xref: /linux/fs/btrfs/file.c (revision 673f816b9e1e92d1f70e1bf5f21b531e0ff9ad6c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include <linux/iomap.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31 #include "subpage.h"
32 #include "fs.h"
33 #include "accessors.h"
34 #include "extent-tree.h"
35 #include "file-item.h"
36 #include "ioctl.h"
37 #include "file.h"
38 #include "super.h"
39 
40 /* simple helper to fault in pages and copy.  This should go away
41  * and be replaced with calls into generic code.
42  */
43 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
44 					 struct page **prepared_pages,
45 					 struct iov_iter *i)
46 {
47 	size_t copied = 0;
48 	size_t total_copied = 0;
49 	int pg = 0;
50 	int offset = offset_in_page(pos);
51 
52 	while (write_bytes > 0) {
53 		size_t count = min_t(size_t,
54 				     PAGE_SIZE - offset, write_bytes);
55 		struct page *page = prepared_pages[pg];
56 		/*
57 		 * Copy data from userspace to the current page
58 		 */
59 		copied = copy_page_from_iter_atomic(page, offset, count, i);
60 
61 		/* Flush processor's dcache for this page */
62 		flush_dcache_page(page);
63 
64 		/*
65 		 * if we get a partial write, we can end up with
66 		 * partially up to date pages.  These add
67 		 * a lot of complexity, so make sure they don't
68 		 * happen by forcing this copy to be retried.
69 		 *
70 		 * The rest of the btrfs_file_write code will fall
71 		 * back to page at a time copies after we return 0.
72 		 */
73 		if (unlikely(copied < count)) {
74 			if (!PageUptodate(page)) {
75 				iov_iter_revert(i, copied);
76 				copied = 0;
77 			}
78 			if (!copied)
79 				break;
80 		}
81 
82 		write_bytes -= copied;
83 		total_copied += copied;
84 		offset += copied;
85 		if (offset == PAGE_SIZE) {
86 			pg++;
87 			offset = 0;
88 		}
89 	}
90 	return total_copied;
91 }
92 
93 /*
94  * unlocks pages after btrfs_file_write is done with them
95  */
96 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
97 			     struct page **pages, size_t num_pages,
98 			     u64 pos, u64 copied)
99 {
100 	size_t i;
101 	u64 block_start = round_down(pos, fs_info->sectorsize);
102 	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
103 
104 	ASSERT(block_len <= U32_MAX);
105 	for (i = 0; i < num_pages; i++) {
106 		/* page checked is some magic around finding pages that
107 		 * have been modified without going through btrfs_set_page_dirty
108 		 * clear it here. There should be no need to mark the pages
109 		 * accessed as prepare_pages should have marked them accessed
110 		 * in prepare_pages via find_or_create_page()
111 		 */
112 		btrfs_folio_clamp_clear_checked(fs_info, page_folio(pages[i]),
113 						block_start, block_len);
114 		unlock_page(pages[i]);
115 		put_page(pages[i]);
116 	}
117 }
118 
119 /*
120  * After btrfs_copy_from_user(), update the following things for delalloc:
121  * - Mark newly dirtied pages as DELALLOC in the io tree.
122  *   Used to advise which range is to be written back.
123  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
124  * - Update inode size for past EOF write
125  */
126 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
127 		      size_t num_pages, loff_t pos, size_t write_bytes,
128 		      struct extent_state **cached, bool noreserve)
129 {
130 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
131 	int ret = 0;
132 	int i;
133 	u64 num_bytes;
134 	u64 start_pos;
135 	u64 end_of_last_block;
136 	u64 end_pos = pos + write_bytes;
137 	loff_t isize = i_size_read(&inode->vfs_inode);
138 	unsigned int extra_bits = 0;
139 
140 	if (write_bytes == 0)
141 		return 0;
142 
143 	if (noreserve)
144 		extra_bits |= EXTENT_NORESERVE;
145 
146 	start_pos = round_down(pos, fs_info->sectorsize);
147 	num_bytes = round_up(write_bytes + pos - start_pos,
148 			     fs_info->sectorsize);
149 	ASSERT(num_bytes <= U32_MAX);
150 
151 	end_of_last_block = start_pos + num_bytes - 1;
152 
153 	/*
154 	 * The pages may have already been dirty, clear out old accounting so
155 	 * we can set things up properly
156 	 */
157 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
158 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
159 			 cached);
160 
161 	ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
162 					extra_bits, cached);
163 	if (ret)
164 		return ret;
165 
166 	for (i = 0; i < num_pages; i++) {
167 		struct page *p = pages[i];
168 
169 		btrfs_folio_clamp_set_uptodate(fs_info, page_folio(p),
170 					       start_pos, num_bytes);
171 		btrfs_folio_clamp_clear_checked(fs_info, page_folio(p),
172 						start_pos, num_bytes);
173 		btrfs_folio_clamp_set_dirty(fs_info, page_folio(p),
174 					    start_pos, num_bytes);
175 	}
176 
177 	/*
178 	 * we've only changed i_size in ram, and we haven't updated
179 	 * the disk i_size.  There is no need to log the inode
180 	 * at this time.
181 	 */
182 	if (end_pos > isize)
183 		i_size_write(&inode->vfs_inode, end_pos);
184 	return 0;
185 }
186 
187 /*
188  * this is very complex, but the basic idea is to drop all extents
189  * in the range start - end.  hint_block is filled in with a block number
190  * that would be a good hint to the block allocator for this file.
191  *
192  * If an extent intersects the range but is not entirely inside the range
193  * it is either truncated or split.  Anything entirely inside the range
194  * is deleted from the tree.
195  *
196  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
197  * to deal with that. We set the field 'bytes_found' of the arguments structure
198  * with the number of allocated bytes found in the target range, so that the
199  * caller can update the inode's number of bytes in an atomic way when
200  * replacing extents in a range to avoid races with stat(2).
201  */
202 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
203 		       struct btrfs_root *root, struct btrfs_inode *inode,
204 		       struct btrfs_drop_extents_args *args)
205 {
206 	struct btrfs_fs_info *fs_info = root->fs_info;
207 	struct extent_buffer *leaf;
208 	struct btrfs_file_extent_item *fi;
209 	struct btrfs_key key;
210 	struct btrfs_key new_key;
211 	u64 ino = btrfs_ino(inode);
212 	u64 search_start = args->start;
213 	u64 disk_bytenr = 0;
214 	u64 num_bytes = 0;
215 	u64 extent_offset = 0;
216 	u64 extent_end = 0;
217 	u64 last_end = args->start;
218 	int del_nr = 0;
219 	int del_slot = 0;
220 	int extent_type;
221 	int recow;
222 	int ret;
223 	int modify_tree = -1;
224 	int update_refs;
225 	int found = 0;
226 	struct btrfs_path *path = args->path;
227 
228 	args->bytes_found = 0;
229 	args->extent_inserted = false;
230 
231 	/* Must always have a path if ->replace_extent is true */
232 	ASSERT(!(args->replace_extent && !args->path));
233 
234 	if (!path) {
235 		path = btrfs_alloc_path();
236 		if (!path) {
237 			ret = -ENOMEM;
238 			goto out;
239 		}
240 	}
241 
242 	if (args->drop_cache)
243 		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
244 
245 	if (args->start >= inode->disk_i_size && !args->replace_extent)
246 		modify_tree = 0;
247 
248 	update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
249 	while (1) {
250 		recow = 0;
251 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
252 					       search_start, modify_tree);
253 		if (ret < 0)
254 			break;
255 		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
256 			leaf = path->nodes[0];
257 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
258 			if (key.objectid == ino &&
259 			    key.type == BTRFS_EXTENT_DATA_KEY)
260 				path->slots[0]--;
261 		}
262 		ret = 0;
263 next_slot:
264 		leaf = path->nodes[0];
265 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
266 			BUG_ON(del_nr > 0);
267 			ret = btrfs_next_leaf(root, path);
268 			if (ret < 0)
269 				break;
270 			if (ret > 0) {
271 				ret = 0;
272 				break;
273 			}
274 			leaf = path->nodes[0];
275 			recow = 1;
276 		}
277 
278 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
279 
280 		if (key.objectid > ino)
281 			break;
282 		if (WARN_ON_ONCE(key.objectid < ino) ||
283 		    key.type < BTRFS_EXTENT_DATA_KEY) {
284 			ASSERT(del_nr == 0);
285 			path->slots[0]++;
286 			goto next_slot;
287 		}
288 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
289 			break;
290 
291 		fi = btrfs_item_ptr(leaf, path->slots[0],
292 				    struct btrfs_file_extent_item);
293 		extent_type = btrfs_file_extent_type(leaf, fi);
294 
295 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
296 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
297 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
298 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
299 			extent_offset = btrfs_file_extent_offset(leaf, fi);
300 			extent_end = key.offset +
301 				btrfs_file_extent_num_bytes(leaf, fi);
302 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
303 			extent_end = key.offset +
304 				btrfs_file_extent_ram_bytes(leaf, fi);
305 		} else {
306 			/* can't happen */
307 			BUG();
308 		}
309 
310 		/*
311 		 * Don't skip extent items representing 0 byte lengths. They
312 		 * used to be created (bug) if while punching holes we hit
313 		 * -ENOSPC condition. So if we find one here, just ensure we
314 		 * delete it, otherwise we would insert a new file extent item
315 		 * with the same key (offset) as that 0 bytes length file
316 		 * extent item in the call to setup_items_for_insert() later
317 		 * in this function.
318 		 */
319 		if (extent_end == key.offset && extent_end >= search_start) {
320 			last_end = extent_end;
321 			goto delete_extent_item;
322 		}
323 
324 		if (extent_end <= search_start) {
325 			path->slots[0]++;
326 			goto next_slot;
327 		}
328 
329 		found = 1;
330 		search_start = max(key.offset, args->start);
331 		if (recow || !modify_tree) {
332 			modify_tree = -1;
333 			btrfs_release_path(path);
334 			continue;
335 		}
336 
337 		/*
338 		 *     | - range to drop - |
339 		 *  | -------- extent -------- |
340 		 */
341 		if (args->start > key.offset && args->end < extent_end) {
342 			BUG_ON(del_nr > 0);
343 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
344 				ret = -EOPNOTSUPP;
345 				break;
346 			}
347 
348 			memcpy(&new_key, &key, sizeof(new_key));
349 			new_key.offset = args->start;
350 			ret = btrfs_duplicate_item(trans, root, path,
351 						   &new_key);
352 			if (ret == -EAGAIN) {
353 				btrfs_release_path(path);
354 				continue;
355 			}
356 			if (ret < 0)
357 				break;
358 
359 			leaf = path->nodes[0];
360 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
361 					    struct btrfs_file_extent_item);
362 			btrfs_set_file_extent_num_bytes(leaf, fi,
363 							args->start - key.offset);
364 
365 			fi = btrfs_item_ptr(leaf, path->slots[0],
366 					    struct btrfs_file_extent_item);
367 
368 			extent_offset += args->start - key.offset;
369 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
370 			btrfs_set_file_extent_num_bytes(leaf, fi,
371 							extent_end - args->start);
372 			btrfs_mark_buffer_dirty(trans, leaf);
373 
374 			if (update_refs && disk_bytenr > 0) {
375 				struct btrfs_ref ref = {
376 					.action = BTRFS_ADD_DELAYED_REF,
377 					.bytenr = disk_bytenr,
378 					.num_bytes = num_bytes,
379 					.parent = 0,
380 					.owning_root = btrfs_root_id(root),
381 					.ref_root = btrfs_root_id(root),
382 				};
383 				btrfs_init_data_ref(&ref, new_key.objectid,
384 						    args->start - extent_offset,
385 						    0, false);
386 				ret = btrfs_inc_extent_ref(trans, &ref);
387 				if (ret) {
388 					btrfs_abort_transaction(trans, ret);
389 					break;
390 				}
391 			}
392 			key.offset = args->start;
393 		}
394 		/*
395 		 * From here on out we will have actually dropped something, so
396 		 * last_end can be updated.
397 		 */
398 		last_end = extent_end;
399 
400 		/*
401 		 *  | ---- range to drop ----- |
402 		 *      | -------- extent -------- |
403 		 */
404 		if (args->start <= key.offset && args->end < extent_end) {
405 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
406 				ret = -EOPNOTSUPP;
407 				break;
408 			}
409 
410 			memcpy(&new_key, &key, sizeof(new_key));
411 			new_key.offset = args->end;
412 			btrfs_set_item_key_safe(trans, path, &new_key);
413 
414 			extent_offset += args->end - key.offset;
415 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
416 			btrfs_set_file_extent_num_bytes(leaf, fi,
417 							extent_end - args->end);
418 			btrfs_mark_buffer_dirty(trans, leaf);
419 			if (update_refs && disk_bytenr > 0)
420 				args->bytes_found += args->end - key.offset;
421 			break;
422 		}
423 
424 		search_start = extent_end;
425 		/*
426 		 *       | ---- range to drop ----- |
427 		 *  | -------- extent -------- |
428 		 */
429 		if (args->start > key.offset && args->end >= extent_end) {
430 			BUG_ON(del_nr > 0);
431 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
432 				ret = -EOPNOTSUPP;
433 				break;
434 			}
435 
436 			btrfs_set_file_extent_num_bytes(leaf, fi,
437 							args->start - key.offset);
438 			btrfs_mark_buffer_dirty(trans, leaf);
439 			if (update_refs && disk_bytenr > 0)
440 				args->bytes_found += extent_end - args->start;
441 			if (args->end == extent_end)
442 				break;
443 
444 			path->slots[0]++;
445 			goto next_slot;
446 		}
447 
448 		/*
449 		 *  | ---- range to drop ----- |
450 		 *    | ------ extent ------ |
451 		 */
452 		if (args->start <= key.offset && args->end >= extent_end) {
453 delete_extent_item:
454 			if (del_nr == 0) {
455 				del_slot = path->slots[0];
456 				del_nr = 1;
457 			} else {
458 				BUG_ON(del_slot + del_nr != path->slots[0]);
459 				del_nr++;
460 			}
461 
462 			if (update_refs &&
463 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
464 				args->bytes_found += extent_end - key.offset;
465 				extent_end = ALIGN(extent_end,
466 						   fs_info->sectorsize);
467 			} else if (update_refs && disk_bytenr > 0) {
468 				struct btrfs_ref ref = {
469 					.action = BTRFS_DROP_DELAYED_REF,
470 					.bytenr = disk_bytenr,
471 					.num_bytes = num_bytes,
472 					.parent = 0,
473 					.owning_root = btrfs_root_id(root),
474 					.ref_root = btrfs_root_id(root),
475 				};
476 				btrfs_init_data_ref(&ref, key.objectid,
477 						    key.offset - extent_offset,
478 						    0, false);
479 				ret = btrfs_free_extent(trans, &ref);
480 				if (ret) {
481 					btrfs_abort_transaction(trans, ret);
482 					break;
483 				}
484 				args->bytes_found += extent_end - key.offset;
485 			}
486 
487 			if (args->end == extent_end)
488 				break;
489 
490 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
491 				path->slots[0]++;
492 				goto next_slot;
493 			}
494 
495 			ret = btrfs_del_items(trans, root, path, del_slot,
496 					      del_nr);
497 			if (ret) {
498 				btrfs_abort_transaction(trans, ret);
499 				break;
500 			}
501 
502 			del_nr = 0;
503 			del_slot = 0;
504 
505 			btrfs_release_path(path);
506 			continue;
507 		}
508 
509 		BUG();
510 	}
511 
512 	if (!ret && del_nr > 0) {
513 		/*
514 		 * Set path->slots[0] to first slot, so that after the delete
515 		 * if items are move off from our leaf to its immediate left or
516 		 * right neighbor leafs, we end up with a correct and adjusted
517 		 * path->slots[0] for our insertion (if args->replace_extent).
518 		 */
519 		path->slots[0] = del_slot;
520 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
521 		if (ret)
522 			btrfs_abort_transaction(trans, ret);
523 	}
524 
525 	leaf = path->nodes[0];
526 	/*
527 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
528 	 * which case it unlocked our path, so check path->locks[0] matches a
529 	 * write lock.
530 	 */
531 	if (!ret && args->replace_extent &&
532 	    path->locks[0] == BTRFS_WRITE_LOCK &&
533 	    btrfs_leaf_free_space(leaf) >=
534 	    sizeof(struct btrfs_item) + args->extent_item_size) {
535 
536 		key.objectid = ino;
537 		key.type = BTRFS_EXTENT_DATA_KEY;
538 		key.offset = args->start;
539 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
540 			struct btrfs_key slot_key;
541 
542 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
543 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
544 				path->slots[0]++;
545 		}
546 		btrfs_setup_item_for_insert(trans, root, path, &key,
547 					    args->extent_item_size);
548 		args->extent_inserted = true;
549 	}
550 
551 	if (!args->path)
552 		btrfs_free_path(path);
553 	else if (!args->extent_inserted)
554 		btrfs_release_path(path);
555 out:
556 	args->drop_end = found ? min(args->end, last_end) : args->end;
557 
558 	return ret;
559 }
560 
561 static int extent_mergeable(struct extent_buffer *leaf, int slot,
562 			    u64 objectid, u64 bytenr, u64 orig_offset,
563 			    u64 *start, u64 *end)
564 {
565 	struct btrfs_file_extent_item *fi;
566 	struct btrfs_key key;
567 	u64 extent_end;
568 
569 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
570 		return 0;
571 
572 	btrfs_item_key_to_cpu(leaf, &key, slot);
573 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
574 		return 0;
575 
576 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
577 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
578 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
579 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
580 	    btrfs_file_extent_compression(leaf, fi) ||
581 	    btrfs_file_extent_encryption(leaf, fi) ||
582 	    btrfs_file_extent_other_encoding(leaf, fi))
583 		return 0;
584 
585 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
586 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
587 		return 0;
588 
589 	*start = key.offset;
590 	*end = extent_end;
591 	return 1;
592 }
593 
594 /*
595  * Mark extent in the range start - end as written.
596  *
597  * This changes extent type from 'pre-allocated' to 'regular'. If only
598  * part of extent is marked as written, the extent will be split into
599  * two or three.
600  */
601 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
602 			      struct btrfs_inode *inode, u64 start, u64 end)
603 {
604 	struct btrfs_root *root = inode->root;
605 	struct extent_buffer *leaf;
606 	struct btrfs_path *path;
607 	struct btrfs_file_extent_item *fi;
608 	struct btrfs_ref ref = { 0 };
609 	struct btrfs_key key;
610 	struct btrfs_key new_key;
611 	u64 bytenr;
612 	u64 num_bytes;
613 	u64 extent_end;
614 	u64 orig_offset;
615 	u64 other_start;
616 	u64 other_end;
617 	u64 split;
618 	int del_nr = 0;
619 	int del_slot = 0;
620 	int recow;
621 	int ret = 0;
622 	u64 ino = btrfs_ino(inode);
623 
624 	path = btrfs_alloc_path();
625 	if (!path)
626 		return -ENOMEM;
627 again:
628 	recow = 0;
629 	split = start;
630 	key.objectid = ino;
631 	key.type = BTRFS_EXTENT_DATA_KEY;
632 	key.offset = split;
633 
634 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
635 	if (ret < 0)
636 		goto out;
637 	if (ret > 0 && path->slots[0] > 0)
638 		path->slots[0]--;
639 
640 	leaf = path->nodes[0];
641 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
642 	if (key.objectid != ino ||
643 	    key.type != BTRFS_EXTENT_DATA_KEY) {
644 		ret = -EINVAL;
645 		btrfs_abort_transaction(trans, ret);
646 		goto out;
647 	}
648 	fi = btrfs_item_ptr(leaf, path->slots[0],
649 			    struct btrfs_file_extent_item);
650 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
651 		ret = -EINVAL;
652 		btrfs_abort_transaction(trans, ret);
653 		goto out;
654 	}
655 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
656 	if (key.offset > start || extent_end < end) {
657 		ret = -EINVAL;
658 		btrfs_abort_transaction(trans, ret);
659 		goto out;
660 	}
661 
662 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
663 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
664 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
665 	memcpy(&new_key, &key, sizeof(new_key));
666 
667 	if (start == key.offset && end < extent_end) {
668 		other_start = 0;
669 		other_end = start;
670 		if (extent_mergeable(leaf, path->slots[0] - 1,
671 				     ino, bytenr, orig_offset,
672 				     &other_start, &other_end)) {
673 			new_key.offset = end;
674 			btrfs_set_item_key_safe(trans, path, &new_key);
675 			fi = btrfs_item_ptr(leaf, path->slots[0],
676 					    struct btrfs_file_extent_item);
677 			btrfs_set_file_extent_generation(leaf, fi,
678 							 trans->transid);
679 			btrfs_set_file_extent_num_bytes(leaf, fi,
680 							extent_end - end);
681 			btrfs_set_file_extent_offset(leaf, fi,
682 						     end - orig_offset);
683 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
684 					    struct btrfs_file_extent_item);
685 			btrfs_set_file_extent_generation(leaf, fi,
686 							 trans->transid);
687 			btrfs_set_file_extent_num_bytes(leaf, fi,
688 							end - other_start);
689 			btrfs_mark_buffer_dirty(trans, leaf);
690 			goto out;
691 		}
692 	}
693 
694 	if (start > key.offset && end == extent_end) {
695 		other_start = end;
696 		other_end = 0;
697 		if (extent_mergeable(leaf, path->slots[0] + 1,
698 				     ino, bytenr, orig_offset,
699 				     &other_start, &other_end)) {
700 			fi = btrfs_item_ptr(leaf, path->slots[0],
701 					    struct btrfs_file_extent_item);
702 			btrfs_set_file_extent_num_bytes(leaf, fi,
703 							start - key.offset);
704 			btrfs_set_file_extent_generation(leaf, fi,
705 							 trans->transid);
706 			path->slots[0]++;
707 			new_key.offset = start;
708 			btrfs_set_item_key_safe(trans, path, &new_key);
709 
710 			fi = btrfs_item_ptr(leaf, path->slots[0],
711 					    struct btrfs_file_extent_item);
712 			btrfs_set_file_extent_generation(leaf, fi,
713 							 trans->transid);
714 			btrfs_set_file_extent_num_bytes(leaf, fi,
715 							other_end - start);
716 			btrfs_set_file_extent_offset(leaf, fi,
717 						     start - orig_offset);
718 			btrfs_mark_buffer_dirty(trans, leaf);
719 			goto out;
720 		}
721 	}
722 
723 	while (start > key.offset || end < extent_end) {
724 		if (key.offset == start)
725 			split = end;
726 
727 		new_key.offset = split;
728 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
729 		if (ret == -EAGAIN) {
730 			btrfs_release_path(path);
731 			goto again;
732 		}
733 		if (ret < 0) {
734 			btrfs_abort_transaction(trans, ret);
735 			goto out;
736 		}
737 
738 		leaf = path->nodes[0];
739 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
740 				    struct btrfs_file_extent_item);
741 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
742 		btrfs_set_file_extent_num_bytes(leaf, fi,
743 						split - key.offset);
744 
745 		fi = btrfs_item_ptr(leaf, path->slots[0],
746 				    struct btrfs_file_extent_item);
747 
748 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
749 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
750 		btrfs_set_file_extent_num_bytes(leaf, fi,
751 						extent_end - split);
752 		btrfs_mark_buffer_dirty(trans, leaf);
753 
754 		ref.action = BTRFS_ADD_DELAYED_REF;
755 		ref.bytenr = bytenr;
756 		ref.num_bytes = num_bytes;
757 		ref.parent = 0;
758 		ref.owning_root = btrfs_root_id(root);
759 		ref.ref_root = btrfs_root_id(root);
760 		btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
761 		ret = btrfs_inc_extent_ref(trans, &ref);
762 		if (ret) {
763 			btrfs_abort_transaction(trans, ret);
764 			goto out;
765 		}
766 
767 		if (split == start) {
768 			key.offset = start;
769 		} else {
770 			if (start != key.offset) {
771 				ret = -EINVAL;
772 				btrfs_abort_transaction(trans, ret);
773 				goto out;
774 			}
775 			path->slots[0]--;
776 			extent_end = end;
777 		}
778 		recow = 1;
779 	}
780 
781 	other_start = end;
782 	other_end = 0;
783 
784 	ref.action = BTRFS_DROP_DELAYED_REF;
785 	ref.bytenr = bytenr;
786 	ref.num_bytes = num_bytes;
787 	ref.parent = 0;
788 	ref.owning_root = btrfs_root_id(root);
789 	ref.ref_root = btrfs_root_id(root);
790 	btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
791 	if (extent_mergeable(leaf, path->slots[0] + 1,
792 			     ino, bytenr, orig_offset,
793 			     &other_start, &other_end)) {
794 		if (recow) {
795 			btrfs_release_path(path);
796 			goto again;
797 		}
798 		extent_end = other_end;
799 		del_slot = path->slots[0] + 1;
800 		del_nr++;
801 		ret = btrfs_free_extent(trans, &ref);
802 		if (ret) {
803 			btrfs_abort_transaction(trans, ret);
804 			goto out;
805 		}
806 	}
807 	other_start = 0;
808 	other_end = start;
809 	if (extent_mergeable(leaf, path->slots[0] - 1,
810 			     ino, bytenr, orig_offset,
811 			     &other_start, &other_end)) {
812 		if (recow) {
813 			btrfs_release_path(path);
814 			goto again;
815 		}
816 		key.offset = other_start;
817 		del_slot = path->slots[0];
818 		del_nr++;
819 		ret = btrfs_free_extent(trans, &ref);
820 		if (ret) {
821 			btrfs_abort_transaction(trans, ret);
822 			goto out;
823 		}
824 	}
825 	if (del_nr == 0) {
826 		fi = btrfs_item_ptr(leaf, path->slots[0],
827 			   struct btrfs_file_extent_item);
828 		btrfs_set_file_extent_type(leaf, fi,
829 					   BTRFS_FILE_EXTENT_REG);
830 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
831 		btrfs_mark_buffer_dirty(trans, leaf);
832 	} else {
833 		fi = btrfs_item_ptr(leaf, del_slot - 1,
834 			   struct btrfs_file_extent_item);
835 		btrfs_set_file_extent_type(leaf, fi,
836 					   BTRFS_FILE_EXTENT_REG);
837 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
838 		btrfs_set_file_extent_num_bytes(leaf, fi,
839 						extent_end - key.offset);
840 		btrfs_mark_buffer_dirty(trans, leaf);
841 
842 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
843 		if (ret < 0) {
844 			btrfs_abort_transaction(trans, ret);
845 			goto out;
846 		}
847 	}
848 out:
849 	btrfs_free_path(path);
850 	return ret;
851 }
852 
853 /*
854  * on error we return an unlocked page and the error value
855  * on success we return a locked page and 0
856  */
857 static int prepare_uptodate_page(struct inode *inode,
858 				 struct page *page, u64 pos,
859 				 bool force_uptodate)
860 {
861 	struct folio *folio = page_folio(page);
862 	int ret = 0;
863 
864 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
865 	    !PageUptodate(page)) {
866 		ret = btrfs_read_folio(NULL, folio);
867 		if (ret)
868 			return ret;
869 		lock_page(page);
870 		if (!PageUptodate(page)) {
871 			unlock_page(page);
872 			return -EIO;
873 		}
874 
875 		/*
876 		 * Since btrfs_read_folio() will unlock the folio before it
877 		 * returns, there is a window where btrfs_release_folio() can be
878 		 * called to release the page.  Here we check both inode
879 		 * mapping and PagePrivate() to make sure the page was not
880 		 * released.
881 		 *
882 		 * The private flag check is essential for subpage as we need
883 		 * to store extra bitmap using folio private.
884 		 */
885 		if (page->mapping != inode->i_mapping || !folio_test_private(folio)) {
886 			unlock_page(page);
887 			return -EAGAIN;
888 		}
889 	}
890 	return 0;
891 }
892 
893 static fgf_t get_prepare_fgp_flags(bool nowait)
894 {
895 	fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
896 
897 	if (nowait)
898 		fgp_flags |= FGP_NOWAIT;
899 
900 	return fgp_flags;
901 }
902 
903 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
904 {
905 	gfp_t gfp;
906 
907 	gfp = btrfs_alloc_write_mask(inode->i_mapping);
908 	if (nowait) {
909 		gfp &= ~__GFP_DIRECT_RECLAIM;
910 		gfp |= GFP_NOWAIT;
911 	}
912 
913 	return gfp;
914 }
915 
916 /*
917  * this just gets pages into the page cache and locks them down.
918  */
919 static noinline int prepare_pages(struct inode *inode, struct page **pages,
920 				  size_t num_pages, loff_t pos,
921 				  size_t write_bytes, bool force_uptodate,
922 				  bool nowait)
923 {
924 	int i;
925 	unsigned long index = pos >> PAGE_SHIFT;
926 	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
927 	fgf_t fgp_flags = get_prepare_fgp_flags(nowait);
928 	int ret = 0;
929 	int faili;
930 
931 	for (i = 0; i < num_pages; i++) {
932 again:
933 		pages[i] = pagecache_get_page(inode->i_mapping, index + i,
934 					      fgp_flags, mask | __GFP_WRITE);
935 		if (!pages[i]) {
936 			faili = i - 1;
937 			if (nowait)
938 				ret = -EAGAIN;
939 			else
940 				ret = -ENOMEM;
941 			goto fail;
942 		}
943 
944 		ret = set_page_extent_mapped(pages[i]);
945 		if (ret < 0) {
946 			faili = i;
947 			goto fail;
948 		}
949 
950 		if (i == 0)
951 			ret = prepare_uptodate_page(inode, pages[i], pos,
952 						    force_uptodate);
953 		if (!ret && i == num_pages - 1)
954 			ret = prepare_uptodate_page(inode, pages[i],
955 						    pos + write_bytes, false);
956 		if (ret) {
957 			put_page(pages[i]);
958 			if (!nowait && ret == -EAGAIN) {
959 				ret = 0;
960 				goto again;
961 			}
962 			faili = i - 1;
963 			goto fail;
964 		}
965 		wait_on_page_writeback(pages[i]);
966 	}
967 
968 	return 0;
969 fail:
970 	while (faili >= 0) {
971 		unlock_page(pages[faili]);
972 		put_page(pages[faili]);
973 		faili--;
974 	}
975 	return ret;
976 
977 }
978 
979 /*
980  * This function locks the extent and properly waits for data=ordered extents
981  * to finish before allowing the pages to be modified if need.
982  *
983  * The return value:
984  * 1 - the extent is locked
985  * 0 - the extent is not locked, and everything is OK
986  * -EAGAIN - need re-prepare the pages
987  * the other < 0 number - Something wrong happens
988  */
989 static noinline int
990 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
991 				size_t num_pages, loff_t pos,
992 				size_t write_bytes,
993 				u64 *lockstart, u64 *lockend, bool nowait,
994 				struct extent_state **cached_state)
995 {
996 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
997 	u64 start_pos;
998 	u64 last_pos;
999 	int i;
1000 	int ret = 0;
1001 
1002 	start_pos = round_down(pos, fs_info->sectorsize);
1003 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1004 
1005 	if (start_pos < inode->vfs_inode.i_size) {
1006 		struct btrfs_ordered_extent *ordered;
1007 
1008 		if (nowait) {
1009 			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
1010 					     cached_state)) {
1011 				for (i = 0; i < num_pages; i++) {
1012 					unlock_page(pages[i]);
1013 					put_page(pages[i]);
1014 					pages[i] = NULL;
1015 				}
1016 
1017 				return -EAGAIN;
1018 			}
1019 		} else {
1020 			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1021 		}
1022 
1023 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1024 						     last_pos - start_pos + 1);
1025 		if (ordered &&
1026 		    ordered->file_offset + ordered->num_bytes > start_pos &&
1027 		    ordered->file_offset <= last_pos) {
1028 			unlock_extent(&inode->io_tree, start_pos, last_pos,
1029 				      cached_state);
1030 			for (i = 0; i < num_pages; i++) {
1031 				unlock_page(pages[i]);
1032 				put_page(pages[i]);
1033 			}
1034 			btrfs_start_ordered_extent(ordered);
1035 			btrfs_put_ordered_extent(ordered);
1036 			return -EAGAIN;
1037 		}
1038 		if (ordered)
1039 			btrfs_put_ordered_extent(ordered);
1040 
1041 		*lockstart = start_pos;
1042 		*lockend = last_pos;
1043 		ret = 1;
1044 	}
1045 
1046 	/*
1047 	 * We should be called after prepare_pages() which should have locked
1048 	 * all pages in the range.
1049 	 */
1050 	for (i = 0; i < num_pages; i++)
1051 		WARN_ON(!PageLocked(pages[i]));
1052 
1053 	return ret;
1054 }
1055 
1056 /*
1057  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1058  *
1059  * @pos:         File offset.
1060  * @write_bytes: The length to write, will be updated to the nocow writeable
1061  *               range.
1062  *
1063  * This function will flush ordered extents in the range to ensure proper
1064  * nocow checks.
1065  *
1066  * Return:
1067  * > 0          If we can nocow, and updates @write_bytes.
1068  *  0           If we can't do a nocow write.
1069  * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1070  *              root is in progress.
1071  * < 0          If an error happened.
1072  *
1073  * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1074  */
1075 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1076 			   size_t *write_bytes, bool nowait)
1077 {
1078 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1079 	struct btrfs_root *root = inode->root;
1080 	struct extent_state *cached_state = NULL;
1081 	u64 lockstart, lockend;
1082 	u64 num_bytes;
1083 	int ret;
1084 
1085 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1086 		return 0;
1087 
1088 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1089 		return -EAGAIN;
1090 
1091 	lockstart = round_down(pos, fs_info->sectorsize);
1092 	lockend = round_up(pos + *write_bytes,
1093 			   fs_info->sectorsize) - 1;
1094 	num_bytes = lockend - lockstart + 1;
1095 
1096 	if (nowait) {
1097 		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1098 						  &cached_state)) {
1099 			btrfs_drew_write_unlock(&root->snapshot_lock);
1100 			return -EAGAIN;
1101 		}
1102 	} else {
1103 		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1104 						   &cached_state);
1105 	}
1106 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1107 			NULL, NULL, NULL, nowait, false);
1108 	if (ret <= 0)
1109 		btrfs_drew_write_unlock(&root->snapshot_lock);
1110 	else
1111 		*write_bytes = min_t(size_t, *write_bytes ,
1112 				     num_bytes - pos + lockstart);
1113 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1114 
1115 	return ret;
1116 }
1117 
1118 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1119 {
1120 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1121 }
1122 
1123 static void update_time_for_write(struct inode *inode)
1124 {
1125 	struct timespec64 now, ts;
1126 
1127 	if (IS_NOCMTIME(inode))
1128 		return;
1129 
1130 	now = current_time(inode);
1131 	ts = inode_get_mtime(inode);
1132 	if (!timespec64_equal(&ts, &now))
1133 		inode_set_mtime_to_ts(inode, now);
1134 
1135 	ts = inode_get_ctime(inode);
1136 	if (!timespec64_equal(&ts, &now))
1137 		inode_set_ctime_to_ts(inode, now);
1138 
1139 	if (IS_I_VERSION(inode))
1140 		inode_inc_iversion(inode);
1141 }
1142 
1143 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1144 			     size_t count)
1145 {
1146 	struct file *file = iocb->ki_filp;
1147 	struct inode *inode = file_inode(file);
1148 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1149 	loff_t pos = iocb->ki_pos;
1150 	int ret;
1151 	loff_t oldsize;
1152 	loff_t start_pos;
1153 
1154 	/*
1155 	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1156 	 * prealloc flags, as without those flags we always have to COW. We will
1157 	 * later check if we can really COW into the target range (using
1158 	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1159 	 */
1160 	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1161 	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1162 		return -EAGAIN;
1163 
1164 	ret = file_remove_privs(file);
1165 	if (ret)
1166 		return ret;
1167 
1168 	/*
1169 	 * We reserve space for updating the inode when we reserve space for the
1170 	 * extent we are going to write, so we will enospc out there.  We don't
1171 	 * need to start yet another transaction to update the inode as we will
1172 	 * update the inode when we finish writing whatever data we write.
1173 	 */
1174 	update_time_for_write(inode);
1175 
1176 	start_pos = round_down(pos, fs_info->sectorsize);
1177 	oldsize = i_size_read(inode);
1178 	if (start_pos > oldsize) {
1179 		/* Expand hole size to cover write data, preventing empty gap */
1180 		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1181 
1182 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1183 		if (ret)
1184 			return ret;
1185 	}
1186 
1187 	return 0;
1188 }
1189 
1190 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1191 					       struct iov_iter *i)
1192 {
1193 	struct file *file = iocb->ki_filp;
1194 	loff_t pos;
1195 	struct inode *inode = file_inode(file);
1196 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1197 	struct page **pages = NULL;
1198 	struct extent_changeset *data_reserved = NULL;
1199 	u64 release_bytes = 0;
1200 	u64 lockstart;
1201 	u64 lockend;
1202 	size_t num_written = 0;
1203 	int nrptrs;
1204 	ssize_t ret;
1205 	bool only_release_metadata = false;
1206 	bool force_page_uptodate = false;
1207 	loff_t old_isize = i_size_read(inode);
1208 	unsigned int ilock_flags = 0;
1209 	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1210 	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1211 
1212 	if (nowait)
1213 		ilock_flags |= BTRFS_ILOCK_TRY;
1214 
1215 	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1216 	if (ret < 0)
1217 		return ret;
1218 
1219 	ret = generic_write_checks(iocb, i);
1220 	if (ret <= 0)
1221 		goto out;
1222 
1223 	ret = btrfs_write_check(iocb, i, ret);
1224 	if (ret < 0)
1225 		goto out;
1226 
1227 	pos = iocb->ki_pos;
1228 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1229 			PAGE_SIZE / (sizeof(struct page *)));
1230 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1231 	nrptrs = max(nrptrs, 8);
1232 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1233 	if (!pages) {
1234 		ret = -ENOMEM;
1235 		goto out;
1236 	}
1237 
1238 	while (iov_iter_count(i) > 0) {
1239 		struct extent_state *cached_state = NULL;
1240 		size_t offset = offset_in_page(pos);
1241 		size_t sector_offset;
1242 		size_t write_bytes = min(iov_iter_count(i),
1243 					 nrptrs * (size_t)PAGE_SIZE -
1244 					 offset);
1245 		size_t num_pages;
1246 		size_t reserve_bytes;
1247 		size_t dirty_pages;
1248 		size_t copied;
1249 		size_t dirty_sectors;
1250 		size_t num_sectors;
1251 		int extents_locked;
1252 
1253 		/*
1254 		 * Fault pages before locking them in prepare_pages
1255 		 * to avoid recursive lock
1256 		 */
1257 		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1258 			ret = -EFAULT;
1259 			break;
1260 		}
1261 
1262 		only_release_metadata = false;
1263 		sector_offset = pos & (fs_info->sectorsize - 1);
1264 
1265 		extent_changeset_release(data_reserved);
1266 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1267 						  &data_reserved, pos,
1268 						  write_bytes, nowait);
1269 		if (ret < 0) {
1270 			int can_nocow;
1271 
1272 			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1273 				ret = -EAGAIN;
1274 				break;
1275 			}
1276 
1277 			/*
1278 			 * If we don't have to COW at the offset, reserve
1279 			 * metadata only. write_bytes may get smaller than
1280 			 * requested here.
1281 			 */
1282 			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1283 							   &write_bytes, nowait);
1284 			if (can_nocow < 0)
1285 				ret = can_nocow;
1286 			if (can_nocow > 0)
1287 				ret = 0;
1288 			if (ret)
1289 				break;
1290 			only_release_metadata = true;
1291 		}
1292 
1293 		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1294 		WARN_ON(num_pages > nrptrs);
1295 		reserve_bytes = round_up(write_bytes + sector_offset,
1296 					 fs_info->sectorsize);
1297 		WARN_ON(reserve_bytes == 0);
1298 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1299 						      reserve_bytes,
1300 						      reserve_bytes, nowait);
1301 		if (ret) {
1302 			if (!only_release_metadata)
1303 				btrfs_free_reserved_data_space(BTRFS_I(inode),
1304 						data_reserved, pos,
1305 						write_bytes);
1306 			else
1307 				btrfs_check_nocow_unlock(BTRFS_I(inode));
1308 
1309 			if (nowait && ret == -ENOSPC)
1310 				ret = -EAGAIN;
1311 			break;
1312 		}
1313 
1314 		release_bytes = reserve_bytes;
1315 again:
1316 		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1317 		if (ret) {
1318 			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1319 			break;
1320 		}
1321 
1322 		/*
1323 		 * This is going to setup the pages array with the number of
1324 		 * pages we want, so we don't really need to worry about the
1325 		 * contents of pages from loop to loop
1326 		 */
1327 		ret = prepare_pages(inode, pages, num_pages,
1328 				    pos, write_bytes, force_page_uptodate, false);
1329 		if (ret) {
1330 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1331 						       reserve_bytes);
1332 			break;
1333 		}
1334 
1335 		extents_locked = lock_and_cleanup_extent_if_need(
1336 				BTRFS_I(inode), pages,
1337 				num_pages, pos, write_bytes, &lockstart,
1338 				&lockend, nowait, &cached_state);
1339 		if (extents_locked < 0) {
1340 			if (!nowait && extents_locked == -EAGAIN)
1341 				goto again;
1342 
1343 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1344 						       reserve_bytes);
1345 			ret = extents_locked;
1346 			break;
1347 		}
1348 
1349 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1350 
1351 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1352 		dirty_sectors = round_up(copied + sector_offset,
1353 					fs_info->sectorsize);
1354 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1355 
1356 		/*
1357 		 * if we have trouble faulting in the pages, fall
1358 		 * back to one page at a time
1359 		 */
1360 		if (copied < write_bytes)
1361 			nrptrs = 1;
1362 
1363 		if (copied == 0) {
1364 			force_page_uptodate = true;
1365 			dirty_sectors = 0;
1366 			dirty_pages = 0;
1367 		} else {
1368 			force_page_uptodate = false;
1369 			dirty_pages = DIV_ROUND_UP(copied + offset,
1370 						   PAGE_SIZE);
1371 		}
1372 
1373 		if (num_sectors > dirty_sectors) {
1374 			/* release everything except the sectors we dirtied */
1375 			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1376 			if (only_release_metadata) {
1377 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1378 							release_bytes, true);
1379 			} else {
1380 				u64 __pos;
1381 
1382 				__pos = round_down(pos,
1383 						   fs_info->sectorsize) +
1384 					(dirty_pages << PAGE_SHIFT);
1385 				btrfs_delalloc_release_space(BTRFS_I(inode),
1386 						data_reserved, __pos,
1387 						release_bytes, true);
1388 			}
1389 		}
1390 
1391 		release_bytes = round_up(copied + sector_offset,
1392 					fs_info->sectorsize);
1393 
1394 		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1395 					dirty_pages, pos, copied,
1396 					&cached_state, only_release_metadata);
1397 
1398 		/*
1399 		 * If we have not locked the extent range, because the range's
1400 		 * start offset is >= i_size, we might still have a non-NULL
1401 		 * cached extent state, acquired while marking the extent range
1402 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1403 		 * possible cached extent state to avoid a memory leak.
1404 		 */
1405 		if (extents_locked)
1406 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1407 				      lockend, &cached_state);
1408 		else
1409 			free_extent_state(cached_state);
1410 
1411 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1412 		if (ret) {
1413 			btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1414 			break;
1415 		}
1416 
1417 		release_bytes = 0;
1418 		if (only_release_metadata)
1419 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1420 
1421 		btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1422 
1423 		cond_resched();
1424 
1425 		pos += copied;
1426 		num_written += copied;
1427 	}
1428 
1429 	kfree(pages);
1430 
1431 	if (release_bytes) {
1432 		if (only_release_metadata) {
1433 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1434 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1435 					release_bytes, true);
1436 		} else {
1437 			btrfs_delalloc_release_space(BTRFS_I(inode),
1438 					data_reserved,
1439 					round_down(pos, fs_info->sectorsize),
1440 					release_bytes, true);
1441 		}
1442 	}
1443 
1444 	extent_changeset_free(data_reserved);
1445 	if (num_written > 0) {
1446 		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1447 		iocb->ki_pos += num_written;
1448 	}
1449 out:
1450 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1451 	return num_written ? num_written : ret;
1452 }
1453 
1454 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1455 			       const struct iov_iter *iter, loff_t offset)
1456 {
1457 	const u32 blocksize_mask = fs_info->sectorsize - 1;
1458 
1459 	if (offset & blocksize_mask)
1460 		return -EINVAL;
1461 
1462 	if (iov_iter_alignment(iter) & blocksize_mask)
1463 		return -EINVAL;
1464 
1465 	return 0;
1466 }
1467 
1468 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1469 {
1470 	struct file *file = iocb->ki_filp;
1471 	struct inode *inode = file_inode(file);
1472 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1473 	loff_t pos;
1474 	ssize_t written = 0;
1475 	ssize_t written_buffered;
1476 	size_t prev_left = 0;
1477 	loff_t endbyte;
1478 	ssize_t ret;
1479 	unsigned int ilock_flags = 0;
1480 	struct iomap_dio *dio;
1481 
1482 	if (iocb->ki_flags & IOCB_NOWAIT)
1483 		ilock_flags |= BTRFS_ILOCK_TRY;
1484 
1485 	/*
1486 	 * If the write DIO is within EOF, use a shared lock and also only if
1487 	 * security bits will likely not be dropped by file_remove_privs() called
1488 	 * from btrfs_write_check(). Either will need to be rechecked after the
1489 	 * lock was acquired.
1490 	 */
1491 	if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode))
1492 		ilock_flags |= BTRFS_ILOCK_SHARED;
1493 
1494 relock:
1495 	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1496 	if (ret < 0)
1497 		return ret;
1498 
1499 	/* Shared lock cannot be used with security bits set. */
1500 	if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) {
1501 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1502 		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1503 		goto relock;
1504 	}
1505 
1506 	ret = generic_write_checks(iocb, from);
1507 	if (ret <= 0) {
1508 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1509 		return ret;
1510 	}
1511 
1512 	ret = btrfs_write_check(iocb, from, ret);
1513 	if (ret < 0) {
1514 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1515 		goto out;
1516 	}
1517 
1518 	pos = iocb->ki_pos;
1519 	/*
1520 	 * Re-check since file size may have changed just before taking the
1521 	 * lock or pos may have changed because of O_APPEND in generic_write_check()
1522 	 */
1523 	if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1524 	    pos + iov_iter_count(from) > i_size_read(inode)) {
1525 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1526 		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1527 		goto relock;
1528 	}
1529 
1530 	if (check_direct_IO(fs_info, from, pos)) {
1531 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1532 		goto buffered;
1533 	}
1534 
1535 	/*
1536 	 * The iov_iter can be mapped to the same file range we are writing to.
1537 	 * If that's the case, then we will deadlock in the iomap code, because
1538 	 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1539 	 * an ordered extent, and after that it will fault in the pages that the
1540 	 * iov_iter refers to. During the fault in we end up in the readahead
1541 	 * pages code (starting at btrfs_readahead()), which will lock the range,
1542 	 * find that ordered extent and then wait for it to complete (at
1543 	 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1544 	 * obviously the ordered extent can never complete as we didn't submit
1545 	 * yet the respective bio(s). This always happens when the buffer is
1546 	 * memory mapped to the same file range, since the iomap DIO code always
1547 	 * invalidates pages in the target file range (after starting and waiting
1548 	 * for any writeback).
1549 	 *
1550 	 * So here we disable page faults in the iov_iter and then retry if we
1551 	 * got -EFAULT, faulting in the pages before the retry.
1552 	 */
1553 	from->nofault = true;
1554 	dio = btrfs_dio_write(iocb, from, written);
1555 	from->nofault = false;
1556 
1557 	/*
1558 	 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1559 	 * iocb, and that needs to lock the inode. So unlock it before calling
1560 	 * iomap_dio_complete() to avoid a deadlock.
1561 	 */
1562 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1563 
1564 	if (IS_ERR_OR_NULL(dio))
1565 		ret = PTR_ERR_OR_ZERO(dio);
1566 	else
1567 		ret = iomap_dio_complete(dio);
1568 
1569 	/* No increment (+=) because iomap returns a cumulative value. */
1570 	if (ret > 0)
1571 		written = ret;
1572 
1573 	if (iov_iter_count(from) > 0 && (ret == -EFAULT || ret > 0)) {
1574 		const size_t left = iov_iter_count(from);
1575 		/*
1576 		 * We have more data left to write. Try to fault in as many as
1577 		 * possible of the remainder pages and retry. We do this without
1578 		 * releasing and locking again the inode, to prevent races with
1579 		 * truncate.
1580 		 *
1581 		 * Also, in case the iov refers to pages in the file range of the
1582 		 * file we want to write to (due to a mmap), we could enter an
1583 		 * infinite loop if we retry after faulting the pages in, since
1584 		 * iomap will invalidate any pages in the range early on, before
1585 		 * it tries to fault in the pages of the iov. So we keep track of
1586 		 * how much was left of iov in the previous EFAULT and fallback
1587 		 * to buffered IO in case we haven't made any progress.
1588 		 */
1589 		if (left == prev_left) {
1590 			ret = -ENOTBLK;
1591 		} else {
1592 			fault_in_iov_iter_readable(from, left);
1593 			prev_left = left;
1594 			goto relock;
1595 		}
1596 	}
1597 
1598 	/*
1599 	 * If 'ret' is -ENOTBLK or we have not written all data, then it means
1600 	 * we must fallback to buffered IO.
1601 	 */
1602 	if ((ret < 0 && ret != -ENOTBLK) || !iov_iter_count(from))
1603 		goto out;
1604 
1605 buffered:
1606 	/*
1607 	 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1608 	 * it must retry the operation in a context where blocking is acceptable,
1609 	 * because even if we end up not blocking during the buffered IO attempt
1610 	 * below, we will block when flushing and waiting for the IO.
1611 	 */
1612 	if (iocb->ki_flags & IOCB_NOWAIT) {
1613 		ret = -EAGAIN;
1614 		goto out;
1615 	}
1616 
1617 	pos = iocb->ki_pos;
1618 	written_buffered = btrfs_buffered_write(iocb, from);
1619 	if (written_buffered < 0) {
1620 		ret = written_buffered;
1621 		goto out;
1622 	}
1623 	/*
1624 	 * Ensure all data is persisted. We want the next direct IO read to be
1625 	 * able to read what was just written.
1626 	 */
1627 	endbyte = pos + written_buffered - 1;
1628 	ret = btrfs_fdatawrite_range(inode, pos, endbyte);
1629 	if (ret)
1630 		goto out;
1631 	ret = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1632 	if (ret)
1633 		goto out;
1634 	written += written_buffered;
1635 	iocb->ki_pos = pos + written_buffered;
1636 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1637 				 endbyte >> PAGE_SHIFT);
1638 out:
1639 	return ret < 0 ? ret : written;
1640 }
1641 
1642 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1643 			const struct btrfs_ioctl_encoded_io_args *encoded)
1644 {
1645 	struct file *file = iocb->ki_filp;
1646 	struct inode *inode = file_inode(file);
1647 	loff_t count;
1648 	ssize_t ret;
1649 
1650 	btrfs_inode_lock(BTRFS_I(inode), 0);
1651 	count = encoded->len;
1652 	ret = generic_write_checks_count(iocb, &count);
1653 	if (ret == 0 && count != encoded->len) {
1654 		/*
1655 		 * The write got truncated by generic_write_checks_count(). We
1656 		 * can't do a partial encoded write.
1657 		 */
1658 		ret = -EFBIG;
1659 	}
1660 	if (ret || encoded->len == 0)
1661 		goto out;
1662 
1663 	ret = btrfs_write_check(iocb, from, encoded->len);
1664 	if (ret < 0)
1665 		goto out;
1666 
1667 	ret = btrfs_do_encoded_write(iocb, from, encoded);
1668 out:
1669 	btrfs_inode_unlock(BTRFS_I(inode), 0);
1670 	return ret;
1671 }
1672 
1673 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1674 			    const struct btrfs_ioctl_encoded_io_args *encoded)
1675 {
1676 	struct file *file = iocb->ki_filp;
1677 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1678 	ssize_t num_written, num_sync;
1679 
1680 	/*
1681 	 * If the fs flips readonly due to some impossible error, although we
1682 	 * have opened a file as writable, we have to stop this write operation
1683 	 * to ensure consistency.
1684 	 */
1685 	if (BTRFS_FS_ERROR(inode->root->fs_info))
1686 		return -EROFS;
1687 
1688 	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1689 		return -EOPNOTSUPP;
1690 
1691 	if (encoded) {
1692 		num_written = btrfs_encoded_write(iocb, from, encoded);
1693 		num_sync = encoded->len;
1694 	} else if (iocb->ki_flags & IOCB_DIRECT) {
1695 		num_written = btrfs_direct_write(iocb, from);
1696 		num_sync = num_written;
1697 	} else {
1698 		num_written = btrfs_buffered_write(iocb, from);
1699 		num_sync = num_written;
1700 	}
1701 
1702 	btrfs_set_inode_last_sub_trans(inode);
1703 
1704 	if (num_sync > 0) {
1705 		num_sync = generic_write_sync(iocb, num_sync);
1706 		if (num_sync < 0)
1707 			num_written = num_sync;
1708 	}
1709 
1710 	return num_written;
1711 }
1712 
1713 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1714 {
1715 	return btrfs_do_write_iter(iocb, from, NULL);
1716 }
1717 
1718 int btrfs_release_file(struct inode *inode, struct file *filp)
1719 {
1720 	struct btrfs_file_private *private = filp->private_data;
1721 
1722 	if (private) {
1723 		kfree(private->filldir_buf);
1724 		free_extent_state(private->llseek_cached_state);
1725 		kfree(private);
1726 		filp->private_data = NULL;
1727 	}
1728 
1729 	/*
1730 	 * Set by setattr when we are about to truncate a file from a non-zero
1731 	 * size to a zero size.  This tries to flush down new bytes that may
1732 	 * have been written if the application were using truncate to replace
1733 	 * a file in place.
1734 	 */
1735 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1736 			       &BTRFS_I(inode)->runtime_flags))
1737 			filemap_flush(inode->i_mapping);
1738 	return 0;
1739 }
1740 
1741 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1742 {
1743 	int ret;
1744 	struct blk_plug plug;
1745 
1746 	/*
1747 	 * This is only called in fsync, which would do synchronous writes, so
1748 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1749 	 * multiple disks using raid profile, a large IO can be split to
1750 	 * several segments of stripe length (currently 64K).
1751 	 */
1752 	blk_start_plug(&plug);
1753 	ret = btrfs_fdatawrite_range(inode, start, end);
1754 	blk_finish_plug(&plug);
1755 
1756 	return ret;
1757 }
1758 
1759 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1760 {
1761 	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1762 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1763 
1764 	if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1765 	    list_empty(&ctx->ordered_extents))
1766 		return true;
1767 
1768 	/*
1769 	 * If we are doing a fast fsync we can not bail out if the inode's
1770 	 * last_trans is <= then the last committed transaction, because we only
1771 	 * update the last_trans of the inode during ordered extent completion,
1772 	 * and for a fast fsync we don't wait for that, we only wait for the
1773 	 * writeback to complete.
1774 	 */
1775 	if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1776 	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1777 	     list_empty(&ctx->ordered_extents)))
1778 		return true;
1779 
1780 	return false;
1781 }
1782 
1783 /*
1784  * fsync call for both files and directories.  This logs the inode into
1785  * the tree log instead of forcing full commits whenever possible.
1786  *
1787  * It needs to call filemap_fdatawait so that all ordered extent updates are
1788  * in the metadata btree are up to date for copying to the log.
1789  *
1790  * It drops the inode mutex before doing the tree log commit.  This is an
1791  * important optimization for directories because holding the mutex prevents
1792  * new operations on the dir while we write to disk.
1793  */
1794 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1795 {
1796 	struct dentry *dentry = file_dentry(file);
1797 	struct inode *inode = d_inode(dentry);
1798 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1799 	struct btrfs_root *root = BTRFS_I(inode)->root;
1800 	struct btrfs_trans_handle *trans;
1801 	struct btrfs_log_ctx ctx;
1802 	int ret = 0, err;
1803 	u64 len;
1804 	bool full_sync;
1805 
1806 	trace_btrfs_sync_file(file, datasync);
1807 
1808 	btrfs_init_log_ctx(&ctx, inode);
1809 
1810 	/*
1811 	 * Always set the range to a full range, otherwise we can get into
1812 	 * several problems, from missing file extent items to represent holes
1813 	 * when not using the NO_HOLES feature, to log tree corruption due to
1814 	 * races between hole detection during logging and completion of ordered
1815 	 * extents outside the range, to missing checksums due to ordered extents
1816 	 * for which we flushed only a subset of their pages.
1817 	 */
1818 	start = 0;
1819 	end = LLONG_MAX;
1820 	len = (u64)LLONG_MAX + 1;
1821 
1822 	/*
1823 	 * We write the dirty pages in the range and wait until they complete
1824 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1825 	 * multi-task, and make the performance up.  See
1826 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1827 	 */
1828 	ret = start_ordered_ops(inode, start, end);
1829 	if (ret)
1830 		goto out;
1831 
1832 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1833 
1834 	atomic_inc(&root->log_batch);
1835 
1836 	/*
1837 	 * Before we acquired the inode's lock and the mmap lock, someone may
1838 	 * have dirtied more pages in the target range. We need to make sure
1839 	 * that writeback for any such pages does not start while we are logging
1840 	 * the inode, because if it does, any of the following might happen when
1841 	 * we are not doing a full inode sync:
1842 	 *
1843 	 * 1) We log an extent after its writeback finishes but before its
1844 	 *    checksums are added to the csum tree, leading to -EIO errors
1845 	 *    when attempting to read the extent after a log replay.
1846 	 *
1847 	 * 2) We can end up logging an extent before its writeback finishes.
1848 	 *    Therefore after the log replay we will have a file extent item
1849 	 *    pointing to an unwritten extent (and no data checksums as well).
1850 	 *
1851 	 * So trigger writeback for any eventual new dirty pages and then we
1852 	 * wait for all ordered extents to complete below.
1853 	 */
1854 	ret = start_ordered_ops(inode, start, end);
1855 	if (ret) {
1856 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1857 		goto out;
1858 	}
1859 
1860 	/*
1861 	 * Always check for the full sync flag while holding the inode's lock,
1862 	 * to avoid races with other tasks. The flag must be either set all the
1863 	 * time during logging or always off all the time while logging.
1864 	 * We check the flag here after starting delalloc above, because when
1865 	 * running delalloc the full sync flag may be set if we need to drop
1866 	 * extra extent map ranges due to temporary memory allocation failures.
1867 	 */
1868 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1869 			     &BTRFS_I(inode)->runtime_flags);
1870 
1871 	/*
1872 	 * We have to do this here to avoid the priority inversion of waiting on
1873 	 * IO of a lower priority task while holding a transaction open.
1874 	 *
1875 	 * For a full fsync we wait for the ordered extents to complete while
1876 	 * for a fast fsync we wait just for writeback to complete, and then
1877 	 * attach the ordered extents to the transaction so that a transaction
1878 	 * commit waits for their completion, to avoid data loss if we fsync,
1879 	 * the current transaction commits before the ordered extents complete
1880 	 * and a power failure happens right after that.
1881 	 *
1882 	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1883 	 * logical address recorded in the ordered extent may change. We need
1884 	 * to wait for the IO to stabilize the logical address.
1885 	 */
1886 	if (full_sync || btrfs_is_zoned(fs_info)) {
1887 		ret = btrfs_wait_ordered_range(inode, start, len);
1888 		clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &BTRFS_I(inode)->runtime_flags);
1889 	} else {
1890 		/*
1891 		 * Get our ordered extents as soon as possible to avoid doing
1892 		 * checksum lookups in the csum tree, and use instead the
1893 		 * checksums attached to the ordered extents.
1894 		 */
1895 		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1896 						      &ctx.ordered_extents);
1897 		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
1898 		if (ret)
1899 			goto out_release_extents;
1900 
1901 		/*
1902 		 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after
1903 		 * starting and waiting for writeback, because for buffered IO
1904 		 * it may have been set during the end IO callback
1905 		 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in
1906 		 * case an error happened and we need to wait for ordered
1907 		 * extents to complete so that any extent maps that point to
1908 		 * unwritten locations are dropped and we don't log them.
1909 		 */
1910 		if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR,
1911 				       &BTRFS_I(inode)->runtime_flags))
1912 			ret = btrfs_wait_ordered_range(inode, start, len);
1913 	}
1914 
1915 	if (ret)
1916 		goto out_release_extents;
1917 
1918 	atomic_inc(&root->log_batch);
1919 
1920 	if (skip_inode_logging(&ctx)) {
1921 		/*
1922 		 * We've had everything committed since the last time we were
1923 		 * modified so clear this flag in case it was set for whatever
1924 		 * reason, it's no longer relevant.
1925 		 */
1926 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1927 			  &BTRFS_I(inode)->runtime_flags);
1928 		/*
1929 		 * An ordered extent might have started before and completed
1930 		 * already with io errors, in which case the inode was not
1931 		 * updated and we end up here. So check the inode's mapping
1932 		 * for any errors that might have happened since we last
1933 		 * checked called fsync.
1934 		 */
1935 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
1936 		goto out_release_extents;
1937 	}
1938 
1939 	btrfs_init_log_ctx_scratch_eb(&ctx);
1940 
1941 	/*
1942 	 * We use start here because we will need to wait on the IO to complete
1943 	 * in btrfs_sync_log, which could require joining a transaction (for
1944 	 * example checking cross references in the nocow path).  If we use join
1945 	 * here we could get into a situation where we're waiting on IO to
1946 	 * happen that is blocked on a transaction trying to commit.  With start
1947 	 * we inc the extwriter counter, so we wait for all extwriters to exit
1948 	 * before we start blocking joiners.  This comment is to keep somebody
1949 	 * from thinking they are super smart and changing this to
1950 	 * btrfs_join_transaction *cough*Josef*cough*.
1951 	 */
1952 	trans = btrfs_start_transaction(root, 0);
1953 	if (IS_ERR(trans)) {
1954 		ret = PTR_ERR(trans);
1955 		goto out_release_extents;
1956 	}
1957 	trans->in_fsync = true;
1958 
1959 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1960 	/*
1961 	 * Scratch eb no longer needed, release before syncing log or commit
1962 	 * transaction, to avoid holding unnecessary memory during such long
1963 	 * operations.
1964 	 */
1965 	if (ctx.scratch_eb) {
1966 		free_extent_buffer(ctx.scratch_eb);
1967 		ctx.scratch_eb = NULL;
1968 	}
1969 	btrfs_release_log_ctx_extents(&ctx);
1970 	if (ret < 0) {
1971 		/* Fallthrough and commit/free transaction. */
1972 		ret = BTRFS_LOG_FORCE_COMMIT;
1973 	}
1974 
1975 	/* we've logged all the items and now have a consistent
1976 	 * version of the file in the log.  It is possible that
1977 	 * someone will come in and modify the file, but that's
1978 	 * fine because the log is consistent on disk, and we
1979 	 * have references to all of the file's extents
1980 	 *
1981 	 * It is possible that someone will come in and log the
1982 	 * file again, but that will end up using the synchronization
1983 	 * inside btrfs_sync_log to keep things safe.
1984 	 */
1985 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1986 
1987 	if (ret == BTRFS_NO_LOG_SYNC) {
1988 		ret = btrfs_end_transaction(trans);
1989 		goto out;
1990 	}
1991 
1992 	/* We successfully logged the inode, attempt to sync the log. */
1993 	if (!ret) {
1994 		ret = btrfs_sync_log(trans, root, &ctx);
1995 		if (!ret) {
1996 			ret = btrfs_end_transaction(trans);
1997 			goto out;
1998 		}
1999 	}
2000 
2001 	/*
2002 	 * At this point we need to commit the transaction because we had
2003 	 * btrfs_need_log_full_commit() or some other error.
2004 	 *
2005 	 * If we didn't do a full sync we have to stop the trans handle, wait on
2006 	 * the ordered extents, start it again and commit the transaction.  If
2007 	 * we attempt to wait on the ordered extents here we could deadlock with
2008 	 * something like fallocate() that is holding the extent lock trying to
2009 	 * start a transaction while some other thread is trying to commit the
2010 	 * transaction while we (fsync) are currently holding the transaction
2011 	 * open.
2012 	 */
2013 	if (!full_sync) {
2014 		ret = btrfs_end_transaction(trans);
2015 		if (ret)
2016 			goto out;
2017 		ret = btrfs_wait_ordered_range(inode, start, len);
2018 		if (ret)
2019 			goto out;
2020 
2021 		/*
2022 		 * This is safe to use here because we're only interested in
2023 		 * making sure the transaction that had the ordered extents is
2024 		 * committed.  We aren't waiting on anything past this point,
2025 		 * we're purely getting the transaction and committing it.
2026 		 */
2027 		trans = btrfs_attach_transaction_barrier(root);
2028 		if (IS_ERR(trans)) {
2029 			ret = PTR_ERR(trans);
2030 
2031 			/*
2032 			 * We committed the transaction and there's no currently
2033 			 * running transaction, this means everything we care
2034 			 * about made it to disk and we are done.
2035 			 */
2036 			if (ret == -ENOENT)
2037 				ret = 0;
2038 			goto out;
2039 		}
2040 	}
2041 
2042 	ret = btrfs_commit_transaction(trans);
2043 out:
2044 	free_extent_buffer(ctx.scratch_eb);
2045 	ASSERT(list_empty(&ctx.list));
2046 	ASSERT(list_empty(&ctx.conflict_inodes));
2047 	err = file_check_and_advance_wb_err(file);
2048 	if (!ret)
2049 		ret = err;
2050 	return ret > 0 ? -EIO : ret;
2051 
2052 out_release_extents:
2053 	btrfs_release_log_ctx_extents(&ctx);
2054 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2055 	goto out;
2056 }
2057 
2058 /*
2059  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
2060  * called from a page fault handler when a page is first dirtied. Hence we must
2061  * be careful to check for EOF conditions here. We set the page up correctly
2062  * for a written page which means we get ENOSPC checking when writing into
2063  * holes and correct delalloc and unwritten extent mapping on filesystems that
2064  * support these features.
2065  *
2066  * We are not allowed to take the i_mutex here so we have to play games to
2067  * protect against truncate races as the page could now be beyond EOF.  Because
2068  * truncate_setsize() writes the inode size before removing pages, once we have
2069  * the page lock we can determine safely if the page is beyond EOF. If it is not
2070  * beyond EOF, then the page is guaranteed safe against truncation until we
2071  * unlock the page.
2072  */
2073 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
2074 {
2075 	struct page *page = vmf->page;
2076 	struct folio *folio = page_folio(page);
2077 	struct inode *inode = file_inode(vmf->vma->vm_file);
2078 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2079 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2080 	struct btrfs_ordered_extent *ordered;
2081 	struct extent_state *cached_state = NULL;
2082 	struct extent_changeset *data_reserved = NULL;
2083 	unsigned long zero_start;
2084 	loff_t size;
2085 	vm_fault_t ret;
2086 	int ret2;
2087 	int reserved = 0;
2088 	u64 reserved_space;
2089 	u64 page_start;
2090 	u64 page_end;
2091 	u64 end;
2092 
2093 	ASSERT(folio_order(folio) == 0);
2094 
2095 	reserved_space = PAGE_SIZE;
2096 
2097 	sb_start_pagefault(inode->i_sb);
2098 	page_start = page_offset(page);
2099 	page_end = page_start + PAGE_SIZE - 1;
2100 	end = page_end;
2101 
2102 	/*
2103 	 * Reserving delalloc space after obtaining the page lock can lead to
2104 	 * deadlock. For example, if a dirty page is locked by this function
2105 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
2106 	 * dirty page write out, then the btrfs_writepages() function could
2107 	 * end up waiting indefinitely to get a lock on the page currently
2108 	 * being processed by btrfs_page_mkwrite() function.
2109 	 */
2110 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
2111 					    page_start, reserved_space);
2112 	if (!ret2) {
2113 		ret2 = file_update_time(vmf->vma->vm_file);
2114 		reserved = 1;
2115 	}
2116 	if (ret2) {
2117 		ret = vmf_error(ret2);
2118 		if (reserved)
2119 			goto out;
2120 		goto out_noreserve;
2121 	}
2122 
2123 	/* Make the VM retry the fault. */
2124 	ret = VM_FAULT_NOPAGE;
2125 again:
2126 	down_read(&BTRFS_I(inode)->i_mmap_lock);
2127 	lock_page(page);
2128 	size = i_size_read(inode);
2129 
2130 	if ((page->mapping != inode->i_mapping) ||
2131 	    (page_start >= size)) {
2132 		/* Page got truncated out from underneath us. */
2133 		goto out_unlock;
2134 	}
2135 	wait_on_page_writeback(page);
2136 
2137 	lock_extent(io_tree, page_start, page_end, &cached_state);
2138 	ret2 = set_page_extent_mapped(page);
2139 	if (ret2 < 0) {
2140 		ret = vmf_error(ret2);
2141 		unlock_extent(io_tree, page_start, page_end, &cached_state);
2142 		goto out_unlock;
2143 	}
2144 
2145 	/*
2146 	 * We can't set the delalloc bits if there are pending ordered
2147 	 * extents.  Drop our locks and wait for them to finish.
2148 	 */
2149 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE);
2150 	if (ordered) {
2151 		unlock_extent(io_tree, page_start, page_end, &cached_state);
2152 		unlock_page(page);
2153 		up_read(&BTRFS_I(inode)->i_mmap_lock);
2154 		btrfs_start_ordered_extent(ordered);
2155 		btrfs_put_ordered_extent(ordered);
2156 		goto again;
2157 	}
2158 
2159 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
2160 		reserved_space = round_up(size - page_start, fs_info->sectorsize);
2161 		if (reserved_space < PAGE_SIZE) {
2162 			end = page_start + reserved_space - 1;
2163 			btrfs_delalloc_release_space(BTRFS_I(inode),
2164 					data_reserved, page_start,
2165 					PAGE_SIZE - reserved_space, true);
2166 		}
2167 	}
2168 
2169 	/*
2170 	 * page_mkwrite gets called when the page is firstly dirtied after it's
2171 	 * faulted in, but write(2) could also dirty a page and set delalloc
2172 	 * bits, thus in this case for space account reason, we still need to
2173 	 * clear any delalloc bits within this page range since we have to
2174 	 * reserve data&meta space before lock_page() (see above comments).
2175 	 */
2176 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
2177 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
2178 			  EXTENT_DEFRAG, &cached_state);
2179 
2180 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
2181 					&cached_state);
2182 	if (ret2) {
2183 		unlock_extent(io_tree, page_start, page_end, &cached_state);
2184 		ret = VM_FAULT_SIGBUS;
2185 		goto out_unlock;
2186 	}
2187 
2188 	/* Page is wholly or partially inside EOF. */
2189 	if (page_start + PAGE_SIZE > size)
2190 		zero_start = offset_in_page(size);
2191 	else
2192 		zero_start = PAGE_SIZE;
2193 
2194 	if (zero_start != PAGE_SIZE)
2195 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
2196 
2197 	btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2198 	btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
2199 	btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
2200 
2201 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
2202 
2203 	unlock_extent(io_tree, page_start, page_end, &cached_state);
2204 	up_read(&BTRFS_I(inode)->i_mmap_lock);
2205 
2206 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2207 	sb_end_pagefault(inode->i_sb);
2208 	extent_changeset_free(data_reserved);
2209 	return VM_FAULT_LOCKED;
2210 
2211 out_unlock:
2212 	unlock_page(page);
2213 	up_read(&BTRFS_I(inode)->i_mmap_lock);
2214 out:
2215 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2216 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
2217 				     reserved_space, (ret != 0));
2218 out_noreserve:
2219 	sb_end_pagefault(inode->i_sb);
2220 	extent_changeset_free(data_reserved);
2221 	return ret;
2222 }
2223 
2224 static const struct vm_operations_struct btrfs_file_vm_ops = {
2225 	.fault		= filemap_fault,
2226 	.map_pages	= filemap_map_pages,
2227 	.page_mkwrite	= btrfs_page_mkwrite,
2228 };
2229 
2230 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2231 {
2232 	struct address_space *mapping = filp->f_mapping;
2233 
2234 	if (!mapping->a_ops->read_folio)
2235 		return -ENOEXEC;
2236 
2237 	file_accessed(filp);
2238 	vma->vm_ops = &btrfs_file_vm_ops;
2239 
2240 	return 0;
2241 }
2242 
2243 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2244 			  int slot, u64 start, u64 end)
2245 {
2246 	struct btrfs_file_extent_item *fi;
2247 	struct btrfs_key key;
2248 
2249 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2250 		return 0;
2251 
2252 	btrfs_item_key_to_cpu(leaf, &key, slot);
2253 	if (key.objectid != btrfs_ino(inode) ||
2254 	    key.type != BTRFS_EXTENT_DATA_KEY)
2255 		return 0;
2256 
2257 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2258 
2259 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2260 		return 0;
2261 
2262 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2263 		return 0;
2264 
2265 	if (key.offset == end)
2266 		return 1;
2267 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2268 		return 1;
2269 	return 0;
2270 }
2271 
2272 static int fill_holes(struct btrfs_trans_handle *trans,
2273 		struct btrfs_inode *inode,
2274 		struct btrfs_path *path, u64 offset, u64 end)
2275 {
2276 	struct btrfs_fs_info *fs_info = trans->fs_info;
2277 	struct btrfs_root *root = inode->root;
2278 	struct extent_buffer *leaf;
2279 	struct btrfs_file_extent_item *fi;
2280 	struct extent_map *hole_em;
2281 	struct btrfs_key key;
2282 	int ret;
2283 
2284 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2285 		goto out;
2286 
2287 	key.objectid = btrfs_ino(inode);
2288 	key.type = BTRFS_EXTENT_DATA_KEY;
2289 	key.offset = offset;
2290 
2291 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2292 	if (ret <= 0) {
2293 		/*
2294 		 * We should have dropped this offset, so if we find it then
2295 		 * something has gone horribly wrong.
2296 		 */
2297 		if (ret == 0)
2298 			ret = -EINVAL;
2299 		return ret;
2300 	}
2301 
2302 	leaf = path->nodes[0];
2303 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2304 		u64 num_bytes;
2305 
2306 		path->slots[0]--;
2307 		fi = btrfs_item_ptr(leaf, path->slots[0],
2308 				    struct btrfs_file_extent_item);
2309 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2310 			end - offset;
2311 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2312 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2313 		btrfs_set_file_extent_offset(leaf, fi, 0);
2314 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2315 		btrfs_mark_buffer_dirty(trans, leaf);
2316 		goto out;
2317 	}
2318 
2319 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2320 		u64 num_bytes;
2321 
2322 		key.offset = offset;
2323 		btrfs_set_item_key_safe(trans, path, &key);
2324 		fi = btrfs_item_ptr(leaf, path->slots[0],
2325 				    struct btrfs_file_extent_item);
2326 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2327 			offset;
2328 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2329 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2330 		btrfs_set_file_extent_offset(leaf, fi, 0);
2331 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2332 		btrfs_mark_buffer_dirty(trans, leaf);
2333 		goto out;
2334 	}
2335 	btrfs_release_path(path);
2336 
2337 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2338 				       end - offset);
2339 	if (ret)
2340 		return ret;
2341 
2342 out:
2343 	btrfs_release_path(path);
2344 
2345 	hole_em = alloc_extent_map();
2346 	if (!hole_em) {
2347 		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2348 		btrfs_set_inode_full_sync(inode);
2349 	} else {
2350 		hole_em->start = offset;
2351 		hole_em->len = end - offset;
2352 		hole_em->ram_bytes = hole_em->len;
2353 		hole_em->orig_start = offset;
2354 
2355 		hole_em->block_start = EXTENT_MAP_HOLE;
2356 		hole_em->block_len = 0;
2357 		hole_em->orig_block_len = 0;
2358 		hole_em->generation = trans->transid;
2359 
2360 		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2361 		free_extent_map(hole_em);
2362 		if (ret)
2363 			btrfs_set_inode_full_sync(inode);
2364 	}
2365 
2366 	return 0;
2367 }
2368 
2369 /*
2370  * Find a hole extent on given inode and change start/len to the end of hole
2371  * extent.(hole/vacuum extent whose em->start <= start &&
2372  *	   em->start + em->len > start)
2373  * When a hole extent is found, return 1 and modify start/len.
2374  */
2375 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2376 {
2377 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2378 	struct extent_map *em;
2379 	int ret = 0;
2380 
2381 	em = btrfs_get_extent(inode, NULL,
2382 			      round_down(*start, fs_info->sectorsize),
2383 			      round_up(*len, fs_info->sectorsize));
2384 	if (IS_ERR(em))
2385 		return PTR_ERR(em);
2386 
2387 	/* Hole or vacuum extent(only exists in no-hole mode) */
2388 	if (em->block_start == EXTENT_MAP_HOLE) {
2389 		ret = 1;
2390 		*len = em->start + em->len > *start + *len ?
2391 		       0 : *start + *len - em->start - em->len;
2392 		*start = em->start + em->len;
2393 	}
2394 	free_extent_map(em);
2395 	return ret;
2396 }
2397 
2398 static void btrfs_punch_hole_lock_range(struct inode *inode,
2399 					const u64 lockstart,
2400 					const u64 lockend,
2401 					struct extent_state **cached_state)
2402 {
2403 	/*
2404 	 * For subpage case, if the range is not at page boundary, we could
2405 	 * have pages at the leading/tailing part of the range.
2406 	 * This could lead to dead loop since filemap_range_has_page()
2407 	 * will always return true.
2408 	 * So here we need to do extra page alignment for
2409 	 * filemap_range_has_page().
2410 	 */
2411 	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2412 	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2413 
2414 	while (1) {
2415 		truncate_pagecache_range(inode, lockstart, lockend);
2416 
2417 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2418 			    cached_state);
2419 		/*
2420 		 * We can't have ordered extents in the range, nor dirty/writeback
2421 		 * pages, because we have locked the inode's VFS lock in exclusive
2422 		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2423 		 * we have flushed all delalloc in the range and we have waited
2424 		 * for any ordered extents in the range to complete.
2425 		 * We can race with anyone reading pages from this range, so after
2426 		 * locking the range check if we have pages in the range, and if
2427 		 * we do, unlock the range and retry.
2428 		 */
2429 		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2430 					    page_lockend))
2431 			break;
2432 
2433 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2434 			      cached_state);
2435 	}
2436 
2437 	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2438 }
2439 
2440 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2441 				     struct btrfs_inode *inode,
2442 				     struct btrfs_path *path,
2443 				     struct btrfs_replace_extent_info *extent_info,
2444 				     const u64 replace_len,
2445 				     const u64 bytes_to_drop)
2446 {
2447 	struct btrfs_fs_info *fs_info = trans->fs_info;
2448 	struct btrfs_root *root = inode->root;
2449 	struct btrfs_file_extent_item *extent;
2450 	struct extent_buffer *leaf;
2451 	struct btrfs_key key;
2452 	int slot;
2453 	int ret;
2454 
2455 	if (replace_len == 0)
2456 		return 0;
2457 
2458 	if (extent_info->disk_offset == 0 &&
2459 	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2460 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2461 		return 0;
2462 	}
2463 
2464 	key.objectid = btrfs_ino(inode);
2465 	key.type = BTRFS_EXTENT_DATA_KEY;
2466 	key.offset = extent_info->file_offset;
2467 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2468 				      sizeof(struct btrfs_file_extent_item));
2469 	if (ret)
2470 		return ret;
2471 	leaf = path->nodes[0];
2472 	slot = path->slots[0];
2473 	write_extent_buffer(leaf, extent_info->extent_buf,
2474 			    btrfs_item_ptr_offset(leaf, slot),
2475 			    sizeof(struct btrfs_file_extent_item));
2476 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2477 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2478 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2479 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2480 	if (extent_info->is_new_extent)
2481 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2482 	btrfs_mark_buffer_dirty(trans, leaf);
2483 	btrfs_release_path(path);
2484 
2485 	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2486 						replace_len);
2487 	if (ret)
2488 		return ret;
2489 
2490 	/* If it's a hole, nothing more needs to be done. */
2491 	if (extent_info->disk_offset == 0) {
2492 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2493 		return 0;
2494 	}
2495 
2496 	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2497 
2498 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2499 		key.objectid = extent_info->disk_offset;
2500 		key.type = BTRFS_EXTENT_ITEM_KEY;
2501 		key.offset = extent_info->disk_len;
2502 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2503 						       btrfs_ino(inode),
2504 						       extent_info->file_offset,
2505 						       extent_info->qgroup_reserved,
2506 						       &key);
2507 	} else {
2508 		struct btrfs_ref ref = {
2509 			.action = BTRFS_ADD_DELAYED_REF,
2510 			.bytenr = extent_info->disk_offset,
2511 			.num_bytes = extent_info->disk_len,
2512 			.owning_root = btrfs_root_id(root),
2513 			.ref_root = btrfs_root_id(root),
2514 		};
2515 		u64 ref_offset;
2516 
2517 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2518 		btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false);
2519 		ret = btrfs_inc_extent_ref(trans, &ref);
2520 	}
2521 
2522 	extent_info->insertions++;
2523 
2524 	return ret;
2525 }
2526 
2527 /*
2528  * The respective range must have been previously locked, as well as the inode.
2529  * The end offset is inclusive (last byte of the range).
2530  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2531  * the file range with an extent.
2532  * When not punching a hole, we don't want to end up in a state where we dropped
2533  * extents without inserting a new one, so we must abort the transaction to avoid
2534  * a corruption.
2535  */
2536 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2537 			       struct btrfs_path *path, const u64 start,
2538 			       const u64 end,
2539 			       struct btrfs_replace_extent_info *extent_info,
2540 			       struct btrfs_trans_handle **trans_out)
2541 {
2542 	struct btrfs_drop_extents_args drop_args = { 0 };
2543 	struct btrfs_root *root = inode->root;
2544 	struct btrfs_fs_info *fs_info = root->fs_info;
2545 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2546 	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2547 	struct btrfs_trans_handle *trans = NULL;
2548 	struct btrfs_block_rsv *rsv;
2549 	unsigned int rsv_count;
2550 	u64 cur_offset;
2551 	u64 len = end - start;
2552 	int ret = 0;
2553 
2554 	if (end <= start)
2555 		return -EINVAL;
2556 
2557 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2558 	if (!rsv) {
2559 		ret = -ENOMEM;
2560 		goto out;
2561 	}
2562 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2563 	rsv->failfast = true;
2564 
2565 	/*
2566 	 * 1 - update the inode
2567 	 * 1 - removing the extents in the range
2568 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2569 	 *     replacing the range with a new extent
2570 	 */
2571 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2572 		rsv_count = 3;
2573 	else
2574 		rsv_count = 2;
2575 
2576 	trans = btrfs_start_transaction(root, rsv_count);
2577 	if (IS_ERR(trans)) {
2578 		ret = PTR_ERR(trans);
2579 		trans = NULL;
2580 		goto out_free;
2581 	}
2582 
2583 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2584 				      min_size, false);
2585 	if (WARN_ON(ret))
2586 		goto out_trans;
2587 	trans->block_rsv = rsv;
2588 
2589 	cur_offset = start;
2590 	drop_args.path = path;
2591 	drop_args.end = end + 1;
2592 	drop_args.drop_cache = true;
2593 	while (cur_offset < end) {
2594 		drop_args.start = cur_offset;
2595 		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2596 		/* If we are punching a hole decrement the inode's byte count */
2597 		if (!extent_info)
2598 			btrfs_update_inode_bytes(inode, 0,
2599 						 drop_args.bytes_found);
2600 		if (ret != -ENOSPC) {
2601 			/*
2602 			 * The only time we don't want to abort is if we are
2603 			 * attempting to clone a partial inline extent, in which
2604 			 * case we'll get EOPNOTSUPP.  However if we aren't
2605 			 * clone we need to abort no matter what, because if we
2606 			 * got EOPNOTSUPP via prealloc then we messed up and
2607 			 * need to abort.
2608 			 */
2609 			if (ret &&
2610 			    (ret != -EOPNOTSUPP ||
2611 			     (extent_info && extent_info->is_new_extent)))
2612 				btrfs_abort_transaction(trans, ret);
2613 			break;
2614 		}
2615 
2616 		trans->block_rsv = &fs_info->trans_block_rsv;
2617 
2618 		if (!extent_info && cur_offset < drop_args.drop_end &&
2619 		    cur_offset < ino_size) {
2620 			ret = fill_holes(trans, inode, path, cur_offset,
2621 					 drop_args.drop_end);
2622 			if (ret) {
2623 				/*
2624 				 * If we failed then we didn't insert our hole
2625 				 * entries for the area we dropped, so now the
2626 				 * fs is corrupted, so we must abort the
2627 				 * transaction.
2628 				 */
2629 				btrfs_abort_transaction(trans, ret);
2630 				break;
2631 			}
2632 		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2633 			/*
2634 			 * We are past the i_size here, but since we didn't
2635 			 * insert holes we need to clear the mapped area so we
2636 			 * know to not set disk_i_size in this area until a new
2637 			 * file extent is inserted here.
2638 			 */
2639 			ret = btrfs_inode_clear_file_extent_range(inode,
2640 					cur_offset,
2641 					drop_args.drop_end - cur_offset);
2642 			if (ret) {
2643 				/*
2644 				 * We couldn't clear our area, so we could
2645 				 * presumably adjust up and corrupt the fs, so
2646 				 * we need to abort.
2647 				 */
2648 				btrfs_abort_transaction(trans, ret);
2649 				break;
2650 			}
2651 		}
2652 
2653 		if (extent_info &&
2654 		    drop_args.drop_end > extent_info->file_offset) {
2655 			u64 replace_len = drop_args.drop_end -
2656 					  extent_info->file_offset;
2657 
2658 			ret = btrfs_insert_replace_extent(trans, inode,	path,
2659 					extent_info, replace_len,
2660 					drop_args.bytes_found);
2661 			if (ret) {
2662 				btrfs_abort_transaction(trans, ret);
2663 				break;
2664 			}
2665 			extent_info->data_len -= replace_len;
2666 			extent_info->data_offset += replace_len;
2667 			extent_info->file_offset += replace_len;
2668 		}
2669 
2670 		/*
2671 		 * We are releasing our handle on the transaction, balance the
2672 		 * dirty pages of the btree inode and flush delayed items, and
2673 		 * then get a new transaction handle, which may now point to a
2674 		 * new transaction in case someone else may have committed the
2675 		 * transaction we used to replace/drop file extent items. So
2676 		 * bump the inode's iversion and update mtime and ctime except
2677 		 * if we are called from a dedupe context. This is because a
2678 		 * power failure/crash may happen after the transaction is
2679 		 * committed and before we finish replacing/dropping all the
2680 		 * file extent items we need.
2681 		 */
2682 		inode_inc_iversion(&inode->vfs_inode);
2683 
2684 		if (!extent_info || extent_info->update_times)
2685 			inode_set_mtime_to_ts(&inode->vfs_inode,
2686 					      inode_set_ctime_current(&inode->vfs_inode));
2687 
2688 		ret = btrfs_update_inode(trans, inode);
2689 		if (ret)
2690 			break;
2691 
2692 		btrfs_end_transaction(trans);
2693 		btrfs_btree_balance_dirty(fs_info);
2694 
2695 		trans = btrfs_start_transaction(root, rsv_count);
2696 		if (IS_ERR(trans)) {
2697 			ret = PTR_ERR(trans);
2698 			trans = NULL;
2699 			break;
2700 		}
2701 
2702 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2703 					      rsv, min_size, false);
2704 		if (WARN_ON(ret))
2705 			break;
2706 		trans->block_rsv = rsv;
2707 
2708 		cur_offset = drop_args.drop_end;
2709 		len = end - cur_offset;
2710 		if (!extent_info && len) {
2711 			ret = find_first_non_hole(inode, &cur_offset, &len);
2712 			if (unlikely(ret < 0))
2713 				break;
2714 			if (ret && !len) {
2715 				ret = 0;
2716 				break;
2717 			}
2718 		}
2719 	}
2720 
2721 	/*
2722 	 * If we were cloning, force the next fsync to be a full one since we
2723 	 * we replaced (or just dropped in the case of cloning holes when
2724 	 * NO_HOLES is enabled) file extent items and did not setup new extent
2725 	 * maps for the replacement extents (or holes).
2726 	 */
2727 	if (extent_info && !extent_info->is_new_extent)
2728 		btrfs_set_inode_full_sync(inode);
2729 
2730 	if (ret)
2731 		goto out_trans;
2732 
2733 	trans->block_rsv = &fs_info->trans_block_rsv;
2734 	/*
2735 	 * If we are using the NO_HOLES feature we might have had already an
2736 	 * hole that overlaps a part of the region [lockstart, lockend] and
2737 	 * ends at (or beyond) lockend. Since we have no file extent items to
2738 	 * represent holes, drop_end can be less than lockend and so we must
2739 	 * make sure we have an extent map representing the existing hole (the
2740 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2741 	 * map representing the existing hole), otherwise the fast fsync path
2742 	 * will not record the existence of the hole region
2743 	 * [existing_hole_start, lockend].
2744 	 */
2745 	if (drop_args.drop_end <= end)
2746 		drop_args.drop_end = end + 1;
2747 	/*
2748 	 * Don't insert file hole extent item if it's for a range beyond eof
2749 	 * (because it's useless) or if it represents a 0 bytes range (when
2750 	 * cur_offset == drop_end).
2751 	 */
2752 	if (!extent_info && cur_offset < ino_size &&
2753 	    cur_offset < drop_args.drop_end) {
2754 		ret = fill_holes(trans, inode, path, cur_offset,
2755 				 drop_args.drop_end);
2756 		if (ret) {
2757 			/* Same comment as above. */
2758 			btrfs_abort_transaction(trans, ret);
2759 			goto out_trans;
2760 		}
2761 	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2762 		/* See the comment in the loop above for the reasoning here. */
2763 		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2764 					drop_args.drop_end - cur_offset);
2765 		if (ret) {
2766 			btrfs_abort_transaction(trans, ret);
2767 			goto out_trans;
2768 		}
2769 
2770 	}
2771 	if (extent_info) {
2772 		ret = btrfs_insert_replace_extent(trans, inode, path,
2773 				extent_info, extent_info->data_len,
2774 				drop_args.bytes_found);
2775 		if (ret) {
2776 			btrfs_abort_transaction(trans, ret);
2777 			goto out_trans;
2778 		}
2779 	}
2780 
2781 out_trans:
2782 	if (!trans)
2783 		goto out_free;
2784 
2785 	trans->block_rsv = &fs_info->trans_block_rsv;
2786 	if (ret)
2787 		btrfs_end_transaction(trans);
2788 	else
2789 		*trans_out = trans;
2790 out_free:
2791 	btrfs_free_block_rsv(fs_info, rsv);
2792 out:
2793 	return ret;
2794 }
2795 
2796 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2797 {
2798 	struct inode *inode = file_inode(file);
2799 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2800 	struct btrfs_root *root = BTRFS_I(inode)->root;
2801 	struct extent_state *cached_state = NULL;
2802 	struct btrfs_path *path;
2803 	struct btrfs_trans_handle *trans = NULL;
2804 	u64 lockstart;
2805 	u64 lockend;
2806 	u64 tail_start;
2807 	u64 tail_len;
2808 	u64 orig_start = offset;
2809 	int ret = 0;
2810 	bool same_block;
2811 	u64 ino_size;
2812 	bool truncated_block = false;
2813 	bool updated_inode = false;
2814 
2815 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2816 
2817 	ret = btrfs_wait_ordered_range(inode, offset, len);
2818 	if (ret)
2819 		goto out_only_mutex;
2820 
2821 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2822 	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2823 	if (ret < 0)
2824 		goto out_only_mutex;
2825 	if (ret && !len) {
2826 		/* Already in a large hole */
2827 		ret = 0;
2828 		goto out_only_mutex;
2829 	}
2830 
2831 	ret = file_modified(file);
2832 	if (ret)
2833 		goto out_only_mutex;
2834 
2835 	lockstart = round_up(offset, fs_info->sectorsize);
2836 	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2837 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2838 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2839 	/*
2840 	 * We needn't truncate any block which is beyond the end of the file
2841 	 * because we are sure there is no data there.
2842 	 */
2843 	/*
2844 	 * Only do this if we are in the same block and we aren't doing the
2845 	 * entire block.
2846 	 */
2847 	if (same_block && len < fs_info->sectorsize) {
2848 		if (offset < ino_size) {
2849 			truncated_block = true;
2850 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2851 						   0);
2852 		} else {
2853 			ret = 0;
2854 		}
2855 		goto out_only_mutex;
2856 	}
2857 
2858 	/* zero back part of the first block */
2859 	if (offset < ino_size) {
2860 		truncated_block = true;
2861 		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2862 		if (ret) {
2863 			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2864 			return ret;
2865 		}
2866 	}
2867 
2868 	/* Check the aligned pages after the first unaligned page,
2869 	 * if offset != orig_start, which means the first unaligned page
2870 	 * including several following pages are already in holes,
2871 	 * the extra check can be skipped */
2872 	if (offset == orig_start) {
2873 		/* after truncate page, check hole again */
2874 		len = offset + len - lockstart;
2875 		offset = lockstart;
2876 		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2877 		if (ret < 0)
2878 			goto out_only_mutex;
2879 		if (ret && !len) {
2880 			ret = 0;
2881 			goto out_only_mutex;
2882 		}
2883 		lockstart = offset;
2884 	}
2885 
2886 	/* Check the tail unaligned part is in a hole */
2887 	tail_start = lockend + 1;
2888 	tail_len = offset + len - tail_start;
2889 	if (tail_len) {
2890 		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2891 		if (unlikely(ret < 0))
2892 			goto out_only_mutex;
2893 		if (!ret) {
2894 			/* zero the front end of the last page */
2895 			if (tail_start + tail_len < ino_size) {
2896 				truncated_block = true;
2897 				ret = btrfs_truncate_block(BTRFS_I(inode),
2898 							tail_start + tail_len,
2899 							0, 1);
2900 				if (ret)
2901 					goto out_only_mutex;
2902 			}
2903 		}
2904 	}
2905 
2906 	if (lockend < lockstart) {
2907 		ret = 0;
2908 		goto out_only_mutex;
2909 	}
2910 
2911 	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2912 
2913 	path = btrfs_alloc_path();
2914 	if (!path) {
2915 		ret = -ENOMEM;
2916 		goto out;
2917 	}
2918 
2919 	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2920 					 lockend, NULL, &trans);
2921 	btrfs_free_path(path);
2922 	if (ret)
2923 		goto out;
2924 
2925 	ASSERT(trans != NULL);
2926 	inode_inc_iversion(inode);
2927 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2928 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2929 	updated_inode = true;
2930 	btrfs_end_transaction(trans);
2931 	btrfs_btree_balance_dirty(fs_info);
2932 out:
2933 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2934 		      &cached_state);
2935 out_only_mutex:
2936 	if (!updated_inode && truncated_block && !ret) {
2937 		/*
2938 		 * If we only end up zeroing part of a page, we still need to
2939 		 * update the inode item, so that all the time fields are
2940 		 * updated as well as the necessary btrfs inode in memory fields
2941 		 * for detecting, at fsync time, if the inode isn't yet in the
2942 		 * log tree or it's there but not up to date.
2943 		 */
2944 		struct timespec64 now = inode_set_ctime_current(inode);
2945 
2946 		inode_inc_iversion(inode);
2947 		inode_set_mtime_to_ts(inode, now);
2948 		trans = btrfs_start_transaction(root, 1);
2949 		if (IS_ERR(trans)) {
2950 			ret = PTR_ERR(trans);
2951 		} else {
2952 			int ret2;
2953 
2954 			ret = btrfs_update_inode(trans, BTRFS_I(inode));
2955 			ret2 = btrfs_end_transaction(trans);
2956 			if (!ret)
2957 				ret = ret2;
2958 		}
2959 	}
2960 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2961 	return ret;
2962 }
2963 
2964 /* Helper structure to record which range is already reserved */
2965 struct falloc_range {
2966 	struct list_head list;
2967 	u64 start;
2968 	u64 len;
2969 };
2970 
2971 /*
2972  * Helper function to add falloc range
2973  *
2974  * Caller should have locked the larger range of extent containing
2975  * [start, len)
2976  */
2977 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2978 {
2979 	struct falloc_range *range = NULL;
2980 
2981 	if (!list_empty(head)) {
2982 		/*
2983 		 * As fallocate iterates by bytenr order, we only need to check
2984 		 * the last range.
2985 		 */
2986 		range = list_last_entry(head, struct falloc_range, list);
2987 		if (range->start + range->len == start) {
2988 			range->len += len;
2989 			return 0;
2990 		}
2991 	}
2992 
2993 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2994 	if (!range)
2995 		return -ENOMEM;
2996 	range->start = start;
2997 	range->len = len;
2998 	list_add_tail(&range->list, head);
2999 	return 0;
3000 }
3001 
3002 static int btrfs_fallocate_update_isize(struct inode *inode,
3003 					const u64 end,
3004 					const int mode)
3005 {
3006 	struct btrfs_trans_handle *trans;
3007 	struct btrfs_root *root = BTRFS_I(inode)->root;
3008 	int ret;
3009 	int ret2;
3010 
3011 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3012 		return 0;
3013 
3014 	trans = btrfs_start_transaction(root, 1);
3015 	if (IS_ERR(trans))
3016 		return PTR_ERR(trans);
3017 
3018 	inode_set_ctime_current(inode);
3019 	i_size_write(inode, end);
3020 	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3021 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
3022 	ret2 = btrfs_end_transaction(trans);
3023 
3024 	return ret ? ret : ret2;
3025 }
3026 
3027 enum {
3028 	RANGE_BOUNDARY_WRITTEN_EXTENT,
3029 	RANGE_BOUNDARY_PREALLOC_EXTENT,
3030 	RANGE_BOUNDARY_HOLE,
3031 };
3032 
3033 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3034 						 u64 offset)
3035 {
3036 	const u64 sectorsize = inode->root->fs_info->sectorsize;
3037 	struct extent_map *em;
3038 	int ret;
3039 
3040 	offset = round_down(offset, sectorsize);
3041 	em = btrfs_get_extent(inode, NULL, offset, sectorsize);
3042 	if (IS_ERR(em))
3043 		return PTR_ERR(em);
3044 
3045 	if (em->block_start == EXTENT_MAP_HOLE)
3046 		ret = RANGE_BOUNDARY_HOLE;
3047 	else if (em->flags & EXTENT_FLAG_PREALLOC)
3048 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3049 	else
3050 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3051 
3052 	free_extent_map(em);
3053 	return ret;
3054 }
3055 
3056 static int btrfs_zero_range(struct inode *inode,
3057 			    loff_t offset,
3058 			    loff_t len,
3059 			    const int mode)
3060 {
3061 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3062 	struct extent_map *em;
3063 	struct extent_changeset *data_reserved = NULL;
3064 	int ret;
3065 	u64 alloc_hint = 0;
3066 	const u64 sectorsize = fs_info->sectorsize;
3067 	u64 alloc_start = round_down(offset, sectorsize);
3068 	u64 alloc_end = round_up(offset + len, sectorsize);
3069 	u64 bytes_to_reserve = 0;
3070 	bool space_reserved = false;
3071 
3072 	em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
3073 			      alloc_end - alloc_start);
3074 	if (IS_ERR(em)) {
3075 		ret = PTR_ERR(em);
3076 		goto out;
3077 	}
3078 
3079 	/*
3080 	 * Avoid hole punching and extent allocation for some cases. More cases
3081 	 * could be considered, but these are unlikely common and we keep things
3082 	 * as simple as possible for now. Also, intentionally, if the target
3083 	 * range contains one or more prealloc extents together with regular
3084 	 * extents and holes, we drop all the existing extents and allocate a
3085 	 * new prealloc extent, so that we get a larger contiguous disk extent.
3086 	 */
3087 	if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
3088 		const u64 em_end = em->start + em->len;
3089 
3090 		if (em_end >= offset + len) {
3091 			/*
3092 			 * The whole range is already a prealloc extent,
3093 			 * do nothing except updating the inode's i_size if
3094 			 * needed.
3095 			 */
3096 			free_extent_map(em);
3097 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3098 							   mode);
3099 			goto out;
3100 		}
3101 		/*
3102 		 * Part of the range is already a prealloc extent, so operate
3103 		 * only on the remaining part of the range.
3104 		 */
3105 		alloc_start = em_end;
3106 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3107 		len = offset + len - alloc_start;
3108 		offset = alloc_start;
3109 		alloc_hint = em->block_start + em->len;
3110 	}
3111 	free_extent_map(em);
3112 
3113 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3114 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3115 		em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
3116 		if (IS_ERR(em)) {
3117 			ret = PTR_ERR(em);
3118 			goto out;
3119 		}
3120 
3121 		if (em->flags & EXTENT_FLAG_PREALLOC) {
3122 			free_extent_map(em);
3123 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3124 							   mode);
3125 			goto out;
3126 		}
3127 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3128 			free_extent_map(em);
3129 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3130 						   0);
3131 			if (!ret)
3132 				ret = btrfs_fallocate_update_isize(inode,
3133 								   offset + len,
3134 								   mode);
3135 			return ret;
3136 		}
3137 		free_extent_map(em);
3138 		alloc_start = round_down(offset, sectorsize);
3139 		alloc_end = alloc_start + sectorsize;
3140 		goto reserve_space;
3141 	}
3142 
3143 	alloc_start = round_up(offset, sectorsize);
3144 	alloc_end = round_down(offset + len, sectorsize);
3145 
3146 	/*
3147 	 * For unaligned ranges, check the pages at the boundaries, they might
3148 	 * map to an extent, in which case we need to partially zero them, or
3149 	 * they might map to a hole, in which case we need our allocation range
3150 	 * to cover them.
3151 	 */
3152 	if (!IS_ALIGNED(offset, sectorsize)) {
3153 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3154 							    offset);
3155 		if (ret < 0)
3156 			goto out;
3157 		if (ret == RANGE_BOUNDARY_HOLE) {
3158 			alloc_start = round_down(offset, sectorsize);
3159 			ret = 0;
3160 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3161 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3162 			if (ret)
3163 				goto out;
3164 		} else {
3165 			ret = 0;
3166 		}
3167 	}
3168 
3169 	if (!IS_ALIGNED(offset + len, sectorsize)) {
3170 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3171 							    offset + len);
3172 		if (ret < 0)
3173 			goto out;
3174 		if (ret == RANGE_BOUNDARY_HOLE) {
3175 			alloc_end = round_up(offset + len, sectorsize);
3176 			ret = 0;
3177 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3178 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3179 						   0, 1);
3180 			if (ret)
3181 				goto out;
3182 		} else {
3183 			ret = 0;
3184 		}
3185 	}
3186 
3187 reserve_space:
3188 	if (alloc_start < alloc_end) {
3189 		struct extent_state *cached_state = NULL;
3190 		const u64 lockstart = alloc_start;
3191 		const u64 lockend = alloc_end - 1;
3192 
3193 		bytes_to_reserve = alloc_end - alloc_start;
3194 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3195 						      bytes_to_reserve);
3196 		if (ret < 0)
3197 			goto out;
3198 		space_reserved = true;
3199 		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3200 					    &cached_state);
3201 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3202 						alloc_start, bytes_to_reserve);
3203 		if (ret) {
3204 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3205 				      lockend, &cached_state);
3206 			goto out;
3207 		}
3208 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3209 						alloc_end - alloc_start,
3210 						fs_info->sectorsize,
3211 						offset + len, &alloc_hint);
3212 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3213 			      &cached_state);
3214 		/* btrfs_prealloc_file_range releases reserved space on error */
3215 		if (ret) {
3216 			space_reserved = false;
3217 			goto out;
3218 		}
3219 	}
3220 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3221  out:
3222 	if (ret && space_reserved)
3223 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3224 					       alloc_start, bytes_to_reserve);
3225 	extent_changeset_free(data_reserved);
3226 
3227 	return ret;
3228 }
3229 
3230 static long btrfs_fallocate(struct file *file, int mode,
3231 			    loff_t offset, loff_t len)
3232 {
3233 	struct inode *inode = file_inode(file);
3234 	struct extent_state *cached_state = NULL;
3235 	struct extent_changeset *data_reserved = NULL;
3236 	struct falloc_range *range;
3237 	struct falloc_range *tmp;
3238 	LIST_HEAD(reserve_list);
3239 	u64 cur_offset;
3240 	u64 last_byte;
3241 	u64 alloc_start;
3242 	u64 alloc_end;
3243 	u64 alloc_hint = 0;
3244 	u64 locked_end;
3245 	u64 actual_end = 0;
3246 	u64 data_space_needed = 0;
3247 	u64 data_space_reserved = 0;
3248 	u64 qgroup_reserved = 0;
3249 	struct extent_map *em;
3250 	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3251 	int ret;
3252 
3253 	/* Do not allow fallocate in ZONED mode */
3254 	if (btrfs_is_zoned(inode_to_fs_info(inode)))
3255 		return -EOPNOTSUPP;
3256 
3257 	alloc_start = round_down(offset, blocksize);
3258 	alloc_end = round_up(offset + len, blocksize);
3259 	cur_offset = alloc_start;
3260 
3261 	/* Make sure we aren't being give some crap mode */
3262 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3263 		     FALLOC_FL_ZERO_RANGE))
3264 		return -EOPNOTSUPP;
3265 
3266 	if (mode & FALLOC_FL_PUNCH_HOLE)
3267 		return btrfs_punch_hole(file, offset, len);
3268 
3269 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3270 
3271 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3272 		ret = inode_newsize_ok(inode, offset + len);
3273 		if (ret)
3274 			goto out;
3275 	}
3276 
3277 	ret = file_modified(file);
3278 	if (ret)
3279 		goto out;
3280 
3281 	/*
3282 	 * TODO: Move these two operations after we have checked
3283 	 * accurate reserved space, or fallocate can still fail but
3284 	 * with page truncated or size expanded.
3285 	 *
3286 	 * But that's a minor problem and won't do much harm BTW.
3287 	 */
3288 	if (alloc_start > inode->i_size) {
3289 		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3290 					alloc_start);
3291 		if (ret)
3292 			goto out;
3293 	} else if (offset + len > inode->i_size) {
3294 		/*
3295 		 * If we are fallocating from the end of the file onward we
3296 		 * need to zero out the end of the block if i_size lands in the
3297 		 * middle of a block.
3298 		 */
3299 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3300 		if (ret)
3301 			goto out;
3302 	}
3303 
3304 	/*
3305 	 * We have locked the inode at the VFS level (in exclusive mode) and we
3306 	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3307 	 * locking the file range, flush all dealloc in the range and wait for
3308 	 * all ordered extents in the range to complete. After this we can lock
3309 	 * the file range and, due to the previous locking we did, we know there
3310 	 * can't be more delalloc or ordered extents in the range.
3311 	 */
3312 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3313 				       alloc_end - alloc_start);
3314 	if (ret)
3315 		goto out;
3316 
3317 	if (mode & FALLOC_FL_ZERO_RANGE) {
3318 		ret = btrfs_zero_range(inode, offset, len, mode);
3319 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3320 		return ret;
3321 	}
3322 
3323 	locked_end = alloc_end - 1;
3324 	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3325 		    &cached_state);
3326 
3327 	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3328 
3329 	/* First, check if we exceed the qgroup limit */
3330 	while (cur_offset < alloc_end) {
3331 		em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
3332 				      alloc_end - cur_offset);
3333 		if (IS_ERR(em)) {
3334 			ret = PTR_ERR(em);
3335 			break;
3336 		}
3337 		last_byte = min(extent_map_end(em), alloc_end);
3338 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3339 		last_byte = ALIGN(last_byte, blocksize);
3340 		if (em->block_start == EXTENT_MAP_HOLE ||
3341 		    (cur_offset >= inode->i_size &&
3342 		     !(em->flags & EXTENT_FLAG_PREALLOC))) {
3343 			const u64 range_len = last_byte - cur_offset;
3344 
3345 			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3346 			if (ret < 0) {
3347 				free_extent_map(em);
3348 				break;
3349 			}
3350 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3351 					&data_reserved, cur_offset, range_len);
3352 			if (ret < 0) {
3353 				free_extent_map(em);
3354 				break;
3355 			}
3356 			qgroup_reserved += range_len;
3357 			data_space_needed += range_len;
3358 		}
3359 		free_extent_map(em);
3360 		cur_offset = last_byte;
3361 	}
3362 
3363 	if (!ret && data_space_needed > 0) {
3364 		/*
3365 		 * We are safe to reserve space here as we can't have delalloc
3366 		 * in the range, see above.
3367 		 */
3368 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3369 						      data_space_needed);
3370 		if (!ret)
3371 			data_space_reserved = data_space_needed;
3372 	}
3373 
3374 	/*
3375 	 * If ret is still 0, means we're OK to fallocate.
3376 	 * Or just cleanup the list and exit.
3377 	 */
3378 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3379 		if (!ret) {
3380 			ret = btrfs_prealloc_file_range(inode, mode,
3381 					range->start,
3382 					range->len, blocksize,
3383 					offset + len, &alloc_hint);
3384 			/*
3385 			 * btrfs_prealloc_file_range() releases space even
3386 			 * if it returns an error.
3387 			 */
3388 			data_space_reserved -= range->len;
3389 			qgroup_reserved -= range->len;
3390 		} else if (data_space_reserved > 0) {
3391 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3392 					       data_reserved, range->start,
3393 					       range->len);
3394 			data_space_reserved -= range->len;
3395 			qgroup_reserved -= range->len;
3396 		} else if (qgroup_reserved > 0) {
3397 			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3398 					       range->start, range->len, NULL);
3399 			qgroup_reserved -= range->len;
3400 		}
3401 		list_del(&range->list);
3402 		kfree(range);
3403 	}
3404 	if (ret < 0)
3405 		goto out_unlock;
3406 
3407 	/*
3408 	 * We didn't need to allocate any more space, but we still extended the
3409 	 * size of the file so we need to update i_size and the inode item.
3410 	 */
3411 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3412 out_unlock:
3413 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3414 		      &cached_state);
3415 out:
3416 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3417 	extent_changeset_free(data_reserved);
3418 	return ret;
3419 }
3420 
3421 /*
3422  * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3423  * that has unflushed and/or flushing delalloc. There might be other adjacent
3424  * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3425  * looping while it gets adjacent subranges, and merging them together.
3426  */
3427 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3428 				   struct extent_state **cached_state,
3429 				   bool *search_io_tree,
3430 				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3431 {
3432 	u64 len = end + 1 - start;
3433 	u64 delalloc_len = 0;
3434 	struct btrfs_ordered_extent *oe;
3435 	u64 oe_start;
3436 	u64 oe_end;
3437 
3438 	/*
3439 	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3440 	 * means we have delalloc (dirty pages) for which writeback has not
3441 	 * started yet.
3442 	 */
3443 	if (*search_io_tree) {
3444 		spin_lock(&inode->lock);
3445 		if (inode->delalloc_bytes > 0) {
3446 			spin_unlock(&inode->lock);
3447 			*delalloc_start_ret = start;
3448 			delalloc_len = count_range_bits(&inode->io_tree,
3449 							delalloc_start_ret, end,
3450 							len, EXTENT_DELALLOC, 1,
3451 							cached_state);
3452 		} else {
3453 			spin_unlock(&inode->lock);
3454 		}
3455 	}
3456 
3457 	if (delalloc_len > 0) {
3458 		/*
3459 		 * If delalloc was found then *delalloc_start_ret has a sector size
3460 		 * aligned value (rounded down).
3461 		 */
3462 		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3463 
3464 		if (*delalloc_start_ret == start) {
3465 			/* Delalloc for the whole range, nothing more to do. */
3466 			if (*delalloc_end_ret == end)
3467 				return true;
3468 			/* Else trim our search range for ordered extents. */
3469 			start = *delalloc_end_ret + 1;
3470 			len = end + 1 - start;
3471 		}
3472 	} else {
3473 		/* No delalloc, future calls don't need to search again. */
3474 		*search_io_tree = false;
3475 	}
3476 
3477 	/*
3478 	 * Now also check if there's any ordered extent in the range.
3479 	 * We do this because:
3480 	 *
3481 	 * 1) When delalloc is flushed, the file range is locked, we clear the
3482 	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3483 	 *    an ordered extent for the write. So we might just have been called
3484 	 *    after delalloc is flushed and before the ordered extent completes
3485 	 *    and inserts the new file extent item in the subvolume's btree;
3486 	 *
3487 	 * 2) We may have an ordered extent created by flushing delalloc for a
3488 	 *    subrange that starts before the subrange we found marked with
3489 	 *    EXTENT_DELALLOC in the io tree.
3490 	 *
3491 	 * We could also use the extent map tree to find such delalloc that is
3492 	 * being flushed, but using the ordered extents tree is more efficient
3493 	 * because it's usually much smaller as ordered extents are removed from
3494 	 * the tree once they complete. With the extent maps, we mau have them
3495 	 * in the extent map tree for a very long time, and they were either
3496 	 * created by previous writes or loaded by read operations.
3497 	 */
3498 	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3499 	if (!oe)
3500 		return (delalloc_len > 0);
3501 
3502 	/* The ordered extent may span beyond our search range. */
3503 	oe_start = max(oe->file_offset, start);
3504 	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3505 
3506 	btrfs_put_ordered_extent(oe);
3507 
3508 	/* Don't have unflushed delalloc, return the ordered extent range. */
3509 	if (delalloc_len == 0) {
3510 		*delalloc_start_ret = oe_start;
3511 		*delalloc_end_ret = oe_end;
3512 		return true;
3513 	}
3514 
3515 	/*
3516 	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3517 	 * If the ranges are adjacent returned a combined range, otherwise
3518 	 * return the leftmost range.
3519 	 */
3520 	if (oe_start < *delalloc_start_ret) {
3521 		if (oe_end < *delalloc_start_ret)
3522 			*delalloc_end_ret = oe_end;
3523 		*delalloc_start_ret = oe_start;
3524 	} else if (*delalloc_end_ret + 1 == oe_start) {
3525 		*delalloc_end_ret = oe_end;
3526 	}
3527 
3528 	return true;
3529 }
3530 
3531 /*
3532  * Check if there's delalloc in a given range.
3533  *
3534  * @inode:               The inode.
3535  * @start:               The start offset of the range. It does not need to be
3536  *                       sector size aligned.
3537  * @end:                 The end offset (inclusive value) of the search range.
3538  *                       It does not need to be sector size aligned.
3539  * @cached_state:        Extent state record used for speeding up delalloc
3540  *                       searches in the inode's io_tree. Can be NULL.
3541  * @delalloc_start_ret:  Output argument, set to the start offset of the
3542  *                       subrange found with delalloc (may not be sector size
3543  *                       aligned).
3544  * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3545  *                       of the subrange found with delalloc.
3546  *
3547  * Returns true if a subrange with delalloc is found within the given range, and
3548  * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3549  * end offsets of the subrange.
3550  */
3551 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3552 				  struct extent_state **cached_state,
3553 				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3554 {
3555 	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3556 	u64 prev_delalloc_end = 0;
3557 	bool search_io_tree = true;
3558 	bool ret = false;
3559 
3560 	while (cur_offset <= end) {
3561 		u64 delalloc_start;
3562 		u64 delalloc_end;
3563 		bool delalloc;
3564 
3565 		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3566 						  cached_state, &search_io_tree,
3567 						  &delalloc_start,
3568 						  &delalloc_end);
3569 		if (!delalloc)
3570 			break;
3571 
3572 		if (prev_delalloc_end == 0) {
3573 			/* First subrange found. */
3574 			*delalloc_start_ret = max(delalloc_start, start);
3575 			*delalloc_end_ret = delalloc_end;
3576 			ret = true;
3577 		} else if (delalloc_start == prev_delalloc_end + 1) {
3578 			/* Subrange adjacent to the previous one, merge them. */
3579 			*delalloc_end_ret = delalloc_end;
3580 		} else {
3581 			/* Subrange not adjacent to the previous one, exit. */
3582 			break;
3583 		}
3584 
3585 		prev_delalloc_end = delalloc_end;
3586 		cur_offset = delalloc_end + 1;
3587 		cond_resched();
3588 	}
3589 
3590 	return ret;
3591 }
3592 
3593 /*
3594  * Check if there's a hole or delalloc range in a range representing a hole (or
3595  * prealloc extent) found in the inode's subvolume btree.
3596  *
3597  * @inode:      The inode.
3598  * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3599  * @start:      Start offset of the hole region. It does not need to be sector
3600  *              size aligned.
3601  * @end:        End offset (inclusive value) of the hole region. It does not
3602  *              need to be sector size aligned.
3603  * @start_ret:  Return parameter, used to set the start of the subrange in the
3604  *              hole that matches the search criteria (seek mode), if such
3605  *              subrange is found (return value of the function is true).
3606  *              The value returned here may not be sector size aligned.
3607  *
3608  * Returns true if a subrange matching the given seek mode is found, and if one
3609  * is found, it updates @start_ret with the start of the subrange.
3610  */
3611 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3612 					struct extent_state **cached_state,
3613 					u64 start, u64 end, u64 *start_ret)
3614 {
3615 	u64 delalloc_start;
3616 	u64 delalloc_end;
3617 	bool delalloc;
3618 
3619 	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3620 						&delalloc_start, &delalloc_end);
3621 	if (delalloc && whence == SEEK_DATA) {
3622 		*start_ret = delalloc_start;
3623 		return true;
3624 	}
3625 
3626 	if (delalloc && whence == SEEK_HOLE) {
3627 		/*
3628 		 * We found delalloc but it starts after out start offset. So we
3629 		 * have a hole between our start offset and the delalloc start.
3630 		 */
3631 		if (start < delalloc_start) {
3632 			*start_ret = start;
3633 			return true;
3634 		}
3635 		/*
3636 		 * Delalloc range starts at our start offset.
3637 		 * If the delalloc range's length is smaller than our range,
3638 		 * then it means we have a hole that starts where the delalloc
3639 		 * subrange ends.
3640 		 */
3641 		if (delalloc_end < end) {
3642 			*start_ret = delalloc_end + 1;
3643 			return true;
3644 		}
3645 
3646 		/* There's delalloc for the whole range. */
3647 		return false;
3648 	}
3649 
3650 	if (!delalloc && whence == SEEK_HOLE) {
3651 		*start_ret = start;
3652 		return true;
3653 	}
3654 
3655 	/*
3656 	 * No delalloc in the range and we are seeking for data. The caller has
3657 	 * to iterate to the next extent item in the subvolume btree.
3658 	 */
3659 	return false;
3660 }
3661 
3662 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3663 {
3664 	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3665 	struct btrfs_file_private *private = file->private_data;
3666 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3667 	struct extent_state *cached_state = NULL;
3668 	struct extent_state **delalloc_cached_state;
3669 	const loff_t i_size = i_size_read(&inode->vfs_inode);
3670 	const u64 ino = btrfs_ino(inode);
3671 	struct btrfs_root *root = inode->root;
3672 	struct btrfs_path *path;
3673 	struct btrfs_key key;
3674 	u64 last_extent_end;
3675 	u64 lockstart;
3676 	u64 lockend;
3677 	u64 start;
3678 	int ret;
3679 	bool found = false;
3680 
3681 	if (i_size == 0 || offset >= i_size)
3682 		return -ENXIO;
3683 
3684 	/*
3685 	 * Quick path. If the inode has no prealloc extents and its number of
3686 	 * bytes used matches its i_size, then it can not have holes.
3687 	 */
3688 	if (whence == SEEK_HOLE &&
3689 	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3690 	    inode_get_bytes(&inode->vfs_inode) == i_size)
3691 		return i_size;
3692 
3693 	if (!private) {
3694 		private = kzalloc(sizeof(*private), GFP_KERNEL);
3695 		/*
3696 		 * No worries if memory allocation failed.
3697 		 * The private structure is used only for speeding up multiple
3698 		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3699 		 * so everything will still be correct.
3700 		 */
3701 		file->private_data = private;
3702 	}
3703 
3704 	if (private)
3705 		delalloc_cached_state = &private->llseek_cached_state;
3706 	else
3707 		delalloc_cached_state = NULL;
3708 
3709 	/*
3710 	 * offset can be negative, in this case we start finding DATA/HOLE from
3711 	 * the very start of the file.
3712 	 */
3713 	start = max_t(loff_t, 0, offset);
3714 
3715 	lockstart = round_down(start, fs_info->sectorsize);
3716 	lockend = round_up(i_size, fs_info->sectorsize);
3717 	if (lockend <= lockstart)
3718 		lockend = lockstart + fs_info->sectorsize;
3719 	lockend--;
3720 
3721 	path = btrfs_alloc_path();
3722 	if (!path)
3723 		return -ENOMEM;
3724 	path->reada = READA_FORWARD;
3725 
3726 	key.objectid = ino;
3727 	key.type = BTRFS_EXTENT_DATA_KEY;
3728 	key.offset = start;
3729 
3730 	last_extent_end = lockstart;
3731 
3732 	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3733 
3734 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3735 	if (ret < 0) {
3736 		goto out;
3737 	} else if (ret > 0 && path->slots[0] > 0) {
3738 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3739 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3740 			path->slots[0]--;
3741 	}
3742 
3743 	while (start < i_size) {
3744 		struct extent_buffer *leaf = path->nodes[0];
3745 		struct btrfs_file_extent_item *extent;
3746 		u64 extent_end;
3747 		u8 type;
3748 
3749 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3750 			ret = btrfs_next_leaf(root, path);
3751 			if (ret < 0)
3752 				goto out;
3753 			else if (ret > 0)
3754 				break;
3755 
3756 			leaf = path->nodes[0];
3757 		}
3758 
3759 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3760 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3761 			break;
3762 
3763 		extent_end = btrfs_file_extent_end(path);
3764 
3765 		/*
3766 		 * In the first iteration we may have a slot that points to an
3767 		 * extent that ends before our start offset, so skip it.
3768 		 */
3769 		if (extent_end <= start) {
3770 			path->slots[0]++;
3771 			continue;
3772 		}
3773 
3774 		/* We have an implicit hole, NO_HOLES feature is likely set. */
3775 		if (last_extent_end < key.offset) {
3776 			u64 search_start = last_extent_end;
3777 			u64 found_start;
3778 
3779 			/*
3780 			 * First iteration, @start matches @offset and it's
3781 			 * within the hole.
3782 			 */
3783 			if (start == offset)
3784 				search_start = offset;
3785 
3786 			found = find_desired_extent_in_hole(inode, whence,
3787 							    delalloc_cached_state,
3788 							    search_start,
3789 							    key.offset - 1,
3790 							    &found_start);
3791 			if (found) {
3792 				start = found_start;
3793 				break;
3794 			}
3795 			/*
3796 			 * Didn't find data or a hole (due to delalloc) in the
3797 			 * implicit hole range, so need to analyze the extent.
3798 			 */
3799 		}
3800 
3801 		extent = btrfs_item_ptr(leaf, path->slots[0],
3802 					struct btrfs_file_extent_item);
3803 		type = btrfs_file_extent_type(leaf, extent);
3804 
3805 		/*
3806 		 * Can't access the extent's disk_bytenr field if this is an
3807 		 * inline extent, since at that offset, it's where the extent
3808 		 * data starts.
3809 		 */
3810 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3811 		    (type == BTRFS_FILE_EXTENT_REG &&
3812 		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3813 			/*
3814 			 * Explicit hole or prealloc extent, search for delalloc.
3815 			 * A prealloc extent is treated like a hole.
3816 			 */
3817 			u64 search_start = key.offset;
3818 			u64 found_start;
3819 
3820 			/*
3821 			 * First iteration, @start matches @offset and it's
3822 			 * within the hole.
3823 			 */
3824 			if (start == offset)
3825 				search_start = offset;
3826 
3827 			found = find_desired_extent_in_hole(inode, whence,
3828 							    delalloc_cached_state,
3829 							    search_start,
3830 							    extent_end - 1,
3831 							    &found_start);
3832 			if (found) {
3833 				start = found_start;
3834 				break;
3835 			}
3836 			/*
3837 			 * Didn't find data or a hole (due to delalloc) in the
3838 			 * implicit hole range, so need to analyze the next
3839 			 * extent item.
3840 			 */
3841 		} else {
3842 			/*
3843 			 * Found a regular or inline extent.
3844 			 * If we are seeking for data, adjust the start offset
3845 			 * and stop, we're done.
3846 			 */
3847 			if (whence == SEEK_DATA) {
3848 				start = max_t(u64, key.offset, offset);
3849 				found = true;
3850 				break;
3851 			}
3852 			/*
3853 			 * Else, we are seeking for a hole, check the next file
3854 			 * extent item.
3855 			 */
3856 		}
3857 
3858 		start = extent_end;
3859 		last_extent_end = extent_end;
3860 		path->slots[0]++;
3861 		if (fatal_signal_pending(current)) {
3862 			ret = -EINTR;
3863 			goto out;
3864 		}
3865 		cond_resched();
3866 	}
3867 
3868 	/* We have an implicit hole from the last extent found up to i_size. */
3869 	if (!found && start < i_size) {
3870 		found = find_desired_extent_in_hole(inode, whence,
3871 						    delalloc_cached_state, start,
3872 						    i_size - 1, &start);
3873 		if (!found)
3874 			start = i_size;
3875 	}
3876 
3877 out:
3878 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3879 	btrfs_free_path(path);
3880 
3881 	if (ret < 0)
3882 		return ret;
3883 
3884 	if (whence == SEEK_DATA && start >= i_size)
3885 		return -ENXIO;
3886 
3887 	return min_t(loff_t, start, i_size);
3888 }
3889 
3890 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3891 {
3892 	struct inode *inode = file->f_mapping->host;
3893 
3894 	switch (whence) {
3895 	default:
3896 		return generic_file_llseek(file, offset, whence);
3897 	case SEEK_DATA:
3898 	case SEEK_HOLE:
3899 		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3900 		offset = find_desired_extent(file, offset, whence);
3901 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3902 		break;
3903 	}
3904 
3905 	if (offset < 0)
3906 		return offset;
3907 
3908 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3909 }
3910 
3911 static int btrfs_file_open(struct inode *inode, struct file *filp)
3912 {
3913 	int ret;
3914 
3915 	filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
3916 
3917 	ret = fsverity_file_open(inode, filp);
3918 	if (ret)
3919 		return ret;
3920 	return generic_file_open(inode, filp);
3921 }
3922 
3923 static int check_direct_read(struct btrfs_fs_info *fs_info,
3924 			     const struct iov_iter *iter, loff_t offset)
3925 {
3926 	int ret;
3927 	int i, seg;
3928 
3929 	ret = check_direct_IO(fs_info, iter, offset);
3930 	if (ret < 0)
3931 		return ret;
3932 
3933 	if (!iter_is_iovec(iter))
3934 		return 0;
3935 
3936 	for (seg = 0; seg < iter->nr_segs; seg++) {
3937 		for (i = seg + 1; i < iter->nr_segs; i++) {
3938 			const struct iovec *iov1 = iter_iov(iter) + seg;
3939 			const struct iovec *iov2 = iter_iov(iter) + i;
3940 
3941 			if (iov1->iov_base == iov2->iov_base)
3942 				return -EINVAL;
3943 		}
3944 	}
3945 	return 0;
3946 }
3947 
3948 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3949 {
3950 	struct inode *inode = file_inode(iocb->ki_filp);
3951 	size_t prev_left = 0;
3952 	ssize_t read = 0;
3953 	ssize_t ret;
3954 
3955 	if (fsverity_active(inode))
3956 		return 0;
3957 
3958 	if (check_direct_read(inode_to_fs_info(inode), to, iocb->ki_pos))
3959 		return 0;
3960 
3961 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3962 again:
3963 	/*
3964 	 * This is similar to what we do for direct IO writes, see the comment
3965 	 * at btrfs_direct_write(), but we also disable page faults in addition
3966 	 * to disabling them only at the iov_iter level. This is because when
3967 	 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3968 	 * which can still trigger page fault ins despite having set ->nofault
3969 	 * to true of our 'to' iov_iter.
3970 	 *
3971 	 * The difference to direct IO writes is that we deadlock when trying
3972 	 * to lock the extent range in the inode's tree during he page reads
3973 	 * triggered by the fault in (while for writes it is due to waiting for
3974 	 * our own ordered extent). This is because for direct IO reads,
3975 	 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3976 	 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3977 	 */
3978 	pagefault_disable();
3979 	to->nofault = true;
3980 	ret = btrfs_dio_read(iocb, to, read);
3981 	to->nofault = false;
3982 	pagefault_enable();
3983 
3984 	/* No increment (+=) because iomap returns a cumulative value. */
3985 	if (ret > 0)
3986 		read = ret;
3987 
3988 	if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3989 		const size_t left = iov_iter_count(to);
3990 
3991 		if (left == prev_left) {
3992 			/*
3993 			 * We didn't make any progress since the last attempt,
3994 			 * fallback to a buffered read for the remainder of the
3995 			 * range. This is just to avoid any possibility of looping
3996 			 * for too long.
3997 			 */
3998 			ret = read;
3999 		} else {
4000 			/*
4001 			 * We made some progress since the last retry or this is
4002 			 * the first time we are retrying. Fault in as many pages
4003 			 * as possible and retry.
4004 			 */
4005 			fault_in_iov_iter_writeable(to, left);
4006 			prev_left = left;
4007 			goto again;
4008 		}
4009 	}
4010 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
4011 	return ret < 0 ? ret : read;
4012 }
4013 
4014 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4015 {
4016 	ssize_t ret = 0;
4017 
4018 	if (iocb->ki_flags & IOCB_DIRECT) {
4019 		ret = btrfs_direct_read(iocb, to);
4020 		if (ret < 0 || !iov_iter_count(to) ||
4021 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
4022 			return ret;
4023 	}
4024 
4025 	return filemap_read(iocb, to, ret);
4026 }
4027 
4028 const struct file_operations btrfs_file_operations = {
4029 	.llseek		= btrfs_file_llseek,
4030 	.read_iter      = btrfs_file_read_iter,
4031 	.splice_read	= filemap_splice_read,
4032 	.write_iter	= btrfs_file_write_iter,
4033 	.splice_write	= iter_file_splice_write,
4034 	.mmap		= btrfs_file_mmap,
4035 	.open		= btrfs_file_open,
4036 	.release	= btrfs_release_file,
4037 	.get_unmapped_area = thp_get_unmapped_area,
4038 	.fsync		= btrfs_sync_file,
4039 	.fallocate	= btrfs_fallocate,
4040 	.unlocked_ioctl	= btrfs_ioctl,
4041 #ifdef CONFIG_COMPAT
4042 	.compat_ioctl	= btrfs_compat_ioctl,
4043 #endif
4044 	.remap_file_range = btrfs_remap_file_range,
4045 	.fop_flags	= FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC,
4046 };
4047 
4048 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
4049 {
4050 	int ret;
4051 
4052 	/*
4053 	 * So with compression we will find and lock a dirty page and clear the
4054 	 * first one as dirty, setup an async extent, and immediately return
4055 	 * with the entire range locked but with nobody actually marked with
4056 	 * writeback.  So we can't just filemap_write_and_wait_range() and
4057 	 * expect it to work since it will just kick off a thread to do the
4058 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
4059 	 * since it will wait on the page lock, which won't be unlocked until
4060 	 * after the pages have been marked as writeback and so we're good to go
4061 	 * from there.  We have to do this otherwise we'll miss the ordered
4062 	 * extents and that results in badness.  Please Josef, do not think you
4063 	 * know better and pull this out at some point in the future, it is
4064 	 * right and you are wrong.
4065 	 */
4066 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
4067 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
4068 			     &BTRFS_I(inode)->runtime_flags))
4069 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
4070 
4071 	return ret;
4072 }
4073