xref: /linux/fs/btrfs/file.c (revision 68550cbc6129159b7a6434796b721e8b66ee12f6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "print-tree.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "volumes.h"
28 #include "qgroup.h"
29 #include "compression.h"
30 #include "delalloc-space.h"
31 #include "reflink.h"
32 #include "subpage.h"
33 
34 static struct kmem_cache *btrfs_inode_defrag_cachep;
35 /*
36  * when auto defrag is enabled we
37  * queue up these defrag structs to remember which
38  * inodes need defragging passes
39  */
40 struct inode_defrag {
41 	struct rb_node rb_node;
42 	/* objectid */
43 	u64 ino;
44 	/*
45 	 * transid where the defrag was added, we search for
46 	 * extents newer than this
47 	 */
48 	u64 transid;
49 
50 	/* root objectid */
51 	u64 root;
52 
53 	/* last offset we were able to defrag */
54 	u64 last_offset;
55 
56 	/* if we've wrapped around back to zero once already */
57 	int cycled;
58 };
59 
60 static int __compare_inode_defrag(struct inode_defrag *defrag1,
61 				  struct inode_defrag *defrag2)
62 {
63 	if (defrag1->root > defrag2->root)
64 		return 1;
65 	else if (defrag1->root < defrag2->root)
66 		return -1;
67 	else if (defrag1->ino > defrag2->ino)
68 		return 1;
69 	else if (defrag1->ino < defrag2->ino)
70 		return -1;
71 	else
72 		return 0;
73 }
74 
75 /* pop a record for an inode into the defrag tree.  The lock
76  * must be held already
77  *
78  * If you're inserting a record for an older transid than an
79  * existing record, the transid already in the tree is lowered
80  *
81  * If an existing record is found the defrag item you
82  * pass in is freed
83  */
84 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
85 				    struct inode_defrag *defrag)
86 {
87 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
88 	struct inode_defrag *entry;
89 	struct rb_node **p;
90 	struct rb_node *parent = NULL;
91 	int ret;
92 
93 	p = &fs_info->defrag_inodes.rb_node;
94 	while (*p) {
95 		parent = *p;
96 		entry = rb_entry(parent, struct inode_defrag, rb_node);
97 
98 		ret = __compare_inode_defrag(defrag, entry);
99 		if (ret < 0)
100 			p = &parent->rb_left;
101 		else if (ret > 0)
102 			p = &parent->rb_right;
103 		else {
104 			/* if we're reinserting an entry for
105 			 * an old defrag run, make sure to
106 			 * lower the transid of our existing record
107 			 */
108 			if (defrag->transid < entry->transid)
109 				entry->transid = defrag->transid;
110 			if (defrag->last_offset > entry->last_offset)
111 				entry->last_offset = defrag->last_offset;
112 			return -EEXIST;
113 		}
114 	}
115 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
116 	rb_link_node(&defrag->rb_node, parent, p);
117 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
118 	return 0;
119 }
120 
121 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
122 {
123 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
124 		return 0;
125 
126 	if (btrfs_fs_closing(fs_info))
127 		return 0;
128 
129 	return 1;
130 }
131 
132 /*
133  * insert a defrag record for this inode if auto defrag is
134  * enabled
135  */
136 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
137 			   struct btrfs_inode *inode)
138 {
139 	struct btrfs_root *root = inode->root;
140 	struct btrfs_fs_info *fs_info = root->fs_info;
141 	struct inode_defrag *defrag;
142 	u64 transid;
143 	int ret;
144 
145 	if (!__need_auto_defrag(fs_info))
146 		return 0;
147 
148 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
149 		return 0;
150 
151 	if (trans)
152 		transid = trans->transid;
153 	else
154 		transid = inode->root->last_trans;
155 
156 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
157 	if (!defrag)
158 		return -ENOMEM;
159 
160 	defrag->ino = btrfs_ino(inode);
161 	defrag->transid = transid;
162 	defrag->root = root->root_key.objectid;
163 
164 	spin_lock(&fs_info->defrag_inodes_lock);
165 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
166 		/*
167 		 * If we set IN_DEFRAG flag and evict the inode from memory,
168 		 * and then re-read this inode, this new inode doesn't have
169 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
170 		 */
171 		ret = __btrfs_add_inode_defrag(inode, defrag);
172 		if (ret)
173 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174 	} else {
175 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
176 	}
177 	spin_unlock(&fs_info->defrag_inodes_lock);
178 	return 0;
179 }
180 
181 /*
182  * Requeue the defrag object. If there is a defrag object that points to
183  * the same inode in the tree, we will merge them together (by
184  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
185  */
186 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
187 				       struct inode_defrag *defrag)
188 {
189 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
190 	int ret;
191 
192 	if (!__need_auto_defrag(fs_info))
193 		goto out;
194 
195 	/*
196 	 * Here we don't check the IN_DEFRAG flag, because we need merge
197 	 * them together.
198 	 */
199 	spin_lock(&fs_info->defrag_inodes_lock);
200 	ret = __btrfs_add_inode_defrag(inode, defrag);
201 	spin_unlock(&fs_info->defrag_inodes_lock);
202 	if (ret)
203 		goto out;
204 	return;
205 out:
206 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
207 }
208 
209 /*
210  * pick the defragable inode that we want, if it doesn't exist, we will get
211  * the next one.
212  */
213 static struct inode_defrag *
214 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
215 {
216 	struct inode_defrag *entry = NULL;
217 	struct inode_defrag tmp;
218 	struct rb_node *p;
219 	struct rb_node *parent = NULL;
220 	int ret;
221 
222 	tmp.ino = ino;
223 	tmp.root = root;
224 
225 	spin_lock(&fs_info->defrag_inodes_lock);
226 	p = fs_info->defrag_inodes.rb_node;
227 	while (p) {
228 		parent = p;
229 		entry = rb_entry(parent, struct inode_defrag, rb_node);
230 
231 		ret = __compare_inode_defrag(&tmp, entry);
232 		if (ret < 0)
233 			p = parent->rb_left;
234 		else if (ret > 0)
235 			p = parent->rb_right;
236 		else
237 			goto out;
238 	}
239 
240 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
241 		parent = rb_next(parent);
242 		if (parent)
243 			entry = rb_entry(parent, struct inode_defrag, rb_node);
244 		else
245 			entry = NULL;
246 	}
247 out:
248 	if (entry)
249 		rb_erase(parent, &fs_info->defrag_inodes);
250 	spin_unlock(&fs_info->defrag_inodes_lock);
251 	return entry;
252 }
253 
254 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
255 {
256 	struct inode_defrag *defrag;
257 	struct rb_node *node;
258 
259 	spin_lock(&fs_info->defrag_inodes_lock);
260 	node = rb_first(&fs_info->defrag_inodes);
261 	while (node) {
262 		rb_erase(node, &fs_info->defrag_inodes);
263 		defrag = rb_entry(node, struct inode_defrag, rb_node);
264 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
265 
266 		cond_resched_lock(&fs_info->defrag_inodes_lock);
267 
268 		node = rb_first(&fs_info->defrag_inodes);
269 	}
270 	spin_unlock(&fs_info->defrag_inodes_lock);
271 }
272 
273 #define BTRFS_DEFRAG_BATCH	1024
274 
275 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
276 				    struct inode_defrag *defrag)
277 {
278 	struct btrfs_root *inode_root;
279 	struct inode *inode;
280 	struct btrfs_ioctl_defrag_range_args range;
281 	int num_defrag;
282 	int ret;
283 
284 	/* get the inode */
285 	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
286 	if (IS_ERR(inode_root)) {
287 		ret = PTR_ERR(inode_root);
288 		goto cleanup;
289 	}
290 
291 	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
292 	btrfs_put_root(inode_root);
293 	if (IS_ERR(inode)) {
294 		ret = PTR_ERR(inode);
295 		goto cleanup;
296 	}
297 
298 	/* do a chunk of defrag */
299 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
300 	memset(&range, 0, sizeof(range));
301 	range.len = (u64)-1;
302 	range.start = defrag->last_offset;
303 
304 	sb_start_write(fs_info->sb);
305 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
306 				       BTRFS_DEFRAG_BATCH);
307 	sb_end_write(fs_info->sb);
308 	/*
309 	 * if we filled the whole defrag batch, there
310 	 * must be more work to do.  Queue this defrag
311 	 * again
312 	 */
313 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
314 		defrag->last_offset = range.start;
315 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
316 	} else if (defrag->last_offset && !defrag->cycled) {
317 		/*
318 		 * we didn't fill our defrag batch, but
319 		 * we didn't start at zero.  Make sure we loop
320 		 * around to the start of the file.
321 		 */
322 		defrag->last_offset = 0;
323 		defrag->cycled = 1;
324 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
325 	} else {
326 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
327 	}
328 
329 	iput(inode);
330 	return 0;
331 cleanup:
332 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
333 	return ret;
334 }
335 
336 /*
337  * run through the list of inodes in the FS that need
338  * defragging
339  */
340 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
341 {
342 	struct inode_defrag *defrag;
343 	u64 first_ino = 0;
344 	u64 root_objectid = 0;
345 
346 	atomic_inc(&fs_info->defrag_running);
347 	while (1) {
348 		/* Pause the auto defragger. */
349 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
350 			     &fs_info->fs_state))
351 			break;
352 
353 		if (!__need_auto_defrag(fs_info))
354 			break;
355 
356 		/* find an inode to defrag */
357 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
358 						 first_ino);
359 		if (!defrag) {
360 			if (root_objectid || first_ino) {
361 				root_objectid = 0;
362 				first_ino = 0;
363 				continue;
364 			} else {
365 				break;
366 			}
367 		}
368 
369 		first_ino = defrag->ino + 1;
370 		root_objectid = defrag->root;
371 
372 		__btrfs_run_defrag_inode(fs_info, defrag);
373 	}
374 	atomic_dec(&fs_info->defrag_running);
375 
376 	/*
377 	 * during unmount, we use the transaction_wait queue to
378 	 * wait for the defragger to stop
379 	 */
380 	wake_up(&fs_info->transaction_wait);
381 	return 0;
382 }
383 
384 /* simple helper to fault in pages and copy.  This should go away
385  * and be replaced with calls into generic code.
386  */
387 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
388 					 struct page **prepared_pages,
389 					 struct iov_iter *i)
390 {
391 	size_t copied = 0;
392 	size_t total_copied = 0;
393 	int pg = 0;
394 	int offset = offset_in_page(pos);
395 
396 	while (write_bytes > 0) {
397 		size_t count = min_t(size_t,
398 				     PAGE_SIZE - offset, write_bytes);
399 		struct page *page = prepared_pages[pg];
400 		/*
401 		 * Copy data from userspace to the current page
402 		 */
403 		copied = copy_page_from_iter_atomic(page, offset, count, i);
404 
405 		/* Flush processor's dcache for this page */
406 		flush_dcache_page(page);
407 
408 		/*
409 		 * if we get a partial write, we can end up with
410 		 * partially up to date pages.  These add
411 		 * a lot of complexity, so make sure they don't
412 		 * happen by forcing this copy to be retried.
413 		 *
414 		 * The rest of the btrfs_file_write code will fall
415 		 * back to page at a time copies after we return 0.
416 		 */
417 		if (unlikely(copied < count)) {
418 			if (!PageUptodate(page)) {
419 				iov_iter_revert(i, copied);
420 				copied = 0;
421 			}
422 			if (!copied)
423 				break;
424 		}
425 
426 		write_bytes -= copied;
427 		total_copied += copied;
428 		offset += copied;
429 		if (offset == PAGE_SIZE) {
430 			pg++;
431 			offset = 0;
432 		}
433 	}
434 	return total_copied;
435 }
436 
437 /*
438  * unlocks pages after btrfs_file_write is done with them
439  */
440 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
441 			     struct page **pages, size_t num_pages,
442 			     u64 pos, u64 copied)
443 {
444 	size_t i;
445 	u64 block_start = round_down(pos, fs_info->sectorsize);
446 	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
447 
448 	ASSERT(block_len <= U32_MAX);
449 	for (i = 0; i < num_pages; i++) {
450 		/* page checked is some magic around finding pages that
451 		 * have been modified without going through btrfs_set_page_dirty
452 		 * clear it here. There should be no need to mark the pages
453 		 * accessed as prepare_pages should have marked them accessed
454 		 * in prepare_pages via find_or_create_page()
455 		 */
456 		btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
457 					       block_len);
458 		unlock_page(pages[i]);
459 		put_page(pages[i]);
460 	}
461 }
462 
463 /*
464  * After btrfs_copy_from_user(), update the following things for delalloc:
465  * - Mark newly dirtied pages as DELALLOC in the io tree.
466  *   Used to advise which range is to be written back.
467  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
468  * - Update inode size for past EOF write
469  */
470 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
471 		      size_t num_pages, loff_t pos, size_t write_bytes,
472 		      struct extent_state **cached, bool noreserve)
473 {
474 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
475 	int err = 0;
476 	int i;
477 	u64 num_bytes;
478 	u64 start_pos;
479 	u64 end_of_last_block;
480 	u64 end_pos = pos + write_bytes;
481 	loff_t isize = i_size_read(&inode->vfs_inode);
482 	unsigned int extra_bits = 0;
483 
484 	if (write_bytes == 0)
485 		return 0;
486 
487 	if (noreserve)
488 		extra_bits |= EXTENT_NORESERVE;
489 
490 	start_pos = round_down(pos, fs_info->sectorsize);
491 	num_bytes = round_up(write_bytes + pos - start_pos,
492 			     fs_info->sectorsize);
493 	ASSERT(num_bytes <= U32_MAX);
494 
495 	end_of_last_block = start_pos + num_bytes - 1;
496 
497 	/*
498 	 * The pages may have already been dirty, clear out old accounting so
499 	 * we can set things up properly
500 	 */
501 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
502 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
503 			 0, 0, cached);
504 
505 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
506 					extra_bits, cached);
507 	if (err)
508 		return err;
509 
510 	for (i = 0; i < num_pages; i++) {
511 		struct page *p = pages[i];
512 
513 		btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
514 		btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
515 		btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
516 	}
517 
518 	/*
519 	 * we've only changed i_size in ram, and we haven't updated
520 	 * the disk i_size.  There is no need to log the inode
521 	 * at this time.
522 	 */
523 	if (end_pos > isize)
524 		i_size_write(&inode->vfs_inode, end_pos);
525 	return 0;
526 }
527 
528 /*
529  * this drops all the extents in the cache that intersect the range
530  * [start, end].  Existing extents are split as required.
531  */
532 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
533 			     int skip_pinned)
534 {
535 	struct extent_map *em;
536 	struct extent_map *split = NULL;
537 	struct extent_map *split2 = NULL;
538 	struct extent_map_tree *em_tree = &inode->extent_tree;
539 	u64 len = end - start + 1;
540 	u64 gen;
541 	int ret;
542 	int testend = 1;
543 	unsigned long flags;
544 	int compressed = 0;
545 	bool modified;
546 
547 	WARN_ON(end < start);
548 	if (end == (u64)-1) {
549 		len = (u64)-1;
550 		testend = 0;
551 	}
552 	while (1) {
553 		int no_splits = 0;
554 
555 		modified = false;
556 		if (!split)
557 			split = alloc_extent_map();
558 		if (!split2)
559 			split2 = alloc_extent_map();
560 		if (!split || !split2)
561 			no_splits = 1;
562 
563 		write_lock(&em_tree->lock);
564 		em = lookup_extent_mapping(em_tree, start, len);
565 		if (!em) {
566 			write_unlock(&em_tree->lock);
567 			break;
568 		}
569 		flags = em->flags;
570 		gen = em->generation;
571 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
572 			if (testend && em->start + em->len >= start + len) {
573 				free_extent_map(em);
574 				write_unlock(&em_tree->lock);
575 				break;
576 			}
577 			start = em->start + em->len;
578 			if (testend)
579 				len = start + len - (em->start + em->len);
580 			free_extent_map(em);
581 			write_unlock(&em_tree->lock);
582 			continue;
583 		}
584 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
585 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
586 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
587 		modified = !list_empty(&em->list);
588 		if (no_splits)
589 			goto next;
590 
591 		if (em->start < start) {
592 			split->start = em->start;
593 			split->len = start - em->start;
594 
595 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
596 				split->orig_start = em->orig_start;
597 				split->block_start = em->block_start;
598 
599 				if (compressed)
600 					split->block_len = em->block_len;
601 				else
602 					split->block_len = split->len;
603 				split->orig_block_len = max(split->block_len,
604 						em->orig_block_len);
605 				split->ram_bytes = em->ram_bytes;
606 			} else {
607 				split->orig_start = split->start;
608 				split->block_len = 0;
609 				split->block_start = em->block_start;
610 				split->orig_block_len = 0;
611 				split->ram_bytes = split->len;
612 			}
613 
614 			split->generation = gen;
615 			split->flags = flags;
616 			split->compress_type = em->compress_type;
617 			replace_extent_mapping(em_tree, em, split, modified);
618 			free_extent_map(split);
619 			split = split2;
620 			split2 = NULL;
621 		}
622 		if (testend && em->start + em->len > start + len) {
623 			u64 diff = start + len - em->start;
624 
625 			split->start = start + len;
626 			split->len = em->start + em->len - (start + len);
627 			split->flags = flags;
628 			split->compress_type = em->compress_type;
629 			split->generation = gen;
630 
631 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
632 				split->orig_block_len = max(em->block_len,
633 						    em->orig_block_len);
634 
635 				split->ram_bytes = em->ram_bytes;
636 				if (compressed) {
637 					split->block_len = em->block_len;
638 					split->block_start = em->block_start;
639 					split->orig_start = em->orig_start;
640 				} else {
641 					split->block_len = split->len;
642 					split->block_start = em->block_start
643 						+ diff;
644 					split->orig_start = em->orig_start;
645 				}
646 			} else {
647 				split->ram_bytes = split->len;
648 				split->orig_start = split->start;
649 				split->block_len = 0;
650 				split->block_start = em->block_start;
651 				split->orig_block_len = 0;
652 			}
653 
654 			if (extent_map_in_tree(em)) {
655 				replace_extent_mapping(em_tree, em, split,
656 						       modified);
657 			} else {
658 				ret = add_extent_mapping(em_tree, split,
659 							 modified);
660 				ASSERT(ret == 0); /* Logic error */
661 			}
662 			free_extent_map(split);
663 			split = NULL;
664 		}
665 next:
666 		if (extent_map_in_tree(em))
667 			remove_extent_mapping(em_tree, em);
668 		write_unlock(&em_tree->lock);
669 
670 		/* once for us */
671 		free_extent_map(em);
672 		/* once for the tree*/
673 		free_extent_map(em);
674 	}
675 	if (split)
676 		free_extent_map(split);
677 	if (split2)
678 		free_extent_map(split2);
679 }
680 
681 /*
682  * this is very complex, but the basic idea is to drop all extents
683  * in the range start - end.  hint_block is filled in with a block number
684  * that would be a good hint to the block allocator for this file.
685  *
686  * If an extent intersects the range but is not entirely inside the range
687  * it is either truncated or split.  Anything entirely inside the range
688  * is deleted from the tree.
689  *
690  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
691  * to deal with that. We set the field 'bytes_found' of the arguments structure
692  * with the number of allocated bytes found in the target range, so that the
693  * caller can update the inode's number of bytes in an atomic way when
694  * replacing extents in a range to avoid races with stat(2).
695  */
696 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
697 		       struct btrfs_root *root, struct btrfs_inode *inode,
698 		       struct btrfs_drop_extents_args *args)
699 {
700 	struct btrfs_fs_info *fs_info = root->fs_info;
701 	struct extent_buffer *leaf;
702 	struct btrfs_file_extent_item *fi;
703 	struct btrfs_ref ref = { 0 };
704 	struct btrfs_key key;
705 	struct btrfs_key new_key;
706 	u64 ino = btrfs_ino(inode);
707 	u64 search_start = args->start;
708 	u64 disk_bytenr = 0;
709 	u64 num_bytes = 0;
710 	u64 extent_offset = 0;
711 	u64 extent_end = 0;
712 	u64 last_end = args->start;
713 	int del_nr = 0;
714 	int del_slot = 0;
715 	int extent_type;
716 	int recow;
717 	int ret;
718 	int modify_tree = -1;
719 	int update_refs;
720 	int found = 0;
721 	int leafs_visited = 0;
722 	struct btrfs_path *path = args->path;
723 
724 	args->bytes_found = 0;
725 	args->extent_inserted = false;
726 
727 	/* Must always have a path if ->replace_extent is true */
728 	ASSERT(!(args->replace_extent && !args->path));
729 
730 	if (!path) {
731 		path = btrfs_alloc_path();
732 		if (!path) {
733 			ret = -ENOMEM;
734 			goto out;
735 		}
736 	}
737 
738 	if (args->drop_cache)
739 		btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
740 
741 	if (args->start >= inode->disk_i_size && !args->replace_extent)
742 		modify_tree = 0;
743 
744 	update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
745 	while (1) {
746 		recow = 0;
747 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
748 					       search_start, modify_tree);
749 		if (ret < 0)
750 			break;
751 		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
752 			leaf = path->nodes[0];
753 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
754 			if (key.objectid == ino &&
755 			    key.type == BTRFS_EXTENT_DATA_KEY)
756 				path->slots[0]--;
757 		}
758 		ret = 0;
759 		leafs_visited++;
760 next_slot:
761 		leaf = path->nodes[0];
762 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
763 			BUG_ON(del_nr > 0);
764 			ret = btrfs_next_leaf(root, path);
765 			if (ret < 0)
766 				break;
767 			if (ret > 0) {
768 				ret = 0;
769 				break;
770 			}
771 			leafs_visited++;
772 			leaf = path->nodes[0];
773 			recow = 1;
774 		}
775 
776 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
777 
778 		if (key.objectid > ino)
779 			break;
780 		if (WARN_ON_ONCE(key.objectid < ino) ||
781 		    key.type < BTRFS_EXTENT_DATA_KEY) {
782 			ASSERT(del_nr == 0);
783 			path->slots[0]++;
784 			goto next_slot;
785 		}
786 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
787 			break;
788 
789 		fi = btrfs_item_ptr(leaf, path->slots[0],
790 				    struct btrfs_file_extent_item);
791 		extent_type = btrfs_file_extent_type(leaf, fi);
792 
793 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
794 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
795 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
796 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
797 			extent_offset = btrfs_file_extent_offset(leaf, fi);
798 			extent_end = key.offset +
799 				btrfs_file_extent_num_bytes(leaf, fi);
800 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
801 			extent_end = key.offset +
802 				btrfs_file_extent_ram_bytes(leaf, fi);
803 		} else {
804 			/* can't happen */
805 			BUG();
806 		}
807 
808 		/*
809 		 * Don't skip extent items representing 0 byte lengths. They
810 		 * used to be created (bug) if while punching holes we hit
811 		 * -ENOSPC condition. So if we find one here, just ensure we
812 		 * delete it, otherwise we would insert a new file extent item
813 		 * with the same key (offset) as that 0 bytes length file
814 		 * extent item in the call to setup_items_for_insert() later
815 		 * in this function.
816 		 */
817 		if (extent_end == key.offset && extent_end >= search_start) {
818 			last_end = extent_end;
819 			goto delete_extent_item;
820 		}
821 
822 		if (extent_end <= search_start) {
823 			path->slots[0]++;
824 			goto next_slot;
825 		}
826 
827 		found = 1;
828 		search_start = max(key.offset, args->start);
829 		if (recow || !modify_tree) {
830 			modify_tree = -1;
831 			btrfs_release_path(path);
832 			continue;
833 		}
834 
835 		/*
836 		 *     | - range to drop - |
837 		 *  | -------- extent -------- |
838 		 */
839 		if (args->start > key.offset && args->end < extent_end) {
840 			BUG_ON(del_nr > 0);
841 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
842 				ret = -EOPNOTSUPP;
843 				break;
844 			}
845 
846 			memcpy(&new_key, &key, sizeof(new_key));
847 			new_key.offset = args->start;
848 			ret = btrfs_duplicate_item(trans, root, path,
849 						   &new_key);
850 			if (ret == -EAGAIN) {
851 				btrfs_release_path(path);
852 				continue;
853 			}
854 			if (ret < 0)
855 				break;
856 
857 			leaf = path->nodes[0];
858 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
859 					    struct btrfs_file_extent_item);
860 			btrfs_set_file_extent_num_bytes(leaf, fi,
861 							args->start - key.offset);
862 
863 			fi = btrfs_item_ptr(leaf, path->slots[0],
864 					    struct btrfs_file_extent_item);
865 
866 			extent_offset += args->start - key.offset;
867 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
868 			btrfs_set_file_extent_num_bytes(leaf, fi,
869 							extent_end - args->start);
870 			btrfs_mark_buffer_dirty(leaf);
871 
872 			if (update_refs && disk_bytenr > 0) {
873 				btrfs_init_generic_ref(&ref,
874 						BTRFS_ADD_DELAYED_REF,
875 						disk_bytenr, num_bytes, 0);
876 				btrfs_init_data_ref(&ref,
877 						root->root_key.objectid,
878 						new_key.objectid,
879 						args->start - extent_offset,
880 						0, false);
881 				ret = btrfs_inc_extent_ref(trans, &ref);
882 				BUG_ON(ret); /* -ENOMEM */
883 			}
884 			key.offset = args->start;
885 		}
886 		/*
887 		 * From here on out we will have actually dropped something, so
888 		 * last_end can be updated.
889 		 */
890 		last_end = extent_end;
891 
892 		/*
893 		 *  | ---- range to drop ----- |
894 		 *      | -------- extent -------- |
895 		 */
896 		if (args->start <= key.offset && args->end < extent_end) {
897 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
898 				ret = -EOPNOTSUPP;
899 				break;
900 			}
901 
902 			memcpy(&new_key, &key, sizeof(new_key));
903 			new_key.offset = args->end;
904 			btrfs_set_item_key_safe(fs_info, path, &new_key);
905 
906 			extent_offset += args->end - key.offset;
907 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
908 			btrfs_set_file_extent_num_bytes(leaf, fi,
909 							extent_end - args->end);
910 			btrfs_mark_buffer_dirty(leaf);
911 			if (update_refs && disk_bytenr > 0)
912 				args->bytes_found += args->end - key.offset;
913 			break;
914 		}
915 
916 		search_start = extent_end;
917 		/*
918 		 *       | ---- range to drop ----- |
919 		 *  | -------- extent -------- |
920 		 */
921 		if (args->start > key.offset && args->end >= extent_end) {
922 			BUG_ON(del_nr > 0);
923 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
924 				ret = -EOPNOTSUPP;
925 				break;
926 			}
927 
928 			btrfs_set_file_extent_num_bytes(leaf, fi,
929 							args->start - key.offset);
930 			btrfs_mark_buffer_dirty(leaf);
931 			if (update_refs && disk_bytenr > 0)
932 				args->bytes_found += extent_end - args->start;
933 			if (args->end == extent_end)
934 				break;
935 
936 			path->slots[0]++;
937 			goto next_slot;
938 		}
939 
940 		/*
941 		 *  | ---- range to drop ----- |
942 		 *    | ------ extent ------ |
943 		 */
944 		if (args->start <= key.offset && args->end >= extent_end) {
945 delete_extent_item:
946 			if (del_nr == 0) {
947 				del_slot = path->slots[0];
948 				del_nr = 1;
949 			} else {
950 				BUG_ON(del_slot + del_nr != path->slots[0]);
951 				del_nr++;
952 			}
953 
954 			if (update_refs &&
955 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
956 				args->bytes_found += extent_end - key.offset;
957 				extent_end = ALIGN(extent_end,
958 						   fs_info->sectorsize);
959 			} else if (update_refs && disk_bytenr > 0) {
960 				btrfs_init_generic_ref(&ref,
961 						BTRFS_DROP_DELAYED_REF,
962 						disk_bytenr, num_bytes, 0);
963 				btrfs_init_data_ref(&ref,
964 						root->root_key.objectid,
965 						key.objectid,
966 						key.offset - extent_offset, 0,
967 						false);
968 				ret = btrfs_free_extent(trans, &ref);
969 				BUG_ON(ret); /* -ENOMEM */
970 				args->bytes_found += extent_end - key.offset;
971 			}
972 
973 			if (args->end == extent_end)
974 				break;
975 
976 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
977 				path->slots[0]++;
978 				goto next_slot;
979 			}
980 
981 			ret = btrfs_del_items(trans, root, path, del_slot,
982 					      del_nr);
983 			if (ret) {
984 				btrfs_abort_transaction(trans, ret);
985 				break;
986 			}
987 
988 			del_nr = 0;
989 			del_slot = 0;
990 
991 			btrfs_release_path(path);
992 			continue;
993 		}
994 
995 		BUG();
996 	}
997 
998 	if (!ret && del_nr > 0) {
999 		/*
1000 		 * Set path->slots[0] to first slot, so that after the delete
1001 		 * if items are move off from our leaf to its immediate left or
1002 		 * right neighbor leafs, we end up with a correct and adjusted
1003 		 * path->slots[0] for our insertion (if args->replace_extent).
1004 		 */
1005 		path->slots[0] = del_slot;
1006 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1007 		if (ret)
1008 			btrfs_abort_transaction(trans, ret);
1009 	}
1010 
1011 	leaf = path->nodes[0];
1012 	/*
1013 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
1014 	 * which case it unlocked our path, so check path->locks[0] matches a
1015 	 * write lock.
1016 	 */
1017 	if (!ret && args->replace_extent && leafs_visited == 1 &&
1018 	    path->locks[0] == BTRFS_WRITE_LOCK &&
1019 	    btrfs_leaf_free_space(leaf) >=
1020 	    sizeof(struct btrfs_item) + args->extent_item_size) {
1021 
1022 		key.objectid = ino;
1023 		key.type = BTRFS_EXTENT_DATA_KEY;
1024 		key.offset = args->start;
1025 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1026 			struct btrfs_key slot_key;
1027 
1028 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1029 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1030 				path->slots[0]++;
1031 		}
1032 		btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size);
1033 		args->extent_inserted = true;
1034 	}
1035 
1036 	if (!args->path)
1037 		btrfs_free_path(path);
1038 	else if (!args->extent_inserted)
1039 		btrfs_release_path(path);
1040 out:
1041 	args->drop_end = found ? min(args->end, last_end) : args->end;
1042 
1043 	return ret;
1044 }
1045 
1046 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1047 			    u64 objectid, u64 bytenr, u64 orig_offset,
1048 			    u64 *start, u64 *end)
1049 {
1050 	struct btrfs_file_extent_item *fi;
1051 	struct btrfs_key key;
1052 	u64 extent_end;
1053 
1054 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1055 		return 0;
1056 
1057 	btrfs_item_key_to_cpu(leaf, &key, slot);
1058 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1059 		return 0;
1060 
1061 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1062 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1063 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1064 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1065 	    btrfs_file_extent_compression(leaf, fi) ||
1066 	    btrfs_file_extent_encryption(leaf, fi) ||
1067 	    btrfs_file_extent_other_encoding(leaf, fi))
1068 		return 0;
1069 
1070 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1071 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1072 		return 0;
1073 
1074 	*start = key.offset;
1075 	*end = extent_end;
1076 	return 1;
1077 }
1078 
1079 /*
1080  * Mark extent in the range start - end as written.
1081  *
1082  * This changes extent type from 'pre-allocated' to 'regular'. If only
1083  * part of extent is marked as written, the extent will be split into
1084  * two or three.
1085  */
1086 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1087 			      struct btrfs_inode *inode, u64 start, u64 end)
1088 {
1089 	struct btrfs_fs_info *fs_info = trans->fs_info;
1090 	struct btrfs_root *root = inode->root;
1091 	struct extent_buffer *leaf;
1092 	struct btrfs_path *path;
1093 	struct btrfs_file_extent_item *fi;
1094 	struct btrfs_ref ref = { 0 };
1095 	struct btrfs_key key;
1096 	struct btrfs_key new_key;
1097 	u64 bytenr;
1098 	u64 num_bytes;
1099 	u64 extent_end;
1100 	u64 orig_offset;
1101 	u64 other_start;
1102 	u64 other_end;
1103 	u64 split;
1104 	int del_nr = 0;
1105 	int del_slot = 0;
1106 	int recow;
1107 	int ret = 0;
1108 	u64 ino = btrfs_ino(inode);
1109 
1110 	path = btrfs_alloc_path();
1111 	if (!path)
1112 		return -ENOMEM;
1113 again:
1114 	recow = 0;
1115 	split = start;
1116 	key.objectid = ino;
1117 	key.type = BTRFS_EXTENT_DATA_KEY;
1118 	key.offset = split;
1119 
1120 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1121 	if (ret < 0)
1122 		goto out;
1123 	if (ret > 0 && path->slots[0] > 0)
1124 		path->slots[0]--;
1125 
1126 	leaf = path->nodes[0];
1127 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1128 	if (key.objectid != ino ||
1129 	    key.type != BTRFS_EXTENT_DATA_KEY) {
1130 		ret = -EINVAL;
1131 		btrfs_abort_transaction(trans, ret);
1132 		goto out;
1133 	}
1134 	fi = btrfs_item_ptr(leaf, path->slots[0],
1135 			    struct btrfs_file_extent_item);
1136 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1137 		ret = -EINVAL;
1138 		btrfs_abort_transaction(trans, ret);
1139 		goto out;
1140 	}
1141 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1142 	if (key.offset > start || extent_end < end) {
1143 		ret = -EINVAL;
1144 		btrfs_abort_transaction(trans, ret);
1145 		goto out;
1146 	}
1147 
1148 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1149 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1150 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1151 	memcpy(&new_key, &key, sizeof(new_key));
1152 
1153 	if (start == key.offset && end < extent_end) {
1154 		other_start = 0;
1155 		other_end = start;
1156 		if (extent_mergeable(leaf, path->slots[0] - 1,
1157 				     ino, bytenr, orig_offset,
1158 				     &other_start, &other_end)) {
1159 			new_key.offset = end;
1160 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1161 			fi = btrfs_item_ptr(leaf, path->slots[0],
1162 					    struct btrfs_file_extent_item);
1163 			btrfs_set_file_extent_generation(leaf, fi,
1164 							 trans->transid);
1165 			btrfs_set_file_extent_num_bytes(leaf, fi,
1166 							extent_end - end);
1167 			btrfs_set_file_extent_offset(leaf, fi,
1168 						     end - orig_offset);
1169 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1170 					    struct btrfs_file_extent_item);
1171 			btrfs_set_file_extent_generation(leaf, fi,
1172 							 trans->transid);
1173 			btrfs_set_file_extent_num_bytes(leaf, fi,
1174 							end - other_start);
1175 			btrfs_mark_buffer_dirty(leaf);
1176 			goto out;
1177 		}
1178 	}
1179 
1180 	if (start > key.offset && end == extent_end) {
1181 		other_start = end;
1182 		other_end = 0;
1183 		if (extent_mergeable(leaf, path->slots[0] + 1,
1184 				     ino, bytenr, orig_offset,
1185 				     &other_start, &other_end)) {
1186 			fi = btrfs_item_ptr(leaf, path->slots[0],
1187 					    struct btrfs_file_extent_item);
1188 			btrfs_set_file_extent_num_bytes(leaf, fi,
1189 							start - key.offset);
1190 			btrfs_set_file_extent_generation(leaf, fi,
1191 							 trans->transid);
1192 			path->slots[0]++;
1193 			new_key.offset = start;
1194 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1195 
1196 			fi = btrfs_item_ptr(leaf, path->slots[0],
1197 					    struct btrfs_file_extent_item);
1198 			btrfs_set_file_extent_generation(leaf, fi,
1199 							 trans->transid);
1200 			btrfs_set_file_extent_num_bytes(leaf, fi,
1201 							other_end - start);
1202 			btrfs_set_file_extent_offset(leaf, fi,
1203 						     start - orig_offset);
1204 			btrfs_mark_buffer_dirty(leaf);
1205 			goto out;
1206 		}
1207 	}
1208 
1209 	while (start > key.offset || end < extent_end) {
1210 		if (key.offset == start)
1211 			split = end;
1212 
1213 		new_key.offset = split;
1214 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1215 		if (ret == -EAGAIN) {
1216 			btrfs_release_path(path);
1217 			goto again;
1218 		}
1219 		if (ret < 0) {
1220 			btrfs_abort_transaction(trans, ret);
1221 			goto out;
1222 		}
1223 
1224 		leaf = path->nodes[0];
1225 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1226 				    struct btrfs_file_extent_item);
1227 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1228 		btrfs_set_file_extent_num_bytes(leaf, fi,
1229 						split - key.offset);
1230 
1231 		fi = btrfs_item_ptr(leaf, path->slots[0],
1232 				    struct btrfs_file_extent_item);
1233 
1234 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1235 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1236 		btrfs_set_file_extent_num_bytes(leaf, fi,
1237 						extent_end - split);
1238 		btrfs_mark_buffer_dirty(leaf);
1239 
1240 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1241 				       num_bytes, 0);
1242 		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1243 				    orig_offset, 0, false);
1244 		ret = btrfs_inc_extent_ref(trans, &ref);
1245 		if (ret) {
1246 			btrfs_abort_transaction(trans, ret);
1247 			goto out;
1248 		}
1249 
1250 		if (split == start) {
1251 			key.offset = start;
1252 		} else {
1253 			if (start != key.offset) {
1254 				ret = -EINVAL;
1255 				btrfs_abort_transaction(trans, ret);
1256 				goto out;
1257 			}
1258 			path->slots[0]--;
1259 			extent_end = end;
1260 		}
1261 		recow = 1;
1262 	}
1263 
1264 	other_start = end;
1265 	other_end = 0;
1266 	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1267 			       num_bytes, 0);
1268 	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
1269 			    0, false);
1270 	if (extent_mergeable(leaf, path->slots[0] + 1,
1271 			     ino, bytenr, orig_offset,
1272 			     &other_start, &other_end)) {
1273 		if (recow) {
1274 			btrfs_release_path(path);
1275 			goto again;
1276 		}
1277 		extent_end = other_end;
1278 		del_slot = path->slots[0] + 1;
1279 		del_nr++;
1280 		ret = btrfs_free_extent(trans, &ref);
1281 		if (ret) {
1282 			btrfs_abort_transaction(trans, ret);
1283 			goto out;
1284 		}
1285 	}
1286 	other_start = 0;
1287 	other_end = start;
1288 	if (extent_mergeable(leaf, path->slots[0] - 1,
1289 			     ino, bytenr, orig_offset,
1290 			     &other_start, &other_end)) {
1291 		if (recow) {
1292 			btrfs_release_path(path);
1293 			goto again;
1294 		}
1295 		key.offset = other_start;
1296 		del_slot = path->slots[0];
1297 		del_nr++;
1298 		ret = btrfs_free_extent(trans, &ref);
1299 		if (ret) {
1300 			btrfs_abort_transaction(trans, ret);
1301 			goto out;
1302 		}
1303 	}
1304 	if (del_nr == 0) {
1305 		fi = btrfs_item_ptr(leaf, path->slots[0],
1306 			   struct btrfs_file_extent_item);
1307 		btrfs_set_file_extent_type(leaf, fi,
1308 					   BTRFS_FILE_EXTENT_REG);
1309 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1310 		btrfs_mark_buffer_dirty(leaf);
1311 	} else {
1312 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1313 			   struct btrfs_file_extent_item);
1314 		btrfs_set_file_extent_type(leaf, fi,
1315 					   BTRFS_FILE_EXTENT_REG);
1316 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1317 		btrfs_set_file_extent_num_bytes(leaf, fi,
1318 						extent_end - key.offset);
1319 		btrfs_mark_buffer_dirty(leaf);
1320 
1321 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1322 		if (ret < 0) {
1323 			btrfs_abort_transaction(trans, ret);
1324 			goto out;
1325 		}
1326 	}
1327 out:
1328 	btrfs_free_path(path);
1329 	return ret;
1330 }
1331 
1332 /*
1333  * on error we return an unlocked page and the error value
1334  * on success we return a locked page and 0
1335  */
1336 static int prepare_uptodate_page(struct inode *inode,
1337 				 struct page *page, u64 pos,
1338 				 bool force_uptodate)
1339 {
1340 	int ret = 0;
1341 
1342 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1343 	    !PageUptodate(page)) {
1344 		ret = btrfs_readpage(NULL, page);
1345 		if (ret)
1346 			return ret;
1347 		lock_page(page);
1348 		if (!PageUptodate(page)) {
1349 			unlock_page(page);
1350 			return -EIO;
1351 		}
1352 
1353 		/*
1354 		 * Since btrfs_readpage() will unlock the page before it
1355 		 * returns, there is a window where btrfs_releasepage() can be
1356 		 * called to release the page.  Here we check both inode
1357 		 * mapping and PagePrivate() to make sure the page was not
1358 		 * released.
1359 		 *
1360 		 * The private flag check is essential for subpage as we need
1361 		 * to store extra bitmap using page->private.
1362 		 */
1363 		if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
1364 			unlock_page(page);
1365 			return -EAGAIN;
1366 		}
1367 	}
1368 	return 0;
1369 }
1370 
1371 /*
1372  * this just gets pages into the page cache and locks them down.
1373  */
1374 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1375 				  size_t num_pages, loff_t pos,
1376 				  size_t write_bytes, bool force_uptodate)
1377 {
1378 	int i;
1379 	unsigned long index = pos >> PAGE_SHIFT;
1380 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1381 	int err = 0;
1382 	int faili;
1383 
1384 	for (i = 0; i < num_pages; i++) {
1385 again:
1386 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1387 					       mask | __GFP_WRITE);
1388 		if (!pages[i]) {
1389 			faili = i - 1;
1390 			err = -ENOMEM;
1391 			goto fail;
1392 		}
1393 
1394 		err = set_page_extent_mapped(pages[i]);
1395 		if (err < 0) {
1396 			faili = i;
1397 			goto fail;
1398 		}
1399 
1400 		if (i == 0)
1401 			err = prepare_uptodate_page(inode, pages[i], pos,
1402 						    force_uptodate);
1403 		if (!err && i == num_pages - 1)
1404 			err = prepare_uptodate_page(inode, pages[i],
1405 						    pos + write_bytes, false);
1406 		if (err) {
1407 			put_page(pages[i]);
1408 			if (err == -EAGAIN) {
1409 				err = 0;
1410 				goto again;
1411 			}
1412 			faili = i - 1;
1413 			goto fail;
1414 		}
1415 		wait_on_page_writeback(pages[i]);
1416 	}
1417 
1418 	return 0;
1419 fail:
1420 	while (faili >= 0) {
1421 		unlock_page(pages[faili]);
1422 		put_page(pages[faili]);
1423 		faili--;
1424 	}
1425 	return err;
1426 
1427 }
1428 
1429 /*
1430  * This function locks the extent and properly waits for data=ordered extents
1431  * to finish before allowing the pages to be modified if need.
1432  *
1433  * The return value:
1434  * 1 - the extent is locked
1435  * 0 - the extent is not locked, and everything is OK
1436  * -EAGAIN - need re-prepare the pages
1437  * the other < 0 number - Something wrong happens
1438  */
1439 static noinline int
1440 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1441 				size_t num_pages, loff_t pos,
1442 				size_t write_bytes,
1443 				u64 *lockstart, u64 *lockend,
1444 				struct extent_state **cached_state)
1445 {
1446 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1447 	u64 start_pos;
1448 	u64 last_pos;
1449 	int i;
1450 	int ret = 0;
1451 
1452 	start_pos = round_down(pos, fs_info->sectorsize);
1453 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1454 
1455 	if (start_pos < inode->vfs_inode.i_size) {
1456 		struct btrfs_ordered_extent *ordered;
1457 
1458 		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1459 				cached_state);
1460 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1461 						     last_pos - start_pos + 1);
1462 		if (ordered &&
1463 		    ordered->file_offset + ordered->num_bytes > start_pos &&
1464 		    ordered->file_offset <= last_pos) {
1465 			unlock_extent_cached(&inode->io_tree, start_pos,
1466 					last_pos, cached_state);
1467 			for (i = 0; i < num_pages; i++) {
1468 				unlock_page(pages[i]);
1469 				put_page(pages[i]);
1470 			}
1471 			btrfs_start_ordered_extent(ordered, 1);
1472 			btrfs_put_ordered_extent(ordered);
1473 			return -EAGAIN;
1474 		}
1475 		if (ordered)
1476 			btrfs_put_ordered_extent(ordered);
1477 
1478 		*lockstart = start_pos;
1479 		*lockend = last_pos;
1480 		ret = 1;
1481 	}
1482 
1483 	/*
1484 	 * We should be called after prepare_pages() which should have locked
1485 	 * all pages in the range.
1486 	 */
1487 	for (i = 0; i < num_pages; i++)
1488 		WARN_ON(!PageLocked(pages[i]));
1489 
1490 	return ret;
1491 }
1492 
1493 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1494 			   size_t *write_bytes, bool nowait)
1495 {
1496 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1497 	struct btrfs_root *root = inode->root;
1498 	u64 lockstart, lockend;
1499 	u64 num_bytes;
1500 	int ret;
1501 
1502 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1503 		return 0;
1504 
1505 	if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1506 		return -EAGAIN;
1507 
1508 	lockstart = round_down(pos, fs_info->sectorsize);
1509 	lockend = round_up(pos + *write_bytes,
1510 			   fs_info->sectorsize) - 1;
1511 	num_bytes = lockend - lockstart + 1;
1512 
1513 	if (nowait) {
1514 		struct btrfs_ordered_extent *ordered;
1515 
1516 		if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1517 			return -EAGAIN;
1518 
1519 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1520 						     num_bytes);
1521 		if (ordered) {
1522 			btrfs_put_ordered_extent(ordered);
1523 			ret = -EAGAIN;
1524 			goto out_unlock;
1525 		}
1526 	} else {
1527 		btrfs_lock_and_flush_ordered_range(inode, lockstart,
1528 						   lockend, NULL);
1529 	}
1530 
1531 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1532 			NULL, NULL, NULL, false);
1533 	if (ret <= 0) {
1534 		ret = 0;
1535 		if (!nowait)
1536 			btrfs_drew_write_unlock(&root->snapshot_lock);
1537 	} else {
1538 		*write_bytes = min_t(size_t, *write_bytes ,
1539 				     num_bytes - pos + lockstart);
1540 	}
1541 out_unlock:
1542 	unlock_extent(&inode->io_tree, lockstart, lockend);
1543 
1544 	return ret;
1545 }
1546 
1547 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1548 			      size_t *write_bytes)
1549 {
1550 	return check_can_nocow(inode, pos, write_bytes, true);
1551 }
1552 
1553 /*
1554  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1555  *
1556  * @pos:	 File offset
1557  * @write_bytes: The length to write, will be updated to the nocow writeable
1558  *		 range
1559  *
1560  * This function will flush ordered extents in the range to ensure proper
1561  * nocow checks.
1562  *
1563  * Return:
1564  * >0		and update @write_bytes if we can do nocow write
1565  *  0		if we can't do nocow write
1566  * -EAGAIN	if we can't get the needed lock or there are ordered extents
1567  * 		for * (nowait == true) case
1568  * <0		if other error happened
1569  *
1570  * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1571  */
1572 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1573 			   size_t *write_bytes)
1574 {
1575 	return check_can_nocow(inode, pos, write_bytes, false);
1576 }
1577 
1578 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1579 {
1580 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1581 }
1582 
1583 static void update_time_for_write(struct inode *inode)
1584 {
1585 	struct timespec64 now;
1586 
1587 	if (IS_NOCMTIME(inode))
1588 		return;
1589 
1590 	now = current_time(inode);
1591 	if (!timespec64_equal(&inode->i_mtime, &now))
1592 		inode->i_mtime = now;
1593 
1594 	if (!timespec64_equal(&inode->i_ctime, &now))
1595 		inode->i_ctime = now;
1596 
1597 	if (IS_I_VERSION(inode))
1598 		inode_inc_iversion(inode);
1599 }
1600 
1601 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1602 			     size_t count)
1603 {
1604 	struct file *file = iocb->ki_filp;
1605 	struct inode *inode = file_inode(file);
1606 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1607 	loff_t pos = iocb->ki_pos;
1608 	int ret;
1609 	loff_t oldsize;
1610 	loff_t start_pos;
1611 
1612 	if (iocb->ki_flags & IOCB_NOWAIT) {
1613 		size_t nocow_bytes = count;
1614 
1615 		/* We will allocate space in case nodatacow is not set, so bail */
1616 		if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1617 			return -EAGAIN;
1618 		/*
1619 		 * There are holes in the range or parts of the range that must
1620 		 * be COWed (shared extents, RO block groups, etc), so just bail
1621 		 * out.
1622 		 */
1623 		if (nocow_bytes < count)
1624 			return -EAGAIN;
1625 	}
1626 
1627 	current->backing_dev_info = inode_to_bdi(inode);
1628 	ret = file_remove_privs(file);
1629 	if (ret)
1630 		return ret;
1631 
1632 	/*
1633 	 * We reserve space for updating the inode when we reserve space for the
1634 	 * extent we are going to write, so we will enospc out there.  We don't
1635 	 * need to start yet another transaction to update the inode as we will
1636 	 * update the inode when we finish writing whatever data we write.
1637 	 */
1638 	update_time_for_write(inode);
1639 
1640 	start_pos = round_down(pos, fs_info->sectorsize);
1641 	oldsize = i_size_read(inode);
1642 	if (start_pos > oldsize) {
1643 		/* Expand hole size to cover write data, preventing empty gap */
1644 		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1645 
1646 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1647 		if (ret) {
1648 			current->backing_dev_info = NULL;
1649 			return ret;
1650 		}
1651 	}
1652 
1653 	return 0;
1654 }
1655 
1656 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1657 					       struct iov_iter *i)
1658 {
1659 	struct file *file = iocb->ki_filp;
1660 	loff_t pos;
1661 	struct inode *inode = file_inode(file);
1662 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1663 	struct page **pages = NULL;
1664 	struct extent_changeset *data_reserved = NULL;
1665 	u64 release_bytes = 0;
1666 	u64 lockstart;
1667 	u64 lockend;
1668 	size_t num_written = 0;
1669 	int nrptrs;
1670 	ssize_t ret;
1671 	bool only_release_metadata = false;
1672 	bool force_page_uptodate = false;
1673 	loff_t old_isize = i_size_read(inode);
1674 	unsigned int ilock_flags = 0;
1675 
1676 	if (iocb->ki_flags & IOCB_NOWAIT)
1677 		ilock_flags |= BTRFS_ILOCK_TRY;
1678 
1679 	ret = btrfs_inode_lock(inode, ilock_flags);
1680 	if (ret < 0)
1681 		return ret;
1682 
1683 	ret = generic_write_checks(iocb, i);
1684 	if (ret <= 0)
1685 		goto out;
1686 
1687 	ret = btrfs_write_check(iocb, i, ret);
1688 	if (ret < 0)
1689 		goto out;
1690 
1691 	pos = iocb->ki_pos;
1692 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1693 			PAGE_SIZE / (sizeof(struct page *)));
1694 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1695 	nrptrs = max(nrptrs, 8);
1696 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1697 	if (!pages) {
1698 		ret = -ENOMEM;
1699 		goto out;
1700 	}
1701 
1702 	while (iov_iter_count(i) > 0) {
1703 		struct extent_state *cached_state = NULL;
1704 		size_t offset = offset_in_page(pos);
1705 		size_t sector_offset;
1706 		size_t write_bytes = min(iov_iter_count(i),
1707 					 nrptrs * (size_t)PAGE_SIZE -
1708 					 offset);
1709 		size_t num_pages;
1710 		size_t reserve_bytes;
1711 		size_t dirty_pages;
1712 		size_t copied;
1713 		size_t dirty_sectors;
1714 		size_t num_sectors;
1715 		int extents_locked;
1716 
1717 		/*
1718 		 * Fault pages before locking them in prepare_pages
1719 		 * to avoid recursive lock
1720 		 */
1721 		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1722 			ret = -EFAULT;
1723 			break;
1724 		}
1725 
1726 		only_release_metadata = false;
1727 		sector_offset = pos & (fs_info->sectorsize - 1);
1728 
1729 		extent_changeset_release(data_reserved);
1730 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1731 						  &data_reserved, pos,
1732 						  write_bytes);
1733 		if (ret < 0) {
1734 			/*
1735 			 * If we don't have to COW at the offset, reserve
1736 			 * metadata only. write_bytes may get smaller than
1737 			 * requested here.
1738 			 */
1739 			if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1740 						   &write_bytes) > 0)
1741 				only_release_metadata = true;
1742 			else
1743 				break;
1744 		}
1745 
1746 		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1747 		WARN_ON(num_pages > nrptrs);
1748 		reserve_bytes = round_up(write_bytes + sector_offset,
1749 					 fs_info->sectorsize);
1750 		WARN_ON(reserve_bytes == 0);
1751 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1752 				reserve_bytes);
1753 		if (ret) {
1754 			if (!only_release_metadata)
1755 				btrfs_free_reserved_data_space(BTRFS_I(inode),
1756 						data_reserved, pos,
1757 						write_bytes);
1758 			else
1759 				btrfs_check_nocow_unlock(BTRFS_I(inode));
1760 			break;
1761 		}
1762 
1763 		release_bytes = reserve_bytes;
1764 again:
1765 		/*
1766 		 * This is going to setup the pages array with the number of
1767 		 * pages we want, so we don't really need to worry about the
1768 		 * contents of pages from loop to loop
1769 		 */
1770 		ret = prepare_pages(inode, pages, num_pages,
1771 				    pos, write_bytes,
1772 				    force_page_uptodate);
1773 		if (ret) {
1774 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1775 						       reserve_bytes);
1776 			break;
1777 		}
1778 
1779 		extents_locked = lock_and_cleanup_extent_if_need(
1780 				BTRFS_I(inode), pages,
1781 				num_pages, pos, write_bytes, &lockstart,
1782 				&lockend, &cached_state);
1783 		if (extents_locked < 0) {
1784 			if (extents_locked == -EAGAIN)
1785 				goto again;
1786 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1787 						       reserve_bytes);
1788 			ret = extents_locked;
1789 			break;
1790 		}
1791 
1792 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1793 
1794 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1795 		dirty_sectors = round_up(copied + sector_offset,
1796 					fs_info->sectorsize);
1797 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1798 
1799 		/*
1800 		 * if we have trouble faulting in the pages, fall
1801 		 * back to one page at a time
1802 		 */
1803 		if (copied < write_bytes)
1804 			nrptrs = 1;
1805 
1806 		if (copied == 0) {
1807 			force_page_uptodate = true;
1808 			dirty_sectors = 0;
1809 			dirty_pages = 0;
1810 		} else {
1811 			force_page_uptodate = false;
1812 			dirty_pages = DIV_ROUND_UP(copied + offset,
1813 						   PAGE_SIZE);
1814 		}
1815 
1816 		if (num_sectors > dirty_sectors) {
1817 			/* release everything except the sectors we dirtied */
1818 			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1819 			if (only_release_metadata) {
1820 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1821 							release_bytes, true);
1822 			} else {
1823 				u64 __pos;
1824 
1825 				__pos = round_down(pos,
1826 						   fs_info->sectorsize) +
1827 					(dirty_pages << PAGE_SHIFT);
1828 				btrfs_delalloc_release_space(BTRFS_I(inode),
1829 						data_reserved, __pos,
1830 						release_bytes, true);
1831 			}
1832 		}
1833 
1834 		release_bytes = round_up(copied + sector_offset,
1835 					fs_info->sectorsize);
1836 
1837 		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1838 					dirty_pages, pos, copied,
1839 					&cached_state, only_release_metadata);
1840 
1841 		/*
1842 		 * If we have not locked the extent range, because the range's
1843 		 * start offset is >= i_size, we might still have a non-NULL
1844 		 * cached extent state, acquired while marking the extent range
1845 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1846 		 * possible cached extent state to avoid a memory leak.
1847 		 */
1848 		if (extents_locked)
1849 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1850 					     lockstart, lockend, &cached_state);
1851 		else
1852 			free_extent_state(cached_state);
1853 
1854 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1855 		if (ret) {
1856 			btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1857 			break;
1858 		}
1859 
1860 		release_bytes = 0;
1861 		if (only_release_metadata)
1862 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1863 
1864 		btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1865 
1866 		cond_resched();
1867 
1868 		balance_dirty_pages_ratelimited(inode->i_mapping);
1869 
1870 		pos += copied;
1871 		num_written += copied;
1872 	}
1873 
1874 	kfree(pages);
1875 
1876 	if (release_bytes) {
1877 		if (only_release_metadata) {
1878 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1879 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1880 					release_bytes, true);
1881 		} else {
1882 			btrfs_delalloc_release_space(BTRFS_I(inode),
1883 					data_reserved,
1884 					round_down(pos, fs_info->sectorsize),
1885 					release_bytes, true);
1886 		}
1887 	}
1888 
1889 	extent_changeset_free(data_reserved);
1890 	if (num_written > 0) {
1891 		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1892 		iocb->ki_pos += num_written;
1893 	}
1894 out:
1895 	btrfs_inode_unlock(inode, ilock_flags);
1896 	return num_written ? num_written : ret;
1897 }
1898 
1899 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1900 			       const struct iov_iter *iter, loff_t offset)
1901 {
1902 	const u32 blocksize_mask = fs_info->sectorsize - 1;
1903 
1904 	if (offset & blocksize_mask)
1905 		return -EINVAL;
1906 
1907 	if (iov_iter_alignment(iter) & blocksize_mask)
1908 		return -EINVAL;
1909 
1910 	return 0;
1911 }
1912 
1913 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1914 {
1915 	const bool is_sync_write = (iocb->ki_flags & IOCB_DSYNC);
1916 	struct file *file = iocb->ki_filp;
1917 	struct inode *inode = file_inode(file);
1918 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1919 	loff_t pos;
1920 	ssize_t written = 0;
1921 	ssize_t written_buffered;
1922 	size_t prev_left = 0;
1923 	loff_t endbyte;
1924 	ssize_t err;
1925 	unsigned int ilock_flags = 0;
1926 
1927 	if (iocb->ki_flags & IOCB_NOWAIT)
1928 		ilock_flags |= BTRFS_ILOCK_TRY;
1929 
1930 	/* If the write DIO is within EOF, use a shared lock */
1931 	if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1932 		ilock_flags |= BTRFS_ILOCK_SHARED;
1933 
1934 relock:
1935 	err = btrfs_inode_lock(inode, ilock_flags);
1936 	if (err < 0)
1937 		return err;
1938 
1939 	err = generic_write_checks(iocb, from);
1940 	if (err <= 0) {
1941 		btrfs_inode_unlock(inode, ilock_flags);
1942 		return err;
1943 	}
1944 
1945 	err = btrfs_write_check(iocb, from, err);
1946 	if (err < 0) {
1947 		btrfs_inode_unlock(inode, ilock_flags);
1948 		goto out;
1949 	}
1950 
1951 	pos = iocb->ki_pos;
1952 	/*
1953 	 * Re-check since file size may have changed just before taking the
1954 	 * lock or pos may have changed because of O_APPEND in generic_write_check()
1955 	 */
1956 	if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1957 	    pos + iov_iter_count(from) > i_size_read(inode)) {
1958 		btrfs_inode_unlock(inode, ilock_flags);
1959 		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1960 		goto relock;
1961 	}
1962 
1963 	if (check_direct_IO(fs_info, from, pos)) {
1964 		btrfs_inode_unlock(inode, ilock_flags);
1965 		goto buffered;
1966 	}
1967 
1968 	/*
1969 	 * We remove IOCB_DSYNC so that we don't deadlock when iomap_dio_rw()
1970 	 * calls generic_write_sync() (through iomap_dio_complete()), because
1971 	 * that results in calling fsync (btrfs_sync_file()) which will try to
1972 	 * lock the inode in exclusive/write mode.
1973 	 */
1974 	if (is_sync_write)
1975 		iocb->ki_flags &= ~IOCB_DSYNC;
1976 
1977 	/*
1978 	 * The iov_iter can be mapped to the same file range we are writing to.
1979 	 * If that's the case, then we will deadlock in the iomap code, because
1980 	 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1981 	 * an ordered extent, and after that it will fault in the pages that the
1982 	 * iov_iter refers to. During the fault in we end up in the readahead
1983 	 * pages code (starting at btrfs_readahead()), which will lock the range,
1984 	 * find that ordered extent and then wait for it to complete (at
1985 	 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1986 	 * obviously the ordered extent can never complete as we didn't submit
1987 	 * yet the respective bio(s). This always happens when the buffer is
1988 	 * memory mapped to the same file range, since the iomap DIO code always
1989 	 * invalidates pages in the target file range (after starting and waiting
1990 	 * for any writeback).
1991 	 *
1992 	 * So here we disable page faults in the iov_iter and then retry if we
1993 	 * got -EFAULT, faulting in the pages before the retry.
1994 	 */
1995 again:
1996 	from->nofault = true;
1997 	err = iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
1998 			   IOMAP_DIO_PARTIAL, written);
1999 	from->nofault = false;
2000 
2001 	/* No increment (+=) because iomap returns a cumulative value. */
2002 	if (err > 0)
2003 		written = err;
2004 
2005 	if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
2006 		const size_t left = iov_iter_count(from);
2007 		/*
2008 		 * We have more data left to write. Try to fault in as many as
2009 		 * possible of the remainder pages and retry. We do this without
2010 		 * releasing and locking again the inode, to prevent races with
2011 		 * truncate.
2012 		 *
2013 		 * Also, in case the iov refers to pages in the file range of the
2014 		 * file we want to write to (due to a mmap), we could enter an
2015 		 * infinite loop if we retry after faulting the pages in, since
2016 		 * iomap will invalidate any pages in the range early on, before
2017 		 * it tries to fault in the pages of the iov. So we keep track of
2018 		 * how much was left of iov in the previous EFAULT and fallback
2019 		 * to buffered IO in case we haven't made any progress.
2020 		 */
2021 		if (left == prev_left) {
2022 			err = -ENOTBLK;
2023 		} else {
2024 			fault_in_iov_iter_readable(from, left);
2025 			prev_left = left;
2026 			goto again;
2027 		}
2028 	}
2029 
2030 	btrfs_inode_unlock(inode, ilock_flags);
2031 
2032 	/*
2033 	 * Add back IOCB_DSYNC. Our caller, btrfs_file_write_iter(), will do
2034 	 * the fsync (call generic_write_sync()).
2035 	 */
2036 	if (is_sync_write)
2037 		iocb->ki_flags |= IOCB_DSYNC;
2038 
2039 	/* If 'err' is -ENOTBLK then it means we must fallback to buffered IO. */
2040 	if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
2041 		goto out;
2042 
2043 buffered:
2044 	pos = iocb->ki_pos;
2045 	written_buffered = btrfs_buffered_write(iocb, from);
2046 	if (written_buffered < 0) {
2047 		err = written_buffered;
2048 		goto out;
2049 	}
2050 	/*
2051 	 * Ensure all data is persisted. We want the next direct IO read to be
2052 	 * able to read what was just written.
2053 	 */
2054 	endbyte = pos + written_buffered - 1;
2055 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
2056 	if (err)
2057 		goto out;
2058 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
2059 	if (err)
2060 		goto out;
2061 	written += written_buffered;
2062 	iocb->ki_pos = pos + written_buffered;
2063 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
2064 				 endbyte >> PAGE_SHIFT);
2065 out:
2066 	return err < 0 ? err : written;
2067 }
2068 
2069 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
2070 				    struct iov_iter *from)
2071 {
2072 	struct file *file = iocb->ki_filp;
2073 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
2074 	ssize_t num_written = 0;
2075 	const bool sync = iocb->ki_flags & IOCB_DSYNC;
2076 
2077 	/*
2078 	 * If the fs flips readonly due to some impossible error, although we
2079 	 * have opened a file as writable, we have to stop this write operation
2080 	 * to ensure consistency.
2081 	 */
2082 	if (BTRFS_FS_ERROR(inode->root->fs_info))
2083 		return -EROFS;
2084 
2085 	if (!(iocb->ki_flags & IOCB_DIRECT) &&
2086 	    (iocb->ki_flags & IOCB_NOWAIT))
2087 		return -EOPNOTSUPP;
2088 
2089 	if (sync)
2090 		atomic_inc(&inode->sync_writers);
2091 
2092 	if (iocb->ki_flags & IOCB_DIRECT)
2093 		num_written = btrfs_direct_write(iocb, from);
2094 	else
2095 		num_written = btrfs_buffered_write(iocb, from);
2096 
2097 	btrfs_set_inode_last_sub_trans(inode);
2098 
2099 	if (num_written > 0)
2100 		num_written = generic_write_sync(iocb, num_written);
2101 
2102 	if (sync)
2103 		atomic_dec(&inode->sync_writers);
2104 
2105 	current->backing_dev_info = NULL;
2106 	return num_written;
2107 }
2108 
2109 int btrfs_release_file(struct inode *inode, struct file *filp)
2110 {
2111 	struct btrfs_file_private *private = filp->private_data;
2112 
2113 	if (private && private->filldir_buf)
2114 		kfree(private->filldir_buf);
2115 	kfree(private);
2116 	filp->private_data = NULL;
2117 
2118 	/*
2119 	 * Set by setattr when we are about to truncate a file from a non-zero
2120 	 * size to a zero size.  This tries to flush down new bytes that may
2121 	 * have been written if the application were using truncate to replace
2122 	 * a file in place.
2123 	 */
2124 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2125 			       &BTRFS_I(inode)->runtime_flags))
2126 			filemap_flush(inode->i_mapping);
2127 	return 0;
2128 }
2129 
2130 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2131 {
2132 	int ret;
2133 	struct blk_plug plug;
2134 
2135 	/*
2136 	 * This is only called in fsync, which would do synchronous writes, so
2137 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2138 	 * multiple disks using raid profile, a large IO can be split to
2139 	 * several segments of stripe length (currently 64K).
2140 	 */
2141 	blk_start_plug(&plug);
2142 	atomic_inc(&BTRFS_I(inode)->sync_writers);
2143 	ret = btrfs_fdatawrite_range(inode, start, end);
2144 	atomic_dec(&BTRFS_I(inode)->sync_writers);
2145 	blk_finish_plug(&plug);
2146 
2147 	return ret;
2148 }
2149 
2150 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2151 {
2152 	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2153 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2154 
2155 	if (btrfs_inode_in_log(inode, fs_info->generation) &&
2156 	    list_empty(&ctx->ordered_extents))
2157 		return true;
2158 
2159 	/*
2160 	 * If we are doing a fast fsync we can not bail out if the inode's
2161 	 * last_trans is <= then the last committed transaction, because we only
2162 	 * update the last_trans of the inode during ordered extent completion,
2163 	 * and for a fast fsync we don't wait for that, we only wait for the
2164 	 * writeback to complete.
2165 	 */
2166 	if (inode->last_trans <= fs_info->last_trans_committed &&
2167 	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2168 	     list_empty(&ctx->ordered_extents)))
2169 		return true;
2170 
2171 	return false;
2172 }
2173 
2174 /*
2175  * fsync call for both files and directories.  This logs the inode into
2176  * the tree log instead of forcing full commits whenever possible.
2177  *
2178  * It needs to call filemap_fdatawait so that all ordered extent updates are
2179  * in the metadata btree are up to date for copying to the log.
2180  *
2181  * It drops the inode mutex before doing the tree log commit.  This is an
2182  * important optimization for directories because holding the mutex prevents
2183  * new operations on the dir while we write to disk.
2184  */
2185 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2186 {
2187 	struct dentry *dentry = file_dentry(file);
2188 	struct inode *inode = d_inode(dentry);
2189 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2190 	struct btrfs_root *root = BTRFS_I(inode)->root;
2191 	struct btrfs_trans_handle *trans;
2192 	struct btrfs_log_ctx ctx;
2193 	int ret = 0, err;
2194 	u64 len;
2195 	bool full_sync;
2196 
2197 	trace_btrfs_sync_file(file, datasync);
2198 
2199 	btrfs_init_log_ctx(&ctx, inode);
2200 
2201 	/*
2202 	 * Always set the range to a full range, otherwise we can get into
2203 	 * several problems, from missing file extent items to represent holes
2204 	 * when not using the NO_HOLES feature, to log tree corruption due to
2205 	 * races between hole detection during logging and completion of ordered
2206 	 * extents outside the range, to missing checksums due to ordered extents
2207 	 * for which we flushed only a subset of their pages.
2208 	 */
2209 	start = 0;
2210 	end = LLONG_MAX;
2211 	len = (u64)LLONG_MAX + 1;
2212 
2213 	/*
2214 	 * We write the dirty pages in the range and wait until they complete
2215 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2216 	 * multi-task, and make the performance up.  See
2217 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2218 	 */
2219 	ret = start_ordered_ops(inode, start, end);
2220 	if (ret)
2221 		goto out;
2222 
2223 	btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2224 
2225 	atomic_inc(&root->log_batch);
2226 
2227 	/*
2228 	 * Always check for the full sync flag while holding the inode's lock,
2229 	 * to avoid races with other tasks. The flag must be either set all the
2230 	 * time during logging or always off all the time while logging.
2231 	 */
2232 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2233 			     &BTRFS_I(inode)->runtime_flags);
2234 
2235 	/*
2236 	 * Before we acquired the inode's lock and the mmap lock, someone may
2237 	 * have dirtied more pages in the target range. We need to make sure
2238 	 * that writeback for any such pages does not start while we are logging
2239 	 * the inode, because if it does, any of the following might happen when
2240 	 * we are not doing a full inode sync:
2241 	 *
2242 	 * 1) We log an extent after its writeback finishes but before its
2243 	 *    checksums are added to the csum tree, leading to -EIO errors
2244 	 *    when attempting to read the extent after a log replay.
2245 	 *
2246 	 * 2) We can end up logging an extent before its writeback finishes.
2247 	 *    Therefore after the log replay we will have a file extent item
2248 	 *    pointing to an unwritten extent (and no data checksums as well).
2249 	 *
2250 	 * So trigger writeback for any eventual new dirty pages and then we
2251 	 * wait for all ordered extents to complete below.
2252 	 */
2253 	ret = start_ordered_ops(inode, start, end);
2254 	if (ret) {
2255 		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2256 		goto out;
2257 	}
2258 
2259 	/*
2260 	 * We have to do this here to avoid the priority inversion of waiting on
2261 	 * IO of a lower priority task while holding a transaction open.
2262 	 *
2263 	 * For a full fsync we wait for the ordered extents to complete while
2264 	 * for a fast fsync we wait just for writeback to complete, and then
2265 	 * attach the ordered extents to the transaction so that a transaction
2266 	 * commit waits for their completion, to avoid data loss if we fsync,
2267 	 * the current transaction commits before the ordered extents complete
2268 	 * and a power failure happens right after that.
2269 	 *
2270 	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2271 	 * logical address recorded in the ordered extent may change. We need
2272 	 * to wait for the IO to stabilize the logical address.
2273 	 */
2274 	if (full_sync || btrfs_is_zoned(fs_info)) {
2275 		ret = btrfs_wait_ordered_range(inode, start, len);
2276 	} else {
2277 		/*
2278 		 * Get our ordered extents as soon as possible to avoid doing
2279 		 * checksum lookups in the csum tree, and use instead the
2280 		 * checksums attached to the ordered extents.
2281 		 */
2282 		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2283 						      &ctx.ordered_extents);
2284 		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2285 	}
2286 
2287 	if (ret)
2288 		goto out_release_extents;
2289 
2290 	atomic_inc(&root->log_batch);
2291 
2292 	smp_mb();
2293 	if (skip_inode_logging(&ctx)) {
2294 		/*
2295 		 * We've had everything committed since the last time we were
2296 		 * modified so clear this flag in case it was set for whatever
2297 		 * reason, it's no longer relevant.
2298 		 */
2299 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2300 			  &BTRFS_I(inode)->runtime_flags);
2301 		/*
2302 		 * An ordered extent might have started before and completed
2303 		 * already with io errors, in which case the inode was not
2304 		 * updated and we end up here. So check the inode's mapping
2305 		 * for any errors that might have happened since we last
2306 		 * checked called fsync.
2307 		 */
2308 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2309 		goto out_release_extents;
2310 	}
2311 
2312 	/*
2313 	 * We use start here because we will need to wait on the IO to complete
2314 	 * in btrfs_sync_log, which could require joining a transaction (for
2315 	 * example checking cross references in the nocow path).  If we use join
2316 	 * here we could get into a situation where we're waiting on IO to
2317 	 * happen that is blocked on a transaction trying to commit.  With start
2318 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2319 	 * before we start blocking joiners.  This comment is to keep somebody
2320 	 * from thinking they are super smart and changing this to
2321 	 * btrfs_join_transaction *cough*Josef*cough*.
2322 	 */
2323 	trans = btrfs_start_transaction(root, 0);
2324 	if (IS_ERR(trans)) {
2325 		ret = PTR_ERR(trans);
2326 		goto out_release_extents;
2327 	}
2328 	trans->in_fsync = true;
2329 
2330 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2331 	btrfs_release_log_ctx_extents(&ctx);
2332 	if (ret < 0) {
2333 		/* Fallthrough and commit/free transaction. */
2334 		ret = 1;
2335 	}
2336 
2337 	/* we've logged all the items and now have a consistent
2338 	 * version of the file in the log.  It is possible that
2339 	 * someone will come in and modify the file, but that's
2340 	 * fine because the log is consistent on disk, and we
2341 	 * have references to all of the file's extents
2342 	 *
2343 	 * It is possible that someone will come in and log the
2344 	 * file again, but that will end up using the synchronization
2345 	 * inside btrfs_sync_log to keep things safe.
2346 	 */
2347 	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2348 
2349 	if (ret != BTRFS_NO_LOG_SYNC) {
2350 		if (!ret) {
2351 			ret = btrfs_sync_log(trans, root, &ctx);
2352 			if (!ret) {
2353 				ret = btrfs_end_transaction(trans);
2354 				goto out;
2355 			}
2356 		}
2357 		if (!full_sync) {
2358 			ret = btrfs_wait_ordered_range(inode, start, len);
2359 			if (ret) {
2360 				btrfs_end_transaction(trans);
2361 				goto out;
2362 			}
2363 		}
2364 		ret = btrfs_commit_transaction(trans);
2365 	} else {
2366 		ret = btrfs_end_transaction(trans);
2367 	}
2368 out:
2369 	ASSERT(list_empty(&ctx.list));
2370 	err = file_check_and_advance_wb_err(file);
2371 	if (!ret)
2372 		ret = err;
2373 	return ret > 0 ? -EIO : ret;
2374 
2375 out_release_extents:
2376 	btrfs_release_log_ctx_extents(&ctx);
2377 	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2378 	goto out;
2379 }
2380 
2381 static const struct vm_operations_struct btrfs_file_vm_ops = {
2382 	.fault		= filemap_fault,
2383 	.map_pages	= filemap_map_pages,
2384 	.page_mkwrite	= btrfs_page_mkwrite,
2385 };
2386 
2387 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2388 {
2389 	struct address_space *mapping = filp->f_mapping;
2390 
2391 	if (!mapping->a_ops->readpage)
2392 		return -ENOEXEC;
2393 
2394 	file_accessed(filp);
2395 	vma->vm_ops = &btrfs_file_vm_ops;
2396 
2397 	return 0;
2398 }
2399 
2400 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2401 			  int slot, u64 start, u64 end)
2402 {
2403 	struct btrfs_file_extent_item *fi;
2404 	struct btrfs_key key;
2405 
2406 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2407 		return 0;
2408 
2409 	btrfs_item_key_to_cpu(leaf, &key, slot);
2410 	if (key.objectid != btrfs_ino(inode) ||
2411 	    key.type != BTRFS_EXTENT_DATA_KEY)
2412 		return 0;
2413 
2414 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2415 
2416 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2417 		return 0;
2418 
2419 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2420 		return 0;
2421 
2422 	if (key.offset == end)
2423 		return 1;
2424 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2425 		return 1;
2426 	return 0;
2427 }
2428 
2429 static int fill_holes(struct btrfs_trans_handle *trans,
2430 		struct btrfs_inode *inode,
2431 		struct btrfs_path *path, u64 offset, u64 end)
2432 {
2433 	struct btrfs_fs_info *fs_info = trans->fs_info;
2434 	struct btrfs_root *root = inode->root;
2435 	struct extent_buffer *leaf;
2436 	struct btrfs_file_extent_item *fi;
2437 	struct extent_map *hole_em;
2438 	struct extent_map_tree *em_tree = &inode->extent_tree;
2439 	struct btrfs_key key;
2440 	int ret;
2441 
2442 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2443 		goto out;
2444 
2445 	key.objectid = btrfs_ino(inode);
2446 	key.type = BTRFS_EXTENT_DATA_KEY;
2447 	key.offset = offset;
2448 
2449 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2450 	if (ret <= 0) {
2451 		/*
2452 		 * We should have dropped this offset, so if we find it then
2453 		 * something has gone horribly wrong.
2454 		 */
2455 		if (ret == 0)
2456 			ret = -EINVAL;
2457 		return ret;
2458 	}
2459 
2460 	leaf = path->nodes[0];
2461 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2462 		u64 num_bytes;
2463 
2464 		path->slots[0]--;
2465 		fi = btrfs_item_ptr(leaf, path->slots[0],
2466 				    struct btrfs_file_extent_item);
2467 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2468 			end - offset;
2469 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2470 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2471 		btrfs_set_file_extent_offset(leaf, fi, 0);
2472 		btrfs_mark_buffer_dirty(leaf);
2473 		goto out;
2474 	}
2475 
2476 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2477 		u64 num_bytes;
2478 
2479 		key.offset = offset;
2480 		btrfs_set_item_key_safe(fs_info, path, &key);
2481 		fi = btrfs_item_ptr(leaf, path->slots[0],
2482 				    struct btrfs_file_extent_item);
2483 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2484 			offset;
2485 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2486 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2487 		btrfs_set_file_extent_offset(leaf, fi, 0);
2488 		btrfs_mark_buffer_dirty(leaf);
2489 		goto out;
2490 	}
2491 	btrfs_release_path(path);
2492 
2493 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2494 			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2495 	if (ret)
2496 		return ret;
2497 
2498 out:
2499 	btrfs_release_path(path);
2500 
2501 	hole_em = alloc_extent_map();
2502 	if (!hole_em) {
2503 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2504 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2505 	} else {
2506 		hole_em->start = offset;
2507 		hole_em->len = end - offset;
2508 		hole_em->ram_bytes = hole_em->len;
2509 		hole_em->orig_start = offset;
2510 
2511 		hole_em->block_start = EXTENT_MAP_HOLE;
2512 		hole_em->block_len = 0;
2513 		hole_em->orig_block_len = 0;
2514 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2515 		hole_em->generation = trans->transid;
2516 
2517 		do {
2518 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2519 			write_lock(&em_tree->lock);
2520 			ret = add_extent_mapping(em_tree, hole_em, 1);
2521 			write_unlock(&em_tree->lock);
2522 		} while (ret == -EEXIST);
2523 		free_extent_map(hole_em);
2524 		if (ret)
2525 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2526 					&inode->runtime_flags);
2527 	}
2528 
2529 	return 0;
2530 }
2531 
2532 /*
2533  * Find a hole extent on given inode and change start/len to the end of hole
2534  * extent.(hole/vacuum extent whose em->start <= start &&
2535  *	   em->start + em->len > start)
2536  * When a hole extent is found, return 1 and modify start/len.
2537  */
2538 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2539 {
2540 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2541 	struct extent_map *em;
2542 	int ret = 0;
2543 
2544 	em = btrfs_get_extent(inode, NULL, 0,
2545 			      round_down(*start, fs_info->sectorsize),
2546 			      round_up(*len, fs_info->sectorsize));
2547 	if (IS_ERR(em))
2548 		return PTR_ERR(em);
2549 
2550 	/* Hole or vacuum extent(only exists in no-hole mode) */
2551 	if (em->block_start == EXTENT_MAP_HOLE) {
2552 		ret = 1;
2553 		*len = em->start + em->len > *start + *len ?
2554 		       0 : *start + *len - em->start - em->len;
2555 		*start = em->start + em->len;
2556 	}
2557 	free_extent_map(em);
2558 	return ret;
2559 }
2560 
2561 static int btrfs_punch_hole_lock_range(struct inode *inode,
2562 				       const u64 lockstart,
2563 				       const u64 lockend,
2564 				       struct extent_state **cached_state)
2565 {
2566 	/*
2567 	 * For subpage case, if the range is not at page boundary, we could
2568 	 * have pages at the leading/tailing part of the range.
2569 	 * This could lead to dead loop since filemap_range_has_page()
2570 	 * will always return true.
2571 	 * So here we need to do extra page alignment for
2572 	 * filemap_range_has_page().
2573 	 */
2574 	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2575 	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2576 
2577 	while (1) {
2578 		struct btrfs_ordered_extent *ordered;
2579 		int ret;
2580 
2581 		truncate_pagecache_range(inode, lockstart, lockend);
2582 
2583 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2584 				 cached_state);
2585 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2586 							    lockend);
2587 
2588 		/*
2589 		 * We need to make sure we have no ordered extents in this range
2590 		 * and nobody raced in and read a page in this range, if we did
2591 		 * we need to try again.
2592 		 */
2593 		if ((!ordered ||
2594 		    (ordered->file_offset + ordered->num_bytes <= lockstart ||
2595 		     ordered->file_offset > lockend)) &&
2596 		     !filemap_range_has_page(inode->i_mapping,
2597 					     page_lockstart, page_lockend)) {
2598 			if (ordered)
2599 				btrfs_put_ordered_extent(ordered);
2600 			break;
2601 		}
2602 		if (ordered)
2603 			btrfs_put_ordered_extent(ordered);
2604 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2605 				     lockend, cached_state);
2606 		ret = btrfs_wait_ordered_range(inode, lockstart,
2607 					       lockend - lockstart + 1);
2608 		if (ret)
2609 			return ret;
2610 	}
2611 	return 0;
2612 }
2613 
2614 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2615 				     struct btrfs_inode *inode,
2616 				     struct btrfs_path *path,
2617 				     struct btrfs_replace_extent_info *extent_info,
2618 				     const u64 replace_len,
2619 				     const u64 bytes_to_drop)
2620 {
2621 	struct btrfs_fs_info *fs_info = trans->fs_info;
2622 	struct btrfs_root *root = inode->root;
2623 	struct btrfs_file_extent_item *extent;
2624 	struct extent_buffer *leaf;
2625 	struct btrfs_key key;
2626 	int slot;
2627 	struct btrfs_ref ref = { 0 };
2628 	int ret;
2629 
2630 	if (replace_len == 0)
2631 		return 0;
2632 
2633 	if (extent_info->disk_offset == 0 &&
2634 	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2635 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2636 		return 0;
2637 	}
2638 
2639 	key.objectid = btrfs_ino(inode);
2640 	key.type = BTRFS_EXTENT_DATA_KEY;
2641 	key.offset = extent_info->file_offset;
2642 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2643 				      sizeof(struct btrfs_file_extent_item));
2644 	if (ret)
2645 		return ret;
2646 	leaf = path->nodes[0];
2647 	slot = path->slots[0];
2648 	write_extent_buffer(leaf, extent_info->extent_buf,
2649 			    btrfs_item_ptr_offset(leaf, slot),
2650 			    sizeof(struct btrfs_file_extent_item));
2651 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2652 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2653 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2654 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2655 	if (extent_info->is_new_extent)
2656 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2657 	btrfs_mark_buffer_dirty(leaf);
2658 	btrfs_release_path(path);
2659 
2660 	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2661 						replace_len);
2662 	if (ret)
2663 		return ret;
2664 
2665 	/* If it's a hole, nothing more needs to be done. */
2666 	if (extent_info->disk_offset == 0) {
2667 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2668 		return 0;
2669 	}
2670 
2671 	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2672 
2673 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2674 		key.objectid = extent_info->disk_offset;
2675 		key.type = BTRFS_EXTENT_ITEM_KEY;
2676 		key.offset = extent_info->disk_len;
2677 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2678 						       btrfs_ino(inode),
2679 						       extent_info->file_offset,
2680 						       extent_info->qgroup_reserved,
2681 						       &key);
2682 	} else {
2683 		u64 ref_offset;
2684 
2685 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2686 				       extent_info->disk_offset,
2687 				       extent_info->disk_len, 0);
2688 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2689 		btrfs_init_data_ref(&ref, root->root_key.objectid,
2690 				    btrfs_ino(inode), ref_offset, 0, false);
2691 		ret = btrfs_inc_extent_ref(trans, &ref);
2692 	}
2693 
2694 	extent_info->insertions++;
2695 
2696 	return ret;
2697 }
2698 
2699 /*
2700  * The respective range must have been previously locked, as well as the inode.
2701  * The end offset is inclusive (last byte of the range).
2702  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2703  * the file range with an extent.
2704  * When not punching a hole, we don't want to end up in a state where we dropped
2705  * extents without inserting a new one, so we must abort the transaction to avoid
2706  * a corruption.
2707  */
2708 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2709 			       struct btrfs_path *path, const u64 start,
2710 			       const u64 end,
2711 			       struct btrfs_replace_extent_info *extent_info,
2712 			       struct btrfs_trans_handle **trans_out)
2713 {
2714 	struct btrfs_drop_extents_args drop_args = { 0 };
2715 	struct btrfs_root *root = inode->root;
2716 	struct btrfs_fs_info *fs_info = root->fs_info;
2717 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2718 	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2719 	struct btrfs_trans_handle *trans = NULL;
2720 	struct btrfs_block_rsv *rsv;
2721 	unsigned int rsv_count;
2722 	u64 cur_offset;
2723 	u64 len = end - start;
2724 	int ret = 0;
2725 
2726 	if (end <= start)
2727 		return -EINVAL;
2728 
2729 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2730 	if (!rsv) {
2731 		ret = -ENOMEM;
2732 		goto out;
2733 	}
2734 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2735 	rsv->failfast = 1;
2736 
2737 	/*
2738 	 * 1 - update the inode
2739 	 * 1 - removing the extents in the range
2740 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2741 	 *     replacing the range with a new extent
2742 	 */
2743 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2744 		rsv_count = 3;
2745 	else
2746 		rsv_count = 2;
2747 
2748 	trans = btrfs_start_transaction(root, rsv_count);
2749 	if (IS_ERR(trans)) {
2750 		ret = PTR_ERR(trans);
2751 		trans = NULL;
2752 		goto out_free;
2753 	}
2754 
2755 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2756 				      min_size, false);
2757 	BUG_ON(ret);
2758 	trans->block_rsv = rsv;
2759 
2760 	cur_offset = start;
2761 	drop_args.path = path;
2762 	drop_args.end = end + 1;
2763 	drop_args.drop_cache = true;
2764 	while (cur_offset < end) {
2765 		drop_args.start = cur_offset;
2766 		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2767 		/* If we are punching a hole decrement the inode's byte count */
2768 		if (!extent_info)
2769 			btrfs_update_inode_bytes(inode, 0,
2770 						 drop_args.bytes_found);
2771 		if (ret != -ENOSPC) {
2772 			/*
2773 			 * The only time we don't want to abort is if we are
2774 			 * attempting to clone a partial inline extent, in which
2775 			 * case we'll get EOPNOTSUPP.  However if we aren't
2776 			 * clone we need to abort no matter what, because if we
2777 			 * got EOPNOTSUPP via prealloc then we messed up and
2778 			 * need to abort.
2779 			 */
2780 			if (ret &&
2781 			    (ret != -EOPNOTSUPP ||
2782 			     (extent_info && extent_info->is_new_extent)))
2783 				btrfs_abort_transaction(trans, ret);
2784 			break;
2785 		}
2786 
2787 		trans->block_rsv = &fs_info->trans_block_rsv;
2788 
2789 		if (!extent_info && cur_offset < drop_args.drop_end &&
2790 		    cur_offset < ino_size) {
2791 			ret = fill_holes(trans, inode, path, cur_offset,
2792 					 drop_args.drop_end);
2793 			if (ret) {
2794 				/*
2795 				 * If we failed then we didn't insert our hole
2796 				 * entries for the area we dropped, so now the
2797 				 * fs is corrupted, so we must abort the
2798 				 * transaction.
2799 				 */
2800 				btrfs_abort_transaction(trans, ret);
2801 				break;
2802 			}
2803 		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2804 			/*
2805 			 * We are past the i_size here, but since we didn't
2806 			 * insert holes we need to clear the mapped area so we
2807 			 * know to not set disk_i_size in this area until a new
2808 			 * file extent is inserted here.
2809 			 */
2810 			ret = btrfs_inode_clear_file_extent_range(inode,
2811 					cur_offset,
2812 					drop_args.drop_end - cur_offset);
2813 			if (ret) {
2814 				/*
2815 				 * We couldn't clear our area, so we could
2816 				 * presumably adjust up and corrupt the fs, so
2817 				 * we need to abort.
2818 				 */
2819 				btrfs_abort_transaction(trans, ret);
2820 				break;
2821 			}
2822 		}
2823 
2824 		if (extent_info &&
2825 		    drop_args.drop_end > extent_info->file_offset) {
2826 			u64 replace_len = drop_args.drop_end -
2827 					  extent_info->file_offset;
2828 
2829 			ret = btrfs_insert_replace_extent(trans, inode,	path,
2830 					extent_info, replace_len,
2831 					drop_args.bytes_found);
2832 			if (ret) {
2833 				btrfs_abort_transaction(trans, ret);
2834 				break;
2835 			}
2836 			extent_info->data_len -= replace_len;
2837 			extent_info->data_offset += replace_len;
2838 			extent_info->file_offset += replace_len;
2839 		}
2840 
2841 		ret = btrfs_update_inode(trans, root, inode);
2842 		if (ret)
2843 			break;
2844 
2845 		btrfs_end_transaction(trans);
2846 		btrfs_btree_balance_dirty(fs_info);
2847 
2848 		trans = btrfs_start_transaction(root, rsv_count);
2849 		if (IS_ERR(trans)) {
2850 			ret = PTR_ERR(trans);
2851 			trans = NULL;
2852 			break;
2853 		}
2854 
2855 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2856 					      rsv, min_size, false);
2857 		BUG_ON(ret);	/* shouldn't happen */
2858 		trans->block_rsv = rsv;
2859 
2860 		cur_offset = drop_args.drop_end;
2861 		len = end - cur_offset;
2862 		if (!extent_info && len) {
2863 			ret = find_first_non_hole(inode, &cur_offset, &len);
2864 			if (unlikely(ret < 0))
2865 				break;
2866 			if (ret && !len) {
2867 				ret = 0;
2868 				break;
2869 			}
2870 		}
2871 	}
2872 
2873 	/*
2874 	 * If we were cloning, force the next fsync to be a full one since we
2875 	 * we replaced (or just dropped in the case of cloning holes when
2876 	 * NO_HOLES is enabled) file extent items and did not setup new extent
2877 	 * maps for the replacement extents (or holes).
2878 	 */
2879 	if (extent_info && !extent_info->is_new_extent)
2880 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2881 
2882 	if (ret)
2883 		goto out_trans;
2884 
2885 	trans->block_rsv = &fs_info->trans_block_rsv;
2886 	/*
2887 	 * If we are using the NO_HOLES feature we might have had already an
2888 	 * hole that overlaps a part of the region [lockstart, lockend] and
2889 	 * ends at (or beyond) lockend. Since we have no file extent items to
2890 	 * represent holes, drop_end can be less than lockend and so we must
2891 	 * make sure we have an extent map representing the existing hole (the
2892 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2893 	 * map representing the existing hole), otherwise the fast fsync path
2894 	 * will not record the existence of the hole region
2895 	 * [existing_hole_start, lockend].
2896 	 */
2897 	if (drop_args.drop_end <= end)
2898 		drop_args.drop_end = end + 1;
2899 	/*
2900 	 * Don't insert file hole extent item if it's for a range beyond eof
2901 	 * (because it's useless) or if it represents a 0 bytes range (when
2902 	 * cur_offset == drop_end).
2903 	 */
2904 	if (!extent_info && cur_offset < ino_size &&
2905 	    cur_offset < drop_args.drop_end) {
2906 		ret = fill_holes(trans, inode, path, cur_offset,
2907 				 drop_args.drop_end);
2908 		if (ret) {
2909 			/* Same comment as above. */
2910 			btrfs_abort_transaction(trans, ret);
2911 			goto out_trans;
2912 		}
2913 	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2914 		/* See the comment in the loop above for the reasoning here. */
2915 		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2916 					drop_args.drop_end - cur_offset);
2917 		if (ret) {
2918 			btrfs_abort_transaction(trans, ret);
2919 			goto out_trans;
2920 		}
2921 
2922 	}
2923 	if (extent_info) {
2924 		ret = btrfs_insert_replace_extent(trans, inode, path,
2925 				extent_info, extent_info->data_len,
2926 				drop_args.bytes_found);
2927 		if (ret) {
2928 			btrfs_abort_transaction(trans, ret);
2929 			goto out_trans;
2930 		}
2931 	}
2932 
2933 out_trans:
2934 	if (!trans)
2935 		goto out_free;
2936 
2937 	trans->block_rsv = &fs_info->trans_block_rsv;
2938 	if (ret)
2939 		btrfs_end_transaction(trans);
2940 	else
2941 		*trans_out = trans;
2942 out_free:
2943 	btrfs_free_block_rsv(fs_info, rsv);
2944 out:
2945 	return ret;
2946 }
2947 
2948 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2949 {
2950 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2951 	struct btrfs_root *root = BTRFS_I(inode)->root;
2952 	struct extent_state *cached_state = NULL;
2953 	struct btrfs_path *path;
2954 	struct btrfs_trans_handle *trans = NULL;
2955 	u64 lockstart;
2956 	u64 lockend;
2957 	u64 tail_start;
2958 	u64 tail_len;
2959 	u64 orig_start = offset;
2960 	int ret = 0;
2961 	bool same_block;
2962 	u64 ino_size;
2963 	bool truncated_block = false;
2964 	bool updated_inode = false;
2965 
2966 	ret = btrfs_wait_ordered_range(inode, offset, len);
2967 	if (ret)
2968 		return ret;
2969 
2970 	btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2971 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2972 	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2973 	if (ret < 0)
2974 		goto out_only_mutex;
2975 	if (ret && !len) {
2976 		/* Already in a large hole */
2977 		ret = 0;
2978 		goto out_only_mutex;
2979 	}
2980 
2981 	lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2982 	lockend = round_down(offset + len,
2983 			     btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2984 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2985 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2986 	/*
2987 	 * We needn't truncate any block which is beyond the end of the file
2988 	 * because we are sure there is no data there.
2989 	 */
2990 	/*
2991 	 * Only do this if we are in the same block and we aren't doing the
2992 	 * entire block.
2993 	 */
2994 	if (same_block && len < fs_info->sectorsize) {
2995 		if (offset < ino_size) {
2996 			truncated_block = true;
2997 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2998 						   0);
2999 		} else {
3000 			ret = 0;
3001 		}
3002 		goto out_only_mutex;
3003 	}
3004 
3005 	/* zero back part of the first block */
3006 	if (offset < ino_size) {
3007 		truncated_block = true;
3008 		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3009 		if (ret) {
3010 			btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3011 			return ret;
3012 		}
3013 	}
3014 
3015 	/* Check the aligned pages after the first unaligned page,
3016 	 * if offset != orig_start, which means the first unaligned page
3017 	 * including several following pages are already in holes,
3018 	 * the extra check can be skipped */
3019 	if (offset == orig_start) {
3020 		/* after truncate page, check hole again */
3021 		len = offset + len - lockstart;
3022 		offset = lockstart;
3023 		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
3024 		if (ret < 0)
3025 			goto out_only_mutex;
3026 		if (ret && !len) {
3027 			ret = 0;
3028 			goto out_only_mutex;
3029 		}
3030 		lockstart = offset;
3031 	}
3032 
3033 	/* Check the tail unaligned part is in a hole */
3034 	tail_start = lockend + 1;
3035 	tail_len = offset + len - tail_start;
3036 	if (tail_len) {
3037 		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
3038 		if (unlikely(ret < 0))
3039 			goto out_only_mutex;
3040 		if (!ret) {
3041 			/* zero the front end of the last page */
3042 			if (tail_start + tail_len < ino_size) {
3043 				truncated_block = true;
3044 				ret = btrfs_truncate_block(BTRFS_I(inode),
3045 							tail_start + tail_len,
3046 							0, 1);
3047 				if (ret)
3048 					goto out_only_mutex;
3049 			}
3050 		}
3051 	}
3052 
3053 	if (lockend < lockstart) {
3054 		ret = 0;
3055 		goto out_only_mutex;
3056 	}
3057 
3058 	ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3059 					  &cached_state);
3060 	if (ret)
3061 		goto out_only_mutex;
3062 
3063 	path = btrfs_alloc_path();
3064 	if (!path) {
3065 		ret = -ENOMEM;
3066 		goto out;
3067 	}
3068 
3069 	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
3070 					 lockend, NULL, &trans);
3071 	btrfs_free_path(path);
3072 	if (ret)
3073 		goto out;
3074 
3075 	ASSERT(trans != NULL);
3076 	inode_inc_iversion(inode);
3077 	inode->i_mtime = inode->i_ctime = current_time(inode);
3078 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3079 	updated_inode = true;
3080 	btrfs_end_transaction(trans);
3081 	btrfs_btree_balance_dirty(fs_info);
3082 out:
3083 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3084 			     &cached_state);
3085 out_only_mutex:
3086 	if (!updated_inode && truncated_block && !ret) {
3087 		/*
3088 		 * If we only end up zeroing part of a page, we still need to
3089 		 * update the inode item, so that all the time fields are
3090 		 * updated as well as the necessary btrfs inode in memory fields
3091 		 * for detecting, at fsync time, if the inode isn't yet in the
3092 		 * log tree or it's there but not up to date.
3093 		 */
3094 		struct timespec64 now = current_time(inode);
3095 
3096 		inode_inc_iversion(inode);
3097 		inode->i_mtime = now;
3098 		inode->i_ctime = now;
3099 		trans = btrfs_start_transaction(root, 1);
3100 		if (IS_ERR(trans)) {
3101 			ret = PTR_ERR(trans);
3102 		} else {
3103 			int ret2;
3104 
3105 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3106 			ret2 = btrfs_end_transaction(trans);
3107 			if (!ret)
3108 				ret = ret2;
3109 		}
3110 	}
3111 	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3112 	return ret;
3113 }
3114 
3115 /* Helper structure to record which range is already reserved */
3116 struct falloc_range {
3117 	struct list_head list;
3118 	u64 start;
3119 	u64 len;
3120 };
3121 
3122 /*
3123  * Helper function to add falloc range
3124  *
3125  * Caller should have locked the larger range of extent containing
3126  * [start, len)
3127  */
3128 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3129 {
3130 	struct falloc_range *range = NULL;
3131 
3132 	if (!list_empty(head)) {
3133 		/*
3134 		 * As fallocate iterates by bytenr order, we only need to check
3135 		 * the last range.
3136 		 */
3137 		range = list_last_entry(head, struct falloc_range, list);
3138 		if (range->start + range->len == start) {
3139 			range->len += len;
3140 			return 0;
3141 		}
3142 	}
3143 
3144 	range = kmalloc(sizeof(*range), GFP_KERNEL);
3145 	if (!range)
3146 		return -ENOMEM;
3147 	range->start = start;
3148 	range->len = len;
3149 	list_add_tail(&range->list, head);
3150 	return 0;
3151 }
3152 
3153 static int btrfs_fallocate_update_isize(struct inode *inode,
3154 					const u64 end,
3155 					const int mode)
3156 {
3157 	struct btrfs_trans_handle *trans;
3158 	struct btrfs_root *root = BTRFS_I(inode)->root;
3159 	int ret;
3160 	int ret2;
3161 
3162 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3163 		return 0;
3164 
3165 	trans = btrfs_start_transaction(root, 1);
3166 	if (IS_ERR(trans))
3167 		return PTR_ERR(trans);
3168 
3169 	inode->i_ctime = current_time(inode);
3170 	i_size_write(inode, end);
3171 	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3172 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3173 	ret2 = btrfs_end_transaction(trans);
3174 
3175 	return ret ? ret : ret2;
3176 }
3177 
3178 enum {
3179 	RANGE_BOUNDARY_WRITTEN_EXTENT,
3180 	RANGE_BOUNDARY_PREALLOC_EXTENT,
3181 	RANGE_BOUNDARY_HOLE,
3182 };
3183 
3184 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3185 						 u64 offset)
3186 {
3187 	const u64 sectorsize = btrfs_inode_sectorsize(inode);
3188 	struct extent_map *em;
3189 	int ret;
3190 
3191 	offset = round_down(offset, sectorsize);
3192 	em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3193 	if (IS_ERR(em))
3194 		return PTR_ERR(em);
3195 
3196 	if (em->block_start == EXTENT_MAP_HOLE)
3197 		ret = RANGE_BOUNDARY_HOLE;
3198 	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3199 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3200 	else
3201 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3202 
3203 	free_extent_map(em);
3204 	return ret;
3205 }
3206 
3207 static int btrfs_zero_range(struct inode *inode,
3208 			    loff_t offset,
3209 			    loff_t len,
3210 			    const int mode)
3211 {
3212 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3213 	struct extent_map *em;
3214 	struct extent_changeset *data_reserved = NULL;
3215 	int ret;
3216 	u64 alloc_hint = 0;
3217 	const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3218 	u64 alloc_start = round_down(offset, sectorsize);
3219 	u64 alloc_end = round_up(offset + len, sectorsize);
3220 	u64 bytes_to_reserve = 0;
3221 	bool space_reserved = false;
3222 
3223 	inode_dio_wait(inode);
3224 
3225 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3226 			      alloc_end - alloc_start);
3227 	if (IS_ERR(em)) {
3228 		ret = PTR_ERR(em);
3229 		goto out;
3230 	}
3231 
3232 	/*
3233 	 * Avoid hole punching and extent allocation for some cases. More cases
3234 	 * could be considered, but these are unlikely common and we keep things
3235 	 * as simple as possible for now. Also, intentionally, if the target
3236 	 * range contains one or more prealloc extents together with regular
3237 	 * extents and holes, we drop all the existing extents and allocate a
3238 	 * new prealloc extent, so that we get a larger contiguous disk extent.
3239 	 */
3240 	if (em->start <= alloc_start &&
3241 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3242 		const u64 em_end = em->start + em->len;
3243 
3244 		if (em_end >= offset + len) {
3245 			/*
3246 			 * The whole range is already a prealloc extent,
3247 			 * do nothing except updating the inode's i_size if
3248 			 * needed.
3249 			 */
3250 			free_extent_map(em);
3251 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3252 							   mode);
3253 			goto out;
3254 		}
3255 		/*
3256 		 * Part of the range is already a prealloc extent, so operate
3257 		 * only on the remaining part of the range.
3258 		 */
3259 		alloc_start = em_end;
3260 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3261 		len = offset + len - alloc_start;
3262 		offset = alloc_start;
3263 		alloc_hint = em->block_start + em->len;
3264 	}
3265 	free_extent_map(em);
3266 
3267 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3268 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3269 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3270 				      sectorsize);
3271 		if (IS_ERR(em)) {
3272 			ret = PTR_ERR(em);
3273 			goto out;
3274 		}
3275 
3276 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3277 			free_extent_map(em);
3278 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3279 							   mode);
3280 			goto out;
3281 		}
3282 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3283 			free_extent_map(em);
3284 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3285 						   0);
3286 			if (!ret)
3287 				ret = btrfs_fallocate_update_isize(inode,
3288 								   offset + len,
3289 								   mode);
3290 			return ret;
3291 		}
3292 		free_extent_map(em);
3293 		alloc_start = round_down(offset, sectorsize);
3294 		alloc_end = alloc_start + sectorsize;
3295 		goto reserve_space;
3296 	}
3297 
3298 	alloc_start = round_up(offset, sectorsize);
3299 	alloc_end = round_down(offset + len, sectorsize);
3300 
3301 	/*
3302 	 * For unaligned ranges, check the pages at the boundaries, they might
3303 	 * map to an extent, in which case we need to partially zero them, or
3304 	 * they might map to a hole, in which case we need our allocation range
3305 	 * to cover them.
3306 	 */
3307 	if (!IS_ALIGNED(offset, sectorsize)) {
3308 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3309 							    offset);
3310 		if (ret < 0)
3311 			goto out;
3312 		if (ret == RANGE_BOUNDARY_HOLE) {
3313 			alloc_start = round_down(offset, sectorsize);
3314 			ret = 0;
3315 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3316 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3317 			if (ret)
3318 				goto out;
3319 		} else {
3320 			ret = 0;
3321 		}
3322 	}
3323 
3324 	if (!IS_ALIGNED(offset + len, sectorsize)) {
3325 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3326 							    offset + len);
3327 		if (ret < 0)
3328 			goto out;
3329 		if (ret == RANGE_BOUNDARY_HOLE) {
3330 			alloc_end = round_up(offset + len, sectorsize);
3331 			ret = 0;
3332 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3333 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3334 						   0, 1);
3335 			if (ret)
3336 				goto out;
3337 		} else {
3338 			ret = 0;
3339 		}
3340 	}
3341 
3342 reserve_space:
3343 	if (alloc_start < alloc_end) {
3344 		struct extent_state *cached_state = NULL;
3345 		const u64 lockstart = alloc_start;
3346 		const u64 lockend = alloc_end - 1;
3347 
3348 		bytes_to_reserve = alloc_end - alloc_start;
3349 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3350 						      bytes_to_reserve);
3351 		if (ret < 0)
3352 			goto out;
3353 		space_reserved = true;
3354 		ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3355 						  &cached_state);
3356 		if (ret)
3357 			goto out;
3358 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3359 						alloc_start, bytes_to_reserve);
3360 		if (ret) {
3361 			unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3362 					     lockend, &cached_state);
3363 			goto out;
3364 		}
3365 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3366 						alloc_end - alloc_start,
3367 						i_blocksize(inode),
3368 						offset + len, &alloc_hint);
3369 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3370 				     lockend, &cached_state);
3371 		/* btrfs_prealloc_file_range releases reserved space on error */
3372 		if (ret) {
3373 			space_reserved = false;
3374 			goto out;
3375 		}
3376 	}
3377 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3378  out:
3379 	if (ret && space_reserved)
3380 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3381 					       alloc_start, bytes_to_reserve);
3382 	extent_changeset_free(data_reserved);
3383 
3384 	return ret;
3385 }
3386 
3387 static long btrfs_fallocate(struct file *file, int mode,
3388 			    loff_t offset, loff_t len)
3389 {
3390 	struct inode *inode = file_inode(file);
3391 	struct extent_state *cached_state = NULL;
3392 	struct extent_changeset *data_reserved = NULL;
3393 	struct falloc_range *range;
3394 	struct falloc_range *tmp;
3395 	struct list_head reserve_list;
3396 	u64 cur_offset;
3397 	u64 last_byte;
3398 	u64 alloc_start;
3399 	u64 alloc_end;
3400 	u64 alloc_hint = 0;
3401 	u64 locked_end;
3402 	u64 actual_end = 0;
3403 	struct extent_map *em;
3404 	int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3405 	int ret;
3406 
3407 	/* Do not allow fallocate in ZONED mode */
3408 	if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3409 		return -EOPNOTSUPP;
3410 
3411 	alloc_start = round_down(offset, blocksize);
3412 	alloc_end = round_up(offset + len, blocksize);
3413 	cur_offset = alloc_start;
3414 
3415 	/* Make sure we aren't being give some crap mode */
3416 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3417 		     FALLOC_FL_ZERO_RANGE))
3418 		return -EOPNOTSUPP;
3419 
3420 	if (mode & FALLOC_FL_PUNCH_HOLE)
3421 		return btrfs_punch_hole(inode, offset, len);
3422 
3423 	/*
3424 	 * Only trigger disk allocation, don't trigger qgroup reserve
3425 	 *
3426 	 * For qgroup space, it will be checked later.
3427 	 */
3428 	if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3429 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3430 						      alloc_end - alloc_start);
3431 		if (ret < 0)
3432 			return ret;
3433 	}
3434 
3435 	btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3436 
3437 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3438 		ret = inode_newsize_ok(inode, offset + len);
3439 		if (ret)
3440 			goto out;
3441 	}
3442 
3443 	/*
3444 	 * TODO: Move these two operations after we have checked
3445 	 * accurate reserved space, or fallocate can still fail but
3446 	 * with page truncated or size expanded.
3447 	 *
3448 	 * But that's a minor problem and won't do much harm BTW.
3449 	 */
3450 	if (alloc_start > inode->i_size) {
3451 		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3452 					alloc_start);
3453 		if (ret)
3454 			goto out;
3455 	} else if (offset + len > inode->i_size) {
3456 		/*
3457 		 * If we are fallocating from the end of the file onward we
3458 		 * need to zero out the end of the block if i_size lands in the
3459 		 * middle of a block.
3460 		 */
3461 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3462 		if (ret)
3463 			goto out;
3464 	}
3465 
3466 	/*
3467 	 * wait for ordered IO before we have any locks.  We'll loop again
3468 	 * below with the locks held.
3469 	 */
3470 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3471 				       alloc_end - alloc_start);
3472 	if (ret)
3473 		goto out;
3474 
3475 	if (mode & FALLOC_FL_ZERO_RANGE) {
3476 		ret = btrfs_zero_range(inode, offset, len, mode);
3477 		btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3478 		return ret;
3479 	}
3480 
3481 	locked_end = alloc_end - 1;
3482 	while (1) {
3483 		struct btrfs_ordered_extent *ordered;
3484 
3485 		/* the extent lock is ordered inside the running
3486 		 * transaction
3487 		 */
3488 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3489 				 locked_end, &cached_state);
3490 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3491 							    locked_end);
3492 
3493 		if (ordered &&
3494 		    ordered->file_offset + ordered->num_bytes > alloc_start &&
3495 		    ordered->file_offset < alloc_end) {
3496 			btrfs_put_ordered_extent(ordered);
3497 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3498 					     alloc_start, locked_end,
3499 					     &cached_state);
3500 			/*
3501 			 * we can't wait on the range with the transaction
3502 			 * running or with the extent lock held
3503 			 */
3504 			ret = btrfs_wait_ordered_range(inode, alloc_start,
3505 						       alloc_end - alloc_start);
3506 			if (ret)
3507 				goto out;
3508 		} else {
3509 			if (ordered)
3510 				btrfs_put_ordered_extent(ordered);
3511 			break;
3512 		}
3513 	}
3514 
3515 	/* First, check if we exceed the qgroup limit */
3516 	INIT_LIST_HEAD(&reserve_list);
3517 	while (cur_offset < alloc_end) {
3518 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3519 				      alloc_end - cur_offset);
3520 		if (IS_ERR(em)) {
3521 			ret = PTR_ERR(em);
3522 			break;
3523 		}
3524 		last_byte = min(extent_map_end(em), alloc_end);
3525 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3526 		last_byte = ALIGN(last_byte, blocksize);
3527 		if (em->block_start == EXTENT_MAP_HOLE ||
3528 		    (cur_offset >= inode->i_size &&
3529 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3530 			ret = add_falloc_range(&reserve_list, cur_offset,
3531 					       last_byte - cur_offset);
3532 			if (ret < 0) {
3533 				free_extent_map(em);
3534 				break;
3535 			}
3536 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3537 					&data_reserved, cur_offset,
3538 					last_byte - cur_offset);
3539 			if (ret < 0) {
3540 				cur_offset = last_byte;
3541 				free_extent_map(em);
3542 				break;
3543 			}
3544 		} else {
3545 			/*
3546 			 * Do not need to reserve unwritten extent for this
3547 			 * range, free reserved data space first, otherwise
3548 			 * it'll result in false ENOSPC error.
3549 			 */
3550 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3551 				data_reserved, cur_offset,
3552 				last_byte - cur_offset);
3553 		}
3554 		free_extent_map(em);
3555 		cur_offset = last_byte;
3556 	}
3557 
3558 	/*
3559 	 * If ret is still 0, means we're OK to fallocate.
3560 	 * Or just cleanup the list and exit.
3561 	 */
3562 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3563 		if (!ret)
3564 			ret = btrfs_prealloc_file_range(inode, mode,
3565 					range->start,
3566 					range->len, i_blocksize(inode),
3567 					offset + len, &alloc_hint);
3568 		else
3569 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3570 					data_reserved, range->start,
3571 					range->len);
3572 		list_del(&range->list);
3573 		kfree(range);
3574 	}
3575 	if (ret < 0)
3576 		goto out_unlock;
3577 
3578 	/*
3579 	 * We didn't need to allocate any more space, but we still extended the
3580 	 * size of the file so we need to update i_size and the inode item.
3581 	 */
3582 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3583 out_unlock:
3584 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3585 			     &cached_state);
3586 out:
3587 	btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3588 	/* Let go of our reservation. */
3589 	if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3590 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3591 				cur_offset, alloc_end - cur_offset);
3592 	extent_changeset_free(data_reserved);
3593 	return ret;
3594 }
3595 
3596 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
3597 				  int whence)
3598 {
3599 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3600 	struct extent_map *em = NULL;
3601 	struct extent_state *cached_state = NULL;
3602 	loff_t i_size = inode->vfs_inode.i_size;
3603 	u64 lockstart;
3604 	u64 lockend;
3605 	u64 start;
3606 	u64 len;
3607 	int ret = 0;
3608 
3609 	if (i_size == 0 || offset >= i_size)
3610 		return -ENXIO;
3611 
3612 	/*
3613 	 * offset can be negative, in this case we start finding DATA/HOLE from
3614 	 * the very start of the file.
3615 	 */
3616 	start = max_t(loff_t, 0, offset);
3617 
3618 	lockstart = round_down(start, fs_info->sectorsize);
3619 	lockend = round_up(i_size, fs_info->sectorsize);
3620 	if (lockend <= lockstart)
3621 		lockend = lockstart + fs_info->sectorsize;
3622 	lockend--;
3623 	len = lockend - lockstart + 1;
3624 
3625 	lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
3626 
3627 	while (start < i_size) {
3628 		em = btrfs_get_extent_fiemap(inode, start, len);
3629 		if (IS_ERR(em)) {
3630 			ret = PTR_ERR(em);
3631 			em = NULL;
3632 			break;
3633 		}
3634 
3635 		if (whence == SEEK_HOLE &&
3636 		    (em->block_start == EXTENT_MAP_HOLE ||
3637 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3638 			break;
3639 		else if (whence == SEEK_DATA &&
3640 			   (em->block_start != EXTENT_MAP_HOLE &&
3641 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3642 			break;
3643 
3644 		start = em->start + em->len;
3645 		free_extent_map(em);
3646 		em = NULL;
3647 		cond_resched();
3648 	}
3649 	free_extent_map(em);
3650 	unlock_extent_cached(&inode->io_tree, lockstart, lockend,
3651 			     &cached_state);
3652 	if (ret) {
3653 		offset = ret;
3654 	} else {
3655 		if (whence == SEEK_DATA && start >= i_size)
3656 			offset = -ENXIO;
3657 		else
3658 			offset = min_t(loff_t, start, i_size);
3659 	}
3660 
3661 	return offset;
3662 }
3663 
3664 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3665 {
3666 	struct inode *inode = file->f_mapping->host;
3667 
3668 	switch (whence) {
3669 	default:
3670 		return generic_file_llseek(file, offset, whence);
3671 	case SEEK_DATA:
3672 	case SEEK_HOLE:
3673 		btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3674 		offset = find_desired_extent(BTRFS_I(inode), offset, whence);
3675 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3676 		break;
3677 	}
3678 
3679 	if (offset < 0)
3680 		return offset;
3681 
3682 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3683 }
3684 
3685 static int btrfs_file_open(struct inode *inode, struct file *filp)
3686 {
3687 	int ret;
3688 
3689 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3690 
3691 	ret = fsverity_file_open(inode, filp);
3692 	if (ret)
3693 		return ret;
3694 	return generic_file_open(inode, filp);
3695 }
3696 
3697 static int check_direct_read(struct btrfs_fs_info *fs_info,
3698 			     const struct iov_iter *iter, loff_t offset)
3699 {
3700 	int ret;
3701 	int i, seg;
3702 
3703 	ret = check_direct_IO(fs_info, iter, offset);
3704 	if (ret < 0)
3705 		return ret;
3706 
3707 	if (!iter_is_iovec(iter))
3708 		return 0;
3709 
3710 	for (seg = 0; seg < iter->nr_segs; seg++)
3711 		for (i = seg + 1; i < iter->nr_segs; i++)
3712 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3713 				return -EINVAL;
3714 	return 0;
3715 }
3716 
3717 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3718 {
3719 	struct inode *inode = file_inode(iocb->ki_filp);
3720 	size_t prev_left = 0;
3721 	ssize_t read = 0;
3722 	ssize_t ret;
3723 
3724 	if (fsverity_active(inode))
3725 		return 0;
3726 
3727 	if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3728 		return 0;
3729 
3730 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3731 again:
3732 	/*
3733 	 * This is similar to what we do for direct IO writes, see the comment
3734 	 * at btrfs_direct_write(), but we also disable page faults in addition
3735 	 * to disabling them only at the iov_iter level. This is because when
3736 	 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3737 	 * which can still trigger page fault ins despite having set ->nofault
3738 	 * to true of our 'to' iov_iter.
3739 	 *
3740 	 * The difference to direct IO writes is that we deadlock when trying
3741 	 * to lock the extent range in the inode's tree during he page reads
3742 	 * triggered by the fault in (while for writes it is due to waiting for
3743 	 * our own ordered extent). This is because for direct IO reads,
3744 	 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3745 	 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3746 	 */
3747 	pagefault_disable();
3748 	to->nofault = true;
3749 	ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
3750 			   IOMAP_DIO_PARTIAL, read);
3751 	to->nofault = false;
3752 	pagefault_enable();
3753 
3754 	/* No increment (+=) because iomap returns a cumulative value. */
3755 	if (ret > 0)
3756 		read = ret;
3757 
3758 	if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3759 		const size_t left = iov_iter_count(to);
3760 
3761 		if (left == prev_left) {
3762 			/*
3763 			 * We didn't make any progress since the last attempt,
3764 			 * fallback to a buffered read for the remainder of the
3765 			 * range. This is just to avoid any possibility of looping
3766 			 * for too long.
3767 			 */
3768 			ret = read;
3769 		} else {
3770 			/*
3771 			 * We made some progress since the last retry or this is
3772 			 * the first time we are retrying. Fault in as many pages
3773 			 * as possible and retry.
3774 			 */
3775 			fault_in_iov_iter_writeable(to, left);
3776 			prev_left = left;
3777 			goto again;
3778 		}
3779 	}
3780 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3781 	return ret < 0 ? ret : read;
3782 }
3783 
3784 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3785 {
3786 	ssize_t ret = 0;
3787 
3788 	if (iocb->ki_flags & IOCB_DIRECT) {
3789 		ret = btrfs_direct_read(iocb, to);
3790 		if (ret < 0 || !iov_iter_count(to) ||
3791 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3792 			return ret;
3793 	}
3794 
3795 	return filemap_read(iocb, to, ret);
3796 }
3797 
3798 const struct file_operations btrfs_file_operations = {
3799 	.llseek		= btrfs_file_llseek,
3800 	.read_iter      = btrfs_file_read_iter,
3801 	.splice_read	= generic_file_splice_read,
3802 	.write_iter	= btrfs_file_write_iter,
3803 	.splice_write	= iter_file_splice_write,
3804 	.mmap		= btrfs_file_mmap,
3805 	.open		= btrfs_file_open,
3806 	.release	= btrfs_release_file,
3807 	.fsync		= btrfs_sync_file,
3808 	.fallocate	= btrfs_fallocate,
3809 	.unlocked_ioctl	= btrfs_ioctl,
3810 #ifdef CONFIG_COMPAT
3811 	.compat_ioctl	= btrfs_compat_ioctl,
3812 #endif
3813 	.remap_file_range = btrfs_remap_file_range,
3814 };
3815 
3816 void __cold btrfs_auto_defrag_exit(void)
3817 {
3818 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3819 }
3820 
3821 int __init btrfs_auto_defrag_init(void)
3822 {
3823 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3824 					sizeof(struct inode_defrag), 0,
3825 					SLAB_MEM_SPREAD,
3826 					NULL);
3827 	if (!btrfs_inode_defrag_cachep)
3828 		return -ENOMEM;
3829 
3830 	return 0;
3831 }
3832 
3833 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3834 {
3835 	int ret;
3836 
3837 	/*
3838 	 * So with compression we will find and lock a dirty page and clear the
3839 	 * first one as dirty, setup an async extent, and immediately return
3840 	 * with the entire range locked but with nobody actually marked with
3841 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3842 	 * expect it to work since it will just kick off a thread to do the
3843 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3844 	 * since it will wait on the page lock, which won't be unlocked until
3845 	 * after the pages have been marked as writeback and so we're good to go
3846 	 * from there.  We have to do this otherwise we'll miss the ordered
3847 	 * extents and that results in badness.  Please Josef, do not think you
3848 	 * know better and pull this out at some point in the future, it is
3849 	 * right and you are wrong.
3850 	 */
3851 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3852 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3853 			     &BTRFS_I(inode)->runtime_flags))
3854 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3855 
3856 	return ret;
3857 }
3858