1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "btrfs_inode.h" 24 #include "print-tree.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "volumes.h" 28 #include "qgroup.h" 29 #include "compression.h" 30 #include "delalloc-space.h" 31 #include "reflink.h" 32 #include "subpage.h" 33 #include "fs.h" 34 #include "accessors.h" 35 #include "extent-tree.h" 36 #include "file-item.h" 37 #include "ioctl.h" 38 #include "file.h" 39 #include "super.h" 40 41 /* simple helper to fault in pages and copy. This should go away 42 * and be replaced with calls into generic code. 43 */ 44 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 45 struct page **prepared_pages, 46 struct iov_iter *i) 47 { 48 size_t copied = 0; 49 size_t total_copied = 0; 50 int pg = 0; 51 int offset = offset_in_page(pos); 52 53 while (write_bytes > 0) { 54 size_t count = min_t(size_t, 55 PAGE_SIZE - offset, write_bytes); 56 struct page *page = prepared_pages[pg]; 57 /* 58 * Copy data from userspace to the current page 59 */ 60 copied = copy_page_from_iter_atomic(page, offset, count, i); 61 62 /* Flush processor's dcache for this page */ 63 flush_dcache_page(page); 64 65 /* 66 * if we get a partial write, we can end up with 67 * partially up to date pages. These add 68 * a lot of complexity, so make sure they don't 69 * happen by forcing this copy to be retried. 70 * 71 * The rest of the btrfs_file_write code will fall 72 * back to page at a time copies after we return 0. 73 */ 74 if (unlikely(copied < count)) { 75 if (!PageUptodate(page)) { 76 iov_iter_revert(i, copied); 77 copied = 0; 78 } 79 if (!copied) 80 break; 81 } 82 83 write_bytes -= copied; 84 total_copied += copied; 85 offset += copied; 86 if (offset == PAGE_SIZE) { 87 pg++; 88 offset = 0; 89 } 90 } 91 return total_copied; 92 } 93 94 /* 95 * unlocks pages after btrfs_file_write is done with them 96 */ 97 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 98 struct page **pages, size_t num_pages, 99 u64 pos, u64 copied) 100 { 101 size_t i; 102 u64 block_start = round_down(pos, fs_info->sectorsize); 103 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 104 105 ASSERT(block_len <= U32_MAX); 106 for (i = 0; i < num_pages; i++) { 107 /* page checked is some magic around finding pages that 108 * have been modified without going through btrfs_set_page_dirty 109 * clear it here. There should be no need to mark the pages 110 * accessed as prepare_pages should have marked them accessed 111 * in prepare_pages via find_or_create_page() 112 */ 113 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start, 114 block_len); 115 unlock_page(pages[i]); 116 put_page(pages[i]); 117 } 118 } 119 120 /* 121 * After btrfs_copy_from_user(), update the following things for delalloc: 122 * - Mark newly dirtied pages as DELALLOC in the io tree. 123 * Used to advise which range is to be written back. 124 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 125 * - Update inode size for past EOF write 126 */ 127 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 128 size_t num_pages, loff_t pos, size_t write_bytes, 129 struct extent_state **cached, bool noreserve) 130 { 131 struct btrfs_fs_info *fs_info = inode->root->fs_info; 132 int err = 0; 133 int i; 134 u64 num_bytes; 135 u64 start_pos; 136 u64 end_of_last_block; 137 u64 end_pos = pos + write_bytes; 138 loff_t isize = i_size_read(&inode->vfs_inode); 139 unsigned int extra_bits = 0; 140 141 if (write_bytes == 0) 142 return 0; 143 144 if (noreserve) 145 extra_bits |= EXTENT_NORESERVE; 146 147 start_pos = round_down(pos, fs_info->sectorsize); 148 num_bytes = round_up(write_bytes + pos - start_pos, 149 fs_info->sectorsize); 150 ASSERT(num_bytes <= U32_MAX); 151 152 end_of_last_block = start_pos + num_bytes - 1; 153 154 /* 155 * The pages may have already been dirty, clear out old accounting so 156 * we can set things up properly 157 */ 158 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 159 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 160 cached); 161 162 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 163 extra_bits, cached); 164 if (err) 165 return err; 166 167 for (i = 0; i < num_pages; i++) { 168 struct page *p = pages[i]; 169 170 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes); 171 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes); 172 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes); 173 } 174 175 /* 176 * we've only changed i_size in ram, and we haven't updated 177 * the disk i_size. There is no need to log the inode 178 * at this time. 179 */ 180 if (end_pos > isize) 181 i_size_write(&inode->vfs_inode, end_pos); 182 return 0; 183 } 184 185 /* 186 * this is very complex, but the basic idea is to drop all extents 187 * in the range start - end. hint_block is filled in with a block number 188 * that would be a good hint to the block allocator for this file. 189 * 190 * If an extent intersects the range but is not entirely inside the range 191 * it is either truncated or split. Anything entirely inside the range 192 * is deleted from the tree. 193 * 194 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 195 * to deal with that. We set the field 'bytes_found' of the arguments structure 196 * with the number of allocated bytes found in the target range, so that the 197 * caller can update the inode's number of bytes in an atomic way when 198 * replacing extents in a range to avoid races with stat(2). 199 */ 200 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 201 struct btrfs_root *root, struct btrfs_inode *inode, 202 struct btrfs_drop_extents_args *args) 203 { 204 struct btrfs_fs_info *fs_info = root->fs_info; 205 struct extent_buffer *leaf; 206 struct btrfs_file_extent_item *fi; 207 struct btrfs_ref ref = { 0 }; 208 struct btrfs_key key; 209 struct btrfs_key new_key; 210 u64 ino = btrfs_ino(inode); 211 u64 search_start = args->start; 212 u64 disk_bytenr = 0; 213 u64 num_bytes = 0; 214 u64 extent_offset = 0; 215 u64 extent_end = 0; 216 u64 last_end = args->start; 217 int del_nr = 0; 218 int del_slot = 0; 219 int extent_type; 220 int recow; 221 int ret; 222 int modify_tree = -1; 223 int update_refs; 224 int found = 0; 225 struct btrfs_path *path = args->path; 226 227 args->bytes_found = 0; 228 args->extent_inserted = false; 229 230 /* Must always have a path if ->replace_extent is true */ 231 ASSERT(!(args->replace_extent && !args->path)); 232 233 if (!path) { 234 path = btrfs_alloc_path(); 235 if (!path) { 236 ret = -ENOMEM; 237 goto out; 238 } 239 } 240 241 if (args->drop_cache) 242 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); 243 244 if (args->start >= inode->disk_i_size && !args->replace_extent) 245 modify_tree = 0; 246 247 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 248 while (1) { 249 recow = 0; 250 ret = btrfs_lookup_file_extent(trans, root, path, ino, 251 search_start, modify_tree); 252 if (ret < 0) 253 break; 254 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 255 leaf = path->nodes[0]; 256 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 257 if (key.objectid == ino && 258 key.type == BTRFS_EXTENT_DATA_KEY) 259 path->slots[0]--; 260 } 261 ret = 0; 262 next_slot: 263 leaf = path->nodes[0]; 264 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 265 BUG_ON(del_nr > 0); 266 ret = btrfs_next_leaf(root, path); 267 if (ret < 0) 268 break; 269 if (ret > 0) { 270 ret = 0; 271 break; 272 } 273 leaf = path->nodes[0]; 274 recow = 1; 275 } 276 277 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 278 279 if (key.objectid > ino) 280 break; 281 if (WARN_ON_ONCE(key.objectid < ino) || 282 key.type < BTRFS_EXTENT_DATA_KEY) { 283 ASSERT(del_nr == 0); 284 path->slots[0]++; 285 goto next_slot; 286 } 287 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 288 break; 289 290 fi = btrfs_item_ptr(leaf, path->slots[0], 291 struct btrfs_file_extent_item); 292 extent_type = btrfs_file_extent_type(leaf, fi); 293 294 if (extent_type == BTRFS_FILE_EXTENT_REG || 295 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 296 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 297 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 298 extent_offset = btrfs_file_extent_offset(leaf, fi); 299 extent_end = key.offset + 300 btrfs_file_extent_num_bytes(leaf, fi); 301 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 302 extent_end = key.offset + 303 btrfs_file_extent_ram_bytes(leaf, fi); 304 } else { 305 /* can't happen */ 306 BUG(); 307 } 308 309 /* 310 * Don't skip extent items representing 0 byte lengths. They 311 * used to be created (bug) if while punching holes we hit 312 * -ENOSPC condition. So if we find one here, just ensure we 313 * delete it, otherwise we would insert a new file extent item 314 * with the same key (offset) as that 0 bytes length file 315 * extent item in the call to setup_items_for_insert() later 316 * in this function. 317 */ 318 if (extent_end == key.offset && extent_end >= search_start) { 319 last_end = extent_end; 320 goto delete_extent_item; 321 } 322 323 if (extent_end <= search_start) { 324 path->slots[0]++; 325 goto next_slot; 326 } 327 328 found = 1; 329 search_start = max(key.offset, args->start); 330 if (recow || !modify_tree) { 331 modify_tree = -1; 332 btrfs_release_path(path); 333 continue; 334 } 335 336 /* 337 * | - range to drop - | 338 * | -------- extent -------- | 339 */ 340 if (args->start > key.offset && args->end < extent_end) { 341 BUG_ON(del_nr > 0); 342 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 343 ret = -EOPNOTSUPP; 344 break; 345 } 346 347 memcpy(&new_key, &key, sizeof(new_key)); 348 new_key.offset = args->start; 349 ret = btrfs_duplicate_item(trans, root, path, 350 &new_key); 351 if (ret == -EAGAIN) { 352 btrfs_release_path(path); 353 continue; 354 } 355 if (ret < 0) 356 break; 357 358 leaf = path->nodes[0]; 359 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 360 struct btrfs_file_extent_item); 361 btrfs_set_file_extent_num_bytes(leaf, fi, 362 args->start - key.offset); 363 364 fi = btrfs_item_ptr(leaf, path->slots[0], 365 struct btrfs_file_extent_item); 366 367 extent_offset += args->start - key.offset; 368 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 369 btrfs_set_file_extent_num_bytes(leaf, fi, 370 extent_end - args->start); 371 btrfs_mark_buffer_dirty(leaf); 372 373 if (update_refs && disk_bytenr > 0) { 374 btrfs_init_generic_ref(&ref, 375 BTRFS_ADD_DELAYED_REF, 376 disk_bytenr, num_bytes, 0); 377 btrfs_init_data_ref(&ref, 378 root->root_key.objectid, 379 new_key.objectid, 380 args->start - extent_offset, 381 0, false); 382 ret = btrfs_inc_extent_ref(trans, &ref); 383 if (ret) { 384 btrfs_abort_transaction(trans, ret); 385 break; 386 } 387 } 388 key.offset = args->start; 389 } 390 /* 391 * From here on out we will have actually dropped something, so 392 * last_end can be updated. 393 */ 394 last_end = extent_end; 395 396 /* 397 * | ---- range to drop ----- | 398 * | -------- extent -------- | 399 */ 400 if (args->start <= key.offset && args->end < extent_end) { 401 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 402 ret = -EOPNOTSUPP; 403 break; 404 } 405 406 memcpy(&new_key, &key, sizeof(new_key)); 407 new_key.offset = args->end; 408 btrfs_set_item_key_safe(fs_info, path, &new_key); 409 410 extent_offset += args->end - key.offset; 411 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 412 btrfs_set_file_extent_num_bytes(leaf, fi, 413 extent_end - args->end); 414 btrfs_mark_buffer_dirty(leaf); 415 if (update_refs && disk_bytenr > 0) 416 args->bytes_found += args->end - key.offset; 417 break; 418 } 419 420 search_start = extent_end; 421 /* 422 * | ---- range to drop ----- | 423 * | -------- extent -------- | 424 */ 425 if (args->start > key.offset && args->end >= extent_end) { 426 BUG_ON(del_nr > 0); 427 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 428 ret = -EOPNOTSUPP; 429 break; 430 } 431 432 btrfs_set_file_extent_num_bytes(leaf, fi, 433 args->start - key.offset); 434 btrfs_mark_buffer_dirty(leaf); 435 if (update_refs && disk_bytenr > 0) 436 args->bytes_found += extent_end - args->start; 437 if (args->end == extent_end) 438 break; 439 440 path->slots[0]++; 441 goto next_slot; 442 } 443 444 /* 445 * | ---- range to drop ----- | 446 * | ------ extent ------ | 447 */ 448 if (args->start <= key.offset && args->end >= extent_end) { 449 delete_extent_item: 450 if (del_nr == 0) { 451 del_slot = path->slots[0]; 452 del_nr = 1; 453 } else { 454 BUG_ON(del_slot + del_nr != path->slots[0]); 455 del_nr++; 456 } 457 458 if (update_refs && 459 extent_type == BTRFS_FILE_EXTENT_INLINE) { 460 args->bytes_found += extent_end - key.offset; 461 extent_end = ALIGN(extent_end, 462 fs_info->sectorsize); 463 } else if (update_refs && disk_bytenr > 0) { 464 btrfs_init_generic_ref(&ref, 465 BTRFS_DROP_DELAYED_REF, 466 disk_bytenr, num_bytes, 0); 467 btrfs_init_data_ref(&ref, 468 root->root_key.objectid, 469 key.objectid, 470 key.offset - extent_offset, 0, 471 false); 472 ret = btrfs_free_extent(trans, &ref); 473 if (ret) { 474 btrfs_abort_transaction(trans, ret); 475 break; 476 } 477 args->bytes_found += extent_end - key.offset; 478 } 479 480 if (args->end == extent_end) 481 break; 482 483 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 484 path->slots[0]++; 485 goto next_slot; 486 } 487 488 ret = btrfs_del_items(trans, root, path, del_slot, 489 del_nr); 490 if (ret) { 491 btrfs_abort_transaction(trans, ret); 492 break; 493 } 494 495 del_nr = 0; 496 del_slot = 0; 497 498 btrfs_release_path(path); 499 continue; 500 } 501 502 BUG(); 503 } 504 505 if (!ret && del_nr > 0) { 506 /* 507 * Set path->slots[0] to first slot, so that after the delete 508 * if items are move off from our leaf to its immediate left or 509 * right neighbor leafs, we end up with a correct and adjusted 510 * path->slots[0] for our insertion (if args->replace_extent). 511 */ 512 path->slots[0] = del_slot; 513 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 514 if (ret) 515 btrfs_abort_transaction(trans, ret); 516 } 517 518 leaf = path->nodes[0]; 519 /* 520 * If btrfs_del_items() was called, it might have deleted a leaf, in 521 * which case it unlocked our path, so check path->locks[0] matches a 522 * write lock. 523 */ 524 if (!ret && args->replace_extent && 525 path->locks[0] == BTRFS_WRITE_LOCK && 526 btrfs_leaf_free_space(leaf) >= 527 sizeof(struct btrfs_item) + args->extent_item_size) { 528 529 key.objectid = ino; 530 key.type = BTRFS_EXTENT_DATA_KEY; 531 key.offset = args->start; 532 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 533 struct btrfs_key slot_key; 534 535 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 536 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 537 path->slots[0]++; 538 } 539 btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size); 540 args->extent_inserted = true; 541 } 542 543 if (!args->path) 544 btrfs_free_path(path); 545 else if (!args->extent_inserted) 546 btrfs_release_path(path); 547 out: 548 args->drop_end = found ? min(args->end, last_end) : args->end; 549 550 return ret; 551 } 552 553 static int extent_mergeable(struct extent_buffer *leaf, int slot, 554 u64 objectid, u64 bytenr, u64 orig_offset, 555 u64 *start, u64 *end) 556 { 557 struct btrfs_file_extent_item *fi; 558 struct btrfs_key key; 559 u64 extent_end; 560 561 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 562 return 0; 563 564 btrfs_item_key_to_cpu(leaf, &key, slot); 565 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 566 return 0; 567 568 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 569 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 570 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 571 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 572 btrfs_file_extent_compression(leaf, fi) || 573 btrfs_file_extent_encryption(leaf, fi) || 574 btrfs_file_extent_other_encoding(leaf, fi)) 575 return 0; 576 577 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 578 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 579 return 0; 580 581 *start = key.offset; 582 *end = extent_end; 583 return 1; 584 } 585 586 /* 587 * Mark extent in the range start - end as written. 588 * 589 * This changes extent type from 'pre-allocated' to 'regular'. If only 590 * part of extent is marked as written, the extent will be split into 591 * two or three. 592 */ 593 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 594 struct btrfs_inode *inode, u64 start, u64 end) 595 { 596 struct btrfs_fs_info *fs_info = trans->fs_info; 597 struct btrfs_root *root = inode->root; 598 struct extent_buffer *leaf; 599 struct btrfs_path *path; 600 struct btrfs_file_extent_item *fi; 601 struct btrfs_ref ref = { 0 }; 602 struct btrfs_key key; 603 struct btrfs_key new_key; 604 u64 bytenr; 605 u64 num_bytes; 606 u64 extent_end; 607 u64 orig_offset; 608 u64 other_start; 609 u64 other_end; 610 u64 split; 611 int del_nr = 0; 612 int del_slot = 0; 613 int recow; 614 int ret = 0; 615 u64 ino = btrfs_ino(inode); 616 617 path = btrfs_alloc_path(); 618 if (!path) 619 return -ENOMEM; 620 again: 621 recow = 0; 622 split = start; 623 key.objectid = ino; 624 key.type = BTRFS_EXTENT_DATA_KEY; 625 key.offset = split; 626 627 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 628 if (ret < 0) 629 goto out; 630 if (ret > 0 && path->slots[0] > 0) 631 path->slots[0]--; 632 633 leaf = path->nodes[0]; 634 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 635 if (key.objectid != ino || 636 key.type != BTRFS_EXTENT_DATA_KEY) { 637 ret = -EINVAL; 638 btrfs_abort_transaction(trans, ret); 639 goto out; 640 } 641 fi = btrfs_item_ptr(leaf, path->slots[0], 642 struct btrfs_file_extent_item); 643 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 644 ret = -EINVAL; 645 btrfs_abort_transaction(trans, ret); 646 goto out; 647 } 648 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 649 if (key.offset > start || extent_end < end) { 650 ret = -EINVAL; 651 btrfs_abort_transaction(trans, ret); 652 goto out; 653 } 654 655 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 656 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 657 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 658 memcpy(&new_key, &key, sizeof(new_key)); 659 660 if (start == key.offset && end < extent_end) { 661 other_start = 0; 662 other_end = start; 663 if (extent_mergeable(leaf, path->slots[0] - 1, 664 ino, bytenr, orig_offset, 665 &other_start, &other_end)) { 666 new_key.offset = end; 667 btrfs_set_item_key_safe(fs_info, path, &new_key); 668 fi = btrfs_item_ptr(leaf, path->slots[0], 669 struct btrfs_file_extent_item); 670 btrfs_set_file_extent_generation(leaf, fi, 671 trans->transid); 672 btrfs_set_file_extent_num_bytes(leaf, fi, 673 extent_end - end); 674 btrfs_set_file_extent_offset(leaf, fi, 675 end - orig_offset); 676 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 677 struct btrfs_file_extent_item); 678 btrfs_set_file_extent_generation(leaf, fi, 679 trans->transid); 680 btrfs_set_file_extent_num_bytes(leaf, fi, 681 end - other_start); 682 btrfs_mark_buffer_dirty(leaf); 683 goto out; 684 } 685 } 686 687 if (start > key.offset && end == extent_end) { 688 other_start = end; 689 other_end = 0; 690 if (extent_mergeable(leaf, path->slots[0] + 1, 691 ino, bytenr, orig_offset, 692 &other_start, &other_end)) { 693 fi = btrfs_item_ptr(leaf, path->slots[0], 694 struct btrfs_file_extent_item); 695 btrfs_set_file_extent_num_bytes(leaf, fi, 696 start - key.offset); 697 btrfs_set_file_extent_generation(leaf, fi, 698 trans->transid); 699 path->slots[0]++; 700 new_key.offset = start; 701 btrfs_set_item_key_safe(fs_info, path, &new_key); 702 703 fi = btrfs_item_ptr(leaf, path->slots[0], 704 struct btrfs_file_extent_item); 705 btrfs_set_file_extent_generation(leaf, fi, 706 trans->transid); 707 btrfs_set_file_extent_num_bytes(leaf, fi, 708 other_end - start); 709 btrfs_set_file_extent_offset(leaf, fi, 710 start - orig_offset); 711 btrfs_mark_buffer_dirty(leaf); 712 goto out; 713 } 714 } 715 716 while (start > key.offset || end < extent_end) { 717 if (key.offset == start) 718 split = end; 719 720 new_key.offset = split; 721 ret = btrfs_duplicate_item(trans, root, path, &new_key); 722 if (ret == -EAGAIN) { 723 btrfs_release_path(path); 724 goto again; 725 } 726 if (ret < 0) { 727 btrfs_abort_transaction(trans, ret); 728 goto out; 729 } 730 731 leaf = path->nodes[0]; 732 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 733 struct btrfs_file_extent_item); 734 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 735 btrfs_set_file_extent_num_bytes(leaf, fi, 736 split - key.offset); 737 738 fi = btrfs_item_ptr(leaf, path->slots[0], 739 struct btrfs_file_extent_item); 740 741 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 742 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 743 btrfs_set_file_extent_num_bytes(leaf, fi, 744 extent_end - split); 745 btrfs_mark_buffer_dirty(leaf); 746 747 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 748 num_bytes, 0); 749 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 750 orig_offset, 0, false); 751 ret = btrfs_inc_extent_ref(trans, &ref); 752 if (ret) { 753 btrfs_abort_transaction(trans, ret); 754 goto out; 755 } 756 757 if (split == start) { 758 key.offset = start; 759 } else { 760 if (start != key.offset) { 761 ret = -EINVAL; 762 btrfs_abort_transaction(trans, ret); 763 goto out; 764 } 765 path->slots[0]--; 766 extent_end = end; 767 } 768 recow = 1; 769 } 770 771 other_start = end; 772 other_end = 0; 773 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 774 num_bytes, 0); 775 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset, 776 0, false); 777 if (extent_mergeable(leaf, path->slots[0] + 1, 778 ino, bytenr, orig_offset, 779 &other_start, &other_end)) { 780 if (recow) { 781 btrfs_release_path(path); 782 goto again; 783 } 784 extent_end = other_end; 785 del_slot = path->slots[0] + 1; 786 del_nr++; 787 ret = btrfs_free_extent(trans, &ref); 788 if (ret) { 789 btrfs_abort_transaction(trans, ret); 790 goto out; 791 } 792 } 793 other_start = 0; 794 other_end = start; 795 if (extent_mergeable(leaf, path->slots[0] - 1, 796 ino, bytenr, orig_offset, 797 &other_start, &other_end)) { 798 if (recow) { 799 btrfs_release_path(path); 800 goto again; 801 } 802 key.offset = other_start; 803 del_slot = path->slots[0]; 804 del_nr++; 805 ret = btrfs_free_extent(trans, &ref); 806 if (ret) { 807 btrfs_abort_transaction(trans, ret); 808 goto out; 809 } 810 } 811 if (del_nr == 0) { 812 fi = btrfs_item_ptr(leaf, path->slots[0], 813 struct btrfs_file_extent_item); 814 btrfs_set_file_extent_type(leaf, fi, 815 BTRFS_FILE_EXTENT_REG); 816 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 817 btrfs_mark_buffer_dirty(leaf); 818 } else { 819 fi = btrfs_item_ptr(leaf, del_slot - 1, 820 struct btrfs_file_extent_item); 821 btrfs_set_file_extent_type(leaf, fi, 822 BTRFS_FILE_EXTENT_REG); 823 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 824 btrfs_set_file_extent_num_bytes(leaf, fi, 825 extent_end - key.offset); 826 btrfs_mark_buffer_dirty(leaf); 827 828 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 829 if (ret < 0) { 830 btrfs_abort_transaction(trans, ret); 831 goto out; 832 } 833 } 834 out: 835 btrfs_free_path(path); 836 return ret; 837 } 838 839 /* 840 * on error we return an unlocked page and the error value 841 * on success we return a locked page and 0 842 */ 843 static int prepare_uptodate_page(struct inode *inode, 844 struct page *page, u64 pos, 845 bool force_uptodate) 846 { 847 struct folio *folio = page_folio(page); 848 int ret = 0; 849 850 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 851 !PageUptodate(page)) { 852 ret = btrfs_read_folio(NULL, folio); 853 if (ret) 854 return ret; 855 lock_page(page); 856 if (!PageUptodate(page)) { 857 unlock_page(page); 858 return -EIO; 859 } 860 861 /* 862 * Since btrfs_read_folio() will unlock the folio before it 863 * returns, there is a window where btrfs_release_folio() can be 864 * called to release the page. Here we check both inode 865 * mapping and PagePrivate() to make sure the page was not 866 * released. 867 * 868 * The private flag check is essential for subpage as we need 869 * to store extra bitmap using page->private. 870 */ 871 if (page->mapping != inode->i_mapping || !PagePrivate(page)) { 872 unlock_page(page); 873 return -EAGAIN; 874 } 875 } 876 return 0; 877 } 878 879 static unsigned int get_prepare_fgp_flags(bool nowait) 880 { 881 unsigned int fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT; 882 883 if (nowait) 884 fgp_flags |= FGP_NOWAIT; 885 886 return fgp_flags; 887 } 888 889 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) 890 { 891 gfp_t gfp; 892 893 gfp = btrfs_alloc_write_mask(inode->i_mapping); 894 if (nowait) { 895 gfp &= ~__GFP_DIRECT_RECLAIM; 896 gfp |= GFP_NOWAIT; 897 } 898 899 return gfp; 900 } 901 902 /* 903 * this just gets pages into the page cache and locks them down. 904 */ 905 static noinline int prepare_pages(struct inode *inode, struct page **pages, 906 size_t num_pages, loff_t pos, 907 size_t write_bytes, bool force_uptodate, 908 bool nowait) 909 { 910 int i; 911 unsigned long index = pos >> PAGE_SHIFT; 912 gfp_t mask = get_prepare_gfp_flags(inode, nowait); 913 unsigned int fgp_flags = get_prepare_fgp_flags(nowait); 914 int err = 0; 915 int faili; 916 917 for (i = 0; i < num_pages; i++) { 918 again: 919 pages[i] = pagecache_get_page(inode->i_mapping, index + i, 920 fgp_flags, mask | __GFP_WRITE); 921 if (!pages[i]) { 922 faili = i - 1; 923 if (nowait) 924 err = -EAGAIN; 925 else 926 err = -ENOMEM; 927 goto fail; 928 } 929 930 err = set_page_extent_mapped(pages[i]); 931 if (err < 0) { 932 faili = i; 933 goto fail; 934 } 935 936 if (i == 0) 937 err = prepare_uptodate_page(inode, pages[i], pos, 938 force_uptodate); 939 if (!err && i == num_pages - 1) 940 err = prepare_uptodate_page(inode, pages[i], 941 pos + write_bytes, false); 942 if (err) { 943 put_page(pages[i]); 944 if (!nowait && err == -EAGAIN) { 945 err = 0; 946 goto again; 947 } 948 faili = i - 1; 949 goto fail; 950 } 951 wait_on_page_writeback(pages[i]); 952 } 953 954 return 0; 955 fail: 956 while (faili >= 0) { 957 unlock_page(pages[faili]); 958 put_page(pages[faili]); 959 faili--; 960 } 961 return err; 962 963 } 964 965 /* 966 * This function locks the extent and properly waits for data=ordered extents 967 * to finish before allowing the pages to be modified if need. 968 * 969 * The return value: 970 * 1 - the extent is locked 971 * 0 - the extent is not locked, and everything is OK 972 * -EAGAIN - need re-prepare the pages 973 * the other < 0 number - Something wrong happens 974 */ 975 static noinline int 976 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 977 size_t num_pages, loff_t pos, 978 size_t write_bytes, 979 u64 *lockstart, u64 *lockend, bool nowait, 980 struct extent_state **cached_state) 981 { 982 struct btrfs_fs_info *fs_info = inode->root->fs_info; 983 u64 start_pos; 984 u64 last_pos; 985 int i; 986 int ret = 0; 987 988 start_pos = round_down(pos, fs_info->sectorsize); 989 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 990 991 if (start_pos < inode->vfs_inode.i_size) { 992 struct btrfs_ordered_extent *ordered; 993 994 if (nowait) { 995 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos, 996 cached_state)) { 997 for (i = 0; i < num_pages; i++) { 998 unlock_page(pages[i]); 999 put_page(pages[i]); 1000 pages[i] = NULL; 1001 } 1002 1003 return -EAGAIN; 1004 } 1005 } else { 1006 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state); 1007 } 1008 1009 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1010 last_pos - start_pos + 1); 1011 if (ordered && 1012 ordered->file_offset + ordered->num_bytes > start_pos && 1013 ordered->file_offset <= last_pos) { 1014 unlock_extent(&inode->io_tree, start_pos, last_pos, 1015 cached_state); 1016 for (i = 0; i < num_pages; i++) { 1017 unlock_page(pages[i]); 1018 put_page(pages[i]); 1019 } 1020 btrfs_start_ordered_extent(ordered); 1021 btrfs_put_ordered_extent(ordered); 1022 return -EAGAIN; 1023 } 1024 if (ordered) 1025 btrfs_put_ordered_extent(ordered); 1026 1027 *lockstart = start_pos; 1028 *lockend = last_pos; 1029 ret = 1; 1030 } 1031 1032 /* 1033 * We should be called after prepare_pages() which should have locked 1034 * all pages in the range. 1035 */ 1036 for (i = 0; i < num_pages; i++) 1037 WARN_ON(!PageLocked(pages[i])); 1038 1039 return ret; 1040 } 1041 1042 /* 1043 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1044 * 1045 * @pos: File offset. 1046 * @write_bytes: The length to write, will be updated to the nocow writeable 1047 * range. 1048 * 1049 * This function will flush ordered extents in the range to ensure proper 1050 * nocow checks. 1051 * 1052 * Return: 1053 * > 0 If we can nocow, and updates @write_bytes. 1054 * 0 If we can't do a nocow write. 1055 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's 1056 * root is in progress. 1057 * < 0 If an error happened. 1058 * 1059 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 1060 */ 1061 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1062 size_t *write_bytes, bool nowait) 1063 { 1064 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1065 struct btrfs_root *root = inode->root; 1066 struct extent_state *cached_state = NULL; 1067 u64 lockstart, lockend; 1068 u64 num_bytes; 1069 int ret; 1070 1071 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1072 return 0; 1073 1074 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1075 return -EAGAIN; 1076 1077 lockstart = round_down(pos, fs_info->sectorsize); 1078 lockend = round_up(pos + *write_bytes, 1079 fs_info->sectorsize) - 1; 1080 num_bytes = lockend - lockstart + 1; 1081 1082 if (nowait) { 1083 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend, 1084 &cached_state)) { 1085 btrfs_drew_write_unlock(&root->snapshot_lock); 1086 return -EAGAIN; 1087 } 1088 } else { 1089 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, 1090 &cached_state); 1091 } 1092 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1093 NULL, NULL, NULL, nowait, false); 1094 if (ret <= 0) 1095 btrfs_drew_write_unlock(&root->snapshot_lock); 1096 else 1097 *write_bytes = min_t(size_t, *write_bytes , 1098 num_bytes - pos + lockstart); 1099 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 1100 1101 return ret; 1102 } 1103 1104 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1105 { 1106 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1107 } 1108 1109 static void update_time_for_write(struct inode *inode) 1110 { 1111 struct timespec64 now; 1112 1113 if (IS_NOCMTIME(inode)) 1114 return; 1115 1116 now = current_time(inode); 1117 if (!timespec64_equal(&inode->i_mtime, &now)) 1118 inode->i_mtime = now; 1119 1120 if (!timespec64_equal(&inode->i_ctime, &now)) 1121 inode->i_ctime = now; 1122 1123 if (IS_I_VERSION(inode)) 1124 inode_inc_iversion(inode); 1125 } 1126 1127 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1128 size_t count) 1129 { 1130 struct file *file = iocb->ki_filp; 1131 struct inode *inode = file_inode(file); 1132 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1133 loff_t pos = iocb->ki_pos; 1134 int ret; 1135 loff_t oldsize; 1136 loff_t start_pos; 1137 1138 /* 1139 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1140 * prealloc flags, as without those flags we always have to COW. We will 1141 * later check if we can really COW into the target range (using 1142 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1143 */ 1144 if ((iocb->ki_flags & IOCB_NOWAIT) && 1145 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1146 return -EAGAIN; 1147 1148 current->backing_dev_info = inode_to_bdi(inode); 1149 ret = file_remove_privs(file); 1150 if (ret) 1151 return ret; 1152 1153 /* 1154 * We reserve space for updating the inode when we reserve space for the 1155 * extent we are going to write, so we will enospc out there. We don't 1156 * need to start yet another transaction to update the inode as we will 1157 * update the inode when we finish writing whatever data we write. 1158 */ 1159 update_time_for_write(inode); 1160 1161 start_pos = round_down(pos, fs_info->sectorsize); 1162 oldsize = i_size_read(inode); 1163 if (start_pos > oldsize) { 1164 /* Expand hole size to cover write data, preventing empty gap */ 1165 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1166 1167 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1168 if (ret) { 1169 current->backing_dev_info = NULL; 1170 return ret; 1171 } 1172 } 1173 1174 return 0; 1175 } 1176 1177 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1178 struct iov_iter *i) 1179 { 1180 struct file *file = iocb->ki_filp; 1181 loff_t pos; 1182 struct inode *inode = file_inode(file); 1183 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1184 struct page **pages = NULL; 1185 struct extent_changeset *data_reserved = NULL; 1186 u64 release_bytes = 0; 1187 u64 lockstart; 1188 u64 lockend; 1189 size_t num_written = 0; 1190 int nrptrs; 1191 ssize_t ret; 1192 bool only_release_metadata = false; 1193 bool force_page_uptodate = false; 1194 loff_t old_isize = i_size_read(inode); 1195 unsigned int ilock_flags = 0; 1196 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 1197 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); 1198 1199 if (nowait) 1200 ilock_flags |= BTRFS_ILOCK_TRY; 1201 1202 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1203 if (ret < 0) 1204 return ret; 1205 1206 ret = generic_write_checks(iocb, i); 1207 if (ret <= 0) 1208 goto out; 1209 1210 ret = btrfs_write_check(iocb, i, ret); 1211 if (ret < 0) 1212 goto out; 1213 1214 pos = iocb->ki_pos; 1215 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1216 PAGE_SIZE / (sizeof(struct page *))); 1217 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1218 nrptrs = max(nrptrs, 8); 1219 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1220 if (!pages) { 1221 ret = -ENOMEM; 1222 goto out; 1223 } 1224 1225 while (iov_iter_count(i) > 0) { 1226 struct extent_state *cached_state = NULL; 1227 size_t offset = offset_in_page(pos); 1228 size_t sector_offset; 1229 size_t write_bytes = min(iov_iter_count(i), 1230 nrptrs * (size_t)PAGE_SIZE - 1231 offset); 1232 size_t num_pages; 1233 size_t reserve_bytes; 1234 size_t dirty_pages; 1235 size_t copied; 1236 size_t dirty_sectors; 1237 size_t num_sectors; 1238 int extents_locked; 1239 1240 /* 1241 * Fault pages before locking them in prepare_pages 1242 * to avoid recursive lock 1243 */ 1244 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1245 ret = -EFAULT; 1246 break; 1247 } 1248 1249 only_release_metadata = false; 1250 sector_offset = pos & (fs_info->sectorsize - 1); 1251 1252 extent_changeset_release(data_reserved); 1253 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1254 &data_reserved, pos, 1255 write_bytes, nowait); 1256 if (ret < 0) { 1257 int can_nocow; 1258 1259 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) { 1260 ret = -EAGAIN; 1261 break; 1262 } 1263 1264 /* 1265 * If we don't have to COW at the offset, reserve 1266 * metadata only. write_bytes may get smaller than 1267 * requested here. 1268 */ 1269 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1270 &write_bytes, nowait); 1271 if (can_nocow < 0) 1272 ret = can_nocow; 1273 if (can_nocow > 0) 1274 ret = 0; 1275 if (ret) 1276 break; 1277 only_release_metadata = true; 1278 } 1279 1280 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1281 WARN_ON(num_pages > nrptrs); 1282 reserve_bytes = round_up(write_bytes + sector_offset, 1283 fs_info->sectorsize); 1284 WARN_ON(reserve_bytes == 0); 1285 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1286 reserve_bytes, 1287 reserve_bytes, nowait); 1288 if (ret) { 1289 if (!only_release_metadata) 1290 btrfs_free_reserved_data_space(BTRFS_I(inode), 1291 data_reserved, pos, 1292 write_bytes); 1293 else 1294 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1295 1296 if (nowait && ret == -ENOSPC) 1297 ret = -EAGAIN; 1298 break; 1299 } 1300 1301 release_bytes = reserve_bytes; 1302 again: 1303 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags); 1304 if (ret) { 1305 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1306 break; 1307 } 1308 1309 /* 1310 * This is going to setup the pages array with the number of 1311 * pages we want, so we don't really need to worry about the 1312 * contents of pages from loop to loop 1313 */ 1314 ret = prepare_pages(inode, pages, num_pages, 1315 pos, write_bytes, force_page_uptodate, false); 1316 if (ret) { 1317 btrfs_delalloc_release_extents(BTRFS_I(inode), 1318 reserve_bytes); 1319 break; 1320 } 1321 1322 extents_locked = lock_and_cleanup_extent_if_need( 1323 BTRFS_I(inode), pages, 1324 num_pages, pos, write_bytes, &lockstart, 1325 &lockend, nowait, &cached_state); 1326 if (extents_locked < 0) { 1327 if (!nowait && extents_locked == -EAGAIN) 1328 goto again; 1329 1330 btrfs_delalloc_release_extents(BTRFS_I(inode), 1331 reserve_bytes); 1332 ret = extents_locked; 1333 break; 1334 } 1335 1336 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1337 1338 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1339 dirty_sectors = round_up(copied + sector_offset, 1340 fs_info->sectorsize); 1341 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1342 1343 /* 1344 * if we have trouble faulting in the pages, fall 1345 * back to one page at a time 1346 */ 1347 if (copied < write_bytes) 1348 nrptrs = 1; 1349 1350 if (copied == 0) { 1351 force_page_uptodate = true; 1352 dirty_sectors = 0; 1353 dirty_pages = 0; 1354 } else { 1355 force_page_uptodate = false; 1356 dirty_pages = DIV_ROUND_UP(copied + offset, 1357 PAGE_SIZE); 1358 } 1359 1360 if (num_sectors > dirty_sectors) { 1361 /* release everything except the sectors we dirtied */ 1362 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1363 if (only_release_metadata) { 1364 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1365 release_bytes, true); 1366 } else { 1367 u64 __pos; 1368 1369 __pos = round_down(pos, 1370 fs_info->sectorsize) + 1371 (dirty_pages << PAGE_SHIFT); 1372 btrfs_delalloc_release_space(BTRFS_I(inode), 1373 data_reserved, __pos, 1374 release_bytes, true); 1375 } 1376 } 1377 1378 release_bytes = round_up(copied + sector_offset, 1379 fs_info->sectorsize); 1380 1381 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1382 dirty_pages, pos, copied, 1383 &cached_state, only_release_metadata); 1384 1385 /* 1386 * If we have not locked the extent range, because the range's 1387 * start offset is >= i_size, we might still have a non-NULL 1388 * cached extent state, acquired while marking the extent range 1389 * as delalloc through btrfs_dirty_pages(). Therefore free any 1390 * possible cached extent state to avoid a memory leak. 1391 */ 1392 if (extents_locked) 1393 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 1394 lockend, &cached_state); 1395 else 1396 free_extent_state(cached_state); 1397 1398 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1399 if (ret) { 1400 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1401 break; 1402 } 1403 1404 release_bytes = 0; 1405 if (only_release_metadata) 1406 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1407 1408 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1409 1410 cond_resched(); 1411 1412 pos += copied; 1413 num_written += copied; 1414 } 1415 1416 kfree(pages); 1417 1418 if (release_bytes) { 1419 if (only_release_metadata) { 1420 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1421 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1422 release_bytes, true); 1423 } else { 1424 btrfs_delalloc_release_space(BTRFS_I(inode), 1425 data_reserved, 1426 round_down(pos, fs_info->sectorsize), 1427 release_bytes, true); 1428 } 1429 } 1430 1431 extent_changeset_free(data_reserved); 1432 if (num_written > 0) { 1433 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1434 iocb->ki_pos += num_written; 1435 } 1436 out: 1437 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1438 return num_written ? num_written : ret; 1439 } 1440 1441 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1442 const struct iov_iter *iter, loff_t offset) 1443 { 1444 const u32 blocksize_mask = fs_info->sectorsize - 1; 1445 1446 if (offset & blocksize_mask) 1447 return -EINVAL; 1448 1449 if (iov_iter_alignment(iter) & blocksize_mask) 1450 return -EINVAL; 1451 1452 return 0; 1453 } 1454 1455 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1456 { 1457 struct file *file = iocb->ki_filp; 1458 struct inode *inode = file_inode(file); 1459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1460 loff_t pos; 1461 ssize_t written = 0; 1462 ssize_t written_buffered; 1463 size_t prev_left = 0; 1464 loff_t endbyte; 1465 ssize_t err; 1466 unsigned int ilock_flags = 0; 1467 struct iomap_dio *dio; 1468 1469 if (iocb->ki_flags & IOCB_NOWAIT) 1470 ilock_flags |= BTRFS_ILOCK_TRY; 1471 1472 /* If the write DIO is within EOF, use a shared lock */ 1473 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode)) 1474 ilock_flags |= BTRFS_ILOCK_SHARED; 1475 1476 relock: 1477 err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1478 if (err < 0) 1479 return err; 1480 1481 err = generic_write_checks(iocb, from); 1482 if (err <= 0) { 1483 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1484 return err; 1485 } 1486 1487 err = btrfs_write_check(iocb, from, err); 1488 if (err < 0) { 1489 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1490 goto out; 1491 } 1492 1493 pos = iocb->ki_pos; 1494 /* 1495 * Re-check since file size may have changed just before taking the 1496 * lock or pos may have changed because of O_APPEND in generic_write_check() 1497 */ 1498 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1499 pos + iov_iter_count(from) > i_size_read(inode)) { 1500 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1501 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1502 goto relock; 1503 } 1504 1505 if (check_direct_IO(fs_info, from, pos)) { 1506 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1507 goto buffered; 1508 } 1509 1510 /* 1511 * The iov_iter can be mapped to the same file range we are writing to. 1512 * If that's the case, then we will deadlock in the iomap code, because 1513 * it first calls our callback btrfs_dio_iomap_begin(), which will create 1514 * an ordered extent, and after that it will fault in the pages that the 1515 * iov_iter refers to. During the fault in we end up in the readahead 1516 * pages code (starting at btrfs_readahead()), which will lock the range, 1517 * find that ordered extent and then wait for it to complete (at 1518 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since 1519 * obviously the ordered extent can never complete as we didn't submit 1520 * yet the respective bio(s). This always happens when the buffer is 1521 * memory mapped to the same file range, since the iomap DIO code always 1522 * invalidates pages in the target file range (after starting and waiting 1523 * for any writeback). 1524 * 1525 * So here we disable page faults in the iov_iter and then retry if we 1526 * got -EFAULT, faulting in the pages before the retry. 1527 */ 1528 from->nofault = true; 1529 dio = btrfs_dio_write(iocb, from, written); 1530 from->nofault = false; 1531 1532 /* 1533 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync 1534 * iocb, and that needs to lock the inode. So unlock it before calling 1535 * iomap_dio_complete() to avoid a deadlock. 1536 */ 1537 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1538 1539 if (IS_ERR_OR_NULL(dio)) 1540 err = PTR_ERR_OR_ZERO(dio); 1541 else 1542 err = iomap_dio_complete(dio); 1543 1544 /* No increment (+=) because iomap returns a cumulative value. */ 1545 if (err > 0) 1546 written = err; 1547 1548 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) { 1549 const size_t left = iov_iter_count(from); 1550 /* 1551 * We have more data left to write. Try to fault in as many as 1552 * possible of the remainder pages and retry. We do this without 1553 * releasing and locking again the inode, to prevent races with 1554 * truncate. 1555 * 1556 * Also, in case the iov refers to pages in the file range of the 1557 * file we want to write to (due to a mmap), we could enter an 1558 * infinite loop if we retry after faulting the pages in, since 1559 * iomap will invalidate any pages in the range early on, before 1560 * it tries to fault in the pages of the iov. So we keep track of 1561 * how much was left of iov in the previous EFAULT and fallback 1562 * to buffered IO in case we haven't made any progress. 1563 */ 1564 if (left == prev_left) { 1565 err = -ENOTBLK; 1566 } else { 1567 fault_in_iov_iter_readable(from, left); 1568 prev_left = left; 1569 goto relock; 1570 } 1571 } 1572 1573 /* 1574 * If 'err' is -ENOTBLK or we have not written all data, then it means 1575 * we must fallback to buffered IO. 1576 */ 1577 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from)) 1578 goto out; 1579 1580 buffered: 1581 /* 1582 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller 1583 * it must retry the operation in a context where blocking is acceptable, 1584 * because even if we end up not blocking during the buffered IO attempt 1585 * below, we will block when flushing and waiting for the IO. 1586 */ 1587 if (iocb->ki_flags & IOCB_NOWAIT) { 1588 err = -EAGAIN; 1589 goto out; 1590 } 1591 1592 pos = iocb->ki_pos; 1593 written_buffered = btrfs_buffered_write(iocb, from); 1594 if (written_buffered < 0) { 1595 err = written_buffered; 1596 goto out; 1597 } 1598 /* 1599 * Ensure all data is persisted. We want the next direct IO read to be 1600 * able to read what was just written. 1601 */ 1602 endbyte = pos + written_buffered - 1; 1603 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1604 if (err) 1605 goto out; 1606 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1607 if (err) 1608 goto out; 1609 written += written_buffered; 1610 iocb->ki_pos = pos + written_buffered; 1611 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1612 endbyte >> PAGE_SHIFT); 1613 out: 1614 return err < 0 ? err : written; 1615 } 1616 1617 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 1618 const struct btrfs_ioctl_encoded_io_args *encoded) 1619 { 1620 struct file *file = iocb->ki_filp; 1621 struct inode *inode = file_inode(file); 1622 loff_t count; 1623 ssize_t ret; 1624 1625 btrfs_inode_lock(BTRFS_I(inode), 0); 1626 count = encoded->len; 1627 ret = generic_write_checks_count(iocb, &count); 1628 if (ret == 0 && count != encoded->len) { 1629 /* 1630 * The write got truncated by generic_write_checks_count(). We 1631 * can't do a partial encoded write. 1632 */ 1633 ret = -EFBIG; 1634 } 1635 if (ret || encoded->len == 0) 1636 goto out; 1637 1638 ret = btrfs_write_check(iocb, from, encoded->len); 1639 if (ret < 0) 1640 goto out; 1641 1642 ret = btrfs_do_encoded_write(iocb, from, encoded); 1643 out: 1644 btrfs_inode_unlock(BTRFS_I(inode), 0); 1645 return ret; 1646 } 1647 1648 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 1649 const struct btrfs_ioctl_encoded_io_args *encoded) 1650 { 1651 struct file *file = iocb->ki_filp; 1652 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1653 ssize_t num_written, num_sync; 1654 1655 /* 1656 * If the fs flips readonly due to some impossible error, although we 1657 * have opened a file as writable, we have to stop this write operation 1658 * to ensure consistency. 1659 */ 1660 if (BTRFS_FS_ERROR(inode->root->fs_info)) 1661 return -EROFS; 1662 1663 if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) 1664 return -EOPNOTSUPP; 1665 1666 if (encoded) { 1667 num_written = btrfs_encoded_write(iocb, from, encoded); 1668 num_sync = encoded->len; 1669 } else if (iocb->ki_flags & IOCB_DIRECT) { 1670 num_written = btrfs_direct_write(iocb, from); 1671 num_sync = num_written; 1672 } else { 1673 num_written = btrfs_buffered_write(iocb, from); 1674 num_sync = num_written; 1675 } 1676 1677 btrfs_set_inode_last_sub_trans(inode); 1678 1679 if (num_sync > 0) { 1680 num_sync = generic_write_sync(iocb, num_sync); 1681 if (num_sync < 0) 1682 num_written = num_sync; 1683 } 1684 1685 current->backing_dev_info = NULL; 1686 return num_written; 1687 } 1688 1689 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1690 { 1691 return btrfs_do_write_iter(iocb, from, NULL); 1692 } 1693 1694 int btrfs_release_file(struct inode *inode, struct file *filp) 1695 { 1696 struct btrfs_file_private *private = filp->private_data; 1697 1698 if (private) { 1699 kfree(private->filldir_buf); 1700 free_extent_state(private->llseek_cached_state); 1701 kfree(private); 1702 filp->private_data = NULL; 1703 } 1704 1705 /* 1706 * Set by setattr when we are about to truncate a file from a non-zero 1707 * size to a zero size. This tries to flush down new bytes that may 1708 * have been written if the application were using truncate to replace 1709 * a file in place. 1710 */ 1711 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 1712 &BTRFS_I(inode)->runtime_flags)) 1713 filemap_flush(inode->i_mapping); 1714 return 0; 1715 } 1716 1717 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 1718 { 1719 int ret; 1720 struct blk_plug plug; 1721 1722 /* 1723 * This is only called in fsync, which would do synchronous writes, so 1724 * a plug can merge adjacent IOs as much as possible. Esp. in case of 1725 * multiple disks using raid profile, a large IO can be split to 1726 * several segments of stripe length (currently 64K). 1727 */ 1728 blk_start_plug(&plug); 1729 ret = btrfs_fdatawrite_range(inode, start, end); 1730 blk_finish_plug(&plug); 1731 1732 return ret; 1733 } 1734 1735 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 1736 { 1737 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 1738 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1739 1740 if (btrfs_inode_in_log(inode, fs_info->generation) && 1741 list_empty(&ctx->ordered_extents)) 1742 return true; 1743 1744 /* 1745 * If we are doing a fast fsync we can not bail out if the inode's 1746 * last_trans is <= then the last committed transaction, because we only 1747 * update the last_trans of the inode during ordered extent completion, 1748 * and for a fast fsync we don't wait for that, we only wait for the 1749 * writeback to complete. 1750 */ 1751 if (inode->last_trans <= fs_info->last_trans_committed && 1752 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 1753 list_empty(&ctx->ordered_extents))) 1754 return true; 1755 1756 return false; 1757 } 1758 1759 /* 1760 * fsync call for both files and directories. This logs the inode into 1761 * the tree log instead of forcing full commits whenever possible. 1762 * 1763 * It needs to call filemap_fdatawait so that all ordered extent updates are 1764 * in the metadata btree are up to date for copying to the log. 1765 * 1766 * It drops the inode mutex before doing the tree log commit. This is an 1767 * important optimization for directories because holding the mutex prevents 1768 * new operations on the dir while we write to disk. 1769 */ 1770 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1771 { 1772 struct dentry *dentry = file_dentry(file); 1773 struct inode *inode = d_inode(dentry); 1774 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1775 struct btrfs_root *root = BTRFS_I(inode)->root; 1776 struct btrfs_trans_handle *trans; 1777 struct btrfs_log_ctx ctx; 1778 int ret = 0, err; 1779 u64 len; 1780 bool full_sync; 1781 1782 trace_btrfs_sync_file(file, datasync); 1783 1784 btrfs_init_log_ctx(&ctx, inode); 1785 1786 /* 1787 * Always set the range to a full range, otherwise we can get into 1788 * several problems, from missing file extent items to represent holes 1789 * when not using the NO_HOLES feature, to log tree corruption due to 1790 * races between hole detection during logging and completion of ordered 1791 * extents outside the range, to missing checksums due to ordered extents 1792 * for which we flushed only a subset of their pages. 1793 */ 1794 start = 0; 1795 end = LLONG_MAX; 1796 len = (u64)LLONG_MAX + 1; 1797 1798 /* 1799 * We write the dirty pages in the range and wait until they complete 1800 * out of the ->i_mutex. If so, we can flush the dirty pages by 1801 * multi-task, and make the performance up. See 1802 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1803 */ 1804 ret = start_ordered_ops(inode, start, end); 1805 if (ret) 1806 goto out; 1807 1808 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1809 1810 atomic_inc(&root->log_batch); 1811 1812 /* 1813 * Before we acquired the inode's lock and the mmap lock, someone may 1814 * have dirtied more pages in the target range. We need to make sure 1815 * that writeback for any such pages does not start while we are logging 1816 * the inode, because if it does, any of the following might happen when 1817 * we are not doing a full inode sync: 1818 * 1819 * 1) We log an extent after its writeback finishes but before its 1820 * checksums are added to the csum tree, leading to -EIO errors 1821 * when attempting to read the extent after a log replay. 1822 * 1823 * 2) We can end up logging an extent before its writeback finishes. 1824 * Therefore after the log replay we will have a file extent item 1825 * pointing to an unwritten extent (and no data checksums as well). 1826 * 1827 * So trigger writeback for any eventual new dirty pages and then we 1828 * wait for all ordered extents to complete below. 1829 */ 1830 ret = start_ordered_ops(inode, start, end); 1831 if (ret) { 1832 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1833 goto out; 1834 } 1835 1836 /* 1837 * Always check for the full sync flag while holding the inode's lock, 1838 * to avoid races with other tasks. The flag must be either set all the 1839 * time during logging or always off all the time while logging. 1840 * We check the flag here after starting delalloc above, because when 1841 * running delalloc the full sync flag may be set if we need to drop 1842 * extra extent map ranges due to temporary memory allocation failures. 1843 */ 1844 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1845 &BTRFS_I(inode)->runtime_flags); 1846 1847 /* 1848 * We have to do this here to avoid the priority inversion of waiting on 1849 * IO of a lower priority task while holding a transaction open. 1850 * 1851 * For a full fsync we wait for the ordered extents to complete while 1852 * for a fast fsync we wait just for writeback to complete, and then 1853 * attach the ordered extents to the transaction so that a transaction 1854 * commit waits for their completion, to avoid data loss if we fsync, 1855 * the current transaction commits before the ordered extents complete 1856 * and a power failure happens right after that. 1857 * 1858 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 1859 * logical address recorded in the ordered extent may change. We need 1860 * to wait for the IO to stabilize the logical address. 1861 */ 1862 if (full_sync || btrfs_is_zoned(fs_info)) { 1863 ret = btrfs_wait_ordered_range(inode, start, len); 1864 } else { 1865 /* 1866 * Get our ordered extents as soon as possible to avoid doing 1867 * checksum lookups in the csum tree, and use instead the 1868 * checksums attached to the ordered extents. 1869 */ 1870 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 1871 &ctx.ordered_extents); 1872 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 1873 } 1874 1875 if (ret) 1876 goto out_release_extents; 1877 1878 atomic_inc(&root->log_batch); 1879 1880 smp_mb(); 1881 if (skip_inode_logging(&ctx)) { 1882 /* 1883 * We've had everything committed since the last time we were 1884 * modified so clear this flag in case it was set for whatever 1885 * reason, it's no longer relevant. 1886 */ 1887 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1888 &BTRFS_I(inode)->runtime_flags); 1889 /* 1890 * An ordered extent might have started before and completed 1891 * already with io errors, in which case the inode was not 1892 * updated and we end up here. So check the inode's mapping 1893 * for any errors that might have happened since we last 1894 * checked called fsync. 1895 */ 1896 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 1897 goto out_release_extents; 1898 } 1899 1900 /* 1901 * We use start here because we will need to wait on the IO to complete 1902 * in btrfs_sync_log, which could require joining a transaction (for 1903 * example checking cross references in the nocow path). If we use join 1904 * here we could get into a situation where we're waiting on IO to 1905 * happen that is blocked on a transaction trying to commit. With start 1906 * we inc the extwriter counter, so we wait for all extwriters to exit 1907 * before we start blocking joiners. This comment is to keep somebody 1908 * from thinking they are super smart and changing this to 1909 * btrfs_join_transaction *cough*Josef*cough*. 1910 */ 1911 trans = btrfs_start_transaction(root, 0); 1912 if (IS_ERR(trans)) { 1913 ret = PTR_ERR(trans); 1914 goto out_release_extents; 1915 } 1916 trans->in_fsync = true; 1917 1918 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 1919 btrfs_release_log_ctx_extents(&ctx); 1920 if (ret < 0) { 1921 /* Fallthrough and commit/free transaction. */ 1922 ret = BTRFS_LOG_FORCE_COMMIT; 1923 } 1924 1925 /* we've logged all the items and now have a consistent 1926 * version of the file in the log. It is possible that 1927 * someone will come in and modify the file, but that's 1928 * fine because the log is consistent on disk, and we 1929 * have references to all of the file's extents 1930 * 1931 * It is possible that someone will come in and log the 1932 * file again, but that will end up using the synchronization 1933 * inside btrfs_sync_log to keep things safe. 1934 */ 1935 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1936 1937 if (ret == BTRFS_NO_LOG_SYNC) { 1938 ret = btrfs_end_transaction(trans); 1939 goto out; 1940 } 1941 1942 /* We successfully logged the inode, attempt to sync the log. */ 1943 if (!ret) { 1944 ret = btrfs_sync_log(trans, root, &ctx); 1945 if (!ret) { 1946 ret = btrfs_end_transaction(trans); 1947 goto out; 1948 } 1949 } 1950 1951 /* 1952 * At this point we need to commit the transaction because we had 1953 * btrfs_need_log_full_commit() or some other error. 1954 * 1955 * If we didn't do a full sync we have to stop the trans handle, wait on 1956 * the ordered extents, start it again and commit the transaction. If 1957 * we attempt to wait on the ordered extents here we could deadlock with 1958 * something like fallocate() that is holding the extent lock trying to 1959 * start a transaction while some other thread is trying to commit the 1960 * transaction while we (fsync) are currently holding the transaction 1961 * open. 1962 */ 1963 if (!full_sync) { 1964 ret = btrfs_end_transaction(trans); 1965 if (ret) 1966 goto out; 1967 ret = btrfs_wait_ordered_range(inode, start, len); 1968 if (ret) 1969 goto out; 1970 1971 /* 1972 * This is safe to use here because we're only interested in 1973 * making sure the transaction that had the ordered extents is 1974 * committed. We aren't waiting on anything past this point, 1975 * we're purely getting the transaction and committing it. 1976 */ 1977 trans = btrfs_attach_transaction_barrier(root); 1978 if (IS_ERR(trans)) { 1979 ret = PTR_ERR(trans); 1980 1981 /* 1982 * We committed the transaction and there's no currently 1983 * running transaction, this means everything we care 1984 * about made it to disk and we are done. 1985 */ 1986 if (ret == -ENOENT) 1987 ret = 0; 1988 goto out; 1989 } 1990 } 1991 1992 ret = btrfs_commit_transaction(trans); 1993 out: 1994 ASSERT(list_empty(&ctx.list)); 1995 ASSERT(list_empty(&ctx.conflict_inodes)); 1996 err = file_check_and_advance_wb_err(file); 1997 if (!ret) 1998 ret = err; 1999 return ret > 0 ? -EIO : ret; 2000 2001 out_release_extents: 2002 btrfs_release_log_ctx_extents(&ctx); 2003 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2004 goto out; 2005 } 2006 2007 static const struct vm_operations_struct btrfs_file_vm_ops = { 2008 .fault = filemap_fault, 2009 .map_pages = filemap_map_pages, 2010 .page_mkwrite = btrfs_page_mkwrite, 2011 }; 2012 2013 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2014 { 2015 struct address_space *mapping = filp->f_mapping; 2016 2017 if (!mapping->a_ops->read_folio) 2018 return -ENOEXEC; 2019 2020 file_accessed(filp); 2021 vma->vm_ops = &btrfs_file_vm_ops; 2022 2023 return 0; 2024 } 2025 2026 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2027 int slot, u64 start, u64 end) 2028 { 2029 struct btrfs_file_extent_item *fi; 2030 struct btrfs_key key; 2031 2032 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2033 return 0; 2034 2035 btrfs_item_key_to_cpu(leaf, &key, slot); 2036 if (key.objectid != btrfs_ino(inode) || 2037 key.type != BTRFS_EXTENT_DATA_KEY) 2038 return 0; 2039 2040 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2041 2042 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2043 return 0; 2044 2045 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2046 return 0; 2047 2048 if (key.offset == end) 2049 return 1; 2050 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2051 return 1; 2052 return 0; 2053 } 2054 2055 static int fill_holes(struct btrfs_trans_handle *trans, 2056 struct btrfs_inode *inode, 2057 struct btrfs_path *path, u64 offset, u64 end) 2058 { 2059 struct btrfs_fs_info *fs_info = trans->fs_info; 2060 struct btrfs_root *root = inode->root; 2061 struct extent_buffer *leaf; 2062 struct btrfs_file_extent_item *fi; 2063 struct extent_map *hole_em; 2064 struct btrfs_key key; 2065 int ret; 2066 2067 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2068 goto out; 2069 2070 key.objectid = btrfs_ino(inode); 2071 key.type = BTRFS_EXTENT_DATA_KEY; 2072 key.offset = offset; 2073 2074 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2075 if (ret <= 0) { 2076 /* 2077 * We should have dropped this offset, so if we find it then 2078 * something has gone horribly wrong. 2079 */ 2080 if (ret == 0) 2081 ret = -EINVAL; 2082 return ret; 2083 } 2084 2085 leaf = path->nodes[0]; 2086 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2087 u64 num_bytes; 2088 2089 path->slots[0]--; 2090 fi = btrfs_item_ptr(leaf, path->slots[0], 2091 struct btrfs_file_extent_item); 2092 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2093 end - offset; 2094 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2095 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2096 btrfs_set_file_extent_offset(leaf, fi, 0); 2097 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2098 btrfs_mark_buffer_dirty(leaf); 2099 goto out; 2100 } 2101 2102 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2103 u64 num_bytes; 2104 2105 key.offset = offset; 2106 btrfs_set_item_key_safe(fs_info, path, &key); 2107 fi = btrfs_item_ptr(leaf, path->slots[0], 2108 struct btrfs_file_extent_item); 2109 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2110 offset; 2111 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2112 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2113 btrfs_set_file_extent_offset(leaf, fi, 0); 2114 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2115 btrfs_mark_buffer_dirty(leaf); 2116 goto out; 2117 } 2118 btrfs_release_path(path); 2119 2120 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, 2121 end - offset); 2122 if (ret) 2123 return ret; 2124 2125 out: 2126 btrfs_release_path(path); 2127 2128 hole_em = alloc_extent_map(); 2129 if (!hole_em) { 2130 btrfs_drop_extent_map_range(inode, offset, end - 1, false); 2131 btrfs_set_inode_full_sync(inode); 2132 } else { 2133 hole_em->start = offset; 2134 hole_em->len = end - offset; 2135 hole_em->ram_bytes = hole_em->len; 2136 hole_em->orig_start = offset; 2137 2138 hole_em->block_start = EXTENT_MAP_HOLE; 2139 hole_em->block_len = 0; 2140 hole_em->orig_block_len = 0; 2141 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2142 hole_em->generation = trans->transid; 2143 2144 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 2145 free_extent_map(hole_em); 2146 if (ret) 2147 btrfs_set_inode_full_sync(inode); 2148 } 2149 2150 return 0; 2151 } 2152 2153 /* 2154 * Find a hole extent on given inode and change start/len to the end of hole 2155 * extent.(hole/vacuum extent whose em->start <= start && 2156 * em->start + em->len > start) 2157 * When a hole extent is found, return 1 and modify start/len. 2158 */ 2159 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2160 { 2161 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2162 struct extent_map *em; 2163 int ret = 0; 2164 2165 em = btrfs_get_extent(inode, NULL, 0, 2166 round_down(*start, fs_info->sectorsize), 2167 round_up(*len, fs_info->sectorsize)); 2168 if (IS_ERR(em)) 2169 return PTR_ERR(em); 2170 2171 /* Hole or vacuum extent(only exists in no-hole mode) */ 2172 if (em->block_start == EXTENT_MAP_HOLE) { 2173 ret = 1; 2174 *len = em->start + em->len > *start + *len ? 2175 0 : *start + *len - em->start - em->len; 2176 *start = em->start + em->len; 2177 } 2178 free_extent_map(em); 2179 return ret; 2180 } 2181 2182 static void btrfs_punch_hole_lock_range(struct inode *inode, 2183 const u64 lockstart, 2184 const u64 lockend, 2185 struct extent_state **cached_state) 2186 { 2187 /* 2188 * For subpage case, if the range is not at page boundary, we could 2189 * have pages at the leading/tailing part of the range. 2190 * This could lead to dead loop since filemap_range_has_page() 2191 * will always return true. 2192 * So here we need to do extra page alignment for 2193 * filemap_range_has_page(). 2194 */ 2195 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2196 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2197 2198 while (1) { 2199 truncate_pagecache_range(inode, lockstart, lockend); 2200 2201 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2202 cached_state); 2203 /* 2204 * We can't have ordered extents in the range, nor dirty/writeback 2205 * pages, because we have locked the inode's VFS lock in exclusive 2206 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2207 * we have flushed all delalloc in the range and we have waited 2208 * for any ordered extents in the range to complete. 2209 * We can race with anyone reading pages from this range, so after 2210 * locking the range check if we have pages in the range, and if 2211 * we do, unlock the range and retry. 2212 */ 2213 if (!filemap_range_has_page(inode->i_mapping, page_lockstart, 2214 page_lockend)) 2215 break; 2216 2217 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2218 cached_state); 2219 } 2220 2221 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2222 } 2223 2224 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2225 struct btrfs_inode *inode, 2226 struct btrfs_path *path, 2227 struct btrfs_replace_extent_info *extent_info, 2228 const u64 replace_len, 2229 const u64 bytes_to_drop) 2230 { 2231 struct btrfs_fs_info *fs_info = trans->fs_info; 2232 struct btrfs_root *root = inode->root; 2233 struct btrfs_file_extent_item *extent; 2234 struct extent_buffer *leaf; 2235 struct btrfs_key key; 2236 int slot; 2237 struct btrfs_ref ref = { 0 }; 2238 int ret; 2239 2240 if (replace_len == 0) 2241 return 0; 2242 2243 if (extent_info->disk_offset == 0 && 2244 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2245 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2246 return 0; 2247 } 2248 2249 key.objectid = btrfs_ino(inode); 2250 key.type = BTRFS_EXTENT_DATA_KEY; 2251 key.offset = extent_info->file_offset; 2252 ret = btrfs_insert_empty_item(trans, root, path, &key, 2253 sizeof(struct btrfs_file_extent_item)); 2254 if (ret) 2255 return ret; 2256 leaf = path->nodes[0]; 2257 slot = path->slots[0]; 2258 write_extent_buffer(leaf, extent_info->extent_buf, 2259 btrfs_item_ptr_offset(leaf, slot), 2260 sizeof(struct btrfs_file_extent_item)); 2261 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2262 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2263 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2264 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2265 if (extent_info->is_new_extent) 2266 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2267 btrfs_mark_buffer_dirty(leaf); 2268 btrfs_release_path(path); 2269 2270 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2271 replace_len); 2272 if (ret) 2273 return ret; 2274 2275 /* If it's a hole, nothing more needs to be done. */ 2276 if (extent_info->disk_offset == 0) { 2277 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2278 return 0; 2279 } 2280 2281 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2282 2283 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2284 key.objectid = extent_info->disk_offset; 2285 key.type = BTRFS_EXTENT_ITEM_KEY; 2286 key.offset = extent_info->disk_len; 2287 ret = btrfs_alloc_reserved_file_extent(trans, root, 2288 btrfs_ino(inode), 2289 extent_info->file_offset, 2290 extent_info->qgroup_reserved, 2291 &key); 2292 } else { 2293 u64 ref_offset; 2294 2295 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2296 extent_info->disk_offset, 2297 extent_info->disk_len, 0); 2298 ref_offset = extent_info->file_offset - extent_info->data_offset; 2299 btrfs_init_data_ref(&ref, root->root_key.objectid, 2300 btrfs_ino(inode), ref_offset, 0, false); 2301 ret = btrfs_inc_extent_ref(trans, &ref); 2302 } 2303 2304 extent_info->insertions++; 2305 2306 return ret; 2307 } 2308 2309 /* 2310 * The respective range must have been previously locked, as well as the inode. 2311 * The end offset is inclusive (last byte of the range). 2312 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2313 * the file range with an extent. 2314 * When not punching a hole, we don't want to end up in a state where we dropped 2315 * extents without inserting a new one, so we must abort the transaction to avoid 2316 * a corruption. 2317 */ 2318 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2319 struct btrfs_path *path, const u64 start, 2320 const u64 end, 2321 struct btrfs_replace_extent_info *extent_info, 2322 struct btrfs_trans_handle **trans_out) 2323 { 2324 struct btrfs_drop_extents_args drop_args = { 0 }; 2325 struct btrfs_root *root = inode->root; 2326 struct btrfs_fs_info *fs_info = root->fs_info; 2327 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2328 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2329 struct btrfs_trans_handle *trans = NULL; 2330 struct btrfs_block_rsv *rsv; 2331 unsigned int rsv_count; 2332 u64 cur_offset; 2333 u64 len = end - start; 2334 int ret = 0; 2335 2336 if (end <= start) 2337 return -EINVAL; 2338 2339 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2340 if (!rsv) { 2341 ret = -ENOMEM; 2342 goto out; 2343 } 2344 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2345 rsv->failfast = true; 2346 2347 /* 2348 * 1 - update the inode 2349 * 1 - removing the extents in the range 2350 * 1 - adding the hole extent if no_holes isn't set or if we are 2351 * replacing the range with a new extent 2352 */ 2353 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2354 rsv_count = 3; 2355 else 2356 rsv_count = 2; 2357 2358 trans = btrfs_start_transaction(root, rsv_count); 2359 if (IS_ERR(trans)) { 2360 ret = PTR_ERR(trans); 2361 trans = NULL; 2362 goto out_free; 2363 } 2364 2365 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2366 min_size, false); 2367 if (WARN_ON(ret)) 2368 goto out_trans; 2369 trans->block_rsv = rsv; 2370 2371 cur_offset = start; 2372 drop_args.path = path; 2373 drop_args.end = end + 1; 2374 drop_args.drop_cache = true; 2375 while (cur_offset < end) { 2376 drop_args.start = cur_offset; 2377 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2378 /* If we are punching a hole decrement the inode's byte count */ 2379 if (!extent_info) 2380 btrfs_update_inode_bytes(inode, 0, 2381 drop_args.bytes_found); 2382 if (ret != -ENOSPC) { 2383 /* 2384 * The only time we don't want to abort is if we are 2385 * attempting to clone a partial inline extent, in which 2386 * case we'll get EOPNOTSUPP. However if we aren't 2387 * clone we need to abort no matter what, because if we 2388 * got EOPNOTSUPP via prealloc then we messed up and 2389 * need to abort. 2390 */ 2391 if (ret && 2392 (ret != -EOPNOTSUPP || 2393 (extent_info && extent_info->is_new_extent))) 2394 btrfs_abort_transaction(trans, ret); 2395 break; 2396 } 2397 2398 trans->block_rsv = &fs_info->trans_block_rsv; 2399 2400 if (!extent_info && cur_offset < drop_args.drop_end && 2401 cur_offset < ino_size) { 2402 ret = fill_holes(trans, inode, path, cur_offset, 2403 drop_args.drop_end); 2404 if (ret) { 2405 /* 2406 * If we failed then we didn't insert our hole 2407 * entries for the area we dropped, so now the 2408 * fs is corrupted, so we must abort the 2409 * transaction. 2410 */ 2411 btrfs_abort_transaction(trans, ret); 2412 break; 2413 } 2414 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2415 /* 2416 * We are past the i_size here, but since we didn't 2417 * insert holes we need to clear the mapped area so we 2418 * know to not set disk_i_size in this area until a new 2419 * file extent is inserted here. 2420 */ 2421 ret = btrfs_inode_clear_file_extent_range(inode, 2422 cur_offset, 2423 drop_args.drop_end - cur_offset); 2424 if (ret) { 2425 /* 2426 * We couldn't clear our area, so we could 2427 * presumably adjust up and corrupt the fs, so 2428 * we need to abort. 2429 */ 2430 btrfs_abort_transaction(trans, ret); 2431 break; 2432 } 2433 } 2434 2435 if (extent_info && 2436 drop_args.drop_end > extent_info->file_offset) { 2437 u64 replace_len = drop_args.drop_end - 2438 extent_info->file_offset; 2439 2440 ret = btrfs_insert_replace_extent(trans, inode, path, 2441 extent_info, replace_len, 2442 drop_args.bytes_found); 2443 if (ret) { 2444 btrfs_abort_transaction(trans, ret); 2445 break; 2446 } 2447 extent_info->data_len -= replace_len; 2448 extent_info->data_offset += replace_len; 2449 extent_info->file_offset += replace_len; 2450 } 2451 2452 /* 2453 * We are releasing our handle on the transaction, balance the 2454 * dirty pages of the btree inode and flush delayed items, and 2455 * then get a new transaction handle, which may now point to a 2456 * new transaction in case someone else may have committed the 2457 * transaction we used to replace/drop file extent items. So 2458 * bump the inode's iversion and update mtime and ctime except 2459 * if we are called from a dedupe context. This is because a 2460 * power failure/crash may happen after the transaction is 2461 * committed and before we finish replacing/dropping all the 2462 * file extent items we need. 2463 */ 2464 inode_inc_iversion(&inode->vfs_inode); 2465 2466 if (!extent_info || extent_info->update_times) { 2467 inode->vfs_inode.i_mtime = current_time(&inode->vfs_inode); 2468 inode->vfs_inode.i_ctime = inode->vfs_inode.i_mtime; 2469 } 2470 2471 ret = btrfs_update_inode(trans, root, inode); 2472 if (ret) 2473 break; 2474 2475 btrfs_end_transaction(trans); 2476 btrfs_btree_balance_dirty(fs_info); 2477 2478 trans = btrfs_start_transaction(root, rsv_count); 2479 if (IS_ERR(trans)) { 2480 ret = PTR_ERR(trans); 2481 trans = NULL; 2482 break; 2483 } 2484 2485 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2486 rsv, min_size, false); 2487 if (WARN_ON(ret)) 2488 break; 2489 trans->block_rsv = rsv; 2490 2491 cur_offset = drop_args.drop_end; 2492 len = end - cur_offset; 2493 if (!extent_info && len) { 2494 ret = find_first_non_hole(inode, &cur_offset, &len); 2495 if (unlikely(ret < 0)) 2496 break; 2497 if (ret && !len) { 2498 ret = 0; 2499 break; 2500 } 2501 } 2502 } 2503 2504 /* 2505 * If we were cloning, force the next fsync to be a full one since we 2506 * we replaced (or just dropped in the case of cloning holes when 2507 * NO_HOLES is enabled) file extent items and did not setup new extent 2508 * maps for the replacement extents (or holes). 2509 */ 2510 if (extent_info && !extent_info->is_new_extent) 2511 btrfs_set_inode_full_sync(inode); 2512 2513 if (ret) 2514 goto out_trans; 2515 2516 trans->block_rsv = &fs_info->trans_block_rsv; 2517 /* 2518 * If we are using the NO_HOLES feature we might have had already an 2519 * hole that overlaps a part of the region [lockstart, lockend] and 2520 * ends at (or beyond) lockend. Since we have no file extent items to 2521 * represent holes, drop_end can be less than lockend and so we must 2522 * make sure we have an extent map representing the existing hole (the 2523 * call to __btrfs_drop_extents() might have dropped the existing extent 2524 * map representing the existing hole), otherwise the fast fsync path 2525 * will not record the existence of the hole region 2526 * [existing_hole_start, lockend]. 2527 */ 2528 if (drop_args.drop_end <= end) 2529 drop_args.drop_end = end + 1; 2530 /* 2531 * Don't insert file hole extent item if it's for a range beyond eof 2532 * (because it's useless) or if it represents a 0 bytes range (when 2533 * cur_offset == drop_end). 2534 */ 2535 if (!extent_info && cur_offset < ino_size && 2536 cur_offset < drop_args.drop_end) { 2537 ret = fill_holes(trans, inode, path, cur_offset, 2538 drop_args.drop_end); 2539 if (ret) { 2540 /* Same comment as above. */ 2541 btrfs_abort_transaction(trans, ret); 2542 goto out_trans; 2543 } 2544 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2545 /* See the comment in the loop above for the reasoning here. */ 2546 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2547 drop_args.drop_end - cur_offset); 2548 if (ret) { 2549 btrfs_abort_transaction(trans, ret); 2550 goto out_trans; 2551 } 2552 2553 } 2554 if (extent_info) { 2555 ret = btrfs_insert_replace_extent(trans, inode, path, 2556 extent_info, extent_info->data_len, 2557 drop_args.bytes_found); 2558 if (ret) { 2559 btrfs_abort_transaction(trans, ret); 2560 goto out_trans; 2561 } 2562 } 2563 2564 out_trans: 2565 if (!trans) 2566 goto out_free; 2567 2568 trans->block_rsv = &fs_info->trans_block_rsv; 2569 if (ret) 2570 btrfs_end_transaction(trans); 2571 else 2572 *trans_out = trans; 2573 out_free: 2574 btrfs_free_block_rsv(fs_info, rsv); 2575 out: 2576 return ret; 2577 } 2578 2579 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2580 { 2581 struct inode *inode = file_inode(file); 2582 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2583 struct btrfs_root *root = BTRFS_I(inode)->root; 2584 struct extent_state *cached_state = NULL; 2585 struct btrfs_path *path; 2586 struct btrfs_trans_handle *trans = NULL; 2587 u64 lockstart; 2588 u64 lockend; 2589 u64 tail_start; 2590 u64 tail_len; 2591 u64 orig_start = offset; 2592 int ret = 0; 2593 bool same_block; 2594 u64 ino_size; 2595 bool truncated_block = false; 2596 bool updated_inode = false; 2597 2598 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2599 2600 ret = btrfs_wait_ordered_range(inode, offset, len); 2601 if (ret) 2602 goto out_only_mutex; 2603 2604 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2605 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2606 if (ret < 0) 2607 goto out_only_mutex; 2608 if (ret && !len) { 2609 /* Already in a large hole */ 2610 ret = 0; 2611 goto out_only_mutex; 2612 } 2613 2614 ret = file_modified(file); 2615 if (ret) 2616 goto out_only_mutex; 2617 2618 lockstart = round_up(offset, fs_info->sectorsize); 2619 lockend = round_down(offset + len, fs_info->sectorsize) - 1; 2620 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2621 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2622 /* 2623 * We needn't truncate any block which is beyond the end of the file 2624 * because we are sure there is no data there. 2625 */ 2626 /* 2627 * Only do this if we are in the same block and we aren't doing the 2628 * entire block. 2629 */ 2630 if (same_block && len < fs_info->sectorsize) { 2631 if (offset < ino_size) { 2632 truncated_block = true; 2633 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2634 0); 2635 } else { 2636 ret = 0; 2637 } 2638 goto out_only_mutex; 2639 } 2640 2641 /* zero back part of the first block */ 2642 if (offset < ino_size) { 2643 truncated_block = true; 2644 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2645 if (ret) { 2646 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2647 return ret; 2648 } 2649 } 2650 2651 /* Check the aligned pages after the first unaligned page, 2652 * if offset != orig_start, which means the first unaligned page 2653 * including several following pages are already in holes, 2654 * the extra check can be skipped */ 2655 if (offset == orig_start) { 2656 /* after truncate page, check hole again */ 2657 len = offset + len - lockstart; 2658 offset = lockstart; 2659 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2660 if (ret < 0) 2661 goto out_only_mutex; 2662 if (ret && !len) { 2663 ret = 0; 2664 goto out_only_mutex; 2665 } 2666 lockstart = offset; 2667 } 2668 2669 /* Check the tail unaligned part is in a hole */ 2670 tail_start = lockend + 1; 2671 tail_len = offset + len - tail_start; 2672 if (tail_len) { 2673 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2674 if (unlikely(ret < 0)) 2675 goto out_only_mutex; 2676 if (!ret) { 2677 /* zero the front end of the last page */ 2678 if (tail_start + tail_len < ino_size) { 2679 truncated_block = true; 2680 ret = btrfs_truncate_block(BTRFS_I(inode), 2681 tail_start + tail_len, 2682 0, 1); 2683 if (ret) 2684 goto out_only_mutex; 2685 } 2686 } 2687 } 2688 2689 if (lockend < lockstart) { 2690 ret = 0; 2691 goto out_only_mutex; 2692 } 2693 2694 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 2695 2696 path = btrfs_alloc_path(); 2697 if (!path) { 2698 ret = -ENOMEM; 2699 goto out; 2700 } 2701 2702 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 2703 lockend, NULL, &trans); 2704 btrfs_free_path(path); 2705 if (ret) 2706 goto out; 2707 2708 ASSERT(trans != NULL); 2709 inode_inc_iversion(inode); 2710 inode->i_mtime = current_time(inode); 2711 inode->i_ctime = inode->i_mtime; 2712 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2713 updated_inode = true; 2714 btrfs_end_transaction(trans); 2715 btrfs_btree_balance_dirty(fs_info); 2716 out: 2717 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2718 &cached_state); 2719 out_only_mutex: 2720 if (!updated_inode && truncated_block && !ret) { 2721 /* 2722 * If we only end up zeroing part of a page, we still need to 2723 * update the inode item, so that all the time fields are 2724 * updated as well as the necessary btrfs inode in memory fields 2725 * for detecting, at fsync time, if the inode isn't yet in the 2726 * log tree or it's there but not up to date. 2727 */ 2728 struct timespec64 now = current_time(inode); 2729 2730 inode_inc_iversion(inode); 2731 inode->i_mtime = now; 2732 inode->i_ctime = now; 2733 trans = btrfs_start_transaction(root, 1); 2734 if (IS_ERR(trans)) { 2735 ret = PTR_ERR(trans); 2736 } else { 2737 int ret2; 2738 2739 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2740 ret2 = btrfs_end_transaction(trans); 2741 if (!ret) 2742 ret = ret2; 2743 } 2744 } 2745 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2746 return ret; 2747 } 2748 2749 /* Helper structure to record which range is already reserved */ 2750 struct falloc_range { 2751 struct list_head list; 2752 u64 start; 2753 u64 len; 2754 }; 2755 2756 /* 2757 * Helper function to add falloc range 2758 * 2759 * Caller should have locked the larger range of extent containing 2760 * [start, len) 2761 */ 2762 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2763 { 2764 struct falloc_range *range = NULL; 2765 2766 if (!list_empty(head)) { 2767 /* 2768 * As fallocate iterates by bytenr order, we only need to check 2769 * the last range. 2770 */ 2771 range = list_last_entry(head, struct falloc_range, list); 2772 if (range->start + range->len == start) { 2773 range->len += len; 2774 return 0; 2775 } 2776 } 2777 2778 range = kmalloc(sizeof(*range), GFP_KERNEL); 2779 if (!range) 2780 return -ENOMEM; 2781 range->start = start; 2782 range->len = len; 2783 list_add_tail(&range->list, head); 2784 return 0; 2785 } 2786 2787 static int btrfs_fallocate_update_isize(struct inode *inode, 2788 const u64 end, 2789 const int mode) 2790 { 2791 struct btrfs_trans_handle *trans; 2792 struct btrfs_root *root = BTRFS_I(inode)->root; 2793 int ret; 2794 int ret2; 2795 2796 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2797 return 0; 2798 2799 trans = btrfs_start_transaction(root, 1); 2800 if (IS_ERR(trans)) 2801 return PTR_ERR(trans); 2802 2803 inode->i_ctime = current_time(inode); 2804 i_size_write(inode, end); 2805 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 2806 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 2807 ret2 = btrfs_end_transaction(trans); 2808 2809 return ret ? ret : ret2; 2810 } 2811 2812 enum { 2813 RANGE_BOUNDARY_WRITTEN_EXTENT, 2814 RANGE_BOUNDARY_PREALLOC_EXTENT, 2815 RANGE_BOUNDARY_HOLE, 2816 }; 2817 2818 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 2819 u64 offset) 2820 { 2821 const u64 sectorsize = inode->root->fs_info->sectorsize; 2822 struct extent_map *em; 2823 int ret; 2824 2825 offset = round_down(offset, sectorsize); 2826 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); 2827 if (IS_ERR(em)) 2828 return PTR_ERR(em); 2829 2830 if (em->block_start == EXTENT_MAP_HOLE) 2831 ret = RANGE_BOUNDARY_HOLE; 2832 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2833 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2834 else 2835 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2836 2837 free_extent_map(em); 2838 return ret; 2839 } 2840 2841 static int btrfs_zero_range(struct inode *inode, 2842 loff_t offset, 2843 loff_t len, 2844 const int mode) 2845 { 2846 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2847 struct extent_map *em; 2848 struct extent_changeset *data_reserved = NULL; 2849 int ret; 2850 u64 alloc_hint = 0; 2851 const u64 sectorsize = fs_info->sectorsize; 2852 u64 alloc_start = round_down(offset, sectorsize); 2853 u64 alloc_end = round_up(offset + len, sectorsize); 2854 u64 bytes_to_reserve = 0; 2855 bool space_reserved = false; 2856 2857 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 2858 alloc_end - alloc_start); 2859 if (IS_ERR(em)) { 2860 ret = PTR_ERR(em); 2861 goto out; 2862 } 2863 2864 /* 2865 * Avoid hole punching and extent allocation for some cases. More cases 2866 * could be considered, but these are unlikely common and we keep things 2867 * as simple as possible for now. Also, intentionally, if the target 2868 * range contains one or more prealloc extents together with regular 2869 * extents and holes, we drop all the existing extents and allocate a 2870 * new prealloc extent, so that we get a larger contiguous disk extent. 2871 */ 2872 if (em->start <= alloc_start && 2873 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2874 const u64 em_end = em->start + em->len; 2875 2876 if (em_end >= offset + len) { 2877 /* 2878 * The whole range is already a prealloc extent, 2879 * do nothing except updating the inode's i_size if 2880 * needed. 2881 */ 2882 free_extent_map(em); 2883 ret = btrfs_fallocate_update_isize(inode, offset + len, 2884 mode); 2885 goto out; 2886 } 2887 /* 2888 * Part of the range is already a prealloc extent, so operate 2889 * only on the remaining part of the range. 2890 */ 2891 alloc_start = em_end; 2892 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2893 len = offset + len - alloc_start; 2894 offset = alloc_start; 2895 alloc_hint = em->block_start + em->len; 2896 } 2897 free_extent_map(em); 2898 2899 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2900 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2901 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 2902 sectorsize); 2903 if (IS_ERR(em)) { 2904 ret = PTR_ERR(em); 2905 goto out; 2906 } 2907 2908 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2909 free_extent_map(em); 2910 ret = btrfs_fallocate_update_isize(inode, offset + len, 2911 mode); 2912 goto out; 2913 } 2914 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 2915 free_extent_map(em); 2916 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2917 0); 2918 if (!ret) 2919 ret = btrfs_fallocate_update_isize(inode, 2920 offset + len, 2921 mode); 2922 return ret; 2923 } 2924 free_extent_map(em); 2925 alloc_start = round_down(offset, sectorsize); 2926 alloc_end = alloc_start + sectorsize; 2927 goto reserve_space; 2928 } 2929 2930 alloc_start = round_up(offset, sectorsize); 2931 alloc_end = round_down(offset + len, sectorsize); 2932 2933 /* 2934 * For unaligned ranges, check the pages at the boundaries, they might 2935 * map to an extent, in which case we need to partially zero them, or 2936 * they might map to a hole, in which case we need our allocation range 2937 * to cover them. 2938 */ 2939 if (!IS_ALIGNED(offset, sectorsize)) { 2940 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2941 offset); 2942 if (ret < 0) 2943 goto out; 2944 if (ret == RANGE_BOUNDARY_HOLE) { 2945 alloc_start = round_down(offset, sectorsize); 2946 ret = 0; 2947 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2948 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2949 if (ret) 2950 goto out; 2951 } else { 2952 ret = 0; 2953 } 2954 } 2955 2956 if (!IS_ALIGNED(offset + len, sectorsize)) { 2957 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2958 offset + len); 2959 if (ret < 0) 2960 goto out; 2961 if (ret == RANGE_BOUNDARY_HOLE) { 2962 alloc_end = round_up(offset + len, sectorsize); 2963 ret = 0; 2964 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2965 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 2966 0, 1); 2967 if (ret) 2968 goto out; 2969 } else { 2970 ret = 0; 2971 } 2972 } 2973 2974 reserve_space: 2975 if (alloc_start < alloc_end) { 2976 struct extent_state *cached_state = NULL; 2977 const u64 lockstart = alloc_start; 2978 const u64 lockend = alloc_end - 1; 2979 2980 bytes_to_reserve = alloc_end - alloc_start; 2981 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 2982 bytes_to_reserve); 2983 if (ret < 0) 2984 goto out; 2985 space_reserved = true; 2986 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2987 &cached_state); 2988 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 2989 alloc_start, bytes_to_reserve); 2990 if (ret) { 2991 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 2992 lockend, &cached_state); 2993 goto out; 2994 } 2995 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 2996 alloc_end - alloc_start, 2997 i_blocksize(inode), 2998 offset + len, &alloc_hint); 2999 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3000 &cached_state); 3001 /* btrfs_prealloc_file_range releases reserved space on error */ 3002 if (ret) { 3003 space_reserved = false; 3004 goto out; 3005 } 3006 } 3007 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3008 out: 3009 if (ret && space_reserved) 3010 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3011 alloc_start, bytes_to_reserve); 3012 extent_changeset_free(data_reserved); 3013 3014 return ret; 3015 } 3016 3017 static long btrfs_fallocate(struct file *file, int mode, 3018 loff_t offset, loff_t len) 3019 { 3020 struct inode *inode = file_inode(file); 3021 struct extent_state *cached_state = NULL; 3022 struct extent_changeset *data_reserved = NULL; 3023 struct falloc_range *range; 3024 struct falloc_range *tmp; 3025 struct list_head reserve_list; 3026 u64 cur_offset; 3027 u64 last_byte; 3028 u64 alloc_start; 3029 u64 alloc_end; 3030 u64 alloc_hint = 0; 3031 u64 locked_end; 3032 u64 actual_end = 0; 3033 u64 data_space_needed = 0; 3034 u64 data_space_reserved = 0; 3035 u64 qgroup_reserved = 0; 3036 struct extent_map *em; 3037 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; 3038 int ret; 3039 3040 /* Do not allow fallocate in ZONED mode */ 3041 if (btrfs_is_zoned(btrfs_sb(inode->i_sb))) 3042 return -EOPNOTSUPP; 3043 3044 alloc_start = round_down(offset, blocksize); 3045 alloc_end = round_up(offset + len, blocksize); 3046 cur_offset = alloc_start; 3047 3048 /* Make sure we aren't being give some crap mode */ 3049 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3050 FALLOC_FL_ZERO_RANGE)) 3051 return -EOPNOTSUPP; 3052 3053 if (mode & FALLOC_FL_PUNCH_HOLE) 3054 return btrfs_punch_hole(file, offset, len); 3055 3056 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3057 3058 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3059 ret = inode_newsize_ok(inode, offset + len); 3060 if (ret) 3061 goto out; 3062 } 3063 3064 ret = file_modified(file); 3065 if (ret) 3066 goto out; 3067 3068 /* 3069 * TODO: Move these two operations after we have checked 3070 * accurate reserved space, or fallocate can still fail but 3071 * with page truncated or size expanded. 3072 * 3073 * But that's a minor problem and won't do much harm BTW. 3074 */ 3075 if (alloc_start > inode->i_size) { 3076 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3077 alloc_start); 3078 if (ret) 3079 goto out; 3080 } else if (offset + len > inode->i_size) { 3081 /* 3082 * If we are fallocating from the end of the file onward we 3083 * need to zero out the end of the block if i_size lands in the 3084 * middle of a block. 3085 */ 3086 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3087 if (ret) 3088 goto out; 3089 } 3090 3091 /* 3092 * We have locked the inode at the VFS level (in exclusive mode) and we 3093 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3094 * locking the file range, flush all dealloc in the range and wait for 3095 * all ordered extents in the range to complete. After this we can lock 3096 * the file range and, due to the previous locking we did, we know there 3097 * can't be more delalloc or ordered extents in the range. 3098 */ 3099 ret = btrfs_wait_ordered_range(inode, alloc_start, 3100 alloc_end - alloc_start); 3101 if (ret) 3102 goto out; 3103 3104 if (mode & FALLOC_FL_ZERO_RANGE) { 3105 ret = btrfs_zero_range(inode, offset, len, mode); 3106 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3107 return ret; 3108 } 3109 3110 locked_end = alloc_end - 1; 3111 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3112 &cached_state); 3113 3114 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3115 3116 /* First, check if we exceed the qgroup limit */ 3117 INIT_LIST_HEAD(&reserve_list); 3118 while (cur_offset < alloc_end) { 3119 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3120 alloc_end - cur_offset); 3121 if (IS_ERR(em)) { 3122 ret = PTR_ERR(em); 3123 break; 3124 } 3125 last_byte = min(extent_map_end(em), alloc_end); 3126 actual_end = min_t(u64, extent_map_end(em), offset + len); 3127 last_byte = ALIGN(last_byte, blocksize); 3128 if (em->block_start == EXTENT_MAP_HOLE || 3129 (cur_offset >= inode->i_size && 3130 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3131 const u64 range_len = last_byte - cur_offset; 3132 3133 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3134 if (ret < 0) { 3135 free_extent_map(em); 3136 break; 3137 } 3138 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3139 &data_reserved, cur_offset, range_len); 3140 if (ret < 0) { 3141 free_extent_map(em); 3142 break; 3143 } 3144 qgroup_reserved += range_len; 3145 data_space_needed += range_len; 3146 } 3147 free_extent_map(em); 3148 cur_offset = last_byte; 3149 } 3150 3151 if (!ret && data_space_needed > 0) { 3152 /* 3153 * We are safe to reserve space here as we can't have delalloc 3154 * in the range, see above. 3155 */ 3156 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3157 data_space_needed); 3158 if (!ret) 3159 data_space_reserved = data_space_needed; 3160 } 3161 3162 /* 3163 * If ret is still 0, means we're OK to fallocate. 3164 * Or just cleanup the list and exit. 3165 */ 3166 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3167 if (!ret) { 3168 ret = btrfs_prealloc_file_range(inode, mode, 3169 range->start, 3170 range->len, i_blocksize(inode), 3171 offset + len, &alloc_hint); 3172 /* 3173 * btrfs_prealloc_file_range() releases space even 3174 * if it returns an error. 3175 */ 3176 data_space_reserved -= range->len; 3177 qgroup_reserved -= range->len; 3178 } else if (data_space_reserved > 0) { 3179 btrfs_free_reserved_data_space(BTRFS_I(inode), 3180 data_reserved, range->start, 3181 range->len); 3182 data_space_reserved -= range->len; 3183 qgroup_reserved -= range->len; 3184 } else if (qgroup_reserved > 0) { 3185 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3186 range->start, range->len); 3187 qgroup_reserved -= range->len; 3188 } 3189 list_del(&range->list); 3190 kfree(range); 3191 } 3192 if (ret < 0) 3193 goto out_unlock; 3194 3195 /* 3196 * We didn't need to allocate any more space, but we still extended the 3197 * size of the file so we need to update i_size and the inode item. 3198 */ 3199 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3200 out_unlock: 3201 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3202 &cached_state); 3203 out: 3204 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3205 extent_changeset_free(data_reserved); 3206 return ret; 3207 } 3208 3209 /* 3210 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range 3211 * that has unflushed and/or flushing delalloc. There might be other adjacent 3212 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps 3213 * looping while it gets adjacent subranges, and merging them together. 3214 */ 3215 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, 3216 struct extent_state **cached_state, 3217 bool *search_io_tree, 3218 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3219 { 3220 u64 len = end + 1 - start; 3221 u64 delalloc_len = 0; 3222 struct btrfs_ordered_extent *oe; 3223 u64 oe_start; 3224 u64 oe_end; 3225 3226 /* 3227 * Search the io tree first for EXTENT_DELALLOC. If we find any, it 3228 * means we have delalloc (dirty pages) for which writeback has not 3229 * started yet. 3230 */ 3231 if (*search_io_tree) { 3232 spin_lock(&inode->lock); 3233 if (inode->delalloc_bytes > 0) { 3234 spin_unlock(&inode->lock); 3235 *delalloc_start_ret = start; 3236 delalloc_len = count_range_bits(&inode->io_tree, 3237 delalloc_start_ret, end, 3238 len, EXTENT_DELALLOC, 1, 3239 cached_state); 3240 } else { 3241 spin_unlock(&inode->lock); 3242 } 3243 } 3244 3245 if (delalloc_len > 0) { 3246 /* 3247 * If delalloc was found then *delalloc_start_ret has a sector size 3248 * aligned value (rounded down). 3249 */ 3250 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; 3251 3252 if (*delalloc_start_ret == start) { 3253 /* Delalloc for the whole range, nothing more to do. */ 3254 if (*delalloc_end_ret == end) 3255 return true; 3256 /* Else trim our search range for ordered extents. */ 3257 start = *delalloc_end_ret + 1; 3258 len = end + 1 - start; 3259 } 3260 } else { 3261 /* No delalloc, future calls don't need to search again. */ 3262 *search_io_tree = false; 3263 } 3264 3265 /* 3266 * Now also check if there's any ordered extent in the range. 3267 * We do this because: 3268 * 3269 * 1) When delalloc is flushed, the file range is locked, we clear the 3270 * EXTENT_DELALLOC bit from the io tree and create an extent map and 3271 * an ordered extent for the write. So we might just have been called 3272 * after delalloc is flushed and before the ordered extent completes 3273 * and inserts the new file extent item in the subvolume's btree; 3274 * 3275 * 2) We may have an ordered extent created by flushing delalloc for a 3276 * subrange that starts before the subrange we found marked with 3277 * EXTENT_DELALLOC in the io tree. 3278 * 3279 * We could also use the extent map tree to find such delalloc that is 3280 * being flushed, but using the ordered extents tree is more efficient 3281 * because it's usually much smaller as ordered extents are removed from 3282 * the tree once they complete. With the extent maps, we mau have them 3283 * in the extent map tree for a very long time, and they were either 3284 * created by previous writes or loaded by read operations. 3285 */ 3286 oe = btrfs_lookup_first_ordered_range(inode, start, len); 3287 if (!oe) 3288 return (delalloc_len > 0); 3289 3290 /* The ordered extent may span beyond our search range. */ 3291 oe_start = max(oe->file_offset, start); 3292 oe_end = min(oe->file_offset + oe->num_bytes - 1, end); 3293 3294 btrfs_put_ordered_extent(oe); 3295 3296 /* Don't have unflushed delalloc, return the ordered extent range. */ 3297 if (delalloc_len == 0) { 3298 *delalloc_start_ret = oe_start; 3299 *delalloc_end_ret = oe_end; 3300 return true; 3301 } 3302 3303 /* 3304 * We have both unflushed delalloc (io_tree) and an ordered extent. 3305 * If the ranges are adjacent returned a combined range, otherwise 3306 * return the leftmost range. 3307 */ 3308 if (oe_start < *delalloc_start_ret) { 3309 if (oe_end < *delalloc_start_ret) 3310 *delalloc_end_ret = oe_end; 3311 *delalloc_start_ret = oe_start; 3312 } else if (*delalloc_end_ret + 1 == oe_start) { 3313 *delalloc_end_ret = oe_end; 3314 } 3315 3316 return true; 3317 } 3318 3319 /* 3320 * Check if there's delalloc in a given range. 3321 * 3322 * @inode: The inode. 3323 * @start: The start offset of the range. It does not need to be 3324 * sector size aligned. 3325 * @end: The end offset (inclusive value) of the search range. 3326 * It does not need to be sector size aligned. 3327 * @cached_state: Extent state record used for speeding up delalloc 3328 * searches in the inode's io_tree. Can be NULL. 3329 * @delalloc_start_ret: Output argument, set to the start offset of the 3330 * subrange found with delalloc (may not be sector size 3331 * aligned). 3332 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value) 3333 * of the subrange found with delalloc. 3334 * 3335 * Returns true if a subrange with delalloc is found within the given range, and 3336 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and 3337 * end offsets of the subrange. 3338 */ 3339 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3340 struct extent_state **cached_state, 3341 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3342 { 3343 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); 3344 u64 prev_delalloc_end = 0; 3345 bool search_io_tree = true; 3346 bool ret = false; 3347 3348 while (cur_offset <= end) { 3349 u64 delalloc_start; 3350 u64 delalloc_end; 3351 bool delalloc; 3352 3353 delalloc = find_delalloc_subrange(inode, cur_offset, end, 3354 cached_state, &search_io_tree, 3355 &delalloc_start, 3356 &delalloc_end); 3357 if (!delalloc) 3358 break; 3359 3360 if (prev_delalloc_end == 0) { 3361 /* First subrange found. */ 3362 *delalloc_start_ret = max(delalloc_start, start); 3363 *delalloc_end_ret = delalloc_end; 3364 ret = true; 3365 } else if (delalloc_start == prev_delalloc_end + 1) { 3366 /* Subrange adjacent to the previous one, merge them. */ 3367 *delalloc_end_ret = delalloc_end; 3368 } else { 3369 /* Subrange not adjacent to the previous one, exit. */ 3370 break; 3371 } 3372 3373 prev_delalloc_end = delalloc_end; 3374 cur_offset = delalloc_end + 1; 3375 cond_resched(); 3376 } 3377 3378 return ret; 3379 } 3380 3381 /* 3382 * Check if there's a hole or delalloc range in a range representing a hole (or 3383 * prealloc extent) found in the inode's subvolume btree. 3384 * 3385 * @inode: The inode. 3386 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE). 3387 * @start: Start offset of the hole region. It does not need to be sector 3388 * size aligned. 3389 * @end: End offset (inclusive value) of the hole region. It does not 3390 * need to be sector size aligned. 3391 * @start_ret: Return parameter, used to set the start of the subrange in the 3392 * hole that matches the search criteria (seek mode), if such 3393 * subrange is found (return value of the function is true). 3394 * The value returned here may not be sector size aligned. 3395 * 3396 * Returns true if a subrange matching the given seek mode is found, and if one 3397 * is found, it updates @start_ret with the start of the subrange. 3398 */ 3399 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, 3400 struct extent_state **cached_state, 3401 u64 start, u64 end, u64 *start_ret) 3402 { 3403 u64 delalloc_start; 3404 u64 delalloc_end; 3405 bool delalloc; 3406 3407 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state, 3408 &delalloc_start, &delalloc_end); 3409 if (delalloc && whence == SEEK_DATA) { 3410 *start_ret = delalloc_start; 3411 return true; 3412 } 3413 3414 if (delalloc && whence == SEEK_HOLE) { 3415 /* 3416 * We found delalloc but it starts after out start offset. So we 3417 * have a hole between our start offset and the delalloc start. 3418 */ 3419 if (start < delalloc_start) { 3420 *start_ret = start; 3421 return true; 3422 } 3423 /* 3424 * Delalloc range starts at our start offset. 3425 * If the delalloc range's length is smaller than our range, 3426 * then it means we have a hole that starts where the delalloc 3427 * subrange ends. 3428 */ 3429 if (delalloc_end < end) { 3430 *start_ret = delalloc_end + 1; 3431 return true; 3432 } 3433 3434 /* There's delalloc for the whole range. */ 3435 return false; 3436 } 3437 3438 if (!delalloc && whence == SEEK_HOLE) { 3439 *start_ret = start; 3440 return true; 3441 } 3442 3443 /* 3444 * No delalloc in the range and we are seeking for data. The caller has 3445 * to iterate to the next extent item in the subvolume btree. 3446 */ 3447 return false; 3448 } 3449 3450 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence) 3451 { 3452 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host); 3453 struct btrfs_file_private *private = file->private_data; 3454 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3455 struct extent_state *cached_state = NULL; 3456 struct extent_state **delalloc_cached_state; 3457 const loff_t i_size = i_size_read(&inode->vfs_inode); 3458 const u64 ino = btrfs_ino(inode); 3459 struct btrfs_root *root = inode->root; 3460 struct btrfs_path *path; 3461 struct btrfs_key key; 3462 u64 last_extent_end; 3463 u64 lockstart; 3464 u64 lockend; 3465 u64 start; 3466 int ret; 3467 bool found = false; 3468 3469 if (i_size == 0 || offset >= i_size) 3470 return -ENXIO; 3471 3472 /* 3473 * Quick path. If the inode has no prealloc extents and its number of 3474 * bytes used matches its i_size, then it can not have holes. 3475 */ 3476 if (whence == SEEK_HOLE && 3477 !(inode->flags & BTRFS_INODE_PREALLOC) && 3478 inode_get_bytes(&inode->vfs_inode) == i_size) 3479 return i_size; 3480 3481 if (!private) { 3482 private = kzalloc(sizeof(*private), GFP_KERNEL); 3483 /* 3484 * No worries if memory allocation failed. 3485 * The private structure is used only for speeding up multiple 3486 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc, 3487 * so everything will still be correct. 3488 */ 3489 file->private_data = private; 3490 } 3491 3492 if (private) 3493 delalloc_cached_state = &private->llseek_cached_state; 3494 else 3495 delalloc_cached_state = NULL; 3496 3497 /* 3498 * offset can be negative, in this case we start finding DATA/HOLE from 3499 * the very start of the file. 3500 */ 3501 start = max_t(loff_t, 0, offset); 3502 3503 lockstart = round_down(start, fs_info->sectorsize); 3504 lockend = round_up(i_size, fs_info->sectorsize); 3505 if (lockend <= lockstart) 3506 lockend = lockstart + fs_info->sectorsize; 3507 lockend--; 3508 3509 path = btrfs_alloc_path(); 3510 if (!path) 3511 return -ENOMEM; 3512 path->reada = READA_FORWARD; 3513 3514 key.objectid = ino; 3515 key.type = BTRFS_EXTENT_DATA_KEY; 3516 key.offset = start; 3517 3518 last_extent_end = lockstart; 3519 3520 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3521 3522 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3523 if (ret < 0) { 3524 goto out; 3525 } else if (ret > 0 && path->slots[0] > 0) { 3526 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3527 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3528 path->slots[0]--; 3529 } 3530 3531 while (start < i_size) { 3532 struct extent_buffer *leaf = path->nodes[0]; 3533 struct btrfs_file_extent_item *extent; 3534 u64 extent_end; 3535 u8 type; 3536 3537 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3538 ret = btrfs_next_leaf(root, path); 3539 if (ret < 0) 3540 goto out; 3541 else if (ret > 0) 3542 break; 3543 3544 leaf = path->nodes[0]; 3545 } 3546 3547 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3548 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3549 break; 3550 3551 extent_end = btrfs_file_extent_end(path); 3552 3553 /* 3554 * In the first iteration we may have a slot that points to an 3555 * extent that ends before our start offset, so skip it. 3556 */ 3557 if (extent_end <= start) { 3558 path->slots[0]++; 3559 continue; 3560 } 3561 3562 /* We have an implicit hole, NO_HOLES feature is likely set. */ 3563 if (last_extent_end < key.offset) { 3564 u64 search_start = last_extent_end; 3565 u64 found_start; 3566 3567 /* 3568 * First iteration, @start matches @offset and it's 3569 * within the hole. 3570 */ 3571 if (start == offset) 3572 search_start = offset; 3573 3574 found = find_desired_extent_in_hole(inode, whence, 3575 delalloc_cached_state, 3576 search_start, 3577 key.offset - 1, 3578 &found_start); 3579 if (found) { 3580 start = found_start; 3581 break; 3582 } 3583 /* 3584 * Didn't find data or a hole (due to delalloc) in the 3585 * implicit hole range, so need to analyze the extent. 3586 */ 3587 } 3588 3589 extent = btrfs_item_ptr(leaf, path->slots[0], 3590 struct btrfs_file_extent_item); 3591 type = btrfs_file_extent_type(leaf, extent); 3592 3593 /* 3594 * Can't access the extent's disk_bytenr field if this is an 3595 * inline extent, since at that offset, it's where the extent 3596 * data starts. 3597 */ 3598 if (type == BTRFS_FILE_EXTENT_PREALLOC || 3599 (type == BTRFS_FILE_EXTENT_REG && 3600 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) { 3601 /* 3602 * Explicit hole or prealloc extent, search for delalloc. 3603 * A prealloc extent is treated like a hole. 3604 */ 3605 u64 search_start = key.offset; 3606 u64 found_start; 3607 3608 /* 3609 * First iteration, @start matches @offset and it's 3610 * within the hole. 3611 */ 3612 if (start == offset) 3613 search_start = offset; 3614 3615 found = find_desired_extent_in_hole(inode, whence, 3616 delalloc_cached_state, 3617 search_start, 3618 extent_end - 1, 3619 &found_start); 3620 if (found) { 3621 start = found_start; 3622 break; 3623 } 3624 /* 3625 * Didn't find data or a hole (due to delalloc) in the 3626 * implicit hole range, so need to analyze the next 3627 * extent item. 3628 */ 3629 } else { 3630 /* 3631 * Found a regular or inline extent. 3632 * If we are seeking for data, adjust the start offset 3633 * and stop, we're done. 3634 */ 3635 if (whence == SEEK_DATA) { 3636 start = max_t(u64, key.offset, offset); 3637 found = true; 3638 break; 3639 } 3640 /* 3641 * Else, we are seeking for a hole, check the next file 3642 * extent item. 3643 */ 3644 } 3645 3646 start = extent_end; 3647 last_extent_end = extent_end; 3648 path->slots[0]++; 3649 if (fatal_signal_pending(current)) { 3650 ret = -EINTR; 3651 goto out; 3652 } 3653 cond_resched(); 3654 } 3655 3656 /* We have an implicit hole from the last extent found up to i_size. */ 3657 if (!found && start < i_size) { 3658 found = find_desired_extent_in_hole(inode, whence, 3659 delalloc_cached_state, start, 3660 i_size - 1, &start); 3661 if (!found) 3662 start = i_size; 3663 } 3664 3665 out: 3666 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3667 btrfs_free_path(path); 3668 3669 if (ret < 0) 3670 return ret; 3671 3672 if (whence == SEEK_DATA && start >= i_size) 3673 return -ENXIO; 3674 3675 return min_t(loff_t, start, i_size); 3676 } 3677 3678 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3679 { 3680 struct inode *inode = file->f_mapping->host; 3681 3682 switch (whence) { 3683 default: 3684 return generic_file_llseek(file, offset, whence); 3685 case SEEK_DATA: 3686 case SEEK_HOLE: 3687 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3688 offset = find_desired_extent(file, offset, whence); 3689 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3690 break; 3691 } 3692 3693 if (offset < 0) 3694 return offset; 3695 3696 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3697 } 3698 3699 static int btrfs_file_open(struct inode *inode, struct file *filp) 3700 { 3701 int ret; 3702 3703 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC | 3704 FMODE_CAN_ODIRECT; 3705 3706 ret = fsverity_file_open(inode, filp); 3707 if (ret) 3708 return ret; 3709 return generic_file_open(inode, filp); 3710 } 3711 3712 static int check_direct_read(struct btrfs_fs_info *fs_info, 3713 const struct iov_iter *iter, loff_t offset) 3714 { 3715 int ret; 3716 int i, seg; 3717 3718 ret = check_direct_IO(fs_info, iter, offset); 3719 if (ret < 0) 3720 return ret; 3721 3722 if (!iter_is_iovec(iter)) 3723 return 0; 3724 3725 for (seg = 0; seg < iter->nr_segs; seg++) { 3726 for (i = seg + 1; i < iter->nr_segs; i++) { 3727 const struct iovec *iov1 = iter_iov(iter) + seg; 3728 const struct iovec *iov2 = iter_iov(iter) + i; 3729 3730 if (iov1->iov_base == iov2->iov_base) 3731 return -EINVAL; 3732 } 3733 } 3734 return 0; 3735 } 3736 3737 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 3738 { 3739 struct inode *inode = file_inode(iocb->ki_filp); 3740 size_t prev_left = 0; 3741 ssize_t read = 0; 3742 ssize_t ret; 3743 3744 if (fsverity_active(inode)) 3745 return 0; 3746 3747 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos)) 3748 return 0; 3749 3750 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3751 again: 3752 /* 3753 * This is similar to what we do for direct IO writes, see the comment 3754 * at btrfs_direct_write(), but we also disable page faults in addition 3755 * to disabling them only at the iov_iter level. This is because when 3756 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(), 3757 * which can still trigger page fault ins despite having set ->nofault 3758 * to true of our 'to' iov_iter. 3759 * 3760 * The difference to direct IO writes is that we deadlock when trying 3761 * to lock the extent range in the inode's tree during he page reads 3762 * triggered by the fault in (while for writes it is due to waiting for 3763 * our own ordered extent). This is because for direct IO reads, 3764 * btrfs_dio_iomap_begin() returns with the extent range locked, which 3765 * is only unlocked in the endio callback (end_bio_extent_readpage()). 3766 */ 3767 pagefault_disable(); 3768 to->nofault = true; 3769 ret = btrfs_dio_read(iocb, to, read); 3770 to->nofault = false; 3771 pagefault_enable(); 3772 3773 /* No increment (+=) because iomap returns a cumulative value. */ 3774 if (ret > 0) 3775 read = ret; 3776 3777 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) { 3778 const size_t left = iov_iter_count(to); 3779 3780 if (left == prev_left) { 3781 /* 3782 * We didn't make any progress since the last attempt, 3783 * fallback to a buffered read for the remainder of the 3784 * range. This is just to avoid any possibility of looping 3785 * for too long. 3786 */ 3787 ret = read; 3788 } else { 3789 /* 3790 * We made some progress since the last retry or this is 3791 * the first time we are retrying. Fault in as many pages 3792 * as possible and retry. 3793 */ 3794 fault_in_iov_iter_writeable(to, left); 3795 prev_left = left; 3796 goto again; 3797 } 3798 } 3799 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3800 return ret < 0 ? ret : read; 3801 } 3802 3803 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3804 { 3805 ssize_t ret = 0; 3806 3807 if (iocb->ki_flags & IOCB_DIRECT) { 3808 ret = btrfs_direct_read(iocb, to); 3809 if (ret < 0 || !iov_iter_count(to) || 3810 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3811 return ret; 3812 } 3813 3814 return filemap_read(iocb, to, ret); 3815 } 3816 3817 const struct file_operations btrfs_file_operations = { 3818 .llseek = btrfs_file_llseek, 3819 .read_iter = btrfs_file_read_iter, 3820 .splice_read = filemap_splice_read, 3821 .write_iter = btrfs_file_write_iter, 3822 .splice_write = iter_file_splice_write, 3823 .mmap = btrfs_file_mmap, 3824 .open = btrfs_file_open, 3825 .release = btrfs_release_file, 3826 .get_unmapped_area = thp_get_unmapped_area, 3827 .fsync = btrfs_sync_file, 3828 .fallocate = btrfs_fallocate, 3829 .unlocked_ioctl = btrfs_ioctl, 3830 #ifdef CONFIG_COMPAT 3831 .compat_ioctl = btrfs_compat_ioctl, 3832 #endif 3833 .remap_file_range = btrfs_remap_file_range, 3834 }; 3835 3836 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3837 { 3838 int ret; 3839 3840 /* 3841 * So with compression we will find and lock a dirty page and clear the 3842 * first one as dirty, setup an async extent, and immediately return 3843 * with the entire range locked but with nobody actually marked with 3844 * writeback. So we can't just filemap_write_and_wait_range() and 3845 * expect it to work since it will just kick off a thread to do the 3846 * actual work. So we need to call filemap_fdatawrite_range _again_ 3847 * since it will wait on the page lock, which won't be unlocked until 3848 * after the pages have been marked as writeback and so we're good to go 3849 * from there. We have to do this otherwise we'll miss the ordered 3850 * extents and that results in badness. Please Josef, do not think you 3851 * know better and pull this out at some point in the future, it is 3852 * right and you are wrong. 3853 */ 3854 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3855 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3856 &BTRFS_I(inode)->runtime_flags)) 3857 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3858 3859 return ret; 3860 } 3861