1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include "ctree.h" 21 #include "direct-io.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "btrfs_inode.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "qgroup.h" 28 #include "compression.h" 29 #include "delalloc-space.h" 30 #include "reflink.h" 31 #include "subpage.h" 32 #include "fs.h" 33 #include "accessors.h" 34 #include "extent-tree.h" 35 #include "file-item.h" 36 #include "ioctl.h" 37 #include "file.h" 38 #include "super.h" 39 40 /* simple helper to fault in pages and copy. This should go away 41 * and be replaced with calls into generic code. 42 */ 43 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 44 struct page **prepared_pages, 45 struct iov_iter *i) 46 { 47 size_t copied = 0; 48 size_t total_copied = 0; 49 int pg = 0; 50 int offset = offset_in_page(pos); 51 52 while (write_bytes > 0) { 53 size_t count = min_t(size_t, 54 PAGE_SIZE - offset, write_bytes); 55 struct page *page = prepared_pages[pg]; 56 /* 57 * Copy data from userspace to the current page 58 */ 59 copied = copy_page_from_iter_atomic(page, offset, count, i); 60 61 /* Flush processor's dcache for this page */ 62 flush_dcache_page(page); 63 64 /* 65 * if we get a partial write, we can end up with 66 * partially up to date pages. These add 67 * a lot of complexity, so make sure they don't 68 * happen by forcing this copy to be retried. 69 * 70 * The rest of the btrfs_file_write code will fall 71 * back to page at a time copies after we return 0. 72 */ 73 if (unlikely(copied < count)) { 74 if (!PageUptodate(page)) { 75 iov_iter_revert(i, copied); 76 copied = 0; 77 } 78 if (!copied) 79 break; 80 } 81 82 write_bytes -= copied; 83 total_copied += copied; 84 offset += copied; 85 if (offset == PAGE_SIZE) { 86 pg++; 87 offset = 0; 88 } 89 } 90 return total_copied; 91 } 92 93 /* 94 * unlocks pages after btrfs_file_write is done with them 95 */ 96 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 97 struct page **pages, size_t num_pages, 98 u64 pos, u64 copied) 99 { 100 size_t i; 101 u64 block_start = round_down(pos, fs_info->sectorsize); 102 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 103 104 ASSERT(block_len <= U32_MAX); 105 for (i = 0; i < num_pages; i++) { 106 /* page checked is some magic around finding pages that 107 * have been modified without going through btrfs_set_page_dirty 108 * clear it here. There should be no need to mark the pages 109 * accessed as prepare_pages should have marked them accessed 110 * in prepare_pages via find_or_create_page() 111 */ 112 btrfs_folio_clamp_clear_checked(fs_info, page_folio(pages[i]), 113 block_start, block_len); 114 unlock_page(pages[i]); 115 put_page(pages[i]); 116 } 117 } 118 119 /* 120 * After btrfs_copy_from_user(), update the following things for delalloc: 121 * - Mark newly dirtied pages as DELALLOC in the io tree. 122 * Used to advise which range is to be written back. 123 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 124 * - Update inode size for past EOF write 125 */ 126 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 127 size_t num_pages, loff_t pos, size_t write_bytes, 128 struct extent_state **cached, bool noreserve) 129 { 130 struct btrfs_fs_info *fs_info = inode->root->fs_info; 131 int ret = 0; 132 int i; 133 u64 num_bytes; 134 u64 start_pos; 135 u64 end_of_last_block; 136 u64 end_pos = pos + write_bytes; 137 loff_t isize = i_size_read(&inode->vfs_inode); 138 unsigned int extra_bits = 0; 139 140 if (write_bytes == 0) 141 return 0; 142 143 if (noreserve) 144 extra_bits |= EXTENT_NORESERVE; 145 146 start_pos = round_down(pos, fs_info->sectorsize); 147 num_bytes = round_up(write_bytes + pos - start_pos, 148 fs_info->sectorsize); 149 ASSERT(num_bytes <= U32_MAX); 150 151 end_of_last_block = start_pos + num_bytes - 1; 152 153 /* 154 * The pages may have already been dirty, clear out old accounting so 155 * we can set things up properly 156 */ 157 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 158 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 159 cached); 160 161 ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 162 extra_bits, cached); 163 if (ret) 164 return ret; 165 166 for (i = 0; i < num_pages; i++) { 167 struct page *p = pages[i]; 168 169 btrfs_folio_clamp_set_uptodate(fs_info, page_folio(p), 170 start_pos, num_bytes); 171 btrfs_folio_clamp_clear_checked(fs_info, page_folio(p), 172 start_pos, num_bytes); 173 btrfs_folio_clamp_set_dirty(fs_info, page_folio(p), 174 start_pos, num_bytes); 175 } 176 177 /* 178 * we've only changed i_size in ram, and we haven't updated 179 * the disk i_size. There is no need to log the inode 180 * at this time. 181 */ 182 if (end_pos > isize) 183 i_size_write(&inode->vfs_inode, end_pos); 184 return 0; 185 } 186 187 /* 188 * this is very complex, but the basic idea is to drop all extents 189 * in the range start - end. hint_block is filled in with a block number 190 * that would be a good hint to the block allocator for this file. 191 * 192 * If an extent intersects the range but is not entirely inside the range 193 * it is either truncated or split. Anything entirely inside the range 194 * is deleted from the tree. 195 * 196 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 197 * to deal with that. We set the field 'bytes_found' of the arguments structure 198 * with the number of allocated bytes found in the target range, so that the 199 * caller can update the inode's number of bytes in an atomic way when 200 * replacing extents in a range to avoid races with stat(2). 201 */ 202 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 203 struct btrfs_root *root, struct btrfs_inode *inode, 204 struct btrfs_drop_extents_args *args) 205 { 206 struct btrfs_fs_info *fs_info = root->fs_info; 207 struct extent_buffer *leaf; 208 struct btrfs_file_extent_item *fi; 209 struct btrfs_key key; 210 struct btrfs_key new_key; 211 u64 ino = btrfs_ino(inode); 212 u64 search_start = args->start; 213 u64 disk_bytenr = 0; 214 u64 num_bytes = 0; 215 u64 extent_offset = 0; 216 u64 extent_end = 0; 217 u64 last_end = args->start; 218 int del_nr = 0; 219 int del_slot = 0; 220 int extent_type; 221 int recow; 222 int ret; 223 int modify_tree = -1; 224 int update_refs; 225 int found = 0; 226 struct btrfs_path *path = args->path; 227 228 args->bytes_found = 0; 229 args->extent_inserted = false; 230 231 /* Must always have a path if ->replace_extent is true */ 232 ASSERT(!(args->replace_extent && !args->path)); 233 234 if (!path) { 235 path = btrfs_alloc_path(); 236 if (!path) { 237 ret = -ENOMEM; 238 goto out; 239 } 240 } 241 242 if (args->drop_cache) 243 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); 244 245 if (args->start >= inode->disk_i_size && !args->replace_extent) 246 modify_tree = 0; 247 248 update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID); 249 while (1) { 250 recow = 0; 251 ret = btrfs_lookup_file_extent(trans, root, path, ino, 252 search_start, modify_tree); 253 if (ret < 0) 254 break; 255 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 256 leaf = path->nodes[0]; 257 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 258 if (key.objectid == ino && 259 key.type == BTRFS_EXTENT_DATA_KEY) 260 path->slots[0]--; 261 } 262 ret = 0; 263 next_slot: 264 leaf = path->nodes[0]; 265 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 266 BUG_ON(del_nr > 0); 267 ret = btrfs_next_leaf(root, path); 268 if (ret < 0) 269 break; 270 if (ret > 0) { 271 ret = 0; 272 break; 273 } 274 leaf = path->nodes[0]; 275 recow = 1; 276 } 277 278 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 279 280 if (key.objectid > ino) 281 break; 282 if (WARN_ON_ONCE(key.objectid < ino) || 283 key.type < BTRFS_EXTENT_DATA_KEY) { 284 ASSERT(del_nr == 0); 285 path->slots[0]++; 286 goto next_slot; 287 } 288 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 289 break; 290 291 fi = btrfs_item_ptr(leaf, path->slots[0], 292 struct btrfs_file_extent_item); 293 extent_type = btrfs_file_extent_type(leaf, fi); 294 295 if (extent_type == BTRFS_FILE_EXTENT_REG || 296 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 297 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 298 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 299 extent_offset = btrfs_file_extent_offset(leaf, fi); 300 extent_end = key.offset + 301 btrfs_file_extent_num_bytes(leaf, fi); 302 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 303 extent_end = key.offset + 304 btrfs_file_extent_ram_bytes(leaf, fi); 305 } else { 306 /* can't happen */ 307 BUG(); 308 } 309 310 /* 311 * Don't skip extent items representing 0 byte lengths. They 312 * used to be created (bug) if while punching holes we hit 313 * -ENOSPC condition. So if we find one here, just ensure we 314 * delete it, otherwise we would insert a new file extent item 315 * with the same key (offset) as that 0 bytes length file 316 * extent item in the call to setup_items_for_insert() later 317 * in this function. 318 */ 319 if (extent_end == key.offset && extent_end >= search_start) { 320 last_end = extent_end; 321 goto delete_extent_item; 322 } 323 324 if (extent_end <= search_start) { 325 path->slots[0]++; 326 goto next_slot; 327 } 328 329 found = 1; 330 search_start = max(key.offset, args->start); 331 if (recow || !modify_tree) { 332 modify_tree = -1; 333 btrfs_release_path(path); 334 continue; 335 } 336 337 /* 338 * | - range to drop - | 339 * | -------- extent -------- | 340 */ 341 if (args->start > key.offset && args->end < extent_end) { 342 BUG_ON(del_nr > 0); 343 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 344 ret = -EOPNOTSUPP; 345 break; 346 } 347 348 memcpy(&new_key, &key, sizeof(new_key)); 349 new_key.offset = args->start; 350 ret = btrfs_duplicate_item(trans, root, path, 351 &new_key); 352 if (ret == -EAGAIN) { 353 btrfs_release_path(path); 354 continue; 355 } 356 if (ret < 0) 357 break; 358 359 leaf = path->nodes[0]; 360 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 361 struct btrfs_file_extent_item); 362 btrfs_set_file_extent_num_bytes(leaf, fi, 363 args->start - key.offset); 364 365 fi = btrfs_item_ptr(leaf, path->slots[0], 366 struct btrfs_file_extent_item); 367 368 extent_offset += args->start - key.offset; 369 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 370 btrfs_set_file_extent_num_bytes(leaf, fi, 371 extent_end - args->start); 372 btrfs_mark_buffer_dirty(trans, leaf); 373 374 if (update_refs && disk_bytenr > 0) { 375 struct btrfs_ref ref = { 376 .action = BTRFS_ADD_DELAYED_REF, 377 .bytenr = disk_bytenr, 378 .num_bytes = num_bytes, 379 .parent = 0, 380 .owning_root = btrfs_root_id(root), 381 .ref_root = btrfs_root_id(root), 382 }; 383 btrfs_init_data_ref(&ref, new_key.objectid, 384 args->start - extent_offset, 385 0, false); 386 ret = btrfs_inc_extent_ref(trans, &ref); 387 if (ret) { 388 btrfs_abort_transaction(trans, ret); 389 break; 390 } 391 } 392 key.offset = args->start; 393 } 394 /* 395 * From here on out we will have actually dropped something, so 396 * last_end can be updated. 397 */ 398 last_end = extent_end; 399 400 /* 401 * | ---- range to drop ----- | 402 * | -------- extent -------- | 403 */ 404 if (args->start <= key.offset && args->end < extent_end) { 405 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 406 ret = -EOPNOTSUPP; 407 break; 408 } 409 410 memcpy(&new_key, &key, sizeof(new_key)); 411 new_key.offset = args->end; 412 btrfs_set_item_key_safe(trans, path, &new_key); 413 414 extent_offset += args->end - key.offset; 415 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 416 btrfs_set_file_extent_num_bytes(leaf, fi, 417 extent_end - args->end); 418 btrfs_mark_buffer_dirty(trans, leaf); 419 if (update_refs && disk_bytenr > 0) 420 args->bytes_found += args->end - key.offset; 421 break; 422 } 423 424 search_start = extent_end; 425 /* 426 * | ---- range to drop ----- | 427 * | -------- extent -------- | 428 */ 429 if (args->start > key.offset && args->end >= extent_end) { 430 BUG_ON(del_nr > 0); 431 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 432 ret = -EOPNOTSUPP; 433 break; 434 } 435 436 btrfs_set_file_extent_num_bytes(leaf, fi, 437 args->start - key.offset); 438 btrfs_mark_buffer_dirty(trans, leaf); 439 if (update_refs && disk_bytenr > 0) 440 args->bytes_found += extent_end - args->start; 441 if (args->end == extent_end) 442 break; 443 444 path->slots[0]++; 445 goto next_slot; 446 } 447 448 /* 449 * | ---- range to drop ----- | 450 * | ------ extent ------ | 451 */ 452 if (args->start <= key.offset && args->end >= extent_end) { 453 delete_extent_item: 454 if (del_nr == 0) { 455 del_slot = path->slots[0]; 456 del_nr = 1; 457 } else { 458 BUG_ON(del_slot + del_nr != path->slots[0]); 459 del_nr++; 460 } 461 462 if (update_refs && 463 extent_type == BTRFS_FILE_EXTENT_INLINE) { 464 args->bytes_found += extent_end - key.offset; 465 extent_end = ALIGN(extent_end, 466 fs_info->sectorsize); 467 } else if (update_refs && disk_bytenr > 0) { 468 struct btrfs_ref ref = { 469 .action = BTRFS_DROP_DELAYED_REF, 470 .bytenr = disk_bytenr, 471 .num_bytes = num_bytes, 472 .parent = 0, 473 .owning_root = btrfs_root_id(root), 474 .ref_root = btrfs_root_id(root), 475 }; 476 btrfs_init_data_ref(&ref, key.objectid, 477 key.offset - extent_offset, 478 0, false); 479 ret = btrfs_free_extent(trans, &ref); 480 if (ret) { 481 btrfs_abort_transaction(trans, ret); 482 break; 483 } 484 args->bytes_found += extent_end - key.offset; 485 } 486 487 if (args->end == extent_end) 488 break; 489 490 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 491 path->slots[0]++; 492 goto next_slot; 493 } 494 495 ret = btrfs_del_items(trans, root, path, del_slot, 496 del_nr); 497 if (ret) { 498 btrfs_abort_transaction(trans, ret); 499 break; 500 } 501 502 del_nr = 0; 503 del_slot = 0; 504 505 btrfs_release_path(path); 506 continue; 507 } 508 509 BUG(); 510 } 511 512 if (!ret && del_nr > 0) { 513 /* 514 * Set path->slots[0] to first slot, so that after the delete 515 * if items are move off from our leaf to its immediate left or 516 * right neighbor leafs, we end up with a correct and adjusted 517 * path->slots[0] for our insertion (if args->replace_extent). 518 */ 519 path->slots[0] = del_slot; 520 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 521 if (ret) 522 btrfs_abort_transaction(trans, ret); 523 } 524 525 leaf = path->nodes[0]; 526 /* 527 * If btrfs_del_items() was called, it might have deleted a leaf, in 528 * which case it unlocked our path, so check path->locks[0] matches a 529 * write lock. 530 */ 531 if (!ret && args->replace_extent && 532 path->locks[0] == BTRFS_WRITE_LOCK && 533 btrfs_leaf_free_space(leaf) >= 534 sizeof(struct btrfs_item) + args->extent_item_size) { 535 536 key.objectid = ino; 537 key.type = BTRFS_EXTENT_DATA_KEY; 538 key.offset = args->start; 539 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 540 struct btrfs_key slot_key; 541 542 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 543 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 544 path->slots[0]++; 545 } 546 btrfs_setup_item_for_insert(trans, root, path, &key, 547 args->extent_item_size); 548 args->extent_inserted = true; 549 } 550 551 if (!args->path) 552 btrfs_free_path(path); 553 else if (!args->extent_inserted) 554 btrfs_release_path(path); 555 out: 556 args->drop_end = found ? min(args->end, last_end) : args->end; 557 558 return ret; 559 } 560 561 static int extent_mergeable(struct extent_buffer *leaf, int slot, 562 u64 objectid, u64 bytenr, u64 orig_offset, 563 u64 *start, u64 *end) 564 { 565 struct btrfs_file_extent_item *fi; 566 struct btrfs_key key; 567 u64 extent_end; 568 569 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 570 return 0; 571 572 btrfs_item_key_to_cpu(leaf, &key, slot); 573 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 574 return 0; 575 576 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 577 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 578 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 579 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 580 btrfs_file_extent_compression(leaf, fi) || 581 btrfs_file_extent_encryption(leaf, fi) || 582 btrfs_file_extent_other_encoding(leaf, fi)) 583 return 0; 584 585 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 586 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 587 return 0; 588 589 *start = key.offset; 590 *end = extent_end; 591 return 1; 592 } 593 594 /* 595 * Mark extent in the range start - end as written. 596 * 597 * This changes extent type from 'pre-allocated' to 'regular'. If only 598 * part of extent is marked as written, the extent will be split into 599 * two or three. 600 */ 601 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 602 struct btrfs_inode *inode, u64 start, u64 end) 603 { 604 struct btrfs_root *root = inode->root; 605 struct extent_buffer *leaf; 606 struct btrfs_path *path; 607 struct btrfs_file_extent_item *fi; 608 struct btrfs_ref ref = { 0 }; 609 struct btrfs_key key; 610 struct btrfs_key new_key; 611 u64 bytenr; 612 u64 num_bytes; 613 u64 extent_end; 614 u64 orig_offset; 615 u64 other_start; 616 u64 other_end; 617 u64 split; 618 int del_nr = 0; 619 int del_slot = 0; 620 int recow; 621 int ret = 0; 622 u64 ino = btrfs_ino(inode); 623 624 path = btrfs_alloc_path(); 625 if (!path) 626 return -ENOMEM; 627 again: 628 recow = 0; 629 split = start; 630 key.objectid = ino; 631 key.type = BTRFS_EXTENT_DATA_KEY; 632 key.offset = split; 633 634 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 635 if (ret < 0) 636 goto out; 637 if (ret > 0 && path->slots[0] > 0) 638 path->slots[0]--; 639 640 leaf = path->nodes[0]; 641 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 642 if (key.objectid != ino || 643 key.type != BTRFS_EXTENT_DATA_KEY) { 644 ret = -EINVAL; 645 btrfs_abort_transaction(trans, ret); 646 goto out; 647 } 648 fi = btrfs_item_ptr(leaf, path->slots[0], 649 struct btrfs_file_extent_item); 650 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 651 ret = -EINVAL; 652 btrfs_abort_transaction(trans, ret); 653 goto out; 654 } 655 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 656 if (key.offset > start || extent_end < end) { 657 ret = -EINVAL; 658 btrfs_abort_transaction(trans, ret); 659 goto out; 660 } 661 662 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 663 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 664 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 665 memcpy(&new_key, &key, sizeof(new_key)); 666 667 if (start == key.offset && end < extent_end) { 668 other_start = 0; 669 other_end = start; 670 if (extent_mergeable(leaf, path->slots[0] - 1, 671 ino, bytenr, orig_offset, 672 &other_start, &other_end)) { 673 new_key.offset = end; 674 btrfs_set_item_key_safe(trans, path, &new_key); 675 fi = btrfs_item_ptr(leaf, path->slots[0], 676 struct btrfs_file_extent_item); 677 btrfs_set_file_extent_generation(leaf, fi, 678 trans->transid); 679 btrfs_set_file_extent_num_bytes(leaf, fi, 680 extent_end - end); 681 btrfs_set_file_extent_offset(leaf, fi, 682 end - orig_offset); 683 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 684 struct btrfs_file_extent_item); 685 btrfs_set_file_extent_generation(leaf, fi, 686 trans->transid); 687 btrfs_set_file_extent_num_bytes(leaf, fi, 688 end - other_start); 689 btrfs_mark_buffer_dirty(trans, leaf); 690 goto out; 691 } 692 } 693 694 if (start > key.offset && end == extent_end) { 695 other_start = end; 696 other_end = 0; 697 if (extent_mergeable(leaf, path->slots[0] + 1, 698 ino, bytenr, orig_offset, 699 &other_start, &other_end)) { 700 fi = btrfs_item_ptr(leaf, path->slots[0], 701 struct btrfs_file_extent_item); 702 btrfs_set_file_extent_num_bytes(leaf, fi, 703 start - key.offset); 704 btrfs_set_file_extent_generation(leaf, fi, 705 trans->transid); 706 path->slots[0]++; 707 new_key.offset = start; 708 btrfs_set_item_key_safe(trans, path, &new_key); 709 710 fi = btrfs_item_ptr(leaf, path->slots[0], 711 struct btrfs_file_extent_item); 712 btrfs_set_file_extent_generation(leaf, fi, 713 trans->transid); 714 btrfs_set_file_extent_num_bytes(leaf, fi, 715 other_end - start); 716 btrfs_set_file_extent_offset(leaf, fi, 717 start - orig_offset); 718 btrfs_mark_buffer_dirty(trans, leaf); 719 goto out; 720 } 721 } 722 723 while (start > key.offset || end < extent_end) { 724 if (key.offset == start) 725 split = end; 726 727 new_key.offset = split; 728 ret = btrfs_duplicate_item(trans, root, path, &new_key); 729 if (ret == -EAGAIN) { 730 btrfs_release_path(path); 731 goto again; 732 } 733 if (ret < 0) { 734 btrfs_abort_transaction(trans, ret); 735 goto out; 736 } 737 738 leaf = path->nodes[0]; 739 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 740 struct btrfs_file_extent_item); 741 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 742 btrfs_set_file_extent_num_bytes(leaf, fi, 743 split - key.offset); 744 745 fi = btrfs_item_ptr(leaf, path->slots[0], 746 struct btrfs_file_extent_item); 747 748 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 749 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 750 btrfs_set_file_extent_num_bytes(leaf, fi, 751 extent_end - split); 752 btrfs_mark_buffer_dirty(trans, leaf); 753 754 ref.action = BTRFS_ADD_DELAYED_REF; 755 ref.bytenr = bytenr; 756 ref.num_bytes = num_bytes; 757 ref.parent = 0; 758 ref.owning_root = btrfs_root_id(root); 759 ref.ref_root = btrfs_root_id(root); 760 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false); 761 ret = btrfs_inc_extent_ref(trans, &ref); 762 if (ret) { 763 btrfs_abort_transaction(trans, ret); 764 goto out; 765 } 766 767 if (split == start) { 768 key.offset = start; 769 } else { 770 if (start != key.offset) { 771 ret = -EINVAL; 772 btrfs_abort_transaction(trans, ret); 773 goto out; 774 } 775 path->slots[0]--; 776 extent_end = end; 777 } 778 recow = 1; 779 } 780 781 other_start = end; 782 other_end = 0; 783 784 ref.action = BTRFS_DROP_DELAYED_REF; 785 ref.bytenr = bytenr; 786 ref.num_bytes = num_bytes; 787 ref.parent = 0; 788 ref.owning_root = btrfs_root_id(root); 789 ref.ref_root = btrfs_root_id(root); 790 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false); 791 if (extent_mergeable(leaf, path->slots[0] + 1, 792 ino, bytenr, orig_offset, 793 &other_start, &other_end)) { 794 if (recow) { 795 btrfs_release_path(path); 796 goto again; 797 } 798 extent_end = other_end; 799 del_slot = path->slots[0] + 1; 800 del_nr++; 801 ret = btrfs_free_extent(trans, &ref); 802 if (ret) { 803 btrfs_abort_transaction(trans, ret); 804 goto out; 805 } 806 } 807 other_start = 0; 808 other_end = start; 809 if (extent_mergeable(leaf, path->slots[0] - 1, 810 ino, bytenr, orig_offset, 811 &other_start, &other_end)) { 812 if (recow) { 813 btrfs_release_path(path); 814 goto again; 815 } 816 key.offset = other_start; 817 del_slot = path->slots[0]; 818 del_nr++; 819 ret = btrfs_free_extent(trans, &ref); 820 if (ret) { 821 btrfs_abort_transaction(trans, ret); 822 goto out; 823 } 824 } 825 if (del_nr == 0) { 826 fi = btrfs_item_ptr(leaf, path->slots[0], 827 struct btrfs_file_extent_item); 828 btrfs_set_file_extent_type(leaf, fi, 829 BTRFS_FILE_EXTENT_REG); 830 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 831 btrfs_mark_buffer_dirty(trans, leaf); 832 } else { 833 fi = btrfs_item_ptr(leaf, del_slot - 1, 834 struct btrfs_file_extent_item); 835 btrfs_set_file_extent_type(leaf, fi, 836 BTRFS_FILE_EXTENT_REG); 837 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 838 btrfs_set_file_extent_num_bytes(leaf, fi, 839 extent_end - key.offset); 840 btrfs_mark_buffer_dirty(trans, leaf); 841 842 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 843 if (ret < 0) { 844 btrfs_abort_transaction(trans, ret); 845 goto out; 846 } 847 } 848 out: 849 btrfs_free_path(path); 850 return ret; 851 } 852 853 /* 854 * on error we return an unlocked page and the error value 855 * on success we return a locked page and 0 856 */ 857 static int prepare_uptodate_page(struct inode *inode, 858 struct page *page, u64 pos, 859 bool force_uptodate) 860 { 861 struct folio *folio = page_folio(page); 862 int ret = 0; 863 864 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 865 !PageUptodate(page)) { 866 ret = btrfs_read_folio(NULL, folio); 867 if (ret) 868 return ret; 869 lock_page(page); 870 if (!PageUptodate(page)) { 871 unlock_page(page); 872 return -EIO; 873 } 874 875 /* 876 * Since btrfs_read_folio() will unlock the folio before it 877 * returns, there is a window where btrfs_release_folio() can be 878 * called to release the page. Here we check both inode 879 * mapping and PagePrivate() to make sure the page was not 880 * released. 881 * 882 * The private flag check is essential for subpage as we need 883 * to store extra bitmap using folio private. 884 */ 885 if (page->mapping != inode->i_mapping || !folio_test_private(folio)) { 886 unlock_page(page); 887 return -EAGAIN; 888 } 889 } 890 return 0; 891 } 892 893 static fgf_t get_prepare_fgp_flags(bool nowait) 894 { 895 fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT; 896 897 if (nowait) 898 fgp_flags |= FGP_NOWAIT; 899 900 return fgp_flags; 901 } 902 903 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) 904 { 905 gfp_t gfp; 906 907 gfp = btrfs_alloc_write_mask(inode->i_mapping); 908 if (nowait) { 909 gfp &= ~__GFP_DIRECT_RECLAIM; 910 gfp |= GFP_NOWAIT; 911 } 912 913 return gfp; 914 } 915 916 /* 917 * this just gets pages into the page cache and locks them down. 918 */ 919 static noinline int prepare_pages(struct inode *inode, struct page **pages, 920 size_t num_pages, loff_t pos, 921 size_t write_bytes, bool force_uptodate, 922 bool nowait) 923 { 924 int i; 925 unsigned long index = pos >> PAGE_SHIFT; 926 gfp_t mask = get_prepare_gfp_flags(inode, nowait); 927 fgf_t fgp_flags = get_prepare_fgp_flags(nowait); 928 int ret = 0; 929 int faili; 930 931 for (i = 0; i < num_pages; i++) { 932 again: 933 pages[i] = pagecache_get_page(inode->i_mapping, index + i, 934 fgp_flags, mask | __GFP_WRITE); 935 if (!pages[i]) { 936 faili = i - 1; 937 if (nowait) 938 ret = -EAGAIN; 939 else 940 ret = -ENOMEM; 941 goto fail; 942 } 943 944 ret = set_page_extent_mapped(pages[i]); 945 if (ret < 0) { 946 faili = i; 947 goto fail; 948 } 949 950 if (i == 0) 951 ret = prepare_uptodate_page(inode, pages[i], pos, 952 force_uptodate); 953 if (!ret && i == num_pages - 1) 954 ret = prepare_uptodate_page(inode, pages[i], 955 pos + write_bytes, false); 956 if (ret) { 957 put_page(pages[i]); 958 if (!nowait && ret == -EAGAIN) { 959 ret = 0; 960 goto again; 961 } 962 faili = i - 1; 963 goto fail; 964 } 965 wait_on_page_writeback(pages[i]); 966 } 967 968 return 0; 969 fail: 970 while (faili >= 0) { 971 unlock_page(pages[faili]); 972 put_page(pages[faili]); 973 faili--; 974 } 975 return ret; 976 977 } 978 979 /* 980 * This function locks the extent and properly waits for data=ordered extents 981 * to finish before allowing the pages to be modified if need. 982 * 983 * The return value: 984 * 1 - the extent is locked 985 * 0 - the extent is not locked, and everything is OK 986 * -EAGAIN - need re-prepare the pages 987 * the other < 0 number - Something wrong happens 988 */ 989 static noinline int 990 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 991 size_t num_pages, loff_t pos, 992 size_t write_bytes, 993 u64 *lockstart, u64 *lockend, bool nowait, 994 struct extent_state **cached_state) 995 { 996 struct btrfs_fs_info *fs_info = inode->root->fs_info; 997 u64 start_pos; 998 u64 last_pos; 999 int i; 1000 int ret = 0; 1001 1002 start_pos = round_down(pos, fs_info->sectorsize); 1003 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 1004 1005 if (start_pos < inode->vfs_inode.i_size) { 1006 struct btrfs_ordered_extent *ordered; 1007 1008 if (nowait) { 1009 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos, 1010 cached_state)) { 1011 for (i = 0; i < num_pages; i++) { 1012 unlock_page(pages[i]); 1013 put_page(pages[i]); 1014 pages[i] = NULL; 1015 } 1016 1017 return -EAGAIN; 1018 } 1019 } else { 1020 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state); 1021 } 1022 1023 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1024 last_pos - start_pos + 1); 1025 if (ordered && 1026 ordered->file_offset + ordered->num_bytes > start_pos && 1027 ordered->file_offset <= last_pos) { 1028 unlock_extent(&inode->io_tree, start_pos, last_pos, 1029 cached_state); 1030 for (i = 0; i < num_pages; i++) { 1031 unlock_page(pages[i]); 1032 put_page(pages[i]); 1033 } 1034 btrfs_start_ordered_extent(ordered); 1035 btrfs_put_ordered_extent(ordered); 1036 return -EAGAIN; 1037 } 1038 if (ordered) 1039 btrfs_put_ordered_extent(ordered); 1040 1041 *lockstart = start_pos; 1042 *lockend = last_pos; 1043 ret = 1; 1044 } 1045 1046 /* 1047 * We should be called after prepare_pages() which should have locked 1048 * all pages in the range. 1049 */ 1050 for (i = 0; i < num_pages; i++) 1051 WARN_ON(!PageLocked(pages[i])); 1052 1053 return ret; 1054 } 1055 1056 /* 1057 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1058 * 1059 * @pos: File offset. 1060 * @write_bytes: The length to write, will be updated to the nocow writeable 1061 * range. 1062 * 1063 * This function will flush ordered extents in the range to ensure proper 1064 * nocow checks. 1065 * 1066 * Return: 1067 * > 0 If we can nocow, and updates @write_bytes. 1068 * 0 If we can't do a nocow write. 1069 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's 1070 * root is in progress. 1071 * < 0 If an error happened. 1072 * 1073 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 1074 */ 1075 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1076 size_t *write_bytes, bool nowait) 1077 { 1078 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1079 struct btrfs_root *root = inode->root; 1080 struct extent_state *cached_state = NULL; 1081 u64 lockstart, lockend; 1082 u64 num_bytes; 1083 int ret; 1084 1085 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1086 return 0; 1087 1088 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1089 return -EAGAIN; 1090 1091 lockstart = round_down(pos, fs_info->sectorsize); 1092 lockend = round_up(pos + *write_bytes, 1093 fs_info->sectorsize) - 1; 1094 num_bytes = lockend - lockstart + 1; 1095 1096 if (nowait) { 1097 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend, 1098 &cached_state)) { 1099 btrfs_drew_write_unlock(&root->snapshot_lock); 1100 return -EAGAIN; 1101 } 1102 } else { 1103 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, 1104 &cached_state); 1105 } 1106 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1107 NULL, nowait, false); 1108 if (ret <= 0) 1109 btrfs_drew_write_unlock(&root->snapshot_lock); 1110 else 1111 *write_bytes = min_t(size_t, *write_bytes , 1112 num_bytes - pos + lockstart); 1113 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 1114 1115 return ret; 1116 } 1117 1118 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1119 { 1120 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1121 } 1122 1123 static void update_time_for_write(struct inode *inode) 1124 { 1125 struct timespec64 now, ts; 1126 1127 if (IS_NOCMTIME(inode)) 1128 return; 1129 1130 now = current_time(inode); 1131 ts = inode_get_mtime(inode); 1132 if (!timespec64_equal(&ts, &now)) 1133 inode_set_mtime_to_ts(inode, now); 1134 1135 ts = inode_get_ctime(inode); 1136 if (!timespec64_equal(&ts, &now)) 1137 inode_set_ctime_to_ts(inode, now); 1138 1139 if (IS_I_VERSION(inode)) 1140 inode_inc_iversion(inode); 1141 } 1142 1143 int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, size_t count) 1144 { 1145 struct file *file = iocb->ki_filp; 1146 struct inode *inode = file_inode(file); 1147 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1148 loff_t pos = iocb->ki_pos; 1149 int ret; 1150 loff_t oldsize; 1151 loff_t start_pos; 1152 1153 /* 1154 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1155 * prealloc flags, as without those flags we always have to COW. We will 1156 * later check if we can really COW into the target range (using 1157 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1158 */ 1159 if ((iocb->ki_flags & IOCB_NOWAIT) && 1160 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1161 return -EAGAIN; 1162 1163 ret = file_remove_privs(file); 1164 if (ret) 1165 return ret; 1166 1167 /* 1168 * We reserve space for updating the inode when we reserve space for the 1169 * extent we are going to write, so we will enospc out there. We don't 1170 * need to start yet another transaction to update the inode as we will 1171 * update the inode when we finish writing whatever data we write. 1172 */ 1173 update_time_for_write(inode); 1174 1175 start_pos = round_down(pos, fs_info->sectorsize); 1176 oldsize = i_size_read(inode); 1177 if (start_pos > oldsize) { 1178 /* Expand hole size to cover write data, preventing empty gap */ 1179 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1180 1181 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1182 if (ret) 1183 return ret; 1184 } 1185 1186 return 0; 1187 } 1188 1189 ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *i) 1190 { 1191 struct file *file = iocb->ki_filp; 1192 loff_t pos; 1193 struct inode *inode = file_inode(file); 1194 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1195 struct page **pages = NULL; 1196 struct extent_changeset *data_reserved = NULL; 1197 u64 release_bytes = 0; 1198 u64 lockstart; 1199 u64 lockend; 1200 size_t num_written = 0; 1201 int nrptrs; 1202 ssize_t ret; 1203 bool only_release_metadata = false; 1204 bool force_page_uptodate = false; 1205 loff_t old_isize = i_size_read(inode); 1206 unsigned int ilock_flags = 0; 1207 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 1208 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); 1209 1210 if (nowait) 1211 ilock_flags |= BTRFS_ILOCK_TRY; 1212 1213 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1214 if (ret < 0) 1215 return ret; 1216 1217 ret = generic_write_checks(iocb, i); 1218 if (ret <= 0) 1219 goto out; 1220 1221 ret = btrfs_write_check(iocb, i, ret); 1222 if (ret < 0) 1223 goto out; 1224 1225 pos = iocb->ki_pos; 1226 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1227 PAGE_SIZE / (sizeof(struct page *))); 1228 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1229 nrptrs = max(nrptrs, 8); 1230 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1231 if (!pages) { 1232 ret = -ENOMEM; 1233 goto out; 1234 } 1235 1236 while (iov_iter_count(i) > 0) { 1237 struct extent_state *cached_state = NULL; 1238 size_t offset = offset_in_page(pos); 1239 size_t sector_offset; 1240 size_t write_bytes = min(iov_iter_count(i), 1241 nrptrs * (size_t)PAGE_SIZE - 1242 offset); 1243 size_t num_pages; 1244 size_t reserve_bytes; 1245 size_t dirty_pages; 1246 size_t copied; 1247 size_t dirty_sectors; 1248 size_t num_sectors; 1249 int extents_locked; 1250 1251 /* 1252 * Fault pages before locking them in prepare_pages 1253 * to avoid recursive lock 1254 */ 1255 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1256 ret = -EFAULT; 1257 break; 1258 } 1259 1260 only_release_metadata = false; 1261 sector_offset = pos & (fs_info->sectorsize - 1); 1262 1263 extent_changeset_release(data_reserved); 1264 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1265 &data_reserved, pos, 1266 write_bytes, nowait); 1267 if (ret < 0) { 1268 int can_nocow; 1269 1270 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) { 1271 ret = -EAGAIN; 1272 break; 1273 } 1274 1275 /* 1276 * If we don't have to COW at the offset, reserve 1277 * metadata only. write_bytes may get smaller than 1278 * requested here. 1279 */ 1280 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1281 &write_bytes, nowait); 1282 if (can_nocow < 0) 1283 ret = can_nocow; 1284 if (can_nocow > 0) 1285 ret = 0; 1286 if (ret) 1287 break; 1288 only_release_metadata = true; 1289 } 1290 1291 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1292 WARN_ON(num_pages > nrptrs); 1293 reserve_bytes = round_up(write_bytes + sector_offset, 1294 fs_info->sectorsize); 1295 WARN_ON(reserve_bytes == 0); 1296 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1297 reserve_bytes, 1298 reserve_bytes, nowait); 1299 if (ret) { 1300 if (!only_release_metadata) 1301 btrfs_free_reserved_data_space(BTRFS_I(inode), 1302 data_reserved, pos, 1303 write_bytes); 1304 else 1305 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1306 1307 if (nowait && ret == -ENOSPC) 1308 ret = -EAGAIN; 1309 break; 1310 } 1311 1312 release_bytes = reserve_bytes; 1313 again: 1314 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags); 1315 if (ret) { 1316 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1317 break; 1318 } 1319 1320 /* 1321 * This is going to setup the pages array with the number of 1322 * pages we want, so we don't really need to worry about the 1323 * contents of pages from loop to loop 1324 */ 1325 ret = prepare_pages(inode, pages, num_pages, 1326 pos, write_bytes, force_page_uptodate, false); 1327 if (ret) { 1328 btrfs_delalloc_release_extents(BTRFS_I(inode), 1329 reserve_bytes); 1330 break; 1331 } 1332 1333 extents_locked = lock_and_cleanup_extent_if_need( 1334 BTRFS_I(inode), pages, 1335 num_pages, pos, write_bytes, &lockstart, 1336 &lockend, nowait, &cached_state); 1337 if (extents_locked < 0) { 1338 if (!nowait && extents_locked == -EAGAIN) 1339 goto again; 1340 1341 btrfs_delalloc_release_extents(BTRFS_I(inode), 1342 reserve_bytes); 1343 ret = extents_locked; 1344 break; 1345 } 1346 1347 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1348 1349 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1350 dirty_sectors = round_up(copied + sector_offset, 1351 fs_info->sectorsize); 1352 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1353 1354 /* 1355 * if we have trouble faulting in the pages, fall 1356 * back to one page at a time 1357 */ 1358 if (copied < write_bytes) 1359 nrptrs = 1; 1360 1361 if (copied == 0) { 1362 force_page_uptodate = true; 1363 dirty_sectors = 0; 1364 dirty_pages = 0; 1365 } else { 1366 force_page_uptodate = false; 1367 dirty_pages = DIV_ROUND_UP(copied + offset, 1368 PAGE_SIZE); 1369 } 1370 1371 if (num_sectors > dirty_sectors) { 1372 /* release everything except the sectors we dirtied */ 1373 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1374 if (only_release_metadata) { 1375 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1376 release_bytes, true); 1377 } else { 1378 u64 __pos; 1379 1380 __pos = round_down(pos, 1381 fs_info->sectorsize) + 1382 (dirty_pages << PAGE_SHIFT); 1383 btrfs_delalloc_release_space(BTRFS_I(inode), 1384 data_reserved, __pos, 1385 release_bytes, true); 1386 } 1387 } 1388 1389 release_bytes = round_up(copied + sector_offset, 1390 fs_info->sectorsize); 1391 1392 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1393 dirty_pages, pos, copied, 1394 &cached_state, only_release_metadata); 1395 1396 /* 1397 * If we have not locked the extent range, because the range's 1398 * start offset is >= i_size, we might still have a non-NULL 1399 * cached extent state, acquired while marking the extent range 1400 * as delalloc through btrfs_dirty_pages(). Therefore free any 1401 * possible cached extent state to avoid a memory leak. 1402 */ 1403 if (extents_locked) 1404 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 1405 lockend, &cached_state); 1406 else 1407 free_extent_state(cached_state); 1408 1409 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1410 if (ret) { 1411 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1412 break; 1413 } 1414 1415 release_bytes = 0; 1416 if (only_release_metadata) 1417 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1418 1419 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1420 1421 cond_resched(); 1422 1423 pos += copied; 1424 num_written += copied; 1425 } 1426 1427 kfree(pages); 1428 1429 if (release_bytes) { 1430 if (only_release_metadata) { 1431 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1432 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1433 release_bytes, true); 1434 } else { 1435 btrfs_delalloc_release_space(BTRFS_I(inode), 1436 data_reserved, 1437 round_down(pos, fs_info->sectorsize), 1438 release_bytes, true); 1439 } 1440 } 1441 1442 extent_changeset_free(data_reserved); 1443 if (num_written > 0) { 1444 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1445 iocb->ki_pos += num_written; 1446 } 1447 out: 1448 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1449 return num_written ? num_written : ret; 1450 } 1451 1452 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 1453 const struct btrfs_ioctl_encoded_io_args *encoded) 1454 { 1455 struct file *file = iocb->ki_filp; 1456 struct inode *inode = file_inode(file); 1457 loff_t count; 1458 ssize_t ret; 1459 1460 btrfs_inode_lock(BTRFS_I(inode), 0); 1461 count = encoded->len; 1462 ret = generic_write_checks_count(iocb, &count); 1463 if (ret == 0 && count != encoded->len) { 1464 /* 1465 * The write got truncated by generic_write_checks_count(). We 1466 * can't do a partial encoded write. 1467 */ 1468 ret = -EFBIG; 1469 } 1470 if (ret || encoded->len == 0) 1471 goto out; 1472 1473 ret = btrfs_write_check(iocb, from, encoded->len); 1474 if (ret < 0) 1475 goto out; 1476 1477 ret = btrfs_do_encoded_write(iocb, from, encoded); 1478 out: 1479 btrfs_inode_unlock(BTRFS_I(inode), 0); 1480 return ret; 1481 } 1482 1483 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 1484 const struct btrfs_ioctl_encoded_io_args *encoded) 1485 { 1486 struct file *file = iocb->ki_filp; 1487 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1488 ssize_t num_written, num_sync; 1489 1490 /* 1491 * If the fs flips readonly due to some impossible error, although we 1492 * have opened a file as writable, we have to stop this write operation 1493 * to ensure consistency. 1494 */ 1495 if (BTRFS_FS_ERROR(inode->root->fs_info)) 1496 return -EROFS; 1497 1498 if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) 1499 return -EOPNOTSUPP; 1500 1501 if (encoded) { 1502 num_written = btrfs_encoded_write(iocb, from, encoded); 1503 num_sync = encoded->len; 1504 } else if (iocb->ki_flags & IOCB_DIRECT) { 1505 num_written = btrfs_direct_write(iocb, from); 1506 num_sync = num_written; 1507 } else { 1508 num_written = btrfs_buffered_write(iocb, from); 1509 num_sync = num_written; 1510 } 1511 1512 btrfs_set_inode_last_sub_trans(inode); 1513 1514 if (num_sync > 0) { 1515 num_sync = generic_write_sync(iocb, num_sync); 1516 if (num_sync < 0) 1517 num_written = num_sync; 1518 } 1519 1520 return num_written; 1521 } 1522 1523 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1524 { 1525 return btrfs_do_write_iter(iocb, from, NULL); 1526 } 1527 1528 int btrfs_release_file(struct inode *inode, struct file *filp) 1529 { 1530 struct btrfs_file_private *private = filp->private_data; 1531 1532 if (private) { 1533 kfree(private->filldir_buf); 1534 free_extent_state(private->llseek_cached_state); 1535 kfree(private); 1536 filp->private_data = NULL; 1537 } 1538 1539 /* 1540 * Set by setattr when we are about to truncate a file from a non-zero 1541 * size to a zero size. This tries to flush down new bytes that may 1542 * have been written if the application were using truncate to replace 1543 * a file in place. 1544 */ 1545 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 1546 &BTRFS_I(inode)->runtime_flags)) 1547 filemap_flush(inode->i_mapping); 1548 return 0; 1549 } 1550 1551 static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end) 1552 { 1553 int ret; 1554 struct blk_plug plug; 1555 1556 /* 1557 * This is only called in fsync, which would do synchronous writes, so 1558 * a plug can merge adjacent IOs as much as possible. Esp. in case of 1559 * multiple disks using raid profile, a large IO can be split to 1560 * several segments of stripe length (currently 64K). 1561 */ 1562 blk_start_plug(&plug); 1563 ret = btrfs_fdatawrite_range(inode, start, end); 1564 blk_finish_plug(&plug); 1565 1566 return ret; 1567 } 1568 1569 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 1570 { 1571 struct btrfs_inode *inode = ctx->inode; 1572 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1573 1574 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) && 1575 list_empty(&ctx->ordered_extents)) 1576 return true; 1577 1578 /* 1579 * If we are doing a fast fsync we can not bail out if the inode's 1580 * last_trans is <= then the last committed transaction, because we only 1581 * update the last_trans of the inode during ordered extent completion, 1582 * and for a fast fsync we don't wait for that, we only wait for the 1583 * writeback to complete. 1584 */ 1585 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) && 1586 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 1587 list_empty(&ctx->ordered_extents))) 1588 return true; 1589 1590 return false; 1591 } 1592 1593 /* 1594 * fsync call for both files and directories. This logs the inode into 1595 * the tree log instead of forcing full commits whenever possible. 1596 * 1597 * It needs to call filemap_fdatawait so that all ordered extent updates are 1598 * in the metadata btree are up to date for copying to the log. 1599 * 1600 * It drops the inode mutex before doing the tree log commit. This is an 1601 * important optimization for directories because holding the mutex prevents 1602 * new operations on the dir while we write to disk. 1603 */ 1604 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1605 { 1606 struct dentry *dentry = file_dentry(file); 1607 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 1608 struct btrfs_root *root = inode->root; 1609 struct btrfs_fs_info *fs_info = root->fs_info; 1610 struct btrfs_trans_handle *trans; 1611 struct btrfs_log_ctx ctx; 1612 int ret = 0, err; 1613 u64 len; 1614 bool full_sync; 1615 1616 trace_btrfs_sync_file(file, datasync); 1617 1618 btrfs_init_log_ctx(&ctx, inode); 1619 1620 /* 1621 * Always set the range to a full range, otherwise we can get into 1622 * several problems, from missing file extent items to represent holes 1623 * when not using the NO_HOLES feature, to log tree corruption due to 1624 * races between hole detection during logging and completion of ordered 1625 * extents outside the range, to missing checksums due to ordered extents 1626 * for which we flushed only a subset of their pages. 1627 */ 1628 start = 0; 1629 end = LLONG_MAX; 1630 len = (u64)LLONG_MAX + 1; 1631 1632 /* 1633 * We write the dirty pages in the range and wait until they complete 1634 * out of the ->i_mutex. If so, we can flush the dirty pages by 1635 * multi-task, and make the performance up. See 1636 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1637 */ 1638 ret = start_ordered_ops(inode, start, end); 1639 if (ret) 1640 goto out; 1641 1642 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 1643 1644 atomic_inc(&root->log_batch); 1645 1646 /* 1647 * Before we acquired the inode's lock and the mmap lock, someone may 1648 * have dirtied more pages in the target range. We need to make sure 1649 * that writeback for any such pages does not start while we are logging 1650 * the inode, because if it does, any of the following might happen when 1651 * we are not doing a full inode sync: 1652 * 1653 * 1) We log an extent after its writeback finishes but before its 1654 * checksums are added to the csum tree, leading to -EIO errors 1655 * when attempting to read the extent after a log replay. 1656 * 1657 * 2) We can end up logging an extent before its writeback finishes. 1658 * Therefore after the log replay we will have a file extent item 1659 * pointing to an unwritten extent (and no data checksums as well). 1660 * 1661 * So trigger writeback for any eventual new dirty pages and then we 1662 * wait for all ordered extents to complete below. 1663 */ 1664 ret = start_ordered_ops(inode, start, end); 1665 if (ret) { 1666 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 1667 goto out; 1668 } 1669 1670 /* 1671 * Always check for the full sync flag while holding the inode's lock, 1672 * to avoid races with other tasks. The flag must be either set all the 1673 * time during logging or always off all the time while logging. 1674 * We check the flag here after starting delalloc above, because when 1675 * running delalloc the full sync flag may be set if we need to drop 1676 * extra extent map ranges due to temporary memory allocation failures. 1677 */ 1678 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 1679 1680 /* 1681 * We have to do this here to avoid the priority inversion of waiting on 1682 * IO of a lower priority task while holding a transaction open. 1683 * 1684 * For a full fsync we wait for the ordered extents to complete while 1685 * for a fast fsync we wait just for writeback to complete, and then 1686 * attach the ordered extents to the transaction so that a transaction 1687 * commit waits for their completion, to avoid data loss if we fsync, 1688 * the current transaction commits before the ordered extents complete 1689 * and a power failure happens right after that. 1690 * 1691 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 1692 * logical address recorded in the ordered extent may change. We need 1693 * to wait for the IO to stabilize the logical address. 1694 */ 1695 if (full_sync || btrfs_is_zoned(fs_info)) { 1696 ret = btrfs_wait_ordered_range(inode, start, len); 1697 clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags); 1698 } else { 1699 /* 1700 * Get our ordered extents as soon as possible to avoid doing 1701 * checksum lookups in the csum tree, and use instead the 1702 * checksums attached to the ordered extents. 1703 */ 1704 btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents); 1705 ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end); 1706 if (ret) 1707 goto out_release_extents; 1708 1709 /* 1710 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after 1711 * starting and waiting for writeback, because for buffered IO 1712 * it may have been set during the end IO callback 1713 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in 1714 * case an error happened and we need to wait for ordered 1715 * extents to complete so that any extent maps that point to 1716 * unwritten locations are dropped and we don't log them. 1717 */ 1718 if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags)) 1719 ret = btrfs_wait_ordered_range(inode, start, len); 1720 } 1721 1722 if (ret) 1723 goto out_release_extents; 1724 1725 atomic_inc(&root->log_batch); 1726 1727 if (skip_inode_logging(&ctx)) { 1728 /* 1729 * We've had everything committed since the last time we were 1730 * modified so clear this flag in case it was set for whatever 1731 * reason, it's no longer relevant. 1732 */ 1733 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 1734 /* 1735 * An ordered extent might have started before and completed 1736 * already with io errors, in which case the inode was not 1737 * updated and we end up here. So check the inode's mapping 1738 * for any errors that might have happened since we last 1739 * checked called fsync. 1740 */ 1741 ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err); 1742 goto out_release_extents; 1743 } 1744 1745 btrfs_init_log_ctx_scratch_eb(&ctx); 1746 1747 /* 1748 * We use start here because we will need to wait on the IO to complete 1749 * in btrfs_sync_log, which could require joining a transaction (for 1750 * example checking cross references in the nocow path). If we use join 1751 * here we could get into a situation where we're waiting on IO to 1752 * happen that is blocked on a transaction trying to commit. With start 1753 * we inc the extwriter counter, so we wait for all extwriters to exit 1754 * before we start blocking joiners. This comment is to keep somebody 1755 * from thinking they are super smart and changing this to 1756 * btrfs_join_transaction *cough*Josef*cough*. 1757 */ 1758 trans = btrfs_start_transaction(root, 0); 1759 if (IS_ERR(trans)) { 1760 ret = PTR_ERR(trans); 1761 goto out_release_extents; 1762 } 1763 trans->in_fsync = true; 1764 1765 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 1766 /* 1767 * Scratch eb no longer needed, release before syncing log or commit 1768 * transaction, to avoid holding unnecessary memory during such long 1769 * operations. 1770 */ 1771 if (ctx.scratch_eb) { 1772 free_extent_buffer(ctx.scratch_eb); 1773 ctx.scratch_eb = NULL; 1774 } 1775 btrfs_release_log_ctx_extents(&ctx); 1776 if (ret < 0) { 1777 /* Fallthrough and commit/free transaction. */ 1778 ret = BTRFS_LOG_FORCE_COMMIT; 1779 } 1780 1781 /* we've logged all the items and now have a consistent 1782 * version of the file in the log. It is possible that 1783 * someone will come in and modify the file, but that's 1784 * fine because the log is consistent on disk, and we 1785 * have references to all of the file's extents 1786 * 1787 * It is possible that someone will come in and log the 1788 * file again, but that will end up using the synchronization 1789 * inside btrfs_sync_log to keep things safe. 1790 */ 1791 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 1792 1793 if (ret == BTRFS_NO_LOG_SYNC) { 1794 ret = btrfs_end_transaction(trans); 1795 goto out; 1796 } 1797 1798 /* We successfully logged the inode, attempt to sync the log. */ 1799 if (!ret) { 1800 ret = btrfs_sync_log(trans, root, &ctx); 1801 if (!ret) { 1802 ret = btrfs_end_transaction(trans); 1803 goto out; 1804 } 1805 } 1806 1807 /* 1808 * At this point we need to commit the transaction because we had 1809 * btrfs_need_log_full_commit() or some other error. 1810 * 1811 * If we didn't do a full sync we have to stop the trans handle, wait on 1812 * the ordered extents, start it again and commit the transaction. If 1813 * we attempt to wait on the ordered extents here we could deadlock with 1814 * something like fallocate() that is holding the extent lock trying to 1815 * start a transaction while some other thread is trying to commit the 1816 * transaction while we (fsync) are currently holding the transaction 1817 * open. 1818 */ 1819 if (!full_sync) { 1820 ret = btrfs_end_transaction(trans); 1821 if (ret) 1822 goto out; 1823 ret = btrfs_wait_ordered_range(inode, start, len); 1824 if (ret) 1825 goto out; 1826 1827 /* 1828 * This is safe to use here because we're only interested in 1829 * making sure the transaction that had the ordered extents is 1830 * committed. We aren't waiting on anything past this point, 1831 * we're purely getting the transaction and committing it. 1832 */ 1833 trans = btrfs_attach_transaction_barrier(root); 1834 if (IS_ERR(trans)) { 1835 ret = PTR_ERR(trans); 1836 1837 /* 1838 * We committed the transaction and there's no currently 1839 * running transaction, this means everything we care 1840 * about made it to disk and we are done. 1841 */ 1842 if (ret == -ENOENT) 1843 ret = 0; 1844 goto out; 1845 } 1846 } 1847 1848 ret = btrfs_commit_transaction(trans); 1849 out: 1850 free_extent_buffer(ctx.scratch_eb); 1851 ASSERT(list_empty(&ctx.list)); 1852 ASSERT(list_empty(&ctx.conflict_inodes)); 1853 err = file_check_and_advance_wb_err(file); 1854 if (!ret) 1855 ret = err; 1856 return ret > 0 ? -EIO : ret; 1857 1858 out_release_extents: 1859 btrfs_release_log_ctx_extents(&ctx); 1860 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 1861 goto out; 1862 } 1863 1864 /* 1865 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 1866 * called from a page fault handler when a page is first dirtied. Hence we must 1867 * be careful to check for EOF conditions here. We set the page up correctly 1868 * for a written page which means we get ENOSPC checking when writing into 1869 * holes and correct delalloc and unwritten extent mapping on filesystems that 1870 * support these features. 1871 * 1872 * We are not allowed to take the i_mutex here so we have to play games to 1873 * protect against truncate races as the page could now be beyond EOF. Because 1874 * truncate_setsize() writes the inode size before removing pages, once we have 1875 * the page lock we can determine safely if the page is beyond EOF. If it is not 1876 * beyond EOF, then the page is guaranteed safe against truncation until we 1877 * unlock the page. 1878 */ 1879 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 1880 { 1881 struct page *page = vmf->page; 1882 struct folio *folio = page_folio(page); 1883 struct inode *inode = file_inode(vmf->vma->vm_file); 1884 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1885 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1886 struct btrfs_ordered_extent *ordered; 1887 struct extent_state *cached_state = NULL; 1888 struct extent_changeset *data_reserved = NULL; 1889 unsigned long zero_start; 1890 loff_t size; 1891 vm_fault_t ret; 1892 int ret2; 1893 int reserved = 0; 1894 u64 reserved_space; 1895 u64 page_start; 1896 u64 page_end; 1897 u64 end; 1898 1899 ASSERT(folio_order(folio) == 0); 1900 1901 reserved_space = PAGE_SIZE; 1902 1903 sb_start_pagefault(inode->i_sb); 1904 page_start = page_offset(page); 1905 page_end = page_start + PAGE_SIZE - 1; 1906 end = page_end; 1907 1908 /* 1909 * Reserving delalloc space after obtaining the page lock can lead to 1910 * deadlock. For example, if a dirty page is locked by this function 1911 * and the call to btrfs_delalloc_reserve_space() ends up triggering 1912 * dirty page write out, then the btrfs_writepages() function could 1913 * end up waiting indefinitely to get a lock on the page currently 1914 * being processed by btrfs_page_mkwrite() function. 1915 */ 1916 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 1917 page_start, reserved_space); 1918 if (!ret2) { 1919 ret2 = file_update_time(vmf->vma->vm_file); 1920 reserved = 1; 1921 } 1922 if (ret2) { 1923 ret = vmf_error(ret2); 1924 if (reserved) 1925 goto out; 1926 goto out_noreserve; 1927 } 1928 1929 /* Make the VM retry the fault. */ 1930 ret = VM_FAULT_NOPAGE; 1931 again: 1932 down_read(&BTRFS_I(inode)->i_mmap_lock); 1933 lock_page(page); 1934 size = i_size_read(inode); 1935 1936 if ((page->mapping != inode->i_mapping) || 1937 (page_start >= size)) { 1938 /* Page got truncated out from underneath us. */ 1939 goto out_unlock; 1940 } 1941 wait_on_page_writeback(page); 1942 1943 lock_extent(io_tree, page_start, page_end, &cached_state); 1944 ret2 = set_page_extent_mapped(page); 1945 if (ret2 < 0) { 1946 ret = vmf_error(ret2); 1947 unlock_extent(io_tree, page_start, page_end, &cached_state); 1948 goto out_unlock; 1949 } 1950 1951 /* 1952 * We can't set the delalloc bits if there are pending ordered 1953 * extents. Drop our locks and wait for them to finish. 1954 */ 1955 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE); 1956 if (ordered) { 1957 unlock_extent(io_tree, page_start, page_end, &cached_state); 1958 unlock_page(page); 1959 up_read(&BTRFS_I(inode)->i_mmap_lock); 1960 btrfs_start_ordered_extent(ordered); 1961 btrfs_put_ordered_extent(ordered); 1962 goto again; 1963 } 1964 1965 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 1966 reserved_space = round_up(size - page_start, fs_info->sectorsize); 1967 if (reserved_space < PAGE_SIZE) { 1968 end = page_start + reserved_space - 1; 1969 btrfs_delalloc_release_space(BTRFS_I(inode), 1970 data_reserved, page_start, 1971 PAGE_SIZE - reserved_space, true); 1972 } 1973 } 1974 1975 /* 1976 * page_mkwrite gets called when the page is firstly dirtied after it's 1977 * faulted in, but write(2) could also dirty a page and set delalloc 1978 * bits, thus in this case for space account reason, we still need to 1979 * clear any delalloc bits within this page range since we have to 1980 * reserve data&meta space before lock_page() (see above comments). 1981 */ 1982 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 1983 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1984 EXTENT_DEFRAG, &cached_state); 1985 1986 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 1987 &cached_state); 1988 if (ret2) { 1989 unlock_extent(io_tree, page_start, page_end, &cached_state); 1990 ret = VM_FAULT_SIGBUS; 1991 goto out_unlock; 1992 } 1993 1994 /* Page is wholly or partially inside EOF. */ 1995 if (page_start + PAGE_SIZE > size) 1996 zero_start = offset_in_page(size); 1997 else 1998 zero_start = PAGE_SIZE; 1999 2000 if (zero_start != PAGE_SIZE) 2001 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 2002 2003 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2004 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start); 2005 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start); 2006 2007 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 2008 2009 unlock_extent(io_tree, page_start, page_end, &cached_state); 2010 up_read(&BTRFS_I(inode)->i_mmap_lock); 2011 2012 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2013 sb_end_pagefault(inode->i_sb); 2014 extent_changeset_free(data_reserved); 2015 return VM_FAULT_LOCKED; 2016 2017 out_unlock: 2018 unlock_page(page); 2019 up_read(&BTRFS_I(inode)->i_mmap_lock); 2020 out: 2021 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2022 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 2023 reserved_space, (ret != 0)); 2024 out_noreserve: 2025 sb_end_pagefault(inode->i_sb); 2026 extent_changeset_free(data_reserved); 2027 return ret; 2028 } 2029 2030 static const struct vm_operations_struct btrfs_file_vm_ops = { 2031 .fault = filemap_fault, 2032 .map_pages = filemap_map_pages, 2033 .page_mkwrite = btrfs_page_mkwrite, 2034 }; 2035 2036 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2037 { 2038 struct address_space *mapping = filp->f_mapping; 2039 2040 if (!mapping->a_ops->read_folio) 2041 return -ENOEXEC; 2042 2043 file_accessed(filp); 2044 vma->vm_ops = &btrfs_file_vm_ops; 2045 2046 return 0; 2047 } 2048 2049 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2050 int slot, u64 start, u64 end) 2051 { 2052 struct btrfs_file_extent_item *fi; 2053 struct btrfs_key key; 2054 2055 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2056 return 0; 2057 2058 btrfs_item_key_to_cpu(leaf, &key, slot); 2059 if (key.objectid != btrfs_ino(inode) || 2060 key.type != BTRFS_EXTENT_DATA_KEY) 2061 return 0; 2062 2063 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2064 2065 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2066 return 0; 2067 2068 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2069 return 0; 2070 2071 if (key.offset == end) 2072 return 1; 2073 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2074 return 1; 2075 return 0; 2076 } 2077 2078 static int fill_holes(struct btrfs_trans_handle *trans, 2079 struct btrfs_inode *inode, 2080 struct btrfs_path *path, u64 offset, u64 end) 2081 { 2082 struct btrfs_fs_info *fs_info = trans->fs_info; 2083 struct btrfs_root *root = inode->root; 2084 struct extent_buffer *leaf; 2085 struct btrfs_file_extent_item *fi; 2086 struct extent_map *hole_em; 2087 struct btrfs_key key; 2088 int ret; 2089 2090 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2091 goto out; 2092 2093 key.objectid = btrfs_ino(inode); 2094 key.type = BTRFS_EXTENT_DATA_KEY; 2095 key.offset = offset; 2096 2097 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2098 if (ret <= 0) { 2099 /* 2100 * We should have dropped this offset, so if we find it then 2101 * something has gone horribly wrong. 2102 */ 2103 if (ret == 0) 2104 ret = -EINVAL; 2105 return ret; 2106 } 2107 2108 leaf = path->nodes[0]; 2109 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2110 u64 num_bytes; 2111 2112 path->slots[0]--; 2113 fi = btrfs_item_ptr(leaf, path->slots[0], 2114 struct btrfs_file_extent_item); 2115 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2116 end - offset; 2117 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2118 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2119 btrfs_set_file_extent_offset(leaf, fi, 0); 2120 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2121 btrfs_mark_buffer_dirty(trans, leaf); 2122 goto out; 2123 } 2124 2125 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2126 u64 num_bytes; 2127 2128 key.offset = offset; 2129 btrfs_set_item_key_safe(trans, path, &key); 2130 fi = btrfs_item_ptr(leaf, path->slots[0], 2131 struct btrfs_file_extent_item); 2132 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2133 offset; 2134 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2135 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2136 btrfs_set_file_extent_offset(leaf, fi, 0); 2137 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2138 btrfs_mark_buffer_dirty(trans, leaf); 2139 goto out; 2140 } 2141 btrfs_release_path(path); 2142 2143 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, 2144 end - offset); 2145 if (ret) 2146 return ret; 2147 2148 out: 2149 btrfs_release_path(path); 2150 2151 hole_em = alloc_extent_map(); 2152 if (!hole_em) { 2153 btrfs_drop_extent_map_range(inode, offset, end - 1, false); 2154 btrfs_set_inode_full_sync(inode); 2155 } else { 2156 hole_em->start = offset; 2157 hole_em->len = end - offset; 2158 hole_em->ram_bytes = hole_em->len; 2159 2160 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 2161 hole_em->disk_num_bytes = 0; 2162 hole_em->generation = trans->transid; 2163 2164 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 2165 free_extent_map(hole_em); 2166 if (ret) 2167 btrfs_set_inode_full_sync(inode); 2168 } 2169 2170 return 0; 2171 } 2172 2173 /* 2174 * Find a hole extent on given inode and change start/len to the end of hole 2175 * extent.(hole/vacuum extent whose em->start <= start && 2176 * em->start + em->len > start) 2177 * When a hole extent is found, return 1 and modify start/len. 2178 */ 2179 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2180 { 2181 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2182 struct extent_map *em; 2183 int ret = 0; 2184 2185 em = btrfs_get_extent(inode, NULL, 2186 round_down(*start, fs_info->sectorsize), 2187 round_up(*len, fs_info->sectorsize)); 2188 if (IS_ERR(em)) 2189 return PTR_ERR(em); 2190 2191 /* Hole or vacuum extent(only exists in no-hole mode) */ 2192 if (em->disk_bytenr == EXTENT_MAP_HOLE) { 2193 ret = 1; 2194 *len = em->start + em->len > *start + *len ? 2195 0 : *start + *len - em->start - em->len; 2196 *start = em->start + em->len; 2197 } 2198 free_extent_map(em); 2199 return ret; 2200 } 2201 2202 static void btrfs_punch_hole_lock_range(struct inode *inode, 2203 const u64 lockstart, 2204 const u64 lockend, 2205 struct extent_state **cached_state) 2206 { 2207 /* 2208 * For subpage case, if the range is not at page boundary, we could 2209 * have pages at the leading/tailing part of the range. 2210 * This could lead to dead loop since filemap_range_has_page() 2211 * will always return true. 2212 * So here we need to do extra page alignment for 2213 * filemap_range_has_page(). 2214 */ 2215 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2216 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2217 2218 while (1) { 2219 truncate_pagecache_range(inode, lockstart, lockend); 2220 2221 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2222 cached_state); 2223 /* 2224 * We can't have ordered extents in the range, nor dirty/writeback 2225 * pages, because we have locked the inode's VFS lock in exclusive 2226 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2227 * we have flushed all delalloc in the range and we have waited 2228 * for any ordered extents in the range to complete. 2229 * We can race with anyone reading pages from this range, so after 2230 * locking the range check if we have pages in the range, and if 2231 * we do, unlock the range and retry. 2232 */ 2233 if (!filemap_range_has_page(inode->i_mapping, page_lockstart, 2234 page_lockend)) 2235 break; 2236 2237 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2238 cached_state); 2239 } 2240 2241 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2242 } 2243 2244 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2245 struct btrfs_inode *inode, 2246 struct btrfs_path *path, 2247 struct btrfs_replace_extent_info *extent_info, 2248 const u64 replace_len, 2249 const u64 bytes_to_drop) 2250 { 2251 struct btrfs_fs_info *fs_info = trans->fs_info; 2252 struct btrfs_root *root = inode->root; 2253 struct btrfs_file_extent_item *extent; 2254 struct extent_buffer *leaf; 2255 struct btrfs_key key; 2256 int slot; 2257 int ret; 2258 2259 if (replace_len == 0) 2260 return 0; 2261 2262 if (extent_info->disk_offset == 0 && 2263 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2264 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2265 return 0; 2266 } 2267 2268 key.objectid = btrfs_ino(inode); 2269 key.type = BTRFS_EXTENT_DATA_KEY; 2270 key.offset = extent_info->file_offset; 2271 ret = btrfs_insert_empty_item(trans, root, path, &key, 2272 sizeof(struct btrfs_file_extent_item)); 2273 if (ret) 2274 return ret; 2275 leaf = path->nodes[0]; 2276 slot = path->slots[0]; 2277 write_extent_buffer(leaf, extent_info->extent_buf, 2278 btrfs_item_ptr_offset(leaf, slot), 2279 sizeof(struct btrfs_file_extent_item)); 2280 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2281 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2282 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2283 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2284 if (extent_info->is_new_extent) 2285 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2286 btrfs_mark_buffer_dirty(trans, leaf); 2287 btrfs_release_path(path); 2288 2289 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2290 replace_len); 2291 if (ret) 2292 return ret; 2293 2294 /* If it's a hole, nothing more needs to be done. */ 2295 if (extent_info->disk_offset == 0) { 2296 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2297 return 0; 2298 } 2299 2300 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2301 2302 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2303 key.objectid = extent_info->disk_offset; 2304 key.type = BTRFS_EXTENT_ITEM_KEY; 2305 key.offset = extent_info->disk_len; 2306 ret = btrfs_alloc_reserved_file_extent(trans, root, 2307 btrfs_ino(inode), 2308 extent_info->file_offset, 2309 extent_info->qgroup_reserved, 2310 &key); 2311 } else { 2312 struct btrfs_ref ref = { 2313 .action = BTRFS_ADD_DELAYED_REF, 2314 .bytenr = extent_info->disk_offset, 2315 .num_bytes = extent_info->disk_len, 2316 .owning_root = btrfs_root_id(root), 2317 .ref_root = btrfs_root_id(root), 2318 }; 2319 u64 ref_offset; 2320 2321 ref_offset = extent_info->file_offset - extent_info->data_offset; 2322 btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false); 2323 ret = btrfs_inc_extent_ref(trans, &ref); 2324 } 2325 2326 extent_info->insertions++; 2327 2328 return ret; 2329 } 2330 2331 /* 2332 * The respective range must have been previously locked, as well as the inode. 2333 * The end offset is inclusive (last byte of the range). 2334 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2335 * the file range with an extent. 2336 * When not punching a hole, we don't want to end up in a state where we dropped 2337 * extents without inserting a new one, so we must abort the transaction to avoid 2338 * a corruption. 2339 */ 2340 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2341 struct btrfs_path *path, const u64 start, 2342 const u64 end, 2343 struct btrfs_replace_extent_info *extent_info, 2344 struct btrfs_trans_handle **trans_out) 2345 { 2346 struct btrfs_drop_extents_args drop_args = { 0 }; 2347 struct btrfs_root *root = inode->root; 2348 struct btrfs_fs_info *fs_info = root->fs_info; 2349 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2350 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2351 struct btrfs_trans_handle *trans = NULL; 2352 struct btrfs_block_rsv *rsv; 2353 unsigned int rsv_count; 2354 u64 cur_offset; 2355 u64 len = end - start; 2356 int ret = 0; 2357 2358 if (end <= start) 2359 return -EINVAL; 2360 2361 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2362 if (!rsv) { 2363 ret = -ENOMEM; 2364 goto out; 2365 } 2366 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2367 rsv->failfast = true; 2368 2369 /* 2370 * 1 - update the inode 2371 * 1 - removing the extents in the range 2372 * 1 - adding the hole extent if no_holes isn't set or if we are 2373 * replacing the range with a new extent 2374 */ 2375 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2376 rsv_count = 3; 2377 else 2378 rsv_count = 2; 2379 2380 trans = btrfs_start_transaction(root, rsv_count); 2381 if (IS_ERR(trans)) { 2382 ret = PTR_ERR(trans); 2383 trans = NULL; 2384 goto out_free; 2385 } 2386 2387 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2388 min_size, false); 2389 if (WARN_ON(ret)) 2390 goto out_trans; 2391 trans->block_rsv = rsv; 2392 2393 cur_offset = start; 2394 drop_args.path = path; 2395 drop_args.end = end + 1; 2396 drop_args.drop_cache = true; 2397 while (cur_offset < end) { 2398 drop_args.start = cur_offset; 2399 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2400 /* If we are punching a hole decrement the inode's byte count */ 2401 if (!extent_info) 2402 btrfs_update_inode_bytes(inode, 0, 2403 drop_args.bytes_found); 2404 if (ret != -ENOSPC) { 2405 /* 2406 * The only time we don't want to abort is if we are 2407 * attempting to clone a partial inline extent, in which 2408 * case we'll get EOPNOTSUPP. However if we aren't 2409 * clone we need to abort no matter what, because if we 2410 * got EOPNOTSUPP via prealloc then we messed up and 2411 * need to abort. 2412 */ 2413 if (ret && 2414 (ret != -EOPNOTSUPP || 2415 (extent_info && extent_info->is_new_extent))) 2416 btrfs_abort_transaction(trans, ret); 2417 break; 2418 } 2419 2420 trans->block_rsv = &fs_info->trans_block_rsv; 2421 2422 if (!extent_info && cur_offset < drop_args.drop_end && 2423 cur_offset < ino_size) { 2424 ret = fill_holes(trans, inode, path, cur_offset, 2425 drop_args.drop_end); 2426 if (ret) { 2427 /* 2428 * If we failed then we didn't insert our hole 2429 * entries for the area we dropped, so now the 2430 * fs is corrupted, so we must abort the 2431 * transaction. 2432 */ 2433 btrfs_abort_transaction(trans, ret); 2434 break; 2435 } 2436 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2437 /* 2438 * We are past the i_size here, but since we didn't 2439 * insert holes we need to clear the mapped area so we 2440 * know to not set disk_i_size in this area until a new 2441 * file extent is inserted here. 2442 */ 2443 ret = btrfs_inode_clear_file_extent_range(inode, 2444 cur_offset, 2445 drop_args.drop_end - cur_offset); 2446 if (ret) { 2447 /* 2448 * We couldn't clear our area, so we could 2449 * presumably adjust up and corrupt the fs, so 2450 * we need to abort. 2451 */ 2452 btrfs_abort_transaction(trans, ret); 2453 break; 2454 } 2455 } 2456 2457 if (extent_info && 2458 drop_args.drop_end > extent_info->file_offset) { 2459 u64 replace_len = drop_args.drop_end - 2460 extent_info->file_offset; 2461 2462 ret = btrfs_insert_replace_extent(trans, inode, path, 2463 extent_info, replace_len, 2464 drop_args.bytes_found); 2465 if (ret) { 2466 btrfs_abort_transaction(trans, ret); 2467 break; 2468 } 2469 extent_info->data_len -= replace_len; 2470 extent_info->data_offset += replace_len; 2471 extent_info->file_offset += replace_len; 2472 } 2473 2474 /* 2475 * We are releasing our handle on the transaction, balance the 2476 * dirty pages of the btree inode and flush delayed items, and 2477 * then get a new transaction handle, which may now point to a 2478 * new transaction in case someone else may have committed the 2479 * transaction we used to replace/drop file extent items. So 2480 * bump the inode's iversion and update mtime and ctime except 2481 * if we are called from a dedupe context. This is because a 2482 * power failure/crash may happen after the transaction is 2483 * committed and before we finish replacing/dropping all the 2484 * file extent items we need. 2485 */ 2486 inode_inc_iversion(&inode->vfs_inode); 2487 2488 if (!extent_info || extent_info->update_times) 2489 inode_set_mtime_to_ts(&inode->vfs_inode, 2490 inode_set_ctime_current(&inode->vfs_inode)); 2491 2492 ret = btrfs_update_inode(trans, inode); 2493 if (ret) 2494 break; 2495 2496 btrfs_end_transaction(trans); 2497 btrfs_btree_balance_dirty(fs_info); 2498 2499 trans = btrfs_start_transaction(root, rsv_count); 2500 if (IS_ERR(trans)) { 2501 ret = PTR_ERR(trans); 2502 trans = NULL; 2503 break; 2504 } 2505 2506 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2507 rsv, min_size, false); 2508 if (WARN_ON(ret)) 2509 break; 2510 trans->block_rsv = rsv; 2511 2512 cur_offset = drop_args.drop_end; 2513 len = end - cur_offset; 2514 if (!extent_info && len) { 2515 ret = find_first_non_hole(inode, &cur_offset, &len); 2516 if (unlikely(ret < 0)) 2517 break; 2518 if (ret && !len) { 2519 ret = 0; 2520 break; 2521 } 2522 } 2523 } 2524 2525 /* 2526 * If we were cloning, force the next fsync to be a full one since we 2527 * we replaced (or just dropped in the case of cloning holes when 2528 * NO_HOLES is enabled) file extent items and did not setup new extent 2529 * maps for the replacement extents (or holes). 2530 */ 2531 if (extent_info && !extent_info->is_new_extent) 2532 btrfs_set_inode_full_sync(inode); 2533 2534 if (ret) 2535 goto out_trans; 2536 2537 trans->block_rsv = &fs_info->trans_block_rsv; 2538 /* 2539 * If we are using the NO_HOLES feature we might have had already an 2540 * hole that overlaps a part of the region [lockstart, lockend] and 2541 * ends at (or beyond) lockend. Since we have no file extent items to 2542 * represent holes, drop_end can be less than lockend and so we must 2543 * make sure we have an extent map representing the existing hole (the 2544 * call to __btrfs_drop_extents() might have dropped the existing extent 2545 * map representing the existing hole), otherwise the fast fsync path 2546 * will not record the existence of the hole region 2547 * [existing_hole_start, lockend]. 2548 */ 2549 if (drop_args.drop_end <= end) 2550 drop_args.drop_end = end + 1; 2551 /* 2552 * Don't insert file hole extent item if it's for a range beyond eof 2553 * (because it's useless) or if it represents a 0 bytes range (when 2554 * cur_offset == drop_end). 2555 */ 2556 if (!extent_info && cur_offset < ino_size && 2557 cur_offset < drop_args.drop_end) { 2558 ret = fill_holes(trans, inode, path, cur_offset, 2559 drop_args.drop_end); 2560 if (ret) { 2561 /* Same comment as above. */ 2562 btrfs_abort_transaction(trans, ret); 2563 goto out_trans; 2564 } 2565 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2566 /* See the comment in the loop above for the reasoning here. */ 2567 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2568 drop_args.drop_end - cur_offset); 2569 if (ret) { 2570 btrfs_abort_transaction(trans, ret); 2571 goto out_trans; 2572 } 2573 2574 } 2575 if (extent_info) { 2576 ret = btrfs_insert_replace_extent(trans, inode, path, 2577 extent_info, extent_info->data_len, 2578 drop_args.bytes_found); 2579 if (ret) { 2580 btrfs_abort_transaction(trans, ret); 2581 goto out_trans; 2582 } 2583 } 2584 2585 out_trans: 2586 if (!trans) 2587 goto out_free; 2588 2589 trans->block_rsv = &fs_info->trans_block_rsv; 2590 if (ret) 2591 btrfs_end_transaction(trans); 2592 else 2593 *trans_out = trans; 2594 out_free: 2595 btrfs_free_block_rsv(fs_info, rsv); 2596 out: 2597 return ret; 2598 } 2599 2600 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2601 { 2602 struct inode *inode = file_inode(file); 2603 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2604 struct btrfs_root *root = BTRFS_I(inode)->root; 2605 struct extent_state *cached_state = NULL; 2606 struct btrfs_path *path; 2607 struct btrfs_trans_handle *trans = NULL; 2608 u64 lockstart; 2609 u64 lockend; 2610 u64 tail_start; 2611 u64 tail_len; 2612 u64 orig_start = offset; 2613 int ret = 0; 2614 bool same_block; 2615 u64 ino_size; 2616 bool truncated_block = false; 2617 bool updated_inode = false; 2618 2619 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2620 2621 ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len); 2622 if (ret) 2623 goto out_only_mutex; 2624 2625 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2626 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2627 if (ret < 0) 2628 goto out_only_mutex; 2629 if (ret && !len) { 2630 /* Already in a large hole */ 2631 ret = 0; 2632 goto out_only_mutex; 2633 } 2634 2635 ret = file_modified(file); 2636 if (ret) 2637 goto out_only_mutex; 2638 2639 lockstart = round_up(offset, fs_info->sectorsize); 2640 lockend = round_down(offset + len, fs_info->sectorsize) - 1; 2641 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2642 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2643 /* 2644 * We needn't truncate any block which is beyond the end of the file 2645 * because we are sure there is no data there. 2646 */ 2647 /* 2648 * Only do this if we are in the same block and we aren't doing the 2649 * entire block. 2650 */ 2651 if (same_block && len < fs_info->sectorsize) { 2652 if (offset < ino_size) { 2653 truncated_block = true; 2654 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2655 0); 2656 } else { 2657 ret = 0; 2658 } 2659 goto out_only_mutex; 2660 } 2661 2662 /* zero back part of the first block */ 2663 if (offset < ino_size) { 2664 truncated_block = true; 2665 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2666 if (ret) { 2667 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2668 return ret; 2669 } 2670 } 2671 2672 /* Check the aligned pages after the first unaligned page, 2673 * if offset != orig_start, which means the first unaligned page 2674 * including several following pages are already in holes, 2675 * the extra check can be skipped */ 2676 if (offset == orig_start) { 2677 /* after truncate page, check hole again */ 2678 len = offset + len - lockstart; 2679 offset = lockstart; 2680 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2681 if (ret < 0) 2682 goto out_only_mutex; 2683 if (ret && !len) { 2684 ret = 0; 2685 goto out_only_mutex; 2686 } 2687 lockstart = offset; 2688 } 2689 2690 /* Check the tail unaligned part is in a hole */ 2691 tail_start = lockend + 1; 2692 tail_len = offset + len - tail_start; 2693 if (tail_len) { 2694 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2695 if (unlikely(ret < 0)) 2696 goto out_only_mutex; 2697 if (!ret) { 2698 /* zero the front end of the last page */ 2699 if (tail_start + tail_len < ino_size) { 2700 truncated_block = true; 2701 ret = btrfs_truncate_block(BTRFS_I(inode), 2702 tail_start + tail_len, 2703 0, 1); 2704 if (ret) 2705 goto out_only_mutex; 2706 } 2707 } 2708 } 2709 2710 if (lockend < lockstart) { 2711 ret = 0; 2712 goto out_only_mutex; 2713 } 2714 2715 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 2716 2717 path = btrfs_alloc_path(); 2718 if (!path) { 2719 ret = -ENOMEM; 2720 goto out; 2721 } 2722 2723 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 2724 lockend, NULL, &trans); 2725 btrfs_free_path(path); 2726 if (ret) 2727 goto out; 2728 2729 ASSERT(trans != NULL); 2730 inode_inc_iversion(inode); 2731 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2732 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2733 updated_inode = true; 2734 btrfs_end_transaction(trans); 2735 btrfs_btree_balance_dirty(fs_info); 2736 out: 2737 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2738 &cached_state); 2739 out_only_mutex: 2740 if (!updated_inode && truncated_block && !ret) { 2741 /* 2742 * If we only end up zeroing part of a page, we still need to 2743 * update the inode item, so that all the time fields are 2744 * updated as well as the necessary btrfs inode in memory fields 2745 * for detecting, at fsync time, if the inode isn't yet in the 2746 * log tree or it's there but not up to date. 2747 */ 2748 struct timespec64 now = inode_set_ctime_current(inode); 2749 2750 inode_inc_iversion(inode); 2751 inode_set_mtime_to_ts(inode, now); 2752 trans = btrfs_start_transaction(root, 1); 2753 if (IS_ERR(trans)) { 2754 ret = PTR_ERR(trans); 2755 } else { 2756 int ret2; 2757 2758 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2759 ret2 = btrfs_end_transaction(trans); 2760 if (!ret) 2761 ret = ret2; 2762 } 2763 } 2764 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2765 return ret; 2766 } 2767 2768 /* Helper structure to record which range is already reserved */ 2769 struct falloc_range { 2770 struct list_head list; 2771 u64 start; 2772 u64 len; 2773 }; 2774 2775 /* 2776 * Helper function to add falloc range 2777 * 2778 * Caller should have locked the larger range of extent containing 2779 * [start, len) 2780 */ 2781 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2782 { 2783 struct falloc_range *range = NULL; 2784 2785 if (!list_empty(head)) { 2786 /* 2787 * As fallocate iterates by bytenr order, we only need to check 2788 * the last range. 2789 */ 2790 range = list_last_entry(head, struct falloc_range, list); 2791 if (range->start + range->len == start) { 2792 range->len += len; 2793 return 0; 2794 } 2795 } 2796 2797 range = kmalloc(sizeof(*range), GFP_KERNEL); 2798 if (!range) 2799 return -ENOMEM; 2800 range->start = start; 2801 range->len = len; 2802 list_add_tail(&range->list, head); 2803 return 0; 2804 } 2805 2806 static int btrfs_fallocate_update_isize(struct inode *inode, 2807 const u64 end, 2808 const int mode) 2809 { 2810 struct btrfs_trans_handle *trans; 2811 struct btrfs_root *root = BTRFS_I(inode)->root; 2812 int ret; 2813 int ret2; 2814 2815 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2816 return 0; 2817 2818 trans = btrfs_start_transaction(root, 1); 2819 if (IS_ERR(trans)) 2820 return PTR_ERR(trans); 2821 2822 inode_set_ctime_current(inode); 2823 i_size_write(inode, end); 2824 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 2825 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2826 ret2 = btrfs_end_transaction(trans); 2827 2828 return ret ? ret : ret2; 2829 } 2830 2831 enum { 2832 RANGE_BOUNDARY_WRITTEN_EXTENT, 2833 RANGE_BOUNDARY_PREALLOC_EXTENT, 2834 RANGE_BOUNDARY_HOLE, 2835 }; 2836 2837 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 2838 u64 offset) 2839 { 2840 const u64 sectorsize = inode->root->fs_info->sectorsize; 2841 struct extent_map *em; 2842 int ret; 2843 2844 offset = round_down(offset, sectorsize); 2845 em = btrfs_get_extent(inode, NULL, offset, sectorsize); 2846 if (IS_ERR(em)) 2847 return PTR_ERR(em); 2848 2849 if (em->disk_bytenr == EXTENT_MAP_HOLE) 2850 ret = RANGE_BOUNDARY_HOLE; 2851 else if (em->flags & EXTENT_FLAG_PREALLOC) 2852 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2853 else 2854 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2855 2856 free_extent_map(em); 2857 return ret; 2858 } 2859 2860 static int btrfs_zero_range(struct inode *inode, 2861 loff_t offset, 2862 loff_t len, 2863 const int mode) 2864 { 2865 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2866 struct extent_map *em; 2867 struct extent_changeset *data_reserved = NULL; 2868 int ret; 2869 u64 alloc_hint = 0; 2870 const u64 sectorsize = fs_info->sectorsize; 2871 u64 alloc_start = round_down(offset, sectorsize); 2872 u64 alloc_end = round_up(offset + len, sectorsize); 2873 u64 bytes_to_reserve = 0; 2874 bool space_reserved = false; 2875 2876 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, 2877 alloc_end - alloc_start); 2878 if (IS_ERR(em)) { 2879 ret = PTR_ERR(em); 2880 goto out; 2881 } 2882 2883 /* 2884 * Avoid hole punching and extent allocation for some cases. More cases 2885 * could be considered, but these are unlikely common and we keep things 2886 * as simple as possible for now. Also, intentionally, if the target 2887 * range contains one or more prealloc extents together with regular 2888 * extents and holes, we drop all the existing extents and allocate a 2889 * new prealloc extent, so that we get a larger contiguous disk extent. 2890 */ 2891 if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) { 2892 const u64 em_end = em->start + em->len; 2893 2894 if (em_end >= offset + len) { 2895 /* 2896 * The whole range is already a prealloc extent, 2897 * do nothing except updating the inode's i_size if 2898 * needed. 2899 */ 2900 free_extent_map(em); 2901 ret = btrfs_fallocate_update_isize(inode, offset + len, 2902 mode); 2903 goto out; 2904 } 2905 /* 2906 * Part of the range is already a prealloc extent, so operate 2907 * only on the remaining part of the range. 2908 */ 2909 alloc_start = em_end; 2910 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2911 len = offset + len - alloc_start; 2912 offset = alloc_start; 2913 alloc_hint = extent_map_block_start(em) + em->len; 2914 } 2915 free_extent_map(em); 2916 2917 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2918 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2919 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize); 2920 if (IS_ERR(em)) { 2921 ret = PTR_ERR(em); 2922 goto out; 2923 } 2924 2925 if (em->flags & EXTENT_FLAG_PREALLOC) { 2926 free_extent_map(em); 2927 ret = btrfs_fallocate_update_isize(inode, offset + len, 2928 mode); 2929 goto out; 2930 } 2931 if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) { 2932 free_extent_map(em); 2933 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2934 0); 2935 if (!ret) 2936 ret = btrfs_fallocate_update_isize(inode, 2937 offset + len, 2938 mode); 2939 return ret; 2940 } 2941 free_extent_map(em); 2942 alloc_start = round_down(offset, sectorsize); 2943 alloc_end = alloc_start + sectorsize; 2944 goto reserve_space; 2945 } 2946 2947 alloc_start = round_up(offset, sectorsize); 2948 alloc_end = round_down(offset + len, sectorsize); 2949 2950 /* 2951 * For unaligned ranges, check the pages at the boundaries, they might 2952 * map to an extent, in which case we need to partially zero them, or 2953 * they might map to a hole, in which case we need our allocation range 2954 * to cover them. 2955 */ 2956 if (!IS_ALIGNED(offset, sectorsize)) { 2957 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2958 offset); 2959 if (ret < 0) 2960 goto out; 2961 if (ret == RANGE_BOUNDARY_HOLE) { 2962 alloc_start = round_down(offset, sectorsize); 2963 ret = 0; 2964 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2965 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2966 if (ret) 2967 goto out; 2968 } else { 2969 ret = 0; 2970 } 2971 } 2972 2973 if (!IS_ALIGNED(offset + len, sectorsize)) { 2974 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2975 offset + len); 2976 if (ret < 0) 2977 goto out; 2978 if (ret == RANGE_BOUNDARY_HOLE) { 2979 alloc_end = round_up(offset + len, sectorsize); 2980 ret = 0; 2981 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2982 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 2983 0, 1); 2984 if (ret) 2985 goto out; 2986 } else { 2987 ret = 0; 2988 } 2989 } 2990 2991 reserve_space: 2992 if (alloc_start < alloc_end) { 2993 struct extent_state *cached_state = NULL; 2994 const u64 lockstart = alloc_start; 2995 const u64 lockend = alloc_end - 1; 2996 2997 bytes_to_reserve = alloc_end - alloc_start; 2998 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 2999 bytes_to_reserve); 3000 if (ret < 0) 3001 goto out; 3002 space_reserved = true; 3003 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3004 &cached_state); 3005 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3006 alloc_start, bytes_to_reserve); 3007 if (ret) { 3008 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 3009 lockend, &cached_state); 3010 goto out; 3011 } 3012 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3013 alloc_end - alloc_start, 3014 fs_info->sectorsize, 3015 offset + len, &alloc_hint); 3016 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3017 &cached_state); 3018 /* btrfs_prealloc_file_range releases reserved space on error */ 3019 if (ret) { 3020 space_reserved = false; 3021 goto out; 3022 } 3023 } 3024 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3025 out: 3026 if (ret && space_reserved) 3027 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3028 alloc_start, bytes_to_reserve); 3029 extent_changeset_free(data_reserved); 3030 3031 return ret; 3032 } 3033 3034 static long btrfs_fallocate(struct file *file, int mode, 3035 loff_t offset, loff_t len) 3036 { 3037 struct inode *inode = file_inode(file); 3038 struct extent_state *cached_state = NULL; 3039 struct extent_changeset *data_reserved = NULL; 3040 struct falloc_range *range; 3041 struct falloc_range *tmp; 3042 LIST_HEAD(reserve_list); 3043 u64 cur_offset; 3044 u64 last_byte; 3045 u64 alloc_start; 3046 u64 alloc_end; 3047 u64 alloc_hint = 0; 3048 u64 locked_end; 3049 u64 actual_end = 0; 3050 u64 data_space_needed = 0; 3051 u64 data_space_reserved = 0; 3052 u64 qgroup_reserved = 0; 3053 struct extent_map *em; 3054 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; 3055 int ret; 3056 3057 /* Do not allow fallocate in ZONED mode */ 3058 if (btrfs_is_zoned(inode_to_fs_info(inode))) 3059 return -EOPNOTSUPP; 3060 3061 alloc_start = round_down(offset, blocksize); 3062 alloc_end = round_up(offset + len, blocksize); 3063 cur_offset = alloc_start; 3064 3065 /* Make sure we aren't being give some crap mode */ 3066 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3067 FALLOC_FL_ZERO_RANGE)) 3068 return -EOPNOTSUPP; 3069 3070 if (mode & FALLOC_FL_PUNCH_HOLE) 3071 return btrfs_punch_hole(file, offset, len); 3072 3073 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3074 3075 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3076 ret = inode_newsize_ok(inode, offset + len); 3077 if (ret) 3078 goto out; 3079 } 3080 3081 ret = file_modified(file); 3082 if (ret) 3083 goto out; 3084 3085 /* 3086 * TODO: Move these two operations after we have checked 3087 * accurate reserved space, or fallocate can still fail but 3088 * with page truncated or size expanded. 3089 * 3090 * But that's a minor problem and won't do much harm BTW. 3091 */ 3092 if (alloc_start > inode->i_size) { 3093 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3094 alloc_start); 3095 if (ret) 3096 goto out; 3097 } else if (offset + len > inode->i_size) { 3098 /* 3099 * If we are fallocating from the end of the file onward we 3100 * need to zero out the end of the block if i_size lands in the 3101 * middle of a block. 3102 */ 3103 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3104 if (ret) 3105 goto out; 3106 } 3107 3108 /* 3109 * We have locked the inode at the VFS level (in exclusive mode) and we 3110 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3111 * locking the file range, flush all dealloc in the range and wait for 3112 * all ordered extents in the range to complete. After this we can lock 3113 * the file range and, due to the previous locking we did, we know there 3114 * can't be more delalloc or ordered extents in the range. 3115 */ 3116 ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start, 3117 alloc_end - alloc_start); 3118 if (ret) 3119 goto out; 3120 3121 if (mode & FALLOC_FL_ZERO_RANGE) { 3122 ret = btrfs_zero_range(inode, offset, len, mode); 3123 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3124 return ret; 3125 } 3126 3127 locked_end = alloc_end - 1; 3128 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3129 &cached_state); 3130 3131 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3132 3133 /* First, check if we exceed the qgroup limit */ 3134 while (cur_offset < alloc_end) { 3135 em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset, 3136 alloc_end - cur_offset); 3137 if (IS_ERR(em)) { 3138 ret = PTR_ERR(em); 3139 break; 3140 } 3141 last_byte = min(extent_map_end(em), alloc_end); 3142 actual_end = min_t(u64, extent_map_end(em), offset + len); 3143 last_byte = ALIGN(last_byte, blocksize); 3144 if (em->disk_bytenr == EXTENT_MAP_HOLE || 3145 (cur_offset >= inode->i_size && 3146 !(em->flags & EXTENT_FLAG_PREALLOC))) { 3147 const u64 range_len = last_byte - cur_offset; 3148 3149 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3150 if (ret < 0) { 3151 free_extent_map(em); 3152 break; 3153 } 3154 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3155 &data_reserved, cur_offset, range_len); 3156 if (ret < 0) { 3157 free_extent_map(em); 3158 break; 3159 } 3160 qgroup_reserved += range_len; 3161 data_space_needed += range_len; 3162 } 3163 free_extent_map(em); 3164 cur_offset = last_byte; 3165 } 3166 3167 if (!ret && data_space_needed > 0) { 3168 /* 3169 * We are safe to reserve space here as we can't have delalloc 3170 * in the range, see above. 3171 */ 3172 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3173 data_space_needed); 3174 if (!ret) 3175 data_space_reserved = data_space_needed; 3176 } 3177 3178 /* 3179 * If ret is still 0, means we're OK to fallocate. 3180 * Or just cleanup the list and exit. 3181 */ 3182 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3183 if (!ret) { 3184 ret = btrfs_prealloc_file_range(inode, mode, 3185 range->start, 3186 range->len, blocksize, 3187 offset + len, &alloc_hint); 3188 /* 3189 * btrfs_prealloc_file_range() releases space even 3190 * if it returns an error. 3191 */ 3192 data_space_reserved -= range->len; 3193 qgroup_reserved -= range->len; 3194 } else if (data_space_reserved > 0) { 3195 btrfs_free_reserved_data_space(BTRFS_I(inode), 3196 data_reserved, range->start, 3197 range->len); 3198 data_space_reserved -= range->len; 3199 qgroup_reserved -= range->len; 3200 } else if (qgroup_reserved > 0) { 3201 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3202 range->start, range->len, NULL); 3203 qgroup_reserved -= range->len; 3204 } 3205 list_del(&range->list); 3206 kfree(range); 3207 } 3208 if (ret < 0) 3209 goto out_unlock; 3210 3211 /* 3212 * We didn't need to allocate any more space, but we still extended the 3213 * size of the file so we need to update i_size and the inode item. 3214 */ 3215 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3216 out_unlock: 3217 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3218 &cached_state); 3219 out: 3220 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3221 extent_changeset_free(data_reserved); 3222 return ret; 3223 } 3224 3225 /* 3226 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range 3227 * that has unflushed and/or flushing delalloc. There might be other adjacent 3228 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps 3229 * looping while it gets adjacent subranges, and merging them together. 3230 */ 3231 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, 3232 struct extent_state **cached_state, 3233 bool *search_io_tree, 3234 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3235 { 3236 u64 len = end + 1 - start; 3237 u64 delalloc_len = 0; 3238 struct btrfs_ordered_extent *oe; 3239 u64 oe_start; 3240 u64 oe_end; 3241 3242 /* 3243 * Search the io tree first for EXTENT_DELALLOC. If we find any, it 3244 * means we have delalloc (dirty pages) for which writeback has not 3245 * started yet. 3246 */ 3247 if (*search_io_tree) { 3248 spin_lock(&inode->lock); 3249 if (inode->delalloc_bytes > 0) { 3250 spin_unlock(&inode->lock); 3251 *delalloc_start_ret = start; 3252 delalloc_len = count_range_bits(&inode->io_tree, 3253 delalloc_start_ret, end, 3254 len, EXTENT_DELALLOC, 1, 3255 cached_state); 3256 } else { 3257 spin_unlock(&inode->lock); 3258 } 3259 } 3260 3261 if (delalloc_len > 0) { 3262 /* 3263 * If delalloc was found then *delalloc_start_ret has a sector size 3264 * aligned value (rounded down). 3265 */ 3266 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; 3267 3268 if (*delalloc_start_ret == start) { 3269 /* Delalloc for the whole range, nothing more to do. */ 3270 if (*delalloc_end_ret == end) 3271 return true; 3272 /* Else trim our search range for ordered extents. */ 3273 start = *delalloc_end_ret + 1; 3274 len = end + 1 - start; 3275 } 3276 } else { 3277 /* No delalloc, future calls don't need to search again. */ 3278 *search_io_tree = false; 3279 } 3280 3281 /* 3282 * Now also check if there's any ordered extent in the range. 3283 * We do this because: 3284 * 3285 * 1) When delalloc is flushed, the file range is locked, we clear the 3286 * EXTENT_DELALLOC bit from the io tree and create an extent map and 3287 * an ordered extent for the write. So we might just have been called 3288 * after delalloc is flushed and before the ordered extent completes 3289 * and inserts the new file extent item in the subvolume's btree; 3290 * 3291 * 2) We may have an ordered extent created by flushing delalloc for a 3292 * subrange that starts before the subrange we found marked with 3293 * EXTENT_DELALLOC in the io tree. 3294 * 3295 * We could also use the extent map tree to find such delalloc that is 3296 * being flushed, but using the ordered extents tree is more efficient 3297 * because it's usually much smaller as ordered extents are removed from 3298 * the tree once they complete. With the extent maps, we mau have them 3299 * in the extent map tree for a very long time, and they were either 3300 * created by previous writes or loaded by read operations. 3301 */ 3302 oe = btrfs_lookup_first_ordered_range(inode, start, len); 3303 if (!oe) 3304 return (delalloc_len > 0); 3305 3306 /* The ordered extent may span beyond our search range. */ 3307 oe_start = max(oe->file_offset, start); 3308 oe_end = min(oe->file_offset + oe->num_bytes - 1, end); 3309 3310 btrfs_put_ordered_extent(oe); 3311 3312 /* Don't have unflushed delalloc, return the ordered extent range. */ 3313 if (delalloc_len == 0) { 3314 *delalloc_start_ret = oe_start; 3315 *delalloc_end_ret = oe_end; 3316 return true; 3317 } 3318 3319 /* 3320 * We have both unflushed delalloc (io_tree) and an ordered extent. 3321 * If the ranges are adjacent returned a combined range, otherwise 3322 * return the leftmost range. 3323 */ 3324 if (oe_start < *delalloc_start_ret) { 3325 if (oe_end < *delalloc_start_ret) 3326 *delalloc_end_ret = oe_end; 3327 *delalloc_start_ret = oe_start; 3328 } else if (*delalloc_end_ret + 1 == oe_start) { 3329 *delalloc_end_ret = oe_end; 3330 } 3331 3332 return true; 3333 } 3334 3335 /* 3336 * Check if there's delalloc in a given range. 3337 * 3338 * @inode: The inode. 3339 * @start: The start offset of the range. It does not need to be 3340 * sector size aligned. 3341 * @end: The end offset (inclusive value) of the search range. 3342 * It does not need to be sector size aligned. 3343 * @cached_state: Extent state record used for speeding up delalloc 3344 * searches in the inode's io_tree. Can be NULL. 3345 * @delalloc_start_ret: Output argument, set to the start offset of the 3346 * subrange found with delalloc (may not be sector size 3347 * aligned). 3348 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value) 3349 * of the subrange found with delalloc. 3350 * 3351 * Returns true if a subrange with delalloc is found within the given range, and 3352 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and 3353 * end offsets of the subrange. 3354 */ 3355 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3356 struct extent_state **cached_state, 3357 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3358 { 3359 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); 3360 u64 prev_delalloc_end = 0; 3361 bool search_io_tree = true; 3362 bool ret = false; 3363 3364 while (cur_offset <= end) { 3365 u64 delalloc_start; 3366 u64 delalloc_end; 3367 bool delalloc; 3368 3369 delalloc = find_delalloc_subrange(inode, cur_offset, end, 3370 cached_state, &search_io_tree, 3371 &delalloc_start, 3372 &delalloc_end); 3373 if (!delalloc) 3374 break; 3375 3376 if (prev_delalloc_end == 0) { 3377 /* First subrange found. */ 3378 *delalloc_start_ret = max(delalloc_start, start); 3379 *delalloc_end_ret = delalloc_end; 3380 ret = true; 3381 } else if (delalloc_start == prev_delalloc_end + 1) { 3382 /* Subrange adjacent to the previous one, merge them. */ 3383 *delalloc_end_ret = delalloc_end; 3384 } else { 3385 /* Subrange not adjacent to the previous one, exit. */ 3386 break; 3387 } 3388 3389 prev_delalloc_end = delalloc_end; 3390 cur_offset = delalloc_end + 1; 3391 cond_resched(); 3392 } 3393 3394 return ret; 3395 } 3396 3397 /* 3398 * Check if there's a hole or delalloc range in a range representing a hole (or 3399 * prealloc extent) found in the inode's subvolume btree. 3400 * 3401 * @inode: The inode. 3402 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE). 3403 * @start: Start offset of the hole region. It does not need to be sector 3404 * size aligned. 3405 * @end: End offset (inclusive value) of the hole region. It does not 3406 * need to be sector size aligned. 3407 * @start_ret: Return parameter, used to set the start of the subrange in the 3408 * hole that matches the search criteria (seek mode), if such 3409 * subrange is found (return value of the function is true). 3410 * The value returned here may not be sector size aligned. 3411 * 3412 * Returns true if a subrange matching the given seek mode is found, and if one 3413 * is found, it updates @start_ret with the start of the subrange. 3414 */ 3415 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, 3416 struct extent_state **cached_state, 3417 u64 start, u64 end, u64 *start_ret) 3418 { 3419 u64 delalloc_start; 3420 u64 delalloc_end; 3421 bool delalloc; 3422 3423 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state, 3424 &delalloc_start, &delalloc_end); 3425 if (delalloc && whence == SEEK_DATA) { 3426 *start_ret = delalloc_start; 3427 return true; 3428 } 3429 3430 if (delalloc && whence == SEEK_HOLE) { 3431 /* 3432 * We found delalloc but it starts after out start offset. So we 3433 * have a hole between our start offset and the delalloc start. 3434 */ 3435 if (start < delalloc_start) { 3436 *start_ret = start; 3437 return true; 3438 } 3439 /* 3440 * Delalloc range starts at our start offset. 3441 * If the delalloc range's length is smaller than our range, 3442 * then it means we have a hole that starts where the delalloc 3443 * subrange ends. 3444 */ 3445 if (delalloc_end < end) { 3446 *start_ret = delalloc_end + 1; 3447 return true; 3448 } 3449 3450 /* There's delalloc for the whole range. */ 3451 return false; 3452 } 3453 3454 if (!delalloc && whence == SEEK_HOLE) { 3455 *start_ret = start; 3456 return true; 3457 } 3458 3459 /* 3460 * No delalloc in the range and we are seeking for data. The caller has 3461 * to iterate to the next extent item in the subvolume btree. 3462 */ 3463 return false; 3464 } 3465 3466 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence) 3467 { 3468 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host); 3469 struct btrfs_file_private *private = file->private_data; 3470 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3471 struct extent_state *cached_state = NULL; 3472 struct extent_state **delalloc_cached_state; 3473 const loff_t i_size = i_size_read(&inode->vfs_inode); 3474 const u64 ino = btrfs_ino(inode); 3475 struct btrfs_root *root = inode->root; 3476 struct btrfs_path *path; 3477 struct btrfs_key key; 3478 u64 last_extent_end; 3479 u64 lockstart; 3480 u64 lockend; 3481 u64 start; 3482 int ret; 3483 bool found = false; 3484 3485 if (i_size == 0 || offset >= i_size) 3486 return -ENXIO; 3487 3488 /* 3489 * Quick path. If the inode has no prealloc extents and its number of 3490 * bytes used matches its i_size, then it can not have holes. 3491 */ 3492 if (whence == SEEK_HOLE && 3493 !(inode->flags & BTRFS_INODE_PREALLOC) && 3494 inode_get_bytes(&inode->vfs_inode) == i_size) 3495 return i_size; 3496 3497 if (!private) { 3498 private = kzalloc(sizeof(*private), GFP_KERNEL); 3499 /* 3500 * No worries if memory allocation failed. 3501 * The private structure is used only for speeding up multiple 3502 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc, 3503 * so everything will still be correct. 3504 */ 3505 file->private_data = private; 3506 } 3507 3508 if (private) 3509 delalloc_cached_state = &private->llseek_cached_state; 3510 else 3511 delalloc_cached_state = NULL; 3512 3513 /* 3514 * offset can be negative, in this case we start finding DATA/HOLE from 3515 * the very start of the file. 3516 */ 3517 start = max_t(loff_t, 0, offset); 3518 3519 lockstart = round_down(start, fs_info->sectorsize); 3520 lockend = round_up(i_size, fs_info->sectorsize); 3521 if (lockend <= lockstart) 3522 lockend = lockstart + fs_info->sectorsize; 3523 lockend--; 3524 3525 path = btrfs_alloc_path(); 3526 if (!path) 3527 return -ENOMEM; 3528 path->reada = READA_FORWARD; 3529 3530 key.objectid = ino; 3531 key.type = BTRFS_EXTENT_DATA_KEY; 3532 key.offset = start; 3533 3534 last_extent_end = lockstart; 3535 3536 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3537 3538 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3539 if (ret < 0) { 3540 goto out; 3541 } else if (ret > 0 && path->slots[0] > 0) { 3542 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3543 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3544 path->slots[0]--; 3545 } 3546 3547 while (start < i_size) { 3548 struct extent_buffer *leaf = path->nodes[0]; 3549 struct btrfs_file_extent_item *extent; 3550 u64 extent_end; 3551 u8 type; 3552 3553 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3554 ret = btrfs_next_leaf(root, path); 3555 if (ret < 0) 3556 goto out; 3557 else if (ret > 0) 3558 break; 3559 3560 leaf = path->nodes[0]; 3561 } 3562 3563 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3564 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3565 break; 3566 3567 extent_end = btrfs_file_extent_end(path); 3568 3569 /* 3570 * In the first iteration we may have a slot that points to an 3571 * extent that ends before our start offset, so skip it. 3572 */ 3573 if (extent_end <= start) { 3574 path->slots[0]++; 3575 continue; 3576 } 3577 3578 /* We have an implicit hole, NO_HOLES feature is likely set. */ 3579 if (last_extent_end < key.offset) { 3580 u64 search_start = last_extent_end; 3581 u64 found_start; 3582 3583 /* 3584 * First iteration, @start matches @offset and it's 3585 * within the hole. 3586 */ 3587 if (start == offset) 3588 search_start = offset; 3589 3590 found = find_desired_extent_in_hole(inode, whence, 3591 delalloc_cached_state, 3592 search_start, 3593 key.offset - 1, 3594 &found_start); 3595 if (found) { 3596 start = found_start; 3597 break; 3598 } 3599 /* 3600 * Didn't find data or a hole (due to delalloc) in the 3601 * implicit hole range, so need to analyze the extent. 3602 */ 3603 } 3604 3605 extent = btrfs_item_ptr(leaf, path->slots[0], 3606 struct btrfs_file_extent_item); 3607 type = btrfs_file_extent_type(leaf, extent); 3608 3609 /* 3610 * Can't access the extent's disk_bytenr field if this is an 3611 * inline extent, since at that offset, it's where the extent 3612 * data starts. 3613 */ 3614 if (type == BTRFS_FILE_EXTENT_PREALLOC || 3615 (type == BTRFS_FILE_EXTENT_REG && 3616 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) { 3617 /* 3618 * Explicit hole or prealloc extent, search for delalloc. 3619 * A prealloc extent is treated like a hole. 3620 */ 3621 u64 search_start = key.offset; 3622 u64 found_start; 3623 3624 /* 3625 * First iteration, @start matches @offset and it's 3626 * within the hole. 3627 */ 3628 if (start == offset) 3629 search_start = offset; 3630 3631 found = find_desired_extent_in_hole(inode, whence, 3632 delalloc_cached_state, 3633 search_start, 3634 extent_end - 1, 3635 &found_start); 3636 if (found) { 3637 start = found_start; 3638 break; 3639 } 3640 /* 3641 * Didn't find data or a hole (due to delalloc) in the 3642 * implicit hole range, so need to analyze the next 3643 * extent item. 3644 */ 3645 } else { 3646 /* 3647 * Found a regular or inline extent. 3648 * If we are seeking for data, adjust the start offset 3649 * and stop, we're done. 3650 */ 3651 if (whence == SEEK_DATA) { 3652 start = max_t(u64, key.offset, offset); 3653 found = true; 3654 break; 3655 } 3656 /* 3657 * Else, we are seeking for a hole, check the next file 3658 * extent item. 3659 */ 3660 } 3661 3662 start = extent_end; 3663 last_extent_end = extent_end; 3664 path->slots[0]++; 3665 if (fatal_signal_pending(current)) { 3666 ret = -EINTR; 3667 goto out; 3668 } 3669 cond_resched(); 3670 } 3671 3672 /* We have an implicit hole from the last extent found up to i_size. */ 3673 if (!found && start < i_size) { 3674 found = find_desired_extent_in_hole(inode, whence, 3675 delalloc_cached_state, start, 3676 i_size - 1, &start); 3677 if (!found) 3678 start = i_size; 3679 } 3680 3681 out: 3682 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3683 btrfs_free_path(path); 3684 3685 if (ret < 0) 3686 return ret; 3687 3688 if (whence == SEEK_DATA && start >= i_size) 3689 return -ENXIO; 3690 3691 return min_t(loff_t, start, i_size); 3692 } 3693 3694 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3695 { 3696 struct inode *inode = file->f_mapping->host; 3697 3698 switch (whence) { 3699 default: 3700 return generic_file_llseek(file, offset, whence); 3701 case SEEK_DATA: 3702 case SEEK_HOLE: 3703 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3704 offset = find_desired_extent(file, offset, whence); 3705 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3706 break; 3707 } 3708 3709 if (offset < 0) 3710 return offset; 3711 3712 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3713 } 3714 3715 static int btrfs_file_open(struct inode *inode, struct file *filp) 3716 { 3717 int ret; 3718 3719 filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT; 3720 3721 ret = fsverity_file_open(inode, filp); 3722 if (ret) 3723 return ret; 3724 return generic_file_open(inode, filp); 3725 } 3726 3727 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3728 { 3729 ssize_t ret = 0; 3730 3731 if (iocb->ki_flags & IOCB_DIRECT) { 3732 ret = btrfs_direct_read(iocb, to); 3733 if (ret < 0 || !iov_iter_count(to) || 3734 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3735 return ret; 3736 } 3737 3738 return filemap_read(iocb, to, ret); 3739 } 3740 3741 const struct file_operations btrfs_file_operations = { 3742 .llseek = btrfs_file_llseek, 3743 .read_iter = btrfs_file_read_iter, 3744 .splice_read = filemap_splice_read, 3745 .write_iter = btrfs_file_write_iter, 3746 .splice_write = iter_file_splice_write, 3747 .mmap = btrfs_file_mmap, 3748 .open = btrfs_file_open, 3749 .release = btrfs_release_file, 3750 .get_unmapped_area = thp_get_unmapped_area, 3751 .fsync = btrfs_sync_file, 3752 .fallocate = btrfs_fallocate, 3753 .unlocked_ioctl = btrfs_ioctl, 3754 #ifdef CONFIG_COMPAT 3755 .compat_ioctl = btrfs_compat_ioctl, 3756 #endif 3757 .remap_file_range = btrfs_remap_file_range, 3758 .fop_flags = FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC, 3759 }; 3760 3761 int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end) 3762 { 3763 struct address_space *mapping = inode->vfs_inode.i_mapping; 3764 int ret; 3765 3766 /* 3767 * So with compression we will find and lock a dirty page and clear the 3768 * first one as dirty, setup an async extent, and immediately return 3769 * with the entire range locked but with nobody actually marked with 3770 * writeback. So we can't just filemap_write_and_wait_range() and 3771 * expect it to work since it will just kick off a thread to do the 3772 * actual work. So we need to call filemap_fdatawrite_range _again_ 3773 * since it will wait on the page lock, which won't be unlocked until 3774 * after the pages have been marked as writeback and so we're good to go 3775 * from there. We have to do this otherwise we'll miss the ordered 3776 * extents and that results in badness. Please Josef, do not think you 3777 * know better and pull this out at some point in the future, it is 3778 * right and you are wrong. 3779 */ 3780 ret = filemap_fdatawrite_range(mapping, start, end); 3781 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags)) 3782 ret = filemap_fdatawrite_range(mapping, start, end); 3783 3784 return ret; 3785 } 3786