xref: /linux/fs/btrfs/file.c (revision 7354eb7f1558466e92e926802d36e69e42938ea9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "direct-io.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31 #include "subpage.h"
32 #include "fs.h"
33 #include "accessors.h"
34 #include "extent-tree.h"
35 #include "file-item.h"
36 #include "ioctl.h"
37 #include "file.h"
38 #include "super.h"
39 
40 /* simple helper to fault in pages and copy.  This should go away
41  * and be replaced with calls into generic code.
42  */
43 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
44 					 struct page **prepared_pages,
45 					 struct iov_iter *i)
46 {
47 	size_t copied = 0;
48 	size_t total_copied = 0;
49 	int pg = 0;
50 	int offset = offset_in_page(pos);
51 
52 	while (write_bytes > 0) {
53 		size_t count = min_t(size_t,
54 				     PAGE_SIZE - offset, write_bytes);
55 		struct page *page = prepared_pages[pg];
56 		/*
57 		 * Copy data from userspace to the current page
58 		 */
59 		copied = copy_page_from_iter_atomic(page, offset, count, i);
60 
61 		/* Flush processor's dcache for this page */
62 		flush_dcache_page(page);
63 
64 		/*
65 		 * if we get a partial write, we can end up with
66 		 * partially up to date pages.  These add
67 		 * a lot of complexity, so make sure they don't
68 		 * happen by forcing this copy to be retried.
69 		 *
70 		 * The rest of the btrfs_file_write code will fall
71 		 * back to page at a time copies after we return 0.
72 		 */
73 		if (unlikely(copied < count)) {
74 			if (!PageUptodate(page)) {
75 				iov_iter_revert(i, copied);
76 				copied = 0;
77 			}
78 			if (!copied)
79 				break;
80 		}
81 
82 		write_bytes -= copied;
83 		total_copied += copied;
84 		offset += copied;
85 		if (offset == PAGE_SIZE) {
86 			pg++;
87 			offset = 0;
88 		}
89 	}
90 	return total_copied;
91 }
92 
93 /*
94  * unlocks pages after btrfs_file_write is done with them
95  */
96 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
97 			     struct page **pages, size_t num_pages,
98 			     u64 pos, u64 copied)
99 {
100 	size_t i;
101 	u64 block_start = round_down(pos, fs_info->sectorsize);
102 	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
103 
104 	ASSERT(block_len <= U32_MAX);
105 	for (i = 0; i < num_pages; i++) {
106 		/* page checked is some magic around finding pages that
107 		 * have been modified without going through btrfs_set_page_dirty
108 		 * clear it here. There should be no need to mark the pages
109 		 * accessed as prepare_pages should have marked them accessed
110 		 * in prepare_pages via find_or_create_page()
111 		 */
112 		btrfs_folio_clamp_clear_checked(fs_info, page_folio(pages[i]),
113 						block_start, block_len);
114 		unlock_page(pages[i]);
115 		put_page(pages[i]);
116 	}
117 }
118 
119 /*
120  * After btrfs_copy_from_user(), update the following things for delalloc:
121  * - Mark newly dirtied pages as DELALLOC in the io tree.
122  *   Used to advise which range is to be written back.
123  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
124  * - Update inode size for past EOF write
125  */
126 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
127 		      size_t num_pages, loff_t pos, size_t write_bytes,
128 		      struct extent_state **cached, bool noreserve)
129 {
130 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
131 	int ret = 0;
132 	int i;
133 	u64 num_bytes;
134 	u64 start_pos;
135 	u64 end_of_last_block;
136 	u64 end_pos = pos + write_bytes;
137 	loff_t isize = i_size_read(&inode->vfs_inode);
138 	unsigned int extra_bits = 0;
139 
140 	if (write_bytes == 0)
141 		return 0;
142 
143 	if (noreserve)
144 		extra_bits |= EXTENT_NORESERVE;
145 
146 	start_pos = round_down(pos, fs_info->sectorsize);
147 	num_bytes = round_up(write_bytes + pos - start_pos,
148 			     fs_info->sectorsize);
149 	ASSERT(num_bytes <= U32_MAX);
150 
151 	end_of_last_block = start_pos + num_bytes - 1;
152 
153 	/*
154 	 * The pages may have already been dirty, clear out old accounting so
155 	 * we can set things up properly
156 	 */
157 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
158 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
159 			 cached);
160 
161 	ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
162 					extra_bits, cached);
163 	if (ret)
164 		return ret;
165 
166 	for (i = 0; i < num_pages; i++) {
167 		struct page *p = pages[i];
168 
169 		btrfs_folio_clamp_set_uptodate(fs_info, page_folio(p),
170 					       start_pos, num_bytes);
171 		btrfs_folio_clamp_clear_checked(fs_info, page_folio(p),
172 						start_pos, num_bytes);
173 		btrfs_folio_clamp_set_dirty(fs_info, page_folio(p),
174 					    start_pos, num_bytes);
175 	}
176 
177 	/*
178 	 * we've only changed i_size in ram, and we haven't updated
179 	 * the disk i_size.  There is no need to log the inode
180 	 * at this time.
181 	 */
182 	if (end_pos > isize)
183 		i_size_write(&inode->vfs_inode, end_pos);
184 	return 0;
185 }
186 
187 /*
188  * this is very complex, but the basic idea is to drop all extents
189  * in the range start - end.  hint_block is filled in with a block number
190  * that would be a good hint to the block allocator for this file.
191  *
192  * If an extent intersects the range but is not entirely inside the range
193  * it is either truncated or split.  Anything entirely inside the range
194  * is deleted from the tree.
195  *
196  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
197  * to deal with that. We set the field 'bytes_found' of the arguments structure
198  * with the number of allocated bytes found in the target range, so that the
199  * caller can update the inode's number of bytes in an atomic way when
200  * replacing extents in a range to avoid races with stat(2).
201  */
202 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
203 		       struct btrfs_root *root, struct btrfs_inode *inode,
204 		       struct btrfs_drop_extents_args *args)
205 {
206 	struct btrfs_fs_info *fs_info = root->fs_info;
207 	struct extent_buffer *leaf;
208 	struct btrfs_file_extent_item *fi;
209 	struct btrfs_key key;
210 	struct btrfs_key new_key;
211 	u64 ino = btrfs_ino(inode);
212 	u64 search_start = args->start;
213 	u64 disk_bytenr = 0;
214 	u64 num_bytes = 0;
215 	u64 extent_offset = 0;
216 	u64 extent_end = 0;
217 	u64 last_end = args->start;
218 	int del_nr = 0;
219 	int del_slot = 0;
220 	int extent_type;
221 	int recow;
222 	int ret;
223 	int modify_tree = -1;
224 	int update_refs;
225 	int found = 0;
226 	struct btrfs_path *path = args->path;
227 
228 	args->bytes_found = 0;
229 	args->extent_inserted = false;
230 
231 	/* Must always have a path if ->replace_extent is true */
232 	ASSERT(!(args->replace_extent && !args->path));
233 
234 	if (!path) {
235 		path = btrfs_alloc_path();
236 		if (!path) {
237 			ret = -ENOMEM;
238 			goto out;
239 		}
240 	}
241 
242 	if (args->drop_cache)
243 		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
244 
245 	if (args->start >= inode->disk_i_size && !args->replace_extent)
246 		modify_tree = 0;
247 
248 	update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
249 	while (1) {
250 		recow = 0;
251 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
252 					       search_start, modify_tree);
253 		if (ret < 0)
254 			break;
255 		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
256 			leaf = path->nodes[0];
257 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
258 			if (key.objectid == ino &&
259 			    key.type == BTRFS_EXTENT_DATA_KEY)
260 				path->slots[0]--;
261 		}
262 		ret = 0;
263 next_slot:
264 		leaf = path->nodes[0];
265 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
266 			BUG_ON(del_nr > 0);
267 			ret = btrfs_next_leaf(root, path);
268 			if (ret < 0)
269 				break;
270 			if (ret > 0) {
271 				ret = 0;
272 				break;
273 			}
274 			leaf = path->nodes[0];
275 			recow = 1;
276 		}
277 
278 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
279 
280 		if (key.objectid > ino)
281 			break;
282 		if (WARN_ON_ONCE(key.objectid < ino) ||
283 		    key.type < BTRFS_EXTENT_DATA_KEY) {
284 			ASSERT(del_nr == 0);
285 			path->slots[0]++;
286 			goto next_slot;
287 		}
288 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
289 			break;
290 
291 		fi = btrfs_item_ptr(leaf, path->slots[0],
292 				    struct btrfs_file_extent_item);
293 		extent_type = btrfs_file_extent_type(leaf, fi);
294 
295 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
296 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
297 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
298 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
299 			extent_offset = btrfs_file_extent_offset(leaf, fi);
300 			extent_end = key.offset +
301 				btrfs_file_extent_num_bytes(leaf, fi);
302 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
303 			extent_end = key.offset +
304 				btrfs_file_extent_ram_bytes(leaf, fi);
305 		} else {
306 			/* can't happen */
307 			BUG();
308 		}
309 
310 		/*
311 		 * Don't skip extent items representing 0 byte lengths. They
312 		 * used to be created (bug) if while punching holes we hit
313 		 * -ENOSPC condition. So if we find one here, just ensure we
314 		 * delete it, otherwise we would insert a new file extent item
315 		 * with the same key (offset) as that 0 bytes length file
316 		 * extent item in the call to setup_items_for_insert() later
317 		 * in this function.
318 		 */
319 		if (extent_end == key.offset && extent_end >= search_start) {
320 			last_end = extent_end;
321 			goto delete_extent_item;
322 		}
323 
324 		if (extent_end <= search_start) {
325 			path->slots[0]++;
326 			goto next_slot;
327 		}
328 
329 		found = 1;
330 		search_start = max(key.offset, args->start);
331 		if (recow || !modify_tree) {
332 			modify_tree = -1;
333 			btrfs_release_path(path);
334 			continue;
335 		}
336 
337 		/*
338 		 *     | - range to drop - |
339 		 *  | -------- extent -------- |
340 		 */
341 		if (args->start > key.offset && args->end < extent_end) {
342 			BUG_ON(del_nr > 0);
343 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
344 				ret = -EOPNOTSUPP;
345 				break;
346 			}
347 
348 			memcpy(&new_key, &key, sizeof(new_key));
349 			new_key.offset = args->start;
350 			ret = btrfs_duplicate_item(trans, root, path,
351 						   &new_key);
352 			if (ret == -EAGAIN) {
353 				btrfs_release_path(path);
354 				continue;
355 			}
356 			if (ret < 0)
357 				break;
358 
359 			leaf = path->nodes[0];
360 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
361 					    struct btrfs_file_extent_item);
362 			btrfs_set_file_extent_num_bytes(leaf, fi,
363 							args->start - key.offset);
364 
365 			fi = btrfs_item_ptr(leaf, path->slots[0],
366 					    struct btrfs_file_extent_item);
367 
368 			extent_offset += args->start - key.offset;
369 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
370 			btrfs_set_file_extent_num_bytes(leaf, fi,
371 							extent_end - args->start);
372 			btrfs_mark_buffer_dirty(trans, leaf);
373 
374 			if (update_refs && disk_bytenr > 0) {
375 				struct btrfs_ref ref = {
376 					.action = BTRFS_ADD_DELAYED_REF,
377 					.bytenr = disk_bytenr,
378 					.num_bytes = num_bytes,
379 					.parent = 0,
380 					.owning_root = btrfs_root_id(root),
381 					.ref_root = btrfs_root_id(root),
382 				};
383 				btrfs_init_data_ref(&ref, new_key.objectid,
384 						    args->start - extent_offset,
385 						    0, false);
386 				ret = btrfs_inc_extent_ref(trans, &ref);
387 				if (ret) {
388 					btrfs_abort_transaction(trans, ret);
389 					break;
390 				}
391 			}
392 			key.offset = args->start;
393 		}
394 		/*
395 		 * From here on out we will have actually dropped something, so
396 		 * last_end can be updated.
397 		 */
398 		last_end = extent_end;
399 
400 		/*
401 		 *  | ---- range to drop ----- |
402 		 *      | -------- extent -------- |
403 		 */
404 		if (args->start <= key.offset && args->end < extent_end) {
405 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
406 				ret = -EOPNOTSUPP;
407 				break;
408 			}
409 
410 			memcpy(&new_key, &key, sizeof(new_key));
411 			new_key.offset = args->end;
412 			btrfs_set_item_key_safe(trans, path, &new_key);
413 
414 			extent_offset += args->end - key.offset;
415 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
416 			btrfs_set_file_extent_num_bytes(leaf, fi,
417 							extent_end - args->end);
418 			btrfs_mark_buffer_dirty(trans, leaf);
419 			if (update_refs && disk_bytenr > 0)
420 				args->bytes_found += args->end - key.offset;
421 			break;
422 		}
423 
424 		search_start = extent_end;
425 		/*
426 		 *       | ---- range to drop ----- |
427 		 *  | -------- extent -------- |
428 		 */
429 		if (args->start > key.offset && args->end >= extent_end) {
430 			BUG_ON(del_nr > 0);
431 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
432 				ret = -EOPNOTSUPP;
433 				break;
434 			}
435 
436 			btrfs_set_file_extent_num_bytes(leaf, fi,
437 							args->start - key.offset);
438 			btrfs_mark_buffer_dirty(trans, leaf);
439 			if (update_refs && disk_bytenr > 0)
440 				args->bytes_found += extent_end - args->start;
441 			if (args->end == extent_end)
442 				break;
443 
444 			path->slots[0]++;
445 			goto next_slot;
446 		}
447 
448 		/*
449 		 *  | ---- range to drop ----- |
450 		 *    | ------ extent ------ |
451 		 */
452 		if (args->start <= key.offset && args->end >= extent_end) {
453 delete_extent_item:
454 			if (del_nr == 0) {
455 				del_slot = path->slots[0];
456 				del_nr = 1;
457 			} else {
458 				BUG_ON(del_slot + del_nr != path->slots[0]);
459 				del_nr++;
460 			}
461 
462 			if (update_refs &&
463 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
464 				args->bytes_found += extent_end - key.offset;
465 				extent_end = ALIGN(extent_end,
466 						   fs_info->sectorsize);
467 			} else if (update_refs && disk_bytenr > 0) {
468 				struct btrfs_ref ref = {
469 					.action = BTRFS_DROP_DELAYED_REF,
470 					.bytenr = disk_bytenr,
471 					.num_bytes = num_bytes,
472 					.parent = 0,
473 					.owning_root = btrfs_root_id(root),
474 					.ref_root = btrfs_root_id(root),
475 				};
476 				btrfs_init_data_ref(&ref, key.objectid,
477 						    key.offset - extent_offset,
478 						    0, false);
479 				ret = btrfs_free_extent(trans, &ref);
480 				if (ret) {
481 					btrfs_abort_transaction(trans, ret);
482 					break;
483 				}
484 				args->bytes_found += extent_end - key.offset;
485 			}
486 
487 			if (args->end == extent_end)
488 				break;
489 
490 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
491 				path->slots[0]++;
492 				goto next_slot;
493 			}
494 
495 			ret = btrfs_del_items(trans, root, path, del_slot,
496 					      del_nr);
497 			if (ret) {
498 				btrfs_abort_transaction(trans, ret);
499 				break;
500 			}
501 
502 			del_nr = 0;
503 			del_slot = 0;
504 
505 			btrfs_release_path(path);
506 			continue;
507 		}
508 
509 		BUG();
510 	}
511 
512 	if (!ret && del_nr > 0) {
513 		/*
514 		 * Set path->slots[0] to first slot, so that after the delete
515 		 * if items are move off from our leaf to its immediate left or
516 		 * right neighbor leafs, we end up with a correct and adjusted
517 		 * path->slots[0] for our insertion (if args->replace_extent).
518 		 */
519 		path->slots[0] = del_slot;
520 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
521 		if (ret)
522 			btrfs_abort_transaction(trans, ret);
523 	}
524 
525 	leaf = path->nodes[0];
526 	/*
527 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
528 	 * which case it unlocked our path, so check path->locks[0] matches a
529 	 * write lock.
530 	 */
531 	if (!ret && args->replace_extent &&
532 	    path->locks[0] == BTRFS_WRITE_LOCK &&
533 	    btrfs_leaf_free_space(leaf) >=
534 	    sizeof(struct btrfs_item) + args->extent_item_size) {
535 
536 		key.objectid = ino;
537 		key.type = BTRFS_EXTENT_DATA_KEY;
538 		key.offset = args->start;
539 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
540 			struct btrfs_key slot_key;
541 
542 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
543 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
544 				path->slots[0]++;
545 		}
546 		btrfs_setup_item_for_insert(trans, root, path, &key,
547 					    args->extent_item_size);
548 		args->extent_inserted = true;
549 	}
550 
551 	if (!args->path)
552 		btrfs_free_path(path);
553 	else if (!args->extent_inserted)
554 		btrfs_release_path(path);
555 out:
556 	args->drop_end = found ? min(args->end, last_end) : args->end;
557 
558 	return ret;
559 }
560 
561 static int extent_mergeable(struct extent_buffer *leaf, int slot,
562 			    u64 objectid, u64 bytenr, u64 orig_offset,
563 			    u64 *start, u64 *end)
564 {
565 	struct btrfs_file_extent_item *fi;
566 	struct btrfs_key key;
567 	u64 extent_end;
568 
569 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
570 		return 0;
571 
572 	btrfs_item_key_to_cpu(leaf, &key, slot);
573 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
574 		return 0;
575 
576 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
577 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
578 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
579 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
580 	    btrfs_file_extent_compression(leaf, fi) ||
581 	    btrfs_file_extent_encryption(leaf, fi) ||
582 	    btrfs_file_extent_other_encoding(leaf, fi))
583 		return 0;
584 
585 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
586 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
587 		return 0;
588 
589 	*start = key.offset;
590 	*end = extent_end;
591 	return 1;
592 }
593 
594 /*
595  * Mark extent in the range start - end as written.
596  *
597  * This changes extent type from 'pre-allocated' to 'regular'. If only
598  * part of extent is marked as written, the extent will be split into
599  * two or three.
600  */
601 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
602 			      struct btrfs_inode *inode, u64 start, u64 end)
603 {
604 	struct btrfs_root *root = inode->root;
605 	struct extent_buffer *leaf;
606 	struct btrfs_path *path;
607 	struct btrfs_file_extent_item *fi;
608 	struct btrfs_ref ref = { 0 };
609 	struct btrfs_key key;
610 	struct btrfs_key new_key;
611 	u64 bytenr;
612 	u64 num_bytes;
613 	u64 extent_end;
614 	u64 orig_offset;
615 	u64 other_start;
616 	u64 other_end;
617 	u64 split;
618 	int del_nr = 0;
619 	int del_slot = 0;
620 	int recow;
621 	int ret = 0;
622 	u64 ino = btrfs_ino(inode);
623 
624 	path = btrfs_alloc_path();
625 	if (!path)
626 		return -ENOMEM;
627 again:
628 	recow = 0;
629 	split = start;
630 	key.objectid = ino;
631 	key.type = BTRFS_EXTENT_DATA_KEY;
632 	key.offset = split;
633 
634 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
635 	if (ret < 0)
636 		goto out;
637 	if (ret > 0 && path->slots[0] > 0)
638 		path->slots[0]--;
639 
640 	leaf = path->nodes[0];
641 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
642 	if (key.objectid != ino ||
643 	    key.type != BTRFS_EXTENT_DATA_KEY) {
644 		ret = -EINVAL;
645 		btrfs_abort_transaction(trans, ret);
646 		goto out;
647 	}
648 	fi = btrfs_item_ptr(leaf, path->slots[0],
649 			    struct btrfs_file_extent_item);
650 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
651 		ret = -EINVAL;
652 		btrfs_abort_transaction(trans, ret);
653 		goto out;
654 	}
655 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
656 	if (key.offset > start || extent_end < end) {
657 		ret = -EINVAL;
658 		btrfs_abort_transaction(trans, ret);
659 		goto out;
660 	}
661 
662 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
663 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
664 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
665 	memcpy(&new_key, &key, sizeof(new_key));
666 
667 	if (start == key.offset && end < extent_end) {
668 		other_start = 0;
669 		other_end = start;
670 		if (extent_mergeable(leaf, path->slots[0] - 1,
671 				     ino, bytenr, orig_offset,
672 				     &other_start, &other_end)) {
673 			new_key.offset = end;
674 			btrfs_set_item_key_safe(trans, path, &new_key);
675 			fi = btrfs_item_ptr(leaf, path->slots[0],
676 					    struct btrfs_file_extent_item);
677 			btrfs_set_file_extent_generation(leaf, fi,
678 							 trans->transid);
679 			btrfs_set_file_extent_num_bytes(leaf, fi,
680 							extent_end - end);
681 			btrfs_set_file_extent_offset(leaf, fi,
682 						     end - orig_offset);
683 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
684 					    struct btrfs_file_extent_item);
685 			btrfs_set_file_extent_generation(leaf, fi,
686 							 trans->transid);
687 			btrfs_set_file_extent_num_bytes(leaf, fi,
688 							end - other_start);
689 			btrfs_mark_buffer_dirty(trans, leaf);
690 			goto out;
691 		}
692 	}
693 
694 	if (start > key.offset && end == extent_end) {
695 		other_start = end;
696 		other_end = 0;
697 		if (extent_mergeable(leaf, path->slots[0] + 1,
698 				     ino, bytenr, orig_offset,
699 				     &other_start, &other_end)) {
700 			fi = btrfs_item_ptr(leaf, path->slots[0],
701 					    struct btrfs_file_extent_item);
702 			btrfs_set_file_extent_num_bytes(leaf, fi,
703 							start - key.offset);
704 			btrfs_set_file_extent_generation(leaf, fi,
705 							 trans->transid);
706 			path->slots[0]++;
707 			new_key.offset = start;
708 			btrfs_set_item_key_safe(trans, path, &new_key);
709 
710 			fi = btrfs_item_ptr(leaf, path->slots[0],
711 					    struct btrfs_file_extent_item);
712 			btrfs_set_file_extent_generation(leaf, fi,
713 							 trans->transid);
714 			btrfs_set_file_extent_num_bytes(leaf, fi,
715 							other_end - start);
716 			btrfs_set_file_extent_offset(leaf, fi,
717 						     start - orig_offset);
718 			btrfs_mark_buffer_dirty(trans, leaf);
719 			goto out;
720 		}
721 	}
722 
723 	while (start > key.offset || end < extent_end) {
724 		if (key.offset == start)
725 			split = end;
726 
727 		new_key.offset = split;
728 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
729 		if (ret == -EAGAIN) {
730 			btrfs_release_path(path);
731 			goto again;
732 		}
733 		if (ret < 0) {
734 			btrfs_abort_transaction(trans, ret);
735 			goto out;
736 		}
737 
738 		leaf = path->nodes[0];
739 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
740 				    struct btrfs_file_extent_item);
741 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
742 		btrfs_set_file_extent_num_bytes(leaf, fi,
743 						split - key.offset);
744 
745 		fi = btrfs_item_ptr(leaf, path->slots[0],
746 				    struct btrfs_file_extent_item);
747 
748 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
749 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
750 		btrfs_set_file_extent_num_bytes(leaf, fi,
751 						extent_end - split);
752 		btrfs_mark_buffer_dirty(trans, leaf);
753 
754 		ref.action = BTRFS_ADD_DELAYED_REF;
755 		ref.bytenr = bytenr;
756 		ref.num_bytes = num_bytes;
757 		ref.parent = 0;
758 		ref.owning_root = btrfs_root_id(root);
759 		ref.ref_root = btrfs_root_id(root);
760 		btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
761 		ret = btrfs_inc_extent_ref(trans, &ref);
762 		if (ret) {
763 			btrfs_abort_transaction(trans, ret);
764 			goto out;
765 		}
766 
767 		if (split == start) {
768 			key.offset = start;
769 		} else {
770 			if (start != key.offset) {
771 				ret = -EINVAL;
772 				btrfs_abort_transaction(trans, ret);
773 				goto out;
774 			}
775 			path->slots[0]--;
776 			extent_end = end;
777 		}
778 		recow = 1;
779 	}
780 
781 	other_start = end;
782 	other_end = 0;
783 
784 	ref.action = BTRFS_DROP_DELAYED_REF;
785 	ref.bytenr = bytenr;
786 	ref.num_bytes = num_bytes;
787 	ref.parent = 0;
788 	ref.owning_root = btrfs_root_id(root);
789 	ref.ref_root = btrfs_root_id(root);
790 	btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
791 	if (extent_mergeable(leaf, path->slots[0] + 1,
792 			     ino, bytenr, orig_offset,
793 			     &other_start, &other_end)) {
794 		if (recow) {
795 			btrfs_release_path(path);
796 			goto again;
797 		}
798 		extent_end = other_end;
799 		del_slot = path->slots[0] + 1;
800 		del_nr++;
801 		ret = btrfs_free_extent(trans, &ref);
802 		if (ret) {
803 			btrfs_abort_transaction(trans, ret);
804 			goto out;
805 		}
806 	}
807 	other_start = 0;
808 	other_end = start;
809 	if (extent_mergeable(leaf, path->slots[0] - 1,
810 			     ino, bytenr, orig_offset,
811 			     &other_start, &other_end)) {
812 		if (recow) {
813 			btrfs_release_path(path);
814 			goto again;
815 		}
816 		key.offset = other_start;
817 		del_slot = path->slots[0];
818 		del_nr++;
819 		ret = btrfs_free_extent(trans, &ref);
820 		if (ret) {
821 			btrfs_abort_transaction(trans, ret);
822 			goto out;
823 		}
824 	}
825 	if (del_nr == 0) {
826 		fi = btrfs_item_ptr(leaf, path->slots[0],
827 			   struct btrfs_file_extent_item);
828 		btrfs_set_file_extent_type(leaf, fi,
829 					   BTRFS_FILE_EXTENT_REG);
830 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
831 		btrfs_mark_buffer_dirty(trans, leaf);
832 	} else {
833 		fi = btrfs_item_ptr(leaf, del_slot - 1,
834 			   struct btrfs_file_extent_item);
835 		btrfs_set_file_extent_type(leaf, fi,
836 					   BTRFS_FILE_EXTENT_REG);
837 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
838 		btrfs_set_file_extent_num_bytes(leaf, fi,
839 						extent_end - key.offset);
840 		btrfs_mark_buffer_dirty(trans, leaf);
841 
842 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
843 		if (ret < 0) {
844 			btrfs_abort_transaction(trans, ret);
845 			goto out;
846 		}
847 	}
848 out:
849 	btrfs_free_path(path);
850 	return ret;
851 }
852 
853 /*
854  * on error we return an unlocked page and the error value
855  * on success we return a locked page and 0
856  */
857 static int prepare_uptodate_page(struct inode *inode,
858 				 struct page *page, u64 pos,
859 				 bool force_uptodate)
860 {
861 	struct folio *folio = page_folio(page);
862 	int ret = 0;
863 
864 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
865 	    !PageUptodate(page)) {
866 		ret = btrfs_read_folio(NULL, folio);
867 		if (ret)
868 			return ret;
869 		lock_page(page);
870 		if (!PageUptodate(page)) {
871 			unlock_page(page);
872 			return -EIO;
873 		}
874 
875 		/*
876 		 * Since btrfs_read_folio() will unlock the folio before it
877 		 * returns, there is a window where btrfs_release_folio() can be
878 		 * called to release the page.  Here we check both inode
879 		 * mapping and PagePrivate() to make sure the page was not
880 		 * released.
881 		 *
882 		 * The private flag check is essential for subpage as we need
883 		 * to store extra bitmap using folio private.
884 		 */
885 		if (page->mapping != inode->i_mapping || !folio_test_private(folio)) {
886 			unlock_page(page);
887 			return -EAGAIN;
888 		}
889 	}
890 	return 0;
891 }
892 
893 static fgf_t get_prepare_fgp_flags(bool nowait)
894 {
895 	fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
896 
897 	if (nowait)
898 		fgp_flags |= FGP_NOWAIT;
899 
900 	return fgp_flags;
901 }
902 
903 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
904 {
905 	gfp_t gfp;
906 
907 	gfp = btrfs_alloc_write_mask(inode->i_mapping);
908 	if (nowait) {
909 		gfp &= ~__GFP_DIRECT_RECLAIM;
910 		gfp |= GFP_NOWAIT;
911 	}
912 
913 	return gfp;
914 }
915 
916 /*
917  * this just gets pages into the page cache and locks them down.
918  */
919 static noinline int prepare_pages(struct inode *inode, struct page **pages,
920 				  size_t num_pages, loff_t pos,
921 				  size_t write_bytes, bool force_uptodate,
922 				  bool nowait)
923 {
924 	int i;
925 	unsigned long index = pos >> PAGE_SHIFT;
926 	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
927 	fgf_t fgp_flags = get_prepare_fgp_flags(nowait);
928 	int ret = 0;
929 	int faili;
930 
931 	for (i = 0; i < num_pages; i++) {
932 again:
933 		pages[i] = pagecache_get_page(inode->i_mapping, index + i,
934 					      fgp_flags, mask | __GFP_WRITE);
935 		if (!pages[i]) {
936 			faili = i - 1;
937 			if (nowait)
938 				ret = -EAGAIN;
939 			else
940 				ret = -ENOMEM;
941 			goto fail;
942 		}
943 
944 		ret = set_page_extent_mapped(pages[i]);
945 		if (ret < 0) {
946 			faili = i;
947 			goto fail;
948 		}
949 
950 		if (i == 0)
951 			ret = prepare_uptodate_page(inode, pages[i], pos,
952 						    force_uptodate);
953 		if (!ret && i == num_pages - 1)
954 			ret = prepare_uptodate_page(inode, pages[i],
955 						    pos + write_bytes, false);
956 		if (ret) {
957 			put_page(pages[i]);
958 			if (!nowait && ret == -EAGAIN) {
959 				ret = 0;
960 				goto again;
961 			}
962 			faili = i - 1;
963 			goto fail;
964 		}
965 		wait_on_page_writeback(pages[i]);
966 	}
967 
968 	return 0;
969 fail:
970 	while (faili >= 0) {
971 		unlock_page(pages[faili]);
972 		put_page(pages[faili]);
973 		faili--;
974 	}
975 	return ret;
976 
977 }
978 
979 /*
980  * This function locks the extent and properly waits for data=ordered extents
981  * to finish before allowing the pages to be modified if need.
982  *
983  * The return value:
984  * 1 - the extent is locked
985  * 0 - the extent is not locked, and everything is OK
986  * -EAGAIN - need re-prepare the pages
987  * the other < 0 number - Something wrong happens
988  */
989 static noinline int
990 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
991 				size_t num_pages, loff_t pos,
992 				size_t write_bytes,
993 				u64 *lockstart, u64 *lockend, bool nowait,
994 				struct extent_state **cached_state)
995 {
996 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
997 	u64 start_pos;
998 	u64 last_pos;
999 	int i;
1000 	int ret = 0;
1001 
1002 	start_pos = round_down(pos, fs_info->sectorsize);
1003 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1004 
1005 	if (start_pos < inode->vfs_inode.i_size) {
1006 		struct btrfs_ordered_extent *ordered;
1007 
1008 		if (nowait) {
1009 			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
1010 					     cached_state)) {
1011 				for (i = 0; i < num_pages; i++) {
1012 					unlock_page(pages[i]);
1013 					put_page(pages[i]);
1014 					pages[i] = NULL;
1015 				}
1016 
1017 				return -EAGAIN;
1018 			}
1019 		} else {
1020 			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1021 		}
1022 
1023 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1024 						     last_pos - start_pos + 1);
1025 		if (ordered &&
1026 		    ordered->file_offset + ordered->num_bytes > start_pos &&
1027 		    ordered->file_offset <= last_pos) {
1028 			unlock_extent(&inode->io_tree, start_pos, last_pos,
1029 				      cached_state);
1030 			for (i = 0; i < num_pages; i++) {
1031 				unlock_page(pages[i]);
1032 				put_page(pages[i]);
1033 			}
1034 			btrfs_start_ordered_extent(ordered);
1035 			btrfs_put_ordered_extent(ordered);
1036 			return -EAGAIN;
1037 		}
1038 		if (ordered)
1039 			btrfs_put_ordered_extent(ordered);
1040 
1041 		*lockstart = start_pos;
1042 		*lockend = last_pos;
1043 		ret = 1;
1044 	}
1045 
1046 	/*
1047 	 * We should be called after prepare_pages() which should have locked
1048 	 * all pages in the range.
1049 	 */
1050 	for (i = 0; i < num_pages; i++)
1051 		WARN_ON(!PageLocked(pages[i]));
1052 
1053 	return ret;
1054 }
1055 
1056 /*
1057  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1058  *
1059  * @pos:         File offset.
1060  * @write_bytes: The length to write, will be updated to the nocow writeable
1061  *               range.
1062  *
1063  * This function will flush ordered extents in the range to ensure proper
1064  * nocow checks.
1065  *
1066  * Return:
1067  * > 0          If we can nocow, and updates @write_bytes.
1068  *  0           If we can't do a nocow write.
1069  * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1070  *              root is in progress.
1071  * < 0          If an error happened.
1072  *
1073  * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1074  */
1075 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1076 			   size_t *write_bytes, bool nowait)
1077 {
1078 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1079 	struct btrfs_root *root = inode->root;
1080 	struct extent_state *cached_state = NULL;
1081 	u64 lockstart, lockend;
1082 	u64 num_bytes;
1083 	int ret;
1084 
1085 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1086 		return 0;
1087 
1088 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1089 		return -EAGAIN;
1090 
1091 	lockstart = round_down(pos, fs_info->sectorsize);
1092 	lockend = round_up(pos + *write_bytes,
1093 			   fs_info->sectorsize) - 1;
1094 	num_bytes = lockend - lockstart + 1;
1095 
1096 	if (nowait) {
1097 		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1098 						  &cached_state)) {
1099 			btrfs_drew_write_unlock(&root->snapshot_lock);
1100 			return -EAGAIN;
1101 		}
1102 	} else {
1103 		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1104 						   &cached_state);
1105 	}
1106 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1107 			       NULL, nowait, false);
1108 	if (ret <= 0)
1109 		btrfs_drew_write_unlock(&root->snapshot_lock);
1110 	else
1111 		*write_bytes = min_t(size_t, *write_bytes ,
1112 				     num_bytes - pos + lockstart);
1113 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1114 
1115 	return ret;
1116 }
1117 
1118 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1119 {
1120 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1121 }
1122 
1123 static void update_time_for_write(struct inode *inode)
1124 {
1125 	struct timespec64 now, ts;
1126 
1127 	if (IS_NOCMTIME(inode))
1128 		return;
1129 
1130 	now = current_time(inode);
1131 	ts = inode_get_mtime(inode);
1132 	if (!timespec64_equal(&ts, &now))
1133 		inode_set_mtime_to_ts(inode, now);
1134 
1135 	ts = inode_get_ctime(inode);
1136 	if (!timespec64_equal(&ts, &now))
1137 		inode_set_ctime_to_ts(inode, now);
1138 
1139 	if (IS_I_VERSION(inode))
1140 		inode_inc_iversion(inode);
1141 }
1142 
1143 int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, size_t count)
1144 {
1145 	struct file *file = iocb->ki_filp;
1146 	struct inode *inode = file_inode(file);
1147 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1148 	loff_t pos = iocb->ki_pos;
1149 	int ret;
1150 	loff_t oldsize;
1151 	loff_t start_pos;
1152 
1153 	/*
1154 	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1155 	 * prealloc flags, as without those flags we always have to COW. We will
1156 	 * later check if we can really COW into the target range (using
1157 	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1158 	 */
1159 	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1160 	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1161 		return -EAGAIN;
1162 
1163 	ret = file_remove_privs(file);
1164 	if (ret)
1165 		return ret;
1166 
1167 	/*
1168 	 * We reserve space for updating the inode when we reserve space for the
1169 	 * extent we are going to write, so we will enospc out there.  We don't
1170 	 * need to start yet another transaction to update the inode as we will
1171 	 * update the inode when we finish writing whatever data we write.
1172 	 */
1173 	update_time_for_write(inode);
1174 
1175 	start_pos = round_down(pos, fs_info->sectorsize);
1176 	oldsize = i_size_read(inode);
1177 	if (start_pos > oldsize) {
1178 		/* Expand hole size to cover write data, preventing empty gap */
1179 		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1180 
1181 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1182 		if (ret)
1183 			return ret;
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *i)
1190 {
1191 	struct file *file = iocb->ki_filp;
1192 	loff_t pos;
1193 	struct inode *inode = file_inode(file);
1194 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1195 	struct page **pages = NULL;
1196 	struct extent_changeset *data_reserved = NULL;
1197 	u64 release_bytes = 0;
1198 	u64 lockstart;
1199 	u64 lockend;
1200 	size_t num_written = 0;
1201 	int nrptrs;
1202 	ssize_t ret;
1203 	bool only_release_metadata = false;
1204 	bool force_page_uptodate = false;
1205 	loff_t old_isize = i_size_read(inode);
1206 	unsigned int ilock_flags = 0;
1207 	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1208 	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1209 
1210 	if (nowait)
1211 		ilock_flags |= BTRFS_ILOCK_TRY;
1212 
1213 	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1214 	if (ret < 0)
1215 		return ret;
1216 
1217 	ret = generic_write_checks(iocb, i);
1218 	if (ret <= 0)
1219 		goto out;
1220 
1221 	ret = btrfs_write_check(iocb, i, ret);
1222 	if (ret < 0)
1223 		goto out;
1224 
1225 	pos = iocb->ki_pos;
1226 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1227 			PAGE_SIZE / (sizeof(struct page *)));
1228 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1229 	nrptrs = max(nrptrs, 8);
1230 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1231 	if (!pages) {
1232 		ret = -ENOMEM;
1233 		goto out;
1234 	}
1235 
1236 	while (iov_iter_count(i) > 0) {
1237 		struct extent_state *cached_state = NULL;
1238 		size_t offset = offset_in_page(pos);
1239 		size_t sector_offset;
1240 		size_t write_bytes = min(iov_iter_count(i),
1241 					 nrptrs * (size_t)PAGE_SIZE -
1242 					 offset);
1243 		size_t num_pages;
1244 		size_t reserve_bytes;
1245 		size_t dirty_pages;
1246 		size_t copied;
1247 		size_t dirty_sectors;
1248 		size_t num_sectors;
1249 		int extents_locked;
1250 
1251 		/*
1252 		 * Fault pages before locking them in prepare_pages
1253 		 * to avoid recursive lock
1254 		 */
1255 		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1256 			ret = -EFAULT;
1257 			break;
1258 		}
1259 
1260 		only_release_metadata = false;
1261 		sector_offset = pos & (fs_info->sectorsize - 1);
1262 
1263 		extent_changeset_release(data_reserved);
1264 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1265 						  &data_reserved, pos,
1266 						  write_bytes, nowait);
1267 		if (ret < 0) {
1268 			int can_nocow;
1269 
1270 			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1271 				ret = -EAGAIN;
1272 				break;
1273 			}
1274 
1275 			/*
1276 			 * If we don't have to COW at the offset, reserve
1277 			 * metadata only. write_bytes may get smaller than
1278 			 * requested here.
1279 			 */
1280 			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1281 							   &write_bytes, nowait);
1282 			if (can_nocow < 0)
1283 				ret = can_nocow;
1284 			if (can_nocow > 0)
1285 				ret = 0;
1286 			if (ret)
1287 				break;
1288 			only_release_metadata = true;
1289 		}
1290 
1291 		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1292 		WARN_ON(num_pages > nrptrs);
1293 		reserve_bytes = round_up(write_bytes + sector_offset,
1294 					 fs_info->sectorsize);
1295 		WARN_ON(reserve_bytes == 0);
1296 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1297 						      reserve_bytes,
1298 						      reserve_bytes, nowait);
1299 		if (ret) {
1300 			if (!only_release_metadata)
1301 				btrfs_free_reserved_data_space(BTRFS_I(inode),
1302 						data_reserved, pos,
1303 						write_bytes);
1304 			else
1305 				btrfs_check_nocow_unlock(BTRFS_I(inode));
1306 
1307 			if (nowait && ret == -ENOSPC)
1308 				ret = -EAGAIN;
1309 			break;
1310 		}
1311 
1312 		release_bytes = reserve_bytes;
1313 again:
1314 		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1315 		if (ret) {
1316 			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1317 			break;
1318 		}
1319 
1320 		/*
1321 		 * This is going to setup the pages array with the number of
1322 		 * pages we want, so we don't really need to worry about the
1323 		 * contents of pages from loop to loop
1324 		 */
1325 		ret = prepare_pages(inode, pages, num_pages,
1326 				    pos, write_bytes, force_page_uptodate, false);
1327 		if (ret) {
1328 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1329 						       reserve_bytes);
1330 			break;
1331 		}
1332 
1333 		extents_locked = lock_and_cleanup_extent_if_need(
1334 				BTRFS_I(inode), pages,
1335 				num_pages, pos, write_bytes, &lockstart,
1336 				&lockend, nowait, &cached_state);
1337 		if (extents_locked < 0) {
1338 			if (!nowait && extents_locked == -EAGAIN)
1339 				goto again;
1340 
1341 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1342 						       reserve_bytes);
1343 			ret = extents_locked;
1344 			break;
1345 		}
1346 
1347 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1348 
1349 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1350 		dirty_sectors = round_up(copied + sector_offset,
1351 					fs_info->sectorsize);
1352 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1353 
1354 		/*
1355 		 * if we have trouble faulting in the pages, fall
1356 		 * back to one page at a time
1357 		 */
1358 		if (copied < write_bytes)
1359 			nrptrs = 1;
1360 
1361 		if (copied == 0) {
1362 			force_page_uptodate = true;
1363 			dirty_sectors = 0;
1364 			dirty_pages = 0;
1365 		} else {
1366 			force_page_uptodate = false;
1367 			dirty_pages = DIV_ROUND_UP(copied + offset,
1368 						   PAGE_SIZE);
1369 		}
1370 
1371 		if (num_sectors > dirty_sectors) {
1372 			/* release everything except the sectors we dirtied */
1373 			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1374 			if (only_release_metadata) {
1375 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1376 							release_bytes, true);
1377 			} else {
1378 				u64 __pos;
1379 
1380 				__pos = round_down(pos,
1381 						   fs_info->sectorsize) +
1382 					(dirty_pages << PAGE_SHIFT);
1383 				btrfs_delalloc_release_space(BTRFS_I(inode),
1384 						data_reserved, __pos,
1385 						release_bytes, true);
1386 			}
1387 		}
1388 
1389 		release_bytes = round_up(copied + sector_offset,
1390 					fs_info->sectorsize);
1391 
1392 		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1393 					dirty_pages, pos, copied,
1394 					&cached_state, only_release_metadata);
1395 
1396 		/*
1397 		 * If we have not locked the extent range, because the range's
1398 		 * start offset is >= i_size, we might still have a non-NULL
1399 		 * cached extent state, acquired while marking the extent range
1400 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1401 		 * possible cached extent state to avoid a memory leak.
1402 		 */
1403 		if (extents_locked)
1404 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1405 				      lockend, &cached_state);
1406 		else
1407 			free_extent_state(cached_state);
1408 
1409 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1410 		if (ret) {
1411 			btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1412 			break;
1413 		}
1414 
1415 		release_bytes = 0;
1416 		if (only_release_metadata)
1417 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1418 
1419 		btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1420 
1421 		cond_resched();
1422 
1423 		pos += copied;
1424 		num_written += copied;
1425 	}
1426 
1427 	kfree(pages);
1428 
1429 	if (release_bytes) {
1430 		if (only_release_metadata) {
1431 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1432 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1433 					release_bytes, true);
1434 		} else {
1435 			btrfs_delalloc_release_space(BTRFS_I(inode),
1436 					data_reserved,
1437 					round_down(pos, fs_info->sectorsize),
1438 					release_bytes, true);
1439 		}
1440 	}
1441 
1442 	extent_changeset_free(data_reserved);
1443 	if (num_written > 0) {
1444 		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1445 		iocb->ki_pos += num_written;
1446 	}
1447 out:
1448 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1449 	return num_written ? num_written : ret;
1450 }
1451 
1452 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1453 			const struct btrfs_ioctl_encoded_io_args *encoded)
1454 {
1455 	struct file *file = iocb->ki_filp;
1456 	struct inode *inode = file_inode(file);
1457 	loff_t count;
1458 	ssize_t ret;
1459 
1460 	btrfs_inode_lock(BTRFS_I(inode), 0);
1461 	count = encoded->len;
1462 	ret = generic_write_checks_count(iocb, &count);
1463 	if (ret == 0 && count != encoded->len) {
1464 		/*
1465 		 * The write got truncated by generic_write_checks_count(). We
1466 		 * can't do a partial encoded write.
1467 		 */
1468 		ret = -EFBIG;
1469 	}
1470 	if (ret || encoded->len == 0)
1471 		goto out;
1472 
1473 	ret = btrfs_write_check(iocb, from, encoded->len);
1474 	if (ret < 0)
1475 		goto out;
1476 
1477 	ret = btrfs_do_encoded_write(iocb, from, encoded);
1478 out:
1479 	btrfs_inode_unlock(BTRFS_I(inode), 0);
1480 	return ret;
1481 }
1482 
1483 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1484 			    const struct btrfs_ioctl_encoded_io_args *encoded)
1485 {
1486 	struct file *file = iocb->ki_filp;
1487 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1488 	ssize_t num_written, num_sync;
1489 
1490 	/*
1491 	 * If the fs flips readonly due to some impossible error, although we
1492 	 * have opened a file as writable, we have to stop this write operation
1493 	 * to ensure consistency.
1494 	 */
1495 	if (BTRFS_FS_ERROR(inode->root->fs_info))
1496 		return -EROFS;
1497 
1498 	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1499 		return -EOPNOTSUPP;
1500 
1501 	if (encoded) {
1502 		num_written = btrfs_encoded_write(iocb, from, encoded);
1503 		num_sync = encoded->len;
1504 	} else if (iocb->ki_flags & IOCB_DIRECT) {
1505 		num_written = btrfs_direct_write(iocb, from);
1506 		num_sync = num_written;
1507 	} else {
1508 		num_written = btrfs_buffered_write(iocb, from);
1509 		num_sync = num_written;
1510 	}
1511 
1512 	btrfs_set_inode_last_sub_trans(inode);
1513 
1514 	if (num_sync > 0) {
1515 		num_sync = generic_write_sync(iocb, num_sync);
1516 		if (num_sync < 0)
1517 			num_written = num_sync;
1518 	}
1519 
1520 	return num_written;
1521 }
1522 
1523 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1524 {
1525 	return btrfs_do_write_iter(iocb, from, NULL);
1526 }
1527 
1528 int btrfs_release_file(struct inode *inode, struct file *filp)
1529 {
1530 	struct btrfs_file_private *private = filp->private_data;
1531 
1532 	if (private) {
1533 		kfree(private->filldir_buf);
1534 		free_extent_state(private->llseek_cached_state);
1535 		kfree(private);
1536 		filp->private_data = NULL;
1537 	}
1538 
1539 	/*
1540 	 * Set by setattr when we are about to truncate a file from a non-zero
1541 	 * size to a zero size.  This tries to flush down new bytes that may
1542 	 * have been written if the application were using truncate to replace
1543 	 * a file in place.
1544 	 */
1545 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1546 			       &BTRFS_I(inode)->runtime_flags))
1547 			filemap_flush(inode->i_mapping);
1548 	return 0;
1549 }
1550 
1551 static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end)
1552 {
1553 	int ret;
1554 	struct blk_plug plug;
1555 
1556 	/*
1557 	 * This is only called in fsync, which would do synchronous writes, so
1558 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1559 	 * multiple disks using raid profile, a large IO can be split to
1560 	 * several segments of stripe length (currently 64K).
1561 	 */
1562 	blk_start_plug(&plug);
1563 	ret = btrfs_fdatawrite_range(inode, start, end);
1564 	blk_finish_plug(&plug);
1565 
1566 	return ret;
1567 }
1568 
1569 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1570 {
1571 	struct btrfs_inode *inode = ctx->inode;
1572 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1573 
1574 	if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1575 	    list_empty(&ctx->ordered_extents))
1576 		return true;
1577 
1578 	/*
1579 	 * If we are doing a fast fsync we can not bail out if the inode's
1580 	 * last_trans is <= then the last committed transaction, because we only
1581 	 * update the last_trans of the inode during ordered extent completion,
1582 	 * and for a fast fsync we don't wait for that, we only wait for the
1583 	 * writeback to complete.
1584 	 */
1585 	if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1586 	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1587 	     list_empty(&ctx->ordered_extents)))
1588 		return true;
1589 
1590 	return false;
1591 }
1592 
1593 /*
1594  * fsync call for both files and directories.  This logs the inode into
1595  * the tree log instead of forcing full commits whenever possible.
1596  *
1597  * It needs to call filemap_fdatawait so that all ordered extent updates are
1598  * in the metadata btree are up to date for copying to the log.
1599  *
1600  * It drops the inode mutex before doing the tree log commit.  This is an
1601  * important optimization for directories because holding the mutex prevents
1602  * new operations on the dir while we write to disk.
1603  */
1604 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1605 {
1606 	struct dentry *dentry = file_dentry(file);
1607 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
1608 	struct btrfs_root *root = inode->root;
1609 	struct btrfs_fs_info *fs_info = root->fs_info;
1610 	struct btrfs_trans_handle *trans;
1611 	struct btrfs_log_ctx ctx;
1612 	int ret = 0, err;
1613 	u64 len;
1614 	bool full_sync;
1615 
1616 	trace_btrfs_sync_file(file, datasync);
1617 
1618 	btrfs_init_log_ctx(&ctx, inode);
1619 
1620 	/*
1621 	 * Always set the range to a full range, otherwise we can get into
1622 	 * several problems, from missing file extent items to represent holes
1623 	 * when not using the NO_HOLES feature, to log tree corruption due to
1624 	 * races between hole detection during logging and completion of ordered
1625 	 * extents outside the range, to missing checksums due to ordered extents
1626 	 * for which we flushed only a subset of their pages.
1627 	 */
1628 	start = 0;
1629 	end = LLONG_MAX;
1630 	len = (u64)LLONG_MAX + 1;
1631 
1632 	/*
1633 	 * We write the dirty pages in the range and wait until they complete
1634 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1635 	 * multi-task, and make the performance up.  See
1636 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1637 	 */
1638 	ret = start_ordered_ops(inode, start, end);
1639 	if (ret)
1640 		goto out;
1641 
1642 	btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
1643 
1644 	atomic_inc(&root->log_batch);
1645 
1646 	/*
1647 	 * Before we acquired the inode's lock and the mmap lock, someone may
1648 	 * have dirtied more pages in the target range. We need to make sure
1649 	 * that writeback for any such pages does not start while we are logging
1650 	 * the inode, because if it does, any of the following might happen when
1651 	 * we are not doing a full inode sync:
1652 	 *
1653 	 * 1) We log an extent after its writeback finishes but before its
1654 	 *    checksums are added to the csum tree, leading to -EIO errors
1655 	 *    when attempting to read the extent after a log replay.
1656 	 *
1657 	 * 2) We can end up logging an extent before its writeback finishes.
1658 	 *    Therefore after the log replay we will have a file extent item
1659 	 *    pointing to an unwritten extent (and no data checksums as well).
1660 	 *
1661 	 * So trigger writeback for any eventual new dirty pages and then we
1662 	 * wait for all ordered extents to complete below.
1663 	 */
1664 	ret = start_ordered_ops(inode, start, end);
1665 	if (ret) {
1666 		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1667 		goto out;
1668 	}
1669 
1670 	/*
1671 	 * Always check for the full sync flag while holding the inode's lock,
1672 	 * to avoid races with other tasks. The flag must be either set all the
1673 	 * time during logging or always off all the time while logging.
1674 	 * We check the flag here after starting delalloc above, because when
1675 	 * running delalloc the full sync flag may be set if we need to drop
1676 	 * extra extent map ranges due to temporary memory allocation failures.
1677 	 */
1678 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1679 
1680 	/*
1681 	 * We have to do this here to avoid the priority inversion of waiting on
1682 	 * IO of a lower priority task while holding a transaction open.
1683 	 *
1684 	 * For a full fsync we wait for the ordered extents to complete while
1685 	 * for a fast fsync we wait just for writeback to complete, and then
1686 	 * attach the ordered extents to the transaction so that a transaction
1687 	 * commit waits for their completion, to avoid data loss if we fsync,
1688 	 * the current transaction commits before the ordered extents complete
1689 	 * and a power failure happens right after that.
1690 	 *
1691 	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1692 	 * logical address recorded in the ordered extent may change. We need
1693 	 * to wait for the IO to stabilize the logical address.
1694 	 */
1695 	if (full_sync || btrfs_is_zoned(fs_info)) {
1696 		ret = btrfs_wait_ordered_range(inode, start, len);
1697 		clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
1698 	} else {
1699 		/*
1700 		 * Get our ordered extents as soon as possible to avoid doing
1701 		 * checksum lookups in the csum tree, and use instead the
1702 		 * checksums attached to the ordered extents.
1703 		 */
1704 		btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents);
1705 		ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end);
1706 		if (ret)
1707 			goto out_release_extents;
1708 
1709 		/*
1710 		 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after
1711 		 * starting and waiting for writeback, because for buffered IO
1712 		 * it may have been set during the end IO callback
1713 		 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in
1714 		 * case an error happened and we need to wait for ordered
1715 		 * extents to complete so that any extent maps that point to
1716 		 * unwritten locations are dropped and we don't log them.
1717 		 */
1718 		if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags))
1719 			ret = btrfs_wait_ordered_range(inode, start, len);
1720 	}
1721 
1722 	if (ret)
1723 		goto out_release_extents;
1724 
1725 	atomic_inc(&root->log_batch);
1726 
1727 	if (skip_inode_logging(&ctx)) {
1728 		/*
1729 		 * We've had everything committed since the last time we were
1730 		 * modified so clear this flag in case it was set for whatever
1731 		 * reason, it's no longer relevant.
1732 		 */
1733 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1734 		/*
1735 		 * An ordered extent might have started before and completed
1736 		 * already with io errors, in which case the inode was not
1737 		 * updated and we end up here. So check the inode's mapping
1738 		 * for any errors that might have happened since we last
1739 		 * checked called fsync.
1740 		 */
1741 		ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err);
1742 		goto out_release_extents;
1743 	}
1744 
1745 	btrfs_init_log_ctx_scratch_eb(&ctx);
1746 
1747 	/*
1748 	 * We use start here because we will need to wait on the IO to complete
1749 	 * in btrfs_sync_log, which could require joining a transaction (for
1750 	 * example checking cross references in the nocow path).  If we use join
1751 	 * here we could get into a situation where we're waiting on IO to
1752 	 * happen that is blocked on a transaction trying to commit.  With start
1753 	 * we inc the extwriter counter, so we wait for all extwriters to exit
1754 	 * before we start blocking joiners.  This comment is to keep somebody
1755 	 * from thinking they are super smart and changing this to
1756 	 * btrfs_join_transaction *cough*Josef*cough*.
1757 	 */
1758 	trans = btrfs_start_transaction(root, 0);
1759 	if (IS_ERR(trans)) {
1760 		ret = PTR_ERR(trans);
1761 		goto out_release_extents;
1762 	}
1763 	trans->in_fsync = true;
1764 
1765 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1766 	/*
1767 	 * Scratch eb no longer needed, release before syncing log or commit
1768 	 * transaction, to avoid holding unnecessary memory during such long
1769 	 * operations.
1770 	 */
1771 	if (ctx.scratch_eb) {
1772 		free_extent_buffer(ctx.scratch_eb);
1773 		ctx.scratch_eb = NULL;
1774 	}
1775 	btrfs_release_log_ctx_extents(&ctx);
1776 	if (ret < 0) {
1777 		/* Fallthrough and commit/free transaction. */
1778 		ret = BTRFS_LOG_FORCE_COMMIT;
1779 	}
1780 
1781 	/* we've logged all the items and now have a consistent
1782 	 * version of the file in the log.  It is possible that
1783 	 * someone will come in and modify the file, but that's
1784 	 * fine because the log is consistent on disk, and we
1785 	 * have references to all of the file's extents
1786 	 *
1787 	 * It is possible that someone will come in and log the
1788 	 * file again, but that will end up using the synchronization
1789 	 * inside btrfs_sync_log to keep things safe.
1790 	 */
1791 	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1792 
1793 	if (ret == BTRFS_NO_LOG_SYNC) {
1794 		ret = btrfs_end_transaction(trans);
1795 		goto out;
1796 	}
1797 
1798 	/* We successfully logged the inode, attempt to sync the log. */
1799 	if (!ret) {
1800 		ret = btrfs_sync_log(trans, root, &ctx);
1801 		if (!ret) {
1802 			ret = btrfs_end_transaction(trans);
1803 			goto out;
1804 		}
1805 	}
1806 
1807 	/*
1808 	 * At this point we need to commit the transaction because we had
1809 	 * btrfs_need_log_full_commit() or some other error.
1810 	 *
1811 	 * If we didn't do a full sync we have to stop the trans handle, wait on
1812 	 * the ordered extents, start it again and commit the transaction.  If
1813 	 * we attempt to wait on the ordered extents here we could deadlock with
1814 	 * something like fallocate() that is holding the extent lock trying to
1815 	 * start a transaction while some other thread is trying to commit the
1816 	 * transaction while we (fsync) are currently holding the transaction
1817 	 * open.
1818 	 */
1819 	if (!full_sync) {
1820 		ret = btrfs_end_transaction(trans);
1821 		if (ret)
1822 			goto out;
1823 		ret = btrfs_wait_ordered_range(inode, start, len);
1824 		if (ret)
1825 			goto out;
1826 
1827 		/*
1828 		 * This is safe to use here because we're only interested in
1829 		 * making sure the transaction that had the ordered extents is
1830 		 * committed.  We aren't waiting on anything past this point,
1831 		 * we're purely getting the transaction and committing it.
1832 		 */
1833 		trans = btrfs_attach_transaction_barrier(root);
1834 		if (IS_ERR(trans)) {
1835 			ret = PTR_ERR(trans);
1836 
1837 			/*
1838 			 * We committed the transaction and there's no currently
1839 			 * running transaction, this means everything we care
1840 			 * about made it to disk and we are done.
1841 			 */
1842 			if (ret == -ENOENT)
1843 				ret = 0;
1844 			goto out;
1845 		}
1846 	}
1847 
1848 	ret = btrfs_commit_transaction(trans);
1849 out:
1850 	free_extent_buffer(ctx.scratch_eb);
1851 	ASSERT(list_empty(&ctx.list));
1852 	ASSERT(list_empty(&ctx.conflict_inodes));
1853 	err = file_check_and_advance_wb_err(file);
1854 	if (!ret)
1855 		ret = err;
1856 	return ret > 0 ? -EIO : ret;
1857 
1858 out_release_extents:
1859 	btrfs_release_log_ctx_extents(&ctx);
1860 	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1861 	goto out;
1862 }
1863 
1864 /*
1865  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
1866  * called from a page fault handler when a page is first dirtied. Hence we must
1867  * be careful to check for EOF conditions here. We set the page up correctly
1868  * for a written page which means we get ENOSPC checking when writing into
1869  * holes and correct delalloc and unwritten extent mapping on filesystems that
1870  * support these features.
1871  *
1872  * We are not allowed to take the i_mutex here so we have to play games to
1873  * protect against truncate races as the page could now be beyond EOF.  Because
1874  * truncate_setsize() writes the inode size before removing pages, once we have
1875  * the page lock we can determine safely if the page is beyond EOF. If it is not
1876  * beyond EOF, then the page is guaranteed safe against truncation until we
1877  * unlock the page.
1878  */
1879 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
1880 {
1881 	struct page *page = vmf->page;
1882 	struct folio *folio = page_folio(page);
1883 	struct inode *inode = file_inode(vmf->vma->vm_file);
1884 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1885 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1886 	struct btrfs_ordered_extent *ordered;
1887 	struct extent_state *cached_state = NULL;
1888 	struct extent_changeset *data_reserved = NULL;
1889 	unsigned long zero_start;
1890 	loff_t size;
1891 	vm_fault_t ret;
1892 	int ret2;
1893 	int reserved = 0;
1894 	u64 reserved_space;
1895 	u64 page_start;
1896 	u64 page_end;
1897 	u64 end;
1898 
1899 	ASSERT(folio_order(folio) == 0);
1900 
1901 	reserved_space = PAGE_SIZE;
1902 
1903 	sb_start_pagefault(inode->i_sb);
1904 	page_start = page_offset(page);
1905 	page_end = page_start + PAGE_SIZE - 1;
1906 	end = page_end;
1907 
1908 	/*
1909 	 * Reserving delalloc space after obtaining the page lock can lead to
1910 	 * deadlock. For example, if a dirty page is locked by this function
1911 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
1912 	 * dirty page write out, then the btrfs_writepages() function could
1913 	 * end up waiting indefinitely to get a lock on the page currently
1914 	 * being processed by btrfs_page_mkwrite() function.
1915 	 */
1916 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1917 					    page_start, reserved_space);
1918 	if (!ret2) {
1919 		ret2 = file_update_time(vmf->vma->vm_file);
1920 		reserved = 1;
1921 	}
1922 	if (ret2) {
1923 		ret = vmf_error(ret2);
1924 		if (reserved)
1925 			goto out;
1926 		goto out_noreserve;
1927 	}
1928 
1929 	/* Make the VM retry the fault. */
1930 	ret = VM_FAULT_NOPAGE;
1931 again:
1932 	down_read(&BTRFS_I(inode)->i_mmap_lock);
1933 	lock_page(page);
1934 	size = i_size_read(inode);
1935 
1936 	if ((page->mapping != inode->i_mapping) ||
1937 	    (page_start >= size)) {
1938 		/* Page got truncated out from underneath us. */
1939 		goto out_unlock;
1940 	}
1941 	wait_on_page_writeback(page);
1942 
1943 	lock_extent(io_tree, page_start, page_end, &cached_state);
1944 	ret2 = set_page_extent_mapped(page);
1945 	if (ret2 < 0) {
1946 		ret = vmf_error(ret2);
1947 		unlock_extent(io_tree, page_start, page_end, &cached_state);
1948 		goto out_unlock;
1949 	}
1950 
1951 	/*
1952 	 * We can't set the delalloc bits if there are pending ordered
1953 	 * extents.  Drop our locks and wait for them to finish.
1954 	 */
1955 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE);
1956 	if (ordered) {
1957 		unlock_extent(io_tree, page_start, page_end, &cached_state);
1958 		unlock_page(page);
1959 		up_read(&BTRFS_I(inode)->i_mmap_lock);
1960 		btrfs_start_ordered_extent(ordered);
1961 		btrfs_put_ordered_extent(ordered);
1962 		goto again;
1963 	}
1964 
1965 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
1966 		reserved_space = round_up(size - page_start, fs_info->sectorsize);
1967 		if (reserved_space < PAGE_SIZE) {
1968 			end = page_start + reserved_space - 1;
1969 			btrfs_delalloc_release_space(BTRFS_I(inode),
1970 					data_reserved, page_start,
1971 					PAGE_SIZE - reserved_space, true);
1972 		}
1973 	}
1974 
1975 	/*
1976 	 * page_mkwrite gets called when the page is firstly dirtied after it's
1977 	 * faulted in, but write(2) could also dirty a page and set delalloc
1978 	 * bits, thus in this case for space account reason, we still need to
1979 	 * clear any delalloc bits within this page range since we have to
1980 	 * reserve data&meta space before lock_page() (see above comments).
1981 	 */
1982 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
1983 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1984 			  EXTENT_DEFRAG, &cached_state);
1985 
1986 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
1987 					&cached_state);
1988 	if (ret2) {
1989 		unlock_extent(io_tree, page_start, page_end, &cached_state);
1990 		ret = VM_FAULT_SIGBUS;
1991 		goto out_unlock;
1992 	}
1993 
1994 	/* Page is wholly or partially inside EOF. */
1995 	if (page_start + PAGE_SIZE > size)
1996 		zero_start = offset_in_page(size);
1997 	else
1998 		zero_start = PAGE_SIZE;
1999 
2000 	if (zero_start != PAGE_SIZE)
2001 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
2002 
2003 	btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2004 	btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
2005 	btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
2006 
2007 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
2008 
2009 	unlock_extent(io_tree, page_start, page_end, &cached_state);
2010 	up_read(&BTRFS_I(inode)->i_mmap_lock);
2011 
2012 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2013 	sb_end_pagefault(inode->i_sb);
2014 	extent_changeset_free(data_reserved);
2015 	return VM_FAULT_LOCKED;
2016 
2017 out_unlock:
2018 	unlock_page(page);
2019 	up_read(&BTRFS_I(inode)->i_mmap_lock);
2020 out:
2021 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2022 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
2023 				     reserved_space, (ret != 0));
2024 out_noreserve:
2025 	sb_end_pagefault(inode->i_sb);
2026 	extent_changeset_free(data_reserved);
2027 	return ret;
2028 }
2029 
2030 static const struct vm_operations_struct btrfs_file_vm_ops = {
2031 	.fault		= filemap_fault,
2032 	.map_pages	= filemap_map_pages,
2033 	.page_mkwrite	= btrfs_page_mkwrite,
2034 };
2035 
2036 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2037 {
2038 	struct address_space *mapping = filp->f_mapping;
2039 
2040 	if (!mapping->a_ops->read_folio)
2041 		return -ENOEXEC;
2042 
2043 	file_accessed(filp);
2044 	vma->vm_ops = &btrfs_file_vm_ops;
2045 
2046 	return 0;
2047 }
2048 
2049 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2050 			  int slot, u64 start, u64 end)
2051 {
2052 	struct btrfs_file_extent_item *fi;
2053 	struct btrfs_key key;
2054 
2055 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2056 		return 0;
2057 
2058 	btrfs_item_key_to_cpu(leaf, &key, slot);
2059 	if (key.objectid != btrfs_ino(inode) ||
2060 	    key.type != BTRFS_EXTENT_DATA_KEY)
2061 		return 0;
2062 
2063 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2064 
2065 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2066 		return 0;
2067 
2068 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2069 		return 0;
2070 
2071 	if (key.offset == end)
2072 		return 1;
2073 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2074 		return 1;
2075 	return 0;
2076 }
2077 
2078 static int fill_holes(struct btrfs_trans_handle *trans,
2079 		struct btrfs_inode *inode,
2080 		struct btrfs_path *path, u64 offset, u64 end)
2081 {
2082 	struct btrfs_fs_info *fs_info = trans->fs_info;
2083 	struct btrfs_root *root = inode->root;
2084 	struct extent_buffer *leaf;
2085 	struct btrfs_file_extent_item *fi;
2086 	struct extent_map *hole_em;
2087 	struct btrfs_key key;
2088 	int ret;
2089 
2090 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2091 		goto out;
2092 
2093 	key.objectid = btrfs_ino(inode);
2094 	key.type = BTRFS_EXTENT_DATA_KEY;
2095 	key.offset = offset;
2096 
2097 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2098 	if (ret <= 0) {
2099 		/*
2100 		 * We should have dropped this offset, so if we find it then
2101 		 * something has gone horribly wrong.
2102 		 */
2103 		if (ret == 0)
2104 			ret = -EINVAL;
2105 		return ret;
2106 	}
2107 
2108 	leaf = path->nodes[0];
2109 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2110 		u64 num_bytes;
2111 
2112 		path->slots[0]--;
2113 		fi = btrfs_item_ptr(leaf, path->slots[0],
2114 				    struct btrfs_file_extent_item);
2115 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2116 			end - offset;
2117 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2118 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2119 		btrfs_set_file_extent_offset(leaf, fi, 0);
2120 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2121 		btrfs_mark_buffer_dirty(trans, leaf);
2122 		goto out;
2123 	}
2124 
2125 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2126 		u64 num_bytes;
2127 
2128 		key.offset = offset;
2129 		btrfs_set_item_key_safe(trans, path, &key);
2130 		fi = btrfs_item_ptr(leaf, path->slots[0],
2131 				    struct btrfs_file_extent_item);
2132 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2133 			offset;
2134 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2135 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2136 		btrfs_set_file_extent_offset(leaf, fi, 0);
2137 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2138 		btrfs_mark_buffer_dirty(trans, leaf);
2139 		goto out;
2140 	}
2141 	btrfs_release_path(path);
2142 
2143 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2144 				       end - offset);
2145 	if (ret)
2146 		return ret;
2147 
2148 out:
2149 	btrfs_release_path(path);
2150 
2151 	hole_em = alloc_extent_map();
2152 	if (!hole_em) {
2153 		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2154 		btrfs_set_inode_full_sync(inode);
2155 	} else {
2156 		hole_em->start = offset;
2157 		hole_em->len = end - offset;
2158 		hole_em->ram_bytes = hole_em->len;
2159 
2160 		hole_em->disk_bytenr = EXTENT_MAP_HOLE;
2161 		hole_em->disk_num_bytes = 0;
2162 		hole_em->generation = trans->transid;
2163 
2164 		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2165 		free_extent_map(hole_em);
2166 		if (ret)
2167 			btrfs_set_inode_full_sync(inode);
2168 	}
2169 
2170 	return 0;
2171 }
2172 
2173 /*
2174  * Find a hole extent on given inode and change start/len to the end of hole
2175  * extent.(hole/vacuum extent whose em->start <= start &&
2176  *	   em->start + em->len > start)
2177  * When a hole extent is found, return 1 and modify start/len.
2178  */
2179 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2180 {
2181 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2182 	struct extent_map *em;
2183 	int ret = 0;
2184 
2185 	em = btrfs_get_extent(inode, NULL,
2186 			      round_down(*start, fs_info->sectorsize),
2187 			      round_up(*len, fs_info->sectorsize));
2188 	if (IS_ERR(em))
2189 		return PTR_ERR(em);
2190 
2191 	/* Hole or vacuum extent(only exists in no-hole mode) */
2192 	if (em->disk_bytenr == EXTENT_MAP_HOLE) {
2193 		ret = 1;
2194 		*len = em->start + em->len > *start + *len ?
2195 		       0 : *start + *len - em->start - em->len;
2196 		*start = em->start + em->len;
2197 	}
2198 	free_extent_map(em);
2199 	return ret;
2200 }
2201 
2202 static void btrfs_punch_hole_lock_range(struct inode *inode,
2203 					const u64 lockstart,
2204 					const u64 lockend,
2205 					struct extent_state **cached_state)
2206 {
2207 	/*
2208 	 * For subpage case, if the range is not at page boundary, we could
2209 	 * have pages at the leading/tailing part of the range.
2210 	 * This could lead to dead loop since filemap_range_has_page()
2211 	 * will always return true.
2212 	 * So here we need to do extra page alignment for
2213 	 * filemap_range_has_page().
2214 	 */
2215 	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2216 	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2217 
2218 	while (1) {
2219 		truncate_pagecache_range(inode, lockstart, lockend);
2220 
2221 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2222 			    cached_state);
2223 		/*
2224 		 * We can't have ordered extents in the range, nor dirty/writeback
2225 		 * pages, because we have locked the inode's VFS lock in exclusive
2226 		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2227 		 * we have flushed all delalloc in the range and we have waited
2228 		 * for any ordered extents in the range to complete.
2229 		 * We can race with anyone reading pages from this range, so after
2230 		 * locking the range check if we have pages in the range, and if
2231 		 * we do, unlock the range and retry.
2232 		 */
2233 		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2234 					    page_lockend))
2235 			break;
2236 
2237 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2238 			      cached_state);
2239 	}
2240 
2241 	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2242 }
2243 
2244 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2245 				     struct btrfs_inode *inode,
2246 				     struct btrfs_path *path,
2247 				     struct btrfs_replace_extent_info *extent_info,
2248 				     const u64 replace_len,
2249 				     const u64 bytes_to_drop)
2250 {
2251 	struct btrfs_fs_info *fs_info = trans->fs_info;
2252 	struct btrfs_root *root = inode->root;
2253 	struct btrfs_file_extent_item *extent;
2254 	struct extent_buffer *leaf;
2255 	struct btrfs_key key;
2256 	int slot;
2257 	int ret;
2258 
2259 	if (replace_len == 0)
2260 		return 0;
2261 
2262 	if (extent_info->disk_offset == 0 &&
2263 	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2264 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2265 		return 0;
2266 	}
2267 
2268 	key.objectid = btrfs_ino(inode);
2269 	key.type = BTRFS_EXTENT_DATA_KEY;
2270 	key.offset = extent_info->file_offset;
2271 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2272 				      sizeof(struct btrfs_file_extent_item));
2273 	if (ret)
2274 		return ret;
2275 	leaf = path->nodes[0];
2276 	slot = path->slots[0];
2277 	write_extent_buffer(leaf, extent_info->extent_buf,
2278 			    btrfs_item_ptr_offset(leaf, slot),
2279 			    sizeof(struct btrfs_file_extent_item));
2280 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2281 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2282 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2283 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2284 	if (extent_info->is_new_extent)
2285 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2286 	btrfs_mark_buffer_dirty(trans, leaf);
2287 	btrfs_release_path(path);
2288 
2289 	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2290 						replace_len);
2291 	if (ret)
2292 		return ret;
2293 
2294 	/* If it's a hole, nothing more needs to be done. */
2295 	if (extent_info->disk_offset == 0) {
2296 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2297 		return 0;
2298 	}
2299 
2300 	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2301 
2302 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2303 		key.objectid = extent_info->disk_offset;
2304 		key.type = BTRFS_EXTENT_ITEM_KEY;
2305 		key.offset = extent_info->disk_len;
2306 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2307 						       btrfs_ino(inode),
2308 						       extent_info->file_offset,
2309 						       extent_info->qgroup_reserved,
2310 						       &key);
2311 	} else {
2312 		struct btrfs_ref ref = {
2313 			.action = BTRFS_ADD_DELAYED_REF,
2314 			.bytenr = extent_info->disk_offset,
2315 			.num_bytes = extent_info->disk_len,
2316 			.owning_root = btrfs_root_id(root),
2317 			.ref_root = btrfs_root_id(root),
2318 		};
2319 		u64 ref_offset;
2320 
2321 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2322 		btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false);
2323 		ret = btrfs_inc_extent_ref(trans, &ref);
2324 	}
2325 
2326 	extent_info->insertions++;
2327 
2328 	return ret;
2329 }
2330 
2331 /*
2332  * The respective range must have been previously locked, as well as the inode.
2333  * The end offset is inclusive (last byte of the range).
2334  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2335  * the file range with an extent.
2336  * When not punching a hole, we don't want to end up in a state where we dropped
2337  * extents without inserting a new one, so we must abort the transaction to avoid
2338  * a corruption.
2339  */
2340 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2341 			       struct btrfs_path *path, const u64 start,
2342 			       const u64 end,
2343 			       struct btrfs_replace_extent_info *extent_info,
2344 			       struct btrfs_trans_handle **trans_out)
2345 {
2346 	struct btrfs_drop_extents_args drop_args = { 0 };
2347 	struct btrfs_root *root = inode->root;
2348 	struct btrfs_fs_info *fs_info = root->fs_info;
2349 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2350 	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2351 	struct btrfs_trans_handle *trans = NULL;
2352 	struct btrfs_block_rsv *rsv;
2353 	unsigned int rsv_count;
2354 	u64 cur_offset;
2355 	u64 len = end - start;
2356 	int ret = 0;
2357 
2358 	if (end <= start)
2359 		return -EINVAL;
2360 
2361 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2362 	if (!rsv) {
2363 		ret = -ENOMEM;
2364 		goto out;
2365 	}
2366 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2367 	rsv->failfast = true;
2368 
2369 	/*
2370 	 * 1 - update the inode
2371 	 * 1 - removing the extents in the range
2372 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2373 	 *     replacing the range with a new extent
2374 	 */
2375 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2376 		rsv_count = 3;
2377 	else
2378 		rsv_count = 2;
2379 
2380 	trans = btrfs_start_transaction(root, rsv_count);
2381 	if (IS_ERR(trans)) {
2382 		ret = PTR_ERR(trans);
2383 		trans = NULL;
2384 		goto out_free;
2385 	}
2386 
2387 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2388 				      min_size, false);
2389 	if (WARN_ON(ret))
2390 		goto out_trans;
2391 	trans->block_rsv = rsv;
2392 
2393 	cur_offset = start;
2394 	drop_args.path = path;
2395 	drop_args.end = end + 1;
2396 	drop_args.drop_cache = true;
2397 	while (cur_offset < end) {
2398 		drop_args.start = cur_offset;
2399 		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2400 		/* If we are punching a hole decrement the inode's byte count */
2401 		if (!extent_info)
2402 			btrfs_update_inode_bytes(inode, 0,
2403 						 drop_args.bytes_found);
2404 		if (ret != -ENOSPC) {
2405 			/*
2406 			 * The only time we don't want to abort is if we are
2407 			 * attempting to clone a partial inline extent, in which
2408 			 * case we'll get EOPNOTSUPP.  However if we aren't
2409 			 * clone we need to abort no matter what, because if we
2410 			 * got EOPNOTSUPP via prealloc then we messed up and
2411 			 * need to abort.
2412 			 */
2413 			if (ret &&
2414 			    (ret != -EOPNOTSUPP ||
2415 			     (extent_info && extent_info->is_new_extent)))
2416 				btrfs_abort_transaction(trans, ret);
2417 			break;
2418 		}
2419 
2420 		trans->block_rsv = &fs_info->trans_block_rsv;
2421 
2422 		if (!extent_info && cur_offset < drop_args.drop_end &&
2423 		    cur_offset < ino_size) {
2424 			ret = fill_holes(trans, inode, path, cur_offset,
2425 					 drop_args.drop_end);
2426 			if (ret) {
2427 				/*
2428 				 * If we failed then we didn't insert our hole
2429 				 * entries for the area we dropped, so now the
2430 				 * fs is corrupted, so we must abort the
2431 				 * transaction.
2432 				 */
2433 				btrfs_abort_transaction(trans, ret);
2434 				break;
2435 			}
2436 		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2437 			/*
2438 			 * We are past the i_size here, but since we didn't
2439 			 * insert holes we need to clear the mapped area so we
2440 			 * know to not set disk_i_size in this area until a new
2441 			 * file extent is inserted here.
2442 			 */
2443 			ret = btrfs_inode_clear_file_extent_range(inode,
2444 					cur_offset,
2445 					drop_args.drop_end - cur_offset);
2446 			if (ret) {
2447 				/*
2448 				 * We couldn't clear our area, so we could
2449 				 * presumably adjust up and corrupt the fs, so
2450 				 * we need to abort.
2451 				 */
2452 				btrfs_abort_transaction(trans, ret);
2453 				break;
2454 			}
2455 		}
2456 
2457 		if (extent_info &&
2458 		    drop_args.drop_end > extent_info->file_offset) {
2459 			u64 replace_len = drop_args.drop_end -
2460 					  extent_info->file_offset;
2461 
2462 			ret = btrfs_insert_replace_extent(trans, inode,	path,
2463 					extent_info, replace_len,
2464 					drop_args.bytes_found);
2465 			if (ret) {
2466 				btrfs_abort_transaction(trans, ret);
2467 				break;
2468 			}
2469 			extent_info->data_len -= replace_len;
2470 			extent_info->data_offset += replace_len;
2471 			extent_info->file_offset += replace_len;
2472 		}
2473 
2474 		/*
2475 		 * We are releasing our handle on the transaction, balance the
2476 		 * dirty pages of the btree inode and flush delayed items, and
2477 		 * then get a new transaction handle, which may now point to a
2478 		 * new transaction in case someone else may have committed the
2479 		 * transaction we used to replace/drop file extent items. So
2480 		 * bump the inode's iversion and update mtime and ctime except
2481 		 * if we are called from a dedupe context. This is because a
2482 		 * power failure/crash may happen after the transaction is
2483 		 * committed and before we finish replacing/dropping all the
2484 		 * file extent items we need.
2485 		 */
2486 		inode_inc_iversion(&inode->vfs_inode);
2487 
2488 		if (!extent_info || extent_info->update_times)
2489 			inode_set_mtime_to_ts(&inode->vfs_inode,
2490 					      inode_set_ctime_current(&inode->vfs_inode));
2491 
2492 		ret = btrfs_update_inode(trans, inode);
2493 		if (ret)
2494 			break;
2495 
2496 		btrfs_end_transaction(trans);
2497 		btrfs_btree_balance_dirty(fs_info);
2498 
2499 		trans = btrfs_start_transaction(root, rsv_count);
2500 		if (IS_ERR(trans)) {
2501 			ret = PTR_ERR(trans);
2502 			trans = NULL;
2503 			break;
2504 		}
2505 
2506 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2507 					      rsv, min_size, false);
2508 		if (WARN_ON(ret))
2509 			break;
2510 		trans->block_rsv = rsv;
2511 
2512 		cur_offset = drop_args.drop_end;
2513 		len = end - cur_offset;
2514 		if (!extent_info && len) {
2515 			ret = find_first_non_hole(inode, &cur_offset, &len);
2516 			if (unlikely(ret < 0))
2517 				break;
2518 			if (ret && !len) {
2519 				ret = 0;
2520 				break;
2521 			}
2522 		}
2523 	}
2524 
2525 	/*
2526 	 * If we were cloning, force the next fsync to be a full one since we
2527 	 * we replaced (or just dropped in the case of cloning holes when
2528 	 * NO_HOLES is enabled) file extent items and did not setup new extent
2529 	 * maps for the replacement extents (or holes).
2530 	 */
2531 	if (extent_info && !extent_info->is_new_extent)
2532 		btrfs_set_inode_full_sync(inode);
2533 
2534 	if (ret)
2535 		goto out_trans;
2536 
2537 	trans->block_rsv = &fs_info->trans_block_rsv;
2538 	/*
2539 	 * If we are using the NO_HOLES feature we might have had already an
2540 	 * hole that overlaps a part of the region [lockstart, lockend] and
2541 	 * ends at (or beyond) lockend. Since we have no file extent items to
2542 	 * represent holes, drop_end can be less than lockend and so we must
2543 	 * make sure we have an extent map representing the existing hole (the
2544 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2545 	 * map representing the existing hole), otherwise the fast fsync path
2546 	 * will not record the existence of the hole region
2547 	 * [existing_hole_start, lockend].
2548 	 */
2549 	if (drop_args.drop_end <= end)
2550 		drop_args.drop_end = end + 1;
2551 	/*
2552 	 * Don't insert file hole extent item if it's for a range beyond eof
2553 	 * (because it's useless) or if it represents a 0 bytes range (when
2554 	 * cur_offset == drop_end).
2555 	 */
2556 	if (!extent_info && cur_offset < ino_size &&
2557 	    cur_offset < drop_args.drop_end) {
2558 		ret = fill_holes(trans, inode, path, cur_offset,
2559 				 drop_args.drop_end);
2560 		if (ret) {
2561 			/* Same comment as above. */
2562 			btrfs_abort_transaction(trans, ret);
2563 			goto out_trans;
2564 		}
2565 	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2566 		/* See the comment in the loop above for the reasoning here. */
2567 		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2568 					drop_args.drop_end - cur_offset);
2569 		if (ret) {
2570 			btrfs_abort_transaction(trans, ret);
2571 			goto out_trans;
2572 		}
2573 
2574 	}
2575 	if (extent_info) {
2576 		ret = btrfs_insert_replace_extent(trans, inode, path,
2577 				extent_info, extent_info->data_len,
2578 				drop_args.bytes_found);
2579 		if (ret) {
2580 			btrfs_abort_transaction(trans, ret);
2581 			goto out_trans;
2582 		}
2583 	}
2584 
2585 out_trans:
2586 	if (!trans)
2587 		goto out_free;
2588 
2589 	trans->block_rsv = &fs_info->trans_block_rsv;
2590 	if (ret)
2591 		btrfs_end_transaction(trans);
2592 	else
2593 		*trans_out = trans;
2594 out_free:
2595 	btrfs_free_block_rsv(fs_info, rsv);
2596 out:
2597 	return ret;
2598 }
2599 
2600 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2601 {
2602 	struct inode *inode = file_inode(file);
2603 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2604 	struct btrfs_root *root = BTRFS_I(inode)->root;
2605 	struct extent_state *cached_state = NULL;
2606 	struct btrfs_path *path;
2607 	struct btrfs_trans_handle *trans = NULL;
2608 	u64 lockstart;
2609 	u64 lockend;
2610 	u64 tail_start;
2611 	u64 tail_len;
2612 	u64 orig_start = offset;
2613 	int ret = 0;
2614 	bool same_block;
2615 	u64 ino_size;
2616 	bool truncated_block = false;
2617 	bool updated_inode = false;
2618 
2619 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2620 
2621 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len);
2622 	if (ret)
2623 		goto out_only_mutex;
2624 
2625 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2626 	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2627 	if (ret < 0)
2628 		goto out_only_mutex;
2629 	if (ret && !len) {
2630 		/* Already in a large hole */
2631 		ret = 0;
2632 		goto out_only_mutex;
2633 	}
2634 
2635 	ret = file_modified(file);
2636 	if (ret)
2637 		goto out_only_mutex;
2638 
2639 	lockstart = round_up(offset, fs_info->sectorsize);
2640 	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2641 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2642 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2643 	/*
2644 	 * We needn't truncate any block which is beyond the end of the file
2645 	 * because we are sure there is no data there.
2646 	 */
2647 	/*
2648 	 * Only do this if we are in the same block and we aren't doing the
2649 	 * entire block.
2650 	 */
2651 	if (same_block && len < fs_info->sectorsize) {
2652 		if (offset < ino_size) {
2653 			truncated_block = true;
2654 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2655 						   0);
2656 		} else {
2657 			ret = 0;
2658 		}
2659 		goto out_only_mutex;
2660 	}
2661 
2662 	/* zero back part of the first block */
2663 	if (offset < ino_size) {
2664 		truncated_block = true;
2665 		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2666 		if (ret) {
2667 			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2668 			return ret;
2669 		}
2670 	}
2671 
2672 	/* Check the aligned pages after the first unaligned page,
2673 	 * if offset != orig_start, which means the first unaligned page
2674 	 * including several following pages are already in holes,
2675 	 * the extra check can be skipped */
2676 	if (offset == orig_start) {
2677 		/* after truncate page, check hole again */
2678 		len = offset + len - lockstart;
2679 		offset = lockstart;
2680 		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2681 		if (ret < 0)
2682 			goto out_only_mutex;
2683 		if (ret && !len) {
2684 			ret = 0;
2685 			goto out_only_mutex;
2686 		}
2687 		lockstart = offset;
2688 	}
2689 
2690 	/* Check the tail unaligned part is in a hole */
2691 	tail_start = lockend + 1;
2692 	tail_len = offset + len - tail_start;
2693 	if (tail_len) {
2694 		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2695 		if (unlikely(ret < 0))
2696 			goto out_only_mutex;
2697 		if (!ret) {
2698 			/* zero the front end of the last page */
2699 			if (tail_start + tail_len < ino_size) {
2700 				truncated_block = true;
2701 				ret = btrfs_truncate_block(BTRFS_I(inode),
2702 							tail_start + tail_len,
2703 							0, 1);
2704 				if (ret)
2705 					goto out_only_mutex;
2706 			}
2707 		}
2708 	}
2709 
2710 	if (lockend < lockstart) {
2711 		ret = 0;
2712 		goto out_only_mutex;
2713 	}
2714 
2715 	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2716 
2717 	path = btrfs_alloc_path();
2718 	if (!path) {
2719 		ret = -ENOMEM;
2720 		goto out;
2721 	}
2722 
2723 	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2724 					 lockend, NULL, &trans);
2725 	btrfs_free_path(path);
2726 	if (ret)
2727 		goto out;
2728 
2729 	ASSERT(trans != NULL);
2730 	inode_inc_iversion(inode);
2731 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2732 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2733 	updated_inode = true;
2734 	btrfs_end_transaction(trans);
2735 	btrfs_btree_balance_dirty(fs_info);
2736 out:
2737 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2738 		      &cached_state);
2739 out_only_mutex:
2740 	if (!updated_inode && truncated_block && !ret) {
2741 		/*
2742 		 * If we only end up zeroing part of a page, we still need to
2743 		 * update the inode item, so that all the time fields are
2744 		 * updated as well as the necessary btrfs inode in memory fields
2745 		 * for detecting, at fsync time, if the inode isn't yet in the
2746 		 * log tree or it's there but not up to date.
2747 		 */
2748 		struct timespec64 now = inode_set_ctime_current(inode);
2749 
2750 		inode_inc_iversion(inode);
2751 		inode_set_mtime_to_ts(inode, now);
2752 		trans = btrfs_start_transaction(root, 1);
2753 		if (IS_ERR(trans)) {
2754 			ret = PTR_ERR(trans);
2755 		} else {
2756 			int ret2;
2757 
2758 			ret = btrfs_update_inode(trans, BTRFS_I(inode));
2759 			ret2 = btrfs_end_transaction(trans);
2760 			if (!ret)
2761 				ret = ret2;
2762 		}
2763 	}
2764 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2765 	return ret;
2766 }
2767 
2768 /* Helper structure to record which range is already reserved */
2769 struct falloc_range {
2770 	struct list_head list;
2771 	u64 start;
2772 	u64 len;
2773 };
2774 
2775 /*
2776  * Helper function to add falloc range
2777  *
2778  * Caller should have locked the larger range of extent containing
2779  * [start, len)
2780  */
2781 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2782 {
2783 	struct falloc_range *range = NULL;
2784 
2785 	if (!list_empty(head)) {
2786 		/*
2787 		 * As fallocate iterates by bytenr order, we only need to check
2788 		 * the last range.
2789 		 */
2790 		range = list_last_entry(head, struct falloc_range, list);
2791 		if (range->start + range->len == start) {
2792 			range->len += len;
2793 			return 0;
2794 		}
2795 	}
2796 
2797 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2798 	if (!range)
2799 		return -ENOMEM;
2800 	range->start = start;
2801 	range->len = len;
2802 	list_add_tail(&range->list, head);
2803 	return 0;
2804 }
2805 
2806 static int btrfs_fallocate_update_isize(struct inode *inode,
2807 					const u64 end,
2808 					const int mode)
2809 {
2810 	struct btrfs_trans_handle *trans;
2811 	struct btrfs_root *root = BTRFS_I(inode)->root;
2812 	int ret;
2813 	int ret2;
2814 
2815 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2816 		return 0;
2817 
2818 	trans = btrfs_start_transaction(root, 1);
2819 	if (IS_ERR(trans))
2820 		return PTR_ERR(trans);
2821 
2822 	inode_set_ctime_current(inode);
2823 	i_size_write(inode, end);
2824 	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2825 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2826 	ret2 = btrfs_end_transaction(trans);
2827 
2828 	return ret ? ret : ret2;
2829 }
2830 
2831 enum {
2832 	RANGE_BOUNDARY_WRITTEN_EXTENT,
2833 	RANGE_BOUNDARY_PREALLOC_EXTENT,
2834 	RANGE_BOUNDARY_HOLE,
2835 };
2836 
2837 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2838 						 u64 offset)
2839 {
2840 	const u64 sectorsize = inode->root->fs_info->sectorsize;
2841 	struct extent_map *em;
2842 	int ret;
2843 
2844 	offset = round_down(offset, sectorsize);
2845 	em = btrfs_get_extent(inode, NULL, offset, sectorsize);
2846 	if (IS_ERR(em))
2847 		return PTR_ERR(em);
2848 
2849 	if (em->disk_bytenr == EXTENT_MAP_HOLE)
2850 		ret = RANGE_BOUNDARY_HOLE;
2851 	else if (em->flags & EXTENT_FLAG_PREALLOC)
2852 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2853 	else
2854 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2855 
2856 	free_extent_map(em);
2857 	return ret;
2858 }
2859 
2860 static int btrfs_zero_range(struct inode *inode,
2861 			    loff_t offset,
2862 			    loff_t len,
2863 			    const int mode)
2864 {
2865 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2866 	struct extent_map *em;
2867 	struct extent_changeset *data_reserved = NULL;
2868 	int ret;
2869 	u64 alloc_hint = 0;
2870 	const u64 sectorsize = fs_info->sectorsize;
2871 	u64 alloc_start = round_down(offset, sectorsize);
2872 	u64 alloc_end = round_up(offset + len, sectorsize);
2873 	u64 bytes_to_reserve = 0;
2874 	bool space_reserved = false;
2875 
2876 	em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
2877 			      alloc_end - alloc_start);
2878 	if (IS_ERR(em)) {
2879 		ret = PTR_ERR(em);
2880 		goto out;
2881 	}
2882 
2883 	/*
2884 	 * Avoid hole punching and extent allocation for some cases. More cases
2885 	 * could be considered, but these are unlikely common and we keep things
2886 	 * as simple as possible for now. Also, intentionally, if the target
2887 	 * range contains one or more prealloc extents together with regular
2888 	 * extents and holes, we drop all the existing extents and allocate a
2889 	 * new prealloc extent, so that we get a larger contiguous disk extent.
2890 	 */
2891 	if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
2892 		const u64 em_end = em->start + em->len;
2893 
2894 		if (em_end >= offset + len) {
2895 			/*
2896 			 * The whole range is already a prealloc extent,
2897 			 * do nothing except updating the inode's i_size if
2898 			 * needed.
2899 			 */
2900 			free_extent_map(em);
2901 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2902 							   mode);
2903 			goto out;
2904 		}
2905 		/*
2906 		 * Part of the range is already a prealloc extent, so operate
2907 		 * only on the remaining part of the range.
2908 		 */
2909 		alloc_start = em_end;
2910 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2911 		len = offset + len - alloc_start;
2912 		offset = alloc_start;
2913 		alloc_hint = extent_map_block_start(em) + em->len;
2914 	}
2915 	free_extent_map(em);
2916 
2917 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2918 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2919 		em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
2920 		if (IS_ERR(em)) {
2921 			ret = PTR_ERR(em);
2922 			goto out;
2923 		}
2924 
2925 		if (em->flags & EXTENT_FLAG_PREALLOC) {
2926 			free_extent_map(em);
2927 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2928 							   mode);
2929 			goto out;
2930 		}
2931 		if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) {
2932 			free_extent_map(em);
2933 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2934 						   0);
2935 			if (!ret)
2936 				ret = btrfs_fallocate_update_isize(inode,
2937 								   offset + len,
2938 								   mode);
2939 			return ret;
2940 		}
2941 		free_extent_map(em);
2942 		alloc_start = round_down(offset, sectorsize);
2943 		alloc_end = alloc_start + sectorsize;
2944 		goto reserve_space;
2945 	}
2946 
2947 	alloc_start = round_up(offset, sectorsize);
2948 	alloc_end = round_down(offset + len, sectorsize);
2949 
2950 	/*
2951 	 * For unaligned ranges, check the pages at the boundaries, they might
2952 	 * map to an extent, in which case we need to partially zero them, or
2953 	 * they might map to a hole, in which case we need our allocation range
2954 	 * to cover them.
2955 	 */
2956 	if (!IS_ALIGNED(offset, sectorsize)) {
2957 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2958 							    offset);
2959 		if (ret < 0)
2960 			goto out;
2961 		if (ret == RANGE_BOUNDARY_HOLE) {
2962 			alloc_start = round_down(offset, sectorsize);
2963 			ret = 0;
2964 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2965 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2966 			if (ret)
2967 				goto out;
2968 		} else {
2969 			ret = 0;
2970 		}
2971 	}
2972 
2973 	if (!IS_ALIGNED(offset + len, sectorsize)) {
2974 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2975 							    offset + len);
2976 		if (ret < 0)
2977 			goto out;
2978 		if (ret == RANGE_BOUNDARY_HOLE) {
2979 			alloc_end = round_up(offset + len, sectorsize);
2980 			ret = 0;
2981 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2982 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2983 						   0, 1);
2984 			if (ret)
2985 				goto out;
2986 		} else {
2987 			ret = 0;
2988 		}
2989 	}
2990 
2991 reserve_space:
2992 	if (alloc_start < alloc_end) {
2993 		struct extent_state *cached_state = NULL;
2994 		const u64 lockstart = alloc_start;
2995 		const u64 lockend = alloc_end - 1;
2996 
2997 		bytes_to_reserve = alloc_end - alloc_start;
2998 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2999 						      bytes_to_reserve);
3000 		if (ret < 0)
3001 			goto out;
3002 		space_reserved = true;
3003 		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3004 					    &cached_state);
3005 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3006 						alloc_start, bytes_to_reserve);
3007 		if (ret) {
3008 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3009 				      lockend, &cached_state);
3010 			goto out;
3011 		}
3012 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3013 						alloc_end - alloc_start,
3014 						fs_info->sectorsize,
3015 						offset + len, &alloc_hint);
3016 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3017 			      &cached_state);
3018 		/* btrfs_prealloc_file_range releases reserved space on error */
3019 		if (ret) {
3020 			space_reserved = false;
3021 			goto out;
3022 		}
3023 	}
3024 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3025  out:
3026 	if (ret && space_reserved)
3027 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3028 					       alloc_start, bytes_to_reserve);
3029 	extent_changeset_free(data_reserved);
3030 
3031 	return ret;
3032 }
3033 
3034 static long btrfs_fallocate(struct file *file, int mode,
3035 			    loff_t offset, loff_t len)
3036 {
3037 	struct inode *inode = file_inode(file);
3038 	struct extent_state *cached_state = NULL;
3039 	struct extent_changeset *data_reserved = NULL;
3040 	struct falloc_range *range;
3041 	struct falloc_range *tmp;
3042 	LIST_HEAD(reserve_list);
3043 	u64 cur_offset;
3044 	u64 last_byte;
3045 	u64 alloc_start;
3046 	u64 alloc_end;
3047 	u64 alloc_hint = 0;
3048 	u64 locked_end;
3049 	u64 actual_end = 0;
3050 	u64 data_space_needed = 0;
3051 	u64 data_space_reserved = 0;
3052 	u64 qgroup_reserved = 0;
3053 	struct extent_map *em;
3054 	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3055 	int ret;
3056 
3057 	/* Do not allow fallocate in ZONED mode */
3058 	if (btrfs_is_zoned(inode_to_fs_info(inode)))
3059 		return -EOPNOTSUPP;
3060 
3061 	alloc_start = round_down(offset, blocksize);
3062 	alloc_end = round_up(offset + len, blocksize);
3063 	cur_offset = alloc_start;
3064 
3065 	/* Make sure we aren't being give some crap mode */
3066 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3067 		     FALLOC_FL_ZERO_RANGE))
3068 		return -EOPNOTSUPP;
3069 
3070 	if (mode & FALLOC_FL_PUNCH_HOLE)
3071 		return btrfs_punch_hole(file, offset, len);
3072 
3073 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3074 
3075 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3076 		ret = inode_newsize_ok(inode, offset + len);
3077 		if (ret)
3078 			goto out;
3079 	}
3080 
3081 	ret = file_modified(file);
3082 	if (ret)
3083 		goto out;
3084 
3085 	/*
3086 	 * TODO: Move these two operations after we have checked
3087 	 * accurate reserved space, or fallocate can still fail but
3088 	 * with page truncated or size expanded.
3089 	 *
3090 	 * But that's a minor problem and won't do much harm BTW.
3091 	 */
3092 	if (alloc_start > inode->i_size) {
3093 		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3094 					alloc_start);
3095 		if (ret)
3096 			goto out;
3097 	} else if (offset + len > inode->i_size) {
3098 		/*
3099 		 * If we are fallocating from the end of the file onward we
3100 		 * need to zero out the end of the block if i_size lands in the
3101 		 * middle of a block.
3102 		 */
3103 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3104 		if (ret)
3105 			goto out;
3106 	}
3107 
3108 	/*
3109 	 * We have locked the inode at the VFS level (in exclusive mode) and we
3110 	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3111 	 * locking the file range, flush all dealloc in the range and wait for
3112 	 * all ordered extents in the range to complete. After this we can lock
3113 	 * the file range and, due to the previous locking we did, we know there
3114 	 * can't be more delalloc or ordered extents in the range.
3115 	 */
3116 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start,
3117 				       alloc_end - alloc_start);
3118 	if (ret)
3119 		goto out;
3120 
3121 	if (mode & FALLOC_FL_ZERO_RANGE) {
3122 		ret = btrfs_zero_range(inode, offset, len, mode);
3123 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3124 		return ret;
3125 	}
3126 
3127 	locked_end = alloc_end - 1;
3128 	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3129 		    &cached_state);
3130 
3131 	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3132 
3133 	/* First, check if we exceed the qgroup limit */
3134 	while (cur_offset < alloc_end) {
3135 		em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
3136 				      alloc_end - cur_offset);
3137 		if (IS_ERR(em)) {
3138 			ret = PTR_ERR(em);
3139 			break;
3140 		}
3141 		last_byte = min(extent_map_end(em), alloc_end);
3142 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3143 		last_byte = ALIGN(last_byte, blocksize);
3144 		if (em->disk_bytenr == EXTENT_MAP_HOLE ||
3145 		    (cur_offset >= inode->i_size &&
3146 		     !(em->flags & EXTENT_FLAG_PREALLOC))) {
3147 			const u64 range_len = last_byte - cur_offset;
3148 
3149 			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3150 			if (ret < 0) {
3151 				free_extent_map(em);
3152 				break;
3153 			}
3154 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3155 					&data_reserved, cur_offset, range_len);
3156 			if (ret < 0) {
3157 				free_extent_map(em);
3158 				break;
3159 			}
3160 			qgroup_reserved += range_len;
3161 			data_space_needed += range_len;
3162 		}
3163 		free_extent_map(em);
3164 		cur_offset = last_byte;
3165 	}
3166 
3167 	if (!ret && data_space_needed > 0) {
3168 		/*
3169 		 * We are safe to reserve space here as we can't have delalloc
3170 		 * in the range, see above.
3171 		 */
3172 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3173 						      data_space_needed);
3174 		if (!ret)
3175 			data_space_reserved = data_space_needed;
3176 	}
3177 
3178 	/*
3179 	 * If ret is still 0, means we're OK to fallocate.
3180 	 * Or just cleanup the list and exit.
3181 	 */
3182 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3183 		if (!ret) {
3184 			ret = btrfs_prealloc_file_range(inode, mode,
3185 					range->start,
3186 					range->len, blocksize,
3187 					offset + len, &alloc_hint);
3188 			/*
3189 			 * btrfs_prealloc_file_range() releases space even
3190 			 * if it returns an error.
3191 			 */
3192 			data_space_reserved -= range->len;
3193 			qgroup_reserved -= range->len;
3194 		} else if (data_space_reserved > 0) {
3195 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3196 					       data_reserved, range->start,
3197 					       range->len);
3198 			data_space_reserved -= range->len;
3199 			qgroup_reserved -= range->len;
3200 		} else if (qgroup_reserved > 0) {
3201 			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3202 					       range->start, range->len, NULL);
3203 			qgroup_reserved -= range->len;
3204 		}
3205 		list_del(&range->list);
3206 		kfree(range);
3207 	}
3208 	if (ret < 0)
3209 		goto out_unlock;
3210 
3211 	/*
3212 	 * We didn't need to allocate any more space, but we still extended the
3213 	 * size of the file so we need to update i_size and the inode item.
3214 	 */
3215 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3216 out_unlock:
3217 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3218 		      &cached_state);
3219 out:
3220 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3221 	extent_changeset_free(data_reserved);
3222 	return ret;
3223 }
3224 
3225 /*
3226  * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3227  * that has unflushed and/or flushing delalloc. There might be other adjacent
3228  * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3229  * looping while it gets adjacent subranges, and merging them together.
3230  */
3231 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3232 				   struct extent_state **cached_state,
3233 				   bool *search_io_tree,
3234 				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3235 {
3236 	u64 len = end + 1 - start;
3237 	u64 delalloc_len = 0;
3238 	struct btrfs_ordered_extent *oe;
3239 	u64 oe_start;
3240 	u64 oe_end;
3241 
3242 	/*
3243 	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3244 	 * means we have delalloc (dirty pages) for which writeback has not
3245 	 * started yet.
3246 	 */
3247 	if (*search_io_tree) {
3248 		spin_lock(&inode->lock);
3249 		if (inode->delalloc_bytes > 0) {
3250 			spin_unlock(&inode->lock);
3251 			*delalloc_start_ret = start;
3252 			delalloc_len = count_range_bits(&inode->io_tree,
3253 							delalloc_start_ret, end,
3254 							len, EXTENT_DELALLOC, 1,
3255 							cached_state);
3256 		} else {
3257 			spin_unlock(&inode->lock);
3258 		}
3259 	}
3260 
3261 	if (delalloc_len > 0) {
3262 		/*
3263 		 * If delalloc was found then *delalloc_start_ret has a sector size
3264 		 * aligned value (rounded down).
3265 		 */
3266 		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3267 
3268 		if (*delalloc_start_ret == start) {
3269 			/* Delalloc for the whole range, nothing more to do. */
3270 			if (*delalloc_end_ret == end)
3271 				return true;
3272 			/* Else trim our search range for ordered extents. */
3273 			start = *delalloc_end_ret + 1;
3274 			len = end + 1 - start;
3275 		}
3276 	} else {
3277 		/* No delalloc, future calls don't need to search again. */
3278 		*search_io_tree = false;
3279 	}
3280 
3281 	/*
3282 	 * Now also check if there's any ordered extent in the range.
3283 	 * We do this because:
3284 	 *
3285 	 * 1) When delalloc is flushed, the file range is locked, we clear the
3286 	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3287 	 *    an ordered extent for the write. So we might just have been called
3288 	 *    after delalloc is flushed and before the ordered extent completes
3289 	 *    and inserts the new file extent item in the subvolume's btree;
3290 	 *
3291 	 * 2) We may have an ordered extent created by flushing delalloc for a
3292 	 *    subrange that starts before the subrange we found marked with
3293 	 *    EXTENT_DELALLOC in the io tree.
3294 	 *
3295 	 * We could also use the extent map tree to find such delalloc that is
3296 	 * being flushed, but using the ordered extents tree is more efficient
3297 	 * because it's usually much smaller as ordered extents are removed from
3298 	 * the tree once they complete. With the extent maps, we mau have them
3299 	 * in the extent map tree for a very long time, and they were either
3300 	 * created by previous writes or loaded by read operations.
3301 	 */
3302 	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3303 	if (!oe)
3304 		return (delalloc_len > 0);
3305 
3306 	/* The ordered extent may span beyond our search range. */
3307 	oe_start = max(oe->file_offset, start);
3308 	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3309 
3310 	btrfs_put_ordered_extent(oe);
3311 
3312 	/* Don't have unflushed delalloc, return the ordered extent range. */
3313 	if (delalloc_len == 0) {
3314 		*delalloc_start_ret = oe_start;
3315 		*delalloc_end_ret = oe_end;
3316 		return true;
3317 	}
3318 
3319 	/*
3320 	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3321 	 * If the ranges are adjacent returned a combined range, otherwise
3322 	 * return the leftmost range.
3323 	 */
3324 	if (oe_start < *delalloc_start_ret) {
3325 		if (oe_end < *delalloc_start_ret)
3326 			*delalloc_end_ret = oe_end;
3327 		*delalloc_start_ret = oe_start;
3328 	} else if (*delalloc_end_ret + 1 == oe_start) {
3329 		*delalloc_end_ret = oe_end;
3330 	}
3331 
3332 	return true;
3333 }
3334 
3335 /*
3336  * Check if there's delalloc in a given range.
3337  *
3338  * @inode:               The inode.
3339  * @start:               The start offset of the range. It does not need to be
3340  *                       sector size aligned.
3341  * @end:                 The end offset (inclusive value) of the search range.
3342  *                       It does not need to be sector size aligned.
3343  * @cached_state:        Extent state record used for speeding up delalloc
3344  *                       searches in the inode's io_tree. Can be NULL.
3345  * @delalloc_start_ret:  Output argument, set to the start offset of the
3346  *                       subrange found with delalloc (may not be sector size
3347  *                       aligned).
3348  * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3349  *                       of the subrange found with delalloc.
3350  *
3351  * Returns true if a subrange with delalloc is found within the given range, and
3352  * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3353  * end offsets of the subrange.
3354  */
3355 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3356 				  struct extent_state **cached_state,
3357 				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3358 {
3359 	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3360 	u64 prev_delalloc_end = 0;
3361 	bool search_io_tree = true;
3362 	bool ret = false;
3363 
3364 	while (cur_offset <= end) {
3365 		u64 delalloc_start;
3366 		u64 delalloc_end;
3367 		bool delalloc;
3368 
3369 		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3370 						  cached_state, &search_io_tree,
3371 						  &delalloc_start,
3372 						  &delalloc_end);
3373 		if (!delalloc)
3374 			break;
3375 
3376 		if (prev_delalloc_end == 0) {
3377 			/* First subrange found. */
3378 			*delalloc_start_ret = max(delalloc_start, start);
3379 			*delalloc_end_ret = delalloc_end;
3380 			ret = true;
3381 		} else if (delalloc_start == prev_delalloc_end + 1) {
3382 			/* Subrange adjacent to the previous one, merge them. */
3383 			*delalloc_end_ret = delalloc_end;
3384 		} else {
3385 			/* Subrange not adjacent to the previous one, exit. */
3386 			break;
3387 		}
3388 
3389 		prev_delalloc_end = delalloc_end;
3390 		cur_offset = delalloc_end + 1;
3391 		cond_resched();
3392 	}
3393 
3394 	return ret;
3395 }
3396 
3397 /*
3398  * Check if there's a hole or delalloc range in a range representing a hole (or
3399  * prealloc extent) found in the inode's subvolume btree.
3400  *
3401  * @inode:      The inode.
3402  * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3403  * @start:      Start offset of the hole region. It does not need to be sector
3404  *              size aligned.
3405  * @end:        End offset (inclusive value) of the hole region. It does not
3406  *              need to be sector size aligned.
3407  * @start_ret:  Return parameter, used to set the start of the subrange in the
3408  *              hole that matches the search criteria (seek mode), if such
3409  *              subrange is found (return value of the function is true).
3410  *              The value returned here may not be sector size aligned.
3411  *
3412  * Returns true if a subrange matching the given seek mode is found, and if one
3413  * is found, it updates @start_ret with the start of the subrange.
3414  */
3415 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3416 					struct extent_state **cached_state,
3417 					u64 start, u64 end, u64 *start_ret)
3418 {
3419 	u64 delalloc_start;
3420 	u64 delalloc_end;
3421 	bool delalloc;
3422 
3423 	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3424 						&delalloc_start, &delalloc_end);
3425 	if (delalloc && whence == SEEK_DATA) {
3426 		*start_ret = delalloc_start;
3427 		return true;
3428 	}
3429 
3430 	if (delalloc && whence == SEEK_HOLE) {
3431 		/*
3432 		 * We found delalloc but it starts after out start offset. So we
3433 		 * have a hole between our start offset and the delalloc start.
3434 		 */
3435 		if (start < delalloc_start) {
3436 			*start_ret = start;
3437 			return true;
3438 		}
3439 		/*
3440 		 * Delalloc range starts at our start offset.
3441 		 * If the delalloc range's length is smaller than our range,
3442 		 * then it means we have a hole that starts where the delalloc
3443 		 * subrange ends.
3444 		 */
3445 		if (delalloc_end < end) {
3446 			*start_ret = delalloc_end + 1;
3447 			return true;
3448 		}
3449 
3450 		/* There's delalloc for the whole range. */
3451 		return false;
3452 	}
3453 
3454 	if (!delalloc && whence == SEEK_HOLE) {
3455 		*start_ret = start;
3456 		return true;
3457 	}
3458 
3459 	/*
3460 	 * No delalloc in the range and we are seeking for data. The caller has
3461 	 * to iterate to the next extent item in the subvolume btree.
3462 	 */
3463 	return false;
3464 }
3465 
3466 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3467 {
3468 	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3469 	struct btrfs_file_private *private = file->private_data;
3470 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3471 	struct extent_state *cached_state = NULL;
3472 	struct extent_state **delalloc_cached_state;
3473 	const loff_t i_size = i_size_read(&inode->vfs_inode);
3474 	const u64 ino = btrfs_ino(inode);
3475 	struct btrfs_root *root = inode->root;
3476 	struct btrfs_path *path;
3477 	struct btrfs_key key;
3478 	u64 last_extent_end;
3479 	u64 lockstart;
3480 	u64 lockend;
3481 	u64 start;
3482 	int ret;
3483 	bool found = false;
3484 
3485 	if (i_size == 0 || offset >= i_size)
3486 		return -ENXIO;
3487 
3488 	/*
3489 	 * Quick path. If the inode has no prealloc extents and its number of
3490 	 * bytes used matches its i_size, then it can not have holes.
3491 	 */
3492 	if (whence == SEEK_HOLE &&
3493 	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3494 	    inode_get_bytes(&inode->vfs_inode) == i_size)
3495 		return i_size;
3496 
3497 	if (!private) {
3498 		private = kzalloc(sizeof(*private), GFP_KERNEL);
3499 		/*
3500 		 * No worries if memory allocation failed.
3501 		 * The private structure is used only for speeding up multiple
3502 		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3503 		 * so everything will still be correct.
3504 		 */
3505 		file->private_data = private;
3506 	}
3507 
3508 	if (private)
3509 		delalloc_cached_state = &private->llseek_cached_state;
3510 	else
3511 		delalloc_cached_state = NULL;
3512 
3513 	/*
3514 	 * offset can be negative, in this case we start finding DATA/HOLE from
3515 	 * the very start of the file.
3516 	 */
3517 	start = max_t(loff_t, 0, offset);
3518 
3519 	lockstart = round_down(start, fs_info->sectorsize);
3520 	lockend = round_up(i_size, fs_info->sectorsize);
3521 	if (lockend <= lockstart)
3522 		lockend = lockstart + fs_info->sectorsize;
3523 	lockend--;
3524 
3525 	path = btrfs_alloc_path();
3526 	if (!path)
3527 		return -ENOMEM;
3528 	path->reada = READA_FORWARD;
3529 
3530 	key.objectid = ino;
3531 	key.type = BTRFS_EXTENT_DATA_KEY;
3532 	key.offset = start;
3533 
3534 	last_extent_end = lockstart;
3535 
3536 	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3537 
3538 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3539 	if (ret < 0) {
3540 		goto out;
3541 	} else if (ret > 0 && path->slots[0] > 0) {
3542 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3543 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3544 			path->slots[0]--;
3545 	}
3546 
3547 	while (start < i_size) {
3548 		struct extent_buffer *leaf = path->nodes[0];
3549 		struct btrfs_file_extent_item *extent;
3550 		u64 extent_end;
3551 		u8 type;
3552 
3553 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3554 			ret = btrfs_next_leaf(root, path);
3555 			if (ret < 0)
3556 				goto out;
3557 			else if (ret > 0)
3558 				break;
3559 
3560 			leaf = path->nodes[0];
3561 		}
3562 
3563 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3564 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3565 			break;
3566 
3567 		extent_end = btrfs_file_extent_end(path);
3568 
3569 		/*
3570 		 * In the first iteration we may have a slot that points to an
3571 		 * extent that ends before our start offset, so skip it.
3572 		 */
3573 		if (extent_end <= start) {
3574 			path->slots[0]++;
3575 			continue;
3576 		}
3577 
3578 		/* We have an implicit hole, NO_HOLES feature is likely set. */
3579 		if (last_extent_end < key.offset) {
3580 			u64 search_start = last_extent_end;
3581 			u64 found_start;
3582 
3583 			/*
3584 			 * First iteration, @start matches @offset and it's
3585 			 * within the hole.
3586 			 */
3587 			if (start == offset)
3588 				search_start = offset;
3589 
3590 			found = find_desired_extent_in_hole(inode, whence,
3591 							    delalloc_cached_state,
3592 							    search_start,
3593 							    key.offset - 1,
3594 							    &found_start);
3595 			if (found) {
3596 				start = found_start;
3597 				break;
3598 			}
3599 			/*
3600 			 * Didn't find data or a hole (due to delalloc) in the
3601 			 * implicit hole range, so need to analyze the extent.
3602 			 */
3603 		}
3604 
3605 		extent = btrfs_item_ptr(leaf, path->slots[0],
3606 					struct btrfs_file_extent_item);
3607 		type = btrfs_file_extent_type(leaf, extent);
3608 
3609 		/*
3610 		 * Can't access the extent's disk_bytenr field if this is an
3611 		 * inline extent, since at that offset, it's where the extent
3612 		 * data starts.
3613 		 */
3614 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3615 		    (type == BTRFS_FILE_EXTENT_REG &&
3616 		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3617 			/*
3618 			 * Explicit hole or prealloc extent, search for delalloc.
3619 			 * A prealloc extent is treated like a hole.
3620 			 */
3621 			u64 search_start = key.offset;
3622 			u64 found_start;
3623 
3624 			/*
3625 			 * First iteration, @start matches @offset and it's
3626 			 * within the hole.
3627 			 */
3628 			if (start == offset)
3629 				search_start = offset;
3630 
3631 			found = find_desired_extent_in_hole(inode, whence,
3632 							    delalloc_cached_state,
3633 							    search_start,
3634 							    extent_end - 1,
3635 							    &found_start);
3636 			if (found) {
3637 				start = found_start;
3638 				break;
3639 			}
3640 			/*
3641 			 * Didn't find data or a hole (due to delalloc) in the
3642 			 * implicit hole range, so need to analyze the next
3643 			 * extent item.
3644 			 */
3645 		} else {
3646 			/*
3647 			 * Found a regular or inline extent.
3648 			 * If we are seeking for data, adjust the start offset
3649 			 * and stop, we're done.
3650 			 */
3651 			if (whence == SEEK_DATA) {
3652 				start = max_t(u64, key.offset, offset);
3653 				found = true;
3654 				break;
3655 			}
3656 			/*
3657 			 * Else, we are seeking for a hole, check the next file
3658 			 * extent item.
3659 			 */
3660 		}
3661 
3662 		start = extent_end;
3663 		last_extent_end = extent_end;
3664 		path->slots[0]++;
3665 		if (fatal_signal_pending(current)) {
3666 			ret = -EINTR;
3667 			goto out;
3668 		}
3669 		cond_resched();
3670 	}
3671 
3672 	/* We have an implicit hole from the last extent found up to i_size. */
3673 	if (!found && start < i_size) {
3674 		found = find_desired_extent_in_hole(inode, whence,
3675 						    delalloc_cached_state, start,
3676 						    i_size - 1, &start);
3677 		if (!found)
3678 			start = i_size;
3679 	}
3680 
3681 out:
3682 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3683 	btrfs_free_path(path);
3684 
3685 	if (ret < 0)
3686 		return ret;
3687 
3688 	if (whence == SEEK_DATA && start >= i_size)
3689 		return -ENXIO;
3690 
3691 	return min_t(loff_t, start, i_size);
3692 }
3693 
3694 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3695 {
3696 	struct inode *inode = file->f_mapping->host;
3697 
3698 	switch (whence) {
3699 	default:
3700 		return generic_file_llseek(file, offset, whence);
3701 	case SEEK_DATA:
3702 	case SEEK_HOLE:
3703 		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3704 		offset = find_desired_extent(file, offset, whence);
3705 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3706 		break;
3707 	}
3708 
3709 	if (offset < 0)
3710 		return offset;
3711 
3712 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3713 }
3714 
3715 static int btrfs_file_open(struct inode *inode, struct file *filp)
3716 {
3717 	int ret;
3718 
3719 	filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
3720 
3721 	ret = fsverity_file_open(inode, filp);
3722 	if (ret)
3723 		return ret;
3724 	return generic_file_open(inode, filp);
3725 }
3726 
3727 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3728 {
3729 	ssize_t ret = 0;
3730 
3731 	if (iocb->ki_flags & IOCB_DIRECT) {
3732 		ret = btrfs_direct_read(iocb, to);
3733 		if (ret < 0 || !iov_iter_count(to) ||
3734 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3735 			return ret;
3736 	}
3737 
3738 	return filemap_read(iocb, to, ret);
3739 }
3740 
3741 const struct file_operations btrfs_file_operations = {
3742 	.llseek		= btrfs_file_llseek,
3743 	.read_iter      = btrfs_file_read_iter,
3744 	.splice_read	= filemap_splice_read,
3745 	.write_iter	= btrfs_file_write_iter,
3746 	.splice_write	= iter_file_splice_write,
3747 	.mmap		= btrfs_file_mmap,
3748 	.open		= btrfs_file_open,
3749 	.release	= btrfs_release_file,
3750 	.get_unmapped_area = thp_get_unmapped_area,
3751 	.fsync		= btrfs_sync_file,
3752 	.fallocate	= btrfs_fallocate,
3753 	.unlocked_ioctl	= btrfs_ioctl,
3754 #ifdef CONFIG_COMPAT
3755 	.compat_ioctl	= btrfs_compat_ioctl,
3756 #endif
3757 	.remap_file_range = btrfs_remap_file_range,
3758 	.fop_flags	= FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC,
3759 };
3760 
3761 int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end)
3762 {
3763 	struct address_space *mapping = inode->vfs_inode.i_mapping;
3764 	int ret;
3765 
3766 	/*
3767 	 * So with compression we will find and lock a dirty page and clear the
3768 	 * first one as dirty, setup an async extent, and immediately return
3769 	 * with the entire range locked but with nobody actually marked with
3770 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3771 	 * expect it to work since it will just kick off a thread to do the
3772 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3773 	 * since it will wait on the page lock, which won't be unlocked until
3774 	 * after the pages have been marked as writeback and so we're good to go
3775 	 * from there.  We have to do this otherwise we'll miss the ordered
3776 	 * extents and that results in badness.  Please Josef, do not think you
3777 	 * know better and pull this out at some point in the future, it is
3778 	 * right and you are wrong.
3779 	 */
3780 	ret = filemap_fdatawrite_range(mapping, start, end);
3781 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags))
3782 		ret = filemap_fdatawrite_range(mapping, start, end);
3783 
3784 	return ret;
3785 }
3786