xref: /linux/fs/btrfs/file.c (revision 4c8f1cb266cba4d1052f524d04df839d8f732ace)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/statfs.h>
30 #include <linux/compat.h>
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "ioctl.h"
36 #include "print-tree.h"
37 #include "tree-log.h"
38 #include "locking.h"
39 #include "compat.h"
40 
41 
42 /* simple helper to fault in pages and copy.  This should go away
43  * and be replaced with calls into generic code.
44  */
45 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
46 					 int write_bytes,
47 					 struct page **prepared_pages,
48 					 const char __user *buf)
49 {
50 	long page_fault = 0;
51 	int i;
52 	int offset = pos & (PAGE_CACHE_SIZE - 1);
53 
54 	for (i = 0; i < num_pages && write_bytes > 0; i++, offset = 0) {
55 		size_t count = min_t(size_t,
56 				     PAGE_CACHE_SIZE - offset, write_bytes);
57 		struct page *page = prepared_pages[i];
58 		fault_in_pages_readable(buf, count);
59 
60 		/* Copy data from userspace to the current page */
61 		kmap(page);
62 		page_fault = __copy_from_user(page_address(page) + offset,
63 					      buf, count);
64 		/* Flush processor's dcache for this page */
65 		flush_dcache_page(page);
66 		kunmap(page);
67 		buf += count;
68 		write_bytes -= count;
69 
70 		if (page_fault)
71 			break;
72 	}
73 	return page_fault ? -EFAULT : 0;
74 }
75 
76 /*
77  * unlocks pages after btrfs_file_write is done with them
78  */
79 static noinline void btrfs_drop_pages(struct page **pages, size_t num_pages)
80 {
81 	size_t i;
82 	for (i = 0; i < num_pages; i++) {
83 		if (!pages[i])
84 			break;
85 		/* page checked is some magic around finding pages that
86 		 * have been modified without going through btrfs_set_page_dirty
87 		 * clear it here
88 		 */
89 		ClearPageChecked(pages[i]);
90 		unlock_page(pages[i]);
91 		mark_page_accessed(pages[i]);
92 		page_cache_release(pages[i]);
93 	}
94 }
95 
96 /*
97  * after copy_from_user, pages need to be dirtied and we need to make
98  * sure holes are created between the current EOF and the start of
99  * any next extents (if required).
100  *
101  * this also makes the decision about creating an inline extent vs
102  * doing real data extents, marking pages dirty and delalloc as required.
103  */
104 static noinline int dirty_and_release_pages(struct btrfs_trans_handle *trans,
105 				   struct btrfs_root *root,
106 				   struct file *file,
107 				   struct page **pages,
108 				   size_t num_pages,
109 				   loff_t pos,
110 				   size_t write_bytes)
111 {
112 	int err = 0;
113 	int i;
114 	struct inode *inode = fdentry(file)->d_inode;
115 	u64 num_bytes;
116 	u64 start_pos;
117 	u64 end_of_last_block;
118 	u64 end_pos = pos + write_bytes;
119 	loff_t isize = i_size_read(inode);
120 
121 	start_pos = pos & ~((u64)root->sectorsize - 1);
122 	num_bytes = (write_bytes + pos - start_pos +
123 		    root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
124 
125 	end_of_last_block = start_pos + num_bytes - 1;
126 	btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block);
127 	for (i = 0; i < num_pages; i++) {
128 		struct page *p = pages[i];
129 		SetPageUptodate(p);
130 		ClearPageChecked(p);
131 		set_page_dirty(p);
132 	}
133 	if (end_pos > isize) {
134 		i_size_write(inode, end_pos);
135 		/* we've only changed i_size in ram, and we haven't updated
136 		 * the disk i_size.  There is no need to log the inode
137 		 * at this time.
138 		 */
139 	}
140 	return err;
141 }
142 
143 /*
144  * this drops all the extents in the cache that intersect the range
145  * [start, end].  Existing extents are split as required.
146  */
147 int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
148 			    int skip_pinned)
149 {
150 	struct extent_map *em;
151 	struct extent_map *split = NULL;
152 	struct extent_map *split2 = NULL;
153 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
154 	u64 len = end - start + 1;
155 	int ret;
156 	int testend = 1;
157 	unsigned long flags;
158 	int compressed = 0;
159 
160 	WARN_ON(end < start);
161 	if (end == (u64)-1) {
162 		len = (u64)-1;
163 		testend = 0;
164 	}
165 	while (1) {
166 		if (!split)
167 			split = alloc_extent_map(GFP_NOFS);
168 		if (!split2)
169 			split2 = alloc_extent_map(GFP_NOFS);
170 
171 		write_lock(&em_tree->lock);
172 		em = lookup_extent_mapping(em_tree, start, len);
173 		if (!em) {
174 			write_unlock(&em_tree->lock);
175 			break;
176 		}
177 		flags = em->flags;
178 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
179 			if (em->start <= start &&
180 			    (!testend || em->start + em->len >= start + len)) {
181 				free_extent_map(em);
182 				write_unlock(&em_tree->lock);
183 				break;
184 			}
185 			if (start < em->start) {
186 				len = em->start - start;
187 			} else {
188 				len = start + len - (em->start + em->len);
189 				start = em->start + em->len;
190 			}
191 			free_extent_map(em);
192 			write_unlock(&em_tree->lock);
193 			continue;
194 		}
195 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
196 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
197 		remove_extent_mapping(em_tree, em);
198 
199 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
200 		    em->start < start) {
201 			split->start = em->start;
202 			split->len = start - em->start;
203 			split->orig_start = em->orig_start;
204 			split->block_start = em->block_start;
205 
206 			if (compressed)
207 				split->block_len = em->block_len;
208 			else
209 				split->block_len = split->len;
210 
211 			split->bdev = em->bdev;
212 			split->flags = flags;
213 			ret = add_extent_mapping(em_tree, split);
214 			BUG_ON(ret);
215 			free_extent_map(split);
216 			split = split2;
217 			split2 = NULL;
218 		}
219 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
220 		    testend && em->start + em->len > start + len) {
221 			u64 diff = start + len - em->start;
222 
223 			split->start = start + len;
224 			split->len = em->start + em->len - (start + len);
225 			split->bdev = em->bdev;
226 			split->flags = flags;
227 
228 			if (compressed) {
229 				split->block_len = em->block_len;
230 				split->block_start = em->block_start;
231 				split->orig_start = em->orig_start;
232 			} else {
233 				split->block_len = split->len;
234 				split->block_start = em->block_start + diff;
235 				split->orig_start = split->start;
236 			}
237 
238 			ret = add_extent_mapping(em_tree, split);
239 			BUG_ON(ret);
240 			free_extent_map(split);
241 			split = NULL;
242 		}
243 		write_unlock(&em_tree->lock);
244 
245 		/* once for us */
246 		free_extent_map(em);
247 		/* once for the tree*/
248 		free_extent_map(em);
249 	}
250 	if (split)
251 		free_extent_map(split);
252 	if (split2)
253 		free_extent_map(split2);
254 	return 0;
255 }
256 
257 /*
258  * this is very complex, but the basic idea is to drop all extents
259  * in the range start - end.  hint_block is filled in with a block number
260  * that would be a good hint to the block allocator for this file.
261  *
262  * If an extent intersects the range but is not entirely inside the range
263  * it is either truncated or split.  Anything entirely inside the range
264  * is deleted from the tree.
265  *
266  * inline_limit is used to tell this code which offsets in the file to keep
267  * if they contain inline extents.
268  */
269 noinline int btrfs_drop_extents(struct btrfs_trans_handle *trans,
270 		       struct btrfs_root *root, struct inode *inode,
271 		       u64 start, u64 end, u64 locked_end,
272 		       u64 inline_limit, u64 *hint_byte, int drop_cache)
273 {
274 	u64 extent_end = 0;
275 	u64 search_start = start;
276 	u64 ram_bytes = 0;
277 	u64 disk_bytenr = 0;
278 	u64 orig_locked_end = locked_end;
279 	u8 compression;
280 	u8 encryption;
281 	u16 other_encoding = 0;
282 	struct extent_buffer *leaf;
283 	struct btrfs_file_extent_item *extent;
284 	struct btrfs_path *path;
285 	struct btrfs_key key;
286 	struct btrfs_file_extent_item old;
287 	int keep;
288 	int slot;
289 	int bookend;
290 	int found_type = 0;
291 	int found_extent;
292 	int found_inline;
293 	int recow;
294 	int ret;
295 
296 	inline_limit = 0;
297 	if (drop_cache)
298 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
299 
300 	path = btrfs_alloc_path();
301 	if (!path)
302 		return -ENOMEM;
303 	while (1) {
304 		recow = 0;
305 		btrfs_release_path(root, path);
306 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
307 					       search_start, -1);
308 		if (ret < 0)
309 			goto out;
310 		if (ret > 0) {
311 			if (path->slots[0] == 0) {
312 				ret = 0;
313 				goto out;
314 			}
315 			path->slots[0]--;
316 		}
317 next_slot:
318 		keep = 0;
319 		bookend = 0;
320 		found_extent = 0;
321 		found_inline = 0;
322 		compression = 0;
323 		encryption = 0;
324 		extent = NULL;
325 		leaf = path->nodes[0];
326 		slot = path->slots[0];
327 		ret = 0;
328 		btrfs_item_key_to_cpu(leaf, &key, slot);
329 		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY &&
330 		    key.offset >= end) {
331 			goto out;
332 		}
333 		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
334 		    key.objectid != inode->i_ino) {
335 			goto out;
336 		}
337 		if (recow) {
338 			search_start = max(key.offset, start);
339 			continue;
340 		}
341 		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
342 			extent = btrfs_item_ptr(leaf, slot,
343 						struct btrfs_file_extent_item);
344 			found_type = btrfs_file_extent_type(leaf, extent);
345 			compression = btrfs_file_extent_compression(leaf,
346 								    extent);
347 			encryption = btrfs_file_extent_encryption(leaf,
348 								  extent);
349 			other_encoding = btrfs_file_extent_other_encoding(leaf,
350 								  extent);
351 			if (found_type == BTRFS_FILE_EXTENT_REG ||
352 			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
353 				extent_end =
354 				     btrfs_file_extent_disk_bytenr(leaf,
355 								   extent);
356 				if (extent_end)
357 					*hint_byte = extent_end;
358 
359 				extent_end = key.offset +
360 				     btrfs_file_extent_num_bytes(leaf, extent);
361 				ram_bytes = btrfs_file_extent_ram_bytes(leaf,
362 								extent);
363 				found_extent = 1;
364 			} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
365 				found_inline = 1;
366 				extent_end = key.offset +
367 				     btrfs_file_extent_inline_len(leaf, extent);
368 			}
369 		} else {
370 			extent_end = search_start;
371 		}
372 
373 		/* we found nothing we can drop */
374 		if ((!found_extent && !found_inline) ||
375 		    search_start >= extent_end) {
376 			int nextret;
377 			u32 nritems;
378 			nritems = btrfs_header_nritems(leaf);
379 			if (slot >= nritems - 1) {
380 				nextret = btrfs_next_leaf(root, path);
381 				if (nextret)
382 					goto out;
383 				recow = 1;
384 			} else {
385 				path->slots[0]++;
386 			}
387 			goto next_slot;
388 		}
389 
390 		if (end <= extent_end && start >= key.offset && found_inline)
391 			*hint_byte = EXTENT_MAP_INLINE;
392 
393 		if (found_extent) {
394 			read_extent_buffer(leaf, &old, (unsigned long)extent,
395 					   sizeof(old));
396 		}
397 
398 		if (end < extent_end && end >= key.offset) {
399 			bookend = 1;
400 			if (found_inline && start <= key.offset)
401 				keep = 1;
402 		}
403 
404 		if (bookend && found_extent) {
405 			if (locked_end < extent_end) {
406 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
407 						locked_end, extent_end - 1,
408 						GFP_NOFS);
409 				if (!ret) {
410 					btrfs_release_path(root, path);
411 					lock_extent(&BTRFS_I(inode)->io_tree,
412 						locked_end, extent_end - 1,
413 						GFP_NOFS);
414 					locked_end = extent_end;
415 					continue;
416 				}
417 				locked_end = extent_end;
418 			}
419 			disk_bytenr = le64_to_cpu(old.disk_bytenr);
420 			if (disk_bytenr != 0) {
421 				ret = btrfs_inc_extent_ref(trans, root,
422 					   disk_bytenr,
423 					   le64_to_cpu(old.disk_num_bytes), 0,
424 					   root->root_key.objectid,
425 					   key.objectid, key.offset -
426 					   le64_to_cpu(old.offset));
427 				BUG_ON(ret);
428 			}
429 		}
430 
431 		if (found_inline) {
432 			u64 mask = root->sectorsize - 1;
433 			search_start = (extent_end + mask) & ~mask;
434 		} else
435 			search_start = extent_end;
436 
437 		/* truncate existing extent */
438 		if (start > key.offset) {
439 			u64 new_num;
440 			u64 old_num;
441 			keep = 1;
442 			WARN_ON(start & (root->sectorsize - 1));
443 			if (found_extent) {
444 				new_num = start - key.offset;
445 				old_num = btrfs_file_extent_num_bytes(leaf,
446 								      extent);
447 				*hint_byte =
448 					btrfs_file_extent_disk_bytenr(leaf,
449 								      extent);
450 				if (btrfs_file_extent_disk_bytenr(leaf,
451 								  extent)) {
452 					inode_sub_bytes(inode, old_num -
453 							new_num);
454 				}
455 				btrfs_set_file_extent_num_bytes(leaf,
456 							extent, new_num);
457 				btrfs_mark_buffer_dirty(leaf);
458 			} else if (key.offset < inline_limit &&
459 				   (end > extent_end) &&
460 				   (inline_limit < extent_end)) {
461 				u32 new_size;
462 				new_size = btrfs_file_extent_calc_inline_size(
463 						   inline_limit - key.offset);
464 				inode_sub_bytes(inode, extent_end -
465 						inline_limit);
466 				btrfs_set_file_extent_ram_bytes(leaf, extent,
467 							new_size);
468 				if (!compression && !encryption) {
469 					btrfs_truncate_item(trans, root, path,
470 							    new_size, 1);
471 				}
472 			}
473 		}
474 		/* delete the entire extent */
475 		if (!keep) {
476 			if (found_inline)
477 				inode_sub_bytes(inode, extent_end -
478 						key.offset);
479 			ret = btrfs_del_item(trans, root, path);
480 			/* TODO update progress marker and return */
481 			BUG_ON(ret);
482 			extent = NULL;
483 			btrfs_release_path(root, path);
484 			/* the extent will be freed later */
485 		}
486 		if (bookend && found_inline && start <= key.offset) {
487 			u32 new_size;
488 			new_size = btrfs_file_extent_calc_inline_size(
489 						   extent_end - end);
490 			inode_sub_bytes(inode, end - key.offset);
491 			btrfs_set_file_extent_ram_bytes(leaf, extent,
492 							new_size);
493 			if (!compression && !encryption)
494 				ret = btrfs_truncate_item(trans, root, path,
495 							  new_size, 0);
496 			BUG_ON(ret);
497 		}
498 		/* create bookend, splitting the extent in two */
499 		if (bookend && found_extent) {
500 			struct btrfs_key ins;
501 			ins.objectid = inode->i_ino;
502 			ins.offset = end;
503 			btrfs_set_key_type(&ins, BTRFS_EXTENT_DATA_KEY);
504 
505 			btrfs_release_path(root, path);
506 			path->leave_spinning = 1;
507 			ret = btrfs_insert_empty_item(trans, root, path, &ins,
508 						      sizeof(*extent));
509 			BUG_ON(ret);
510 
511 			leaf = path->nodes[0];
512 			extent = btrfs_item_ptr(leaf, path->slots[0],
513 						struct btrfs_file_extent_item);
514 			write_extent_buffer(leaf, &old,
515 					    (unsigned long)extent, sizeof(old));
516 
517 			btrfs_set_file_extent_compression(leaf, extent,
518 							  compression);
519 			btrfs_set_file_extent_encryption(leaf, extent,
520 							 encryption);
521 			btrfs_set_file_extent_other_encoding(leaf, extent,
522 							     other_encoding);
523 			btrfs_set_file_extent_offset(leaf, extent,
524 				    le64_to_cpu(old.offset) + end - key.offset);
525 			WARN_ON(le64_to_cpu(old.num_bytes) <
526 				(extent_end - end));
527 			btrfs_set_file_extent_num_bytes(leaf, extent,
528 							extent_end - end);
529 
530 			/*
531 			 * set the ram bytes to the size of the full extent
532 			 * before splitting.  This is a worst case flag,
533 			 * but its the best we can do because we don't know
534 			 * how splitting affects compression
535 			 */
536 			btrfs_set_file_extent_ram_bytes(leaf, extent,
537 							ram_bytes);
538 			btrfs_set_file_extent_type(leaf, extent, found_type);
539 
540 			btrfs_unlock_up_safe(path, 1);
541 			btrfs_mark_buffer_dirty(path->nodes[0]);
542 			btrfs_set_lock_blocking(path->nodes[0]);
543 
544 			path->leave_spinning = 0;
545 			btrfs_release_path(root, path);
546 			if (disk_bytenr != 0)
547 				inode_add_bytes(inode, extent_end - end);
548 		}
549 
550 		if (found_extent && !keep) {
551 			u64 old_disk_bytenr = le64_to_cpu(old.disk_bytenr);
552 
553 			if (old_disk_bytenr != 0) {
554 				inode_sub_bytes(inode,
555 						le64_to_cpu(old.num_bytes));
556 				ret = btrfs_free_extent(trans, root,
557 						old_disk_bytenr,
558 						le64_to_cpu(old.disk_num_bytes),
559 						0, root->root_key.objectid,
560 						key.objectid, key.offset -
561 						le64_to_cpu(old.offset));
562 				BUG_ON(ret);
563 				*hint_byte = old_disk_bytenr;
564 			}
565 		}
566 
567 		if (search_start >= end) {
568 			ret = 0;
569 			goto out;
570 		}
571 	}
572 out:
573 	btrfs_free_path(path);
574 	if (locked_end > orig_locked_end) {
575 		unlock_extent(&BTRFS_I(inode)->io_tree, orig_locked_end,
576 			      locked_end - 1, GFP_NOFS);
577 	}
578 	return ret;
579 }
580 
581 static int extent_mergeable(struct extent_buffer *leaf, int slot,
582 			    u64 objectid, u64 bytenr, u64 *start, u64 *end)
583 {
584 	struct btrfs_file_extent_item *fi;
585 	struct btrfs_key key;
586 	u64 extent_end;
587 
588 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
589 		return 0;
590 
591 	btrfs_item_key_to_cpu(leaf, &key, slot);
592 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
593 		return 0;
594 
595 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
596 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
597 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
598 	    btrfs_file_extent_compression(leaf, fi) ||
599 	    btrfs_file_extent_encryption(leaf, fi) ||
600 	    btrfs_file_extent_other_encoding(leaf, fi))
601 		return 0;
602 
603 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
604 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
605 		return 0;
606 
607 	*start = key.offset;
608 	*end = extent_end;
609 	return 1;
610 }
611 
612 /*
613  * Mark extent in the range start - end as written.
614  *
615  * This changes extent type from 'pre-allocated' to 'regular'. If only
616  * part of extent is marked as written, the extent will be split into
617  * two or three.
618  */
619 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
620 			      struct btrfs_root *root,
621 			      struct inode *inode, u64 start, u64 end)
622 {
623 	struct extent_buffer *leaf;
624 	struct btrfs_path *path;
625 	struct btrfs_file_extent_item *fi;
626 	struct btrfs_key key;
627 	u64 bytenr;
628 	u64 num_bytes;
629 	u64 extent_end;
630 	u64 orig_offset;
631 	u64 other_start;
632 	u64 other_end;
633 	u64 split = start;
634 	u64 locked_end = end;
635 	int extent_type;
636 	int split_end = 1;
637 	int ret;
638 
639 	btrfs_drop_extent_cache(inode, start, end - 1, 0);
640 
641 	path = btrfs_alloc_path();
642 	BUG_ON(!path);
643 again:
644 	key.objectid = inode->i_ino;
645 	key.type = BTRFS_EXTENT_DATA_KEY;
646 	if (split == start)
647 		key.offset = split;
648 	else
649 		key.offset = split - 1;
650 
651 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
652 	if (ret > 0 && path->slots[0] > 0)
653 		path->slots[0]--;
654 
655 	leaf = path->nodes[0];
656 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
657 	BUG_ON(key.objectid != inode->i_ino ||
658 	       key.type != BTRFS_EXTENT_DATA_KEY);
659 	fi = btrfs_item_ptr(leaf, path->slots[0],
660 			    struct btrfs_file_extent_item);
661 	extent_type = btrfs_file_extent_type(leaf, fi);
662 	BUG_ON(extent_type != BTRFS_FILE_EXTENT_PREALLOC);
663 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
664 	BUG_ON(key.offset > start || extent_end < end);
665 
666 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
667 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
668 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
669 
670 	if (key.offset == start)
671 		split = end;
672 
673 	if (key.offset == start && extent_end == end) {
674 		int del_nr = 0;
675 		int del_slot = 0;
676 		other_start = end;
677 		other_end = 0;
678 		if (extent_mergeable(leaf, path->slots[0] + 1, inode->i_ino,
679 				     bytenr, &other_start, &other_end)) {
680 			extent_end = other_end;
681 			del_slot = path->slots[0] + 1;
682 			del_nr++;
683 			ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
684 						0, root->root_key.objectid,
685 						inode->i_ino, orig_offset);
686 			BUG_ON(ret);
687 		}
688 		other_start = 0;
689 		other_end = start;
690 		if (extent_mergeable(leaf, path->slots[0] - 1, inode->i_ino,
691 				     bytenr, &other_start, &other_end)) {
692 			key.offset = other_start;
693 			del_slot = path->slots[0];
694 			del_nr++;
695 			ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
696 						0, root->root_key.objectid,
697 						inode->i_ino, orig_offset);
698 			BUG_ON(ret);
699 		}
700 		split_end = 0;
701 		if (del_nr == 0) {
702 			btrfs_set_file_extent_type(leaf, fi,
703 						   BTRFS_FILE_EXTENT_REG);
704 			goto done;
705 		}
706 
707 		fi = btrfs_item_ptr(leaf, del_slot - 1,
708 				    struct btrfs_file_extent_item);
709 		btrfs_set_file_extent_type(leaf, fi, BTRFS_FILE_EXTENT_REG);
710 		btrfs_set_file_extent_num_bytes(leaf, fi,
711 						extent_end - key.offset);
712 		btrfs_mark_buffer_dirty(leaf);
713 
714 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
715 		BUG_ON(ret);
716 		goto release;
717 	} else if (split == start) {
718 		if (locked_end < extent_end) {
719 			ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
720 					locked_end, extent_end - 1, GFP_NOFS);
721 			if (!ret) {
722 				btrfs_release_path(root, path);
723 				lock_extent(&BTRFS_I(inode)->io_tree,
724 					locked_end, extent_end - 1, GFP_NOFS);
725 				locked_end = extent_end;
726 				goto again;
727 			}
728 			locked_end = extent_end;
729 		}
730 		btrfs_set_file_extent_num_bytes(leaf, fi, split - key.offset);
731 	} else  {
732 		BUG_ON(key.offset != start);
733 		key.offset = split;
734 		btrfs_set_file_extent_offset(leaf, fi, key.offset -
735 					     orig_offset);
736 		btrfs_set_file_extent_num_bytes(leaf, fi, extent_end - split);
737 		btrfs_set_item_key_safe(trans, root, path, &key);
738 		extent_end = split;
739 	}
740 
741 	if (extent_end == end) {
742 		split_end = 0;
743 		extent_type = BTRFS_FILE_EXTENT_REG;
744 	}
745 	if (extent_end == end && split == start) {
746 		other_start = end;
747 		other_end = 0;
748 		if (extent_mergeable(leaf, path->slots[0] + 1, inode->i_ino,
749 				     bytenr, &other_start, &other_end)) {
750 			path->slots[0]++;
751 			fi = btrfs_item_ptr(leaf, path->slots[0],
752 					    struct btrfs_file_extent_item);
753 			key.offset = split;
754 			btrfs_set_item_key_safe(trans, root, path, &key);
755 			btrfs_set_file_extent_offset(leaf, fi, key.offset -
756 						     orig_offset);
757 			btrfs_set_file_extent_num_bytes(leaf, fi,
758 							other_end - split);
759 			goto done;
760 		}
761 	}
762 	if (extent_end == end && split == end) {
763 		other_start = 0;
764 		other_end = start;
765 		if (extent_mergeable(leaf, path->slots[0] - 1 , inode->i_ino,
766 				     bytenr, &other_start, &other_end)) {
767 			path->slots[0]--;
768 			fi = btrfs_item_ptr(leaf, path->slots[0],
769 					    struct btrfs_file_extent_item);
770 			btrfs_set_file_extent_num_bytes(leaf, fi, extent_end -
771 							other_start);
772 			goto done;
773 		}
774 	}
775 
776 	btrfs_mark_buffer_dirty(leaf);
777 
778 	ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
779 				   root->root_key.objectid,
780 				   inode->i_ino, orig_offset);
781 	BUG_ON(ret);
782 	btrfs_release_path(root, path);
783 
784 	key.offset = start;
785 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*fi));
786 	BUG_ON(ret);
787 
788 	leaf = path->nodes[0];
789 	fi = btrfs_item_ptr(leaf, path->slots[0],
790 			    struct btrfs_file_extent_item);
791 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
792 	btrfs_set_file_extent_type(leaf, fi, extent_type);
793 	btrfs_set_file_extent_disk_bytenr(leaf, fi, bytenr);
794 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, num_bytes);
795 	btrfs_set_file_extent_offset(leaf, fi, key.offset - orig_offset);
796 	btrfs_set_file_extent_num_bytes(leaf, fi, extent_end - key.offset);
797 	btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
798 	btrfs_set_file_extent_compression(leaf, fi, 0);
799 	btrfs_set_file_extent_encryption(leaf, fi, 0);
800 	btrfs_set_file_extent_other_encoding(leaf, fi, 0);
801 done:
802 	btrfs_mark_buffer_dirty(leaf);
803 
804 release:
805 	btrfs_release_path(root, path);
806 	if (split_end && split == start) {
807 		split = end;
808 		goto again;
809 	}
810 	if (locked_end > end) {
811 		unlock_extent(&BTRFS_I(inode)->io_tree, end, locked_end - 1,
812 			      GFP_NOFS);
813 	}
814 	btrfs_free_path(path);
815 	return 0;
816 }
817 
818 /*
819  * this gets pages into the page cache and locks them down, it also properly
820  * waits for data=ordered extents to finish before allowing the pages to be
821  * modified.
822  */
823 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
824 			 struct page **pages, size_t num_pages,
825 			 loff_t pos, unsigned long first_index,
826 			 unsigned long last_index, size_t write_bytes)
827 {
828 	int i;
829 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
830 	struct inode *inode = fdentry(file)->d_inode;
831 	int err = 0;
832 	u64 start_pos;
833 	u64 last_pos;
834 
835 	start_pos = pos & ~((u64)root->sectorsize - 1);
836 	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
837 
838 	if (start_pos > inode->i_size) {
839 		err = btrfs_cont_expand(inode, start_pos);
840 		if (err)
841 			return err;
842 	}
843 
844 	memset(pages, 0, num_pages * sizeof(struct page *));
845 again:
846 	for (i = 0; i < num_pages; i++) {
847 		pages[i] = grab_cache_page(inode->i_mapping, index + i);
848 		if (!pages[i]) {
849 			err = -ENOMEM;
850 			BUG_ON(1);
851 		}
852 		wait_on_page_writeback(pages[i]);
853 	}
854 	if (start_pos < inode->i_size) {
855 		struct btrfs_ordered_extent *ordered;
856 		lock_extent(&BTRFS_I(inode)->io_tree,
857 			    start_pos, last_pos - 1, GFP_NOFS);
858 		ordered = btrfs_lookup_first_ordered_extent(inode,
859 							    last_pos - 1);
860 		if (ordered &&
861 		    ordered->file_offset + ordered->len > start_pos &&
862 		    ordered->file_offset < last_pos) {
863 			btrfs_put_ordered_extent(ordered);
864 			unlock_extent(&BTRFS_I(inode)->io_tree,
865 				      start_pos, last_pos - 1, GFP_NOFS);
866 			for (i = 0; i < num_pages; i++) {
867 				unlock_page(pages[i]);
868 				page_cache_release(pages[i]);
869 			}
870 			btrfs_wait_ordered_range(inode, start_pos,
871 						 last_pos - start_pos);
872 			goto again;
873 		}
874 		if (ordered)
875 			btrfs_put_ordered_extent(ordered);
876 
877 		clear_extent_bits(&BTRFS_I(inode)->io_tree, start_pos,
878 				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC,
879 				  GFP_NOFS);
880 		unlock_extent(&BTRFS_I(inode)->io_tree,
881 			      start_pos, last_pos - 1, GFP_NOFS);
882 	}
883 	for (i = 0; i < num_pages; i++) {
884 		clear_page_dirty_for_io(pages[i]);
885 		set_page_extent_mapped(pages[i]);
886 		WARN_ON(!PageLocked(pages[i]));
887 	}
888 	return 0;
889 }
890 
891 static ssize_t btrfs_file_write(struct file *file, const char __user *buf,
892 				size_t count, loff_t *ppos)
893 {
894 	loff_t pos;
895 	loff_t start_pos;
896 	ssize_t num_written = 0;
897 	ssize_t err = 0;
898 	int ret = 0;
899 	struct inode *inode = fdentry(file)->d_inode;
900 	struct btrfs_root *root = BTRFS_I(inode)->root;
901 	struct page **pages = NULL;
902 	int nrptrs;
903 	struct page *pinned[2];
904 	unsigned long first_index;
905 	unsigned long last_index;
906 	int will_write;
907 
908 	will_write = ((file->f_flags & O_SYNC) || IS_SYNC(inode) ||
909 		      (file->f_flags & O_DIRECT));
910 
911 	nrptrs = min((count + PAGE_CACHE_SIZE - 1) / PAGE_CACHE_SIZE,
912 		     PAGE_CACHE_SIZE / (sizeof(struct page *)));
913 	pinned[0] = NULL;
914 	pinned[1] = NULL;
915 
916 	pos = *ppos;
917 	start_pos = pos;
918 
919 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
920 	current->backing_dev_info = inode->i_mapping->backing_dev_info;
921 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
922 	if (err)
923 		goto out_nolock;
924 	if (count == 0)
925 		goto out_nolock;
926 
927 	err = file_remove_suid(file);
928 	if (err)
929 		goto out_nolock;
930 	file_update_time(file);
931 
932 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
933 
934 	mutex_lock(&inode->i_mutex);
935 	BTRFS_I(inode)->sequence++;
936 	first_index = pos >> PAGE_CACHE_SHIFT;
937 	last_index = (pos + count) >> PAGE_CACHE_SHIFT;
938 
939 	/*
940 	 * there are lots of better ways to do this, but this code
941 	 * makes sure the first and last page in the file range are
942 	 * up to date and ready for cow
943 	 */
944 	if ((pos & (PAGE_CACHE_SIZE - 1))) {
945 		pinned[0] = grab_cache_page(inode->i_mapping, first_index);
946 		if (!PageUptodate(pinned[0])) {
947 			ret = btrfs_readpage(NULL, pinned[0]);
948 			BUG_ON(ret);
949 			wait_on_page_locked(pinned[0]);
950 		} else {
951 			unlock_page(pinned[0]);
952 		}
953 	}
954 	if ((pos + count) & (PAGE_CACHE_SIZE - 1)) {
955 		pinned[1] = grab_cache_page(inode->i_mapping, last_index);
956 		if (!PageUptodate(pinned[1])) {
957 			ret = btrfs_readpage(NULL, pinned[1]);
958 			BUG_ON(ret);
959 			wait_on_page_locked(pinned[1]);
960 		} else {
961 			unlock_page(pinned[1]);
962 		}
963 	}
964 
965 	while (count > 0) {
966 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
967 		size_t write_bytes = min(count, nrptrs *
968 					(size_t)PAGE_CACHE_SIZE -
969 					 offset);
970 		size_t num_pages = (write_bytes + PAGE_CACHE_SIZE - 1) >>
971 					PAGE_CACHE_SHIFT;
972 
973 		WARN_ON(num_pages > nrptrs);
974 		memset(pages, 0, sizeof(struct page *) * nrptrs);
975 
976 		ret = btrfs_check_data_free_space(root, inode, write_bytes);
977 		if (ret)
978 			goto out;
979 
980 		ret = prepare_pages(root, file, pages, num_pages,
981 				    pos, first_index, last_index,
982 				    write_bytes);
983 		if (ret) {
984 			btrfs_free_reserved_data_space(root, inode,
985 						       write_bytes);
986 			goto out;
987 		}
988 
989 		ret = btrfs_copy_from_user(pos, num_pages,
990 					   write_bytes, pages, buf);
991 		if (ret) {
992 			btrfs_free_reserved_data_space(root, inode,
993 						       write_bytes);
994 			btrfs_drop_pages(pages, num_pages);
995 			goto out;
996 		}
997 
998 		ret = dirty_and_release_pages(NULL, root, file, pages,
999 					      num_pages, pos, write_bytes);
1000 		btrfs_drop_pages(pages, num_pages);
1001 		if (ret) {
1002 			btrfs_free_reserved_data_space(root, inode,
1003 						       write_bytes);
1004 			goto out;
1005 		}
1006 
1007 		if (will_write) {
1008 			btrfs_fdatawrite_range(inode->i_mapping, pos,
1009 					       pos + write_bytes - 1,
1010 					       WB_SYNC_ALL);
1011 		} else {
1012 			balance_dirty_pages_ratelimited_nr(inode->i_mapping,
1013 							   num_pages);
1014 			if (num_pages <
1015 			    (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1016 				btrfs_btree_balance_dirty(root, 1);
1017 			btrfs_throttle(root);
1018 		}
1019 
1020 		buf += write_bytes;
1021 		count -= write_bytes;
1022 		pos += write_bytes;
1023 		num_written += write_bytes;
1024 
1025 		cond_resched();
1026 	}
1027 out:
1028 	mutex_unlock(&inode->i_mutex);
1029 	if (ret)
1030 		err = ret;
1031 
1032 out_nolock:
1033 	kfree(pages);
1034 	if (pinned[0])
1035 		page_cache_release(pinned[0]);
1036 	if (pinned[1])
1037 		page_cache_release(pinned[1]);
1038 	*ppos = pos;
1039 
1040 	/*
1041 	 * we want to make sure fsync finds this change
1042 	 * but we haven't joined a transaction running right now.
1043 	 *
1044 	 * Later on, someone is sure to update the inode and get the
1045 	 * real transid recorded.
1046 	 *
1047 	 * We set last_trans now to the fs_info generation + 1,
1048 	 * this will either be one more than the running transaction
1049 	 * or the generation used for the next transaction if there isn't
1050 	 * one running right now.
1051 	 */
1052 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1053 
1054 	if (num_written > 0 && will_write) {
1055 		struct btrfs_trans_handle *trans;
1056 
1057 		err = btrfs_wait_ordered_range(inode, start_pos, num_written);
1058 		if (err)
1059 			num_written = err;
1060 
1061 		if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) {
1062 			trans = btrfs_start_transaction(root, 1);
1063 			ret = btrfs_log_dentry_safe(trans, root,
1064 						    file->f_dentry);
1065 			if (ret == 0) {
1066 				ret = btrfs_sync_log(trans, root);
1067 				if (ret == 0)
1068 					btrfs_end_transaction(trans, root);
1069 				else
1070 					btrfs_commit_transaction(trans, root);
1071 			} else {
1072 				btrfs_commit_transaction(trans, root);
1073 			}
1074 		}
1075 		if (file->f_flags & O_DIRECT) {
1076 			invalidate_mapping_pages(inode->i_mapping,
1077 			      start_pos >> PAGE_CACHE_SHIFT,
1078 			     (start_pos + num_written - 1) >> PAGE_CACHE_SHIFT);
1079 		}
1080 	}
1081 	current->backing_dev_info = NULL;
1082 	return num_written ? num_written : err;
1083 }
1084 
1085 int btrfs_release_file(struct inode *inode, struct file *filp)
1086 {
1087 	/*
1088 	 * ordered_data_close is set by settattr when we are about to truncate
1089 	 * a file from a non-zero size to a zero size.  This tries to
1090 	 * flush down new bytes that may have been written if the
1091 	 * application were using truncate to replace a file in place.
1092 	 */
1093 	if (BTRFS_I(inode)->ordered_data_close) {
1094 		BTRFS_I(inode)->ordered_data_close = 0;
1095 		btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1096 		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1097 			filemap_flush(inode->i_mapping);
1098 	}
1099 	if (filp->private_data)
1100 		btrfs_ioctl_trans_end(filp);
1101 	return 0;
1102 }
1103 
1104 /*
1105  * fsync call for both files and directories.  This logs the inode into
1106  * the tree log instead of forcing full commits whenever possible.
1107  *
1108  * It needs to call filemap_fdatawait so that all ordered extent updates are
1109  * in the metadata btree are up to date for copying to the log.
1110  *
1111  * It drops the inode mutex before doing the tree log commit.  This is an
1112  * important optimization for directories because holding the mutex prevents
1113  * new operations on the dir while we write to disk.
1114  */
1115 int btrfs_sync_file(struct file *file, struct dentry *dentry, int datasync)
1116 {
1117 	struct inode *inode = dentry->d_inode;
1118 	struct btrfs_root *root = BTRFS_I(inode)->root;
1119 	int ret = 0;
1120 	struct btrfs_trans_handle *trans;
1121 
1122 	/*
1123 	 * check the transaction that last modified this inode
1124 	 * and see if its already been committed
1125 	 */
1126 	if (!BTRFS_I(inode)->last_trans)
1127 		goto out;
1128 
1129 	mutex_lock(&root->fs_info->trans_mutex);
1130 	if (BTRFS_I(inode)->last_trans <=
1131 	    root->fs_info->last_trans_committed) {
1132 		BTRFS_I(inode)->last_trans = 0;
1133 		mutex_unlock(&root->fs_info->trans_mutex);
1134 		goto out;
1135 	}
1136 	mutex_unlock(&root->fs_info->trans_mutex);
1137 
1138 	root->log_batch++;
1139 	filemap_fdatawrite(inode->i_mapping);
1140 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
1141 	root->log_batch++;
1142 
1143 	if (datasync && !(inode->i_state & I_DIRTY_PAGES))
1144 		goto out;
1145 	/*
1146 	 * ok we haven't committed the transaction yet, lets do a commit
1147 	 */
1148 	if (file && file->private_data)
1149 		btrfs_ioctl_trans_end(file);
1150 
1151 	trans = btrfs_start_transaction(root, 1);
1152 	if (!trans) {
1153 		ret = -ENOMEM;
1154 		goto out;
1155 	}
1156 
1157 	ret = btrfs_log_dentry_safe(trans, root, dentry);
1158 	if (ret < 0)
1159 		goto out;
1160 
1161 	/* we've logged all the items and now have a consistent
1162 	 * version of the file in the log.  It is possible that
1163 	 * someone will come in and modify the file, but that's
1164 	 * fine because the log is consistent on disk, and we
1165 	 * have references to all of the file's extents
1166 	 *
1167 	 * It is possible that someone will come in and log the
1168 	 * file again, but that will end up using the synchronization
1169 	 * inside btrfs_sync_log to keep things safe.
1170 	 */
1171 	mutex_unlock(&dentry->d_inode->i_mutex);
1172 
1173 	if (ret > 0) {
1174 		ret = btrfs_commit_transaction(trans, root);
1175 	} else {
1176 		ret = btrfs_sync_log(trans, root);
1177 		if (ret == 0)
1178 			ret = btrfs_end_transaction(trans, root);
1179 		else
1180 			ret = btrfs_commit_transaction(trans, root);
1181 	}
1182 	mutex_lock(&dentry->d_inode->i_mutex);
1183 out:
1184 	return ret > 0 ? EIO : ret;
1185 }
1186 
1187 static const struct vm_operations_struct btrfs_file_vm_ops = {
1188 	.fault		= filemap_fault,
1189 	.page_mkwrite	= btrfs_page_mkwrite,
1190 };
1191 
1192 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1193 {
1194 	vma->vm_ops = &btrfs_file_vm_ops;
1195 	file_accessed(filp);
1196 	return 0;
1197 }
1198 
1199 struct file_operations btrfs_file_operations = {
1200 	.llseek		= generic_file_llseek,
1201 	.read		= do_sync_read,
1202 	.aio_read       = generic_file_aio_read,
1203 	.splice_read	= generic_file_splice_read,
1204 	.write		= btrfs_file_write,
1205 	.mmap		= btrfs_file_mmap,
1206 	.open		= generic_file_open,
1207 	.release	= btrfs_release_file,
1208 	.fsync		= btrfs_sync_file,
1209 	.unlocked_ioctl	= btrfs_ioctl,
1210 #ifdef CONFIG_COMPAT
1211 	.compat_ioctl	= btrfs_ioctl,
1212 #endif
1213 };
1214