1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "btrfs_inode.h" 24 #include "print-tree.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "volumes.h" 28 #include "qgroup.h" 29 #include "compression.h" 30 #include "delalloc-space.h" 31 #include "reflink.h" 32 #include "subpage.h" 33 34 static struct kmem_cache *btrfs_inode_defrag_cachep; 35 /* 36 * when auto defrag is enabled we 37 * queue up these defrag structs to remember which 38 * inodes need defragging passes 39 */ 40 struct inode_defrag { 41 struct rb_node rb_node; 42 /* objectid */ 43 u64 ino; 44 /* 45 * transid where the defrag was added, we search for 46 * extents newer than this 47 */ 48 u64 transid; 49 50 /* root objectid */ 51 u64 root; 52 53 /* last offset we were able to defrag */ 54 u64 last_offset; 55 56 /* if we've wrapped around back to zero once already */ 57 int cycled; 58 }; 59 60 static int __compare_inode_defrag(struct inode_defrag *defrag1, 61 struct inode_defrag *defrag2) 62 { 63 if (defrag1->root > defrag2->root) 64 return 1; 65 else if (defrag1->root < defrag2->root) 66 return -1; 67 else if (defrag1->ino > defrag2->ino) 68 return 1; 69 else if (defrag1->ino < defrag2->ino) 70 return -1; 71 else 72 return 0; 73 } 74 75 /* pop a record for an inode into the defrag tree. The lock 76 * must be held already 77 * 78 * If you're inserting a record for an older transid than an 79 * existing record, the transid already in the tree is lowered 80 * 81 * If an existing record is found the defrag item you 82 * pass in is freed 83 */ 84 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 85 struct inode_defrag *defrag) 86 { 87 struct btrfs_fs_info *fs_info = inode->root->fs_info; 88 struct inode_defrag *entry; 89 struct rb_node **p; 90 struct rb_node *parent = NULL; 91 int ret; 92 93 p = &fs_info->defrag_inodes.rb_node; 94 while (*p) { 95 parent = *p; 96 entry = rb_entry(parent, struct inode_defrag, rb_node); 97 98 ret = __compare_inode_defrag(defrag, entry); 99 if (ret < 0) 100 p = &parent->rb_left; 101 else if (ret > 0) 102 p = &parent->rb_right; 103 else { 104 /* if we're reinserting an entry for 105 * an old defrag run, make sure to 106 * lower the transid of our existing record 107 */ 108 if (defrag->transid < entry->transid) 109 entry->transid = defrag->transid; 110 if (defrag->last_offset > entry->last_offset) 111 entry->last_offset = defrag->last_offset; 112 return -EEXIST; 113 } 114 } 115 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 116 rb_link_node(&defrag->rb_node, parent, p); 117 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 118 return 0; 119 } 120 121 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 122 { 123 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 124 return 0; 125 126 if (btrfs_fs_closing(fs_info)) 127 return 0; 128 129 return 1; 130 } 131 132 /* 133 * insert a defrag record for this inode if auto defrag is 134 * enabled 135 */ 136 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 137 struct btrfs_inode *inode) 138 { 139 struct btrfs_root *root = inode->root; 140 struct btrfs_fs_info *fs_info = root->fs_info; 141 struct inode_defrag *defrag; 142 u64 transid; 143 int ret; 144 145 if (!__need_auto_defrag(fs_info)) 146 return 0; 147 148 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 149 return 0; 150 151 if (trans) 152 transid = trans->transid; 153 else 154 transid = inode->root->last_trans; 155 156 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 157 if (!defrag) 158 return -ENOMEM; 159 160 defrag->ino = btrfs_ino(inode); 161 defrag->transid = transid; 162 defrag->root = root->root_key.objectid; 163 164 spin_lock(&fs_info->defrag_inodes_lock); 165 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 166 /* 167 * If we set IN_DEFRAG flag and evict the inode from memory, 168 * and then re-read this inode, this new inode doesn't have 169 * IN_DEFRAG flag. At the case, we may find the existed defrag. 170 */ 171 ret = __btrfs_add_inode_defrag(inode, defrag); 172 if (ret) 173 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 174 } else { 175 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 176 } 177 spin_unlock(&fs_info->defrag_inodes_lock); 178 return 0; 179 } 180 181 /* 182 * Requeue the defrag object. If there is a defrag object that points to 183 * the same inode in the tree, we will merge them together (by 184 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 185 */ 186 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode, 187 struct inode_defrag *defrag) 188 { 189 struct btrfs_fs_info *fs_info = inode->root->fs_info; 190 int ret; 191 192 if (!__need_auto_defrag(fs_info)) 193 goto out; 194 195 /* 196 * Here we don't check the IN_DEFRAG flag, because we need merge 197 * them together. 198 */ 199 spin_lock(&fs_info->defrag_inodes_lock); 200 ret = __btrfs_add_inode_defrag(inode, defrag); 201 spin_unlock(&fs_info->defrag_inodes_lock); 202 if (ret) 203 goto out; 204 return; 205 out: 206 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 207 } 208 209 /* 210 * pick the defragable inode that we want, if it doesn't exist, we will get 211 * the next one. 212 */ 213 static struct inode_defrag * 214 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 215 { 216 struct inode_defrag *entry = NULL; 217 struct inode_defrag tmp; 218 struct rb_node *p; 219 struct rb_node *parent = NULL; 220 int ret; 221 222 tmp.ino = ino; 223 tmp.root = root; 224 225 spin_lock(&fs_info->defrag_inodes_lock); 226 p = fs_info->defrag_inodes.rb_node; 227 while (p) { 228 parent = p; 229 entry = rb_entry(parent, struct inode_defrag, rb_node); 230 231 ret = __compare_inode_defrag(&tmp, entry); 232 if (ret < 0) 233 p = parent->rb_left; 234 else if (ret > 0) 235 p = parent->rb_right; 236 else 237 goto out; 238 } 239 240 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 241 parent = rb_next(parent); 242 if (parent) 243 entry = rb_entry(parent, struct inode_defrag, rb_node); 244 else 245 entry = NULL; 246 } 247 out: 248 if (entry) 249 rb_erase(parent, &fs_info->defrag_inodes); 250 spin_unlock(&fs_info->defrag_inodes_lock); 251 return entry; 252 } 253 254 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 255 { 256 struct inode_defrag *defrag; 257 struct rb_node *node; 258 259 spin_lock(&fs_info->defrag_inodes_lock); 260 node = rb_first(&fs_info->defrag_inodes); 261 while (node) { 262 rb_erase(node, &fs_info->defrag_inodes); 263 defrag = rb_entry(node, struct inode_defrag, rb_node); 264 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 265 266 cond_resched_lock(&fs_info->defrag_inodes_lock); 267 268 node = rb_first(&fs_info->defrag_inodes); 269 } 270 spin_unlock(&fs_info->defrag_inodes_lock); 271 } 272 273 #define BTRFS_DEFRAG_BATCH 1024 274 275 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 276 struct inode_defrag *defrag) 277 { 278 struct btrfs_root *inode_root; 279 struct inode *inode; 280 struct btrfs_ioctl_defrag_range_args range; 281 int num_defrag; 282 int ret; 283 284 /* get the inode */ 285 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); 286 if (IS_ERR(inode_root)) { 287 ret = PTR_ERR(inode_root); 288 goto cleanup; 289 } 290 291 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root); 292 btrfs_put_root(inode_root); 293 if (IS_ERR(inode)) { 294 ret = PTR_ERR(inode); 295 goto cleanup; 296 } 297 298 /* do a chunk of defrag */ 299 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 300 memset(&range, 0, sizeof(range)); 301 range.len = (u64)-1; 302 range.start = defrag->last_offset; 303 304 sb_start_write(fs_info->sb); 305 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 306 BTRFS_DEFRAG_BATCH); 307 sb_end_write(fs_info->sb); 308 /* 309 * if we filled the whole defrag batch, there 310 * must be more work to do. Queue this defrag 311 * again 312 */ 313 if (num_defrag == BTRFS_DEFRAG_BATCH) { 314 defrag->last_offset = range.start; 315 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 316 } else if (defrag->last_offset && !defrag->cycled) { 317 /* 318 * we didn't fill our defrag batch, but 319 * we didn't start at zero. Make sure we loop 320 * around to the start of the file. 321 */ 322 defrag->last_offset = 0; 323 defrag->cycled = 1; 324 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag); 325 } else { 326 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 327 } 328 329 iput(inode); 330 return 0; 331 cleanup: 332 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 333 return ret; 334 } 335 336 /* 337 * run through the list of inodes in the FS that need 338 * defragging 339 */ 340 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 341 { 342 struct inode_defrag *defrag; 343 u64 first_ino = 0; 344 u64 root_objectid = 0; 345 346 atomic_inc(&fs_info->defrag_running); 347 while (1) { 348 /* Pause the auto defragger. */ 349 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 350 &fs_info->fs_state)) 351 break; 352 353 if (!__need_auto_defrag(fs_info)) 354 break; 355 356 /* find an inode to defrag */ 357 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 358 first_ino); 359 if (!defrag) { 360 if (root_objectid || first_ino) { 361 root_objectid = 0; 362 first_ino = 0; 363 continue; 364 } else { 365 break; 366 } 367 } 368 369 first_ino = defrag->ino + 1; 370 root_objectid = defrag->root; 371 372 __btrfs_run_defrag_inode(fs_info, defrag); 373 } 374 atomic_dec(&fs_info->defrag_running); 375 376 /* 377 * during unmount, we use the transaction_wait queue to 378 * wait for the defragger to stop 379 */ 380 wake_up(&fs_info->transaction_wait); 381 return 0; 382 } 383 384 /* simple helper to fault in pages and copy. This should go away 385 * and be replaced with calls into generic code. 386 */ 387 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 388 struct page **prepared_pages, 389 struct iov_iter *i) 390 { 391 size_t copied = 0; 392 size_t total_copied = 0; 393 int pg = 0; 394 int offset = offset_in_page(pos); 395 396 while (write_bytes > 0) { 397 size_t count = min_t(size_t, 398 PAGE_SIZE - offset, write_bytes); 399 struct page *page = prepared_pages[pg]; 400 /* 401 * Copy data from userspace to the current page 402 */ 403 copied = copy_page_from_iter_atomic(page, offset, count, i); 404 405 /* Flush processor's dcache for this page */ 406 flush_dcache_page(page); 407 408 /* 409 * if we get a partial write, we can end up with 410 * partially up to date pages. These add 411 * a lot of complexity, so make sure they don't 412 * happen by forcing this copy to be retried. 413 * 414 * The rest of the btrfs_file_write code will fall 415 * back to page at a time copies after we return 0. 416 */ 417 if (unlikely(copied < count)) { 418 if (!PageUptodate(page)) { 419 iov_iter_revert(i, copied); 420 copied = 0; 421 } 422 if (!copied) 423 break; 424 } 425 426 write_bytes -= copied; 427 total_copied += copied; 428 offset += copied; 429 if (offset == PAGE_SIZE) { 430 pg++; 431 offset = 0; 432 } 433 } 434 return total_copied; 435 } 436 437 /* 438 * unlocks pages after btrfs_file_write is done with them 439 */ 440 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 441 struct page **pages, size_t num_pages, 442 u64 pos, u64 copied) 443 { 444 size_t i; 445 u64 block_start = round_down(pos, fs_info->sectorsize); 446 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 447 448 ASSERT(block_len <= U32_MAX); 449 for (i = 0; i < num_pages; i++) { 450 /* page checked is some magic around finding pages that 451 * have been modified without going through btrfs_set_page_dirty 452 * clear it here. There should be no need to mark the pages 453 * accessed as prepare_pages should have marked them accessed 454 * in prepare_pages via find_or_create_page() 455 */ 456 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start, 457 block_len); 458 unlock_page(pages[i]); 459 put_page(pages[i]); 460 } 461 } 462 463 /* 464 * After btrfs_copy_from_user(), update the following things for delalloc: 465 * - Mark newly dirtied pages as DELALLOC in the io tree. 466 * Used to advise which range is to be written back. 467 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 468 * - Update inode size for past EOF write 469 */ 470 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 471 size_t num_pages, loff_t pos, size_t write_bytes, 472 struct extent_state **cached, bool noreserve) 473 { 474 struct btrfs_fs_info *fs_info = inode->root->fs_info; 475 int err = 0; 476 int i; 477 u64 num_bytes; 478 u64 start_pos; 479 u64 end_of_last_block; 480 u64 end_pos = pos + write_bytes; 481 loff_t isize = i_size_read(&inode->vfs_inode); 482 unsigned int extra_bits = 0; 483 484 if (write_bytes == 0) 485 return 0; 486 487 if (noreserve) 488 extra_bits |= EXTENT_NORESERVE; 489 490 start_pos = round_down(pos, fs_info->sectorsize); 491 num_bytes = round_up(write_bytes + pos - start_pos, 492 fs_info->sectorsize); 493 ASSERT(num_bytes <= U32_MAX); 494 495 end_of_last_block = start_pos + num_bytes - 1; 496 497 /* 498 * The pages may have already been dirty, clear out old accounting so 499 * we can set things up properly 500 */ 501 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 502 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 503 0, 0, cached); 504 505 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 506 extra_bits, cached); 507 if (err) 508 return err; 509 510 for (i = 0; i < num_pages; i++) { 511 struct page *p = pages[i]; 512 513 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes); 514 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes); 515 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes); 516 } 517 518 /* 519 * we've only changed i_size in ram, and we haven't updated 520 * the disk i_size. There is no need to log the inode 521 * at this time. 522 */ 523 if (end_pos > isize) 524 i_size_write(&inode->vfs_inode, end_pos); 525 return 0; 526 } 527 528 /* 529 * this drops all the extents in the cache that intersect the range 530 * [start, end]. Existing extents are split as required. 531 */ 532 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 533 int skip_pinned) 534 { 535 struct extent_map *em; 536 struct extent_map *split = NULL; 537 struct extent_map *split2 = NULL; 538 struct extent_map_tree *em_tree = &inode->extent_tree; 539 u64 len = end - start + 1; 540 u64 gen; 541 int ret; 542 int testend = 1; 543 unsigned long flags; 544 int compressed = 0; 545 bool modified; 546 547 WARN_ON(end < start); 548 if (end == (u64)-1) { 549 len = (u64)-1; 550 testend = 0; 551 } 552 while (1) { 553 int no_splits = 0; 554 555 modified = false; 556 if (!split) 557 split = alloc_extent_map(); 558 if (!split2) 559 split2 = alloc_extent_map(); 560 if (!split || !split2) 561 no_splits = 1; 562 563 write_lock(&em_tree->lock); 564 em = lookup_extent_mapping(em_tree, start, len); 565 if (!em) { 566 write_unlock(&em_tree->lock); 567 break; 568 } 569 flags = em->flags; 570 gen = em->generation; 571 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 572 if (testend && em->start + em->len >= start + len) { 573 free_extent_map(em); 574 write_unlock(&em_tree->lock); 575 break; 576 } 577 start = em->start + em->len; 578 if (testend) 579 len = start + len - (em->start + em->len); 580 free_extent_map(em); 581 write_unlock(&em_tree->lock); 582 continue; 583 } 584 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 585 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 586 clear_bit(EXTENT_FLAG_LOGGING, &flags); 587 modified = !list_empty(&em->list); 588 if (no_splits) 589 goto next; 590 591 if (em->start < start) { 592 split->start = em->start; 593 split->len = start - em->start; 594 595 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 596 split->orig_start = em->orig_start; 597 split->block_start = em->block_start; 598 599 if (compressed) 600 split->block_len = em->block_len; 601 else 602 split->block_len = split->len; 603 split->orig_block_len = max(split->block_len, 604 em->orig_block_len); 605 split->ram_bytes = em->ram_bytes; 606 } else { 607 split->orig_start = split->start; 608 split->block_len = 0; 609 split->block_start = em->block_start; 610 split->orig_block_len = 0; 611 split->ram_bytes = split->len; 612 } 613 614 split->generation = gen; 615 split->flags = flags; 616 split->compress_type = em->compress_type; 617 replace_extent_mapping(em_tree, em, split, modified); 618 free_extent_map(split); 619 split = split2; 620 split2 = NULL; 621 } 622 if (testend && em->start + em->len > start + len) { 623 u64 diff = start + len - em->start; 624 625 split->start = start + len; 626 split->len = em->start + em->len - (start + len); 627 split->flags = flags; 628 split->compress_type = em->compress_type; 629 split->generation = gen; 630 631 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 632 split->orig_block_len = max(em->block_len, 633 em->orig_block_len); 634 635 split->ram_bytes = em->ram_bytes; 636 if (compressed) { 637 split->block_len = em->block_len; 638 split->block_start = em->block_start; 639 split->orig_start = em->orig_start; 640 } else { 641 split->block_len = split->len; 642 split->block_start = em->block_start 643 + diff; 644 split->orig_start = em->orig_start; 645 } 646 } else { 647 split->ram_bytes = split->len; 648 split->orig_start = split->start; 649 split->block_len = 0; 650 split->block_start = em->block_start; 651 split->orig_block_len = 0; 652 } 653 654 if (extent_map_in_tree(em)) { 655 replace_extent_mapping(em_tree, em, split, 656 modified); 657 } else { 658 ret = add_extent_mapping(em_tree, split, 659 modified); 660 ASSERT(ret == 0); /* Logic error */ 661 } 662 free_extent_map(split); 663 split = NULL; 664 } 665 next: 666 if (extent_map_in_tree(em)) 667 remove_extent_mapping(em_tree, em); 668 write_unlock(&em_tree->lock); 669 670 /* once for us */ 671 free_extent_map(em); 672 /* once for the tree*/ 673 free_extent_map(em); 674 } 675 if (split) 676 free_extent_map(split); 677 if (split2) 678 free_extent_map(split2); 679 } 680 681 /* 682 * this is very complex, but the basic idea is to drop all extents 683 * in the range start - end. hint_block is filled in with a block number 684 * that would be a good hint to the block allocator for this file. 685 * 686 * If an extent intersects the range but is not entirely inside the range 687 * it is either truncated or split. Anything entirely inside the range 688 * is deleted from the tree. 689 * 690 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 691 * to deal with that. We set the field 'bytes_found' of the arguments structure 692 * with the number of allocated bytes found in the target range, so that the 693 * caller can update the inode's number of bytes in an atomic way when 694 * replacing extents in a range to avoid races with stat(2). 695 */ 696 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 697 struct btrfs_root *root, struct btrfs_inode *inode, 698 struct btrfs_drop_extents_args *args) 699 { 700 struct btrfs_fs_info *fs_info = root->fs_info; 701 struct extent_buffer *leaf; 702 struct btrfs_file_extent_item *fi; 703 struct btrfs_ref ref = { 0 }; 704 struct btrfs_key key; 705 struct btrfs_key new_key; 706 u64 ino = btrfs_ino(inode); 707 u64 search_start = args->start; 708 u64 disk_bytenr = 0; 709 u64 num_bytes = 0; 710 u64 extent_offset = 0; 711 u64 extent_end = 0; 712 u64 last_end = args->start; 713 int del_nr = 0; 714 int del_slot = 0; 715 int extent_type; 716 int recow; 717 int ret; 718 int modify_tree = -1; 719 int update_refs; 720 int found = 0; 721 int leafs_visited = 0; 722 struct btrfs_path *path = args->path; 723 724 args->bytes_found = 0; 725 args->extent_inserted = false; 726 727 /* Must always have a path if ->replace_extent is true */ 728 ASSERT(!(args->replace_extent && !args->path)); 729 730 if (!path) { 731 path = btrfs_alloc_path(); 732 if (!path) { 733 ret = -ENOMEM; 734 goto out; 735 } 736 } 737 738 if (args->drop_cache) 739 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0); 740 741 if (args->start >= inode->disk_i_size && !args->replace_extent) 742 modify_tree = 0; 743 744 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 745 while (1) { 746 recow = 0; 747 ret = btrfs_lookup_file_extent(trans, root, path, ino, 748 search_start, modify_tree); 749 if (ret < 0) 750 break; 751 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 752 leaf = path->nodes[0]; 753 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 754 if (key.objectid == ino && 755 key.type == BTRFS_EXTENT_DATA_KEY) 756 path->slots[0]--; 757 } 758 ret = 0; 759 leafs_visited++; 760 next_slot: 761 leaf = path->nodes[0]; 762 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 763 BUG_ON(del_nr > 0); 764 ret = btrfs_next_leaf(root, path); 765 if (ret < 0) 766 break; 767 if (ret > 0) { 768 ret = 0; 769 break; 770 } 771 leafs_visited++; 772 leaf = path->nodes[0]; 773 recow = 1; 774 } 775 776 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 777 778 if (key.objectid > ino) 779 break; 780 if (WARN_ON_ONCE(key.objectid < ino) || 781 key.type < BTRFS_EXTENT_DATA_KEY) { 782 ASSERT(del_nr == 0); 783 path->slots[0]++; 784 goto next_slot; 785 } 786 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 787 break; 788 789 fi = btrfs_item_ptr(leaf, path->slots[0], 790 struct btrfs_file_extent_item); 791 extent_type = btrfs_file_extent_type(leaf, fi); 792 793 if (extent_type == BTRFS_FILE_EXTENT_REG || 794 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 795 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 796 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 797 extent_offset = btrfs_file_extent_offset(leaf, fi); 798 extent_end = key.offset + 799 btrfs_file_extent_num_bytes(leaf, fi); 800 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 801 extent_end = key.offset + 802 btrfs_file_extent_ram_bytes(leaf, fi); 803 } else { 804 /* can't happen */ 805 BUG(); 806 } 807 808 /* 809 * Don't skip extent items representing 0 byte lengths. They 810 * used to be created (bug) if while punching holes we hit 811 * -ENOSPC condition. So if we find one here, just ensure we 812 * delete it, otherwise we would insert a new file extent item 813 * with the same key (offset) as that 0 bytes length file 814 * extent item in the call to setup_items_for_insert() later 815 * in this function. 816 */ 817 if (extent_end == key.offset && extent_end >= search_start) { 818 last_end = extent_end; 819 goto delete_extent_item; 820 } 821 822 if (extent_end <= search_start) { 823 path->slots[0]++; 824 goto next_slot; 825 } 826 827 found = 1; 828 search_start = max(key.offset, args->start); 829 if (recow || !modify_tree) { 830 modify_tree = -1; 831 btrfs_release_path(path); 832 continue; 833 } 834 835 /* 836 * | - range to drop - | 837 * | -------- extent -------- | 838 */ 839 if (args->start > key.offset && args->end < extent_end) { 840 BUG_ON(del_nr > 0); 841 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 842 ret = -EOPNOTSUPP; 843 break; 844 } 845 846 memcpy(&new_key, &key, sizeof(new_key)); 847 new_key.offset = args->start; 848 ret = btrfs_duplicate_item(trans, root, path, 849 &new_key); 850 if (ret == -EAGAIN) { 851 btrfs_release_path(path); 852 continue; 853 } 854 if (ret < 0) 855 break; 856 857 leaf = path->nodes[0]; 858 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 859 struct btrfs_file_extent_item); 860 btrfs_set_file_extent_num_bytes(leaf, fi, 861 args->start - key.offset); 862 863 fi = btrfs_item_ptr(leaf, path->slots[0], 864 struct btrfs_file_extent_item); 865 866 extent_offset += args->start - key.offset; 867 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 868 btrfs_set_file_extent_num_bytes(leaf, fi, 869 extent_end - args->start); 870 btrfs_mark_buffer_dirty(leaf); 871 872 if (update_refs && disk_bytenr > 0) { 873 btrfs_init_generic_ref(&ref, 874 BTRFS_ADD_DELAYED_REF, 875 disk_bytenr, num_bytes, 0); 876 btrfs_init_data_ref(&ref, 877 root->root_key.objectid, 878 new_key.objectid, 879 args->start - extent_offset, 880 0, false); 881 ret = btrfs_inc_extent_ref(trans, &ref); 882 BUG_ON(ret); /* -ENOMEM */ 883 } 884 key.offset = args->start; 885 } 886 /* 887 * From here on out we will have actually dropped something, so 888 * last_end can be updated. 889 */ 890 last_end = extent_end; 891 892 /* 893 * | ---- range to drop ----- | 894 * | -------- extent -------- | 895 */ 896 if (args->start <= key.offset && args->end < extent_end) { 897 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 898 ret = -EOPNOTSUPP; 899 break; 900 } 901 902 memcpy(&new_key, &key, sizeof(new_key)); 903 new_key.offset = args->end; 904 btrfs_set_item_key_safe(fs_info, path, &new_key); 905 906 extent_offset += args->end - key.offset; 907 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 908 btrfs_set_file_extent_num_bytes(leaf, fi, 909 extent_end - args->end); 910 btrfs_mark_buffer_dirty(leaf); 911 if (update_refs && disk_bytenr > 0) 912 args->bytes_found += args->end - key.offset; 913 break; 914 } 915 916 search_start = extent_end; 917 /* 918 * | ---- range to drop ----- | 919 * | -------- extent -------- | 920 */ 921 if (args->start > key.offset && args->end >= extent_end) { 922 BUG_ON(del_nr > 0); 923 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 924 ret = -EOPNOTSUPP; 925 break; 926 } 927 928 btrfs_set_file_extent_num_bytes(leaf, fi, 929 args->start - key.offset); 930 btrfs_mark_buffer_dirty(leaf); 931 if (update_refs && disk_bytenr > 0) 932 args->bytes_found += extent_end - args->start; 933 if (args->end == extent_end) 934 break; 935 936 path->slots[0]++; 937 goto next_slot; 938 } 939 940 /* 941 * | ---- range to drop ----- | 942 * | ------ extent ------ | 943 */ 944 if (args->start <= key.offset && args->end >= extent_end) { 945 delete_extent_item: 946 if (del_nr == 0) { 947 del_slot = path->slots[0]; 948 del_nr = 1; 949 } else { 950 BUG_ON(del_slot + del_nr != path->slots[0]); 951 del_nr++; 952 } 953 954 if (update_refs && 955 extent_type == BTRFS_FILE_EXTENT_INLINE) { 956 args->bytes_found += extent_end - key.offset; 957 extent_end = ALIGN(extent_end, 958 fs_info->sectorsize); 959 } else if (update_refs && disk_bytenr > 0) { 960 btrfs_init_generic_ref(&ref, 961 BTRFS_DROP_DELAYED_REF, 962 disk_bytenr, num_bytes, 0); 963 btrfs_init_data_ref(&ref, 964 root->root_key.objectid, 965 key.objectid, 966 key.offset - extent_offset, 0, 967 false); 968 ret = btrfs_free_extent(trans, &ref); 969 BUG_ON(ret); /* -ENOMEM */ 970 args->bytes_found += extent_end - key.offset; 971 } 972 973 if (args->end == extent_end) 974 break; 975 976 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 977 path->slots[0]++; 978 goto next_slot; 979 } 980 981 ret = btrfs_del_items(trans, root, path, del_slot, 982 del_nr); 983 if (ret) { 984 btrfs_abort_transaction(trans, ret); 985 break; 986 } 987 988 del_nr = 0; 989 del_slot = 0; 990 991 btrfs_release_path(path); 992 continue; 993 } 994 995 BUG(); 996 } 997 998 if (!ret && del_nr > 0) { 999 /* 1000 * Set path->slots[0] to first slot, so that after the delete 1001 * if items are move off from our leaf to its immediate left or 1002 * right neighbor leafs, we end up with a correct and adjusted 1003 * path->slots[0] for our insertion (if args->replace_extent). 1004 */ 1005 path->slots[0] = del_slot; 1006 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1007 if (ret) 1008 btrfs_abort_transaction(trans, ret); 1009 } 1010 1011 leaf = path->nodes[0]; 1012 /* 1013 * If btrfs_del_items() was called, it might have deleted a leaf, in 1014 * which case it unlocked our path, so check path->locks[0] matches a 1015 * write lock. 1016 */ 1017 if (!ret && args->replace_extent && leafs_visited == 1 && 1018 path->locks[0] == BTRFS_WRITE_LOCK && 1019 btrfs_leaf_free_space(leaf) >= 1020 sizeof(struct btrfs_item) + args->extent_item_size) { 1021 1022 key.objectid = ino; 1023 key.type = BTRFS_EXTENT_DATA_KEY; 1024 key.offset = args->start; 1025 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 1026 struct btrfs_key slot_key; 1027 1028 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 1029 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1030 path->slots[0]++; 1031 } 1032 btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size); 1033 args->extent_inserted = true; 1034 } 1035 1036 if (!args->path) 1037 btrfs_free_path(path); 1038 else if (!args->extent_inserted) 1039 btrfs_release_path(path); 1040 out: 1041 args->drop_end = found ? min(args->end, last_end) : args->end; 1042 1043 return ret; 1044 } 1045 1046 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1047 u64 objectid, u64 bytenr, u64 orig_offset, 1048 u64 *start, u64 *end) 1049 { 1050 struct btrfs_file_extent_item *fi; 1051 struct btrfs_key key; 1052 u64 extent_end; 1053 1054 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1055 return 0; 1056 1057 btrfs_item_key_to_cpu(leaf, &key, slot); 1058 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1059 return 0; 1060 1061 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1062 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1063 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1064 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1065 btrfs_file_extent_compression(leaf, fi) || 1066 btrfs_file_extent_encryption(leaf, fi) || 1067 btrfs_file_extent_other_encoding(leaf, fi)) 1068 return 0; 1069 1070 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1071 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1072 return 0; 1073 1074 *start = key.offset; 1075 *end = extent_end; 1076 return 1; 1077 } 1078 1079 /* 1080 * Mark extent in the range start - end as written. 1081 * 1082 * This changes extent type from 'pre-allocated' to 'regular'. If only 1083 * part of extent is marked as written, the extent will be split into 1084 * two or three. 1085 */ 1086 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1087 struct btrfs_inode *inode, u64 start, u64 end) 1088 { 1089 struct btrfs_fs_info *fs_info = trans->fs_info; 1090 struct btrfs_root *root = inode->root; 1091 struct extent_buffer *leaf; 1092 struct btrfs_path *path; 1093 struct btrfs_file_extent_item *fi; 1094 struct btrfs_ref ref = { 0 }; 1095 struct btrfs_key key; 1096 struct btrfs_key new_key; 1097 u64 bytenr; 1098 u64 num_bytes; 1099 u64 extent_end; 1100 u64 orig_offset; 1101 u64 other_start; 1102 u64 other_end; 1103 u64 split; 1104 int del_nr = 0; 1105 int del_slot = 0; 1106 int recow; 1107 int ret = 0; 1108 u64 ino = btrfs_ino(inode); 1109 1110 path = btrfs_alloc_path(); 1111 if (!path) 1112 return -ENOMEM; 1113 again: 1114 recow = 0; 1115 split = start; 1116 key.objectid = ino; 1117 key.type = BTRFS_EXTENT_DATA_KEY; 1118 key.offset = split; 1119 1120 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1121 if (ret < 0) 1122 goto out; 1123 if (ret > 0 && path->slots[0] > 0) 1124 path->slots[0]--; 1125 1126 leaf = path->nodes[0]; 1127 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1128 if (key.objectid != ino || 1129 key.type != BTRFS_EXTENT_DATA_KEY) { 1130 ret = -EINVAL; 1131 btrfs_abort_transaction(trans, ret); 1132 goto out; 1133 } 1134 fi = btrfs_item_ptr(leaf, path->slots[0], 1135 struct btrfs_file_extent_item); 1136 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 1137 ret = -EINVAL; 1138 btrfs_abort_transaction(trans, ret); 1139 goto out; 1140 } 1141 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1142 if (key.offset > start || extent_end < end) { 1143 ret = -EINVAL; 1144 btrfs_abort_transaction(trans, ret); 1145 goto out; 1146 } 1147 1148 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1149 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1150 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1151 memcpy(&new_key, &key, sizeof(new_key)); 1152 1153 if (start == key.offset && end < extent_end) { 1154 other_start = 0; 1155 other_end = start; 1156 if (extent_mergeable(leaf, path->slots[0] - 1, 1157 ino, bytenr, orig_offset, 1158 &other_start, &other_end)) { 1159 new_key.offset = end; 1160 btrfs_set_item_key_safe(fs_info, path, &new_key); 1161 fi = btrfs_item_ptr(leaf, path->slots[0], 1162 struct btrfs_file_extent_item); 1163 btrfs_set_file_extent_generation(leaf, fi, 1164 trans->transid); 1165 btrfs_set_file_extent_num_bytes(leaf, fi, 1166 extent_end - end); 1167 btrfs_set_file_extent_offset(leaf, fi, 1168 end - orig_offset); 1169 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1170 struct btrfs_file_extent_item); 1171 btrfs_set_file_extent_generation(leaf, fi, 1172 trans->transid); 1173 btrfs_set_file_extent_num_bytes(leaf, fi, 1174 end - other_start); 1175 btrfs_mark_buffer_dirty(leaf); 1176 goto out; 1177 } 1178 } 1179 1180 if (start > key.offset && end == extent_end) { 1181 other_start = end; 1182 other_end = 0; 1183 if (extent_mergeable(leaf, path->slots[0] + 1, 1184 ino, bytenr, orig_offset, 1185 &other_start, &other_end)) { 1186 fi = btrfs_item_ptr(leaf, path->slots[0], 1187 struct btrfs_file_extent_item); 1188 btrfs_set_file_extent_num_bytes(leaf, fi, 1189 start - key.offset); 1190 btrfs_set_file_extent_generation(leaf, fi, 1191 trans->transid); 1192 path->slots[0]++; 1193 new_key.offset = start; 1194 btrfs_set_item_key_safe(fs_info, path, &new_key); 1195 1196 fi = btrfs_item_ptr(leaf, path->slots[0], 1197 struct btrfs_file_extent_item); 1198 btrfs_set_file_extent_generation(leaf, fi, 1199 trans->transid); 1200 btrfs_set_file_extent_num_bytes(leaf, fi, 1201 other_end - start); 1202 btrfs_set_file_extent_offset(leaf, fi, 1203 start - orig_offset); 1204 btrfs_mark_buffer_dirty(leaf); 1205 goto out; 1206 } 1207 } 1208 1209 while (start > key.offset || end < extent_end) { 1210 if (key.offset == start) 1211 split = end; 1212 1213 new_key.offset = split; 1214 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1215 if (ret == -EAGAIN) { 1216 btrfs_release_path(path); 1217 goto again; 1218 } 1219 if (ret < 0) { 1220 btrfs_abort_transaction(trans, ret); 1221 goto out; 1222 } 1223 1224 leaf = path->nodes[0]; 1225 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1226 struct btrfs_file_extent_item); 1227 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1228 btrfs_set_file_extent_num_bytes(leaf, fi, 1229 split - key.offset); 1230 1231 fi = btrfs_item_ptr(leaf, path->slots[0], 1232 struct btrfs_file_extent_item); 1233 1234 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1235 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1236 btrfs_set_file_extent_num_bytes(leaf, fi, 1237 extent_end - split); 1238 btrfs_mark_buffer_dirty(leaf); 1239 1240 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 1241 num_bytes, 0); 1242 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 1243 orig_offset, 0, false); 1244 ret = btrfs_inc_extent_ref(trans, &ref); 1245 if (ret) { 1246 btrfs_abort_transaction(trans, ret); 1247 goto out; 1248 } 1249 1250 if (split == start) { 1251 key.offset = start; 1252 } else { 1253 if (start != key.offset) { 1254 ret = -EINVAL; 1255 btrfs_abort_transaction(trans, ret); 1256 goto out; 1257 } 1258 path->slots[0]--; 1259 extent_end = end; 1260 } 1261 recow = 1; 1262 } 1263 1264 other_start = end; 1265 other_end = 0; 1266 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1267 num_bytes, 0); 1268 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset, 1269 0, false); 1270 if (extent_mergeable(leaf, path->slots[0] + 1, 1271 ino, bytenr, orig_offset, 1272 &other_start, &other_end)) { 1273 if (recow) { 1274 btrfs_release_path(path); 1275 goto again; 1276 } 1277 extent_end = other_end; 1278 del_slot = path->slots[0] + 1; 1279 del_nr++; 1280 ret = btrfs_free_extent(trans, &ref); 1281 if (ret) { 1282 btrfs_abort_transaction(trans, ret); 1283 goto out; 1284 } 1285 } 1286 other_start = 0; 1287 other_end = start; 1288 if (extent_mergeable(leaf, path->slots[0] - 1, 1289 ino, bytenr, orig_offset, 1290 &other_start, &other_end)) { 1291 if (recow) { 1292 btrfs_release_path(path); 1293 goto again; 1294 } 1295 key.offset = other_start; 1296 del_slot = path->slots[0]; 1297 del_nr++; 1298 ret = btrfs_free_extent(trans, &ref); 1299 if (ret) { 1300 btrfs_abort_transaction(trans, ret); 1301 goto out; 1302 } 1303 } 1304 if (del_nr == 0) { 1305 fi = btrfs_item_ptr(leaf, path->slots[0], 1306 struct btrfs_file_extent_item); 1307 btrfs_set_file_extent_type(leaf, fi, 1308 BTRFS_FILE_EXTENT_REG); 1309 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1310 btrfs_mark_buffer_dirty(leaf); 1311 } else { 1312 fi = btrfs_item_ptr(leaf, del_slot - 1, 1313 struct btrfs_file_extent_item); 1314 btrfs_set_file_extent_type(leaf, fi, 1315 BTRFS_FILE_EXTENT_REG); 1316 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1317 btrfs_set_file_extent_num_bytes(leaf, fi, 1318 extent_end - key.offset); 1319 btrfs_mark_buffer_dirty(leaf); 1320 1321 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1322 if (ret < 0) { 1323 btrfs_abort_transaction(trans, ret); 1324 goto out; 1325 } 1326 } 1327 out: 1328 btrfs_free_path(path); 1329 return ret; 1330 } 1331 1332 /* 1333 * on error we return an unlocked page and the error value 1334 * on success we return a locked page and 0 1335 */ 1336 static int prepare_uptodate_page(struct inode *inode, 1337 struct page *page, u64 pos, 1338 bool force_uptodate) 1339 { 1340 int ret = 0; 1341 1342 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1343 !PageUptodate(page)) { 1344 ret = btrfs_readpage(NULL, page); 1345 if (ret) 1346 return ret; 1347 lock_page(page); 1348 if (!PageUptodate(page)) { 1349 unlock_page(page); 1350 return -EIO; 1351 } 1352 1353 /* 1354 * Since btrfs_readpage() will unlock the page before it 1355 * returns, there is a window where btrfs_releasepage() can be 1356 * called to release the page. Here we check both inode 1357 * mapping and PagePrivate() to make sure the page was not 1358 * released. 1359 * 1360 * The private flag check is essential for subpage as we need 1361 * to store extra bitmap using page->private. 1362 */ 1363 if (page->mapping != inode->i_mapping || !PagePrivate(page)) { 1364 unlock_page(page); 1365 return -EAGAIN; 1366 } 1367 } 1368 return 0; 1369 } 1370 1371 /* 1372 * this just gets pages into the page cache and locks them down. 1373 */ 1374 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1375 size_t num_pages, loff_t pos, 1376 size_t write_bytes, bool force_uptodate) 1377 { 1378 int i; 1379 unsigned long index = pos >> PAGE_SHIFT; 1380 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1381 int err = 0; 1382 int faili; 1383 1384 for (i = 0; i < num_pages; i++) { 1385 again: 1386 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1387 mask | __GFP_WRITE); 1388 if (!pages[i]) { 1389 faili = i - 1; 1390 err = -ENOMEM; 1391 goto fail; 1392 } 1393 1394 err = set_page_extent_mapped(pages[i]); 1395 if (err < 0) { 1396 faili = i; 1397 goto fail; 1398 } 1399 1400 if (i == 0) 1401 err = prepare_uptodate_page(inode, pages[i], pos, 1402 force_uptodate); 1403 if (!err && i == num_pages - 1) 1404 err = prepare_uptodate_page(inode, pages[i], 1405 pos + write_bytes, false); 1406 if (err) { 1407 put_page(pages[i]); 1408 if (err == -EAGAIN) { 1409 err = 0; 1410 goto again; 1411 } 1412 faili = i - 1; 1413 goto fail; 1414 } 1415 wait_on_page_writeback(pages[i]); 1416 } 1417 1418 return 0; 1419 fail: 1420 while (faili >= 0) { 1421 unlock_page(pages[faili]); 1422 put_page(pages[faili]); 1423 faili--; 1424 } 1425 return err; 1426 1427 } 1428 1429 /* 1430 * This function locks the extent and properly waits for data=ordered extents 1431 * to finish before allowing the pages to be modified if need. 1432 * 1433 * The return value: 1434 * 1 - the extent is locked 1435 * 0 - the extent is not locked, and everything is OK 1436 * -EAGAIN - need re-prepare the pages 1437 * the other < 0 number - Something wrong happens 1438 */ 1439 static noinline int 1440 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1441 size_t num_pages, loff_t pos, 1442 size_t write_bytes, 1443 u64 *lockstart, u64 *lockend, 1444 struct extent_state **cached_state) 1445 { 1446 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1447 u64 start_pos; 1448 u64 last_pos; 1449 int i; 1450 int ret = 0; 1451 1452 start_pos = round_down(pos, fs_info->sectorsize); 1453 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 1454 1455 if (start_pos < inode->vfs_inode.i_size) { 1456 struct btrfs_ordered_extent *ordered; 1457 1458 lock_extent_bits(&inode->io_tree, start_pos, last_pos, 1459 cached_state); 1460 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1461 last_pos - start_pos + 1); 1462 if (ordered && 1463 ordered->file_offset + ordered->num_bytes > start_pos && 1464 ordered->file_offset <= last_pos) { 1465 unlock_extent_cached(&inode->io_tree, start_pos, 1466 last_pos, cached_state); 1467 for (i = 0; i < num_pages; i++) { 1468 unlock_page(pages[i]); 1469 put_page(pages[i]); 1470 } 1471 btrfs_start_ordered_extent(ordered, 1); 1472 btrfs_put_ordered_extent(ordered); 1473 return -EAGAIN; 1474 } 1475 if (ordered) 1476 btrfs_put_ordered_extent(ordered); 1477 1478 *lockstart = start_pos; 1479 *lockend = last_pos; 1480 ret = 1; 1481 } 1482 1483 /* 1484 * We should be called after prepare_pages() which should have locked 1485 * all pages in the range. 1486 */ 1487 for (i = 0; i < num_pages; i++) 1488 WARN_ON(!PageLocked(pages[i])); 1489 1490 return ret; 1491 } 1492 1493 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos, 1494 size_t *write_bytes, bool nowait) 1495 { 1496 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1497 struct btrfs_root *root = inode->root; 1498 u64 lockstart, lockend; 1499 u64 num_bytes; 1500 int ret; 1501 1502 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1503 return 0; 1504 1505 if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock)) 1506 return -EAGAIN; 1507 1508 lockstart = round_down(pos, fs_info->sectorsize); 1509 lockend = round_up(pos + *write_bytes, 1510 fs_info->sectorsize) - 1; 1511 num_bytes = lockend - lockstart + 1; 1512 1513 if (nowait) { 1514 struct btrfs_ordered_extent *ordered; 1515 1516 if (!try_lock_extent(&inode->io_tree, lockstart, lockend)) 1517 return -EAGAIN; 1518 1519 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1520 num_bytes); 1521 if (ordered) { 1522 btrfs_put_ordered_extent(ordered); 1523 ret = -EAGAIN; 1524 goto out_unlock; 1525 } 1526 } else { 1527 btrfs_lock_and_flush_ordered_range(inode, lockstart, 1528 lockend, NULL); 1529 } 1530 1531 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1532 NULL, NULL, NULL, false); 1533 if (ret <= 0) { 1534 ret = 0; 1535 if (!nowait) 1536 btrfs_drew_write_unlock(&root->snapshot_lock); 1537 } else { 1538 *write_bytes = min_t(size_t, *write_bytes , 1539 num_bytes - pos + lockstart); 1540 } 1541 out_unlock: 1542 unlock_extent(&inode->io_tree, lockstart, lockend); 1543 1544 return ret; 1545 } 1546 1547 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos, 1548 size_t *write_bytes) 1549 { 1550 return check_can_nocow(inode, pos, write_bytes, true); 1551 } 1552 1553 /* 1554 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1555 * 1556 * @pos: File offset 1557 * @write_bytes: The length to write, will be updated to the nocow writeable 1558 * range 1559 * 1560 * This function will flush ordered extents in the range to ensure proper 1561 * nocow checks. 1562 * 1563 * Return: 1564 * >0 and update @write_bytes if we can do nocow write 1565 * 0 if we can't do nocow write 1566 * -EAGAIN if we can't get the needed lock or there are ordered extents 1567 * for * (nowait == true) case 1568 * <0 if other error happened 1569 * 1570 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock(). 1571 */ 1572 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1573 size_t *write_bytes) 1574 { 1575 return check_can_nocow(inode, pos, write_bytes, false); 1576 } 1577 1578 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1579 { 1580 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1581 } 1582 1583 static void update_time_for_write(struct inode *inode) 1584 { 1585 struct timespec64 now; 1586 1587 if (IS_NOCMTIME(inode)) 1588 return; 1589 1590 now = current_time(inode); 1591 if (!timespec64_equal(&inode->i_mtime, &now)) 1592 inode->i_mtime = now; 1593 1594 if (!timespec64_equal(&inode->i_ctime, &now)) 1595 inode->i_ctime = now; 1596 1597 if (IS_I_VERSION(inode)) 1598 inode_inc_iversion(inode); 1599 } 1600 1601 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1602 size_t count) 1603 { 1604 struct file *file = iocb->ki_filp; 1605 struct inode *inode = file_inode(file); 1606 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1607 loff_t pos = iocb->ki_pos; 1608 int ret; 1609 loff_t oldsize; 1610 loff_t start_pos; 1611 1612 if (iocb->ki_flags & IOCB_NOWAIT) { 1613 size_t nocow_bytes = count; 1614 1615 /* We will allocate space in case nodatacow is not set, so bail */ 1616 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0) 1617 return -EAGAIN; 1618 /* 1619 * There are holes in the range or parts of the range that must 1620 * be COWed (shared extents, RO block groups, etc), so just bail 1621 * out. 1622 */ 1623 if (nocow_bytes < count) 1624 return -EAGAIN; 1625 } 1626 1627 current->backing_dev_info = inode_to_bdi(inode); 1628 ret = file_remove_privs(file); 1629 if (ret) 1630 return ret; 1631 1632 /* 1633 * We reserve space for updating the inode when we reserve space for the 1634 * extent we are going to write, so we will enospc out there. We don't 1635 * need to start yet another transaction to update the inode as we will 1636 * update the inode when we finish writing whatever data we write. 1637 */ 1638 update_time_for_write(inode); 1639 1640 start_pos = round_down(pos, fs_info->sectorsize); 1641 oldsize = i_size_read(inode); 1642 if (start_pos > oldsize) { 1643 /* Expand hole size to cover write data, preventing empty gap */ 1644 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1645 1646 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1647 if (ret) { 1648 current->backing_dev_info = NULL; 1649 return ret; 1650 } 1651 } 1652 1653 return 0; 1654 } 1655 1656 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1657 struct iov_iter *i) 1658 { 1659 struct file *file = iocb->ki_filp; 1660 loff_t pos; 1661 struct inode *inode = file_inode(file); 1662 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1663 struct page **pages = NULL; 1664 struct extent_changeset *data_reserved = NULL; 1665 u64 release_bytes = 0; 1666 u64 lockstart; 1667 u64 lockend; 1668 size_t num_written = 0; 1669 int nrptrs; 1670 ssize_t ret; 1671 bool only_release_metadata = false; 1672 bool force_page_uptodate = false; 1673 loff_t old_isize = i_size_read(inode); 1674 unsigned int ilock_flags = 0; 1675 1676 if (iocb->ki_flags & IOCB_NOWAIT) 1677 ilock_flags |= BTRFS_ILOCK_TRY; 1678 1679 ret = btrfs_inode_lock(inode, ilock_flags); 1680 if (ret < 0) 1681 return ret; 1682 1683 ret = generic_write_checks(iocb, i); 1684 if (ret <= 0) 1685 goto out; 1686 1687 ret = btrfs_write_check(iocb, i, ret); 1688 if (ret < 0) 1689 goto out; 1690 1691 pos = iocb->ki_pos; 1692 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1693 PAGE_SIZE / (sizeof(struct page *))); 1694 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1695 nrptrs = max(nrptrs, 8); 1696 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1697 if (!pages) { 1698 ret = -ENOMEM; 1699 goto out; 1700 } 1701 1702 while (iov_iter_count(i) > 0) { 1703 struct extent_state *cached_state = NULL; 1704 size_t offset = offset_in_page(pos); 1705 size_t sector_offset; 1706 size_t write_bytes = min(iov_iter_count(i), 1707 nrptrs * (size_t)PAGE_SIZE - 1708 offset); 1709 size_t num_pages; 1710 size_t reserve_bytes; 1711 size_t dirty_pages; 1712 size_t copied; 1713 size_t dirty_sectors; 1714 size_t num_sectors; 1715 int extents_locked; 1716 1717 /* 1718 * Fault pages before locking them in prepare_pages 1719 * to avoid recursive lock 1720 */ 1721 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1722 ret = -EFAULT; 1723 break; 1724 } 1725 1726 only_release_metadata = false; 1727 sector_offset = pos & (fs_info->sectorsize - 1); 1728 1729 extent_changeset_release(data_reserved); 1730 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1731 &data_reserved, pos, 1732 write_bytes); 1733 if (ret < 0) { 1734 /* 1735 * If we don't have to COW at the offset, reserve 1736 * metadata only. write_bytes may get smaller than 1737 * requested here. 1738 */ 1739 if (btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1740 &write_bytes) > 0) 1741 only_release_metadata = true; 1742 else 1743 break; 1744 } 1745 1746 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1747 WARN_ON(num_pages > nrptrs); 1748 reserve_bytes = round_up(write_bytes + sector_offset, 1749 fs_info->sectorsize); 1750 WARN_ON(reserve_bytes == 0); 1751 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1752 reserve_bytes); 1753 if (ret) { 1754 if (!only_release_metadata) 1755 btrfs_free_reserved_data_space(BTRFS_I(inode), 1756 data_reserved, pos, 1757 write_bytes); 1758 else 1759 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1760 break; 1761 } 1762 1763 release_bytes = reserve_bytes; 1764 again: 1765 /* 1766 * This is going to setup the pages array with the number of 1767 * pages we want, so we don't really need to worry about the 1768 * contents of pages from loop to loop 1769 */ 1770 ret = prepare_pages(inode, pages, num_pages, 1771 pos, write_bytes, 1772 force_page_uptodate); 1773 if (ret) { 1774 btrfs_delalloc_release_extents(BTRFS_I(inode), 1775 reserve_bytes); 1776 break; 1777 } 1778 1779 extents_locked = lock_and_cleanup_extent_if_need( 1780 BTRFS_I(inode), pages, 1781 num_pages, pos, write_bytes, &lockstart, 1782 &lockend, &cached_state); 1783 if (extents_locked < 0) { 1784 if (extents_locked == -EAGAIN) 1785 goto again; 1786 btrfs_delalloc_release_extents(BTRFS_I(inode), 1787 reserve_bytes); 1788 ret = extents_locked; 1789 break; 1790 } 1791 1792 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1793 1794 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1795 dirty_sectors = round_up(copied + sector_offset, 1796 fs_info->sectorsize); 1797 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1798 1799 /* 1800 * if we have trouble faulting in the pages, fall 1801 * back to one page at a time 1802 */ 1803 if (copied < write_bytes) 1804 nrptrs = 1; 1805 1806 if (copied == 0) { 1807 force_page_uptodate = true; 1808 dirty_sectors = 0; 1809 dirty_pages = 0; 1810 } else { 1811 force_page_uptodate = false; 1812 dirty_pages = DIV_ROUND_UP(copied + offset, 1813 PAGE_SIZE); 1814 } 1815 1816 if (num_sectors > dirty_sectors) { 1817 /* release everything except the sectors we dirtied */ 1818 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1819 if (only_release_metadata) { 1820 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1821 release_bytes, true); 1822 } else { 1823 u64 __pos; 1824 1825 __pos = round_down(pos, 1826 fs_info->sectorsize) + 1827 (dirty_pages << PAGE_SHIFT); 1828 btrfs_delalloc_release_space(BTRFS_I(inode), 1829 data_reserved, __pos, 1830 release_bytes, true); 1831 } 1832 } 1833 1834 release_bytes = round_up(copied + sector_offset, 1835 fs_info->sectorsize); 1836 1837 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1838 dirty_pages, pos, copied, 1839 &cached_state, only_release_metadata); 1840 1841 /* 1842 * If we have not locked the extent range, because the range's 1843 * start offset is >= i_size, we might still have a non-NULL 1844 * cached extent state, acquired while marking the extent range 1845 * as delalloc through btrfs_dirty_pages(). Therefore free any 1846 * possible cached extent state to avoid a memory leak. 1847 */ 1848 if (extents_locked) 1849 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1850 lockstart, lockend, &cached_state); 1851 else 1852 free_extent_state(cached_state); 1853 1854 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1855 if (ret) { 1856 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1857 break; 1858 } 1859 1860 release_bytes = 0; 1861 if (only_release_metadata) 1862 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1863 1864 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1865 1866 cond_resched(); 1867 1868 balance_dirty_pages_ratelimited(inode->i_mapping); 1869 1870 pos += copied; 1871 num_written += copied; 1872 } 1873 1874 kfree(pages); 1875 1876 if (release_bytes) { 1877 if (only_release_metadata) { 1878 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1879 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1880 release_bytes, true); 1881 } else { 1882 btrfs_delalloc_release_space(BTRFS_I(inode), 1883 data_reserved, 1884 round_down(pos, fs_info->sectorsize), 1885 release_bytes, true); 1886 } 1887 } 1888 1889 extent_changeset_free(data_reserved); 1890 if (num_written > 0) { 1891 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1892 iocb->ki_pos += num_written; 1893 } 1894 out: 1895 btrfs_inode_unlock(inode, ilock_flags); 1896 return num_written ? num_written : ret; 1897 } 1898 1899 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1900 const struct iov_iter *iter, loff_t offset) 1901 { 1902 const u32 blocksize_mask = fs_info->sectorsize - 1; 1903 1904 if (offset & blocksize_mask) 1905 return -EINVAL; 1906 1907 if (iov_iter_alignment(iter) & blocksize_mask) 1908 return -EINVAL; 1909 1910 return 0; 1911 } 1912 1913 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1914 { 1915 const bool is_sync_write = (iocb->ki_flags & IOCB_DSYNC); 1916 struct file *file = iocb->ki_filp; 1917 struct inode *inode = file_inode(file); 1918 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1919 loff_t pos; 1920 ssize_t written = 0; 1921 ssize_t written_buffered; 1922 size_t prev_left = 0; 1923 loff_t endbyte; 1924 ssize_t err; 1925 unsigned int ilock_flags = 0; 1926 1927 if (iocb->ki_flags & IOCB_NOWAIT) 1928 ilock_flags |= BTRFS_ILOCK_TRY; 1929 1930 /* If the write DIO is within EOF, use a shared lock */ 1931 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode)) 1932 ilock_flags |= BTRFS_ILOCK_SHARED; 1933 1934 relock: 1935 err = btrfs_inode_lock(inode, ilock_flags); 1936 if (err < 0) 1937 return err; 1938 1939 err = generic_write_checks(iocb, from); 1940 if (err <= 0) { 1941 btrfs_inode_unlock(inode, ilock_flags); 1942 return err; 1943 } 1944 1945 err = btrfs_write_check(iocb, from, err); 1946 if (err < 0) { 1947 btrfs_inode_unlock(inode, ilock_flags); 1948 goto out; 1949 } 1950 1951 pos = iocb->ki_pos; 1952 /* 1953 * Re-check since file size may have changed just before taking the 1954 * lock or pos may have changed because of O_APPEND in generic_write_check() 1955 */ 1956 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1957 pos + iov_iter_count(from) > i_size_read(inode)) { 1958 btrfs_inode_unlock(inode, ilock_flags); 1959 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1960 goto relock; 1961 } 1962 1963 if (check_direct_IO(fs_info, from, pos)) { 1964 btrfs_inode_unlock(inode, ilock_flags); 1965 goto buffered; 1966 } 1967 1968 /* 1969 * We remove IOCB_DSYNC so that we don't deadlock when iomap_dio_rw() 1970 * calls generic_write_sync() (through iomap_dio_complete()), because 1971 * that results in calling fsync (btrfs_sync_file()) which will try to 1972 * lock the inode in exclusive/write mode. 1973 */ 1974 if (is_sync_write) 1975 iocb->ki_flags &= ~IOCB_DSYNC; 1976 1977 /* 1978 * The iov_iter can be mapped to the same file range we are writing to. 1979 * If that's the case, then we will deadlock in the iomap code, because 1980 * it first calls our callback btrfs_dio_iomap_begin(), which will create 1981 * an ordered extent, and after that it will fault in the pages that the 1982 * iov_iter refers to. During the fault in we end up in the readahead 1983 * pages code (starting at btrfs_readahead()), which will lock the range, 1984 * find that ordered extent and then wait for it to complete (at 1985 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since 1986 * obviously the ordered extent can never complete as we didn't submit 1987 * yet the respective bio(s). This always happens when the buffer is 1988 * memory mapped to the same file range, since the iomap DIO code always 1989 * invalidates pages in the target file range (after starting and waiting 1990 * for any writeback). 1991 * 1992 * So here we disable page faults in the iov_iter and then retry if we 1993 * got -EFAULT, faulting in the pages before the retry. 1994 */ 1995 again: 1996 from->nofault = true; 1997 err = iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 1998 IOMAP_DIO_PARTIAL, written); 1999 from->nofault = false; 2000 2001 /* No increment (+=) because iomap returns a cumulative value. */ 2002 if (err > 0) 2003 written = err; 2004 2005 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) { 2006 const size_t left = iov_iter_count(from); 2007 /* 2008 * We have more data left to write. Try to fault in as many as 2009 * possible of the remainder pages and retry. We do this without 2010 * releasing and locking again the inode, to prevent races with 2011 * truncate. 2012 * 2013 * Also, in case the iov refers to pages in the file range of the 2014 * file we want to write to (due to a mmap), we could enter an 2015 * infinite loop if we retry after faulting the pages in, since 2016 * iomap will invalidate any pages in the range early on, before 2017 * it tries to fault in the pages of the iov. So we keep track of 2018 * how much was left of iov in the previous EFAULT and fallback 2019 * to buffered IO in case we haven't made any progress. 2020 */ 2021 if (left == prev_left) { 2022 err = -ENOTBLK; 2023 } else { 2024 fault_in_iov_iter_readable(from, left); 2025 prev_left = left; 2026 goto again; 2027 } 2028 } 2029 2030 btrfs_inode_unlock(inode, ilock_flags); 2031 2032 /* 2033 * Add back IOCB_DSYNC. Our caller, btrfs_file_write_iter(), will do 2034 * the fsync (call generic_write_sync()). 2035 */ 2036 if (is_sync_write) 2037 iocb->ki_flags |= IOCB_DSYNC; 2038 2039 /* If 'err' is -ENOTBLK then it means we must fallback to buffered IO. */ 2040 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from)) 2041 goto out; 2042 2043 buffered: 2044 pos = iocb->ki_pos; 2045 written_buffered = btrfs_buffered_write(iocb, from); 2046 if (written_buffered < 0) { 2047 err = written_buffered; 2048 goto out; 2049 } 2050 /* 2051 * Ensure all data is persisted. We want the next direct IO read to be 2052 * able to read what was just written. 2053 */ 2054 endbyte = pos + written_buffered - 1; 2055 err = btrfs_fdatawrite_range(inode, pos, endbyte); 2056 if (err) 2057 goto out; 2058 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 2059 if (err) 2060 goto out; 2061 written += written_buffered; 2062 iocb->ki_pos = pos + written_buffered; 2063 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 2064 endbyte >> PAGE_SHIFT); 2065 out: 2066 return err < 0 ? err : written; 2067 } 2068 2069 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 2070 struct iov_iter *from) 2071 { 2072 struct file *file = iocb->ki_filp; 2073 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 2074 ssize_t num_written = 0; 2075 const bool sync = iocb->ki_flags & IOCB_DSYNC; 2076 2077 /* 2078 * If the fs flips readonly due to some impossible error, although we 2079 * have opened a file as writable, we have to stop this write operation 2080 * to ensure consistency. 2081 */ 2082 if (BTRFS_FS_ERROR(inode->root->fs_info)) 2083 return -EROFS; 2084 2085 if (!(iocb->ki_flags & IOCB_DIRECT) && 2086 (iocb->ki_flags & IOCB_NOWAIT)) 2087 return -EOPNOTSUPP; 2088 2089 if (sync) 2090 atomic_inc(&inode->sync_writers); 2091 2092 if (iocb->ki_flags & IOCB_DIRECT) 2093 num_written = btrfs_direct_write(iocb, from); 2094 else 2095 num_written = btrfs_buffered_write(iocb, from); 2096 2097 btrfs_set_inode_last_sub_trans(inode); 2098 2099 if (num_written > 0) 2100 num_written = generic_write_sync(iocb, num_written); 2101 2102 if (sync) 2103 atomic_dec(&inode->sync_writers); 2104 2105 current->backing_dev_info = NULL; 2106 return num_written; 2107 } 2108 2109 int btrfs_release_file(struct inode *inode, struct file *filp) 2110 { 2111 struct btrfs_file_private *private = filp->private_data; 2112 2113 if (private && private->filldir_buf) 2114 kfree(private->filldir_buf); 2115 kfree(private); 2116 filp->private_data = NULL; 2117 2118 /* 2119 * Set by setattr when we are about to truncate a file from a non-zero 2120 * size to a zero size. This tries to flush down new bytes that may 2121 * have been written if the application were using truncate to replace 2122 * a file in place. 2123 */ 2124 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 2125 &BTRFS_I(inode)->runtime_flags)) 2126 filemap_flush(inode->i_mapping); 2127 return 0; 2128 } 2129 2130 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2131 { 2132 int ret; 2133 struct blk_plug plug; 2134 2135 /* 2136 * This is only called in fsync, which would do synchronous writes, so 2137 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2138 * multiple disks using raid profile, a large IO can be split to 2139 * several segments of stripe length (currently 64K). 2140 */ 2141 blk_start_plug(&plug); 2142 atomic_inc(&BTRFS_I(inode)->sync_writers); 2143 ret = btrfs_fdatawrite_range(inode, start, end); 2144 atomic_dec(&BTRFS_I(inode)->sync_writers); 2145 blk_finish_plug(&plug); 2146 2147 return ret; 2148 } 2149 2150 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 2151 { 2152 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 2153 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2154 2155 if (btrfs_inode_in_log(inode, fs_info->generation) && 2156 list_empty(&ctx->ordered_extents)) 2157 return true; 2158 2159 /* 2160 * If we are doing a fast fsync we can not bail out if the inode's 2161 * last_trans is <= then the last committed transaction, because we only 2162 * update the last_trans of the inode during ordered extent completion, 2163 * and for a fast fsync we don't wait for that, we only wait for the 2164 * writeback to complete. 2165 */ 2166 if (inode->last_trans <= fs_info->last_trans_committed && 2167 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 2168 list_empty(&ctx->ordered_extents))) 2169 return true; 2170 2171 return false; 2172 } 2173 2174 /* 2175 * fsync call for both files and directories. This logs the inode into 2176 * the tree log instead of forcing full commits whenever possible. 2177 * 2178 * It needs to call filemap_fdatawait so that all ordered extent updates are 2179 * in the metadata btree are up to date for copying to the log. 2180 * 2181 * It drops the inode mutex before doing the tree log commit. This is an 2182 * important optimization for directories because holding the mutex prevents 2183 * new operations on the dir while we write to disk. 2184 */ 2185 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2186 { 2187 struct dentry *dentry = file_dentry(file); 2188 struct inode *inode = d_inode(dentry); 2189 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2190 struct btrfs_root *root = BTRFS_I(inode)->root; 2191 struct btrfs_trans_handle *trans; 2192 struct btrfs_log_ctx ctx; 2193 int ret = 0, err; 2194 u64 len; 2195 bool full_sync; 2196 2197 trace_btrfs_sync_file(file, datasync); 2198 2199 btrfs_init_log_ctx(&ctx, inode); 2200 2201 /* 2202 * Always set the range to a full range, otherwise we can get into 2203 * several problems, from missing file extent items to represent holes 2204 * when not using the NO_HOLES feature, to log tree corruption due to 2205 * races between hole detection during logging and completion of ordered 2206 * extents outside the range, to missing checksums due to ordered extents 2207 * for which we flushed only a subset of their pages. 2208 */ 2209 start = 0; 2210 end = LLONG_MAX; 2211 len = (u64)LLONG_MAX + 1; 2212 2213 /* 2214 * We write the dirty pages in the range and wait until they complete 2215 * out of the ->i_mutex. If so, we can flush the dirty pages by 2216 * multi-task, and make the performance up. See 2217 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2218 */ 2219 ret = start_ordered_ops(inode, start, end); 2220 if (ret) 2221 goto out; 2222 2223 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 2224 2225 atomic_inc(&root->log_batch); 2226 2227 /* 2228 * Always check for the full sync flag while holding the inode's lock, 2229 * to avoid races with other tasks. The flag must be either set all the 2230 * time during logging or always off all the time while logging. 2231 */ 2232 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2233 &BTRFS_I(inode)->runtime_flags); 2234 2235 /* 2236 * Before we acquired the inode's lock and the mmap lock, someone may 2237 * have dirtied more pages in the target range. We need to make sure 2238 * that writeback for any such pages does not start while we are logging 2239 * the inode, because if it does, any of the following might happen when 2240 * we are not doing a full inode sync: 2241 * 2242 * 1) We log an extent after its writeback finishes but before its 2243 * checksums are added to the csum tree, leading to -EIO errors 2244 * when attempting to read the extent after a log replay. 2245 * 2246 * 2) We can end up logging an extent before its writeback finishes. 2247 * Therefore after the log replay we will have a file extent item 2248 * pointing to an unwritten extent (and no data checksums as well). 2249 * 2250 * So trigger writeback for any eventual new dirty pages and then we 2251 * wait for all ordered extents to complete below. 2252 */ 2253 ret = start_ordered_ops(inode, start, end); 2254 if (ret) { 2255 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2256 goto out; 2257 } 2258 2259 /* 2260 * We have to do this here to avoid the priority inversion of waiting on 2261 * IO of a lower priority task while holding a transaction open. 2262 * 2263 * For a full fsync we wait for the ordered extents to complete while 2264 * for a fast fsync we wait just for writeback to complete, and then 2265 * attach the ordered extents to the transaction so that a transaction 2266 * commit waits for their completion, to avoid data loss if we fsync, 2267 * the current transaction commits before the ordered extents complete 2268 * and a power failure happens right after that. 2269 * 2270 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 2271 * logical address recorded in the ordered extent may change. We need 2272 * to wait for the IO to stabilize the logical address. 2273 */ 2274 if (full_sync || btrfs_is_zoned(fs_info)) { 2275 ret = btrfs_wait_ordered_range(inode, start, len); 2276 } else { 2277 /* 2278 * Get our ordered extents as soon as possible to avoid doing 2279 * checksum lookups in the csum tree, and use instead the 2280 * checksums attached to the ordered extents. 2281 */ 2282 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 2283 &ctx.ordered_extents); 2284 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 2285 } 2286 2287 if (ret) 2288 goto out_release_extents; 2289 2290 atomic_inc(&root->log_batch); 2291 2292 smp_mb(); 2293 if (skip_inode_logging(&ctx)) { 2294 /* 2295 * We've had everything committed since the last time we were 2296 * modified so clear this flag in case it was set for whatever 2297 * reason, it's no longer relevant. 2298 */ 2299 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2300 &BTRFS_I(inode)->runtime_flags); 2301 /* 2302 * An ordered extent might have started before and completed 2303 * already with io errors, in which case the inode was not 2304 * updated and we end up here. So check the inode's mapping 2305 * for any errors that might have happened since we last 2306 * checked called fsync. 2307 */ 2308 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2309 goto out_release_extents; 2310 } 2311 2312 /* 2313 * We use start here because we will need to wait on the IO to complete 2314 * in btrfs_sync_log, which could require joining a transaction (for 2315 * example checking cross references in the nocow path). If we use join 2316 * here we could get into a situation where we're waiting on IO to 2317 * happen that is blocked on a transaction trying to commit. With start 2318 * we inc the extwriter counter, so we wait for all extwriters to exit 2319 * before we start blocking joiners. This comment is to keep somebody 2320 * from thinking they are super smart and changing this to 2321 * btrfs_join_transaction *cough*Josef*cough*. 2322 */ 2323 trans = btrfs_start_transaction(root, 0); 2324 if (IS_ERR(trans)) { 2325 ret = PTR_ERR(trans); 2326 goto out_release_extents; 2327 } 2328 trans->in_fsync = true; 2329 2330 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 2331 btrfs_release_log_ctx_extents(&ctx); 2332 if (ret < 0) { 2333 /* Fallthrough and commit/free transaction. */ 2334 ret = 1; 2335 } 2336 2337 /* we've logged all the items and now have a consistent 2338 * version of the file in the log. It is possible that 2339 * someone will come in and modify the file, but that's 2340 * fine because the log is consistent on disk, and we 2341 * have references to all of the file's extents 2342 * 2343 * It is possible that someone will come in and log the 2344 * file again, but that will end up using the synchronization 2345 * inside btrfs_sync_log to keep things safe. 2346 */ 2347 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2348 2349 if (ret != BTRFS_NO_LOG_SYNC) { 2350 if (!ret) { 2351 ret = btrfs_sync_log(trans, root, &ctx); 2352 if (!ret) { 2353 ret = btrfs_end_transaction(trans); 2354 goto out; 2355 } 2356 } 2357 if (!full_sync) { 2358 ret = btrfs_wait_ordered_range(inode, start, len); 2359 if (ret) { 2360 btrfs_end_transaction(trans); 2361 goto out; 2362 } 2363 } 2364 ret = btrfs_commit_transaction(trans); 2365 } else { 2366 ret = btrfs_end_transaction(trans); 2367 } 2368 out: 2369 ASSERT(list_empty(&ctx.list)); 2370 err = file_check_and_advance_wb_err(file); 2371 if (!ret) 2372 ret = err; 2373 return ret > 0 ? -EIO : ret; 2374 2375 out_release_extents: 2376 btrfs_release_log_ctx_extents(&ctx); 2377 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2378 goto out; 2379 } 2380 2381 static const struct vm_operations_struct btrfs_file_vm_ops = { 2382 .fault = filemap_fault, 2383 .map_pages = filemap_map_pages, 2384 .page_mkwrite = btrfs_page_mkwrite, 2385 }; 2386 2387 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2388 { 2389 struct address_space *mapping = filp->f_mapping; 2390 2391 if (!mapping->a_ops->readpage) 2392 return -ENOEXEC; 2393 2394 file_accessed(filp); 2395 vma->vm_ops = &btrfs_file_vm_ops; 2396 2397 return 0; 2398 } 2399 2400 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2401 int slot, u64 start, u64 end) 2402 { 2403 struct btrfs_file_extent_item *fi; 2404 struct btrfs_key key; 2405 2406 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2407 return 0; 2408 2409 btrfs_item_key_to_cpu(leaf, &key, slot); 2410 if (key.objectid != btrfs_ino(inode) || 2411 key.type != BTRFS_EXTENT_DATA_KEY) 2412 return 0; 2413 2414 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2415 2416 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2417 return 0; 2418 2419 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2420 return 0; 2421 2422 if (key.offset == end) 2423 return 1; 2424 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2425 return 1; 2426 return 0; 2427 } 2428 2429 static int fill_holes(struct btrfs_trans_handle *trans, 2430 struct btrfs_inode *inode, 2431 struct btrfs_path *path, u64 offset, u64 end) 2432 { 2433 struct btrfs_fs_info *fs_info = trans->fs_info; 2434 struct btrfs_root *root = inode->root; 2435 struct extent_buffer *leaf; 2436 struct btrfs_file_extent_item *fi; 2437 struct extent_map *hole_em; 2438 struct extent_map_tree *em_tree = &inode->extent_tree; 2439 struct btrfs_key key; 2440 int ret; 2441 2442 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2443 goto out; 2444 2445 key.objectid = btrfs_ino(inode); 2446 key.type = BTRFS_EXTENT_DATA_KEY; 2447 key.offset = offset; 2448 2449 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2450 if (ret <= 0) { 2451 /* 2452 * We should have dropped this offset, so if we find it then 2453 * something has gone horribly wrong. 2454 */ 2455 if (ret == 0) 2456 ret = -EINVAL; 2457 return ret; 2458 } 2459 2460 leaf = path->nodes[0]; 2461 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2462 u64 num_bytes; 2463 2464 path->slots[0]--; 2465 fi = btrfs_item_ptr(leaf, path->slots[0], 2466 struct btrfs_file_extent_item); 2467 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2468 end - offset; 2469 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2470 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2471 btrfs_set_file_extent_offset(leaf, fi, 0); 2472 btrfs_mark_buffer_dirty(leaf); 2473 goto out; 2474 } 2475 2476 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2477 u64 num_bytes; 2478 2479 key.offset = offset; 2480 btrfs_set_item_key_safe(fs_info, path, &key); 2481 fi = btrfs_item_ptr(leaf, path->slots[0], 2482 struct btrfs_file_extent_item); 2483 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2484 offset; 2485 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2486 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2487 btrfs_set_file_extent_offset(leaf, fi, 0); 2488 btrfs_mark_buffer_dirty(leaf); 2489 goto out; 2490 } 2491 btrfs_release_path(path); 2492 2493 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 2494 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0); 2495 if (ret) 2496 return ret; 2497 2498 out: 2499 btrfs_release_path(path); 2500 2501 hole_em = alloc_extent_map(); 2502 if (!hole_em) { 2503 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2504 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2505 } else { 2506 hole_em->start = offset; 2507 hole_em->len = end - offset; 2508 hole_em->ram_bytes = hole_em->len; 2509 hole_em->orig_start = offset; 2510 2511 hole_em->block_start = EXTENT_MAP_HOLE; 2512 hole_em->block_len = 0; 2513 hole_em->orig_block_len = 0; 2514 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2515 hole_em->generation = trans->transid; 2516 2517 do { 2518 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2519 write_lock(&em_tree->lock); 2520 ret = add_extent_mapping(em_tree, hole_em, 1); 2521 write_unlock(&em_tree->lock); 2522 } while (ret == -EEXIST); 2523 free_extent_map(hole_em); 2524 if (ret) 2525 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2526 &inode->runtime_flags); 2527 } 2528 2529 return 0; 2530 } 2531 2532 /* 2533 * Find a hole extent on given inode and change start/len to the end of hole 2534 * extent.(hole/vacuum extent whose em->start <= start && 2535 * em->start + em->len > start) 2536 * When a hole extent is found, return 1 and modify start/len. 2537 */ 2538 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2539 { 2540 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2541 struct extent_map *em; 2542 int ret = 0; 2543 2544 em = btrfs_get_extent(inode, NULL, 0, 2545 round_down(*start, fs_info->sectorsize), 2546 round_up(*len, fs_info->sectorsize)); 2547 if (IS_ERR(em)) 2548 return PTR_ERR(em); 2549 2550 /* Hole or vacuum extent(only exists in no-hole mode) */ 2551 if (em->block_start == EXTENT_MAP_HOLE) { 2552 ret = 1; 2553 *len = em->start + em->len > *start + *len ? 2554 0 : *start + *len - em->start - em->len; 2555 *start = em->start + em->len; 2556 } 2557 free_extent_map(em); 2558 return ret; 2559 } 2560 2561 static int btrfs_punch_hole_lock_range(struct inode *inode, 2562 const u64 lockstart, 2563 const u64 lockend, 2564 struct extent_state **cached_state) 2565 { 2566 /* 2567 * For subpage case, if the range is not at page boundary, we could 2568 * have pages at the leading/tailing part of the range. 2569 * This could lead to dead loop since filemap_range_has_page() 2570 * will always return true. 2571 * So here we need to do extra page alignment for 2572 * filemap_range_has_page(). 2573 */ 2574 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2575 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2576 2577 while (1) { 2578 struct btrfs_ordered_extent *ordered; 2579 int ret; 2580 2581 truncate_pagecache_range(inode, lockstart, lockend); 2582 2583 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2584 cached_state); 2585 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), 2586 lockend); 2587 2588 /* 2589 * We need to make sure we have no ordered extents in this range 2590 * and nobody raced in and read a page in this range, if we did 2591 * we need to try again. 2592 */ 2593 if ((!ordered || 2594 (ordered->file_offset + ordered->num_bytes <= lockstart || 2595 ordered->file_offset > lockend)) && 2596 !filemap_range_has_page(inode->i_mapping, 2597 page_lockstart, page_lockend)) { 2598 if (ordered) 2599 btrfs_put_ordered_extent(ordered); 2600 break; 2601 } 2602 if (ordered) 2603 btrfs_put_ordered_extent(ordered); 2604 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2605 lockend, cached_state); 2606 ret = btrfs_wait_ordered_range(inode, lockstart, 2607 lockend - lockstart + 1); 2608 if (ret) 2609 return ret; 2610 } 2611 return 0; 2612 } 2613 2614 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2615 struct btrfs_inode *inode, 2616 struct btrfs_path *path, 2617 struct btrfs_replace_extent_info *extent_info, 2618 const u64 replace_len, 2619 const u64 bytes_to_drop) 2620 { 2621 struct btrfs_fs_info *fs_info = trans->fs_info; 2622 struct btrfs_root *root = inode->root; 2623 struct btrfs_file_extent_item *extent; 2624 struct extent_buffer *leaf; 2625 struct btrfs_key key; 2626 int slot; 2627 struct btrfs_ref ref = { 0 }; 2628 int ret; 2629 2630 if (replace_len == 0) 2631 return 0; 2632 2633 if (extent_info->disk_offset == 0 && 2634 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2635 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2636 return 0; 2637 } 2638 2639 key.objectid = btrfs_ino(inode); 2640 key.type = BTRFS_EXTENT_DATA_KEY; 2641 key.offset = extent_info->file_offset; 2642 ret = btrfs_insert_empty_item(trans, root, path, &key, 2643 sizeof(struct btrfs_file_extent_item)); 2644 if (ret) 2645 return ret; 2646 leaf = path->nodes[0]; 2647 slot = path->slots[0]; 2648 write_extent_buffer(leaf, extent_info->extent_buf, 2649 btrfs_item_ptr_offset(leaf, slot), 2650 sizeof(struct btrfs_file_extent_item)); 2651 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2652 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2653 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2654 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2655 if (extent_info->is_new_extent) 2656 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2657 btrfs_mark_buffer_dirty(leaf); 2658 btrfs_release_path(path); 2659 2660 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2661 replace_len); 2662 if (ret) 2663 return ret; 2664 2665 /* If it's a hole, nothing more needs to be done. */ 2666 if (extent_info->disk_offset == 0) { 2667 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2668 return 0; 2669 } 2670 2671 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2672 2673 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2674 key.objectid = extent_info->disk_offset; 2675 key.type = BTRFS_EXTENT_ITEM_KEY; 2676 key.offset = extent_info->disk_len; 2677 ret = btrfs_alloc_reserved_file_extent(trans, root, 2678 btrfs_ino(inode), 2679 extent_info->file_offset, 2680 extent_info->qgroup_reserved, 2681 &key); 2682 } else { 2683 u64 ref_offset; 2684 2685 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2686 extent_info->disk_offset, 2687 extent_info->disk_len, 0); 2688 ref_offset = extent_info->file_offset - extent_info->data_offset; 2689 btrfs_init_data_ref(&ref, root->root_key.objectid, 2690 btrfs_ino(inode), ref_offset, 0, false); 2691 ret = btrfs_inc_extent_ref(trans, &ref); 2692 } 2693 2694 extent_info->insertions++; 2695 2696 return ret; 2697 } 2698 2699 /* 2700 * The respective range must have been previously locked, as well as the inode. 2701 * The end offset is inclusive (last byte of the range). 2702 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2703 * the file range with an extent. 2704 * When not punching a hole, we don't want to end up in a state where we dropped 2705 * extents without inserting a new one, so we must abort the transaction to avoid 2706 * a corruption. 2707 */ 2708 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2709 struct btrfs_path *path, const u64 start, 2710 const u64 end, 2711 struct btrfs_replace_extent_info *extent_info, 2712 struct btrfs_trans_handle **trans_out) 2713 { 2714 struct btrfs_drop_extents_args drop_args = { 0 }; 2715 struct btrfs_root *root = inode->root; 2716 struct btrfs_fs_info *fs_info = root->fs_info; 2717 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2718 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2719 struct btrfs_trans_handle *trans = NULL; 2720 struct btrfs_block_rsv *rsv; 2721 unsigned int rsv_count; 2722 u64 cur_offset; 2723 u64 len = end - start; 2724 int ret = 0; 2725 2726 if (end <= start) 2727 return -EINVAL; 2728 2729 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2730 if (!rsv) { 2731 ret = -ENOMEM; 2732 goto out; 2733 } 2734 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2735 rsv->failfast = 1; 2736 2737 /* 2738 * 1 - update the inode 2739 * 1 - removing the extents in the range 2740 * 1 - adding the hole extent if no_holes isn't set or if we are 2741 * replacing the range with a new extent 2742 */ 2743 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2744 rsv_count = 3; 2745 else 2746 rsv_count = 2; 2747 2748 trans = btrfs_start_transaction(root, rsv_count); 2749 if (IS_ERR(trans)) { 2750 ret = PTR_ERR(trans); 2751 trans = NULL; 2752 goto out_free; 2753 } 2754 2755 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2756 min_size, false); 2757 BUG_ON(ret); 2758 trans->block_rsv = rsv; 2759 2760 cur_offset = start; 2761 drop_args.path = path; 2762 drop_args.end = end + 1; 2763 drop_args.drop_cache = true; 2764 while (cur_offset < end) { 2765 drop_args.start = cur_offset; 2766 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2767 /* If we are punching a hole decrement the inode's byte count */ 2768 if (!extent_info) 2769 btrfs_update_inode_bytes(inode, 0, 2770 drop_args.bytes_found); 2771 if (ret != -ENOSPC) { 2772 /* 2773 * The only time we don't want to abort is if we are 2774 * attempting to clone a partial inline extent, in which 2775 * case we'll get EOPNOTSUPP. However if we aren't 2776 * clone we need to abort no matter what, because if we 2777 * got EOPNOTSUPP via prealloc then we messed up and 2778 * need to abort. 2779 */ 2780 if (ret && 2781 (ret != -EOPNOTSUPP || 2782 (extent_info && extent_info->is_new_extent))) 2783 btrfs_abort_transaction(trans, ret); 2784 break; 2785 } 2786 2787 trans->block_rsv = &fs_info->trans_block_rsv; 2788 2789 if (!extent_info && cur_offset < drop_args.drop_end && 2790 cur_offset < ino_size) { 2791 ret = fill_holes(trans, inode, path, cur_offset, 2792 drop_args.drop_end); 2793 if (ret) { 2794 /* 2795 * If we failed then we didn't insert our hole 2796 * entries for the area we dropped, so now the 2797 * fs is corrupted, so we must abort the 2798 * transaction. 2799 */ 2800 btrfs_abort_transaction(trans, ret); 2801 break; 2802 } 2803 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2804 /* 2805 * We are past the i_size here, but since we didn't 2806 * insert holes we need to clear the mapped area so we 2807 * know to not set disk_i_size in this area until a new 2808 * file extent is inserted here. 2809 */ 2810 ret = btrfs_inode_clear_file_extent_range(inode, 2811 cur_offset, 2812 drop_args.drop_end - cur_offset); 2813 if (ret) { 2814 /* 2815 * We couldn't clear our area, so we could 2816 * presumably adjust up and corrupt the fs, so 2817 * we need to abort. 2818 */ 2819 btrfs_abort_transaction(trans, ret); 2820 break; 2821 } 2822 } 2823 2824 if (extent_info && 2825 drop_args.drop_end > extent_info->file_offset) { 2826 u64 replace_len = drop_args.drop_end - 2827 extent_info->file_offset; 2828 2829 ret = btrfs_insert_replace_extent(trans, inode, path, 2830 extent_info, replace_len, 2831 drop_args.bytes_found); 2832 if (ret) { 2833 btrfs_abort_transaction(trans, ret); 2834 break; 2835 } 2836 extent_info->data_len -= replace_len; 2837 extent_info->data_offset += replace_len; 2838 extent_info->file_offset += replace_len; 2839 } 2840 2841 ret = btrfs_update_inode(trans, root, inode); 2842 if (ret) 2843 break; 2844 2845 btrfs_end_transaction(trans); 2846 btrfs_btree_balance_dirty(fs_info); 2847 2848 trans = btrfs_start_transaction(root, rsv_count); 2849 if (IS_ERR(trans)) { 2850 ret = PTR_ERR(trans); 2851 trans = NULL; 2852 break; 2853 } 2854 2855 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2856 rsv, min_size, false); 2857 BUG_ON(ret); /* shouldn't happen */ 2858 trans->block_rsv = rsv; 2859 2860 cur_offset = drop_args.drop_end; 2861 len = end - cur_offset; 2862 if (!extent_info && len) { 2863 ret = find_first_non_hole(inode, &cur_offset, &len); 2864 if (unlikely(ret < 0)) 2865 break; 2866 if (ret && !len) { 2867 ret = 0; 2868 break; 2869 } 2870 } 2871 } 2872 2873 /* 2874 * If we were cloning, force the next fsync to be a full one since we 2875 * we replaced (or just dropped in the case of cloning holes when 2876 * NO_HOLES is enabled) file extent items and did not setup new extent 2877 * maps for the replacement extents (or holes). 2878 */ 2879 if (extent_info && !extent_info->is_new_extent) 2880 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 2881 2882 if (ret) 2883 goto out_trans; 2884 2885 trans->block_rsv = &fs_info->trans_block_rsv; 2886 /* 2887 * If we are using the NO_HOLES feature we might have had already an 2888 * hole that overlaps a part of the region [lockstart, lockend] and 2889 * ends at (or beyond) lockend. Since we have no file extent items to 2890 * represent holes, drop_end can be less than lockend and so we must 2891 * make sure we have an extent map representing the existing hole (the 2892 * call to __btrfs_drop_extents() might have dropped the existing extent 2893 * map representing the existing hole), otherwise the fast fsync path 2894 * will not record the existence of the hole region 2895 * [existing_hole_start, lockend]. 2896 */ 2897 if (drop_args.drop_end <= end) 2898 drop_args.drop_end = end + 1; 2899 /* 2900 * Don't insert file hole extent item if it's for a range beyond eof 2901 * (because it's useless) or if it represents a 0 bytes range (when 2902 * cur_offset == drop_end). 2903 */ 2904 if (!extent_info && cur_offset < ino_size && 2905 cur_offset < drop_args.drop_end) { 2906 ret = fill_holes(trans, inode, path, cur_offset, 2907 drop_args.drop_end); 2908 if (ret) { 2909 /* Same comment as above. */ 2910 btrfs_abort_transaction(trans, ret); 2911 goto out_trans; 2912 } 2913 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2914 /* See the comment in the loop above for the reasoning here. */ 2915 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2916 drop_args.drop_end - cur_offset); 2917 if (ret) { 2918 btrfs_abort_transaction(trans, ret); 2919 goto out_trans; 2920 } 2921 2922 } 2923 if (extent_info) { 2924 ret = btrfs_insert_replace_extent(trans, inode, path, 2925 extent_info, extent_info->data_len, 2926 drop_args.bytes_found); 2927 if (ret) { 2928 btrfs_abort_transaction(trans, ret); 2929 goto out_trans; 2930 } 2931 } 2932 2933 out_trans: 2934 if (!trans) 2935 goto out_free; 2936 2937 trans->block_rsv = &fs_info->trans_block_rsv; 2938 if (ret) 2939 btrfs_end_transaction(trans); 2940 else 2941 *trans_out = trans; 2942 out_free: 2943 btrfs_free_block_rsv(fs_info, rsv); 2944 out: 2945 return ret; 2946 } 2947 2948 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2949 { 2950 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2951 struct btrfs_root *root = BTRFS_I(inode)->root; 2952 struct extent_state *cached_state = NULL; 2953 struct btrfs_path *path; 2954 struct btrfs_trans_handle *trans = NULL; 2955 u64 lockstart; 2956 u64 lockend; 2957 u64 tail_start; 2958 u64 tail_len; 2959 u64 orig_start = offset; 2960 int ret = 0; 2961 bool same_block; 2962 u64 ino_size; 2963 bool truncated_block = false; 2964 bool updated_inode = false; 2965 2966 ret = btrfs_wait_ordered_range(inode, offset, len); 2967 if (ret) 2968 return ret; 2969 2970 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 2971 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2972 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2973 if (ret < 0) 2974 goto out_only_mutex; 2975 if (ret && !len) { 2976 /* Already in a large hole */ 2977 ret = 0; 2978 goto out_only_mutex; 2979 } 2980 2981 lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode))); 2982 lockend = round_down(offset + len, 2983 btrfs_inode_sectorsize(BTRFS_I(inode))) - 1; 2984 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2985 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2986 /* 2987 * We needn't truncate any block which is beyond the end of the file 2988 * because we are sure there is no data there. 2989 */ 2990 /* 2991 * Only do this if we are in the same block and we aren't doing the 2992 * entire block. 2993 */ 2994 if (same_block && len < fs_info->sectorsize) { 2995 if (offset < ino_size) { 2996 truncated_block = true; 2997 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2998 0); 2999 } else { 3000 ret = 0; 3001 } 3002 goto out_only_mutex; 3003 } 3004 3005 /* zero back part of the first block */ 3006 if (offset < ino_size) { 3007 truncated_block = true; 3008 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 3009 if (ret) { 3010 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3011 return ret; 3012 } 3013 } 3014 3015 /* Check the aligned pages after the first unaligned page, 3016 * if offset != orig_start, which means the first unaligned page 3017 * including several following pages are already in holes, 3018 * the extra check can be skipped */ 3019 if (offset == orig_start) { 3020 /* after truncate page, check hole again */ 3021 len = offset + len - lockstart; 3022 offset = lockstart; 3023 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 3024 if (ret < 0) 3025 goto out_only_mutex; 3026 if (ret && !len) { 3027 ret = 0; 3028 goto out_only_mutex; 3029 } 3030 lockstart = offset; 3031 } 3032 3033 /* Check the tail unaligned part is in a hole */ 3034 tail_start = lockend + 1; 3035 tail_len = offset + len - tail_start; 3036 if (tail_len) { 3037 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 3038 if (unlikely(ret < 0)) 3039 goto out_only_mutex; 3040 if (!ret) { 3041 /* zero the front end of the last page */ 3042 if (tail_start + tail_len < ino_size) { 3043 truncated_block = true; 3044 ret = btrfs_truncate_block(BTRFS_I(inode), 3045 tail_start + tail_len, 3046 0, 1); 3047 if (ret) 3048 goto out_only_mutex; 3049 } 3050 } 3051 } 3052 3053 if (lockend < lockstart) { 3054 ret = 0; 3055 goto out_only_mutex; 3056 } 3057 3058 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3059 &cached_state); 3060 if (ret) 3061 goto out_only_mutex; 3062 3063 path = btrfs_alloc_path(); 3064 if (!path) { 3065 ret = -ENOMEM; 3066 goto out; 3067 } 3068 3069 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 3070 lockend, NULL, &trans); 3071 btrfs_free_path(path); 3072 if (ret) 3073 goto out; 3074 3075 ASSERT(trans != NULL); 3076 inode_inc_iversion(inode); 3077 inode->i_mtime = inode->i_ctime = current_time(inode); 3078 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3079 updated_inode = true; 3080 btrfs_end_transaction(trans); 3081 btrfs_btree_balance_dirty(fs_info); 3082 out: 3083 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3084 &cached_state); 3085 out_only_mutex: 3086 if (!updated_inode && truncated_block && !ret) { 3087 /* 3088 * If we only end up zeroing part of a page, we still need to 3089 * update the inode item, so that all the time fields are 3090 * updated as well as the necessary btrfs inode in memory fields 3091 * for detecting, at fsync time, if the inode isn't yet in the 3092 * log tree or it's there but not up to date. 3093 */ 3094 struct timespec64 now = current_time(inode); 3095 3096 inode_inc_iversion(inode); 3097 inode->i_mtime = now; 3098 inode->i_ctime = now; 3099 trans = btrfs_start_transaction(root, 1); 3100 if (IS_ERR(trans)) { 3101 ret = PTR_ERR(trans); 3102 } else { 3103 int ret2; 3104 3105 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3106 ret2 = btrfs_end_transaction(trans); 3107 if (!ret) 3108 ret = ret2; 3109 } 3110 } 3111 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3112 return ret; 3113 } 3114 3115 /* Helper structure to record which range is already reserved */ 3116 struct falloc_range { 3117 struct list_head list; 3118 u64 start; 3119 u64 len; 3120 }; 3121 3122 /* 3123 * Helper function to add falloc range 3124 * 3125 * Caller should have locked the larger range of extent containing 3126 * [start, len) 3127 */ 3128 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 3129 { 3130 struct falloc_range *range = NULL; 3131 3132 if (!list_empty(head)) { 3133 /* 3134 * As fallocate iterates by bytenr order, we only need to check 3135 * the last range. 3136 */ 3137 range = list_last_entry(head, struct falloc_range, list); 3138 if (range->start + range->len == start) { 3139 range->len += len; 3140 return 0; 3141 } 3142 } 3143 3144 range = kmalloc(sizeof(*range), GFP_KERNEL); 3145 if (!range) 3146 return -ENOMEM; 3147 range->start = start; 3148 range->len = len; 3149 list_add_tail(&range->list, head); 3150 return 0; 3151 } 3152 3153 static int btrfs_fallocate_update_isize(struct inode *inode, 3154 const u64 end, 3155 const int mode) 3156 { 3157 struct btrfs_trans_handle *trans; 3158 struct btrfs_root *root = BTRFS_I(inode)->root; 3159 int ret; 3160 int ret2; 3161 3162 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 3163 return 0; 3164 3165 trans = btrfs_start_transaction(root, 1); 3166 if (IS_ERR(trans)) 3167 return PTR_ERR(trans); 3168 3169 inode->i_ctime = current_time(inode); 3170 i_size_write(inode, end); 3171 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 3172 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3173 ret2 = btrfs_end_transaction(trans); 3174 3175 return ret ? ret : ret2; 3176 } 3177 3178 enum { 3179 RANGE_BOUNDARY_WRITTEN_EXTENT, 3180 RANGE_BOUNDARY_PREALLOC_EXTENT, 3181 RANGE_BOUNDARY_HOLE, 3182 }; 3183 3184 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 3185 u64 offset) 3186 { 3187 const u64 sectorsize = btrfs_inode_sectorsize(inode); 3188 struct extent_map *em; 3189 int ret; 3190 3191 offset = round_down(offset, sectorsize); 3192 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); 3193 if (IS_ERR(em)) 3194 return PTR_ERR(em); 3195 3196 if (em->block_start == EXTENT_MAP_HOLE) 3197 ret = RANGE_BOUNDARY_HOLE; 3198 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3199 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 3200 else 3201 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 3202 3203 free_extent_map(em); 3204 return ret; 3205 } 3206 3207 static int btrfs_zero_range(struct inode *inode, 3208 loff_t offset, 3209 loff_t len, 3210 const int mode) 3211 { 3212 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3213 struct extent_map *em; 3214 struct extent_changeset *data_reserved = NULL; 3215 int ret; 3216 u64 alloc_hint = 0; 3217 const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode)); 3218 u64 alloc_start = round_down(offset, sectorsize); 3219 u64 alloc_end = round_up(offset + len, sectorsize); 3220 u64 bytes_to_reserve = 0; 3221 bool space_reserved = false; 3222 3223 inode_dio_wait(inode); 3224 3225 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3226 alloc_end - alloc_start); 3227 if (IS_ERR(em)) { 3228 ret = PTR_ERR(em); 3229 goto out; 3230 } 3231 3232 /* 3233 * Avoid hole punching and extent allocation for some cases. More cases 3234 * could be considered, but these are unlikely common and we keep things 3235 * as simple as possible for now. Also, intentionally, if the target 3236 * range contains one or more prealloc extents together with regular 3237 * extents and holes, we drop all the existing extents and allocate a 3238 * new prealloc extent, so that we get a larger contiguous disk extent. 3239 */ 3240 if (em->start <= alloc_start && 3241 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3242 const u64 em_end = em->start + em->len; 3243 3244 if (em_end >= offset + len) { 3245 /* 3246 * The whole range is already a prealloc extent, 3247 * do nothing except updating the inode's i_size if 3248 * needed. 3249 */ 3250 free_extent_map(em); 3251 ret = btrfs_fallocate_update_isize(inode, offset + len, 3252 mode); 3253 goto out; 3254 } 3255 /* 3256 * Part of the range is already a prealloc extent, so operate 3257 * only on the remaining part of the range. 3258 */ 3259 alloc_start = em_end; 3260 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 3261 len = offset + len - alloc_start; 3262 offset = alloc_start; 3263 alloc_hint = em->block_start + em->len; 3264 } 3265 free_extent_map(em); 3266 3267 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 3268 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 3269 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3270 sectorsize); 3271 if (IS_ERR(em)) { 3272 ret = PTR_ERR(em); 3273 goto out; 3274 } 3275 3276 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3277 free_extent_map(em); 3278 ret = btrfs_fallocate_update_isize(inode, offset + len, 3279 mode); 3280 goto out; 3281 } 3282 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 3283 free_extent_map(em); 3284 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 3285 0); 3286 if (!ret) 3287 ret = btrfs_fallocate_update_isize(inode, 3288 offset + len, 3289 mode); 3290 return ret; 3291 } 3292 free_extent_map(em); 3293 alloc_start = round_down(offset, sectorsize); 3294 alloc_end = alloc_start + sectorsize; 3295 goto reserve_space; 3296 } 3297 3298 alloc_start = round_up(offset, sectorsize); 3299 alloc_end = round_down(offset + len, sectorsize); 3300 3301 /* 3302 * For unaligned ranges, check the pages at the boundaries, they might 3303 * map to an extent, in which case we need to partially zero them, or 3304 * they might map to a hole, in which case we need our allocation range 3305 * to cover them. 3306 */ 3307 if (!IS_ALIGNED(offset, sectorsize)) { 3308 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3309 offset); 3310 if (ret < 0) 3311 goto out; 3312 if (ret == RANGE_BOUNDARY_HOLE) { 3313 alloc_start = round_down(offset, sectorsize); 3314 ret = 0; 3315 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3316 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 3317 if (ret) 3318 goto out; 3319 } else { 3320 ret = 0; 3321 } 3322 } 3323 3324 if (!IS_ALIGNED(offset + len, sectorsize)) { 3325 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3326 offset + len); 3327 if (ret < 0) 3328 goto out; 3329 if (ret == RANGE_BOUNDARY_HOLE) { 3330 alloc_end = round_up(offset + len, sectorsize); 3331 ret = 0; 3332 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3333 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 3334 0, 1); 3335 if (ret) 3336 goto out; 3337 } else { 3338 ret = 0; 3339 } 3340 } 3341 3342 reserve_space: 3343 if (alloc_start < alloc_end) { 3344 struct extent_state *cached_state = NULL; 3345 const u64 lockstart = alloc_start; 3346 const u64 lockend = alloc_end - 1; 3347 3348 bytes_to_reserve = alloc_end - alloc_start; 3349 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3350 bytes_to_reserve); 3351 if (ret < 0) 3352 goto out; 3353 space_reserved = true; 3354 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3355 &cached_state); 3356 if (ret) 3357 goto out; 3358 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3359 alloc_start, bytes_to_reserve); 3360 if (ret) { 3361 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3362 lockend, &cached_state); 3363 goto out; 3364 } 3365 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3366 alloc_end - alloc_start, 3367 i_blocksize(inode), 3368 offset + len, &alloc_hint); 3369 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 3370 lockend, &cached_state); 3371 /* btrfs_prealloc_file_range releases reserved space on error */ 3372 if (ret) { 3373 space_reserved = false; 3374 goto out; 3375 } 3376 } 3377 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3378 out: 3379 if (ret && space_reserved) 3380 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3381 alloc_start, bytes_to_reserve); 3382 extent_changeset_free(data_reserved); 3383 3384 return ret; 3385 } 3386 3387 static long btrfs_fallocate(struct file *file, int mode, 3388 loff_t offset, loff_t len) 3389 { 3390 struct inode *inode = file_inode(file); 3391 struct extent_state *cached_state = NULL; 3392 struct extent_changeset *data_reserved = NULL; 3393 struct falloc_range *range; 3394 struct falloc_range *tmp; 3395 struct list_head reserve_list; 3396 u64 cur_offset; 3397 u64 last_byte; 3398 u64 alloc_start; 3399 u64 alloc_end; 3400 u64 alloc_hint = 0; 3401 u64 locked_end; 3402 u64 actual_end = 0; 3403 struct extent_map *em; 3404 int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode)); 3405 int ret; 3406 3407 /* Do not allow fallocate in ZONED mode */ 3408 if (btrfs_is_zoned(btrfs_sb(inode->i_sb))) 3409 return -EOPNOTSUPP; 3410 3411 alloc_start = round_down(offset, blocksize); 3412 alloc_end = round_up(offset + len, blocksize); 3413 cur_offset = alloc_start; 3414 3415 /* Make sure we aren't being give some crap mode */ 3416 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3417 FALLOC_FL_ZERO_RANGE)) 3418 return -EOPNOTSUPP; 3419 3420 if (mode & FALLOC_FL_PUNCH_HOLE) 3421 return btrfs_punch_hole(inode, offset, len); 3422 3423 /* 3424 * Only trigger disk allocation, don't trigger qgroup reserve 3425 * 3426 * For qgroup space, it will be checked later. 3427 */ 3428 if (!(mode & FALLOC_FL_ZERO_RANGE)) { 3429 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3430 alloc_end - alloc_start); 3431 if (ret < 0) 3432 return ret; 3433 } 3434 3435 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 3436 3437 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3438 ret = inode_newsize_ok(inode, offset + len); 3439 if (ret) 3440 goto out; 3441 } 3442 3443 /* 3444 * TODO: Move these two operations after we have checked 3445 * accurate reserved space, or fallocate can still fail but 3446 * with page truncated or size expanded. 3447 * 3448 * But that's a minor problem and won't do much harm BTW. 3449 */ 3450 if (alloc_start > inode->i_size) { 3451 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3452 alloc_start); 3453 if (ret) 3454 goto out; 3455 } else if (offset + len > inode->i_size) { 3456 /* 3457 * If we are fallocating from the end of the file onward we 3458 * need to zero out the end of the block if i_size lands in the 3459 * middle of a block. 3460 */ 3461 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3462 if (ret) 3463 goto out; 3464 } 3465 3466 /* 3467 * wait for ordered IO before we have any locks. We'll loop again 3468 * below with the locks held. 3469 */ 3470 ret = btrfs_wait_ordered_range(inode, alloc_start, 3471 alloc_end - alloc_start); 3472 if (ret) 3473 goto out; 3474 3475 if (mode & FALLOC_FL_ZERO_RANGE) { 3476 ret = btrfs_zero_range(inode, offset, len, mode); 3477 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3478 return ret; 3479 } 3480 3481 locked_end = alloc_end - 1; 3482 while (1) { 3483 struct btrfs_ordered_extent *ordered; 3484 3485 /* the extent lock is ordered inside the running 3486 * transaction 3487 */ 3488 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 3489 locked_end, &cached_state); 3490 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), 3491 locked_end); 3492 3493 if (ordered && 3494 ordered->file_offset + ordered->num_bytes > alloc_start && 3495 ordered->file_offset < alloc_end) { 3496 btrfs_put_ordered_extent(ordered); 3497 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 3498 alloc_start, locked_end, 3499 &cached_state); 3500 /* 3501 * we can't wait on the range with the transaction 3502 * running or with the extent lock held 3503 */ 3504 ret = btrfs_wait_ordered_range(inode, alloc_start, 3505 alloc_end - alloc_start); 3506 if (ret) 3507 goto out; 3508 } else { 3509 if (ordered) 3510 btrfs_put_ordered_extent(ordered); 3511 break; 3512 } 3513 } 3514 3515 /* First, check if we exceed the qgroup limit */ 3516 INIT_LIST_HEAD(&reserve_list); 3517 while (cur_offset < alloc_end) { 3518 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3519 alloc_end - cur_offset); 3520 if (IS_ERR(em)) { 3521 ret = PTR_ERR(em); 3522 break; 3523 } 3524 last_byte = min(extent_map_end(em), alloc_end); 3525 actual_end = min_t(u64, extent_map_end(em), offset + len); 3526 last_byte = ALIGN(last_byte, blocksize); 3527 if (em->block_start == EXTENT_MAP_HOLE || 3528 (cur_offset >= inode->i_size && 3529 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3530 ret = add_falloc_range(&reserve_list, cur_offset, 3531 last_byte - cur_offset); 3532 if (ret < 0) { 3533 free_extent_map(em); 3534 break; 3535 } 3536 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3537 &data_reserved, cur_offset, 3538 last_byte - cur_offset); 3539 if (ret < 0) { 3540 cur_offset = last_byte; 3541 free_extent_map(em); 3542 break; 3543 } 3544 } else { 3545 /* 3546 * Do not need to reserve unwritten extent for this 3547 * range, free reserved data space first, otherwise 3548 * it'll result in false ENOSPC error. 3549 */ 3550 btrfs_free_reserved_data_space(BTRFS_I(inode), 3551 data_reserved, cur_offset, 3552 last_byte - cur_offset); 3553 } 3554 free_extent_map(em); 3555 cur_offset = last_byte; 3556 } 3557 3558 /* 3559 * If ret is still 0, means we're OK to fallocate. 3560 * Or just cleanup the list and exit. 3561 */ 3562 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3563 if (!ret) 3564 ret = btrfs_prealloc_file_range(inode, mode, 3565 range->start, 3566 range->len, i_blocksize(inode), 3567 offset + len, &alloc_hint); 3568 else 3569 btrfs_free_reserved_data_space(BTRFS_I(inode), 3570 data_reserved, range->start, 3571 range->len); 3572 list_del(&range->list); 3573 kfree(range); 3574 } 3575 if (ret < 0) 3576 goto out_unlock; 3577 3578 /* 3579 * We didn't need to allocate any more space, but we still extended the 3580 * size of the file so we need to update i_size and the inode item. 3581 */ 3582 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3583 out_unlock: 3584 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3585 &cached_state); 3586 out: 3587 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3588 /* Let go of our reservation. */ 3589 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE)) 3590 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3591 cur_offset, alloc_end - cur_offset); 3592 extent_changeset_free(data_reserved); 3593 return ret; 3594 } 3595 3596 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset, 3597 int whence) 3598 { 3599 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3600 struct extent_map *em = NULL; 3601 struct extent_state *cached_state = NULL; 3602 loff_t i_size = inode->vfs_inode.i_size; 3603 u64 lockstart; 3604 u64 lockend; 3605 u64 start; 3606 u64 len; 3607 int ret = 0; 3608 3609 if (i_size == 0 || offset >= i_size) 3610 return -ENXIO; 3611 3612 /* 3613 * offset can be negative, in this case we start finding DATA/HOLE from 3614 * the very start of the file. 3615 */ 3616 start = max_t(loff_t, 0, offset); 3617 3618 lockstart = round_down(start, fs_info->sectorsize); 3619 lockend = round_up(i_size, fs_info->sectorsize); 3620 if (lockend <= lockstart) 3621 lockend = lockstart + fs_info->sectorsize; 3622 lockend--; 3623 len = lockend - lockstart + 1; 3624 3625 lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state); 3626 3627 while (start < i_size) { 3628 em = btrfs_get_extent_fiemap(inode, start, len); 3629 if (IS_ERR(em)) { 3630 ret = PTR_ERR(em); 3631 em = NULL; 3632 break; 3633 } 3634 3635 if (whence == SEEK_HOLE && 3636 (em->block_start == EXTENT_MAP_HOLE || 3637 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3638 break; 3639 else if (whence == SEEK_DATA && 3640 (em->block_start != EXTENT_MAP_HOLE && 3641 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 3642 break; 3643 3644 start = em->start + em->len; 3645 free_extent_map(em); 3646 em = NULL; 3647 cond_resched(); 3648 } 3649 free_extent_map(em); 3650 unlock_extent_cached(&inode->io_tree, lockstart, lockend, 3651 &cached_state); 3652 if (ret) { 3653 offset = ret; 3654 } else { 3655 if (whence == SEEK_DATA && start >= i_size) 3656 offset = -ENXIO; 3657 else 3658 offset = min_t(loff_t, start, i_size); 3659 } 3660 3661 return offset; 3662 } 3663 3664 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3665 { 3666 struct inode *inode = file->f_mapping->host; 3667 3668 switch (whence) { 3669 default: 3670 return generic_file_llseek(file, offset, whence); 3671 case SEEK_DATA: 3672 case SEEK_HOLE: 3673 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3674 offset = find_desired_extent(BTRFS_I(inode), offset, whence); 3675 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3676 break; 3677 } 3678 3679 if (offset < 0) 3680 return offset; 3681 3682 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3683 } 3684 3685 static int btrfs_file_open(struct inode *inode, struct file *filp) 3686 { 3687 int ret; 3688 3689 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; 3690 3691 ret = fsverity_file_open(inode, filp); 3692 if (ret) 3693 return ret; 3694 return generic_file_open(inode, filp); 3695 } 3696 3697 static int check_direct_read(struct btrfs_fs_info *fs_info, 3698 const struct iov_iter *iter, loff_t offset) 3699 { 3700 int ret; 3701 int i, seg; 3702 3703 ret = check_direct_IO(fs_info, iter, offset); 3704 if (ret < 0) 3705 return ret; 3706 3707 if (!iter_is_iovec(iter)) 3708 return 0; 3709 3710 for (seg = 0; seg < iter->nr_segs; seg++) 3711 for (i = seg + 1; i < iter->nr_segs; i++) 3712 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 3713 return -EINVAL; 3714 return 0; 3715 } 3716 3717 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 3718 { 3719 struct inode *inode = file_inode(iocb->ki_filp); 3720 size_t prev_left = 0; 3721 ssize_t read = 0; 3722 ssize_t ret; 3723 3724 if (fsverity_active(inode)) 3725 return 0; 3726 3727 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos)) 3728 return 0; 3729 3730 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3731 again: 3732 /* 3733 * This is similar to what we do for direct IO writes, see the comment 3734 * at btrfs_direct_write(), but we also disable page faults in addition 3735 * to disabling them only at the iov_iter level. This is because when 3736 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(), 3737 * which can still trigger page fault ins despite having set ->nofault 3738 * to true of our 'to' iov_iter. 3739 * 3740 * The difference to direct IO writes is that we deadlock when trying 3741 * to lock the extent range in the inode's tree during he page reads 3742 * triggered by the fault in (while for writes it is due to waiting for 3743 * our own ordered extent). This is because for direct IO reads, 3744 * btrfs_dio_iomap_begin() returns with the extent range locked, which 3745 * is only unlocked in the endio callback (end_bio_extent_readpage()). 3746 */ 3747 pagefault_disable(); 3748 to->nofault = true; 3749 ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 3750 IOMAP_DIO_PARTIAL, read); 3751 to->nofault = false; 3752 pagefault_enable(); 3753 3754 /* No increment (+=) because iomap returns a cumulative value. */ 3755 if (ret > 0) 3756 read = ret; 3757 3758 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) { 3759 const size_t left = iov_iter_count(to); 3760 3761 if (left == prev_left) { 3762 /* 3763 * We didn't make any progress since the last attempt, 3764 * fallback to a buffered read for the remainder of the 3765 * range. This is just to avoid any possibility of looping 3766 * for too long. 3767 */ 3768 ret = read; 3769 } else { 3770 /* 3771 * We made some progress since the last retry or this is 3772 * the first time we are retrying. Fault in as many pages 3773 * as possible and retry. 3774 */ 3775 fault_in_iov_iter_writeable(to, left); 3776 prev_left = left; 3777 goto again; 3778 } 3779 } 3780 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3781 return ret < 0 ? ret : read; 3782 } 3783 3784 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3785 { 3786 ssize_t ret = 0; 3787 3788 if (iocb->ki_flags & IOCB_DIRECT) { 3789 ret = btrfs_direct_read(iocb, to); 3790 if (ret < 0 || !iov_iter_count(to) || 3791 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3792 return ret; 3793 } 3794 3795 return filemap_read(iocb, to, ret); 3796 } 3797 3798 const struct file_operations btrfs_file_operations = { 3799 .llseek = btrfs_file_llseek, 3800 .read_iter = btrfs_file_read_iter, 3801 .splice_read = generic_file_splice_read, 3802 .write_iter = btrfs_file_write_iter, 3803 .splice_write = iter_file_splice_write, 3804 .mmap = btrfs_file_mmap, 3805 .open = btrfs_file_open, 3806 .release = btrfs_release_file, 3807 .fsync = btrfs_sync_file, 3808 .fallocate = btrfs_fallocate, 3809 .unlocked_ioctl = btrfs_ioctl, 3810 #ifdef CONFIG_COMPAT 3811 .compat_ioctl = btrfs_compat_ioctl, 3812 #endif 3813 .remap_file_range = btrfs_remap_file_range, 3814 }; 3815 3816 void __cold btrfs_auto_defrag_exit(void) 3817 { 3818 kmem_cache_destroy(btrfs_inode_defrag_cachep); 3819 } 3820 3821 int __init btrfs_auto_defrag_init(void) 3822 { 3823 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 3824 sizeof(struct inode_defrag), 0, 3825 SLAB_MEM_SPREAD, 3826 NULL); 3827 if (!btrfs_inode_defrag_cachep) 3828 return -ENOMEM; 3829 3830 return 0; 3831 } 3832 3833 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3834 { 3835 int ret; 3836 3837 /* 3838 * So with compression we will find and lock a dirty page and clear the 3839 * first one as dirty, setup an async extent, and immediately return 3840 * with the entire range locked but with nobody actually marked with 3841 * writeback. So we can't just filemap_write_and_wait_range() and 3842 * expect it to work since it will just kick off a thread to do the 3843 * actual work. So we need to call filemap_fdatawrite_range _again_ 3844 * since it will wait on the page lock, which won't be unlocked until 3845 * after the pages have been marked as writeback and so we're good to go 3846 * from there. We have to do this otherwise we'll miss the ordered 3847 * extents and that results in badness. Please Josef, do not think you 3848 * know better and pull this out at some point in the future, it is 3849 * right and you are wrong. 3850 */ 3851 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3852 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3853 &BTRFS_I(inode)->runtime_flags)) 3854 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3855 3856 return ret; 3857 } 3858