xref: /linux/fs/btrfs/file.c (revision 492c826b9facefa84995f4dea917e301b5ee0884)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "ioctl.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "compat.h"
42 
43 
44 /* simple helper to fault in pages and copy.  This should go away
45  * and be replaced with calls into generic code.
46  */
47 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
48 					 size_t write_bytes,
49 					 struct page **prepared_pages,
50 					 struct iov_iter *i)
51 {
52 	size_t copied = 0;
53 	size_t total_copied = 0;
54 	int pg = 0;
55 	int offset = pos & (PAGE_CACHE_SIZE - 1);
56 
57 	while (write_bytes > 0) {
58 		size_t count = min_t(size_t,
59 				     PAGE_CACHE_SIZE - offset, write_bytes);
60 		struct page *page = prepared_pages[pg];
61 		/*
62 		 * Copy data from userspace to the current page
63 		 *
64 		 * Disable pagefault to avoid recursive lock since
65 		 * the pages are already locked
66 		 */
67 		pagefault_disable();
68 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
69 		pagefault_enable();
70 
71 		/* Flush processor's dcache for this page */
72 		flush_dcache_page(page);
73 
74 		/*
75 		 * if we get a partial write, we can end up with
76 		 * partially up to date pages.  These add
77 		 * a lot of complexity, so make sure they don't
78 		 * happen by forcing this copy to be retried.
79 		 *
80 		 * The rest of the btrfs_file_write code will fall
81 		 * back to page at a time copies after we return 0.
82 		 */
83 		if (!PageUptodate(page) && copied < count)
84 			copied = 0;
85 
86 		iov_iter_advance(i, copied);
87 		write_bytes -= copied;
88 		total_copied += copied;
89 
90 		/* Return to btrfs_file_aio_write to fault page */
91 		if (unlikely(copied == 0))
92 			break;
93 
94 		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
95 			offset += copied;
96 		} else {
97 			pg++;
98 			offset = 0;
99 		}
100 	}
101 	return total_copied;
102 }
103 
104 /*
105  * unlocks pages after btrfs_file_write is done with them
106  */
107 void btrfs_drop_pages(struct page **pages, size_t num_pages)
108 {
109 	size_t i;
110 	for (i = 0; i < num_pages; i++) {
111 		/* page checked is some magic around finding pages that
112 		 * have been modified without going through btrfs_set_page_dirty
113 		 * clear it here
114 		 */
115 		ClearPageChecked(pages[i]);
116 		unlock_page(pages[i]);
117 		mark_page_accessed(pages[i]);
118 		page_cache_release(pages[i]);
119 	}
120 }
121 
122 /*
123  * after copy_from_user, pages need to be dirtied and we need to make
124  * sure holes are created between the current EOF and the start of
125  * any next extents (if required).
126  *
127  * this also makes the decision about creating an inline extent vs
128  * doing real data extents, marking pages dirty and delalloc as required.
129  */
130 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
131 		      struct page **pages, size_t num_pages,
132 		      loff_t pos, size_t write_bytes,
133 		      struct extent_state **cached)
134 {
135 	int err = 0;
136 	int i;
137 	u64 num_bytes;
138 	u64 start_pos;
139 	u64 end_of_last_block;
140 	u64 end_pos = pos + write_bytes;
141 	loff_t isize = i_size_read(inode);
142 
143 	start_pos = pos & ~((u64)root->sectorsize - 1);
144 	num_bytes = (write_bytes + pos - start_pos +
145 		    root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
146 
147 	end_of_last_block = start_pos + num_bytes - 1;
148 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
149 					cached);
150 	if (err)
151 		return err;
152 
153 	for (i = 0; i < num_pages; i++) {
154 		struct page *p = pages[i];
155 		SetPageUptodate(p);
156 		ClearPageChecked(p);
157 		set_page_dirty(p);
158 	}
159 
160 	/*
161 	 * we've only changed i_size in ram, and we haven't updated
162 	 * the disk i_size.  There is no need to log the inode
163 	 * at this time.
164 	 */
165 	if (end_pos > isize)
166 		i_size_write(inode, end_pos);
167 	return 0;
168 }
169 
170 /*
171  * this drops all the extents in the cache that intersect the range
172  * [start, end].  Existing extents are split as required.
173  */
174 int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
175 			    int skip_pinned)
176 {
177 	struct extent_map *em;
178 	struct extent_map *split = NULL;
179 	struct extent_map *split2 = NULL;
180 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
181 	u64 len = end - start + 1;
182 	int ret;
183 	int testend = 1;
184 	unsigned long flags;
185 	int compressed = 0;
186 
187 	WARN_ON(end < start);
188 	if (end == (u64)-1) {
189 		len = (u64)-1;
190 		testend = 0;
191 	}
192 	while (1) {
193 		if (!split)
194 			split = alloc_extent_map(GFP_NOFS);
195 		if (!split2)
196 			split2 = alloc_extent_map(GFP_NOFS);
197 		BUG_ON(!split || !split2);
198 
199 		write_lock(&em_tree->lock);
200 		em = lookup_extent_mapping(em_tree, start, len);
201 		if (!em) {
202 			write_unlock(&em_tree->lock);
203 			break;
204 		}
205 		flags = em->flags;
206 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
207 			if (testend && em->start + em->len >= start + len) {
208 				free_extent_map(em);
209 				write_unlock(&em_tree->lock);
210 				break;
211 			}
212 			start = em->start + em->len;
213 			if (testend)
214 				len = start + len - (em->start + em->len);
215 			free_extent_map(em);
216 			write_unlock(&em_tree->lock);
217 			continue;
218 		}
219 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
220 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
221 		remove_extent_mapping(em_tree, em);
222 
223 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
224 		    em->start < start) {
225 			split->start = em->start;
226 			split->len = start - em->start;
227 			split->orig_start = em->orig_start;
228 			split->block_start = em->block_start;
229 
230 			if (compressed)
231 				split->block_len = em->block_len;
232 			else
233 				split->block_len = split->len;
234 
235 			split->bdev = em->bdev;
236 			split->flags = flags;
237 			split->compress_type = em->compress_type;
238 			ret = add_extent_mapping(em_tree, split);
239 			BUG_ON(ret);
240 			free_extent_map(split);
241 			split = split2;
242 			split2 = NULL;
243 		}
244 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
245 		    testend && em->start + em->len > start + len) {
246 			u64 diff = start + len - em->start;
247 
248 			split->start = start + len;
249 			split->len = em->start + em->len - (start + len);
250 			split->bdev = em->bdev;
251 			split->flags = flags;
252 			split->compress_type = em->compress_type;
253 
254 			if (compressed) {
255 				split->block_len = em->block_len;
256 				split->block_start = em->block_start;
257 				split->orig_start = em->orig_start;
258 			} else {
259 				split->block_len = split->len;
260 				split->block_start = em->block_start + diff;
261 				split->orig_start = split->start;
262 			}
263 
264 			ret = add_extent_mapping(em_tree, split);
265 			BUG_ON(ret);
266 			free_extent_map(split);
267 			split = NULL;
268 		}
269 		write_unlock(&em_tree->lock);
270 
271 		/* once for us */
272 		free_extent_map(em);
273 		/* once for the tree*/
274 		free_extent_map(em);
275 	}
276 	if (split)
277 		free_extent_map(split);
278 	if (split2)
279 		free_extent_map(split2);
280 	return 0;
281 }
282 
283 /*
284  * this is very complex, but the basic idea is to drop all extents
285  * in the range start - end.  hint_block is filled in with a block number
286  * that would be a good hint to the block allocator for this file.
287  *
288  * If an extent intersects the range but is not entirely inside the range
289  * it is either truncated or split.  Anything entirely inside the range
290  * is deleted from the tree.
291  */
292 int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
293 		       u64 start, u64 end, u64 *hint_byte, int drop_cache)
294 {
295 	struct btrfs_root *root = BTRFS_I(inode)->root;
296 	struct extent_buffer *leaf;
297 	struct btrfs_file_extent_item *fi;
298 	struct btrfs_path *path;
299 	struct btrfs_key key;
300 	struct btrfs_key new_key;
301 	u64 search_start = start;
302 	u64 disk_bytenr = 0;
303 	u64 num_bytes = 0;
304 	u64 extent_offset = 0;
305 	u64 extent_end = 0;
306 	int del_nr = 0;
307 	int del_slot = 0;
308 	int extent_type;
309 	int recow;
310 	int ret;
311 
312 	if (drop_cache)
313 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
314 
315 	path = btrfs_alloc_path();
316 	if (!path)
317 		return -ENOMEM;
318 
319 	while (1) {
320 		recow = 0;
321 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
322 					       search_start, -1);
323 		if (ret < 0)
324 			break;
325 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
326 			leaf = path->nodes[0];
327 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
328 			if (key.objectid == inode->i_ino &&
329 			    key.type == BTRFS_EXTENT_DATA_KEY)
330 				path->slots[0]--;
331 		}
332 		ret = 0;
333 next_slot:
334 		leaf = path->nodes[0];
335 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
336 			BUG_ON(del_nr > 0);
337 			ret = btrfs_next_leaf(root, path);
338 			if (ret < 0)
339 				break;
340 			if (ret > 0) {
341 				ret = 0;
342 				break;
343 			}
344 			leaf = path->nodes[0];
345 			recow = 1;
346 		}
347 
348 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
349 		if (key.objectid > inode->i_ino ||
350 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
351 			break;
352 
353 		fi = btrfs_item_ptr(leaf, path->slots[0],
354 				    struct btrfs_file_extent_item);
355 		extent_type = btrfs_file_extent_type(leaf, fi);
356 
357 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
358 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
359 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
360 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
361 			extent_offset = btrfs_file_extent_offset(leaf, fi);
362 			extent_end = key.offset +
363 				btrfs_file_extent_num_bytes(leaf, fi);
364 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
365 			extent_end = key.offset +
366 				btrfs_file_extent_inline_len(leaf, fi);
367 		} else {
368 			WARN_ON(1);
369 			extent_end = search_start;
370 		}
371 
372 		if (extent_end <= search_start) {
373 			path->slots[0]++;
374 			goto next_slot;
375 		}
376 
377 		search_start = max(key.offset, start);
378 		if (recow) {
379 			btrfs_release_path(root, path);
380 			continue;
381 		}
382 
383 		/*
384 		 *     | - range to drop - |
385 		 *  | -------- extent -------- |
386 		 */
387 		if (start > key.offset && end < extent_end) {
388 			BUG_ON(del_nr > 0);
389 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
390 
391 			memcpy(&new_key, &key, sizeof(new_key));
392 			new_key.offset = start;
393 			ret = btrfs_duplicate_item(trans, root, path,
394 						   &new_key);
395 			if (ret == -EAGAIN) {
396 				btrfs_release_path(root, path);
397 				continue;
398 			}
399 			if (ret < 0)
400 				break;
401 
402 			leaf = path->nodes[0];
403 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
404 					    struct btrfs_file_extent_item);
405 			btrfs_set_file_extent_num_bytes(leaf, fi,
406 							start - key.offset);
407 
408 			fi = btrfs_item_ptr(leaf, path->slots[0],
409 					    struct btrfs_file_extent_item);
410 
411 			extent_offset += start - key.offset;
412 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
413 			btrfs_set_file_extent_num_bytes(leaf, fi,
414 							extent_end - start);
415 			btrfs_mark_buffer_dirty(leaf);
416 
417 			if (disk_bytenr > 0) {
418 				ret = btrfs_inc_extent_ref(trans, root,
419 						disk_bytenr, num_bytes, 0,
420 						root->root_key.objectid,
421 						new_key.objectid,
422 						start - extent_offset);
423 				BUG_ON(ret);
424 				*hint_byte = disk_bytenr;
425 			}
426 			key.offset = start;
427 		}
428 		/*
429 		 *  | ---- range to drop ----- |
430 		 *      | -------- extent -------- |
431 		 */
432 		if (start <= key.offset && end < extent_end) {
433 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
434 
435 			memcpy(&new_key, &key, sizeof(new_key));
436 			new_key.offset = end;
437 			btrfs_set_item_key_safe(trans, root, path, &new_key);
438 
439 			extent_offset += end - key.offset;
440 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
441 			btrfs_set_file_extent_num_bytes(leaf, fi,
442 							extent_end - end);
443 			btrfs_mark_buffer_dirty(leaf);
444 			if (disk_bytenr > 0) {
445 				inode_sub_bytes(inode, end - key.offset);
446 				*hint_byte = disk_bytenr;
447 			}
448 			break;
449 		}
450 
451 		search_start = extent_end;
452 		/*
453 		 *       | ---- range to drop ----- |
454 		 *  | -------- extent -------- |
455 		 */
456 		if (start > key.offset && end >= extent_end) {
457 			BUG_ON(del_nr > 0);
458 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
459 
460 			btrfs_set_file_extent_num_bytes(leaf, fi,
461 							start - key.offset);
462 			btrfs_mark_buffer_dirty(leaf);
463 			if (disk_bytenr > 0) {
464 				inode_sub_bytes(inode, extent_end - start);
465 				*hint_byte = disk_bytenr;
466 			}
467 			if (end == extent_end)
468 				break;
469 
470 			path->slots[0]++;
471 			goto next_slot;
472 		}
473 
474 		/*
475 		 *  | ---- range to drop ----- |
476 		 *    | ------ extent ------ |
477 		 */
478 		if (start <= key.offset && end >= extent_end) {
479 			if (del_nr == 0) {
480 				del_slot = path->slots[0];
481 				del_nr = 1;
482 			} else {
483 				BUG_ON(del_slot + del_nr != path->slots[0]);
484 				del_nr++;
485 			}
486 
487 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
488 				inode_sub_bytes(inode,
489 						extent_end - key.offset);
490 				extent_end = ALIGN(extent_end,
491 						   root->sectorsize);
492 			} else if (disk_bytenr > 0) {
493 				ret = btrfs_free_extent(trans, root,
494 						disk_bytenr, num_bytes, 0,
495 						root->root_key.objectid,
496 						key.objectid, key.offset -
497 						extent_offset);
498 				BUG_ON(ret);
499 				inode_sub_bytes(inode,
500 						extent_end - key.offset);
501 				*hint_byte = disk_bytenr;
502 			}
503 
504 			if (end == extent_end)
505 				break;
506 
507 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
508 				path->slots[0]++;
509 				goto next_slot;
510 			}
511 
512 			ret = btrfs_del_items(trans, root, path, del_slot,
513 					      del_nr);
514 			BUG_ON(ret);
515 
516 			del_nr = 0;
517 			del_slot = 0;
518 
519 			btrfs_release_path(root, path);
520 			continue;
521 		}
522 
523 		BUG_ON(1);
524 	}
525 
526 	if (del_nr > 0) {
527 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
528 		BUG_ON(ret);
529 	}
530 
531 	btrfs_free_path(path);
532 	return ret;
533 }
534 
535 static int extent_mergeable(struct extent_buffer *leaf, int slot,
536 			    u64 objectid, u64 bytenr, u64 orig_offset,
537 			    u64 *start, u64 *end)
538 {
539 	struct btrfs_file_extent_item *fi;
540 	struct btrfs_key key;
541 	u64 extent_end;
542 
543 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
544 		return 0;
545 
546 	btrfs_item_key_to_cpu(leaf, &key, slot);
547 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
548 		return 0;
549 
550 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
551 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
552 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
553 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
554 	    btrfs_file_extent_compression(leaf, fi) ||
555 	    btrfs_file_extent_encryption(leaf, fi) ||
556 	    btrfs_file_extent_other_encoding(leaf, fi))
557 		return 0;
558 
559 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
560 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
561 		return 0;
562 
563 	*start = key.offset;
564 	*end = extent_end;
565 	return 1;
566 }
567 
568 /*
569  * Mark extent in the range start - end as written.
570  *
571  * This changes extent type from 'pre-allocated' to 'regular'. If only
572  * part of extent is marked as written, the extent will be split into
573  * two or three.
574  */
575 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
576 			      struct inode *inode, u64 start, u64 end)
577 {
578 	struct btrfs_root *root = BTRFS_I(inode)->root;
579 	struct extent_buffer *leaf;
580 	struct btrfs_path *path;
581 	struct btrfs_file_extent_item *fi;
582 	struct btrfs_key key;
583 	struct btrfs_key new_key;
584 	u64 bytenr;
585 	u64 num_bytes;
586 	u64 extent_end;
587 	u64 orig_offset;
588 	u64 other_start;
589 	u64 other_end;
590 	u64 split;
591 	int del_nr = 0;
592 	int del_slot = 0;
593 	int recow;
594 	int ret;
595 
596 	btrfs_drop_extent_cache(inode, start, end - 1, 0);
597 
598 	path = btrfs_alloc_path();
599 	BUG_ON(!path);
600 again:
601 	recow = 0;
602 	split = start;
603 	key.objectid = inode->i_ino;
604 	key.type = BTRFS_EXTENT_DATA_KEY;
605 	key.offset = split;
606 
607 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
608 	if (ret < 0)
609 		goto out;
610 	if (ret > 0 && path->slots[0] > 0)
611 		path->slots[0]--;
612 
613 	leaf = path->nodes[0];
614 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
615 	BUG_ON(key.objectid != inode->i_ino ||
616 	       key.type != BTRFS_EXTENT_DATA_KEY);
617 	fi = btrfs_item_ptr(leaf, path->slots[0],
618 			    struct btrfs_file_extent_item);
619 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
620 	       BTRFS_FILE_EXTENT_PREALLOC);
621 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
622 	BUG_ON(key.offset > start || extent_end < end);
623 
624 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
625 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
626 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
627 	memcpy(&new_key, &key, sizeof(new_key));
628 
629 	if (start == key.offset && end < extent_end) {
630 		other_start = 0;
631 		other_end = start;
632 		if (extent_mergeable(leaf, path->slots[0] - 1,
633 				     inode->i_ino, bytenr, orig_offset,
634 				     &other_start, &other_end)) {
635 			new_key.offset = end;
636 			btrfs_set_item_key_safe(trans, root, path, &new_key);
637 			fi = btrfs_item_ptr(leaf, path->slots[0],
638 					    struct btrfs_file_extent_item);
639 			btrfs_set_file_extent_num_bytes(leaf, fi,
640 							extent_end - end);
641 			btrfs_set_file_extent_offset(leaf, fi,
642 						     end - orig_offset);
643 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
644 					    struct btrfs_file_extent_item);
645 			btrfs_set_file_extent_num_bytes(leaf, fi,
646 							end - other_start);
647 			btrfs_mark_buffer_dirty(leaf);
648 			goto out;
649 		}
650 	}
651 
652 	if (start > key.offset && end == extent_end) {
653 		other_start = end;
654 		other_end = 0;
655 		if (extent_mergeable(leaf, path->slots[0] + 1,
656 				     inode->i_ino, bytenr, orig_offset,
657 				     &other_start, &other_end)) {
658 			fi = btrfs_item_ptr(leaf, path->slots[0],
659 					    struct btrfs_file_extent_item);
660 			btrfs_set_file_extent_num_bytes(leaf, fi,
661 							start - key.offset);
662 			path->slots[0]++;
663 			new_key.offset = start;
664 			btrfs_set_item_key_safe(trans, root, path, &new_key);
665 
666 			fi = btrfs_item_ptr(leaf, path->slots[0],
667 					    struct btrfs_file_extent_item);
668 			btrfs_set_file_extent_num_bytes(leaf, fi,
669 							other_end - start);
670 			btrfs_set_file_extent_offset(leaf, fi,
671 						     start - orig_offset);
672 			btrfs_mark_buffer_dirty(leaf);
673 			goto out;
674 		}
675 	}
676 
677 	while (start > key.offset || end < extent_end) {
678 		if (key.offset == start)
679 			split = end;
680 
681 		new_key.offset = split;
682 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
683 		if (ret == -EAGAIN) {
684 			btrfs_release_path(root, path);
685 			goto again;
686 		}
687 		BUG_ON(ret < 0);
688 
689 		leaf = path->nodes[0];
690 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
691 				    struct btrfs_file_extent_item);
692 		btrfs_set_file_extent_num_bytes(leaf, fi,
693 						split - key.offset);
694 
695 		fi = btrfs_item_ptr(leaf, path->slots[0],
696 				    struct btrfs_file_extent_item);
697 
698 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
699 		btrfs_set_file_extent_num_bytes(leaf, fi,
700 						extent_end - split);
701 		btrfs_mark_buffer_dirty(leaf);
702 
703 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
704 					   root->root_key.objectid,
705 					   inode->i_ino, orig_offset);
706 		BUG_ON(ret);
707 
708 		if (split == start) {
709 			key.offset = start;
710 		} else {
711 			BUG_ON(start != key.offset);
712 			path->slots[0]--;
713 			extent_end = end;
714 		}
715 		recow = 1;
716 	}
717 
718 	other_start = end;
719 	other_end = 0;
720 	if (extent_mergeable(leaf, path->slots[0] + 1,
721 			     inode->i_ino, bytenr, orig_offset,
722 			     &other_start, &other_end)) {
723 		if (recow) {
724 			btrfs_release_path(root, path);
725 			goto again;
726 		}
727 		extent_end = other_end;
728 		del_slot = path->slots[0] + 1;
729 		del_nr++;
730 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
731 					0, root->root_key.objectid,
732 					inode->i_ino, orig_offset);
733 		BUG_ON(ret);
734 	}
735 	other_start = 0;
736 	other_end = start;
737 	if (extent_mergeable(leaf, path->slots[0] - 1,
738 			     inode->i_ino, bytenr, orig_offset,
739 			     &other_start, &other_end)) {
740 		if (recow) {
741 			btrfs_release_path(root, path);
742 			goto again;
743 		}
744 		key.offset = other_start;
745 		del_slot = path->slots[0];
746 		del_nr++;
747 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
748 					0, root->root_key.objectid,
749 					inode->i_ino, orig_offset);
750 		BUG_ON(ret);
751 	}
752 	if (del_nr == 0) {
753 		fi = btrfs_item_ptr(leaf, path->slots[0],
754 			   struct btrfs_file_extent_item);
755 		btrfs_set_file_extent_type(leaf, fi,
756 					   BTRFS_FILE_EXTENT_REG);
757 		btrfs_mark_buffer_dirty(leaf);
758 	} else {
759 		fi = btrfs_item_ptr(leaf, del_slot - 1,
760 			   struct btrfs_file_extent_item);
761 		btrfs_set_file_extent_type(leaf, fi,
762 					   BTRFS_FILE_EXTENT_REG);
763 		btrfs_set_file_extent_num_bytes(leaf, fi,
764 						extent_end - key.offset);
765 		btrfs_mark_buffer_dirty(leaf);
766 
767 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
768 		BUG_ON(ret);
769 	}
770 out:
771 	btrfs_free_path(path);
772 	return 0;
773 }
774 
775 /*
776  * on error we return an unlocked page and the error value
777  * on success we return a locked page and 0
778  */
779 static int prepare_uptodate_page(struct page *page, u64 pos)
780 {
781 	int ret = 0;
782 
783 	if ((pos & (PAGE_CACHE_SIZE - 1)) && !PageUptodate(page)) {
784 		ret = btrfs_readpage(NULL, page);
785 		if (ret)
786 			return ret;
787 		lock_page(page);
788 		if (!PageUptodate(page)) {
789 			unlock_page(page);
790 			return -EIO;
791 		}
792 	}
793 	return 0;
794 }
795 
796 /*
797  * this gets pages into the page cache and locks them down, it also properly
798  * waits for data=ordered extents to finish before allowing the pages to be
799  * modified.
800  */
801 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
802 			 struct page **pages, size_t num_pages,
803 			 loff_t pos, unsigned long first_index,
804 			 unsigned long last_index, size_t write_bytes)
805 {
806 	struct extent_state *cached_state = NULL;
807 	int i;
808 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
809 	struct inode *inode = fdentry(file)->d_inode;
810 	int err = 0;
811 	int faili = 0;
812 	u64 start_pos;
813 	u64 last_pos;
814 
815 	start_pos = pos & ~((u64)root->sectorsize - 1);
816 	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
817 
818 	if (start_pos > inode->i_size) {
819 		err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
820 		if (err)
821 			return err;
822 	}
823 
824 again:
825 	for (i = 0; i < num_pages; i++) {
826 		pages[i] = grab_cache_page(inode->i_mapping, index + i);
827 		if (!pages[i]) {
828 			faili = i - 1;
829 			err = -ENOMEM;
830 			goto fail;
831 		}
832 
833 		if (i == 0)
834 			err = prepare_uptodate_page(pages[i], pos);
835 		if (i == num_pages - 1)
836 			err = prepare_uptodate_page(pages[i],
837 						    pos + write_bytes);
838 		if (err) {
839 			page_cache_release(pages[i]);
840 			faili = i - 1;
841 			goto fail;
842 		}
843 		wait_on_page_writeback(pages[i]);
844 	}
845 	err = 0;
846 	if (start_pos < inode->i_size) {
847 		struct btrfs_ordered_extent *ordered;
848 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
849 				 start_pos, last_pos - 1, 0, &cached_state,
850 				 GFP_NOFS);
851 		ordered = btrfs_lookup_first_ordered_extent(inode,
852 							    last_pos - 1);
853 		if (ordered &&
854 		    ordered->file_offset + ordered->len > start_pos &&
855 		    ordered->file_offset < last_pos) {
856 			btrfs_put_ordered_extent(ordered);
857 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
858 					     start_pos, last_pos - 1,
859 					     &cached_state, GFP_NOFS);
860 			for (i = 0; i < num_pages; i++) {
861 				unlock_page(pages[i]);
862 				page_cache_release(pages[i]);
863 			}
864 			btrfs_wait_ordered_range(inode, start_pos,
865 						 last_pos - start_pos);
866 			goto again;
867 		}
868 		if (ordered)
869 			btrfs_put_ordered_extent(ordered);
870 
871 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
872 				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
873 				  EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
874 				  GFP_NOFS);
875 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
876 				     start_pos, last_pos - 1, &cached_state,
877 				     GFP_NOFS);
878 	}
879 	for (i = 0; i < num_pages; i++) {
880 		clear_page_dirty_for_io(pages[i]);
881 		set_page_extent_mapped(pages[i]);
882 		WARN_ON(!PageLocked(pages[i]));
883 	}
884 	return 0;
885 fail:
886 	while (faili >= 0) {
887 		unlock_page(pages[faili]);
888 		page_cache_release(pages[faili]);
889 		faili--;
890 	}
891 	return err;
892 
893 }
894 
895 static noinline ssize_t __btrfs_buffered_write(struct file *file,
896 					       struct iov_iter *i,
897 					       loff_t pos)
898 {
899 	struct inode *inode = fdentry(file)->d_inode;
900 	struct btrfs_root *root = BTRFS_I(inode)->root;
901 	struct page **pages = NULL;
902 	unsigned long first_index;
903 	unsigned long last_index;
904 	size_t num_written = 0;
905 	int nrptrs;
906 	int ret = 0;
907 
908 	nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
909 		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
910 		     (sizeof(struct page *)));
911 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
912 	if (!pages)
913 		return -ENOMEM;
914 
915 	first_index = pos >> PAGE_CACHE_SHIFT;
916 	last_index = (pos + iov_iter_count(i)) >> PAGE_CACHE_SHIFT;
917 
918 	while (iov_iter_count(i) > 0) {
919 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
920 		size_t write_bytes = min(iov_iter_count(i),
921 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
922 					 offset);
923 		size_t num_pages = (write_bytes + offset +
924 				    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
925 		size_t dirty_pages;
926 		size_t copied;
927 
928 		WARN_ON(num_pages > nrptrs);
929 
930 		/*
931 		 * Fault pages before locking them in prepare_pages
932 		 * to avoid recursive lock
933 		 */
934 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
935 			ret = -EFAULT;
936 			break;
937 		}
938 
939 		ret = btrfs_delalloc_reserve_space(inode,
940 					num_pages << PAGE_CACHE_SHIFT);
941 		if (ret)
942 			break;
943 
944 		/*
945 		 * This is going to setup the pages array with the number of
946 		 * pages we want, so we don't really need to worry about the
947 		 * contents of pages from loop to loop
948 		 */
949 		ret = prepare_pages(root, file, pages, num_pages,
950 				    pos, first_index, last_index,
951 				    write_bytes);
952 		if (ret) {
953 			btrfs_delalloc_release_space(inode,
954 					num_pages << PAGE_CACHE_SHIFT);
955 			break;
956 		}
957 
958 		copied = btrfs_copy_from_user(pos, num_pages,
959 					   write_bytes, pages, i);
960 
961 		/*
962 		 * if we have trouble faulting in the pages, fall
963 		 * back to one page at a time
964 		 */
965 		if (copied < write_bytes)
966 			nrptrs = 1;
967 
968 		if (copied == 0)
969 			dirty_pages = 0;
970 		else
971 			dirty_pages = (copied + offset +
972 				       PAGE_CACHE_SIZE - 1) >>
973 				       PAGE_CACHE_SHIFT;
974 
975 		/*
976 		 * If we had a short copy we need to release the excess delaloc
977 		 * bytes we reserved.  We need to increment outstanding_extents
978 		 * because btrfs_delalloc_release_space will decrement it, but
979 		 * we still have an outstanding extent for the chunk we actually
980 		 * managed to copy.
981 		 */
982 		if (num_pages > dirty_pages) {
983 			if (copied > 0)
984 				atomic_inc(
985 					&BTRFS_I(inode)->outstanding_extents);
986 			btrfs_delalloc_release_space(inode,
987 					(num_pages - dirty_pages) <<
988 					PAGE_CACHE_SHIFT);
989 		}
990 
991 		if (copied > 0) {
992 			ret = btrfs_dirty_pages(root, inode, pages,
993 						dirty_pages, pos, copied,
994 						NULL);
995 			if (ret) {
996 				btrfs_delalloc_release_space(inode,
997 					dirty_pages << PAGE_CACHE_SHIFT);
998 				btrfs_drop_pages(pages, num_pages);
999 				break;
1000 			}
1001 		}
1002 
1003 		btrfs_drop_pages(pages, num_pages);
1004 
1005 		cond_resched();
1006 
1007 		balance_dirty_pages_ratelimited_nr(inode->i_mapping,
1008 						   dirty_pages);
1009 		if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1010 			btrfs_btree_balance_dirty(root, 1);
1011 		btrfs_throttle(root);
1012 
1013 		pos += copied;
1014 		num_written += copied;
1015 	}
1016 
1017 	kfree(pages);
1018 
1019 	return num_written ? num_written : ret;
1020 }
1021 
1022 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1023 				    const struct iovec *iov,
1024 				    unsigned long nr_segs, loff_t pos,
1025 				    loff_t *ppos, size_t count, size_t ocount)
1026 {
1027 	struct file *file = iocb->ki_filp;
1028 	struct inode *inode = fdentry(file)->d_inode;
1029 	struct iov_iter i;
1030 	ssize_t written;
1031 	ssize_t written_buffered;
1032 	loff_t endbyte;
1033 	int err;
1034 
1035 	written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1036 					    count, ocount);
1037 
1038 	/*
1039 	 * the generic O_DIRECT will update in-memory i_size after the
1040 	 * DIOs are done.  But our endio handlers that update the on
1041 	 * disk i_size never update past the in memory i_size.  So we
1042 	 * need one more update here to catch any additions to the
1043 	 * file
1044 	 */
1045 	if (inode->i_size != BTRFS_I(inode)->disk_i_size) {
1046 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
1047 		mark_inode_dirty(inode);
1048 	}
1049 
1050 	if (written < 0 || written == count)
1051 		return written;
1052 
1053 	pos += written;
1054 	count -= written;
1055 	iov_iter_init(&i, iov, nr_segs, count, written);
1056 	written_buffered = __btrfs_buffered_write(file, &i, pos);
1057 	if (written_buffered < 0) {
1058 		err = written_buffered;
1059 		goto out;
1060 	}
1061 	endbyte = pos + written_buffered - 1;
1062 	err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1063 	if (err)
1064 		goto out;
1065 	written += written_buffered;
1066 	*ppos = pos + written_buffered;
1067 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1068 				 endbyte >> PAGE_CACHE_SHIFT);
1069 out:
1070 	return written ? written : err;
1071 }
1072 
1073 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1074 				    const struct iovec *iov,
1075 				    unsigned long nr_segs, loff_t pos)
1076 {
1077 	struct file *file = iocb->ki_filp;
1078 	struct inode *inode = fdentry(file)->d_inode;
1079 	struct btrfs_root *root = BTRFS_I(inode)->root;
1080 	loff_t *ppos = &iocb->ki_pos;
1081 	ssize_t num_written = 0;
1082 	ssize_t err = 0;
1083 	size_t count, ocount;
1084 
1085 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
1086 
1087 	mutex_lock(&inode->i_mutex);
1088 
1089 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1090 	if (err) {
1091 		mutex_unlock(&inode->i_mutex);
1092 		goto out;
1093 	}
1094 	count = ocount;
1095 
1096 	current->backing_dev_info = inode->i_mapping->backing_dev_info;
1097 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1098 	if (err) {
1099 		mutex_unlock(&inode->i_mutex);
1100 		goto out;
1101 	}
1102 
1103 	if (count == 0) {
1104 		mutex_unlock(&inode->i_mutex);
1105 		goto out;
1106 	}
1107 
1108 	err = file_remove_suid(file);
1109 	if (err) {
1110 		mutex_unlock(&inode->i_mutex);
1111 		goto out;
1112 	}
1113 
1114 	/*
1115 	 * If BTRFS flips readonly due to some impossible error
1116 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1117 	 * although we have opened a file as writable, we have
1118 	 * to stop this write operation to ensure FS consistency.
1119 	 */
1120 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
1121 		mutex_unlock(&inode->i_mutex);
1122 		err = -EROFS;
1123 		goto out;
1124 	}
1125 
1126 	file_update_time(file);
1127 	BTRFS_I(inode)->sequence++;
1128 
1129 	if (unlikely(file->f_flags & O_DIRECT)) {
1130 		num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1131 						   pos, ppos, count, ocount);
1132 	} else {
1133 		struct iov_iter i;
1134 
1135 		iov_iter_init(&i, iov, nr_segs, count, num_written);
1136 
1137 		num_written = __btrfs_buffered_write(file, &i, pos);
1138 		if (num_written > 0)
1139 			*ppos = pos + num_written;
1140 	}
1141 
1142 	mutex_unlock(&inode->i_mutex);
1143 
1144 	/*
1145 	 * we want to make sure fsync finds this change
1146 	 * but we haven't joined a transaction running right now.
1147 	 *
1148 	 * Later on, someone is sure to update the inode and get the
1149 	 * real transid recorded.
1150 	 *
1151 	 * We set last_trans now to the fs_info generation + 1,
1152 	 * this will either be one more than the running transaction
1153 	 * or the generation used for the next transaction if there isn't
1154 	 * one running right now.
1155 	 */
1156 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1157 	if (num_written > 0 || num_written == -EIOCBQUEUED) {
1158 		err = generic_write_sync(file, pos, num_written);
1159 		if (err < 0 && num_written > 0)
1160 			num_written = err;
1161 	}
1162 out:
1163 	current->backing_dev_info = NULL;
1164 	return num_written ? num_written : err;
1165 }
1166 
1167 int btrfs_release_file(struct inode *inode, struct file *filp)
1168 {
1169 	/*
1170 	 * ordered_data_close is set by settattr when we are about to truncate
1171 	 * a file from a non-zero size to a zero size.  This tries to
1172 	 * flush down new bytes that may have been written if the
1173 	 * application were using truncate to replace a file in place.
1174 	 */
1175 	if (BTRFS_I(inode)->ordered_data_close) {
1176 		BTRFS_I(inode)->ordered_data_close = 0;
1177 		btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1178 		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1179 			filemap_flush(inode->i_mapping);
1180 	}
1181 	if (filp->private_data)
1182 		btrfs_ioctl_trans_end(filp);
1183 	return 0;
1184 }
1185 
1186 /*
1187  * fsync call for both files and directories.  This logs the inode into
1188  * the tree log instead of forcing full commits whenever possible.
1189  *
1190  * It needs to call filemap_fdatawait so that all ordered extent updates are
1191  * in the metadata btree are up to date for copying to the log.
1192  *
1193  * It drops the inode mutex before doing the tree log commit.  This is an
1194  * important optimization for directories because holding the mutex prevents
1195  * new operations on the dir while we write to disk.
1196  */
1197 int btrfs_sync_file(struct file *file, int datasync)
1198 {
1199 	struct dentry *dentry = file->f_path.dentry;
1200 	struct inode *inode = dentry->d_inode;
1201 	struct btrfs_root *root = BTRFS_I(inode)->root;
1202 	int ret = 0;
1203 	struct btrfs_trans_handle *trans;
1204 
1205 	trace_btrfs_sync_file(file, datasync);
1206 
1207 	/* we wait first, since the writeback may change the inode */
1208 	root->log_batch++;
1209 	/* the VFS called filemap_fdatawrite for us */
1210 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
1211 	root->log_batch++;
1212 
1213 	/*
1214 	 * check the transaction that last modified this inode
1215 	 * and see if its already been committed
1216 	 */
1217 	if (!BTRFS_I(inode)->last_trans)
1218 		goto out;
1219 
1220 	/*
1221 	 * if the last transaction that changed this file was before
1222 	 * the current transaction, we can bail out now without any
1223 	 * syncing
1224 	 */
1225 	mutex_lock(&root->fs_info->trans_mutex);
1226 	if (BTRFS_I(inode)->last_trans <=
1227 	    root->fs_info->last_trans_committed) {
1228 		BTRFS_I(inode)->last_trans = 0;
1229 		mutex_unlock(&root->fs_info->trans_mutex);
1230 		goto out;
1231 	}
1232 	mutex_unlock(&root->fs_info->trans_mutex);
1233 
1234 	/*
1235 	 * ok we haven't committed the transaction yet, lets do a commit
1236 	 */
1237 	if (file->private_data)
1238 		btrfs_ioctl_trans_end(file);
1239 
1240 	trans = btrfs_start_transaction(root, 0);
1241 	if (IS_ERR(trans)) {
1242 		ret = PTR_ERR(trans);
1243 		goto out;
1244 	}
1245 
1246 	ret = btrfs_log_dentry_safe(trans, root, dentry);
1247 	if (ret < 0)
1248 		goto out;
1249 
1250 	/* we've logged all the items and now have a consistent
1251 	 * version of the file in the log.  It is possible that
1252 	 * someone will come in and modify the file, but that's
1253 	 * fine because the log is consistent on disk, and we
1254 	 * have references to all of the file's extents
1255 	 *
1256 	 * It is possible that someone will come in and log the
1257 	 * file again, but that will end up using the synchronization
1258 	 * inside btrfs_sync_log to keep things safe.
1259 	 */
1260 	mutex_unlock(&dentry->d_inode->i_mutex);
1261 
1262 	if (ret != BTRFS_NO_LOG_SYNC) {
1263 		if (ret > 0) {
1264 			ret = btrfs_commit_transaction(trans, root);
1265 		} else {
1266 			ret = btrfs_sync_log(trans, root);
1267 			if (ret == 0)
1268 				ret = btrfs_end_transaction(trans, root);
1269 			else
1270 				ret = btrfs_commit_transaction(trans, root);
1271 		}
1272 	} else {
1273 		ret = btrfs_end_transaction(trans, root);
1274 	}
1275 	mutex_lock(&dentry->d_inode->i_mutex);
1276 out:
1277 	return ret > 0 ? -EIO : ret;
1278 }
1279 
1280 static const struct vm_operations_struct btrfs_file_vm_ops = {
1281 	.fault		= filemap_fault,
1282 	.page_mkwrite	= btrfs_page_mkwrite,
1283 };
1284 
1285 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1286 {
1287 	struct address_space *mapping = filp->f_mapping;
1288 
1289 	if (!mapping->a_ops->readpage)
1290 		return -ENOEXEC;
1291 
1292 	file_accessed(filp);
1293 	vma->vm_ops = &btrfs_file_vm_ops;
1294 	vma->vm_flags |= VM_CAN_NONLINEAR;
1295 
1296 	return 0;
1297 }
1298 
1299 static long btrfs_fallocate(struct file *file, int mode,
1300 			    loff_t offset, loff_t len)
1301 {
1302 	struct inode *inode = file->f_path.dentry->d_inode;
1303 	struct extent_state *cached_state = NULL;
1304 	u64 cur_offset;
1305 	u64 last_byte;
1306 	u64 alloc_start;
1307 	u64 alloc_end;
1308 	u64 alloc_hint = 0;
1309 	u64 locked_end;
1310 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
1311 	struct extent_map *em;
1312 	int ret;
1313 
1314 	alloc_start = offset & ~mask;
1315 	alloc_end =  (offset + len + mask) & ~mask;
1316 
1317 	/* We only support the FALLOC_FL_KEEP_SIZE mode */
1318 	if (mode & ~FALLOC_FL_KEEP_SIZE)
1319 		return -EOPNOTSUPP;
1320 
1321 	/*
1322 	 * wait for ordered IO before we have any locks.  We'll loop again
1323 	 * below with the locks held.
1324 	 */
1325 	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
1326 
1327 	mutex_lock(&inode->i_mutex);
1328 	ret = inode_newsize_ok(inode, alloc_end);
1329 	if (ret)
1330 		goto out;
1331 
1332 	if (alloc_start > inode->i_size) {
1333 		ret = btrfs_cont_expand(inode, i_size_read(inode),
1334 					alloc_start);
1335 		if (ret)
1336 			goto out;
1337 	}
1338 
1339 	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
1340 	if (ret)
1341 		goto out;
1342 
1343 	locked_end = alloc_end - 1;
1344 	while (1) {
1345 		struct btrfs_ordered_extent *ordered;
1346 
1347 		/* the extent lock is ordered inside the running
1348 		 * transaction
1349 		 */
1350 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
1351 				 locked_end, 0, &cached_state, GFP_NOFS);
1352 		ordered = btrfs_lookup_first_ordered_extent(inode,
1353 							    alloc_end - 1);
1354 		if (ordered &&
1355 		    ordered->file_offset + ordered->len > alloc_start &&
1356 		    ordered->file_offset < alloc_end) {
1357 			btrfs_put_ordered_extent(ordered);
1358 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1359 					     alloc_start, locked_end,
1360 					     &cached_state, GFP_NOFS);
1361 			/*
1362 			 * we can't wait on the range with the transaction
1363 			 * running or with the extent lock held
1364 			 */
1365 			btrfs_wait_ordered_range(inode, alloc_start,
1366 						 alloc_end - alloc_start);
1367 		} else {
1368 			if (ordered)
1369 				btrfs_put_ordered_extent(ordered);
1370 			break;
1371 		}
1372 	}
1373 
1374 	cur_offset = alloc_start;
1375 	while (1) {
1376 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
1377 				      alloc_end - cur_offset, 0);
1378 		BUG_ON(IS_ERR(em) || !em);
1379 		last_byte = min(extent_map_end(em), alloc_end);
1380 		last_byte = (last_byte + mask) & ~mask;
1381 		if (em->block_start == EXTENT_MAP_HOLE ||
1382 		    (cur_offset >= inode->i_size &&
1383 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
1384 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
1385 							last_byte - cur_offset,
1386 							1 << inode->i_blkbits,
1387 							offset + len,
1388 							&alloc_hint);
1389 			if (ret < 0) {
1390 				free_extent_map(em);
1391 				break;
1392 			}
1393 		}
1394 		free_extent_map(em);
1395 
1396 		cur_offset = last_byte;
1397 		if (cur_offset >= alloc_end) {
1398 			ret = 0;
1399 			break;
1400 		}
1401 	}
1402 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
1403 			     &cached_state, GFP_NOFS);
1404 
1405 	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
1406 out:
1407 	mutex_unlock(&inode->i_mutex);
1408 	return ret;
1409 }
1410 
1411 const struct file_operations btrfs_file_operations = {
1412 	.llseek		= generic_file_llseek,
1413 	.read		= do_sync_read,
1414 	.write		= do_sync_write,
1415 	.aio_read       = generic_file_aio_read,
1416 	.splice_read	= generic_file_splice_read,
1417 	.aio_write	= btrfs_file_aio_write,
1418 	.mmap		= btrfs_file_mmap,
1419 	.open		= generic_file_open,
1420 	.release	= btrfs_release_file,
1421 	.fsync		= btrfs_sync_file,
1422 	.fallocate	= btrfs_fallocate,
1423 	.unlocked_ioctl	= btrfs_ioctl,
1424 #ifdef CONFIG_COMPAT
1425 	.compat_ioctl	= btrfs_ioctl,
1426 #endif
1427 };
1428