1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "btrfs_inode.h" 24 #include "print-tree.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "volumes.h" 28 #include "qgroup.h" 29 #include "compression.h" 30 #include "delalloc-space.h" 31 #include "reflink.h" 32 #include "subpage.h" 33 34 static struct kmem_cache *btrfs_inode_defrag_cachep; 35 /* 36 * when auto defrag is enabled we 37 * queue up these defrag structs to remember which 38 * inodes need defragging passes 39 */ 40 struct inode_defrag { 41 struct rb_node rb_node; 42 /* objectid */ 43 u64 ino; 44 /* 45 * transid where the defrag was added, we search for 46 * extents newer than this 47 */ 48 u64 transid; 49 50 /* root objectid */ 51 u64 root; 52 53 /* 54 * The extent size threshold for autodefrag. 55 * 56 * This value is different for compressed/non-compressed extents, 57 * thus needs to be passed from higher layer. 58 * (aka, inode_should_defrag()) 59 */ 60 u32 extent_thresh; 61 }; 62 63 static int __compare_inode_defrag(struct inode_defrag *defrag1, 64 struct inode_defrag *defrag2) 65 { 66 if (defrag1->root > defrag2->root) 67 return 1; 68 else if (defrag1->root < defrag2->root) 69 return -1; 70 else if (defrag1->ino > defrag2->ino) 71 return 1; 72 else if (defrag1->ino < defrag2->ino) 73 return -1; 74 else 75 return 0; 76 } 77 78 /* pop a record for an inode into the defrag tree. The lock 79 * must be held already 80 * 81 * If you're inserting a record for an older transid than an 82 * existing record, the transid already in the tree is lowered 83 * 84 * If an existing record is found the defrag item you 85 * pass in is freed 86 */ 87 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 88 struct inode_defrag *defrag) 89 { 90 struct btrfs_fs_info *fs_info = inode->root->fs_info; 91 struct inode_defrag *entry; 92 struct rb_node **p; 93 struct rb_node *parent = NULL; 94 int ret; 95 96 p = &fs_info->defrag_inodes.rb_node; 97 while (*p) { 98 parent = *p; 99 entry = rb_entry(parent, struct inode_defrag, rb_node); 100 101 ret = __compare_inode_defrag(defrag, entry); 102 if (ret < 0) 103 p = &parent->rb_left; 104 else if (ret > 0) 105 p = &parent->rb_right; 106 else { 107 /* if we're reinserting an entry for 108 * an old defrag run, make sure to 109 * lower the transid of our existing record 110 */ 111 if (defrag->transid < entry->transid) 112 entry->transid = defrag->transid; 113 entry->extent_thresh = min(defrag->extent_thresh, 114 entry->extent_thresh); 115 return -EEXIST; 116 } 117 } 118 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 119 rb_link_node(&defrag->rb_node, parent, p); 120 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 121 return 0; 122 } 123 124 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 125 { 126 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 127 return 0; 128 129 if (btrfs_fs_closing(fs_info)) 130 return 0; 131 132 return 1; 133 } 134 135 /* 136 * insert a defrag record for this inode if auto defrag is 137 * enabled 138 */ 139 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 140 struct btrfs_inode *inode, u32 extent_thresh) 141 { 142 struct btrfs_root *root = inode->root; 143 struct btrfs_fs_info *fs_info = root->fs_info; 144 struct inode_defrag *defrag; 145 u64 transid; 146 int ret; 147 148 if (!__need_auto_defrag(fs_info)) 149 return 0; 150 151 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 152 return 0; 153 154 if (trans) 155 transid = trans->transid; 156 else 157 transid = inode->root->last_trans; 158 159 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 160 if (!defrag) 161 return -ENOMEM; 162 163 defrag->ino = btrfs_ino(inode); 164 defrag->transid = transid; 165 defrag->root = root->root_key.objectid; 166 defrag->extent_thresh = extent_thresh; 167 168 spin_lock(&fs_info->defrag_inodes_lock); 169 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 170 /* 171 * If we set IN_DEFRAG flag and evict the inode from memory, 172 * and then re-read this inode, this new inode doesn't have 173 * IN_DEFRAG flag. At the case, we may find the existed defrag. 174 */ 175 ret = __btrfs_add_inode_defrag(inode, defrag); 176 if (ret) 177 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 178 } else { 179 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 180 } 181 spin_unlock(&fs_info->defrag_inodes_lock); 182 return 0; 183 } 184 185 /* 186 * pick the defragable inode that we want, if it doesn't exist, we will get 187 * the next one. 188 */ 189 static struct inode_defrag * 190 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 191 { 192 struct inode_defrag *entry = NULL; 193 struct inode_defrag tmp; 194 struct rb_node *p; 195 struct rb_node *parent = NULL; 196 int ret; 197 198 tmp.ino = ino; 199 tmp.root = root; 200 201 spin_lock(&fs_info->defrag_inodes_lock); 202 p = fs_info->defrag_inodes.rb_node; 203 while (p) { 204 parent = p; 205 entry = rb_entry(parent, struct inode_defrag, rb_node); 206 207 ret = __compare_inode_defrag(&tmp, entry); 208 if (ret < 0) 209 p = parent->rb_left; 210 else if (ret > 0) 211 p = parent->rb_right; 212 else 213 goto out; 214 } 215 216 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 217 parent = rb_next(parent); 218 if (parent) 219 entry = rb_entry(parent, struct inode_defrag, rb_node); 220 else 221 entry = NULL; 222 } 223 out: 224 if (entry) 225 rb_erase(parent, &fs_info->defrag_inodes); 226 spin_unlock(&fs_info->defrag_inodes_lock); 227 return entry; 228 } 229 230 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 231 { 232 struct inode_defrag *defrag; 233 struct rb_node *node; 234 235 spin_lock(&fs_info->defrag_inodes_lock); 236 node = rb_first(&fs_info->defrag_inodes); 237 while (node) { 238 rb_erase(node, &fs_info->defrag_inodes); 239 defrag = rb_entry(node, struct inode_defrag, rb_node); 240 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 241 242 cond_resched_lock(&fs_info->defrag_inodes_lock); 243 244 node = rb_first(&fs_info->defrag_inodes); 245 } 246 spin_unlock(&fs_info->defrag_inodes_lock); 247 } 248 249 #define BTRFS_DEFRAG_BATCH 1024 250 251 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 252 struct inode_defrag *defrag) 253 { 254 struct btrfs_root *inode_root; 255 struct inode *inode; 256 struct btrfs_ioctl_defrag_range_args range; 257 int ret = 0; 258 u64 cur = 0; 259 260 again: 261 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) 262 goto cleanup; 263 if (!__need_auto_defrag(fs_info)) 264 goto cleanup; 265 266 /* get the inode */ 267 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); 268 if (IS_ERR(inode_root)) { 269 ret = PTR_ERR(inode_root); 270 goto cleanup; 271 } 272 273 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root); 274 btrfs_put_root(inode_root); 275 if (IS_ERR(inode)) { 276 ret = PTR_ERR(inode); 277 goto cleanup; 278 } 279 280 if (cur >= i_size_read(inode)) { 281 iput(inode); 282 goto cleanup; 283 } 284 285 /* do a chunk of defrag */ 286 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 287 memset(&range, 0, sizeof(range)); 288 range.len = (u64)-1; 289 range.start = cur; 290 range.extent_thresh = defrag->extent_thresh; 291 292 sb_start_write(fs_info->sb); 293 ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 294 BTRFS_DEFRAG_BATCH); 295 sb_end_write(fs_info->sb); 296 iput(inode); 297 298 if (ret < 0) 299 goto cleanup; 300 301 cur = max(cur + fs_info->sectorsize, range.start); 302 goto again; 303 304 cleanup: 305 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 306 return ret; 307 } 308 309 /* 310 * run through the list of inodes in the FS that need 311 * defragging 312 */ 313 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 314 { 315 struct inode_defrag *defrag; 316 u64 first_ino = 0; 317 u64 root_objectid = 0; 318 319 atomic_inc(&fs_info->defrag_running); 320 while (1) { 321 /* Pause the auto defragger. */ 322 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 323 &fs_info->fs_state)) 324 break; 325 326 if (!__need_auto_defrag(fs_info)) 327 break; 328 329 /* find an inode to defrag */ 330 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 331 first_ino); 332 if (!defrag) { 333 if (root_objectid || first_ino) { 334 root_objectid = 0; 335 first_ino = 0; 336 continue; 337 } else { 338 break; 339 } 340 } 341 342 first_ino = defrag->ino + 1; 343 root_objectid = defrag->root; 344 345 __btrfs_run_defrag_inode(fs_info, defrag); 346 } 347 atomic_dec(&fs_info->defrag_running); 348 349 /* 350 * during unmount, we use the transaction_wait queue to 351 * wait for the defragger to stop 352 */ 353 wake_up(&fs_info->transaction_wait); 354 return 0; 355 } 356 357 /* simple helper to fault in pages and copy. This should go away 358 * and be replaced with calls into generic code. 359 */ 360 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 361 struct page **prepared_pages, 362 struct iov_iter *i) 363 { 364 size_t copied = 0; 365 size_t total_copied = 0; 366 int pg = 0; 367 int offset = offset_in_page(pos); 368 369 while (write_bytes > 0) { 370 size_t count = min_t(size_t, 371 PAGE_SIZE - offset, write_bytes); 372 struct page *page = prepared_pages[pg]; 373 /* 374 * Copy data from userspace to the current page 375 */ 376 copied = copy_page_from_iter_atomic(page, offset, count, i); 377 378 /* Flush processor's dcache for this page */ 379 flush_dcache_page(page); 380 381 /* 382 * if we get a partial write, we can end up with 383 * partially up to date pages. These add 384 * a lot of complexity, so make sure they don't 385 * happen by forcing this copy to be retried. 386 * 387 * The rest of the btrfs_file_write code will fall 388 * back to page at a time copies after we return 0. 389 */ 390 if (unlikely(copied < count)) { 391 if (!PageUptodate(page)) { 392 iov_iter_revert(i, copied); 393 copied = 0; 394 } 395 if (!copied) 396 break; 397 } 398 399 write_bytes -= copied; 400 total_copied += copied; 401 offset += copied; 402 if (offset == PAGE_SIZE) { 403 pg++; 404 offset = 0; 405 } 406 } 407 return total_copied; 408 } 409 410 /* 411 * unlocks pages after btrfs_file_write is done with them 412 */ 413 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 414 struct page **pages, size_t num_pages, 415 u64 pos, u64 copied) 416 { 417 size_t i; 418 u64 block_start = round_down(pos, fs_info->sectorsize); 419 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 420 421 ASSERT(block_len <= U32_MAX); 422 for (i = 0; i < num_pages; i++) { 423 /* page checked is some magic around finding pages that 424 * have been modified without going through btrfs_set_page_dirty 425 * clear it here. There should be no need to mark the pages 426 * accessed as prepare_pages should have marked them accessed 427 * in prepare_pages via find_or_create_page() 428 */ 429 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start, 430 block_len); 431 unlock_page(pages[i]); 432 put_page(pages[i]); 433 } 434 } 435 436 /* 437 * After btrfs_copy_from_user(), update the following things for delalloc: 438 * - Mark newly dirtied pages as DELALLOC in the io tree. 439 * Used to advise which range is to be written back. 440 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 441 * - Update inode size for past EOF write 442 */ 443 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 444 size_t num_pages, loff_t pos, size_t write_bytes, 445 struct extent_state **cached, bool noreserve) 446 { 447 struct btrfs_fs_info *fs_info = inode->root->fs_info; 448 int err = 0; 449 int i; 450 u64 num_bytes; 451 u64 start_pos; 452 u64 end_of_last_block; 453 u64 end_pos = pos + write_bytes; 454 loff_t isize = i_size_read(&inode->vfs_inode); 455 unsigned int extra_bits = 0; 456 457 if (write_bytes == 0) 458 return 0; 459 460 if (noreserve) 461 extra_bits |= EXTENT_NORESERVE; 462 463 start_pos = round_down(pos, fs_info->sectorsize); 464 num_bytes = round_up(write_bytes + pos - start_pos, 465 fs_info->sectorsize); 466 ASSERT(num_bytes <= U32_MAX); 467 468 end_of_last_block = start_pos + num_bytes - 1; 469 470 /* 471 * The pages may have already been dirty, clear out old accounting so 472 * we can set things up properly 473 */ 474 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 475 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 476 cached); 477 478 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 479 extra_bits, cached); 480 if (err) 481 return err; 482 483 for (i = 0; i < num_pages; i++) { 484 struct page *p = pages[i]; 485 486 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes); 487 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes); 488 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes); 489 } 490 491 /* 492 * we've only changed i_size in ram, and we haven't updated 493 * the disk i_size. There is no need to log the inode 494 * at this time. 495 */ 496 if (end_pos > isize) 497 i_size_write(&inode->vfs_inode, end_pos); 498 return 0; 499 } 500 501 /* 502 * this is very complex, but the basic idea is to drop all extents 503 * in the range start - end. hint_block is filled in with a block number 504 * that would be a good hint to the block allocator for this file. 505 * 506 * If an extent intersects the range but is not entirely inside the range 507 * it is either truncated or split. Anything entirely inside the range 508 * is deleted from the tree. 509 * 510 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 511 * to deal with that. We set the field 'bytes_found' of the arguments structure 512 * with the number of allocated bytes found in the target range, so that the 513 * caller can update the inode's number of bytes in an atomic way when 514 * replacing extents in a range to avoid races with stat(2). 515 */ 516 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 517 struct btrfs_root *root, struct btrfs_inode *inode, 518 struct btrfs_drop_extents_args *args) 519 { 520 struct btrfs_fs_info *fs_info = root->fs_info; 521 struct extent_buffer *leaf; 522 struct btrfs_file_extent_item *fi; 523 struct btrfs_ref ref = { 0 }; 524 struct btrfs_key key; 525 struct btrfs_key new_key; 526 u64 ino = btrfs_ino(inode); 527 u64 search_start = args->start; 528 u64 disk_bytenr = 0; 529 u64 num_bytes = 0; 530 u64 extent_offset = 0; 531 u64 extent_end = 0; 532 u64 last_end = args->start; 533 int del_nr = 0; 534 int del_slot = 0; 535 int extent_type; 536 int recow; 537 int ret; 538 int modify_tree = -1; 539 int update_refs; 540 int found = 0; 541 struct btrfs_path *path = args->path; 542 543 args->bytes_found = 0; 544 args->extent_inserted = false; 545 546 /* Must always have a path if ->replace_extent is true */ 547 ASSERT(!(args->replace_extent && !args->path)); 548 549 if (!path) { 550 path = btrfs_alloc_path(); 551 if (!path) { 552 ret = -ENOMEM; 553 goto out; 554 } 555 } 556 557 if (args->drop_cache) 558 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); 559 560 if (args->start >= inode->disk_i_size && !args->replace_extent) 561 modify_tree = 0; 562 563 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 564 while (1) { 565 recow = 0; 566 ret = btrfs_lookup_file_extent(trans, root, path, ino, 567 search_start, modify_tree); 568 if (ret < 0) 569 break; 570 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 571 leaf = path->nodes[0]; 572 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 573 if (key.objectid == ino && 574 key.type == BTRFS_EXTENT_DATA_KEY) 575 path->slots[0]--; 576 } 577 ret = 0; 578 next_slot: 579 leaf = path->nodes[0]; 580 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 581 BUG_ON(del_nr > 0); 582 ret = btrfs_next_leaf(root, path); 583 if (ret < 0) 584 break; 585 if (ret > 0) { 586 ret = 0; 587 break; 588 } 589 leaf = path->nodes[0]; 590 recow = 1; 591 } 592 593 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 594 595 if (key.objectid > ino) 596 break; 597 if (WARN_ON_ONCE(key.objectid < ino) || 598 key.type < BTRFS_EXTENT_DATA_KEY) { 599 ASSERT(del_nr == 0); 600 path->slots[0]++; 601 goto next_slot; 602 } 603 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 604 break; 605 606 fi = btrfs_item_ptr(leaf, path->slots[0], 607 struct btrfs_file_extent_item); 608 extent_type = btrfs_file_extent_type(leaf, fi); 609 610 if (extent_type == BTRFS_FILE_EXTENT_REG || 611 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 612 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 613 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 614 extent_offset = btrfs_file_extent_offset(leaf, fi); 615 extent_end = key.offset + 616 btrfs_file_extent_num_bytes(leaf, fi); 617 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 618 extent_end = key.offset + 619 btrfs_file_extent_ram_bytes(leaf, fi); 620 } else { 621 /* can't happen */ 622 BUG(); 623 } 624 625 /* 626 * Don't skip extent items representing 0 byte lengths. They 627 * used to be created (bug) if while punching holes we hit 628 * -ENOSPC condition. So if we find one here, just ensure we 629 * delete it, otherwise we would insert a new file extent item 630 * with the same key (offset) as that 0 bytes length file 631 * extent item in the call to setup_items_for_insert() later 632 * in this function. 633 */ 634 if (extent_end == key.offset && extent_end >= search_start) { 635 last_end = extent_end; 636 goto delete_extent_item; 637 } 638 639 if (extent_end <= search_start) { 640 path->slots[0]++; 641 goto next_slot; 642 } 643 644 found = 1; 645 search_start = max(key.offset, args->start); 646 if (recow || !modify_tree) { 647 modify_tree = -1; 648 btrfs_release_path(path); 649 continue; 650 } 651 652 /* 653 * | - range to drop - | 654 * | -------- extent -------- | 655 */ 656 if (args->start > key.offset && args->end < extent_end) { 657 BUG_ON(del_nr > 0); 658 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 659 ret = -EOPNOTSUPP; 660 break; 661 } 662 663 memcpy(&new_key, &key, sizeof(new_key)); 664 new_key.offset = args->start; 665 ret = btrfs_duplicate_item(trans, root, path, 666 &new_key); 667 if (ret == -EAGAIN) { 668 btrfs_release_path(path); 669 continue; 670 } 671 if (ret < 0) 672 break; 673 674 leaf = path->nodes[0]; 675 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 676 struct btrfs_file_extent_item); 677 btrfs_set_file_extent_num_bytes(leaf, fi, 678 args->start - key.offset); 679 680 fi = btrfs_item_ptr(leaf, path->slots[0], 681 struct btrfs_file_extent_item); 682 683 extent_offset += args->start - key.offset; 684 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 685 btrfs_set_file_extent_num_bytes(leaf, fi, 686 extent_end - args->start); 687 btrfs_mark_buffer_dirty(leaf); 688 689 if (update_refs && disk_bytenr > 0) { 690 btrfs_init_generic_ref(&ref, 691 BTRFS_ADD_DELAYED_REF, 692 disk_bytenr, num_bytes, 0); 693 btrfs_init_data_ref(&ref, 694 root->root_key.objectid, 695 new_key.objectid, 696 args->start - extent_offset, 697 0, false); 698 ret = btrfs_inc_extent_ref(trans, &ref); 699 BUG_ON(ret); /* -ENOMEM */ 700 } 701 key.offset = args->start; 702 } 703 /* 704 * From here on out we will have actually dropped something, so 705 * last_end can be updated. 706 */ 707 last_end = extent_end; 708 709 /* 710 * | ---- range to drop ----- | 711 * | -------- extent -------- | 712 */ 713 if (args->start <= key.offset && args->end < extent_end) { 714 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 715 ret = -EOPNOTSUPP; 716 break; 717 } 718 719 memcpy(&new_key, &key, sizeof(new_key)); 720 new_key.offset = args->end; 721 btrfs_set_item_key_safe(fs_info, path, &new_key); 722 723 extent_offset += args->end - key.offset; 724 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 725 btrfs_set_file_extent_num_bytes(leaf, fi, 726 extent_end - args->end); 727 btrfs_mark_buffer_dirty(leaf); 728 if (update_refs && disk_bytenr > 0) 729 args->bytes_found += args->end - key.offset; 730 break; 731 } 732 733 search_start = extent_end; 734 /* 735 * | ---- range to drop ----- | 736 * | -------- extent -------- | 737 */ 738 if (args->start > key.offset && args->end >= extent_end) { 739 BUG_ON(del_nr > 0); 740 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 741 ret = -EOPNOTSUPP; 742 break; 743 } 744 745 btrfs_set_file_extent_num_bytes(leaf, fi, 746 args->start - key.offset); 747 btrfs_mark_buffer_dirty(leaf); 748 if (update_refs && disk_bytenr > 0) 749 args->bytes_found += extent_end - args->start; 750 if (args->end == extent_end) 751 break; 752 753 path->slots[0]++; 754 goto next_slot; 755 } 756 757 /* 758 * | ---- range to drop ----- | 759 * | ------ extent ------ | 760 */ 761 if (args->start <= key.offset && args->end >= extent_end) { 762 delete_extent_item: 763 if (del_nr == 0) { 764 del_slot = path->slots[0]; 765 del_nr = 1; 766 } else { 767 BUG_ON(del_slot + del_nr != path->slots[0]); 768 del_nr++; 769 } 770 771 if (update_refs && 772 extent_type == BTRFS_FILE_EXTENT_INLINE) { 773 args->bytes_found += extent_end - key.offset; 774 extent_end = ALIGN(extent_end, 775 fs_info->sectorsize); 776 } else if (update_refs && disk_bytenr > 0) { 777 btrfs_init_generic_ref(&ref, 778 BTRFS_DROP_DELAYED_REF, 779 disk_bytenr, num_bytes, 0); 780 btrfs_init_data_ref(&ref, 781 root->root_key.objectid, 782 key.objectid, 783 key.offset - extent_offset, 0, 784 false); 785 ret = btrfs_free_extent(trans, &ref); 786 BUG_ON(ret); /* -ENOMEM */ 787 args->bytes_found += extent_end - key.offset; 788 } 789 790 if (args->end == extent_end) 791 break; 792 793 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 794 path->slots[0]++; 795 goto next_slot; 796 } 797 798 ret = btrfs_del_items(trans, root, path, del_slot, 799 del_nr); 800 if (ret) { 801 btrfs_abort_transaction(trans, ret); 802 break; 803 } 804 805 del_nr = 0; 806 del_slot = 0; 807 808 btrfs_release_path(path); 809 continue; 810 } 811 812 BUG(); 813 } 814 815 if (!ret && del_nr > 0) { 816 /* 817 * Set path->slots[0] to first slot, so that after the delete 818 * if items are move off from our leaf to its immediate left or 819 * right neighbor leafs, we end up with a correct and adjusted 820 * path->slots[0] for our insertion (if args->replace_extent). 821 */ 822 path->slots[0] = del_slot; 823 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 824 if (ret) 825 btrfs_abort_transaction(trans, ret); 826 } 827 828 leaf = path->nodes[0]; 829 /* 830 * If btrfs_del_items() was called, it might have deleted a leaf, in 831 * which case it unlocked our path, so check path->locks[0] matches a 832 * write lock. 833 */ 834 if (!ret && args->replace_extent && 835 path->locks[0] == BTRFS_WRITE_LOCK && 836 btrfs_leaf_free_space(leaf) >= 837 sizeof(struct btrfs_item) + args->extent_item_size) { 838 839 key.objectid = ino; 840 key.type = BTRFS_EXTENT_DATA_KEY; 841 key.offset = args->start; 842 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 843 struct btrfs_key slot_key; 844 845 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 846 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 847 path->slots[0]++; 848 } 849 btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size); 850 args->extent_inserted = true; 851 } 852 853 if (!args->path) 854 btrfs_free_path(path); 855 else if (!args->extent_inserted) 856 btrfs_release_path(path); 857 out: 858 args->drop_end = found ? min(args->end, last_end) : args->end; 859 860 return ret; 861 } 862 863 static int extent_mergeable(struct extent_buffer *leaf, int slot, 864 u64 objectid, u64 bytenr, u64 orig_offset, 865 u64 *start, u64 *end) 866 { 867 struct btrfs_file_extent_item *fi; 868 struct btrfs_key key; 869 u64 extent_end; 870 871 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 872 return 0; 873 874 btrfs_item_key_to_cpu(leaf, &key, slot); 875 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 876 return 0; 877 878 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 879 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 880 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 881 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 882 btrfs_file_extent_compression(leaf, fi) || 883 btrfs_file_extent_encryption(leaf, fi) || 884 btrfs_file_extent_other_encoding(leaf, fi)) 885 return 0; 886 887 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 888 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 889 return 0; 890 891 *start = key.offset; 892 *end = extent_end; 893 return 1; 894 } 895 896 /* 897 * Mark extent in the range start - end as written. 898 * 899 * This changes extent type from 'pre-allocated' to 'regular'. If only 900 * part of extent is marked as written, the extent will be split into 901 * two or three. 902 */ 903 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 904 struct btrfs_inode *inode, u64 start, u64 end) 905 { 906 struct btrfs_fs_info *fs_info = trans->fs_info; 907 struct btrfs_root *root = inode->root; 908 struct extent_buffer *leaf; 909 struct btrfs_path *path; 910 struct btrfs_file_extent_item *fi; 911 struct btrfs_ref ref = { 0 }; 912 struct btrfs_key key; 913 struct btrfs_key new_key; 914 u64 bytenr; 915 u64 num_bytes; 916 u64 extent_end; 917 u64 orig_offset; 918 u64 other_start; 919 u64 other_end; 920 u64 split; 921 int del_nr = 0; 922 int del_slot = 0; 923 int recow; 924 int ret = 0; 925 u64 ino = btrfs_ino(inode); 926 927 path = btrfs_alloc_path(); 928 if (!path) 929 return -ENOMEM; 930 again: 931 recow = 0; 932 split = start; 933 key.objectid = ino; 934 key.type = BTRFS_EXTENT_DATA_KEY; 935 key.offset = split; 936 937 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 938 if (ret < 0) 939 goto out; 940 if (ret > 0 && path->slots[0] > 0) 941 path->slots[0]--; 942 943 leaf = path->nodes[0]; 944 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 945 if (key.objectid != ino || 946 key.type != BTRFS_EXTENT_DATA_KEY) { 947 ret = -EINVAL; 948 btrfs_abort_transaction(trans, ret); 949 goto out; 950 } 951 fi = btrfs_item_ptr(leaf, path->slots[0], 952 struct btrfs_file_extent_item); 953 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 954 ret = -EINVAL; 955 btrfs_abort_transaction(trans, ret); 956 goto out; 957 } 958 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 959 if (key.offset > start || extent_end < end) { 960 ret = -EINVAL; 961 btrfs_abort_transaction(trans, ret); 962 goto out; 963 } 964 965 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 966 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 967 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 968 memcpy(&new_key, &key, sizeof(new_key)); 969 970 if (start == key.offset && end < extent_end) { 971 other_start = 0; 972 other_end = start; 973 if (extent_mergeable(leaf, path->slots[0] - 1, 974 ino, bytenr, orig_offset, 975 &other_start, &other_end)) { 976 new_key.offset = end; 977 btrfs_set_item_key_safe(fs_info, path, &new_key); 978 fi = btrfs_item_ptr(leaf, path->slots[0], 979 struct btrfs_file_extent_item); 980 btrfs_set_file_extent_generation(leaf, fi, 981 trans->transid); 982 btrfs_set_file_extent_num_bytes(leaf, fi, 983 extent_end - end); 984 btrfs_set_file_extent_offset(leaf, fi, 985 end - orig_offset); 986 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 987 struct btrfs_file_extent_item); 988 btrfs_set_file_extent_generation(leaf, fi, 989 trans->transid); 990 btrfs_set_file_extent_num_bytes(leaf, fi, 991 end - other_start); 992 btrfs_mark_buffer_dirty(leaf); 993 goto out; 994 } 995 } 996 997 if (start > key.offset && end == extent_end) { 998 other_start = end; 999 other_end = 0; 1000 if (extent_mergeable(leaf, path->slots[0] + 1, 1001 ino, bytenr, orig_offset, 1002 &other_start, &other_end)) { 1003 fi = btrfs_item_ptr(leaf, path->slots[0], 1004 struct btrfs_file_extent_item); 1005 btrfs_set_file_extent_num_bytes(leaf, fi, 1006 start - key.offset); 1007 btrfs_set_file_extent_generation(leaf, fi, 1008 trans->transid); 1009 path->slots[0]++; 1010 new_key.offset = start; 1011 btrfs_set_item_key_safe(fs_info, path, &new_key); 1012 1013 fi = btrfs_item_ptr(leaf, path->slots[0], 1014 struct btrfs_file_extent_item); 1015 btrfs_set_file_extent_generation(leaf, fi, 1016 trans->transid); 1017 btrfs_set_file_extent_num_bytes(leaf, fi, 1018 other_end - start); 1019 btrfs_set_file_extent_offset(leaf, fi, 1020 start - orig_offset); 1021 btrfs_mark_buffer_dirty(leaf); 1022 goto out; 1023 } 1024 } 1025 1026 while (start > key.offset || end < extent_end) { 1027 if (key.offset == start) 1028 split = end; 1029 1030 new_key.offset = split; 1031 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1032 if (ret == -EAGAIN) { 1033 btrfs_release_path(path); 1034 goto again; 1035 } 1036 if (ret < 0) { 1037 btrfs_abort_transaction(trans, ret); 1038 goto out; 1039 } 1040 1041 leaf = path->nodes[0]; 1042 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1043 struct btrfs_file_extent_item); 1044 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1045 btrfs_set_file_extent_num_bytes(leaf, fi, 1046 split - key.offset); 1047 1048 fi = btrfs_item_ptr(leaf, path->slots[0], 1049 struct btrfs_file_extent_item); 1050 1051 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1052 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1053 btrfs_set_file_extent_num_bytes(leaf, fi, 1054 extent_end - split); 1055 btrfs_mark_buffer_dirty(leaf); 1056 1057 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 1058 num_bytes, 0); 1059 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 1060 orig_offset, 0, false); 1061 ret = btrfs_inc_extent_ref(trans, &ref); 1062 if (ret) { 1063 btrfs_abort_transaction(trans, ret); 1064 goto out; 1065 } 1066 1067 if (split == start) { 1068 key.offset = start; 1069 } else { 1070 if (start != key.offset) { 1071 ret = -EINVAL; 1072 btrfs_abort_transaction(trans, ret); 1073 goto out; 1074 } 1075 path->slots[0]--; 1076 extent_end = end; 1077 } 1078 recow = 1; 1079 } 1080 1081 other_start = end; 1082 other_end = 0; 1083 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1084 num_bytes, 0); 1085 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset, 1086 0, false); 1087 if (extent_mergeable(leaf, path->slots[0] + 1, 1088 ino, bytenr, orig_offset, 1089 &other_start, &other_end)) { 1090 if (recow) { 1091 btrfs_release_path(path); 1092 goto again; 1093 } 1094 extent_end = other_end; 1095 del_slot = path->slots[0] + 1; 1096 del_nr++; 1097 ret = btrfs_free_extent(trans, &ref); 1098 if (ret) { 1099 btrfs_abort_transaction(trans, ret); 1100 goto out; 1101 } 1102 } 1103 other_start = 0; 1104 other_end = start; 1105 if (extent_mergeable(leaf, path->slots[0] - 1, 1106 ino, bytenr, orig_offset, 1107 &other_start, &other_end)) { 1108 if (recow) { 1109 btrfs_release_path(path); 1110 goto again; 1111 } 1112 key.offset = other_start; 1113 del_slot = path->slots[0]; 1114 del_nr++; 1115 ret = btrfs_free_extent(trans, &ref); 1116 if (ret) { 1117 btrfs_abort_transaction(trans, ret); 1118 goto out; 1119 } 1120 } 1121 if (del_nr == 0) { 1122 fi = btrfs_item_ptr(leaf, path->slots[0], 1123 struct btrfs_file_extent_item); 1124 btrfs_set_file_extent_type(leaf, fi, 1125 BTRFS_FILE_EXTENT_REG); 1126 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1127 btrfs_mark_buffer_dirty(leaf); 1128 } else { 1129 fi = btrfs_item_ptr(leaf, del_slot - 1, 1130 struct btrfs_file_extent_item); 1131 btrfs_set_file_extent_type(leaf, fi, 1132 BTRFS_FILE_EXTENT_REG); 1133 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1134 btrfs_set_file_extent_num_bytes(leaf, fi, 1135 extent_end - key.offset); 1136 btrfs_mark_buffer_dirty(leaf); 1137 1138 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1139 if (ret < 0) { 1140 btrfs_abort_transaction(trans, ret); 1141 goto out; 1142 } 1143 } 1144 out: 1145 btrfs_free_path(path); 1146 return ret; 1147 } 1148 1149 /* 1150 * on error we return an unlocked page and the error value 1151 * on success we return a locked page and 0 1152 */ 1153 static int prepare_uptodate_page(struct inode *inode, 1154 struct page *page, u64 pos, 1155 bool force_uptodate) 1156 { 1157 struct folio *folio = page_folio(page); 1158 int ret = 0; 1159 1160 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1161 !PageUptodate(page)) { 1162 ret = btrfs_read_folio(NULL, folio); 1163 if (ret) 1164 return ret; 1165 lock_page(page); 1166 if (!PageUptodate(page)) { 1167 unlock_page(page); 1168 return -EIO; 1169 } 1170 1171 /* 1172 * Since btrfs_read_folio() will unlock the folio before it 1173 * returns, there is a window where btrfs_release_folio() can be 1174 * called to release the page. Here we check both inode 1175 * mapping and PagePrivate() to make sure the page was not 1176 * released. 1177 * 1178 * The private flag check is essential for subpage as we need 1179 * to store extra bitmap using page->private. 1180 */ 1181 if (page->mapping != inode->i_mapping || !PagePrivate(page)) { 1182 unlock_page(page); 1183 return -EAGAIN; 1184 } 1185 } 1186 return 0; 1187 } 1188 1189 static unsigned int get_prepare_fgp_flags(bool nowait) 1190 { 1191 unsigned int fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT; 1192 1193 if (nowait) 1194 fgp_flags |= FGP_NOWAIT; 1195 1196 return fgp_flags; 1197 } 1198 1199 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) 1200 { 1201 gfp_t gfp; 1202 1203 gfp = btrfs_alloc_write_mask(inode->i_mapping); 1204 if (nowait) { 1205 gfp &= ~__GFP_DIRECT_RECLAIM; 1206 gfp |= GFP_NOWAIT; 1207 } 1208 1209 return gfp; 1210 } 1211 1212 /* 1213 * this just gets pages into the page cache and locks them down. 1214 */ 1215 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1216 size_t num_pages, loff_t pos, 1217 size_t write_bytes, bool force_uptodate, 1218 bool nowait) 1219 { 1220 int i; 1221 unsigned long index = pos >> PAGE_SHIFT; 1222 gfp_t mask = get_prepare_gfp_flags(inode, nowait); 1223 unsigned int fgp_flags = get_prepare_fgp_flags(nowait); 1224 int err = 0; 1225 int faili; 1226 1227 for (i = 0; i < num_pages; i++) { 1228 again: 1229 pages[i] = pagecache_get_page(inode->i_mapping, index + i, 1230 fgp_flags, mask | __GFP_WRITE); 1231 if (!pages[i]) { 1232 faili = i - 1; 1233 if (nowait) 1234 err = -EAGAIN; 1235 else 1236 err = -ENOMEM; 1237 goto fail; 1238 } 1239 1240 err = set_page_extent_mapped(pages[i]); 1241 if (err < 0) { 1242 faili = i; 1243 goto fail; 1244 } 1245 1246 if (i == 0) 1247 err = prepare_uptodate_page(inode, pages[i], pos, 1248 force_uptodate); 1249 if (!err && i == num_pages - 1) 1250 err = prepare_uptodate_page(inode, pages[i], 1251 pos + write_bytes, false); 1252 if (err) { 1253 put_page(pages[i]); 1254 if (!nowait && err == -EAGAIN) { 1255 err = 0; 1256 goto again; 1257 } 1258 faili = i - 1; 1259 goto fail; 1260 } 1261 wait_on_page_writeback(pages[i]); 1262 } 1263 1264 return 0; 1265 fail: 1266 while (faili >= 0) { 1267 unlock_page(pages[faili]); 1268 put_page(pages[faili]); 1269 faili--; 1270 } 1271 return err; 1272 1273 } 1274 1275 /* 1276 * This function locks the extent and properly waits for data=ordered extents 1277 * to finish before allowing the pages to be modified if need. 1278 * 1279 * The return value: 1280 * 1 - the extent is locked 1281 * 0 - the extent is not locked, and everything is OK 1282 * -EAGAIN - need re-prepare the pages 1283 * the other < 0 number - Something wrong happens 1284 */ 1285 static noinline int 1286 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1287 size_t num_pages, loff_t pos, 1288 size_t write_bytes, 1289 u64 *lockstart, u64 *lockend, bool nowait, 1290 struct extent_state **cached_state) 1291 { 1292 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1293 u64 start_pos; 1294 u64 last_pos; 1295 int i; 1296 int ret = 0; 1297 1298 start_pos = round_down(pos, fs_info->sectorsize); 1299 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 1300 1301 if (start_pos < inode->vfs_inode.i_size) { 1302 struct btrfs_ordered_extent *ordered; 1303 1304 if (nowait) { 1305 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos)) { 1306 for (i = 0; i < num_pages; i++) { 1307 unlock_page(pages[i]); 1308 put_page(pages[i]); 1309 pages[i] = NULL; 1310 } 1311 1312 return -EAGAIN; 1313 } 1314 } else { 1315 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state); 1316 } 1317 1318 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1319 last_pos - start_pos + 1); 1320 if (ordered && 1321 ordered->file_offset + ordered->num_bytes > start_pos && 1322 ordered->file_offset <= last_pos) { 1323 unlock_extent(&inode->io_tree, start_pos, last_pos, 1324 cached_state); 1325 for (i = 0; i < num_pages; i++) { 1326 unlock_page(pages[i]); 1327 put_page(pages[i]); 1328 } 1329 btrfs_start_ordered_extent(ordered, 1); 1330 btrfs_put_ordered_extent(ordered); 1331 return -EAGAIN; 1332 } 1333 if (ordered) 1334 btrfs_put_ordered_extent(ordered); 1335 1336 *lockstart = start_pos; 1337 *lockend = last_pos; 1338 ret = 1; 1339 } 1340 1341 /* 1342 * We should be called after prepare_pages() which should have locked 1343 * all pages in the range. 1344 */ 1345 for (i = 0; i < num_pages; i++) 1346 WARN_ON(!PageLocked(pages[i])); 1347 1348 return ret; 1349 } 1350 1351 /* 1352 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1353 * 1354 * @pos: File offset. 1355 * @write_bytes: The length to write, will be updated to the nocow writeable 1356 * range. 1357 * 1358 * This function will flush ordered extents in the range to ensure proper 1359 * nocow checks. 1360 * 1361 * Return: 1362 * > 0 If we can nocow, and updates @write_bytes. 1363 * 0 If we can't do a nocow write. 1364 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's 1365 * root is in progress. 1366 * < 0 If an error happened. 1367 * 1368 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 1369 */ 1370 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1371 size_t *write_bytes, bool nowait) 1372 { 1373 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1374 struct btrfs_root *root = inode->root; 1375 u64 lockstart, lockend; 1376 u64 num_bytes; 1377 int ret; 1378 1379 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1380 return 0; 1381 1382 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1383 return -EAGAIN; 1384 1385 lockstart = round_down(pos, fs_info->sectorsize); 1386 lockend = round_up(pos + *write_bytes, 1387 fs_info->sectorsize) - 1; 1388 num_bytes = lockend - lockstart + 1; 1389 1390 if (nowait) { 1391 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend)) { 1392 btrfs_drew_write_unlock(&root->snapshot_lock); 1393 return -EAGAIN; 1394 } 1395 } else { 1396 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, NULL); 1397 } 1398 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1399 NULL, NULL, NULL, nowait, false); 1400 if (ret <= 0) 1401 btrfs_drew_write_unlock(&root->snapshot_lock); 1402 else 1403 *write_bytes = min_t(size_t, *write_bytes , 1404 num_bytes - pos + lockstart); 1405 unlock_extent(&inode->io_tree, lockstart, lockend, NULL); 1406 1407 return ret; 1408 } 1409 1410 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1411 { 1412 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1413 } 1414 1415 static void update_time_for_write(struct inode *inode) 1416 { 1417 struct timespec64 now; 1418 1419 if (IS_NOCMTIME(inode)) 1420 return; 1421 1422 now = current_time(inode); 1423 if (!timespec64_equal(&inode->i_mtime, &now)) 1424 inode->i_mtime = now; 1425 1426 if (!timespec64_equal(&inode->i_ctime, &now)) 1427 inode->i_ctime = now; 1428 1429 if (IS_I_VERSION(inode)) 1430 inode_inc_iversion(inode); 1431 } 1432 1433 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1434 size_t count) 1435 { 1436 struct file *file = iocb->ki_filp; 1437 struct inode *inode = file_inode(file); 1438 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1439 loff_t pos = iocb->ki_pos; 1440 int ret; 1441 loff_t oldsize; 1442 loff_t start_pos; 1443 1444 /* 1445 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1446 * prealloc flags, as without those flags we always have to COW. We will 1447 * later check if we can really COW into the target range (using 1448 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1449 */ 1450 if ((iocb->ki_flags & IOCB_NOWAIT) && 1451 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1452 return -EAGAIN; 1453 1454 current->backing_dev_info = inode_to_bdi(inode); 1455 ret = file_remove_privs(file); 1456 if (ret) 1457 return ret; 1458 1459 /* 1460 * We reserve space for updating the inode when we reserve space for the 1461 * extent we are going to write, so we will enospc out there. We don't 1462 * need to start yet another transaction to update the inode as we will 1463 * update the inode when we finish writing whatever data we write. 1464 */ 1465 update_time_for_write(inode); 1466 1467 start_pos = round_down(pos, fs_info->sectorsize); 1468 oldsize = i_size_read(inode); 1469 if (start_pos > oldsize) { 1470 /* Expand hole size to cover write data, preventing empty gap */ 1471 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1472 1473 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1474 if (ret) { 1475 current->backing_dev_info = NULL; 1476 return ret; 1477 } 1478 } 1479 1480 return 0; 1481 } 1482 1483 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1484 struct iov_iter *i) 1485 { 1486 struct file *file = iocb->ki_filp; 1487 loff_t pos; 1488 struct inode *inode = file_inode(file); 1489 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1490 struct page **pages = NULL; 1491 struct extent_changeset *data_reserved = NULL; 1492 u64 release_bytes = 0; 1493 u64 lockstart; 1494 u64 lockend; 1495 size_t num_written = 0; 1496 int nrptrs; 1497 ssize_t ret; 1498 bool only_release_metadata = false; 1499 bool force_page_uptodate = false; 1500 loff_t old_isize = i_size_read(inode); 1501 unsigned int ilock_flags = 0; 1502 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 1503 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); 1504 1505 if (nowait) 1506 ilock_flags |= BTRFS_ILOCK_TRY; 1507 1508 ret = btrfs_inode_lock(inode, ilock_flags); 1509 if (ret < 0) 1510 return ret; 1511 1512 ret = generic_write_checks(iocb, i); 1513 if (ret <= 0) 1514 goto out; 1515 1516 ret = btrfs_write_check(iocb, i, ret); 1517 if (ret < 0) 1518 goto out; 1519 1520 pos = iocb->ki_pos; 1521 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1522 PAGE_SIZE / (sizeof(struct page *))); 1523 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1524 nrptrs = max(nrptrs, 8); 1525 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1526 if (!pages) { 1527 ret = -ENOMEM; 1528 goto out; 1529 } 1530 1531 while (iov_iter_count(i) > 0) { 1532 struct extent_state *cached_state = NULL; 1533 size_t offset = offset_in_page(pos); 1534 size_t sector_offset; 1535 size_t write_bytes = min(iov_iter_count(i), 1536 nrptrs * (size_t)PAGE_SIZE - 1537 offset); 1538 size_t num_pages; 1539 size_t reserve_bytes; 1540 size_t dirty_pages; 1541 size_t copied; 1542 size_t dirty_sectors; 1543 size_t num_sectors; 1544 int extents_locked; 1545 1546 /* 1547 * Fault pages before locking them in prepare_pages 1548 * to avoid recursive lock 1549 */ 1550 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1551 ret = -EFAULT; 1552 break; 1553 } 1554 1555 only_release_metadata = false; 1556 sector_offset = pos & (fs_info->sectorsize - 1); 1557 1558 extent_changeset_release(data_reserved); 1559 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1560 &data_reserved, pos, 1561 write_bytes, nowait); 1562 if (ret < 0) { 1563 int can_nocow; 1564 1565 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) { 1566 ret = -EAGAIN; 1567 break; 1568 } 1569 1570 /* 1571 * If we don't have to COW at the offset, reserve 1572 * metadata only. write_bytes may get smaller than 1573 * requested here. 1574 */ 1575 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1576 &write_bytes, nowait); 1577 if (can_nocow < 0) 1578 ret = can_nocow; 1579 if (can_nocow > 0) 1580 ret = 0; 1581 if (ret) 1582 break; 1583 only_release_metadata = true; 1584 } 1585 1586 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1587 WARN_ON(num_pages > nrptrs); 1588 reserve_bytes = round_up(write_bytes + sector_offset, 1589 fs_info->sectorsize); 1590 WARN_ON(reserve_bytes == 0); 1591 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1592 reserve_bytes, 1593 reserve_bytes, nowait); 1594 if (ret) { 1595 if (!only_release_metadata) 1596 btrfs_free_reserved_data_space(BTRFS_I(inode), 1597 data_reserved, pos, 1598 write_bytes); 1599 else 1600 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1601 1602 if (nowait && ret == -ENOSPC) 1603 ret = -EAGAIN; 1604 break; 1605 } 1606 1607 release_bytes = reserve_bytes; 1608 again: 1609 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags); 1610 if (ret) { 1611 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1612 break; 1613 } 1614 1615 /* 1616 * This is going to setup the pages array with the number of 1617 * pages we want, so we don't really need to worry about the 1618 * contents of pages from loop to loop 1619 */ 1620 ret = prepare_pages(inode, pages, num_pages, 1621 pos, write_bytes, force_page_uptodate, false); 1622 if (ret) { 1623 btrfs_delalloc_release_extents(BTRFS_I(inode), 1624 reserve_bytes); 1625 break; 1626 } 1627 1628 extents_locked = lock_and_cleanup_extent_if_need( 1629 BTRFS_I(inode), pages, 1630 num_pages, pos, write_bytes, &lockstart, 1631 &lockend, nowait, &cached_state); 1632 if (extents_locked < 0) { 1633 if (!nowait && extents_locked == -EAGAIN) 1634 goto again; 1635 1636 btrfs_delalloc_release_extents(BTRFS_I(inode), 1637 reserve_bytes); 1638 ret = extents_locked; 1639 break; 1640 } 1641 1642 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1643 1644 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1645 dirty_sectors = round_up(copied + sector_offset, 1646 fs_info->sectorsize); 1647 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1648 1649 /* 1650 * if we have trouble faulting in the pages, fall 1651 * back to one page at a time 1652 */ 1653 if (copied < write_bytes) 1654 nrptrs = 1; 1655 1656 if (copied == 0) { 1657 force_page_uptodate = true; 1658 dirty_sectors = 0; 1659 dirty_pages = 0; 1660 } else { 1661 force_page_uptodate = false; 1662 dirty_pages = DIV_ROUND_UP(copied + offset, 1663 PAGE_SIZE); 1664 } 1665 1666 if (num_sectors > dirty_sectors) { 1667 /* release everything except the sectors we dirtied */ 1668 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1669 if (only_release_metadata) { 1670 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1671 release_bytes, true); 1672 } else { 1673 u64 __pos; 1674 1675 __pos = round_down(pos, 1676 fs_info->sectorsize) + 1677 (dirty_pages << PAGE_SHIFT); 1678 btrfs_delalloc_release_space(BTRFS_I(inode), 1679 data_reserved, __pos, 1680 release_bytes, true); 1681 } 1682 } 1683 1684 release_bytes = round_up(copied + sector_offset, 1685 fs_info->sectorsize); 1686 1687 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1688 dirty_pages, pos, copied, 1689 &cached_state, only_release_metadata); 1690 1691 /* 1692 * If we have not locked the extent range, because the range's 1693 * start offset is >= i_size, we might still have a non-NULL 1694 * cached extent state, acquired while marking the extent range 1695 * as delalloc through btrfs_dirty_pages(). Therefore free any 1696 * possible cached extent state to avoid a memory leak. 1697 */ 1698 if (extents_locked) 1699 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 1700 lockend, &cached_state); 1701 else 1702 free_extent_state(cached_state); 1703 1704 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1705 if (ret) { 1706 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1707 break; 1708 } 1709 1710 release_bytes = 0; 1711 if (only_release_metadata) 1712 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1713 1714 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1715 1716 cond_resched(); 1717 1718 pos += copied; 1719 num_written += copied; 1720 } 1721 1722 kfree(pages); 1723 1724 if (release_bytes) { 1725 if (only_release_metadata) { 1726 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1727 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1728 release_bytes, true); 1729 } else { 1730 btrfs_delalloc_release_space(BTRFS_I(inode), 1731 data_reserved, 1732 round_down(pos, fs_info->sectorsize), 1733 release_bytes, true); 1734 } 1735 } 1736 1737 extent_changeset_free(data_reserved); 1738 if (num_written > 0) { 1739 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1740 iocb->ki_pos += num_written; 1741 } 1742 out: 1743 btrfs_inode_unlock(inode, ilock_flags); 1744 return num_written ? num_written : ret; 1745 } 1746 1747 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1748 const struct iov_iter *iter, loff_t offset) 1749 { 1750 const u32 blocksize_mask = fs_info->sectorsize - 1; 1751 1752 if (offset & blocksize_mask) 1753 return -EINVAL; 1754 1755 if (iov_iter_alignment(iter) & blocksize_mask) 1756 return -EINVAL; 1757 1758 return 0; 1759 } 1760 1761 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1762 { 1763 struct file *file = iocb->ki_filp; 1764 struct inode *inode = file_inode(file); 1765 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1766 loff_t pos; 1767 ssize_t written = 0; 1768 ssize_t written_buffered; 1769 size_t prev_left = 0; 1770 loff_t endbyte; 1771 ssize_t err; 1772 unsigned int ilock_flags = 0; 1773 struct iomap_dio *dio; 1774 1775 if (iocb->ki_flags & IOCB_NOWAIT) 1776 ilock_flags |= BTRFS_ILOCK_TRY; 1777 1778 /* If the write DIO is within EOF, use a shared lock */ 1779 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode)) 1780 ilock_flags |= BTRFS_ILOCK_SHARED; 1781 1782 relock: 1783 err = btrfs_inode_lock(inode, ilock_flags); 1784 if (err < 0) 1785 return err; 1786 1787 err = generic_write_checks(iocb, from); 1788 if (err <= 0) { 1789 btrfs_inode_unlock(inode, ilock_flags); 1790 return err; 1791 } 1792 1793 err = btrfs_write_check(iocb, from, err); 1794 if (err < 0) { 1795 btrfs_inode_unlock(inode, ilock_flags); 1796 goto out; 1797 } 1798 1799 pos = iocb->ki_pos; 1800 /* 1801 * Re-check since file size may have changed just before taking the 1802 * lock or pos may have changed because of O_APPEND in generic_write_check() 1803 */ 1804 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1805 pos + iov_iter_count(from) > i_size_read(inode)) { 1806 btrfs_inode_unlock(inode, ilock_flags); 1807 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1808 goto relock; 1809 } 1810 1811 if (check_direct_IO(fs_info, from, pos)) { 1812 btrfs_inode_unlock(inode, ilock_flags); 1813 goto buffered; 1814 } 1815 1816 /* 1817 * The iov_iter can be mapped to the same file range we are writing to. 1818 * If that's the case, then we will deadlock in the iomap code, because 1819 * it first calls our callback btrfs_dio_iomap_begin(), which will create 1820 * an ordered extent, and after that it will fault in the pages that the 1821 * iov_iter refers to. During the fault in we end up in the readahead 1822 * pages code (starting at btrfs_readahead()), which will lock the range, 1823 * find that ordered extent and then wait for it to complete (at 1824 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since 1825 * obviously the ordered extent can never complete as we didn't submit 1826 * yet the respective bio(s). This always happens when the buffer is 1827 * memory mapped to the same file range, since the iomap DIO code always 1828 * invalidates pages in the target file range (after starting and waiting 1829 * for any writeback). 1830 * 1831 * So here we disable page faults in the iov_iter and then retry if we 1832 * got -EFAULT, faulting in the pages before the retry. 1833 */ 1834 from->nofault = true; 1835 dio = btrfs_dio_write(iocb, from, written); 1836 from->nofault = false; 1837 1838 /* 1839 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync 1840 * iocb, and that needs to lock the inode. So unlock it before calling 1841 * iomap_dio_complete() to avoid a deadlock. 1842 */ 1843 btrfs_inode_unlock(inode, ilock_flags); 1844 1845 if (IS_ERR_OR_NULL(dio)) 1846 err = PTR_ERR_OR_ZERO(dio); 1847 else 1848 err = iomap_dio_complete(dio); 1849 1850 /* No increment (+=) because iomap returns a cumulative value. */ 1851 if (err > 0) 1852 written = err; 1853 1854 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) { 1855 const size_t left = iov_iter_count(from); 1856 /* 1857 * We have more data left to write. Try to fault in as many as 1858 * possible of the remainder pages and retry. We do this without 1859 * releasing and locking again the inode, to prevent races with 1860 * truncate. 1861 * 1862 * Also, in case the iov refers to pages in the file range of the 1863 * file we want to write to (due to a mmap), we could enter an 1864 * infinite loop if we retry after faulting the pages in, since 1865 * iomap will invalidate any pages in the range early on, before 1866 * it tries to fault in the pages of the iov. So we keep track of 1867 * how much was left of iov in the previous EFAULT and fallback 1868 * to buffered IO in case we haven't made any progress. 1869 */ 1870 if (left == prev_left) { 1871 err = -ENOTBLK; 1872 } else { 1873 fault_in_iov_iter_readable(from, left); 1874 prev_left = left; 1875 goto relock; 1876 } 1877 } 1878 1879 /* 1880 * If 'err' is -ENOTBLK or we have not written all data, then it means 1881 * we must fallback to buffered IO. 1882 */ 1883 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from)) 1884 goto out; 1885 1886 buffered: 1887 /* 1888 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller 1889 * it must retry the operation in a context where blocking is acceptable, 1890 * since we currently don't have NOWAIT semantics support for buffered IO 1891 * and may block there for many reasons (reserving space for example). 1892 */ 1893 if (iocb->ki_flags & IOCB_NOWAIT) { 1894 err = -EAGAIN; 1895 goto out; 1896 } 1897 1898 pos = iocb->ki_pos; 1899 written_buffered = btrfs_buffered_write(iocb, from); 1900 if (written_buffered < 0) { 1901 err = written_buffered; 1902 goto out; 1903 } 1904 /* 1905 * Ensure all data is persisted. We want the next direct IO read to be 1906 * able to read what was just written. 1907 */ 1908 endbyte = pos + written_buffered - 1; 1909 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1910 if (err) 1911 goto out; 1912 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1913 if (err) 1914 goto out; 1915 written += written_buffered; 1916 iocb->ki_pos = pos + written_buffered; 1917 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1918 endbyte >> PAGE_SHIFT); 1919 out: 1920 return err < 0 ? err : written; 1921 } 1922 1923 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 1924 const struct btrfs_ioctl_encoded_io_args *encoded) 1925 { 1926 struct file *file = iocb->ki_filp; 1927 struct inode *inode = file_inode(file); 1928 loff_t count; 1929 ssize_t ret; 1930 1931 btrfs_inode_lock(inode, 0); 1932 count = encoded->len; 1933 ret = generic_write_checks_count(iocb, &count); 1934 if (ret == 0 && count != encoded->len) { 1935 /* 1936 * The write got truncated by generic_write_checks_count(). We 1937 * can't do a partial encoded write. 1938 */ 1939 ret = -EFBIG; 1940 } 1941 if (ret || encoded->len == 0) 1942 goto out; 1943 1944 ret = btrfs_write_check(iocb, from, encoded->len); 1945 if (ret < 0) 1946 goto out; 1947 1948 ret = btrfs_do_encoded_write(iocb, from, encoded); 1949 out: 1950 btrfs_inode_unlock(inode, 0); 1951 return ret; 1952 } 1953 1954 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 1955 const struct btrfs_ioctl_encoded_io_args *encoded) 1956 { 1957 struct file *file = iocb->ki_filp; 1958 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1959 ssize_t num_written, num_sync; 1960 const bool sync = iocb_is_dsync(iocb); 1961 1962 /* 1963 * If the fs flips readonly due to some impossible error, although we 1964 * have opened a file as writable, we have to stop this write operation 1965 * to ensure consistency. 1966 */ 1967 if (BTRFS_FS_ERROR(inode->root->fs_info)) 1968 return -EROFS; 1969 1970 if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) 1971 return -EOPNOTSUPP; 1972 1973 if (sync) 1974 atomic_inc(&inode->sync_writers); 1975 1976 if (encoded) { 1977 num_written = btrfs_encoded_write(iocb, from, encoded); 1978 num_sync = encoded->len; 1979 } else if (iocb->ki_flags & IOCB_DIRECT) { 1980 num_written = btrfs_direct_write(iocb, from); 1981 num_sync = num_written; 1982 } else { 1983 num_written = btrfs_buffered_write(iocb, from); 1984 num_sync = num_written; 1985 } 1986 1987 btrfs_set_inode_last_sub_trans(inode); 1988 1989 if (num_sync > 0) { 1990 num_sync = generic_write_sync(iocb, num_sync); 1991 if (num_sync < 0) 1992 num_written = num_sync; 1993 } 1994 1995 if (sync) 1996 atomic_dec(&inode->sync_writers); 1997 1998 current->backing_dev_info = NULL; 1999 return num_written; 2000 } 2001 2002 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2003 { 2004 return btrfs_do_write_iter(iocb, from, NULL); 2005 } 2006 2007 int btrfs_release_file(struct inode *inode, struct file *filp) 2008 { 2009 struct btrfs_file_private *private = filp->private_data; 2010 2011 if (private && private->filldir_buf) 2012 kfree(private->filldir_buf); 2013 kfree(private); 2014 filp->private_data = NULL; 2015 2016 /* 2017 * Set by setattr when we are about to truncate a file from a non-zero 2018 * size to a zero size. This tries to flush down new bytes that may 2019 * have been written if the application were using truncate to replace 2020 * a file in place. 2021 */ 2022 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 2023 &BTRFS_I(inode)->runtime_flags)) 2024 filemap_flush(inode->i_mapping); 2025 return 0; 2026 } 2027 2028 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2029 { 2030 int ret; 2031 struct blk_plug plug; 2032 2033 /* 2034 * This is only called in fsync, which would do synchronous writes, so 2035 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2036 * multiple disks using raid profile, a large IO can be split to 2037 * several segments of stripe length (currently 64K). 2038 */ 2039 blk_start_plug(&plug); 2040 atomic_inc(&BTRFS_I(inode)->sync_writers); 2041 ret = btrfs_fdatawrite_range(inode, start, end); 2042 atomic_dec(&BTRFS_I(inode)->sync_writers); 2043 blk_finish_plug(&plug); 2044 2045 return ret; 2046 } 2047 2048 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 2049 { 2050 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 2051 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2052 2053 if (btrfs_inode_in_log(inode, fs_info->generation) && 2054 list_empty(&ctx->ordered_extents)) 2055 return true; 2056 2057 /* 2058 * If we are doing a fast fsync we can not bail out if the inode's 2059 * last_trans is <= then the last committed transaction, because we only 2060 * update the last_trans of the inode during ordered extent completion, 2061 * and for a fast fsync we don't wait for that, we only wait for the 2062 * writeback to complete. 2063 */ 2064 if (inode->last_trans <= fs_info->last_trans_committed && 2065 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 2066 list_empty(&ctx->ordered_extents))) 2067 return true; 2068 2069 return false; 2070 } 2071 2072 /* 2073 * fsync call for both files and directories. This logs the inode into 2074 * the tree log instead of forcing full commits whenever possible. 2075 * 2076 * It needs to call filemap_fdatawait so that all ordered extent updates are 2077 * in the metadata btree are up to date for copying to the log. 2078 * 2079 * It drops the inode mutex before doing the tree log commit. This is an 2080 * important optimization for directories because holding the mutex prevents 2081 * new operations on the dir while we write to disk. 2082 */ 2083 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2084 { 2085 struct dentry *dentry = file_dentry(file); 2086 struct inode *inode = d_inode(dentry); 2087 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2088 struct btrfs_root *root = BTRFS_I(inode)->root; 2089 struct btrfs_trans_handle *trans; 2090 struct btrfs_log_ctx ctx; 2091 int ret = 0, err; 2092 u64 len; 2093 bool full_sync; 2094 2095 trace_btrfs_sync_file(file, datasync); 2096 2097 btrfs_init_log_ctx(&ctx, inode); 2098 2099 /* 2100 * Always set the range to a full range, otherwise we can get into 2101 * several problems, from missing file extent items to represent holes 2102 * when not using the NO_HOLES feature, to log tree corruption due to 2103 * races between hole detection during logging and completion of ordered 2104 * extents outside the range, to missing checksums due to ordered extents 2105 * for which we flushed only a subset of their pages. 2106 */ 2107 start = 0; 2108 end = LLONG_MAX; 2109 len = (u64)LLONG_MAX + 1; 2110 2111 /* 2112 * We write the dirty pages in the range and wait until they complete 2113 * out of the ->i_mutex. If so, we can flush the dirty pages by 2114 * multi-task, and make the performance up. See 2115 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2116 */ 2117 ret = start_ordered_ops(inode, start, end); 2118 if (ret) 2119 goto out; 2120 2121 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 2122 2123 atomic_inc(&root->log_batch); 2124 2125 /* 2126 * Before we acquired the inode's lock and the mmap lock, someone may 2127 * have dirtied more pages in the target range. We need to make sure 2128 * that writeback for any such pages does not start while we are logging 2129 * the inode, because if it does, any of the following might happen when 2130 * we are not doing a full inode sync: 2131 * 2132 * 1) We log an extent after its writeback finishes but before its 2133 * checksums are added to the csum tree, leading to -EIO errors 2134 * when attempting to read the extent after a log replay. 2135 * 2136 * 2) We can end up logging an extent before its writeback finishes. 2137 * Therefore after the log replay we will have a file extent item 2138 * pointing to an unwritten extent (and no data checksums as well). 2139 * 2140 * So trigger writeback for any eventual new dirty pages and then we 2141 * wait for all ordered extents to complete below. 2142 */ 2143 ret = start_ordered_ops(inode, start, end); 2144 if (ret) { 2145 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2146 goto out; 2147 } 2148 2149 /* 2150 * Always check for the full sync flag while holding the inode's lock, 2151 * to avoid races with other tasks. The flag must be either set all the 2152 * time during logging or always off all the time while logging. 2153 * We check the flag here after starting delalloc above, because when 2154 * running delalloc the full sync flag may be set if we need to drop 2155 * extra extent map ranges due to temporary memory allocation failures. 2156 */ 2157 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2158 &BTRFS_I(inode)->runtime_flags); 2159 2160 /* 2161 * We have to do this here to avoid the priority inversion of waiting on 2162 * IO of a lower priority task while holding a transaction open. 2163 * 2164 * For a full fsync we wait for the ordered extents to complete while 2165 * for a fast fsync we wait just for writeback to complete, and then 2166 * attach the ordered extents to the transaction so that a transaction 2167 * commit waits for their completion, to avoid data loss if we fsync, 2168 * the current transaction commits before the ordered extents complete 2169 * and a power failure happens right after that. 2170 * 2171 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 2172 * logical address recorded in the ordered extent may change. We need 2173 * to wait for the IO to stabilize the logical address. 2174 */ 2175 if (full_sync || btrfs_is_zoned(fs_info)) { 2176 ret = btrfs_wait_ordered_range(inode, start, len); 2177 } else { 2178 /* 2179 * Get our ordered extents as soon as possible to avoid doing 2180 * checksum lookups in the csum tree, and use instead the 2181 * checksums attached to the ordered extents. 2182 */ 2183 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 2184 &ctx.ordered_extents); 2185 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 2186 } 2187 2188 if (ret) 2189 goto out_release_extents; 2190 2191 atomic_inc(&root->log_batch); 2192 2193 smp_mb(); 2194 if (skip_inode_logging(&ctx)) { 2195 /* 2196 * We've had everything committed since the last time we were 2197 * modified so clear this flag in case it was set for whatever 2198 * reason, it's no longer relevant. 2199 */ 2200 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2201 &BTRFS_I(inode)->runtime_flags); 2202 /* 2203 * An ordered extent might have started before and completed 2204 * already with io errors, in which case the inode was not 2205 * updated and we end up here. So check the inode's mapping 2206 * for any errors that might have happened since we last 2207 * checked called fsync. 2208 */ 2209 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2210 goto out_release_extents; 2211 } 2212 2213 /* 2214 * We use start here because we will need to wait on the IO to complete 2215 * in btrfs_sync_log, which could require joining a transaction (for 2216 * example checking cross references in the nocow path). If we use join 2217 * here we could get into a situation where we're waiting on IO to 2218 * happen that is blocked on a transaction trying to commit. With start 2219 * we inc the extwriter counter, so we wait for all extwriters to exit 2220 * before we start blocking joiners. This comment is to keep somebody 2221 * from thinking they are super smart and changing this to 2222 * btrfs_join_transaction *cough*Josef*cough*. 2223 */ 2224 trans = btrfs_start_transaction(root, 0); 2225 if (IS_ERR(trans)) { 2226 ret = PTR_ERR(trans); 2227 goto out_release_extents; 2228 } 2229 trans->in_fsync = true; 2230 2231 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 2232 btrfs_release_log_ctx_extents(&ctx); 2233 if (ret < 0) { 2234 /* Fallthrough and commit/free transaction. */ 2235 ret = BTRFS_LOG_FORCE_COMMIT; 2236 } 2237 2238 /* we've logged all the items and now have a consistent 2239 * version of the file in the log. It is possible that 2240 * someone will come in and modify the file, but that's 2241 * fine because the log is consistent on disk, and we 2242 * have references to all of the file's extents 2243 * 2244 * It is possible that someone will come in and log the 2245 * file again, but that will end up using the synchronization 2246 * inside btrfs_sync_log to keep things safe. 2247 */ 2248 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2249 2250 if (ret == BTRFS_NO_LOG_SYNC) { 2251 ret = btrfs_end_transaction(trans); 2252 goto out; 2253 } 2254 2255 /* We successfully logged the inode, attempt to sync the log. */ 2256 if (!ret) { 2257 ret = btrfs_sync_log(trans, root, &ctx); 2258 if (!ret) { 2259 ret = btrfs_end_transaction(trans); 2260 goto out; 2261 } 2262 } 2263 2264 /* 2265 * At this point we need to commit the transaction because we had 2266 * btrfs_need_log_full_commit() or some other error. 2267 * 2268 * If we didn't do a full sync we have to stop the trans handle, wait on 2269 * the ordered extents, start it again and commit the transaction. If 2270 * we attempt to wait on the ordered extents here we could deadlock with 2271 * something like fallocate() that is holding the extent lock trying to 2272 * start a transaction while some other thread is trying to commit the 2273 * transaction while we (fsync) are currently holding the transaction 2274 * open. 2275 */ 2276 if (!full_sync) { 2277 ret = btrfs_end_transaction(trans); 2278 if (ret) 2279 goto out; 2280 ret = btrfs_wait_ordered_range(inode, start, len); 2281 if (ret) 2282 goto out; 2283 2284 /* 2285 * This is safe to use here because we're only interested in 2286 * making sure the transaction that had the ordered extents is 2287 * committed. We aren't waiting on anything past this point, 2288 * we're purely getting the transaction and committing it. 2289 */ 2290 trans = btrfs_attach_transaction_barrier(root); 2291 if (IS_ERR(trans)) { 2292 ret = PTR_ERR(trans); 2293 2294 /* 2295 * We committed the transaction and there's no currently 2296 * running transaction, this means everything we care 2297 * about made it to disk and we are done. 2298 */ 2299 if (ret == -ENOENT) 2300 ret = 0; 2301 goto out; 2302 } 2303 } 2304 2305 ret = btrfs_commit_transaction(trans); 2306 out: 2307 ASSERT(list_empty(&ctx.list)); 2308 ASSERT(list_empty(&ctx.conflict_inodes)); 2309 err = file_check_and_advance_wb_err(file); 2310 if (!ret) 2311 ret = err; 2312 return ret > 0 ? -EIO : ret; 2313 2314 out_release_extents: 2315 btrfs_release_log_ctx_extents(&ctx); 2316 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2317 goto out; 2318 } 2319 2320 static const struct vm_operations_struct btrfs_file_vm_ops = { 2321 .fault = filemap_fault, 2322 .map_pages = filemap_map_pages, 2323 .page_mkwrite = btrfs_page_mkwrite, 2324 }; 2325 2326 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2327 { 2328 struct address_space *mapping = filp->f_mapping; 2329 2330 if (!mapping->a_ops->read_folio) 2331 return -ENOEXEC; 2332 2333 file_accessed(filp); 2334 vma->vm_ops = &btrfs_file_vm_ops; 2335 2336 return 0; 2337 } 2338 2339 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2340 int slot, u64 start, u64 end) 2341 { 2342 struct btrfs_file_extent_item *fi; 2343 struct btrfs_key key; 2344 2345 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2346 return 0; 2347 2348 btrfs_item_key_to_cpu(leaf, &key, slot); 2349 if (key.objectid != btrfs_ino(inode) || 2350 key.type != BTRFS_EXTENT_DATA_KEY) 2351 return 0; 2352 2353 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2354 2355 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2356 return 0; 2357 2358 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2359 return 0; 2360 2361 if (key.offset == end) 2362 return 1; 2363 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2364 return 1; 2365 return 0; 2366 } 2367 2368 static int fill_holes(struct btrfs_trans_handle *trans, 2369 struct btrfs_inode *inode, 2370 struct btrfs_path *path, u64 offset, u64 end) 2371 { 2372 struct btrfs_fs_info *fs_info = trans->fs_info; 2373 struct btrfs_root *root = inode->root; 2374 struct extent_buffer *leaf; 2375 struct btrfs_file_extent_item *fi; 2376 struct extent_map *hole_em; 2377 struct btrfs_key key; 2378 int ret; 2379 2380 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2381 goto out; 2382 2383 key.objectid = btrfs_ino(inode); 2384 key.type = BTRFS_EXTENT_DATA_KEY; 2385 key.offset = offset; 2386 2387 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2388 if (ret <= 0) { 2389 /* 2390 * We should have dropped this offset, so if we find it then 2391 * something has gone horribly wrong. 2392 */ 2393 if (ret == 0) 2394 ret = -EINVAL; 2395 return ret; 2396 } 2397 2398 leaf = path->nodes[0]; 2399 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2400 u64 num_bytes; 2401 2402 path->slots[0]--; 2403 fi = btrfs_item_ptr(leaf, path->slots[0], 2404 struct btrfs_file_extent_item); 2405 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2406 end - offset; 2407 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2408 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2409 btrfs_set_file_extent_offset(leaf, fi, 0); 2410 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2411 btrfs_mark_buffer_dirty(leaf); 2412 goto out; 2413 } 2414 2415 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2416 u64 num_bytes; 2417 2418 key.offset = offset; 2419 btrfs_set_item_key_safe(fs_info, path, &key); 2420 fi = btrfs_item_ptr(leaf, path->slots[0], 2421 struct btrfs_file_extent_item); 2422 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2423 offset; 2424 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2425 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2426 btrfs_set_file_extent_offset(leaf, fi, 0); 2427 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2428 btrfs_mark_buffer_dirty(leaf); 2429 goto out; 2430 } 2431 btrfs_release_path(path); 2432 2433 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, 2434 end - offset); 2435 if (ret) 2436 return ret; 2437 2438 out: 2439 btrfs_release_path(path); 2440 2441 hole_em = alloc_extent_map(); 2442 if (!hole_em) { 2443 btrfs_drop_extent_map_range(inode, offset, end - 1, false); 2444 btrfs_set_inode_full_sync(inode); 2445 } else { 2446 hole_em->start = offset; 2447 hole_em->len = end - offset; 2448 hole_em->ram_bytes = hole_em->len; 2449 hole_em->orig_start = offset; 2450 2451 hole_em->block_start = EXTENT_MAP_HOLE; 2452 hole_em->block_len = 0; 2453 hole_em->orig_block_len = 0; 2454 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2455 hole_em->generation = trans->transid; 2456 2457 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 2458 free_extent_map(hole_em); 2459 if (ret) 2460 btrfs_set_inode_full_sync(inode); 2461 } 2462 2463 return 0; 2464 } 2465 2466 /* 2467 * Find a hole extent on given inode and change start/len to the end of hole 2468 * extent.(hole/vacuum extent whose em->start <= start && 2469 * em->start + em->len > start) 2470 * When a hole extent is found, return 1 and modify start/len. 2471 */ 2472 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2473 { 2474 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2475 struct extent_map *em; 2476 int ret = 0; 2477 2478 em = btrfs_get_extent(inode, NULL, 0, 2479 round_down(*start, fs_info->sectorsize), 2480 round_up(*len, fs_info->sectorsize)); 2481 if (IS_ERR(em)) 2482 return PTR_ERR(em); 2483 2484 /* Hole or vacuum extent(only exists in no-hole mode) */ 2485 if (em->block_start == EXTENT_MAP_HOLE) { 2486 ret = 1; 2487 *len = em->start + em->len > *start + *len ? 2488 0 : *start + *len - em->start - em->len; 2489 *start = em->start + em->len; 2490 } 2491 free_extent_map(em); 2492 return ret; 2493 } 2494 2495 static void btrfs_punch_hole_lock_range(struct inode *inode, 2496 const u64 lockstart, 2497 const u64 lockend, 2498 struct extent_state **cached_state) 2499 { 2500 /* 2501 * For subpage case, if the range is not at page boundary, we could 2502 * have pages at the leading/tailing part of the range. 2503 * This could lead to dead loop since filemap_range_has_page() 2504 * will always return true. 2505 * So here we need to do extra page alignment for 2506 * filemap_range_has_page(). 2507 */ 2508 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2509 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2510 2511 while (1) { 2512 truncate_pagecache_range(inode, lockstart, lockend); 2513 2514 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2515 cached_state); 2516 /* 2517 * We can't have ordered extents in the range, nor dirty/writeback 2518 * pages, because we have locked the inode's VFS lock in exclusive 2519 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2520 * we have flushed all delalloc in the range and we have waited 2521 * for any ordered extents in the range to complete. 2522 * We can race with anyone reading pages from this range, so after 2523 * locking the range check if we have pages in the range, and if 2524 * we do, unlock the range and retry. 2525 */ 2526 if (!filemap_range_has_page(inode->i_mapping, page_lockstart, 2527 page_lockend)) 2528 break; 2529 2530 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2531 cached_state); 2532 } 2533 2534 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2535 } 2536 2537 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2538 struct btrfs_inode *inode, 2539 struct btrfs_path *path, 2540 struct btrfs_replace_extent_info *extent_info, 2541 const u64 replace_len, 2542 const u64 bytes_to_drop) 2543 { 2544 struct btrfs_fs_info *fs_info = trans->fs_info; 2545 struct btrfs_root *root = inode->root; 2546 struct btrfs_file_extent_item *extent; 2547 struct extent_buffer *leaf; 2548 struct btrfs_key key; 2549 int slot; 2550 struct btrfs_ref ref = { 0 }; 2551 int ret; 2552 2553 if (replace_len == 0) 2554 return 0; 2555 2556 if (extent_info->disk_offset == 0 && 2557 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2558 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2559 return 0; 2560 } 2561 2562 key.objectid = btrfs_ino(inode); 2563 key.type = BTRFS_EXTENT_DATA_KEY; 2564 key.offset = extent_info->file_offset; 2565 ret = btrfs_insert_empty_item(trans, root, path, &key, 2566 sizeof(struct btrfs_file_extent_item)); 2567 if (ret) 2568 return ret; 2569 leaf = path->nodes[0]; 2570 slot = path->slots[0]; 2571 write_extent_buffer(leaf, extent_info->extent_buf, 2572 btrfs_item_ptr_offset(leaf, slot), 2573 sizeof(struct btrfs_file_extent_item)); 2574 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2575 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2576 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2577 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2578 if (extent_info->is_new_extent) 2579 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2580 btrfs_mark_buffer_dirty(leaf); 2581 btrfs_release_path(path); 2582 2583 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2584 replace_len); 2585 if (ret) 2586 return ret; 2587 2588 /* If it's a hole, nothing more needs to be done. */ 2589 if (extent_info->disk_offset == 0) { 2590 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2591 return 0; 2592 } 2593 2594 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2595 2596 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2597 key.objectid = extent_info->disk_offset; 2598 key.type = BTRFS_EXTENT_ITEM_KEY; 2599 key.offset = extent_info->disk_len; 2600 ret = btrfs_alloc_reserved_file_extent(trans, root, 2601 btrfs_ino(inode), 2602 extent_info->file_offset, 2603 extent_info->qgroup_reserved, 2604 &key); 2605 } else { 2606 u64 ref_offset; 2607 2608 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2609 extent_info->disk_offset, 2610 extent_info->disk_len, 0); 2611 ref_offset = extent_info->file_offset - extent_info->data_offset; 2612 btrfs_init_data_ref(&ref, root->root_key.objectid, 2613 btrfs_ino(inode), ref_offset, 0, false); 2614 ret = btrfs_inc_extent_ref(trans, &ref); 2615 } 2616 2617 extent_info->insertions++; 2618 2619 return ret; 2620 } 2621 2622 /* 2623 * The respective range must have been previously locked, as well as the inode. 2624 * The end offset is inclusive (last byte of the range). 2625 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2626 * the file range with an extent. 2627 * When not punching a hole, we don't want to end up in a state where we dropped 2628 * extents without inserting a new one, so we must abort the transaction to avoid 2629 * a corruption. 2630 */ 2631 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2632 struct btrfs_path *path, const u64 start, 2633 const u64 end, 2634 struct btrfs_replace_extent_info *extent_info, 2635 struct btrfs_trans_handle **trans_out) 2636 { 2637 struct btrfs_drop_extents_args drop_args = { 0 }; 2638 struct btrfs_root *root = inode->root; 2639 struct btrfs_fs_info *fs_info = root->fs_info; 2640 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2641 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2642 struct btrfs_trans_handle *trans = NULL; 2643 struct btrfs_block_rsv *rsv; 2644 unsigned int rsv_count; 2645 u64 cur_offset; 2646 u64 len = end - start; 2647 int ret = 0; 2648 2649 if (end <= start) 2650 return -EINVAL; 2651 2652 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2653 if (!rsv) { 2654 ret = -ENOMEM; 2655 goto out; 2656 } 2657 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2658 rsv->failfast = true; 2659 2660 /* 2661 * 1 - update the inode 2662 * 1 - removing the extents in the range 2663 * 1 - adding the hole extent if no_holes isn't set or if we are 2664 * replacing the range with a new extent 2665 */ 2666 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2667 rsv_count = 3; 2668 else 2669 rsv_count = 2; 2670 2671 trans = btrfs_start_transaction(root, rsv_count); 2672 if (IS_ERR(trans)) { 2673 ret = PTR_ERR(trans); 2674 trans = NULL; 2675 goto out_free; 2676 } 2677 2678 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2679 min_size, false); 2680 if (WARN_ON(ret)) 2681 goto out_trans; 2682 trans->block_rsv = rsv; 2683 2684 cur_offset = start; 2685 drop_args.path = path; 2686 drop_args.end = end + 1; 2687 drop_args.drop_cache = true; 2688 while (cur_offset < end) { 2689 drop_args.start = cur_offset; 2690 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2691 /* If we are punching a hole decrement the inode's byte count */ 2692 if (!extent_info) 2693 btrfs_update_inode_bytes(inode, 0, 2694 drop_args.bytes_found); 2695 if (ret != -ENOSPC) { 2696 /* 2697 * The only time we don't want to abort is if we are 2698 * attempting to clone a partial inline extent, in which 2699 * case we'll get EOPNOTSUPP. However if we aren't 2700 * clone we need to abort no matter what, because if we 2701 * got EOPNOTSUPP via prealloc then we messed up and 2702 * need to abort. 2703 */ 2704 if (ret && 2705 (ret != -EOPNOTSUPP || 2706 (extent_info && extent_info->is_new_extent))) 2707 btrfs_abort_transaction(trans, ret); 2708 break; 2709 } 2710 2711 trans->block_rsv = &fs_info->trans_block_rsv; 2712 2713 if (!extent_info && cur_offset < drop_args.drop_end && 2714 cur_offset < ino_size) { 2715 ret = fill_holes(trans, inode, path, cur_offset, 2716 drop_args.drop_end); 2717 if (ret) { 2718 /* 2719 * If we failed then we didn't insert our hole 2720 * entries for the area we dropped, so now the 2721 * fs is corrupted, so we must abort the 2722 * transaction. 2723 */ 2724 btrfs_abort_transaction(trans, ret); 2725 break; 2726 } 2727 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2728 /* 2729 * We are past the i_size here, but since we didn't 2730 * insert holes we need to clear the mapped area so we 2731 * know to not set disk_i_size in this area until a new 2732 * file extent is inserted here. 2733 */ 2734 ret = btrfs_inode_clear_file_extent_range(inode, 2735 cur_offset, 2736 drop_args.drop_end - cur_offset); 2737 if (ret) { 2738 /* 2739 * We couldn't clear our area, so we could 2740 * presumably adjust up and corrupt the fs, so 2741 * we need to abort. 2742 */ 2743 btrfs_abort_transaction(trans, ret); 2744 break; 2745 } 2746 } 2747 2748 if (extent_info && 2749 drop_args.drop_end > extent_info->file_offset) { 2750 u64 replace_len = drop_args.drop_end - 2751 extent_info->file_offset; 2752 2753 ret = btrfs_insert_replace_extent(trans, inode, path, 2754 extent_info, replace_len, 2755 drop_args.bytes_found); 2756 if (ret) { 2757 btrfs_abort_transaction(trans, ret); 2758 break; 2759 } 2760 extent_info->data_len -= replace_len; 2761 extent_info->data_offset += replace_len; 2762 extent_info->file_offset += replace_len; 2763 } 2764 2765 /* 2766 * We are releasing our handle on the transaction, balance the 2767 * dirty pages of the btree inode and flush delayed items, and 2768 * then get a new transaction handle, which may now point to a 2769 * new transaction in case someone else may have committed the 2770 * transaction we used to replace/drop file extent items. So 2771 * bump the inode's iversion and update mtime and ctime except 2772 * if we are called from a dedupe context. This is because a 2773 * power failure/crash may happen after the transaction is 2774 * committed and before we finish replacing/dropping all the 2775 * file extent items we need. 2776 */ 2777 inode_inc_iversion(&inode->vfs_inode); 2778 2779 if (!extent_info || extent_info->update_times) { 2780 inode->vfs_inode.i_mtime = current_time(&inode->vfs_inode); 2781 inode->vfs_inode.i_ctime = inode->vfs_inode.i_mtime; 2782 } 2783 2784 ret = btrfs_update_inode(trans, root, inode); 2785 if (ret) 2786 break; 2787 2788 btrfs_end_transaction(trans); 2789 btrfs_btree_balance_dirty(fs_info); 2790 2791 trans = btrfs_start_transaction(root, rsv_count); 2792 if (IS_ERR(trans)) { 2793 ret = PTR_ERR(trans); 2794 trans = NULL; 2795 break; 2796 } 2797 2798 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2799 rsv, min_size, false); 2800 if (WARN_ON(ret)) 2801 break; 2802 trans->block_rsv = rsv; 2803 2804 cur_offset = drop_args.drop_end; 2805 len = end - cur_offset; 2806 if (!extent_info && len) { 2807 ret = find_first_non_hole(inode, &cur_offset, &len); 2808 if (unlikely(ret < 0)) 2809 break; 2810 if (ret && !len) { 2811 ret = 0; 2812 break; 2813 } 2814 } 2815 } 2816 2817 /* 2818 * If we were cloning, force the next fsync to be a full one since we 2819 * we replaced (or just dropped in the case of cloning holes when 2820 * NO_HOLES is enabled) file extent items and did not setup new extent 2821 * maps for the replacement extents (or holes). 2822 */ 2823 if (extent_info && !extent_info->is_new_extent) 2824 btrfs_set_inode_full_sync(inode); 2825 2826 if (ret) 2827 goto out_trans; 2828 2829 trans->block_rsv = &fs_info->trans_block_rsv; 2830 /* 2831 * If we are using the NO_HOLES feature we might have had already an 2832 * hole that overlaps a part of the region [lockstart, lockend] and 2833 * ends at (or beyond) lockend. Since we have no file extent items to 2834 * represent holes, drop_end can be less than lockend and so we must 2835 * make sure we have an extent map representing the existing hole (the 2836 * call to __btrfs_drop_extents() might have dropped the existing extent 2837 * map representing the existing hole), otherwise the fast fsync path 2838 * will not record the existence of the hole region 2839 * [existing_hole_start, lockend]. 2840 */ 2841 if (drop_args.drop_end <= end) 2842 drop_args.drop_end = end + 1; 2843 /* 2844 * Don't insert file hole extent item if it's for a range beyond eof 2845 * (because it's useless) or if it represents a 0 bytes range (when 2846 * cur_offset == drop_end). 2847 */ 2848 if (!extent_info && cur_offset < ino_size && 2849 cur_offset < drop_args.drop_end) { 2850 ret = fill_holes(trans, inode, path, cur_offset, 2851 drop_args.drop_end); 2852 if (ret) { 2853 /* Same comment as above. */ 2854 btrfs_abort_transaction(trans, ret); 2855 goto out_trans; 2856 } 2857 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2858 /* See the comment in the loop above for the reasoning here. */ 2859 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2860 drop_args.drop_end - cur_offset); 2861 if (ret) { 2862 btrfs_abort_transaction(trans, ret); 2863 goto out_trans; 2864 } 2865 2866 } 2867 if (extent_info) { 2868 ret = btrfs_insert_replace_extent(trans, inode, path, 2869 extent_info, extent_info->data_len, 2870 drop_args.bytes_found); 2871 if (ret) { 2872 btrfs_abort_transaction(trans, ret); 2873 goto out_trans; 2874 } 2875 } 2876 2877 out_trans: 2878 if (!trans) 2879 goto out_free; 2880 2881 trans->block_rsv = &fs_info->trans_block_rsv; 2882 if (ret) 2883 btrfs_end_transaction(trans); 2884 else 2885 *trans_out = trans; 2886 out_free: 2887 btrfs_free_block_rsv(fs_info, rsv); 2888 out: 2889 return ret; 2890 } 2891 2892 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2893 { 2894 struct inode *inode = file_inode(file); 2895 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2896 struct btrfs_root *root = BTRFS_I(inode)->root; 2897 struct extent_state *cached_state = NULL; 2898 struct btrfs_path *path; 2899 struct btrfs_trans_handle *trans = NULL; 2900 u64 lockstart; 2901 u64 lockend; 2902 u64 tail_start; 2903 u64 tail_len; 2904 u64 orig_start = offset; 2905 int ret = 0; 2906 bool same_block; 2907 u64 ino_size; 2908 bool truncated_block = false; 2909 bool updated_inode = false; 2910 2911 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 2912 2913 ret = btrfs_wait_ordered_range(inode, offset, len); 2914 if (ret) 2915 goto out_only_mutex; 2916 2917 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2918 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2919 if (ret < 0) 2920 goto out_only_mutex; 2921 if (ret && !len) { 2922 /* Already in a large hole */ 2923 ret = 0; 2924 goto out_only_mutex; 2925 } 2926 2927 ret = file_modified(file); 2928 if (ret) 2929 goto out_only_mutex; 2930 2931 lockstart = round_up(offset, fs_info->sectorsize); 2932 lockend = round_down(offset + len, fs_info->sectorsize) - 1; 2933 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2934 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2935 /* 2936 * We needn't truncate any block which is beyond the end of the file 2937 * because we are sure there is no data there. 2938 */ 2939 /* 2940 * Only do this if we are in the same block and we aren't doing the 2941 * entire block. 2942 */ 2943 if (same_block && len < fs_info->sectorsize) { 2944 if (offset < ino_size) { 2945 truncated_block = true; 2946 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2947 0); 2948 } else { 2949 ret = 0; 2950 } 2951 goto out_only_mutex; 2952 } 2953 2954 /* zero back part of the first block */ 2955 if (offset < ino_size) { 2956 truncated_block = true; 2957 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2958 if (ret) { 2959 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2960 return ret; 2961 } 2962 } 2963 2964 /* Check the aligned pages after the first unaligned page, 2965 * if offset != orig_start, which means the first unaligned page 2966 * including several following pages are already in holes, 2967 * the extra check can be skipped */ 2968 if (offset == orig_start) { 2969 /* after truncate page, check hole again */ 2970 len = offset + len - lockstart; 2971 offset = lockstart; 2972 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2973 if (ret < 0) 2974 goto out_only_mutex; 2975 if (ret && !len) { 2976 ret = 0; 2977 goto out_only_mutex; 2978 } 2979 lockstart = offset; 2980 } 2981 2982 /* Check the tail unaligned part is in a hole */ 2983 tail_start = lockend + 1; 2984 tail_len = offset + len - tail_start; 2985 if (tail_len) { 2986 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2987 if (unlikely(ret < 0)) 2988 goto out_only_mutex; 2989 if (!ret) { 2990 /* zero the front end of the last page */ 2991 if (tail_start + tail_len < ino_size) { 2992 truncated_block = true; 2993 ret = btrfs_truncate_block(BTRFS_I(inode), 2994 tail_start + tail_len, 2995 0, 1); 2996 if (ret) 2997 goto out_only_mutex; 2998 } 2999 } 3000 } 3001 3002 if (lockend < lockstart) { 3003 ret = 0; 3004 goto out_only_mutex; 3005 } 3006 3007 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 3008 3009 path = btrfs_alloc_path(); 3010 if (!path) { 3011 ret = -ENOMEM; 3012 goto out; 3013 } 3014 3015 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 3016 lockend, NULL, &trans); 3017 btrfs_free_path(path); 3018 if (ret) 3019 goto out; 3020 3021 ASSERT(trans != NULL); 3022 inode_inc_iversion(inode); 3023 inode->i_mtime = current_time(inode); 3024 inode->i_ctime = inode->i_mtime; 3025 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3026 updated_inode = true; 3027 btrfs_end_transaction(trans); 3028 btrfs_btree_balance_dirty(fs_info); 3029 out: 3030 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3031 &cached_state); 3032 out_only_mutex: 3033 if (!updated_inode && truncated_block && !ret) { 3034 /* 3035 * If we only end up zeroing part of a page, we still need to 3036 * update the inode item, so that all the time fields are 3037 * updated as well as the necessary btrfs inode in memory fields 3038 * for detecting, at fsync time, if the inode isn't yet in the 3039 * log tree or it's there but not up to date. 3040 */ 3041 struct timespec64 now = current_time(inode); 3042 3043 inode_inc_iversion(inode); 3044 inode->i_mtime = now; 3045 inode->i_ctime = now; 3046 trans = btrfs_start_transaction(root, 1); 3047 if (IS_ERR(trans)) { 3048 ret = PTR_ERR(trans); 3049 } else { 3050 int ret2; 3051 3052 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3053 ret2 = btrfs_end_transaction(trans); 3054 if (!ret) 3055 ret = ret2; 3056 } 3057 } 3058 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3059 return ret; 3060 } 3061 3062 /* Helper structure to record which range is already reserved */ 3063 struct falloc_range { 3064 struct list_head list; 3065 u64 start; 3066 u64 len; 3067 }; 3068 3069 /* 3070 * Helper function to add falloc range 3071 * 3072 * Caller should have locked the larger range of extent containing 3073 * [start, len) 3074 */ 3075 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 3076 { 3077 struct falloc_range *range = NULL; 3078 3079 if (!list_empty(head)) { 3080 /* 3081 * As fallocate iterates by bytenr order, we only need to check 3082 * the last range. 3083 */ 3084 range = list_last_entry(head, struct falloc_range, list); 3085 if (range->start + range->len == start) { 3086 range->len += len; 3087 return 0; 3088 } 3089 } 3090 3091 range = kmalloc(sizeof(*range), GFP_KERNEL); 3092 if (!range) 3093 return -ENOMEM; 3094 range->start = start; 3095 range->len = len; 3096 list_add_tail(&range->list, head); 3097 return 0; 3098 } 3099 3100 static int btrfs_fallocate_update_isize(struct inode *inode, 3101 const u64 end, 3102 const int mode) 3103 { 3104 struct btrfs_trans_handle *trans; 3105 struct btrfs_root *root = BTRFS_I(inode)->root; 3106 int ret; 3107 int ret2; 3108 3109 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 3110 return 0; 3111 3112 trans = btrfs_start_transaction(root, 1); 3113 if (IS_ERR(trans)) 3114 return PTR_ERR(trans); 3115 3116 inode->i_ctime = current_time(inode); 3117 i_size_write(inode, end); 3118 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 3119 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3120 ret2 = btrfs_end_transaction(trans); 3121 3122 return ret ? ret : ret2; 3123 } 3124 3125 enum { 3126 RANGE_BOUNDARY_WRITTEN_EXTENT, 3127 RANGE_BOUNDARY_PREALLOC_EXTENT, 3128 RANGE_BOUNDARY_HOLE, 3129 }; 3130 3131 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 3132 u64 offset) 3133 { 3134 const u64 sectorsize = inode->root->fs_info->sectorsize; 3135 struct extent_map *em; 3136 int ret; 3137 3138 offset = round_down(offset, sectorsize); 3139 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); 3140 if (IS_ERR(em)) 3141 return PTR_ERR(em); 3142 3143 if (em->block_start == EXTENT_MAP_HOLE) 3144 ret = RANGE_BOUNDARY_HOLE; 3145 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3146 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 3147 else 3148 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 3149 3150 free_extent_map(em); 3151 return ret; 3152 } 3153 3154 static int btrfs_zero_range(struct inode *inode, 3155 loff_t offset, 3156 loff_t len, 3157 const int mode) 3158 { 3159 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3160 struct extent_map *em; 3161 struct extent_changeset *data_reserved = NULL; 3162 int ret; 3163 u64 alloc_hint = 0; 3164 const u64 sectorsize = fs_info->sectorsize; 3165 u64 alloc_start = round_down(offset, sectorsize); 3166 u64 alloc_end = round_up(offset + len, sectorsize); 3167 u64 bytes_to_reserve = 0; 3168 bool space_reserved = false; 3169 3170 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3171 alloc_end - alloc_start); 3172 if (IS_ERR(em)) { 3173 ret = PTR_ERR(em); 3174 goto out; 3175 } 3176 3177 /* 3178 * Avoid hole punching and extent allocation for some cases. More cases 3179 * could be considered, but these are unlikely common and we keep things 3180 * as simple as possible for now. Also, intentionally, if the target 3181 * range contains one or more prealloc extents together with regular 3182 * extents and holes, we drop all the existing extents and allocate a 3183 * new prealloc extent, so that we get a larger contiguous disk extent. 3184 */ 3185 if (em->start <= alloc_start && 3186 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3187 const u64 em_end = em->start + em->len; 3188 3189 if (em_end >= offset + len) { 3190 /* 3191 * The whole range is already a prealloc extent, 3192 * do nothing except updating the inode's i_size if 3193 * needed. 3194 */ 3195 free_extent_map(em); 3196 ret = btrfs_fallocate_update_isize(inode, offset + len, 3197 mode); 3198 goto out; 3199 } 3200 /* 3201 * Part of the range is already a prealloc extent, so operate 3202 * only on the remaining part of the range. 3203 */ 3204 alloc_start = em_end; 3205 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 3206 len = offset + len - alloc_start; 3207 offset = alloc_start; 3208 alloc_hint = em->block_start + em->len; 3209 } 3210 free_extent_map(em); 3211 3212 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 3213 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 3214 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3215 sectorsize); 3216 if (IS_ERR(em)) { 3217 ret = PTR_ERR(em); 3218 goto out; 3219 } 3220 3221 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3222 free_extent_map(em); 3223 ret = btrfs_fallocate_update_isize(inode, offset + len, 3224 mode); 3225 goto out; 3226 } 3227 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 3228 free_extent_map(em); 3229 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 3230 0); 3231 if (!ret) 3232 ret = btrfs_fallocate_update_isize(inode, 3233 offset + len, 3234 mode); 3235 return ret; 3236 } 3237 free_extent_map(em); 3238 alloc_start = round_down(offset, sectorsize); 3239 alloc_end = alloc_start + sectorsize; 3240 goto reserve_space; 3241 } 3242 3243 alloc_start = round_up(offset, sectorsize); 3244 alloc_end = round_down(offset + len, sectorsize); 3245 3246 /* 3247 * For unaligned ranges, check the pages at the boundaries, they might 3248 * map to an extent, in which case we need to partially zero them, or 3249 * they might map to a hole, in which case we need our allocation range 3250 * to cover them. 3251 */ 3252 if (!IS_ALIGNED(offset, sectorsize)) { 3253 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3254 offset); 3255 if (ret < 0) 3256 goto out; 3257 if (ret == RANGE_BOUNDARY_HOLE) { 3258 alloc_start = round_down(offset, sectorsize); 3259 ret = 0; 3260 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3261 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 3262 if (ret) 3263 goto out; 3264 } else { 3265 ret = 0; 3266 } 3267 } 3268 3269 if (!IS_ALIGNED(offset + len, sectorsize)) { 3270 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3271 offset + len); 3272 if (ret < 0) 3273 goto out; 3274 if (ret == RANGE_BOUNDARY_HOLE) { 3275 alloc_end = round_up(offset + len, sectorsize); 3276 ret = 0; 3277 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3278 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 3279 0, 1); 3280 if (ret) 3281 goto out; 3282 } else { 3283 ret = 0; 3284 } 3285 } 3286 3287 reserve_space: 3288 if (alloc_start < alloc_end) { 3289 struct extent_state *cached_state = NULL; 3290 const u64 lockstart = alloc_start; 3291 const u64 lockend = alloc_end - 1; 3292 3293 bytes_to_reserve = alloc_end - alloc_start; 3294 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3295 bytes_to_reserve); 3296 if (ret < 0) 3297 goto out; 3298 space_reserved = true; 3299 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3300 &cached_state); 3301 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3302 alloc_start, bytes_to_reserve); 3303 if (ret) { 3304 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 3305 lockend, &cached_state); 3306 goto out; 3307 } 3308 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3309 alloc_end - alloc_start, 3310 i_blocksize(inode), 3311 offset + len, &alloc_hint); 3312 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3313 &cached_state); 3314 /* btrfs_prealloc_file_range releases reserved space on error */ 3315 if (ret) { 3316 space_reserved = false; 3317 goto out; 3318 } 3319 } 3320 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3321 out: 3322 if (ret && space_reserved) 3323 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3324 alloc_start, bytes_to_reserve); 3325 extent_changeset_free(data_reserved); 3326 3327 return ret; 3328 } 3329 3330 static long btrfs_fallocate(struct file *file, int mode, 3331 loff_t offset, loff_t len) 3332 { 3333 struct inode *inode = file_inode(file); 3334 struct extent_state *cached_state = NULL; 3335 struct extent_changeset *data_reserved = NULL; 3336 struct falloc_range *range; 3337 struct falloc_range *tmp; 3338 struct list_head reserve_list; 3339 u64 cur_offset; 3340 u64 last_byte; 3341 u64 alloc_start; 3342 u64 alloc_end; 3343 u64 alloc_hint = 0; 3344 u64 locked_end; 3345 u64 actual_end = 0; 3346 u64 data_space_needed = 0; 3347 u64 data_space_reserved = 0; 3348 u64 qgroup_reserved = 0; 3349 struct extent_map *em; 3350 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; 3351 int ret; 3352 3353 /* Do not allow fallocate in ZONED mode */ 3354 if (btrfs_is_zoned(btrfs_sb(inode->i_sb))) 3355 return -EOPNOTSUPP; 3356 3357 alloc_start = round_down(offset, blocksize); 3358 alloc_end = round_up(offset + len, blocksize); 3359 cur_offset = alloc_start; 3360 3361 /* Make sure we aren't being give some crap mode */ 3362 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3363 FALLOC_FL_ZERO_RANGE)) 3364 return -EOPNOTSUPP; 3365 3366 if (mode & FALLOC_FL_PUNCH_HOLE) 3367 return btrfs_punch_hole(file, offset, len); 3368 3369 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 3370 3371 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3372 ret = inode_newsize_ok(inode, offset + len); 3373 if (ret) 3374 goto out; 3375 } 3376 3377 ret = file_modified(file); 3378 if (ret) 3379 goto out; 3380 3381 /* 3382 * TODO: Move these two operations after we have checked 3383 * accurate reserved space, or fallocate can still fail but 3384 * with page truncated or size expanded. 3385 * 3386 * But that's a minor problem and won't do much harm BTW. 3387 */ 3388 if (alloc_start > inode->i_size) { 3389 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3390 alloc_start); 3391 if (ret) 3392 goto out; 3393 } else if (offset + len > inode->i_size) { 3394 /* 3395 * If we are fallocating from the end of the file onward we 3396 * need to zero out the end of the block if i_size lands in the 3397 * middle of a block. 3398 */ 3399 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3400 if (ret) 3401 goto out; 3402 } 3403 3404 /* 3405 * We have locked the inode at the VFS level (in exclusive mode) and we 3406 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3407 * locking the file range, flush all dealloc in the range and wait for 3408 * all ordered extents in the range to complete. After this we can lock 3409 * the file range and, due to the previous locking we did, we know there 3410 * can't be more delalloc or ordered extents in the range. 3411 */ 3412 ret = btrfs_wait_ordered_range(inode, alloc_start, 3413 alloc_end - alloc_start); 3414 if (ret) 3415 goto out; 3416 3417 if (mode & FALLOC_FL_ZERO_RANGE) { 3418 ret = btrfs_zero_range(inode, offset, len, mode); 3419 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3420 return ret; 3421 } 3422 3423 locked_end = alloc_end - 1; 3424 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3425 &cached_state); 3426 3427 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3428 3429 /* First, check if we exceed the qgroup limit */ 3430 INIT_LIST_HEAD(&reserve_list); 3431 while (cur_offset < alloc_end) { 3432 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3433 alloc_end - cur_offset); 3434 if (IS_ERR(em)) { 3435 ret = PTR_ERR(em); 3436 break; 3437 } 3438 last_byte = min(extent_map_end(em), alloc_end); 3439 actual_end = min_t(u64, extent_map_end(em), offset + len); 3440 last_byte = ALIGN(last_byte, blocksize); 3441 if (em->block_start == EXTENT_MAP_HOLE || 3442 (cur_offset >= inode->i_size && 3443 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3444 const u64 range_len = last_byte - cur_offset; 3445 3446 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3447 if (ret < 0) { 3448 free_extent_map(em); 3449 break; 3450 } 3451 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3452 &data_reserved, cur_offset, range_len); 3453 if (ret < 0) { 3454 free_extent_map(em); 3455 break; 3456 } 3457 qgroup_reserved += range_len; 3458 data_space_needed += range_len; 3459 } 3460 free_extent_map(em); 3461 cur_offset = last_byte; 3462 } 3463 3464 if (!ret && data_space_needed > 0) { 3465 /* 3466 * We are safe to reserve space here as we can't have delalloc 3467 * in the range, see above. 3468 */ 3469 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3470 data_space_needed); 3471 if (!ret) 3472 data_space_reserved = data_space_needed; 3473 } 3474 3475 /* 3476 * If ret is still 0, means we're OK to fallocate. 3477 * Or just cleanup the list and exit. 3478 */ 3479 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3480 if (!ret) { 3481 ret = btrfs_prealloc_file_range(inode, mode, 3482 range->start, 3483 range->len, i_blocksize(inode), 3484 offset + len, &alloc_hint); 3485 /* 3486 * btrfs_prealloc_file_range() releases space even 3487 * if it returns an error. 3488 */ 3489 data_space_reserved -= range->len; 3490 qgroup_reserved -= range->len; 3491 } else if (data_space_reserved > 0) { 3492 btrfs_free_reserved_data_space(BTRFS_I(inode), 3493 data_reserved, range->start, 3494 range->len); 3495 data_space_reserved -= range->len; 3496 qgroup_reserved -= range->len; 3497 } else if (qgroup_reserved > 0) { 3498 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3499 range->start, range->len); 3500 qgroup_reserved -= range->len; 3501 } 3502 list_del(&range->list); 3503 kfree(range); 3504 } 3505 if (ret < 0) 3506 goto out_unlock; 3507 3508 /* 3509 * We didn't need to allocate any more space, but we still extended the 3510 * size of the file so we need to update i_size and the inode item. 3511 */ 3512 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3513 out_unlock: 3514 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3515 &cached_state); 3516 out: 3517 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3518 extent_changeset_free(data_reserved); 3519 return ret; 3520 } 3521 3522 /* 3523 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range 3524 * that has unflushed and/or flushing delalloc. There might be other adjacent 3525 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps 3526 * looping while it gets adjacent subranges, and merging them together. 3527 */ 3528 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, 3529 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3530 { 3531 const u64 len = end + 1 - start; 3532 struct extent_map_tree *em_tree = &inode->extent_tree; 3533 struct extent_map *em; 3534 u64 em_end; 3535 u64 delalloc_len; 3536 3537 /* 3538 * Search the io tree first for EXTENT_DELALLOC. If we find any, it 3539 * means we have delalloc (dirty pages) for which writeback has not 3540 * started yet. 3541 */ 3542 *delalloc_start_ret = start; 3543 delalloc_len = count_range_bits(&inode->io_tree, delalloc_start_ret, end, 3544 len, EXTENT_DELALLOC, 1); 3545 /* 3546 * If delalloc was found then *delalloc_start_ret has a sector size 3547 * aligned value (rounded down). 3548 */ 3549 if (delalloc_len > 0) 3550 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; 3551 3552 /* 3553 * Now also check if there's any extent map in the range that does not 3554 * map to a hole or prealloc extent. We do this because: 3555 * 3556 * 1) When delalloc is flushed, the file range is locked, we clear the 3557 * EXTENT_DELALLOC bit from the io tree and create an extent map for 3558 * an allocated extent. So we might just have been called after 3559 * delalloc is flushed and before the ordered extent completes and 3560 * inserts the new file extent item in the subvolume's btree; 3561 * 3562 * 2) We may have an extent map created by flushing delalloc for a 3563 * subrange that starts before the subrange we found marked with 3564 * EXTENT_DELALLOC in the io tree. 3565 */ 3566 read_lock(&em_tree->lock); 3567 em = lookup_extent_mapping(em_tree, start, len); 3568 read_unlock(&em_tree->lock); 3569 3570 /* extent_map_end() returns a non-inclusive end offset. */ 3571 em_end = em ? extent_map_end(em) : 0; 3572 3573 /* 3574 * If we have a hole/prealloc extent map, check the next one if this one 3575 * ends before our range's end. 3576 */ 3577 if (em && (em->block_start == EXTENT_MAP_HOLE || 3578 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) && em_end < end) { 3579 struct extent_map *next_em; 3580 3581 read_lock(&em_tree->lock); 3582 next_em = lookup_extent_mapping(em_tree, em_end, len - em_end); 3583 read_unlock(&em_tree->lock); 3584 3585 free_extent_map(em); 3586 em_end = next_em ? extent_map_end(next_em) : 0; 3587 em = next_em; 3588 } 3589 3590 if (em && (em->block_start == EXTENT_MAP_HOLE || 3591 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3592 free_extent_map(em); 3593 em = NULL; 3594 } 3595 3596 /* 3597 * No extent map or one for a hole or prealloc extent. Use the delalloc 3598 * range we found in the io tree if we have one. 3599 */ 3600 if (!em) 3601 return (delalloc_len > 0); 3602 3603 /* 3604 * We don't have any range as EXTENT_DELALLOC in the io tree, so the 3605 * extent map is the only subrange representing delalloc. 3606 */ 3607 if (delalloc_len == 0) { 3608 *delalloc_start_ret = em->start; 3609 *delalloc_end_ret = min(end, em_end - 1); 3610 free_extent_map(em); 3611 return true; 3612 } 3613 3614 /* 3615 * The extent map represents a delalloc range that starts before the 3616 * delalloc range we found in the io tree. 3617 */ 3618 if (em->start < *delalloc_start_ret) { 3619 *delalloc_start_ret = em->start; 3620 /* 3621 * If the ranges are adjacent, return a combined range. 3622 * Otherwise return the extent map's range. 3623 */ 3624 if (em_end < *delalloc_start_ret) 3625 *delalloc_end_ret = min(end, em_end - 1); 3626 3627 free_extent_map(em); 3628 return true; 3629 } 3630 3631 /* 3632 * The extent map starts after the delalloc range we found in the io 3633 * tree. If it's adjacent, return a combined range, otherwise return 3634 * the range found in the io tree. 3635 */ 3636 if (*delalloc_end_ret + 1 == em->start) 3637 *delalloc_end_ret = min(end, em_end - 1); 3638 3639 free_extent_map(em); 3640 return true; 3641 } 3642 3643 /* 3644 * Check if there's delalloc in a given range. 3645 * 3646 * @inode: The inode. 3647 * @start: The start offset of the range. It does not need to be 3648 * sector size aligned. 3649 * @end: The end offset (inclusive value) of the search range. 3650 * It does not need to be sector size aligned. 3651 * @delalloc_start_ret: Output argument, set to the start offset of the 3652 * subrange found with delalloc (may not be sector size 3653 * aligned). 3654 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value) 3655 * of the subrange found with delalloc. 3656 * 3657 * Returns true if a subrange with delalloc is found within the given range, and 3658 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and 3659 * end offsets of the subrange. 3660 */ 3661 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3662 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3663 { 3664 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); 3665 u64 prev_delalloc_end = 0; 3666 bool ret = false; 3667 3668 while (cur_offset < end) { 3669 u64 delalloc_start; 3670 u64 delalloc_end; 3671 bool delalloc; 3672 3673 delalloc = find_delalloc_subrange(inode, cur_offset, end, 3674 &delalloc_start, 3675 &delalloc_end); 3676 if (!delalloc) 3677 break; 3678 3679 if (prev_delalloc_end == 0) { 3680 /* First subrange found. */ 3681 *delalloc_start_ret = max(delalloc_start, start); 3682 *delalloc_end_ret = delalloc_end; 3683 ret = true; 3684 } else if (delalloc_start == prev_delalloc_end + 1) { 3685 /* Subrange adjacent to the previous one, merge them. */ 3686 *delalloc_end_ret = delalloc_end; 3687 } else { 3688 /* Subrange not adjacent to the previous one, exit. */ 3689 break; 3690 } 3691 3692 prev_delalloc_end = delalloc_end; 3693 cur_offset = delalloc_end + 1; 3694 cond_resched(); 3695 } 3696 3697 return ret; 3698 } 3699 3700 /* 3701 * Check if there's a hole or delalloc range in a range representing a hole (or 3702 * prealloc extent) found in the inode's subvolume btree. 3703 * 3704 * @inode: The inode. 3705 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE). 3706 * @start: Start offset of the hole region. It does not need to be sector 3707 * size aligned. 3708 * @end: End offset (inclusive value) of the hole region. It does not 3709 * need to be sector size aligned. 3710 * @start_ret: Return parameter, used to set the start of the subrange in the 3711 * hole that matches the search criteria (seek mode), if such 3712 * subrange is found (return value of the function is true). 3713 * The value returned here may not be sector size aligned. 3714 * 3715 * Returns true if a subrange matching the given seek mode is found, and if one 3716 * is found, it updates @start_ret with the start of the subrange. 3717 */ 3718 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, 3719 u64 start, u64 end, u64 *start_ret) 3720 { 3721 u64 delalloc_start; 3722 u64 delalloc_end; 3723 bool delalloc; 3724 3725 delalloc = btrfs_find_delalloc_in_range(inode, start, end, 3726 &delalloc_start, &delalloc_end); 3727 if (delalloc && whence == SEEK_DATA) { 3728 *start_ret = delalloc_start; 3729 return true; 3730 } 3731 3732 if (delalloc && whence == SEEK_HOLE) { 3733 /* 3734 * We found delalloc but it starts after out start offset. So we 3735 * have a hole between our start offset and the delalloc start. 3736 */ 3737 if (start < delalloc_start) { 3738 *start_ret = start; 3739 return true; 3740 } 3741 /* 3742 * Delalloc range starts at our start offset. 3743 * If the delalloc range's length is smaller than our range, 3744 * then it means we have a hole that starts where the delalloc 3745 * subrange ends. 3746 */ 3747 if (delalloc_end < end) { 3748 *start_ret = delalloc_end + 1; 3749 return true; 3750 } 3751 3752 /* There's delalloc for the whole range. */ 3753 return false; 3754 } 3755 3756 if (!delalloc && whence == SEEK_HOLE) { 3757 *start_ret = start; 3758 return true; 3759 } 3760 3761 /* 3762 * No delalloc in the range and we are seeking for data. The caller has 3763 * to iterate to the next extent item in the subvolume btree. 3764 */ 3765 return false; 3766 } 3767 3768 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset, 3769 int whence) 3770 { 3771 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3772 struct extent_state *cached_state = NULL; 3773 const loff_t i_size = i_size_read(&inode->vfs_inode); 3774 const u64 ino = btrfs_ino(inode); 3775 struct btrfs_root *root = inode->root; 3776 struct btrfs_path *path; 3777 struct btrfs_key key; 3778 u64 last_extent_end; 3779 u64 lockstart; 3780 u64 lockend; 3781 u64 start; 3782 int ret; 3783 bool found = false; 3784 3785 if (i_size == 0 || offset >= i_size) 3786 return -ENXIO; 3787 3788 /* 3789 * Quick path. If the inode has no prealloc extents and its number of 3790 * bytes used matches its i_size, then it can not have holes. 3791 */ 3792 if (whence == SEEK_HOLE && 3793 !(inode->flags & BTRFS_INODE_PREALLOC) && 3794 inode_get_bytes(&inode->vfs_inode) == i_size) 3795 return i_size; 3796 3797 /* 3798 * offset can be negative, in this case we start finding DATA/HOLE from 3799 * the very start of the file. 3800 */ 3801 start = max_t(loff_t, 0, offset); 3802 3803 lockstart = round_down(start, fs_info->sectorsize); 3804 lockend = round_up(i_size, fs_info->sectorsize); 3805 if (lockend <= lockstart) 3806 lockend = lockstart + fs_info->sectorsize; 3807 lockend--; 3808 3809 path = btrfs_alloc_path(); 3810 if (!path) 3811 return -ENOMEM; 3812 path->reada = READA_FORWARD; 3813 3814 key.objectid = ino; 3815 key.type = BTRFS_EXTENT_DATA_KEY; 3816 key.offset = start; 3817 3818 last_extent_end = lockstart; 3819 3820 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3821 3822 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3823 if (ret < 0) { 3824 goto out; 3825 } else if (ret > 0 && path->slots[0] > 0) { 3826 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3827 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3828 path->slots[0]--; 3829 } 3830 3831 while (start < i_size) { 3832 struct extent_buffer *leaf = path->nodes[0]; 3833 struct btrfs_file_extent_item *extent; 3834 u64 extent_end; 3835 3836 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3837 ret = btrfs_next_leaf(root, path); 3838 if (ret < 0) 3839 goto out; 3840 else if (ret > 0) 3841 break; 3842 3843 leaf = path->nodes[0]; 3844 } 3845 3846 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3847 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3848 break; 3849 3850 extent_end = btrfs_file_extent_end(path); 3851 3852 /* 3853 * In the first iteration we may have a slot that points to an 3854 * extent that ends before our start offset, so skip it. 3855 */ 3856 if (extent_end <= start) { 3857 path->slots[0]++; 3858 continue; 3859 } 3860 3861 /* We have an implicit hole, NO_HOLES feature is likely set. */ 3862 if (last_extent_end < key.offset) { 3863 u64 search_start = last_extent_end; 3864 u64 found_start; 3865 3866 /* 3867 * First iteration, @start matches @offset and it's 3868 * within the hole. 3869 */ 3870 if (start == offset) 3871 search_start = offset; 3872 3873 found = find_desired_extent_in_hole(inode, whence, 3874 search_start, 3875 key.offset - 1, 3876 &found_start); 3877 if (found) { 3878 start = found_start; 3879 break; 3880 } 3881 /* 3882 * Didn't find data or a hole (due to delalloc) in the 3883 * implicit hole range, so need to analyze the extent. 3884 */ 3885 } 3886 3887 extent = btrfs_item_ptr(leaf, path->slots[0], 3888 struct btrfs_file_extent_item); 3889 3890 if (btrfs_file_extent_disk_bytenr(leaf, extent) == 0 || 3891 btrfs_file_extent_type(leaf, extent) == 3892 BTRFS_FILE_EXTENT_PREALLOC) { 3893 /* 3894 * Explicit hole or prealloc extent, search for delalloc. 3895 * A prealloc extent is treated like a hole. 3896 */ 3897 u64 search_start = key.offset; 3898 u64 found_start; 3899 3900 /* 3901 * First iteration, @start matches @offset and it's 3902 * within the hole. 3903 */ 3904 if (start == offset) 3905 search_start = offset; 3906 3907 found = find_desired_extent_in_hole(inode, whence, 3908 search_start, 3909 extent_end - 1, 3910 &found_start); 3911 if (found) { 3912 start = found_start; 3913 break; 3914 } 3915 /* 3916 * Didn't find data or a hole (due to delalloc) in the 3917 * implicit hole range, so need to analyze the next 3918 * extent item. 3919 */ 3920 } else { 3921 /* 3922 * Found a regular or inline extent. 3923 * If we are seeking for data, adjust the start offset 3924 * and stop, we're done. 3925 */ 3926 if (whence == SEEK_DATA) { 3927 start = max_t(u64, key.offset, offset); 3928 found = true; 3929 break; 3930 } 3931 /* 3932 * Else, we are seeking for a hole, check the next file 3933 * extent item. 3934 */ 3935 } 3936 3937 start = extent_end; 3938 last_extent_end = extent_end; 3939 path->slots[0]++; 3940 if (fatal_signal_pending(current)) { 3941 ret = -EINTR; 3942 goto out; 3943 } 3944 cond_resched(); 3945 } 3946 3947 /* We have an implicit hole from the last extent found up to i_size. */ 3948 if (!found && start < i_size) { 3949 found = find_desired_extent_in_hole(inode, whence, start, 3950 i_size - 1, &start); 3951 if (!found) 3952 start = i_size; 3953 } 3954 3955 out: 3956 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3957 btrfs_free_path(path); 3958 3959 if (ret < 0) 3960 return ret; 3961 3962 if (whence == SEEK_DATA && start >= i_size) 3963 return -ENXIO; 3964 3965 return min_t(loff_t, start, i_size); 3966 } 3967 3968 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3969 { 3970 struct inode *inode = file->f_mapping->host; 3971 3972 switch (whence) { 3973 default: 3974 return generic_file_llseek(file, offset, whence); 3975 case SEEK_DATA: 3976 case SEEK_HOLE: 3977 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3978 offset = find_desired_extent(BTRFS_I(inode), offset, whence); 3979 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3980 break; 3981 } 3982 3983 if (offset < 0) 3984 return offset; 3985 3986 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3987 } 3988 3989 static int btrfs_file_open(struct inode *inode, struct file *filp) 3990 { 3991 int ret; 3992 3993 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC; 3994 3995 ret = fsverity_file_open(inode, filp); 3996 if (ret) 3997 return ret; 3998 return generic_file_open(inode, filp); 3999 } 4000 4001 static int check_direct_read(struct btrfs_fs_info *fs_info, 4002 const struct iov_iter *iter, loff_t offset) 4003 { 4004 int ret; 4005 int i, seg; 4006 4007 ret = check_direct_IO(fs_info, iter, offset); 4008 if (ret < 0) 4009 return ret; 4010 4011 if (!iter_is_iovec(iter)) 4012 return 0; 4013 4014 for (seg = 0; seg < iter->nr_segs; seg++) 4015 for (i = seg + 1; i < iter->nr_segs; i++) 4016 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 4017 return -EINVAL; 4018 return 0; 4019 } 4020 4021 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 4022 { 4023 struct inode *inode = file_inode(iocb->ki_filp); 4024 size_t prev_left = 0; 4025 ssize_t read = 0; 4026 ssize_t ret; 4027 4028 if (fsverity_active(inode)) 4029 return 0; 4030 4031 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos)) 4032 return 0; 4033 4034 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 4035 again: 4036 /* 4037 * This is similar to what we do for direct IO writes, see the comment 4038 * at btrfs_direct_write(), but we also disable page faults in addition 4039 * to disabling them only at the iov_iter level. This is because when 4040 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(), 4041 * which can still trigger page fault ins despite having set ->nofault 4042 * to true of our 'to' iov_iter. 4043 * 4044 * The difference to direct IO writes is that we deadlock when trying 4045 * to lock the extent range in the inode's tree during he page reads 4046 * triggered by the fault in (while for writes it is due to waiting for 4047 * our own ordered extent). This is because for direct IO reads, 4048 * btrfs_dio_iomap_begin() returns with the extent range locked, which 4049 * is only unlocked in the endio callback (end_bio_extent_readpage()). 4050 */ 4051 pagefault_disable(); 4052 to->nofault = true; 4053 ret = btrfs_dio_read(iocb, to, read); 4054 to->nofault = false; 4055 pagefault_enable(); 4056 4057 /* No increment (+=) because iomap returns a cumulative value. */ 4058 if (ret > 0) 4059 read = ret; 4060 4061 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) { 4062 const size_t left = iov_iter_count(to); 4063 4064 if (left == prev_left) { 4065 /* 4066 * We didn't make any progress since the last attempt, 4067 * fallback to a buffered read for the remainder of the 4068 * range. This is just to avoid any possibility of looping 4069 * for too long. 4070 */ 4071 ret = read; 4072 } else { 4073 /* 4074 * We made some progress since the last retry or this is 4075 * the first time we are retrying. Fault in as many pages 4076 * as possible and retry. 4077 */ 4078 fault_in_iov_iter_writeable(to, left); 4079 prev_left = left; 4080 goto again; 4081 } 4082 } 4083 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 4084 return ret < 0 ? ret : read; 4085 } 4086 4087 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 4088 { 4089 ssize_t ret = 0; 4090 4091 if (iocb->ki_flags & IOCB_DIRECT) { 4092 ret = btrfs_direct_read(iocb, to); 4093 if (ret < 0 || !iov_iter_count(to) || 4094 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 4095 return ret; 4096 } 4097 4098 return filemap_read(iocb, to, ret); 4099 } 4100 4101 const struct file_operations btrfs_file_operations = { 4102 .llseek = btrfs_file_llseek, 4103 .read_iter = btrfs_file_read_iter, 4104 .splice_read = generic_file_splice_read, 4105 .write_iter = btrfs_file_write_iter, 4106 .splice_write = iter_file_splice_write, 4107 .mmap = btrfs_file_mmap, 4108 .open = btrfs_file_open, 4109 .release = btrfs_release_file, 4110 .get_unmapped_area = thp_get_unmapped_area, 4111 .fsync = btrfs_sync_file, 4112 .fallocate = btrfs_fallocate, 4113 .unlocked_ioctl = btrfs_ioctl, 4114 #ifdef CONFIG_COMPAT 4115 .compat_ioctl = btrfs_compat_ioctl, 4116 #endif 4117 .remap_file_range = btrfs_remap_file_range, 4118 }; 4119 4120 void __cold btrfs_auto_defrag_exit(void) 4121 { 4122 kmem_cache_destroy(btrfs_inode_defrag_cachep); 4123 } 4124 4125 int __init btrfs_auto_defrag_init(void) 4126 { 4127 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 4128 sizeof(struct inode_defrag), 0, 4129 SLAB_MEM_SPREAD, 4130 NULL); 4131 if (!btrfs_inode_defrag_cachep) 4132 return -ENOMEM; 4133 4134 return 0; 4135 } 4136 4137 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 4138 { 4139 int ret; 4140 4141 /* 4142 * So with compression we will find and lock a dirty page and clear the 4143 * first one as dirty, setup an async extent, and immediately return 4144 * with the entire range locked but with nobody actually marked with 4145 * writeback. So we can't just filemap_write_and_wait_range() and 4146 * expect it to work since it will just kick off a thread to do the 4147 * actual work. So we need to call filemap_fdatawrite_range _again_ 4148 * since it will wait on the page lock, which won't be unlocked until 4149 * after the pages have been marked as writeback and so we're good to go 4150 * from there. We have to do this otherwise we'll miss the ordered 4151 * extents and that results in badness. Please Josef, do not think you 4152 * know better and pull this out at some point in the future, it is 4153 * right and you are wrong. 4154 */ 4155 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 4156 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 4157 &BTRFS_I(inode)->runtime_flags)) 4158 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 4159 4160 return ret; 4161 } 4162