
1294 		if (split == start) {
1295 			key.offset = start;
1296 		} else {
1297 			if (start != key.offset) {
1298 				ret = -EINVAL;
1299 				btrfs_abort_transaction(trans, ret);
1300 				goto out;
1301 			}
1302 			path->slots[0]--;
1303 			extent_end = end;
1304 		}
1305 		recow = 1;
1306 	}
1307 
1308 	other_start = end;
1309 	other_end = 0;
1310 	if (extent_mergeable(leaf, path->slots[0] + 1,
1311 			     ino, bytenr, orig_offset,
1312 			     &other_start, &other_end)) {
1313 		if (recow) {
1314 			btrfs_release_path(path);
1315 			goto again;
1316 		}
1317 		extent_end = other_end;
1318 		del_slot = path->slots[0] + 1;
1319 		del_nr++;
1320 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1321 					0, root->root_key.objectid,
1322 					ino, orig_offset);
1323 		if (ret) {
1324 			btrfs_abort_transaction(trans, ret);
1325 			goto out;
1326 		}
1327 	}
1328 	other_start = 0;
1329 	other_end = start;
1330 	if (extent_mergeable(leaf, path->slots[0] - 1,
1331 			     ino, bytenr, orig_offset,
1332 			     &other_start, &other_end)) {
1333 		if (recow) {
1334 			btrfs_release_path(path);
1335 			goto again;
1336 		}
1337 		key.offset = other_start;
1338 		del_slot = path->slots[0];
1339 		del_nr++;
1340 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1341 					0, root->root_key.objectid,
1342 					ino, orig_offset);
1343 		if (ret) {
1344 			btrfs_abort_transaction(trans, ret);
1345 			goto out;
1346 		}
1347 	}
1348 	if (del_nr == 0) {
1349 		fi = btrfs_item_ptr(leaf, path->slots[0],
1350 			   struct btrfs_file_extent_item);
1351 		btrfs_set_file_extent_type(leaf, fi,
1352 					   BTRFS_FILE_EXTENT_REG);
1353 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1354 		btrfs_mark_buffer_dirty(leaf);
1355 	} else {
1356 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1357 			   struct btrfs_file_extent_item);
1358 		btrfs_set_file_extent_type(leaf, fi,
1359 					   BTRFS_FILE_EXTENT_REG);
1360 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1361 		btrfs_set_file_extent_num_bytes(leaf, fi,
1362 						extent_end - key.offset);
1363 		btrfs_mark_buffer_dirty(leaf);
1364 
1365 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1366 		if (ret < 0) {
1367 			btrfs_abort_transaction(trans, ret);
1368 			goto out;
1369 		}
1370 	}
1371 out:
1372 	btrfs_free_path(path);
1373 	return 0;
1374 }
1375 
1376 /*
1377  * on error we return an unlocked page and the error value
1378  * on success we return a locked page and 0
1379  */
1380 static int prepare_uptodate_page(struct inode *inode,
1381 				 struct page *page, u64 pos,
1382 				 bool force_uptodate)
1383 {
1384 	int ret = 0;
1385 
1386 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1387 	    !PageUptodate(page)) {
1388 		ret = btrfs_readpage(NULL, page);
1389 		if (ret)
1390 			return ret;
1391 		lock_page(page);
1392 		if (!PageUptodate(page)) {
1393 			unlock_page(page);
1394 			return -EIO;
1395 		}
1396 		if (page->mapping != inode->i_mapping) {
1397 			unlock_page(page);
1398 			return -EAGAIN;
1399 		}
1400 	}
1401 	return 0;
1402 }
1403 
1404 /*
1405  * this just gets pages into the page cache and locks them down.
1406  */
1407 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1408 				  size_t num_pages, loff_t pos,
1409 				  size_t write_bytes, bool force_uptodate)
1410 {
1411 	int i;
1412 	unsigned long index = pos >> PAGE_SHIFT;
1413 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1414 	int err = 0;
1415 	int faili;
1416 
1417 	for (i = 0; i < num_pages; i++) {
1418 again:
1419 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1420 					       mask | __GFP_WRITE);
1421 		if (!pages[i]) {
1422 			faili = i - 1;
1423 			err = -ENOMEM;
1424 			goto fail;
1425 		}
1426 
1427 		if (i == 0)
1428 			err = prepare_uptodate_page(inode, pages[i], pos,
1429 						    force_uptodate);
1430 		if (!err && i == num_pages - 1)
1431 			err = prepare_uptodate_page(inode, pages[i],
1432 						    pos + write_bytes, false);
1433 		if (err) {
1434 			put_page(pages[i]);
1435 			if (err == -EAGAIN) {
1436 				err = 0;
1437 				goto again;
1438 			}
1439 			faili = i - 1;
1440 			goto fail;
1441 		}
1442 		wait_on_page_writeback(pages[i]);
1443 	}
1444 
1445 	return 0;
1446 fail:
1447 	while (faili >= 0) {
1448 		unlock_page(pages[faili]);
1449 		put_page(pages[faili]);
1450 		faili--;
1451 	}
1452 	return err;
1453 
1454 }
1455 
1456 /*
1457  * This function locks the extent and properly waits for data=ordered extents
1458  * to finish before allowing the pages to be modified if need.
1459  *
1460  * The return value:
1461  * 1 - the extent is locked
1462  * 0 - the extent is not locked, and everything is OK
1463  * -EAGAIN - need re-prepare the pages
1464  * the other < 0 number - Something wrong happens
1465  */
1466 static noinline int
1467 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1468 				size_t num_pages, loff_t pos,
1469 				size_t write_bytes,
1470 				u64 *lockstart, u64 *lockend,
1471 				struct extent_state **cached_state)
1472 {
1473 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1474 	u64 start_pos;
1475 	u64 last_pos;
1476 	int i;
1477 	int ret = 0;
1478 
1479 	start_pos = round_down(pos, fs_info->sectorsize);
1480 	last_pos = start_pos
1481 		+ round_up(pos + write_bytes - start_pos,
1482 			   fs_info->sectorsize) - 1;
1483 
1484 	if (start_pos < inode->vfs_inode.i_size) {
1485 		struct btrfs_ordered_extent *ordered;
1486 
1487 		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1488 				cached_state);
1489 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1490 						     last_pos - start_pos + 1);
1491 		if (ordered &&
1492 		    ordered->file_offset + ordered->len > start_pos &&
1493 		    ordered->file_offset <= last_pos) {
1494 			unlock_extent_cached(&inode->io_tree, start_pos,
1495 					last_pos, cached_state);
1496 			for (i = 0; i < num_pages; i++) {
1497 				unlock_page(pages[i]);
1498 				put_page(pages[i]);
1499 			}
1500 			btrfs_start_ordered_extent(&inode->vfs_inode,
1501 					ordered, 1);
1502 			btrfs_put_ordered_extent(ordered);
1503 			return -EAGAIN;
1504 		}
1505 		if (ordered)
1506 			btrfs_put_ordered_extent(ordered);
1507 		clear_extent_bit(&inode->io_tree, start_pos, last_pos,
1508 				 EXTENT_DIRTY | EXTENT_DELALLOC |
1509 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1510 				 0, 0, cached_state);
1511 		*lockstart = start_pos;
1512 		*lockend = last_pos;
1513 		ret = 1;
1514 	}
1515 
1516 	for (i = 0; i < num_pages; i++) {
1517 		if (clear_page_dirty_for_io(pages[i]))
1518 			account_page_redirty(pages[i]);
1519 		set_page_extent_mapped(pages[i]);
1520 		WARN_ON(!PageLocked(pages[i]));
1521 	}
1522 
1523 	return ret;
1524 }
1525 
1526 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1527 				    size_t *write_bytes)
1528 {
1529 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1530 	struct btrfs_root *root = inode->root;
1531 	struct btrfs_ordered_extent *ordered;
1532 	u64 lockstart, lockend;
1533 	u64 num_bytes;
1534 	int ret;
1535 
1536 	ret = btrfs_start_write_no_snapshotting(root);
1537 	if (!ret)
1538 		return -ENOSPC;
1539 
1540 	lockstart = round_down(pos, fs_info->sectorsize);
1541 	lockend = round_up(pos + *write_bytes,
1542 			   fs_info->sectorsize) - 1;
1543 
1544 	while (1) {
1545 		lock_extent(&inode->io_tree, lockstart, lockend);
1546 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1547 						     lockend - lockstart + 1);
1548 		if (!ordered) {
1549 			break;
1550 		}
1551 		unlock_extent(&inode->io_tree, lockstart, lockend);
1552 		btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1553 		btrfs_put_ordered_extent(ordered);
1554 	}
1555 
1556 	num_bytes = lockend - lockstart + 1;
1557 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1558 			NULL, NULL, NULL);
1559 	if (ret <= 0) {
1560 		ret = 0;
1561 		btrfs_end_write_no_snapshotting(root);
1562 	} else {
1563 		*write_bytes = min_t(size_t, *write_bytes ,
1564 				     num_bytes - pos + lockstart);
1565 	}
1566 
1567 	unlock_extent(&inode->io_tree, lockstart, lockend);
1568 
1569 	return ret;
1570 }
1571 
1572 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1573 					       struct iov_iter *i,
1574 					       loff_t pos)
1575 {
1576 	struct inode *inode = file_inode(file);
1577 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1578 	struct btrfs_root *root = BTRFS_I(inode)->root;
1579 	struct page **pages = NULL;
1580 	struct extent_state *cached_state = NULL;
1581 	struct extent_changeset *data_reserved = NULL;
1582 	u64 release_bytes = 0;
1583 	u64 lockstart;
1584 	u64 lockend;
1585 	size_t num_written = 0;
1586 	int nrptrs;
1587 	int ret = 0;
1588 	bool only_release_metadata = false;
1589 	bool force_page_uptodate = false;
1590 
1591 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1592 			PAGE_SIZE / (sizeof(struct page *)));
1593 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1594 	nrptrs = max(nrptrs, 8);
1595 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1596 	if (!pages)
1597 		return -ENOMEM;
1598 
1599 	while (iov_iter_count(i) > 0) {
1600 		size_t offset = pos & (PAGE_SIZE - 1);
1601 		size_t sector_offset;
1602 		size_t write_bytes = min(iov_iter_count(i),
1603 					 nrptrs * (size_t)PAGE_SIZE -
1604 					 offset);
1605 		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1606 						PAGE_SIZE);
1607 		size_t reserve_bytes;
1608 		size_t dirty_pages;
1609 		size_t copied;
1610 		size_t dirty_sectors;
1611 		size_t num_sectors;
1612 		int extents_locked;
1613 
1614 		WARN_ON(num_pages > nrptrs);
1615 
1616 		/*
1617 		 * Fault pages before locking them in prepare_pages
1618 		 * to avoid recursive lock
1619 		 */
1620 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1621 			ret = -EFAULT;
1622 			break;
1623 		}
1624 
1625 		sector_offset = pos & (fs_info->sectorsize - 1);
1626 		reserve_bytes = round_up(write_bytes + sector_offset,
1627 				fs_info->sectorsize);
1628 
1629 		extent_changeset_release(data_reserved);
1630 		ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1631 						  write_bytes);
1632 		if (ret < 0) {
1633 			if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1634 						      BTRFS_INODE_PREALLOC)) &&
1635 			    check_can_nocow(BTRFS_I(inode), pos,
1636 					&write_bytes) > 0) {
1637 				/*
1638 				 * For nodata cow case, no need to reserve
1639 				 * data space.
1640 				 */
1641 				only_release_metadata = true;
1642 				/*
1643 				 * our prealloc extent may be smaller than
1644 				 * write_bytes, so scale down.
1645 				 */
1646 				num_pages = DIV_ROUND_UP(write_bytes + offset,
1647 							 PAGE_SIZE);
1648 				reserve_bytes = round_up(write_bytes +
1649 							 sector_offset,
1650 							 fs_info->sectorsize);
1651 			} else {
1652 				break;
1653 			}
1654 		}
1655 
1656 		WARN_ON(reserve_bytes == 0);
1657 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1658 				reserve_bytes);
1659 		if (ret) {
1660 			if (!only_release_metadata)
1661 				btrfs_free_reserved_data_space(inode,
1662 						data_reserved, pos,
1663 						write_bytes);
1664 			else
1665 				btrfs_end_write_no_snapshotting(root);
1666 			break;
1667 		}
1668 
1669 		release_bytes = reserve_bytes;
1670 again:
1671 		/*
1672 		 * This is going to setup the pages array with the number of
1673 		 * pages we want, so we don't really need to worry about the
1674 		 * contents of pages from loop to loop
1675 		 */
1676 		ret = prepare_pages(inode, pages, num_pages,
1677 				    pos, write_bytes,
1678 				    force_page_uptodate);
1679 		if (ret) {
1680 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1681 						       reserve_bytes, true);
1682 			break;
1683 		}
1684 
1685 		extents_locked = lock_and_cleanup_extent_if_need(
1686 				BTRFS_I(inode), pages,
1687 				num_pages, pos, write_bytes, &lockstart,
1688 				&lockend, &cached_state);
1689 		if (extents_locked < 0) {
1690 			if (extents_locked == -EAGAIN)
1691 				goto again;
1692 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1693 						       reserve_bytes, true);
1694 			ret = extents_locked;
1695 			break;
1696 		}
1697 
1698 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1699 
1700 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1701 		dirty_sectors = round_up(copied + sector_offset,
1702 					fs_info->sectorsize);
1703 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1704 
1705 		/*
1706 		 * if we have trouble faulting in the pages, fall
1707 		 * back to one page at a time
1708 		 */
1709 		if (copied < write_bytes)
1710 			nrptrs = 1;
1711 
1712 		if (copied == 0) {
1713 			force_page_uptodate = true;
1714 			dirty_sectors = 0;
1715 			dirty_pages = 0;
1716 		} else {
1717 			force_page_uptodate = false;
1718 			dirty_pages = DIV_ROUND_UP(copied + offset,
1719 						   PAGE_SIZE);
1720 		}
1721 
1722 		if (num_sectors > dirty_sectors) {
1723 			/* release everything except the sectors we dirtied */
1724 			release_bytes -= dirty_sectors <<
1725 						fs_info->sb->s_blocksize_bits;
1726 			if (only_release_metadata) {
1727 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1728 							release_bytes, true);
1729 			} else {
1730 				u64 __pos;
1731 
1732 				__pos = round_down(pos,
1733 						   fs_info->sectorsize) +
1734 					(dirty_pages << PAGE_SHIFT);
1735 				btrfs_delalloc_release_space(inode,
1736 						data_reserved, __pos,
1737 						release_bytes, true);
1738 			}
1739 		}
1740 
1741 		release_bytes = round_up(copied + sector_offset,
1742 					fs_info->sectorsize);
1743 
1744 		if (copied > 0)
1745 			ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1746 						pos, copied, &cached_state);
1747 		if (extents_locked)
1748 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1749 					     lockstart, lockend, &cached_state);
1750 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes,
1751 					       true);
1752 		if (ret) {
1753 			btrfs_drop_pages(pages, num_pages);
1754 			break;
1755 		}
1756 
1757 		release_bytes = 0;
1758 		if (only_release_metadata)
1759 			btrfs_end_write_no_snapshotting(root);
1760 
1761 		if (only_release_metadata && copied > 0) {
1762 			lockstart = round_down(pos,
1763 					       fs_info->sectorsize);
1764 			lockend = round_up(pos + copied,
1765 					   fs_info->sectorsize) - 1;
1766 
1767 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1768 				       lockend, EXTENT_NORESERVE, NULL,
1769 				       NULL, GFP_NOFS);
1770 			only_release_metadata = false;
1771 		}
1772 
1773 		btrfs_drop_pages(pages, num_pages);
1774 
1775 		cond_resched();
1776 
1777 		balance_dirty_pages_ratelimited(inode->i_mapping);
1778 		if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1779 			btrfs_btree_balance_dirty(fs_info);
1780 
1781 		pos += copied;
1782 		num_written += copied;
1783 	}
1784 
1785 	kfree(pages);
1786 
1787 	if (release_bytes) {
1788 		if (only_release_metadata) {
1789 			btrfs_end_write_no_snapshotting(root);
1790 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1791 					release_bytes, true);
1792 		} else {
1793 			btrfs_delalloc_release_space(inode, data_reserved,
1794 					round_down(pos, fs_info->sectorsize),
1795 					release_bytes, true);
1796 		}
1797 	}
1798 
1799 	extent_changeset_free(data_reserved);
1800 	return num_written ? num_written : ret;
1801 }
1802 
1803 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1804 {
1805 	struct file *file = iocb->ki_filp;
1806 	struct inode *inode = file_inode(file);
1807 	loff_t pos = iocb->ki_pos;
1808 	ssize_t written;
1809 	ssize_t written_buffered;
1810 	loff_t endbyte;
1811 	int err;
1812 
1813 	written = generic_file_direct_write(iocb, from);
1814 
1815 	if (written < 0 || !iov_iter_count(from))
1816 		return written;
1817 
1818 	pos += written;
1819 	written_buffered = __btrfs_buffered_write(file, from, pos);
1820 	if (written_buffered < 0) {
1821 		err = written_buffered;
1822 		goto out;
1823 	}
1824 	/*
1825 	 * Ensure all data is persisted. We want the next direct IO read to be
1826 	 * able to read what was just written.
1827 	 */
1828 	endbyte = pos + written_buffered - 1;
1829 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1830 	if (err)
1831 		goto out;
1832 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1833 	if (err)
1834 		goto out;
1835 	written += written_buffered;
1836 	iocb->ki_pos = pos + written_buffered;
1837 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1838 				 endbyte >> PAGE_SHIFT);
1839 out:
1840 	return written ? written : err;
1841 }
1842 
1843 static void update_time_for_write(struct inode *inode)
1844 {
1845 	struct timespec64 now;
1846 
1847 	if (IS_NOCMTIME(inode))
1848 		return;
1849 
1850 	now = current_time(inode);
1851 	if (!timespec64_equal(&inode->i_mtime, &now))
1852 		inode->i_mtime = now;
1853 
1854 	if (!timespec64_equal(&inode->i_ctime, &now))
1855 		inode->i_ctime = now;
1856 
1857 	if (IS_I_VERSION(inode))
1858 		inode_inc_iversion(inode);
1859 }
1860 
1861 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1862 				    struct iov_iter *from)
1863 {
1864 	struct file *file = iocb->ki_filp;
1865 	struct inode *inode = file_inode(file);
1866 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1867 	struct btrfs_root *root = BTRFS_I(inode)->root;
1868 	u64 start_pos;
1869 	u64 end_pos;
1870 	ssize_t num_written = 0;
1871 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1872 	ssize_t err;
1873 	loff_t pos;
1874 	size_t count = iov_iter_count(from);
1875 	loff_t oldsize;
1876 	int clean_page = 0;
1877 
1878 	if (!(iocb->ki_flags & IOCB_DIRECT) &&
1879 	    (iocb->ki_flags & IOCB_NOWAIT))
1880 		return -EOPNOTSUPP;
1881 
1882 	if (!inode_trylock(inode)) {
1883 		if (iocb->ki_flags & IOCB_NOWAIT)
1884 			return -EAGAIN;
1885 		inode_lock(inode);
1886 	}
1887 
1888 	err = generic_write_checks(iocb, from);
1889 	if (err <= 0) {
1890 		inode_unlock(inode);
1891 		return err;
1892 	}
1893 
1894 	pos = iocb->ki_pos;
1895 	if (iocb->ki_flags & IOCB_NOWAIT) {
1896 		/*
1897 		 * We will allocate space in case nodatacow is not set,
1898 		 * so bail
1899 		 */
1900 		if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1901 					      BTRFS_INODE_PREALLOC)) ||
1902 		    check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1903 			inode_unlock(inode);
1904 			return -EAGAIN;
1905 		}
1906 	}
1907 
1908 	current->backing_dev_info = inode_to_bdi(inode);
1909 	err = file_remove_privs(file);
1910 	if (err) {
1911 		inode_unlock(inode);
1912 		goto out;
1913 	}
1914 
1915 	/*
1916 	 * If BTRFS flips readonly due to some impossible error
1917 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1918 	 * although we have opened a file as writable, we have
1919 	 * to stop this write operation to ensure FS consistency.
1920 	 */
1921 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1922 		inode_unlock(inode);
1923 		err = -EROFS;
1924 		goto out;
1925 	}
1926 
1927 	/*
1928 	 * We reserve space for updating the inode when we reserve space for the
1929 	 * extent we are going to write, so we will enospc out there.  We don't
1930 	 * need to start yet another transaction to update the inode as we will
1931 	 * update the inode when we finish writing whatever data we write.
1932 	 */
1933 	update_time_for_write(inode);
1934 
1935 	start_pos = round_down(pos, fs_info->sectorsize);
1936 	oldsize = i_size_read(inode);
1937 	if (start_pos > oldsize) {
1938 		/* Expand hole size to cover write data, preventing empty gap */
1939 		end_pos = round_up(pos + count,
1940 				   fs_info->sectorsize);
1941 		err = btrfs_cont_expand(inode, oldsize, end_pos);
1942 		if (err) {
1943 			inode_unlock(inode);
1944 			goto out;
1945 		}
1946 		if (start_pos > round_up(oldsize, fs_info->sectorsize))
1947 			clean_page = 1;
1948 	}
1949 
1950 	if (sync)
1951 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1952 
1953 	if (iocb->ki_flags & IOCB_DIRECT) {
1954 		num_written = __btrfs_direct_write(iocb, from);
1955 	} else {
1956 		num_written = __btrfs_buffered_write(file, from, pos);
1957 		if (num_written > 0)
1958 			iocb->ki_pos = pos + num_written;
1959 		if (clean_page)
1960 			pagecache_isize_extended(inode, oldsize,
1961 						i_size_read(inode));
1962 	}
1963 
1964 	inode_unlock(inode);
1965 
1966 	/*
1967 	 * We also have to set last_sub_trans to the current log transid,
1968 	 * otherwise subsequent syncs to a file that's been synced in this
1969 	 * transaction will appear to have already occurred.
1970 	 */
1971 	spin_lock(&BTRFS_I(inode)->lock);
1972 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1973 	spin_unlock(&BTRFS_I(inode)->lock);
1974 	if (num_written > 0)
1975 		num_written = generic_write_sync(iocb, num_written);
1976 
1977 	if (sync)
1978 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1979 out:
1980 	current->backing_dev_info = NULL;
1981 	return num_written ? num_written : err;
1982 }
1983 
1984 int btrfs_release_file(struct inode *inode, struct file *filp)
1985 {
1986 	struct btrfs_file_private *private = filp->private_data;
1987 
1988 	if (private && private->filldir_buf)
1989 		kfree(private->filldir_buf);
1990 	kfree(private);
1991 	filp->private_data = NULL;
1992 
1993 	/*
1994 	 * ordered_data_close is set by settattr when we are about to truncate
1995 	 * a file from a non-zero size to a zero size.  This tries to
1996 	 * flush down new bytes that may have been written if the
1997 	 * application were using truncate to replace a file in place.
1998 	 */
1999 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2000 			       &BTRFS_I(inode)->runtime_flags))
2001 			filemap_flush(inode->i_mapping);
2002 	return 0;
2003 }
2004 
2005 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2006 {
2007 	int ret;
2008 	struct blk_plug plug;
2009 
2010 	/*
2011 	 * This is only called in fsync, which would do synchronous writes, so
2012 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2013 	 * multiple disks using raid profile, a large IO can be split to
2014 	 * several segments of stripe length (currently 64K).
2015 	 */
2016 	blk_start_plug(&plug);
2017 	atomic_inc(&BTRFS_I(inode)->sync_writers);
2018 	ret = btrfs_fdatawrite_range(inode, start, end);
2019 	atomic_dec(&BTRFS_I(inode)->sync_writers);
2020 	blk_finish_plug(&plug);
2021 
2022 	return ret;
2023 }
2024 
2025 /*
2026  * fsync call for both files and directories.  This logs the inode into
2027  * the tree log instead of forcing full commits whenever possible.
2028  *
2029  * It needs to call filemap_fdatawait so that all ordered extent updates are
2030  * in the metadata btree are up to date for copying to the log.
2031  *
2032  * It drops the inode mutex before doing the tree log commit.  This is an
2033  * important optimization for directories because holding the mutex prevents
2034  * new operations on the dir while we write to disk.
2035  */
2036 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2037 {
2038 	struct dentry *dentry = file_dentry(file);
2039 	struct inode *inode = d_inode(dentry);
2040 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2041 	struct btrfs_root *root = BTRFS_I(inode)->root;
2042 	struct btrfs_trans_handle *trans;
2043 	struct btrfs_log_ctx ctx;
2044 	int ret = 0, err;
2045 	bool full_sync = false;
2046 	u64 len;
2047 
2048 	/*
2049 	 * The range length can be represented by u64, we have to do the typecasts
2050 	 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2051 	 */
2052 	len = (u64)end - (u64)start + 1;
2053 	trace_btrfs_sync_file(file, datasync);
2054 
2055 	btrfs_init_log_ctx(&ctx, inode);
2056 
2057 	/*
2058 	 * We write the dirty pages in the range and wait until they complete
2059 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2060 	 * multi-task, and make the performance up.  See
2061 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2062 	 */
2063 	ret = start_ordered_ops(inode, start, end);
2064 	if (ret)
2065 		goto out;
2066 
2067 	inode_lock(inode);
2068 	atomic_inc(&root->log_batch);
2069 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2070 			     &BTRFS_I(inode)->runtime_flags);
2071 	/*
2072 	 * We might have have had more pages made dirty after calling
2073 	 * start_ordered_ops and before acquiring the inode's i_mutex.
2074 	 */
2075 	if (full_sync) {
2076 		/*
2077 		 * For a full sync, we need to make sure any ordered operations
2078 		 * start and finish before we start logging the inode, so that
2079 		 * all extents are persisted and the respective file extent
2080 		 * items are in the fs/subvol btree.
2081 		 */
2082 		ret = btrfs_wait_ordered_range(inode, start, len);
2083 	} else {
2084 		/*
2085 		 * Start any new ordered operations before starting to log the
2086 		 * inode. We will wait for them to finish in btrfs_sync_log().
2087 		 *
2088 		 * Right before acquiring the inode's mutex, we might have new
2089 		 * writes dirtying pages, which won't immediately start the
2090 		 * respective ordered operations - that is done through the
2091 		 * fill_delalloc callbacks invoked from the writepage and
2092 		 * writepages address space operations. So make sure we start
2093 		 * all ordered operations before starting to log our inode. Not
2094 		 * doing this means that while logging the inode, writeback
2095 		 * could start and invoke writepage/writepages, which would call
2096 		 * the fill_delalloc callbacks (cow_file_range,
2097 		 * submit_compressed_extents). These callbacks add first an
2098 		 * extent map to the modified list of extents and then create
2099 		 * the respective ordered operation, which means in
2100 		 * tree-log.c:btrfs_log_inode() we might capture all existing
2101 		 * ordered operations (with btrfs_get_logged_extents()) before
2102 		 * the fill_delalloc callback adds its ordered operation, and by
2103 		 * the time we visit the modified list of extent maps (with
2104 		 * btrfs_log_changed_extents()), we see and process the extent
2105 		 * map they created. We then use the extent map to construct a
2106 		 * file extent item for logging without waiting for the
2107 		 * respective ordered operation to finish - this file extent
2108 		 * item points to a disk location that might not have yet been
2109 		 * written to, containing random data - so after a crash a log
2110 		 * replay will make our inode have file extent items that point
2111 		 * to disk locations containing invalid data, as we returned
2112 		 * success to userspace without waiting for the respective
2113 		 * ordered operation to finish, because it wasn't captured by
2114 		 * btrfs_get_logged_extents().
2115 		 */
2116 		ret = start_ordered_ops(inode, start, end);
2117 	}
2118 	if (ret) {
2119 		inode_unlock(inode);
2120 		goto out;
2121 	}
2122 	atomic_inc(&root->log_batch);
2123 
2124 	/*
2125 	 * If the last transaction that changed this file was before the current
2126 	 * transaction and we have the full sync flag set in our inode, we can
2127 	 * bail out now without any syncing.
2128 	 *
2129 	 * Note that we can't bail out if the full sync flag isn't set. This is
2130 	 * because when the full sync flag is set we start all ordered extents
2131 	 * and wait for them to fully complete - when they complete they update
2132 	 * the inode's last_trans field through:
2133 	 *
2134 	 *     btrfs_finish_ordered_io() ->
2135 	 *         btrfs_update_inode_fallback() ->
2136 	 *             btrfs_update_inode() ->
2137 	 *                 btrfs_set_inode_last_trans()
2138 	 *
2139 	 * So we are sure that last_trans is up to date and can do this check to
2140 	 * bail out safely. For the fast path, when the full sync flag is not
2141 	 * set in our inode, we can not do it because we start only our ordered
2142 	 * extents and don't wait for them to complete (that is when
2143 	 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2144 	 * value might be less than or equals to fs_info->last_trans_committed,
2145 	 * and setting a speculative last_trans for an inode when a buffered
2146 	 * write is made (such as fs_info->generation + 1 for example) would not
2147 	 * be reliable since after setting the value and before fsync is called
2148 	 * any number of transactions can start and commit (transaction kthread
2149 	 * commits the current transaction periodically), and a transaction
2150 	 * commit does not start nor waits for ordered extents to complete.
2151 	 */
2152 	smp_mb();
2153 	if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2154 	    (full_sync && BTRFS_I(inode)->last_trans <=
2155 	     fs_info->last_trans_committed) ||
2156 	    (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2157 	     BTRFS_I(inode)->last_trans
2158 	     <= fs_info->last_trans_committed)) {
2159 		/*
2160 		 * We've had everything committed since the last time we were
2161 		 * modified so clear this flag in case it was set for whatever
2162 		 * reason, it's no longer relevant.
2163 		 */
2164 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2165 			  &BTRFS_I(inode)->runtime_flags);
2166 		/*
2167 		 * An ordered extent might have started before and completed
2168 		 * already with io errors, in which case the inode was not
2169 		 * updated and we end up here. So check the inode's mapping
2170 		 * for any errors that might have happened since we last
2171 		 * checked called fsync.
2172 		 */
2173 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2174 		inode_unlock(inode);
2175 		goto out;
2176 	}
2177 
2178 	/*
2179 	 * We use start here because we will need to wait on the IO to complete
2180 	 * in btrfs_sync_log, which could require joining a transaction (for
2181 	 * example checking cross references in the nocow path).  If we use join
2182 	 * here we could get into a situation where we're waiting on IO to
2183 	 * happen that is blocked on a transaction trying to commit.  With start
2184 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2185 	 * before we start blocking join'ers.  This comment is to keep somebody
2186 	 * from thinking they are super smart and changing this to
2187 	 * btrfs_join_transaction *cough*Josef*cough*.
2188 	 */
2189 	trans = btrfs_start_transaction(root, 0);
2190 	if (IS_ERR(trans)) {
2191 		ret = PTR_ERR(trans);
2192 		inode_unlock(inode);
2193 		goto out;
2194 	}
2195 	trans->sync = true;
2196 
2197 	ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2198 	if (ret < 0) {
2199 		/* Fallthrough and commit/free transaction. */
2200 		ret = 1;
2201 	}
2202 
2203 	/* we've logged all the items and now have a consistent
2204 	 * version of the file in the log.  It is possible that
2205 	 * someone will come in and modify the file, but that's
2206 	 * fine because the log is consistent on disk, and we
2207 	 * have references to all of the file's extents
2208 	 *
2209 	 * It is possible that someone will come in and log the
2210 	 * file again, but that will end up using the synchronization
2211 	 * inside btrfs_sync_log to keep things safe.
2212 	 */
2213 	inode_unlock(inode);
2214 
2215 	/*
2216 	 * If any of the ordered extents had an error, just return it to user
2217 	 * space, so that the application knows some writes didn't succeed and
2218 	 * can take proper action (retry for e.g.). Blindly committing the
2219 	 * transaction in this case, would fool userspace that everything was
2220 	 * successful. And we also want to make sure our log doesn't contain
2221 	 * file extent items pointing to extents that weren't fully written to -
2222 	 * just like in the non fast fsync path, where we check for the ordered
2223 	 * operation's error flag before writing to the log tree and return -EIO
2224 	 * if any of them had this flag set (btrfs_wait_ordered_range) -
2225 	 * therefore we need to check for errors in the ordered operations,
2226 	 * which are indicated by ctx.io_err.
2227 	 */
2228 	if (ctx.io_err) {
2229 		btrfs_end_transaction(trans);
2230 		ret = ctx.io_err;
2231 		goto out;
2232 	}
2233 
2234 	if (ret != BTRFS_NO_LOG_SYNC) {
2235 		if (!ret) {
2236 			ret = btrfs_sync_log(trans, root, &ctx);
2237 			if (!ret) {
2238 				ret = btrfs_end_transaction(trans);
2239 				goto out;
2240 			}
2241 		}
2242 		if (!full_sync) {
2243 			ret = btrfs_wait_ordered_range(inode, start, len);
2244 			if (ret) {
2245 				btrfs_end_transaction(trans);
2246 				goto out;
2247 			}
2248 		}
2249 		ret = btrfs_commit_transaction(trans);
2250 	} else {
2251 		ret = btrfs_end_transaction(trans);
2252 	}
2253 out:
2254 	ASSERT(list_empty(&ctx.list));
2255 	err = file_check_and_advance_wb_err(file);
2256 	if (!ret)
2257 		ret = err;
2258 	return ret > 0 ? -EIO : ret;
2259 }
2260 
2261 static const struct vm_operations_struct btrfs_file_vm_ops = {
2262 	.fault		= filemap_fault,
2263 	.map_pages	= filemap_map_pages,
2264 	.page_mkwrite	= btrfs_page_mkwrite,
2265 };
2266 
2267 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2268 {
2269 	struct address_space *mapping = filp->f_mapping;
2270 
2271 	if (!mapping->a_ops->readpage)
2272 		return -ENOEXEC;
2273 
2274 	file_accessed(filp);
2275 	vma->vm_ops = &btrfs_file_vm_ops;
2276 
2277 	return 0;
2278 }
2279 
2280 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2281 			  int slot, u64 start, u64 end)
2282 {
2283 	struct btrfs_file_extent_item *fi;
2284 	struct btrfs_key key;
2285 
2286 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2287 		return 0;
2288 
2289 	btrfs_item_key_to_cpu(leaf, &key, slot);
2290 	if (key.objectid != btrfs_ino(inode) ||
2291 	    key.type != BTRFS_EXTENT_DATA_KEY)
2292 		return 0;
2293 
2294 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2295 
2296 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2297 		return 0;
2298 
2299 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2300 		return 0;
2301 
2302 	if (key.offset == end)
2303 		return 1;
2304 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2305 		return 1;
2306 	return 0;
2307 }
2308 
2309 static int fill_holes(struct btrfs_trans_handle *trans,
2310 		struct btrfs_inode *inode,
2311 		struct btrfs_path *path, u64 offset, u64 end)
2312 {
2313 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
2314 	struct btrfs_root *root = inode->root;
2315 	struct extent_buffer *leaf;
2316 	struct btrfs_file_extent_item *fi;
2317 	struct extent_map *hole_em;
2318 	struct extent_map_tree *em_tree = &inode->extent_tree;
2319 	struct btrfs_key key;
2320 	int ret;
2321 
2322 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2323 		goto out;
2324 
2325 	key.objectid = btrfs_ino(inode);
2326 	key.type = BTRFS_EXTENT_DATA_KEY;
2327 	key.offset = offset;
2328 
2329 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2330 	if (ret <= 0) {
2331 		/*
2332 		 * We should have dropped this offset, so if we find it then
2333 		 * something has gone horribly wrong.
2334 		 */
2335 		if (ret == 0)
2336 			ret = -EINVAL;
2337 		return ret;
2338 	}
2339 
2340 	leaf = path->nodes[0];
2341 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2342 		u64 num_bytes;
2343 
2344 		path->slots[0]--;
2345 		fi = btrfs_item_ptr(leaf, path->slots[0],
2346 				    struct btrfs_file_extent_item);
2347 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2348 			end - offset;
2349 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2350 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2351 		btrfs_set_file_extent_offset(leaf, fi, 0);
2352 		btrfs_mark_buffer_dirty(leaf);
2353 		goto out;
2354 	}
2355 
2356 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2357 		u64 num_bytes;
2358 
2359 		key.offset = offset;
2360 		btrfs_set_item_key_safe(fs_info, path, &key);
2361 		fi = btrfs_item_ptr(leaf, path->slots[0],
2362 				    struct btrfs_file_extent_item);
2363 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2364 			offset;
2365 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2366 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2367 		btrfs_set_file_extent_offset(leaf, fi, 0);
2368 		btrfs_mark_buffer_dirty(leaf);
2369 		goto out;
2370 	}
2371 	btrfs_release_path(path);
2372 
2373 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2374 			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2375 	if (ret)
2376 		return ret;
2377 
2378 out:
2379 	btrfs_release_path(path);
2380 
2381 	hole_em = alloc_extent_map();
2382 	if (!hole_em) {
2383 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2384 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2385 	} else {
2386 		hole_em->start = offset;
2387 		hole_em->len = end - offset;
2388 		hole_em->ram_bytes = hole_em->len;
2389 		hole_em->orig_start = offset;
2390 
2391 		hole_em->block_start = EXTENT_MAP_HOLE;
2392 		hole_em->block_len = 0;
2393 		hole_em->orig_block_len = 0;
2394 		hole_em->bdev = fs_info->fs_devices->latest_bdev;
2395 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2396 		hole_em->generation = trans->transid;
2397 
2398 		do {
2399 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2400 			write_lock(&em_tree->lock);
2401 			ret = add_extent_mapping(em_tree, hole_em, 1);
2402 			write_unlock(&em_tree->lock);
2403 		} while (ret == -EEXIST);
2404 		free_extent_map(hole_em);
2405 		if (ret)
2406 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2407 					&inode->runtime_flags);
2408 	}
2409 
2410 	return 0;
2411 }
2412 
2413 /*
2414  * Find a hole extent on given inode and change start/len to the end of hole
2415  * extent.(hole/vacuum extent whose em->start <= start &&
2416  *	   em->start + em->len > start)
2417  * When a hole extent is found, return 1 and modify start/len.
2418  */
2419 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2420 {
2421 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2422 	struct extent_map *em;
2423 	int ret = 0;
2424 
2425 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2426 			      round_down(*start, fs_info->sectorsize),
2427 			      round_up(*len, fs_info->sectorsize), 0);
2428 	if (IS_ERR(em))
2429 		return PTR_ERR(em);
2430 
2431 	/* Hole or vacuum extent(only exists in no-hole mode) */
2432 	if (em->block_start == EXTENT_MAP_HOLE) {
2433 		ret = 1;
2434 		*len = em->start + em->len > *start + *len ?
2435 		       0 : *start + *len - em->start - em->len;
2436 		*start = em->start + em->len;
2437 	}
2438 	free_extent_map(em);
2439 	return ret;
2440 }
2441 
2442 static int btrfs_punch_hole_lock_range(struct inode *inode,
2443 				       const u64 lockstart,
2444 				       const u64 lockend,
2445 				       struct extent_state **cached_state)
2446 {
2447 	while (1) {
2448 		struct btrfs_ordered_extent *ordered;
2449 		int ret;
2450 
2451 		truncate_pagecache_range(inode, lockstart, lockend);
2452 
2453 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2454 				 cached_state);
2455 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2456 
2457 		/*
2458 		 * We need to make sure we have no ordered extents in this range
2459 		 * and nobody raced in and read a page in this range, if we did
2460 		 * we need to try again.
2461 		 */
2462 		if ((!ordered ||
2463 		    (ordered->file_offset + ordered->len <= lockstart ||
2464 		     ordered->file_offset > lockend)) &&
2465 		     !filemap_range_has_page(inode->i_mapping,
2466 					     lockstart, lockend)) {
2467 			if (ordered)
2468 				btrfs_put_ordered_extent(ordered);
2469 			break;
2470 		}
2471 		if (ordered)
2472 			btrfs_put_ordered_extent(ordered);
2473 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2474 				     lockend, cached_state);
2475 		ret = btrfs_wait_ordered_range(inode, lockstart,
2476 					       lockend - lockstart + 1);
2477 		if (ret)
2478 			return ret;
2479 	}
2480 	return 0;
2481 }
2482 
2483 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2484 {
2485 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2486 	struct btrfs_root *root = BTRFS_I(inode)->root;
2487 	struct extent_state *cached_state = NULL;
2488 	struct btrfs_path *path;
2489 	struct btrfs_block_rsv *rsv;
2490 	struct btrfs_trans_handle *trans;
2491 	u64 lockstart;
2492 	u64 lockend;
2493 	u64 tail_start;
2494 	u64 tail_len;
2495 	u64 orig_start = offset;
2496 	u64 cur_offset;
2497 	u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2498 	u64 drop_end;
2499 	int ret = 0;
2500 	int err = 0;
2501 	unsigned int rsv_count;
2502 	bool same_block;
2503 	bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2504 	u64 ino_size;
2505 	bool truncated_block = false;
2506 	bool updated_inode = false;
2507 
2508 	ret = btrfs_wait_ordered_range(inode, offset, len);
2509 	if (ret)
2510 		return ret;
2511 
2512 	inode_lock(inode);
2513 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2514 	ret = find_first_non_hole(inode, &offset, &len);
2515 	if (ret < 0)
2516 		goto out_only_mutex;
2517 	if (ret && !len) {
2518 		/* Already in a large hole */
2519 		ret = 0;
2520 		goto out_only_mutex;
2521 	}
2522 
2523 	lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2524 	lockend = round_down(offset + len,
2525 			     btrfs_inode_sectorsize(inode)) - 1;
2526 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2527 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2528 	/*
2529 	 * We needn't truncate any block which is beyond the end of the file
2530 	 * because we are sure there is no data there.
2531 	 */
2532 	/*
2533 	 * Only do this if we are in the same block and we aren't doing the
2534 	 * entire block.
2535 	 */
2536 	if (same_block && len < fs_info->sectorsize) {
2537 		if (offset < ino_size) {
2538 			truncated_block = true;
2539 			ret = btrfs_truncate_block(inode, offset, len, 0);
2540 		} else {
2541 			ret = 0;
2542 		}
2543 		goto out_only_mutex;
2544 	}
2545 
2546 	/* zero back part of the first block */
2547 	if (offset < ino_size) {
2548 		truncated_block = true;
2549 		ret = btrfs_truncate_block(inode, offset, 0, 0);
2550 		if (ret) {
2551 			inode_unlock(inode);
2552 			return ret;
2553 		}
2554 	}
2555 
2556 	/* Check the aligned pages after the first unaligned page,
2557 	 * if offset != orig_start, which means the first unaligned page
2558 	 * including several following pages are already in holes,
2559 	 * the extra check can be skipped */
2560 	if (offset == orig_start) {
2561 		/* after truncate page, check hole again */
2562 		len = offset + len - lockstart;
2563 		offset = lockstart;
2564 		ret = find_first_non_hole(inode, &offset, &len);
2565 		if (ret < 0)
2566 			goto out_only_mutex;
2567 		if (ret && !len) {
2568 			ret = 0;
2569 			goto out_only_mutex;
2570 		}
2571 		lockstart = offset;
2572 	}
2573 
2574 	/* Check the tail unaligned part is in a hole */
2575 	tail_start = lockend + 1;
2576 	tail_len = offset + len - tail_start;
2577 	if (tail_len) {
2578 		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2579 		if (unlikely(ret < 0))
2580 			goto out_only_mutex;
2581 		if (!ret) {
2582 			/* zero the front end of the last page */
2583 			if (tail_start + tail_len < ino_size) {
2584 				truncated_block = true;
2585 				ret = btrfs_truncate_block(inode,
2586 							tail_start + tail_len,
2587 							0, 1);
2588 				if (ret)
2589 					goto out_only_mutex;
2590 			}
2591 		}
2592 	}
2593 
2594 	if (lockend < lockstart) {
2595 		ret = 0;
2596 		goto out_only_mutex;
2597 	}
2598 
2599 	ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2600 					  &cached_state);
2601 	if (ret) {
2602 		inode_unlock(inode);
2603 		goto out_only_mutex;
2604 	}
2605 
2606 	path = btrfs_alloc_path();
2607 	if (!path) {
2608 		ret = -ENOMEM;
2609 		goto out;
2610 	}
2611 
2612 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2613 	if (!rsv) {
2614 		ret = -ENOMEM;
2615 		goto out_free;
2616 	}
2617 	rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2618 	rsv->failfast = 1;
2619 
2620 	/*
2621 	 * 1 - update the inode
2622 	 * 1 - removing the extents in the range
2623 	 * 1 - adding the hole extent if no_holes isn't set
2624 	 */
2625 	rsv_count = no_holes ? 2 : 3;
2626 	trans = btrfs_start_transaction(root, rsv_count);
2627 	if (IS_ERR(trans)) {
2628 		err = PTR_ERR(trans);
2629 		goto out_free;
2630 	}
2631 
2632 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2633 				      min_size, 0);
2634 	BUG_ON(ret);
2635 	trans->block_rsv = rsv;
2636 
2637 	cur_offset = lockstart;
2638 	len = lockend - cur_offset;
2639 	while (cur_offset < lockend) {
2640 		ret = __btrfs_drop_extents(trans, root, inode, path,
2641 					   cur_offset, lockend + 1,
2642 					   &drop_end, 1, 0, 0, NULL);
2643 		if (ret != -ENOSPC)
2644 			break;
2645 
2646 		trans->block_rsv = &fs_info->trans_block_rsv;
2647 
2648 		if (cur_offset < drop_end && cur_offset < ino_size) {
2649 			ret = fill_holes(trans, BTRFS_I(inode), path,
2650 					cur_offset, drop_end);
2651 			if (ret) {
2652 				/*
2653 				 * If we failed then we didn't insert our hole
2654 				 * entries for the area we dropped, so now the
2655 				 * fs is corrupted, so we must abort the
2656 				 * transaction.
2657 				 */
2658 				btrfs_abort_transaction(trans, ret);
2659 				err = ret;
2660 				break;
2661 			}
2662 		}
2663 
2664 		cur_offset = drop_end;
2665 
2666 		ret = btrfs_update_inode(trans, root, inode);
2667 		if (ret) {
2668 			err = ret;
2669 			break;
2670 		}
2671 
2672 		btrfs_end_transaction(trans);
2673 		btrfs_btree_balance_dirty(fs_info);
2674 
2675 		trans = btrfs_start_transaction(root, rsv_count);
2676 		if (IS_ERR(trans)) {
2677 			ret = PTR_ERR(trans);
2678 			trans = NULL;
2679 			break;
2680 		}
2681 
2682 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2683 					      rsv, min_size, 0);
2684 		BUG_ON(ret);	/* shouldn't happen */
2685 		trans->block_rsv = rsv;
2686 
2687 		ret = find_first_non_hole(inode, &cur_offset, &len);
2688 		if (unlikely(ret < 0))
2689 			break;
2690 		if (ret && !len) {
2691 			ret = 0;
2692 			break;
2693 		}
2694 	}
2695 
2696 	if (ret) {
2697 		err = ret;
2698 		goto out_trans;
2699 	}
2700 
2701 	trans->block_rsv = &fs_info->trans_block_rsv;
2702 	/*
2703 	 * If we are using the NO_HOLES feature we might have had already an
2704 	 * hole that overlaps a part of the region [lockstart, lockend] and
2705 	 * ends at (or beyond) lockend. Since we have no file extent items to
2706 	 * represent holes, drop_end can be less than lockend and so we must
2707 	 * make sure we have an extent map representing the existing hole (the
2708 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2709 	 * map representing the existing hole), otherwise the fast fsync path
2710 	 * will not record the existence of the hole region
2711 	 * [existing_hole_start, lockend].
2712 	 */
2713 	if (drop_end <= lockend)
2714 		drop_end = lockend + 1;
2715 	/*
2716 	 * Don't insert file hole extent item if it's for a range beyond eof
2717 	 * (because it's useless) or if it represents a 0 bytes range (when
2718 	 * cur_offset == drop_end).
2719 	 */
2720 	if (cur_offset < ino_size && cur_offset < drop_end) {
2721 		ret = fill_holes(trans, BTRFS_I(inode), path,
2722 				cur_offset, drop_end);
2723 		if (ret) {
2724 			/* Same comment as above. */
2725 			btrfs_abort_transaction(trans, ret);
2726 			err = ret;
2727 			goto out_trans;
2728 		}
2729 	}
2730 
2731 out_trans:
2732 	if (!trans)
2733 		goto out_free;
2734 
2735 	inode_inc_iversion(inode);
2736 	inode->i_mtime = inode->i_ctime = current_time(inode);
2737 
2738 	trans->block_rsv = &fs_info->trans_block_rsv;
2739 	ret = btrfs_update_inode(trans, root, inode);
2740 	updated_inode = true;
2741 	btrfs_end_transaction(trans);
2742 	btrfs_btree_balance_dirty(fs_info);
2743 out_free:
2744 	btrfs_free_path(path);
2745 	btrfs_free_block_rsv(fs_info, rsv);
2746 out:
2747 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2748 			     &cached_state);
2749 out_only_mutex:
2750 	if (!updated_inode && truncated_block && !ret && !err) {
2751 		/*
2752 		 * If we only end up zeroing part of a page, we still need to
2753 		 * update the inode item, so that all the time fields are
2754 		 * updated as well as the necessary btrfs inode in memory fields
2755 		 * for detecting, at fsync time, if the inode isn't yet in the
2756 		 * log tree or it's there but not up to date.
2757 		 */
2758 		trans = btrfs_start_transaction(root, 1);
2759 		if (IS_ERR(trans)) {
2760 			err = PTR_ERR(trans);
2761 		} else {
2762 			err = btrfs_update_inode(trans, root, inode);
2763 			ret = btrfs_end_transaction(trans);
2764 		}
2765 	}
2766 	inode_unlock(inode);
2767 	if (ret && !err)
2768 		err = ret;
2769 	return err;
2770 }
2771 
2772 /* Helper structure to record which range is already reserved */
2773 struct falloc_range {
2774 	struct list_head list;
2775 	u64 start;
2776 	u64 len;
2777 };
2778 
2779 /*
2780  * Helper function to add falloc range
2781  *
2782  * Caller should have locked the larger range of extent containing
2783  * [start, len)
2784  */
2785 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2786 {
2787 	struct falloc_range *prev = NULL;
2788 	struct falloc_range *range = NULL;
2789 
2790 	if (list_empty(head))
2791 		goto insert;
2792 
2793 	/*
2794 	 * As fallocate iterate by bytenr order, we only need to check
2795 	 * the last range.
2796 	 */
2797 	prev = list_entry(head->prev, struct falloc_range, list);
2798 	if (prev->start + prev->len == start) {
2799 		prev->len += len;
2800 		return 0;
2801 	}
2802 insert:
2803 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2804 	if (!range)
2805 		return -ENOMEM;
2806 	range->start = start;
2807 	range->len = len;
2808 	list_add_tail(&range->list, head);
2809 	return 0;
2810 }
2811 
2812 static int btrfs_fallocate_update_isize(struct inode *inode,
2813 					const u64 end,
2814 					const int mode)
2815 {
2816 	struct btrfs_trans_handle *trans;
2817 	struct btrfs_root *root = BTRFS_I(inode)->root;
2818 	int ret;
2819 	int ret2;
2820 
2821 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2822 		return 0;
2823 
2824 	trans = btrfs_start_transaction(root, 1);
2825 	if (IS_ERR(trans))
2826 		return PTR_ERR(trans);
2827 
2828 	inode->i_ctime = current_time(inode);
2829 	i_size_write(inode, end);
2830 	btrfs_ordered_update_i_size(inode, end, NULL);
2831 	ret = btrfs_update_inode(trans, root, inode);
2832 	ret2 = btrfs_end_transaction(trans);
2833 
2834 	return ret ? ret : ret2;
2835 }
2836 
2837 enum {
2838 	RANGE_BOUNDARY_WRITTEN_EXTENT = 0,
2839 	RANGE_BOUNDARY_PREALLOC_EXTENT = 1,
2840 	RANGE_BOUNDARY_HOLE = 2,
2841 };
2842 
2843 static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2844 						 u64 offset)
2845 {
2846 	const u64 sectorsize = btrfs_inode_sectorsize(inode);
2847 	struct extent_map *em;
2848 	int ret;
2849 
2850 	offset = round_down(offset, sectorsize);
2851 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
2852 	if (IS_ERR(em))
2853 		return PTR_ERR(em);
2854 
2855 	if (em->block_start == EXTENT_MAP_HOLE)
2856 		ret = RANGE_BOUNDARY_HOLE;
2857 	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2858 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2859 	else
2860 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2861 
2862 	free_extent_map(em);
2863 	return ret;
2864 }
2865 
2866 static int btrfs_zero_range(struct inode *inode,
2867 			    loff_t offset,
2868 			    loff_t len,
2869 			    const int mode)
2870 {
2871 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2872 	struct extent_map *em;
2873 	struct extent_changeset *data_reserved = NULL;
2874 	int ret;
2875 	u64 alloc_hint = 0;
2876 	const u64 sectorsize = btrfs_inode_sectorsize(inode);
2877 	u64 alloc_start = round_down(offset, sectorsize);
2878 	u64 alloc_end = round_up(offset + len, sectorsize);
2879 	u64 bytes_to_reserve = 0;
2880 	bool space_reserved = false;
2881 
2882 	inode_dio_wait(inode);
2883 
2884 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2885 			      alloc_start, alloc_end - alloc_start, 0);
2886 	if (IS_ERR(em)) {
2887 		ret = PTR_ERR(em);
2888 		goto out;
2889 	}
2890 
2891 	/*
2892 	 * Avoid hole punching and extent allocation for some cases. More cases
2893 	 * could be considered, but these are unlikely common and we keep things
2894 	 * as simple as possible for now. Also, intentionally, if the target
2895 	 * range contains one or more prealloc extents together with regular
2896 	 * extents and holes, we drop all the existing extents and allocate a
2897 	 * new prealloc extent, so that we get a larger contiguous disk extent.
2898 	 */
2899 	if (em->start <= alloc_start &&
2900 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2901 		const u64 em_end = em->start + em->len;
2902 
2903 		if (em_end >= offset + len) {
2904 			/*
2905 			 * The whole range is already a prealloc extent,
2906 			 * do nothing except updating the inode's i_size if
2907 			 * needed.
2908 			 */
2909 			free_extent_map(em);
2910 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2911 							   mode);
2912 			goto out;
2913 		}
2914 		/*
2915 		 * Part of the range is already a prealloc extent, so operate
2916 		 * only on the remaining part of the range.
2917 		 */
2918 		alloc_start = em_end;
2919 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2920 		len = offset + len - alloc_start;
2921 		offset = alloc_start;
2922 		alloc_hint = em->block_start + em->len;
2923 	}
2924 	free_extent_map(em);
2925 
2926 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2927 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2928 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2929 				      alloc_start, sectorsize, 0);
2930 		if (IS_ERR(em)) {
2931 			ret = PTR_ERR(em);
2932 			goto out;
2933 		}
2934 
2935 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2936 			free_extent_map(em);
2937 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2938 							   mode);
2939 			goto out;
2940 		}
2941 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2942 			free_extent_map(em);
2943 			ret = btrfs_truncate_block(inode, offset, len, 0);
2944 			if (!ret)
2945 				ret = btrfs_fallocate_update_isize(inode,
2946 								   offset + len,
2947 								   mode);
2948 			return ret;
2949 		}
2950 		free_extent_map(em);
2951 		alloc_start = round_down(offset, sectorsize);
2952 		alloc_end = alloc_start + sectorsize;
2953 		goto reserve_space;
2954 	}
2955 
2956 	alloc_start = round_up(offset, sectorsize);
2957 	alloc_end = round_down(offset + len, sectorsize);
2958 
2959 	/*
2960 	 * For unaligned ranges, check the pages at the boundaries, they might
2961 	 * map to an extent, in which case we need to partially zero them, or
2962 	 * they might map to a hole, in which case we need our allocation range
2963 	 * to cover them.
2964 	 */
2965 	if (!IS_ALIGNED(offset, sectorsize)) {
2966 		ret = btrfs_zero_range_check_range_boundary(inode, offset);
2967 		if (ret < 0)
2968 			goto out;
2969 		if (ret == RANGE_BOUNDARY_HOLE) {
2970 			alloc_start = round_down(offset, sectorsize);
2971 			ret = 0;
2972 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2973 			ret = btrfs_truncate_block(inode, offset, 0, 0);
2974 			if (ret)
2975 				goto out;
2976 		} else {
2977 			ret = 0;
2978 		}
2979 	}
2980 
2981 	if (!IS_ALIGNED(offset + len, sectorsize)) {
2982 		ret = btrfs_zero_range_check_range_boundary(inode,
2983 							    offset + len);
2984 		if (ret < 0)
2985 			goto out;
2986 		if (ret == RANGE_BOUNDARY_HOLE) {
2987 			alloc_end = round_up(offset + len, sectorsize);
2988 			ret = 0;
2989 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2990 			ret = btrfs_truncate_block(inode, offset + len, 0, 1);
2991 			if (ret)
2992 				goto out;
2993 		} else {
2994 			ret = 0;
2995 		}
2996 	}
2997 
2998 reserve_space:
2999 	if (alloc_start < alloc_end) {
3000 		struct extent_state *cached_state = NULL;
3001 		const u64 lockstart = alloc_start;
3002 		const u64 lockend = alloc_end - 1;
3003 
3004 		bytes_to_reserve = alloc_end - alloc_start;
3005 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3006 						      bytes_to_reserve);
3007 		if (ret < 0)
3008 			goto out;
3009 		space_reserved = true;
3010 		ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3011 						alloc_start, bytes_to_reserve);
3012 		if (ret)
3013 			goto out;
3014 		ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3015 						  &cached_state);
3016 		if (ret)
3017 			goto out;
3018 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3019 						alloc_end - alloc_start,
3020 						i_blocksize(inode),
3021 						offset + len, &alloc_hint);
3022 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3023 				     lockend, &cached_state);
3024 		/* btrfs_prealloc_file_range releases reserved space on error */
3025 		if (ret) {
3026 			space_reserved = false;
3027 			goto out;
3028 		}
3029 	}
3030 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3031  out:
3032 	if (ret && space_reserved)
3033 		btrfs_free_reserved_data_space(inode, data_reserved,
3034 					       alloc_start, bytes_to_reserve);
3035 	extent_changeset_free(data_reserved);
3036 
3037 	return ret;
3038 }
3039 
3040 static long btrfs_fallocate(struct file *file, int mode,
3041 			    loff_t offset, loff_t len)
3042 {
3043 	struct inode *inode = file_inode(file);
3044 	struct extent_state *cached_state = NULL;
3045 	struct extent_changeset *data_reserved = NULL;
3046 	struct falloc_range *range;
3047 	struct falloc_range *tmp;
3048 	struct list_head reserve_list;
3049 	u64 cur_offset;
3050 	u64 last_byte;
3051 	u64 alloc_start;
3052 	u64 alloc_end;
3053 	u64 alloc_hint = 0;
3054 	u64 locked_end;
3055 	u64 actual_end = 0;
3056 	struct extent_map *em;
3057 	int blocksize = btrfs_inode_sectorsize(inode);
3058 	int ret;
3059 
3060 	alloc_start = round_down(offset, blocksize);
3061 	alloc_end = round_up(offset + len, blocksize);
3062 	cur_offset = alloc_start;
3063 
3064 	/* Make sure we aren't being give some crap mode */
3065 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3066 		     FALLOC_FL_ZERO_RANGE))
3067 		return -EOPNOTSUPP;
3068 
3069 	if (mode & FALLOC_FL_PUNCH_HOLE)
3070 		return btrfs_punch_hole(inode, offset, len);
3071 
3072 	/*
3073 	 * Only trigger disk allocation, don't trigger qgroup reserve
3074 	 *
3075 	 * For qgroup space, it will be checked later.
3076 	 */
3077 	if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3078 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3079 						      alloc_end - alloc_start);
3080 		if (ret < 0)
3081 			return ret;
3082 	}
3083 
3084 	inode_lock(inode);
3085 
3086 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3087 		ret = inode_newsize_ok(inode, offset + len);
3088 		if (ret)
3089 			goto out;
3090 	}
3091 
3092 	/*
3093 	 * TODO: Move these two operations after we have checked
3094 	 * accurate reserved space, or fallocate can still fail but
3095 	 * with page truncated or size expanded.
3096 	 *
3097 	 * But that's a minor problem and won't do much harm BTW.
3098 	 */
3099 	if (alloc_start > inode->i_size) {
3100 		ret = btrfs_cont_expand(inode, i_size_read(inode),
3101 					alloc_start);
3102 		if (ret)
3103 			goto out;
3104 	} else if (offset + len > inode->i_size) {
3105 		/*
3106 		 * If we are fallocating from the end of the file onward we
3107 		 * need to zero out the end of the block if i_size lands in the
3108 		 * middle of a block.
3109 		 */
3110 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3111 		if (ret)
3112 			goto out;
3113 	}
3114 
3115 	/*
3116 	 * wait for ordered IO before we have any locks.  We'll loop again
3117 	 * below with the locks held.
3118 	 */
3119 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3120 				       alloc_end - alloc_start);
3121 	if (ret)
3122 		goto out;
3123 
3124 	if (mode & FALLOC_FL_ZERO_RANGE) {
3125 		ret = btrfs_zero_range(inode, offset, len, mode);
3126 		inode_unlock(inode);
3127 		return ret;
3128 	}
3129 
3130 	locked_end = alloc_end - 1;
3131 	while (1) {
3132 		struct btrfs_ordered_extent *ordered;
3133 
3134 		/* the extent lock is ordered inside the running
3135 		 * transaction
3136 		 */
3137 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3138 				 locked_end, &cached_state);
3139 		ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3140 
3141 		if (ordered &&
3142 		    ordered->file_offset + ordered->len > alloc_start &&
3143 		    ordered->file_offset < alloc_end) {
3144 			btrfs_put_ordered_extent(ordered);
3145 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3146 					     alloc_start, locked_end,
3147 					     &cached_state);
3148 			/*
3149 			 * we can't wait on the range with the transaction
3150 			 * running or with the extent lock held
3151 			 */
3152 			ret = btrfs_wait_ordered_range(inode, alloc_start,
3153 						       alloc_end - alloc_start);
3154 			if (ret)
3155 				goto out;
3156 		} else {
3157 			if (ordered)
3158 				btrfs_put_ordered_extent(ordered);
3159 			break;
3160 		}
3161 	}
3162 
3163 	/* First, check if we exceed the qgroup limit */
3164 	INIT_LIST_HEAD(&reserve_list);
3165 	while (cur_offset < alloc_end) {
3166 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3167 				      alloc_end - cur_offset, 0);
3168 		if (IS_ERR(em)) {
3169 			ret = PTR_ERR(em);
3170 			break;
3171 		}
3172 		last_byte = min(extent_map_end(em), alloc_end);
3173 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3174 		last_byte = ALIGN(last_byte, blocksize);
3175 		if (em->block_start == EXTENT_MAP_HOLE ||
3176 		    (cur_offset >= inode->i_size &&
3177 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3178 			ret = add_falloc_range(&reserve_list, cur_offset,
3179 					       last_byte - cur_offset);
3180 			if (ret < 0) {
3181 				free_extent_map(em);
3182 				break;
3183 			}
3184 			ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3185 					cur_offset, last_byte - cur_offset);
3186 			if (ret < 0) {
3187 				free_extent_map(em);
3188 				break;
3189 			}
3190 		} else {
3191 			/*
3192 			 * Do not need to reserve unwritten extent for this
3193 			 * range, free reserved data space first, otherwise
3194 			 * it'll result in false ENOSPC error.
3195 			 */
3196 			btrfs_free_reserved_data_space(inode, data_reserved,
3197 					cur_offset, last_byte - cur_offset);
3198 		}
3199 		free_extent_map(em);
3200 		cur_offset = last_byte;
3201 	}
3202 
3203 	/*
3204 	 * If ret is still 0, means we're OK to fallocate.
3205 	 * Or just cleanup the list and exit.
3206 	 */
3207 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3208 		if (!ret)
3209 			ret = btrfs_prealloc_file_range(inode, mode,
3210 					range->start,
3211 					range->len, i_blocksize(inode),
3212 					offset + len, &alloc_hint);
3213 		else
3214 			btrfs_free_reserved_data_space(inode,
3215 					data_reserved, range->start,
3216 					range->len);
3217 		list_del(&range->list);
3218 		kfree(range);
3219 	}
3220 	if (ret < 0)
3221 		goto out_unlock;
3222 
3223 	/*
3224 	 * We didn't need to allocate any more space, but we still extended the
3225 	 * size of the file so we need to update i_size and the inode item.
3226 	 */
3227 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3228 out_unlock:
3229 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3230 			     &cached_state);
3231 out:
3232 	inode_unlock(inode);
3233 	/* Let go of our reservation. */
3234 	if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3235 		btrfs_free_reserved_data_space(inode, data_reserved,
3236 				alloc_start, alloc_end - cur_offset);
3237 	extent_changeset_free(data_reserved);
3238 	return ret;
3239 }
3240 
3241 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3242 {
3243 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3244 	struct extent_map *em = NULL;
3245 	struct extent_state *cached_state = NULL;
3246 	u64 lockstart;
3247 	u64 lockend;
3248 	u64 start;
3249 	u64 len;
3250 	int ret = 0;
3251 
3252 	if (inode->i_size == 0)
3253 		return -ENXIO;
3254 
3255 	/*
3256 	 * *offset can be negative, in this case we start finding DATA/HOLE from
3257 	 * the very start of the file.
3258 	 */
3259 	start = max_t(loff_t, 0, *offset);
3260 
3261 	lockstart = round_down(start, fs_info->sectorsize);
3262 	lockend = round_up(i_size_read(inode),
3263 			   fs_info->sectorsize);
3264 	if (lockend <= lockstart)
3265 		lockend = lockstart + fs_info->sectorsize;
3266 	lockend--;
3267 	len = lockend - lockstart + 1;
3268 
3269 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3270 			 &cached_state);
3271 
3272 	while (start < inode->i_size) {
3273 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3274 				start, len, 0);
3275 		if (IS_ERR(em)) {
3276 			ret = PTR_ERR(em);
3277 			em = NULL;
3278 			break;
3279 		}
3280 
3281 		if (whence == SEEK_HOLE &&
3282 		    (em->block_start == EXTENT_MAP_HOLE ||
3283 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3284 			break;
3285 		else if (whence == SEEK_DATA &&
3286 			   (em->block_start != EXTENT_MAP_HOLE &&
3287 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3288 			break;
3289 
3290 		start = em->start + em->len;
3291 		free_extent_map(em);
3292 		em = NULL;
3293 		cond_resched();
3294 	}
3295 	free_extent_map(em);
3296 	if (!ret) {
3297 		if (whence == SEEK_DATA && start >= inode->i_size)
3298 			ret = -ENXIO;
3299 		else
3300 			*offset = min_t(loff_t, start, inode->i_size);
3301 	}
3302 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3303 			     &cached_state);
3304 	return ret;
3305 }
3306 
3307 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3308 {
3309 	struct inode *inode = file->f_mapping->host;
3310 	int ret;
3311 
3312 	inode_lock(inode);
3313 	switch (whence) {
3314 	case SEEK_END:
3315 	case SEEK_CUR:
3316 		offset = generic_file_llseek(file, offset, whence);
3317 		goto out;
3318 	case SEEK_DATA:
3319 	case SEEK_HOLE:
3320 		if (offset >= i_size_read(inode)) {
3321 			inode_unlock(inode);
3322 			return -ENXIO;
3323 		}
3324 
3325 		ret = find_desired_extent(inode, &offset, whence);
3326 		if (ret) {
3327 			inode_unlock(inode);
3328 			return ret;
3329 		}
3330 	}
3331 
3332 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3333 out:
3334 	inode_unlock(inode);
3335 	return offset;
3336 }
3337 
3338 static int btrfs_file_open(struct inode *inode, struct file *filp)
3339 {
3340 	filp->f_mode |= FMODE_NOWAIT;
3341 	return generic_file_open(inode, filp);
3342 }
3343 
3344 const struct file_operations btrfs_file_operations = {
3345 	.llseek		= btrfs_file_llseek,
3346 	.read_iter      = generic_file_read_iter,
3347 	.splice_read	= generic_file_splice_read,
3348 	.write_iter	= btrfs_file_write_iter,
3349 	.mmap		= btrfs_file_mmap,
3350 	.open		= btrfs_file_open,
3351 	.release	= btrfs_release_file,
3352 	.fsync		= btrfs_sync_file,
3353 	.fallocate	= btrfs_fallocate,
3354 	.unlocked_ioctl	= btrfs_ioctl,
3355 #ifdef CONFIG_COMPAT
3356 	.compat_ioctl	= btrfs_compat_ioctl,
3357 #endif
3358 	.clone_file_range = btrfs_clone_file_range,
3359 	.dedupe_file_range = btrfs_dedupe_file_range,
3360 };
3361 
3362 void __cold btrfs_auto_defrag_exit(void)
3363 {
3364 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3365 }
3366 
3367 int __init btrfs_auto_defrag_init(void)
3368 {
3369 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3370 					sizeof(struct inode_defrag), 0,
3371 					SLAB_MEM_SPREAD,
3372 					NULL);
3373 	if (!btrfs_inode_defrag_cachep)
3374 		return -ENOMEM;
3375 
3376 	return 0;
3377 }
3378 
3379 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3380 {
3381 	int ret;
3382 
3383 	/*
3384 	 * So with compression we will find and lock a dirty page and clear the
3385 	 * first one as dirty, setup an async extent, and immediately return
3386 	 * with the entire range locked but with nobody actually marked with
3387 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3388 	 * expect it to work since it will just kick off a thread to do the
3389 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3390 	 * since it will wait on the page lock, which won't be unlocked until
3391 	 * after the pages have been marked as writeback and so we're good to go
3392 	 * from there.  We have to do this otherwise we'll miss the ordered
3393 	 * extents and that results in badness.  Please Josef, do not think you
3394 	 * know better and pull this out at some point in the future, it is
3395 	 * right and you are wrong.
3396 	 */
3397 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3398 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3399 			     &BTRFS_I(inode)->runtime_flags))
3400 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3401 
3402 	return ret;
3403 }
3404