xref: /linux/fs/btrfs/file.c (revision 42422993cf28d456778ee9168d73758ec037cd51)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include <linux/iomap.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "print-tree.h"
26 #include "tree-log.h"
27 #include "locking.h"
28 #include "volumes.h"
29 #include "qgroup.h"
30 #include "compression.h"
31 #include "delalloc-space.h"
32 #include "reflink.h"
33 #include "subpage.h"
34 #include "fs.h"
35 #include "accessors.h"
36 #include "extent-tree.h"
37 #include "file-item.h"
38 #include "ioctl.h"
39 #include "file.h"
40 #include "super.h"
41 
42 /* simple helper to fault in pages and copy.  This should go away
43  * and be replaced with calls into generic code.
44  */
45 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
46 					 struct page **prepared_pages,
47 					 struct iov_iter *i)
48 {
49 	size_t copied = 0;
50 	size_t total_copied = 0;
51 	int pg = 0;
52 	int offset = offset_in_page(pos);
53 
54 	while (write_bytes > 0) {
55 		size_t count = min_t(size_t,
56 				     PAGE_SIZE - offset, write_bytes);
57 		struct page *page = prepared_pages[pg];
58 		/*
59 		 * Copy data from userspace to the current page
60 		 */
61 		copied = copy_page_from_iter_atomic(page, offset, count, i);
62 
63 		/* Flush processor's dcache for this page */
64 		flush_dcache_page(page);
65 
66 		/*
67 		 * if we get a partial write, we can end up with
68 		 * partially up to date pages.  These add
69 		 * a lot of complexity, so make sure they don't
70 		 * happen by forcing this copy to be retried.
71 		 *
72 		 * The rest of the btrfs_file_write code will fall
73 		 * back to page at a time copies after we return 0.
74 		 */
75 		if (unlikely(copied < count)) {
76 			if (!PageUptodate(page)) {
77 				iov_iter_revert(i, copied);
78 				copied = 0;
79 			}
80 			if (!copied)
81 				break;
82 		}
83 
84 		write_bytes -= copied;
85 		total_copied += copied;
86 		offset += copied;
87 		if (offset == PAGE_SIZE) {
88 			pg++;
89 			offset = 0;
90 		}
91 	}
92 	return total_copied;
93 }
94 
95 /*
96  * unlocks pages after btrfs_file_write is done with them
97  */
98 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
99 			     struct page **pages, size_t num_pages,
100 			     u64 pos, u64 copied)
101 {
102 	size_t i;
103 	u64 block_start = round_down(pos, fs_info->sectorsize);
104 	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
105 
106 	ASSERT(block_len <= U32_MAX);
107 	for (i = 0; i < num_pages; i++) {
108 		/* page checked is some magic around finding pages that
109 		 * have been modified without going through btrfs_set_page_dirty
110 		 * clear it here. There should be no need to mark the pages
111 		 * accessed as prepare_pages should have marked them accessed
112 		 * in prepare_pages via find_or_create_page()
113 		 */
114 		btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
115 					       block_len);
116 		unlock_page(pages[i]);
117 		put_page(pages[i]);
118 	}
119 }
120 
121 /*
122  * After btrfs_copy_from_user(), update the following things for delalloc:
123  * - Mark newly dirtied pages as DELALLOC in the io tree.
124  *   Used to advise which range is to be written back.
125  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
126  * - Update inode size for past EOF write
127  */
128 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
129 		      size_t num_pages, loff_t pos, size_t write_bytes,
130 		      struct extent_state **cached, bool noreserve)
131 {
132 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
133 	int err = 0;
134 	int i;
135 	u64 num_bytes;
136 	u64 start_pos;
137 	u64 end_of_last_block;
138 	u64 end_pos = pos + write_bytes;
139 	loff_t isize = i_size_read(&inode->vfs_inode);
140 	unsigned int extra_bits = 0;
141 
142 	if (write_bytes == 0)
143 		return 0;
144 
145 	if (noreserve)
146 		extra_bits |= EXTENT_NORESERVE;
147 
148 	start_pos = round_down(pos, fs_info->sectorsize);
149 	num_bytes = round_up(write_bytes + pos - start_pos,
150 			     fs_info->sectorsize);
151 	ASSERT(num_bytes <= U32_MAX);
152 
153 	end_of_last_block = start_pos + num_bytes - 1;
154 
155 	/*
156 	 * The pages may have already been dirty, clear out old accounting so
157 	 * we can set things up properly
158 	 */
159 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
160 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
161 			 cached);
162 
163 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
164 					extra_bits, cached);
165 	if (err)
166 		return err;
167 
168 	for (i = 0; i < num_pages; i++) {
169 		struct page *p = pages[i];
170 
171 		btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
172 		btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
173 		btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
174 	}
175 
176 	/*
177 	 * we've only changed i_size in ram, and we haven't updated
178 	 * the disk i_size.  There is no need to log the inode
179 	 * at this time.
180 	 */
181 	if (end_pos > isize)
182 		i_size_write(&inode->vfs_inode, end_pos);
183 	return 0;
184 }
185 
186 /*
187  * this is very complex, but the basic idea is to drop all extents
188  * in the range start - end.  hint_block is filled in with a block number
189  * that would be a good hint to the block allocator for this file.
190  *
191  * If an extent intersects the range but is not entirely inside the range
192  * it is either truncated or split.  Anything entirely inside the range
193  * is deleted from the tree.
194  *
195  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
196  * to deal with that. We set the field 'bytes_found' of the arguments structure
197  * with the number of allocated bytes found in the target range, so that the
198  * caller can update the inode's number of bytes in an atomic way when
199  * replacing extents in a range to avoid races with stat(2).
200  */
201 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
202 		       struct btrfs_root *root, struct btrfs_inode *inode,
203 		       struct btrfs_drop_extents_args *args)
204 {
205 	struct btrfs_fs_info *fs_info = root->fs_info;
206 	struct extent_buffer *leaf;
207 	struct btrfs_file_extent_item *fi;
208 	struct btrfs_ref ref = { 0 };
209 	struct btrfs_key key;
210 	struct btrfs_key new_key;
211 	u64 ino = btrfs_ino(inode);
212 	u64 search_start = args->start;
213 	u64 disk_bytenr = 0;
214 	u64 num_bytes = 0;
215 	u64 extent_offset = 0;
216 	u64 extent_end = 0;
217 	u64 last_end = args->start;
218 	int del_nr = 0;
219 	int del_slot = 0;
220 	int extent_type;
221 	int recow;
222 	int ret;
223 	int modify_tree = -1;
224 	int update_refs;
225 	int found = 0;
226 	struct btrfs_path *path = args->path;
227 
228 	args->bytes_found = 0;
229 	args->extent_inserted = false;
230 
231 	/* Must always have a path if ->replace_extent is true */
232 	ASSERT(!(args->replace_extent && !args->path));
233 
234 	if (!path) {
235 		path = btrfs_alloc_path();
236 		if (!path) {
237 			ret = -ENOMEM;
238 			goto out;
239 		}
240 	}
241 
242 	if (args->drop_cache)
243 		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
244 
245 	if (args->start >= inode->disk_i_size && !args->replace_extent)
246 		modify_tree = 0;
247 
248 	update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
249 	while (1) {
250 		recow = 0;
251 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
252 					       search_start, modify_tree);
253 		if (ret < 0)
254 			break;
255 		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
256 			leaf = path->nodes[0];
257 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
258 			if (key.objectid == ino &&
259 			    key.type == BTRFS_EXTENT_DATA_KEY)
260 				path->slots[0]--;
261 		}
262 		ret = 0;
263 next_slot:
264 		leaf = path->nodes[0];
265 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
266 			BUG_ON(del_nr > 0);
267 			ret = btrfs_next_leaf(root, path);
268 			if (ret < 0)
269 				break;
270 			if (ret > 0) {
271 				ret = 0;
272 				break;
273 			}
274 			leaf = path->nodes[0];
275 			recow = 1;
276 		}
277 
278 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
279 
280 		if (key.objectid > ino)
281 			break;
282 		if (WARN_ON_ONCE(key.objectid < ino) ||
283 		    key.type < BTRFS_EXTENT_DATA_KEY) {
284 			ASSERT(del_nr == 0);
285 			path->slots[0]++;
286 			goto next_slot;
287 		}
288 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
289 			break;
290 
291 		fi = btrfs_item_ptr(leaf, path->slots[0],
292 				    struct btrfs_file_extent_item);
293 		extent_type = btrfs_file_extent_type(leaf, fi);
294 
295 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
296 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
297 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
298 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
299 			extent_offset = btrfs_file_extent_offset(leaf, fi);
300 			extent_end = key.offset +
301 				btrfs_file_extent_num_bytes(leaf, fi);
302 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
303 			extent_end = key.offset +
304 				btrfs_file_extent_ram_bytes(leaf, fi);
305 		} else {
306 			/* can't happen */
307 			BUG();
308 		}
309 
310 		/*
311 		 * Don't skip extent items representing 0 byte lengths. They
312 		 * used to be created (bug) if while punching holes we hit
313 		 * -ENOSPC condition. So if we find one here, just ensure we
314 		 * delete it, otherwise we would insert a new file extent item
315 		 * with the same key (offset) as that 0 bytes length file
316 		 * extent item in the call to setup_items_for_insert() later
317 		 * in this function.
318 		 */
319 		if (extent_end == key.offset && extent_end >= search_start) {
320 			last_end = extent_end;
321 			goto delete_extent_item;
322 		}
323 
324 		if (extent_end <= search_start) {
325 			path->slots[0]++;
326 			goto next_slot;
327 		}
328 
329 		found = 1;
330 		search_start = max(key.offset, args->start);
331 		if (recow || !modify_tree) {
332 			modify_tree = -1;
333 			btrfs_release_path(path);
334 			continue;
335 		}
336 
337 		/*
338 		 *     | - range to drop - |
339 		 *  | -------- extent -------- |
340 		 */
341 		if (args->start > key.offset && args->end < extent_end) {
342 			BUG_ON(del_nr > 0);
343 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
344 				ret = -EOPNOTSUPP;
345 				break;
346 			}
347 
348 			memcpy(&new_key, &key, sizeof(new_key));
349 			new_key.offset = args->start;
350 			ret = btrfs_duplicate_item(trans, root, path,
351 						   &new_key);
352 			if (ret == -EAGAIN) {
353 				btrfs_release_path(path);
354 				continue;
355 			}
356 			if (ret < 0)
357 				break;
358 
359 			leaf = path->nodes[0];
360 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
361 					    struct btrfs_file_extent_item);
362 			btrfs_set_file_extent_num_bytes(leaf, fi,
363 							args->start - key.offset);
364 
365 			fi = btrfs_item_ptr(leaf, path->slots[0],
366 					    struct btrfs_file_extent_item);
367 
368 			extent_offset += args->start - key.offset;
369 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
370 			btrfs_set_file_extent_num_bytes(leaf, fi,
371 							extent_end - args->start);
372 			btrfs_mark_buffer_dirty(trans, leaf);
373 
374 			if (update_refs && disk_bytenr > 0) {
375 				btrfs_init_generic_ref(&ref,
376 						BTRFS_ADD_DELAYED_REF,
377 						disk_bytenr, num_bytes, 0,
378 						root->root_key.objectid);
379 				btrfs_init_data_ref(&ref,
380 						root->root_key.objectid,
381 						new_key.objectid,
382 						args->start - extent_offset,
383 						0, false);
384 				ret = btrfs_inc_extent_ref(trans, &ref);
385 				if (ret) {
386 					btrfs_abort_transaction(trans, ret);
387 					break;
388 				}
389 			}
390 			key.offset = args->start;
391 		}
392 		/*
393 		 * From here on out we will have actually dropped something, so
394 		 * last_end can be updated.
395 		 */
396 		last_end = extent_end;
397 
398 		/*
399 		 *  | ---- range to drop ----- |
400 		 *      | -------- extent -------- |
401 		 */
402 		if (args->start <= key.offset && args->end < extent_end) {
403 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
404 				ret = -EOPNOTSUPP;
405 				break;
406 			}
407 
408 			memcpy(&new_key, &key, sizeof(new_key));
409 			new_key.offset = args->end;
410 			btrfs_set_item_key_safe(trans, path, &new_key);
411 
412 			extent_offset += args->end - key.offset;
413 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
414 			btrfs_set_file_extent_num_bytes(leaf, fi,
415 							extent_end - args->end);
416 			btrfs_mark_buffer_dirty(trans, leaf);
417 			if (update_refs && disk_bytenr > 0)
418 				args->bytes_found += args->end - key.offset;
419 			break;
420 		}
421 
422 		search_start = extent_end;
423 		/*
424 		 *       | ---- range to drop ----- |
425 		 *  | -------- extent -------- |
426 		 */
427 		if (args->start > key.offset && args->end >= extent_end) {
428 			BUG_ON(del_nr > 0);
429 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
430 				ret = -EOPNOTSUPP;
431 				break;
432 			}
433 
434 			btrfs_set_file_extent_num_bytes(leaf, fi,
435 							args->start - key.offset);
436 			btrfs_mark_buffer_dirty(trans, leaf);
437 			if (update_refs && disk_bytenr > 0)
438 				args->bytes_found += extent_end - args->start;
439 			if (args->end == extent_end)
440 				break;
441 
442 			path->slots[0]++;
443 			goto next_slot;
444 		}
445 
446 		/*
447 		 *  | ---- range to drop ----- |
448 		 *    | ------ extent ------ |
449 		 */
450 		if (args->start <= key.offset && args->end >= extent_end) {
451 delete_extent_item:
452 			if (del_nr == 0) {
453 				del_slot = path->slots[0];
454 				del_nr = 1;
455 			} else {
456 				BUG_ON(del_slot + del_nr != path->slots[0]);
457 				del_nr++;
458 			}
459 
460 			if (update_refs &&
461 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
462 				args->bytes_found += extent_end - key.offset;
463 				extent_end = ALIGN(extent_end,
464 						   fs_info->sectorsize);
465 			} else if (update_refs && disk_bytenr > 0) {
466 				btrfs_init_generic_ref(&ref,
467 						BTRFS_DROP_DELAYED_REF,
468 						disk_bytenr, num_bytes, 0,
469 						root->root_key.objectid);
470 				btrfs_init_data_ref(&ref,
471 						root->root_key.objectid,
472 						key.objectid,
473 						key.offset - extent_offset, 0,
474 						false);
475 				ret = btrfs_free_extent(trans, &ref);
476 				if (ret) {
477 					btrfs_abort_transaction(trans, ret);
478 					break;
479 				}
480 				args->bytes_found += extent_end - key.offset;
481 			}
482 
483 			if (args->end == extent_end)
484 				break;
485 
486 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
487 				path->slots[0]++;
488 				goto next_slot;
489 			}
490 
491 			ret = btrfs_del_items(trans, root, path, del_slot,
492 					      del_nr);
493 			if (ret) {
494 				btrfs_abort_transaction(trans, ret);
495 				break;
496 			}
497 
498 			del_nr = 0;
499 			del_slot = 0;
500 
501 			btrfs_release_path(path);
502 			continue;
503 		}
504 
505 		BUG();
506 	}
507 
508 	if (!ret && del_nr > 0) {
509 		/*
510 		 * Set path->slots[0] to first slot, so that after the delete
511 		 * if items are move off from our leaf to its immediate left or
512 		 * right neighbor leafs, we end up with a correct and adjusted
513 		 * path->slots[0] for our insertion (if args->replace_extent).
514 		 */
515 		path->slots[0] = del_slot;
516 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
517 		if (ret)
518 			btrfs_abort_transaction(trans, ret);
519 	}
520 
521 	leaf = path->nodes[0];
522 	/*
523 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
524 	 * which case it unlocked our path, so check path->locks[0] matches a
525 	 * write lock.
526 	 */
527 	if (!ret && args->replace_extent &&
528 	    path->locks[0] == BTRFS_WRITE_LOCK &&
529 	    btrfs_leaf_free_space(leaf) >=
530 	    sizeof(struct btrfs_item) + args->extent_item_size) {
531 
532 		key.objectid = ino;
533 		key.type = BTRFS_EXTENT_DATA_KEY;
534 		key.offset = args->start;
535 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
536 			struct btrfs_key slot_key;
537 
538 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
539 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
540 				path->slots[0]++;
541 		}
542 		btrfs_setup_item_for_insert(trans, root, path, &key,
543 					    args->extent_item_size);
544 		args->extent_inserted = true;
545 	}
546 
547 	if (!args->path)
548 		btrfs_free_path(path);
549 	else if (!args->extent_inserted)
550 		btrfs_release_path(path);
551 out:
552 	args->drop_end = found ? min(args->end, last_end) : args->end;
553 
554 	return ret;
555 }
556 
557 static int extent_mergeable(struct extent_buffer *leaf, int slot,
558 			    u64 objectid, u64 bytenr, u64 orig_offset,
559 			    u64 *start, u64 *end)
560 {
561 	struct btrfs_file_extent_item *fi;
562 	struct btrfs_key key;
563 	u64 extent_end;
564 
565 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
566 		return 0;
567 
568 	btrfs_item_key_to_cpu(leaf, &key, slot);
569 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
570 		return 0;
571 
572 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
573 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
574 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
575 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
576 	    btrfs_file_extent_compression(leaf, fi) ||
577 	    btrfs_file_extent_encryption(leaf, fi) ||
578 	    btrfs_file_extent_other_encoding(leaf, fi))
579 		return 0;
580 
581 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
582 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
583 		return 0;
584 
585 	*start = key.offset;
586 	*end = extent_end;
587 	return 1;
588 }
589 
590 /*
591  * Mark extent in the range start - end as written.
592  *
593  * This changes extent type from 'pre-allocated' to 'regular'. If only
594  * part of extent is marked as written, the extent will be split into
595  * two or three.
596  */
597 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
598 			      struct btrfs_inode *inode, u64 start, u64 end)
599 {
600 	struct btrfs_root *root = inode->root;
601 	struct extent_buffer *leaf;
602 	struct btrfs_path *path;
603 	struct btrfs_file_extent_item *fi;
604 	struct btrfs_ref ref = { 0 };
605 	struct btrfs_key key;
606 	struct btrfs_key new_key;
607 	u64 bytenr;
608 	u64 num_bytes;
609 	u64 extent_end;
610 	u64 orig_offset;
611 	u64 other_start;
612 	u64 other_end;
613 	u64 split;
614 	int del_nr = 0;
615 	int del_slot = 0;
616 	int recow;
617 	int ret = 0;
618 	u64 ino = btrfs_ino(inode);
619 
620 	path = btrfs_alloc_path();
621 	if (!path)
622 		return -ENOMEM;
623 again:
624 	recow = 0;
625 	split = start;
626 	key.objectid = ino;
627 	key.type = BTRFS_EXTENT_DATA_KEY;
628 	key.offset = split;
629 
630 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
631 	if (ret < 0)
632 		goto out;
633 	if (ret > 0 && path->slots[0] > 0)
634 		path->slots[0]--;
635 
636 	leaf = path->nodes[0];
637 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
638 	if (key.objectid != ino ||
639 	    key.type != BTRFS_EXTENT_DATA_KEY) {
640 		ret = -EINVAL;
641 		btrfs_abort_transaction(trans, ret);
642 		goto out;
643 	}
644 	fi = btrfs_item_ptr(leaf, path->slots[0],
645 			    struct btrfs_file_extent_item);
646 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
647 		ret = -EINVAL;
648 		btrfs_abort_transaction(trans, ret);
649 		goto out;
650 	}
651 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
652 	if (key.offset > start || extent_end < end) {
653 		ret = -EINVAL;
654 		btrfs_abort_transaction(trans, ret);
655 		goto out;
656 	}
657 
658 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
659 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
660 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
661 	memcpy(&new_key, &key, sizeof(new_key));
662 
663 	if (start == key.offset && end < extent_end) {
664 		other_start = 0;
665 		other_end = start;
666 		if (extent_mergeable(leaf, path->slots[0] - 1,
667 				     ino, bytenr, orig_offset,
668 				     &other_start, &other_end)) {
669 			new_key.offset = end;
670 			btrfs_set_item_key_safe(trans, path, &new_key);
671 			fi = btrfs_item_ptr(leaf, path->slots[0],
672 					    struct btrfs_file_extent_item);
673 			btrfs_set_file_extent_generation(leaf, fi,
674 							 trans->transid);
675 			btrfs_set_file_extent_num_bytes(leaf, fi,
676 							extent_end - end);
677 			btrfs_set_file_extent_offset(leaf, fi,
678 						     end - orig_offset);
679 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
680 					    struct btrfs_file_extent_item);
681 			btrfs_set_file_extent_generation(leaf, fi,
682 							 trans->transid);
683 			btrfs_set_file_extent_num_bytes(leaf, fi,
684 							end - other_start);
685 			btrfs_mark_buffer_dirty(trans, leaf);
686 			goto out;
687 		}
688 	}
689 
690 	if (start > key.offset && end == extent_end) {
691 		other_start = end;
692 		other_end = 0;
693 		if (extent_mergeable(leaf, path->slots[0] + 1,
694 				     ino, bytenr, orig_offset,
695 				     &other_start, &other_end)) {
696 			fi = btrfs_item_ptr(leaf, path->slots[0],
697 					    struct btrfs_file_extent_item);
698 			btrfs_set_file_extent_num_bytes(leaf, fi,
699 							start - key.offset);
700 			btrfs_set_file_extent_generation(leaf, fi,
701 							 trans->transid);
702 			path->slots[0]++;
703 			new_key.offset = start;
704 			btrfs_set_item_key_safe(trans, path, &new_key);
705 
706 			fi = btrfs_item_ptr(leaf, path->slots[0],
707 					    struct btrfs_file_extent_item);
708 			btrfs_set_file_extent_generation(leaf, fi,
709 							 trans->transid);
710 			btrfs_set_file_extent_num_bytes(leaf, fi,
711 							other_end - start);
712 			btrfs_set_file_extent_offset(leaf, fi,
713 						     start - orig_offset);
714 			btrfs_mark_buffer_dirty(trans, leaf);
715 			goto out;
716 		}
717 	}
718 
719 	while (start > key.offset || end < extent_end) {
720 		if (key.offset == start)
721 			split = end;
722 
723 		new_key.offset = split;
724 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
725 		if (ret == -EAGAIN) {
726 			btrfs_release_path(path);
727 			goto again;
728 		}
729 		if (ret < 0) {
730 			btrfs_abort_transaction(trans, ret);
731 			goto out;
732 		}
733 
734 		leaf = path->nodes[0];
735 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
736 				    struct btrfs_file_extent_item);
737 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
738 		btrfs_set_file_extent_num_bytes(leaf, fi,
739 						split - key.offset);
740 
741 		fi = btrfs_item_ptr(leaf, path->slots[0],
742 				    struct btrfs_file_extent_item);
743 
744 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
745 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
746 		btrfs_set_file_extent_num_bytes(leaf, fi,
747 						extent_end - split);
748 		btrfs_mark_buffer_dirty(trans, leaf);
749 
750 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
751 				       num_bytes, 0, root->root_key.objectid);
752 		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
753 				    orig_offset, 0, false);
754 		ret = btrfs_inc_extent_ref(trans, &ref);
755 		if (ret) {
756 			btrfs_abort_transaction(trans, ret);
757 			goto out;
758 		}
759 
760 		if (split == start) {
761 			key.offset = start;
762 		} else {
763 			if (start != key.offset) {
764 				ret = -EINVAL;
765 				btrfs_abort_transaction(trans, ret);
766 				goto out;
767 			}
768 			path->slots[0]--;
769 			extent_end = end;
770 		}
771 		recow = 1;
772 	}
773 
774 	other_start = end;
775 	other_end = 0;
776 	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
777 			       num_bytes, 0, root->root_key.objectid);
778 	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
779 			    0, false);
780 	if (extent_mergeable(leaf, path->slots[0] + 1,
781 			     ino, bytenr, orig_offset,
782 			     &other_start, &other_end)) {
783 		if (recow) {
784 			btrfs_release_path(path);
785 			goto again;
786 		}
787 		extent_end = other_end;
788 		del_slot = path->slots[0] + 1;
789 		del_nr++;
790 		ret = btrfs_free_extent(trans, &ref);
791 		if (ret) {
792 			btrfs_abort_transaction(trans, ret);
793 			goto out;
794 		}
795 	}
796 	other_start = 0;
797 	other_end = start;
798 	if (extent_mergeable(leaf, path->slots[0] - 1,
799 			     ino, bytenr, orig_offset,
800 			     &other_start, &other_end)) {
801 		if (recow) {
802 			btrfs_release_path(path);
803 			goto again;
804 		}
805 		key.offset = other_start;
806 		del_slot = path->slots[0];
807 		del_nr++;
808 		ret = btrfs_free_extent(trans, &ref);
809 		if (ret) {
810 			btrfs_abort_transaction(trans, ret);
811 			goto out;
812 		}
813 	}
814 	if (del_nr == 0) {
815 		fi = btrfs_item_ptr(leaf, path->slots[0],
816 			   struct btrfs_file_extent_item);
817 		btrfs_set_file_extent_type(leaf, fi,
818 					   BTRFS_FILE_EXTENT_REG);
819 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
820 		btrfs_mark_buffer_dirty(trans, leaf);
821 	} else {
822 		fi = btrfs_item_ptr(leaf, del_slot - 1,
823 			   struct btrfs_file_extent_item);
824 		btrfs_set_file_extent_type(leaf, fi,
825 					   BTRFS_FILE_EXTENT_REG);
826 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
827 		btrfs_set_file_extent_num_bytes(leaf, fi,
828 						extent_end - key.offset);
829 		btrfs_mark_buffer_dirty(trans, leaf);
830 
831 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
832 		if (ret < 0) {
833 			btrfs_abort_transaction(trans, ret);
834 			goto out;
835 		}
836 	}
837 out:
838 	btrfs_free_path(path);
839 	return ret;
840 }
841 
842 /*
843  * on error we return an unlocked page and the error value
844  * on success we return a locked page and 0
845  */
846 static int prepare_uptodate_page(struct inode *inode,
847 				 struct page *page, u64 pos,
848 				 bool force_uptodate)
849 {
850 	struct folio *folio = page_folio(page);
851 	int ret = 0;
852 
853 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
854 	    !PageUptodate(page)) {
855 		ret = btrfs_read_folio(NULL, folio);
856 		if (ret)
857 			return ret;
858 		lock_page(page);
859 		if (!PageUptodate(page)) {
860 			unlock_page(page);
861 			return -EIO;
862 		}
863 
864 		/*
865 		 * Since btrfs_read_folio() will unlock the folio before it
866 		 * returns, there is a window where btrfs_release_folio() can be
867 		 * called to release the page.  Here we check both inode
868 		 * mapping and PagePrivate() to make sure the page was not
869 		 * released.
870 		 *
871 		 * The private flag check is essential for subpage as we need
872 		 * to store extra bitmap using page->private.
873 		 */
874 		if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
875 			unlock_page(page);
876 			return -EAGAIN;
877 		}
878 	}
879 	return 0;
880 }
881 
882 static fgf_t get_prepare_fgp_flags(bool nowait)
883 {
884 	fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
885 
886 	if (nowait)
887 		fgp_flags |= FGP_NOWAIT;
888 
889 	return fgp_flags;
890 }
891 
892 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
893 {
894 	gfp_t gfp;
895 
896 	gfp = btrfs_alloc_write_mask(inode->i_mapping);
897 	if (nowait) {
898 		gfp &= ~__GFP_DIRECT_RECLAIM;
899 		gfp |= GFP_NOWAIT;
900 	}
901 
902 	return gfp;
903 }
904 
905 /*
906  * this just gets pages into the page cache and locks them down.
907  */
908 static noinline int prepare_pages(struct inode *inode, struct page **pages,
909 				  size_t num_pages, loff_t pos,
910 				  size_t write_bytes, bool force_uptodate,
911 				  bool nowait)
912 {
913 	int i;
914 	unsigned long index = pos >> PAGE_SHIFT;
915 	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
916 	fgf_t fgp_flags = get_prepare_fgp_flags(nowait);
917 	int err = 0;
918 	int faili;
919 
920 	for (i = 0; i < num_pages; i++) {
921 again:
922 		pages[i] = pagecache_get_page(inode->i_mapping, index + i,
923 					      fgp_flags, mask | __GFP_WRITE);
924 		if (!pages[i]) {
925 			faili = i - 1;
926 			if (nowait)
927 				err = -EAGAIN;
928 			else
929 				err = -ENOMEM;
930 			goto fail;
931 		}
932 
933 		err = set_page_extent_mapped(pages[i]);
934 		if (err < 0) {
935 			faili = i;
936 			goto fail;
937 		}
938 
939 		if (i == 0)
940 			err = prepare_uptodate_page(inode, pages[i], pos,
941 						    force_uptodate);
942 		if (!err && i == num_pages - 1)
943 			err = prepare_uptodate_page(inode, pages[i],
944 						    pos + write_bytes, false);
945 		if (err) {
946 			put_page(pages[i]);
947 			if (!nowait && err == -EAGAIN) {
948 				err = 0;
949 				goto again;
950 			}
951 			faili = i - 1;
952 			goto fail;
953 		}
954 		wait_on_page_writeback(pages[i]);
955 	}
956 
957 	return 0;
958 fail:
959 	while (faili >= 0) {
960 		unlock_page(pages[faili]);
961 		put_page(pages[faili]);
962 		faili--;
963 	}
964 	return err;
965 
966 }
967 
968 /*
969  * This function locks the extent and properly waits for data=ordered extents
970  * to finish before allowing the pages to be modified if need.
971  *
972  * The return value:
973  * 1 - the extent is locked
974  * 0 - the extent is not locked, and everything is OK
975  * -EAGAIN - need re-prepare the pages
976  * the other < 0 number - Something wrong happens
977  */
978 static noinline int
979 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
980 				size_t num_pages, loff_t pos,
981 				size_t write_bytes,
982 				u64 *lockstart, u64 *lockend, bool nowait,
983 				struct extent_state **cached_state)
984 {
985 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
986 	u64 start_pos;
987 	u64 last_pos;
988 	int i;
989 	int ret = 0;
990 
991 	start_pos = round_down(pos, fs_info->sectorsize);
992 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
993 
994 	if (start_pos < inode->vfs_inode.i_size) {
995 		struct btrfs_ordered_extent *ordered;
996 
997 		if (nowait) {
998 			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
999 					     cached_state)) {
1000 				for (i = 0; i < num_pages; i++) {
1001 					unlock_page(pages[i]);
1002 					put_page(pages[i]);
1003 					pages[i] = NULL;
1004 				}
1005 
1006 				return -EAGAIN;
1007 			}
1008 		} else {
1009 			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1010 		}
1011 
1012 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1013 						     last_pos - start_pos + 1);
1014 		if (ordered &&
1015 		    ordered->file_offset + ordered->num_bytes > start_pos &&
1016 		    ordered->file_offset <= last_pos) {
1017 			unlock_extent(&inode->io_tree, start_pos, last_pos,
1018 				      cached_state);
1019 			for (i = 0; i < num_pages; i++) {
1020 				unlock_page(pages[i]);
1021 				put_page(pages[i]);
1022 			}
1023 			btrfs_start_ordered_extent(ordered);
1024 			btrfs_put_ordered_extent(ordered);
1025 			return -EAGAIN;
1026 		}
1027 		if (ordered)
1028 			btrfs_put_ordered_extent(ordered);
1029 
1030 		*lockstart = start_pos;
1031 		*lockend = last_pos;
1032 		ret = 1;
1033 	}
1034 
1035 	/*
1036 	 * We should be called after prepare_pages() which should have locked
1037 	 * all pages in the range.
1038 	 */
1039 	for (i = 0; i < num_pages; i++)
1040 		WARN_ON(!PageLocked(pages[i]));
1041 
1042 	return ret;
1043 }
1044 
1045 /*
1046  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1047  *
1048  * @pos:         File offset.
1049  * @write_bytes: The length to write, will be updated to the nocow writeable
1050  *               range.
1051  *
1052  * This function will flush ordered extents in the range to ensure proper
1053  * nocow checks.
1054  *
1055  * Return:
1056  * > 0          If we can nocow, and updates @write_bytes.
1057  *  0           If we can't do a nocow write.
1058  * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1059  *              root is in progress.
1060  * < 0          If an error happened.
1061  *
1062  * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1063  */
1064 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1065 			   size_t *write_bytes, bool nowait)
1066 {
1067 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1068 	struct btrfs_root *root = inode->root;
1069 	struct extent_state *cached_state = NULL;
1070 	u64 lockstart, lockend;
1071 	u64 num_bytes;
1072 	int ret;
1073 
1074 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1075 		return 0;
1076 
1077 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1078 		return -EAGAIN;
1079 
1080 	lockstart = round_down(pos, fs_info->sectorsize);
1081 	lockend = round_up(pos + *write_bytes,
1082 			   fs_info->sectorsize) - 1;
1083 	num_bytes = lockend - lockstart + 1;
1084 
1085 	if (nowait) {
1086 		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1087 						  &cached_state)) {
1088 			btrfs_drew_write_unlock(&root->snapshot_lock);
1089 			return -EAGAIN;
1090 		}
1091 	} else {
1092 		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1093 						   &cached_state);
1094 	}
1095 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1096 			NULL, NULL, NULL, nowait, false);
1097 	if (ret <= 0)
1098 		btrfs_drew_write_unlock(&root->snapshot_lock);
1099 	else
1100 		*write_bytes = min_t(size_t, *write_bytes ,
1101 				     num_bytes - pos + lockstart);
1102 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1103 
1104 	return ret;
1105 }
1106 
1107 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1108 {
1109 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1110 }
1111 
1112 static void update_time_for_write(struct inode *inode)
1113 {
1114 	struct timespec64 now, ts;
1115 
1116 	if (IS_NOCMTIME(inode))
1117 		return;
1118 
1119 	now = current_time(inode);
1120 	ts = inode_get_mtime(inode);
1121 	if (!timespec64_equal(&ts, &now))
1122 		inode_set_mtime_to_ts(inode, now);
1123 
1124 	ts = inode_get_ctime(inode);
1125 	if (!timespec64_equal(&ts, &now))
1126 		inode_set_ctime_to_ts(inode, now);
1127 
1128 	if (IS_I_VERSION(inode))
1129 		inode_inc_iversion(inode);
1130 }
1131 
1132 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1133 			     size_t count)
1134 {
1135 	struct file *file = iocb->ki_filp;
1136 	struct inode *inode = file_inode(file);
1137 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1138 	loff_t pos = iocb->ki_pos;
1139 	int ret;
1140 	loff_t oldsize;
1141 	loff_t start_pos;
1142 
1143 	/*
1144 	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1145 	 * prealloc flags, as without those flags we always have to COW. We will
1146 	 * later check if we can really COW into the target range (using
1147 	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1148 	 */
1149 	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1150 	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1151 		return -EAGAIN;
1152 
1153 	ret = file_remove_privs(file);
1154 	if (ret)
1155 		return ret;
1156 
1157 	/*
1158 	 * We reserve space for updating the inode when we reserve space for the
1159 	 * extent we are going to write, so we will enospc out there.  We don't
1160 	 * need to start yet another transaction to update the inode as we will
1161 	 * update the inode when we finish writing whatever data we write.
1162 	 */
1163 	update_time_for_write(inode);
1164 
1165 	start_pos = round_down(pos, fs_info->sectorsize);
1166 	oldsize = i_size_read(inode);
1167 	if (start_pos > oldsize) {
1168 		/* Expand hole size to cover write data, preventing empty gap */
1169 		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1170 
1171 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1172 		if (ret)
1173 			return ret;
1174 	}
1175 
1176 	return 0;
1177 }
1178 
1179 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1180 					       struct iov_iter *i)
1181 {
1182 	struct file *file = iocb->ki_filp;
1183 	loff_t pos;
1184 	struct inode *inode = file_inode(file);
1185 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1186 	struct page **pages = NULL;
1187 	struct extent_changeset *data_reserved = NULL;
1188 	u64 release_bytes = 0;
1189 	u64 lockstart;
1190 	u64 lockend;
1191 	size_t num_written = 0;
1192 	int nrptrs;
1193 	ssize_t ret;
1194 	bool only_release_metadata = false;
1195 	bool force_page_uptodate = false;
1196 	loff_t old_isize = i_size_read(inode);
1197 	unsigned int ilock_flags = 0;
1198 	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1199 	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1200 
1201 	if (nowait)
1202 		ilock_flags |= BTRFS_ILOCK_TRY;
1203 
1204 	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1205 	if (ret < 0)
1206 		return ret;
1207 
1208 	ret = generic_write_checks(iocb, i);
1209 	if (ret <= 0)
1210 		goto out;
1211 
1212 	ret = btrfs_write_check(iocb, i, ret);
1213 	if (ret < 0)
1214 		goto out;
1215 
1216 	pos = iocb->ki_pos;
1217 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1218 			PAGE_SIZE / (sizeof(struct page *)));
1219 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1220 	nrptrs = max(nrptrs, 8);
1221 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1222 	if (!pages) {
1223 		ret = -ENOMEM;
1224 		goto out;
1225 	}
1226 
1227 	while (iov_iter_count(i) > 0) {
1228 		struct extent_state *cached_state = NULL;
1229 		size_t offset = offset_in_page(pos);
1230 		size_t sector_offset;
1231 		size_t write_bytes = min(iov_iter_count(i),
1232 					 nrptrs * (size_t)PAGE_SIZE -
1233 					 offset);
1234 		size_t num_pages;
1235 		size_t reserve_bytes;
1236 		size_t dirty_pages;
1237 		size_t copied;
1238 		size_t dirty_sectors;
1239 		size_t num_sectors;
1240 		int extents_locked;
1241 
1242 		/*
1243 		 * Fault pages before locking them in prepare_pages
1244 		 * to avoid recursive lock
1245 		 */
1246 		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1247 			ret = -EFAULT;
1248 			break;
1249 		}
1250 
1251 		only_release_metadata = false;
1252 		sector_offset = pos & (fs_info->sectorsize - 1);
1253 
1254 		extent_changeset_release(data_reserved);
1255 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1256 						  &data_reserved, pos,
1257 						  write_bytes, nowait);
1258 		if (ret < 0) {
1259 			int can_nocow;
1260 
1261 			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1262 				ret = -EAGAIN;
1263 				break;
1264 			}
1265 
1266 			/*
1267 			 * If we don't have to COW at the offset, reserve
1268 			 * metadata only. write_bytes may get smaller than
1269 			 * requested here.
1270 			 */
1271 			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1272 							   &write_bytes, nowait);
1273 			if (can_nocow < 0)
1274 				ret = can_nocow;
1275 			if (can_nocow > 0)
1276 				ret = 0;
1277 			if (ret)
1278 				break;
1279 			only_release_metadata = true;
1280 		}
1281 
1282 		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1283 		WARN_ON(num_pages > nrptrs);
1284 		reserve_bytes = round_up(write_bytes + sector_offset,
1285 					 fs_info->sectorsize);
1286 		WARN_ON(reserve_bytes == 0);
1287 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1288 						      reserve_bytes,
1289 						      reserve_bytes, nowait);
1290 		if (ret) {
1291 			if (!only_release_metadata)
1292 				btrfs_free_reserved_data_space(BTRFS_I(inode),
1293 						data_reserved, pos,
1294 						write_bytes);
1295 			else
1296 				btrfs_check_nocow_unlock(BTRFS_I(inode));
1297 
1298 			if (nowait && ret == -ENOSPC)
1299 				ret = -EAGAIN;
1300 			break;
1301 		}
1302 
1303 		release_bytes = reserve_bytes;
1304 again:
1305 		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1306 		if (ret) {
1307 			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1308 			break;
1309 		}
1310 
1311 		/*
1312 		 * This is going to setup the pages array with the number of
1313 		 * pages we want, so we don't really need to worry about the
1314 		 * contents of pages from loop to loop
1315 		 */
1316 		ret = prepare_pages(inode, pages, num_pages,
1317 				    pos, write_bytes, force_page_uptodate, false);
1318 		if (ret) {
1319 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1320 						       reserve_bytes);
1321 			break;
1322 		}
1323 
1324 		extents_locked = lock_and_cleanup_extent_if_need(
1325 				BTRFS_I(inode), pages,
1326 				num_pages, pos, write_bytes, &lockstart,
1327 				&lockend, nowait, &cached_state);
1328 		if (extents_locked < 0) {
1329 			if (!nowait && extents_locked == -EAGAIN)
1330 				goto again;
1331 
1332 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1333 						       reserve_bytes);
1334 			ret = extents_locked;
1335 			break;
1336 		}
1337 
1338 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1339 
1340 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1341 		dirty_sectors = round_up(copied + sector_offset,
1342 					fs_info->sectorsize);
1343 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1344 
1345 		/*
1346 		 * if we have trouble faulting in the pages, fall
1347 		 * back to one page at a time
1348 		 */
1349 		if (copied < write_bytes)
1350 			nrptrs = 1;
1351 
1352 		if (copied == 0) {
1353 			force_page_uptodate = true;
1354 			dirty_sectors = 0;
1355 			dirty_pages = 0;
1356 		} else {
1357 			force_page_uptodate = false;
1358 			dirty_pages = DIV_ROUND_UP(copied + offset,
1359 						   PAGE_SIZE);
1360 		}
1361 
1362 		if (num_sectors > dirty_sectors) {
1363 			/* release everything except the sectors we dirtied */
1364 			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1365 			if (only_release_metadata) {
1366 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1367 							release_bytes, true);
1368 			} else {
1369 				u64 __pos;
1370 
1371 				__pos = round_down(pos,
1372 						   fs_info->sectorsize) +
1373 					(dirty_pages << PAGE_SHIFT);
1374 				btrfs_delalloc_release_space(BTRFS_I(inode),
1375 						data_reserved, __pos,
1376 						release_bytes, true);
1377 			}
1378 		}
1379 
1380 		release_bytes = round_up(copied + sector_offset,
1381 					fs_info->sectorsize);
1382 
1383 		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1384 					dirty_pages, pos, copied,
1385 					&cached_state, only_release_metadata);
1386 
1387 		/*
1388 		 * If we have not locked the extent range, because the range's
1389 		 * start offset is >= i_size, we might still have a non-NULL
1390 		 * cached extent state, acquired while marking the extent range
1391 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1392 		 * possible cached extent state to avoid a memory leak.
1393 		 */
1394 		if (extents_locked)
1395 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1396 				      lockend, &cached_state);
1397 		else
1398 			free_extent_state(cached_state);
1399 
1400 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1401 		if (ret) {
1402 			btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1403 			break;
1404 		}
1405 
1406 		release_bytes = 0;
1407 		if (only_release_metadata)
1408 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1409 
1410 		btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1411 
1412 		cond_resched();
1413 
1414 		pos += copied;
1415 		num_written += copied;
1416 	}
1417 
1418 	kfree(pages);
1419 
1420 	if (release_bytes) {
1421 		if (only_release_metadata) {
1422 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1423 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1424 					release_bytes, true);
1425 		} else {
1426 			btrfs_delalloc_release_space(BTRFS_I(inode),
1427 					data_reserved,
1428 					round_down(pos, fs_info->sectorsize),
1429 					release_bytes, true);
1430 		}
1431 	}
1432 
1433 	extent_changeset_free(data_reserved);
1434 	if (num_written > 0) {
1435 		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1436 		iocb->ki_pos += num_written;
1437 	}
1438 out:
1439 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1440 	return num_written ? num_written : ret;
1441 }
1442 
1443 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1444 			       const struct iov_iter *iter, loff_t offset)
1445 {
1446 	const u32 blocksize_mask = fs_info->sectorsize - 1;
1447 
1448 	if (offset & blocksize_mask)
1449 		return -EINVAL;
1450 
1451 	if (iov_iter_alignment(iter) & blocksize_mask)
1452 		return -EINVAL;
1453 
1454 	return 0;
1455 }
1456 
1457 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1458 {
1459 	struct file *file = iocb->ki_filp;
1460 	struct inode *inode = file_inode(file);
1461 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1462 	loff_t pos;
1463 	ssize_t written = 0;
1464 	ssize_t written_buffered;
1465 	size_t prev_left = 0;
1466 	loff_t endbyte;
1467 	ssize_t err;
1468 	unsigned int ilock_flags = 0;
1469 	struct iomap_dio *dio;
1470 
1471 	if (iocb->ki_flags & IOCB_NOWAIT)
1472 		ilock_flags |= BTRFS_ILOCK_TRY;
1473 
1474 	/*
1475 	 * If the write DIO is within EOF, use a shared lock and also only if
1476 	 * security bits will likely not be dropped by file_remove_privs() called
1477 	 * from btrfs_write_check(). Either will need to be rechecked after the
1478 	 * lock was acquired.
1479 	 */
1480 	if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode))
1481 		ilock_flags |= BTRFS_ILOCK_SHARED;
1482 
1483 relock:
1484 	err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1485 	if (err < 0)
1486 		return err;
1487 
1488 	/* Shared lock cannot be used with security bits set. */
1489 	if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) {
1490 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1491 		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1492 		goto relock;
1493 	}
1494 
1495 	err = generic_write_checks(iocb, from);
1496 	if (err <= 0) {
1497 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1498 		return err;
1499 	}
1500 
1501 	err = btrfs_write_check(iocb, from, err);
1502 	if (err < 0) {
1503 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1504 		goto out;
1505 	}
1506 
1507 	pos = iocb->ki_pos;
1508 	/*
1509 	 * Re-check since file size may have changed just before taking the
1510 	 * lock or pos may have changed because of O_APPEND in generic_write_check()
1511 	 */
1512 	if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1513 	    pos + iov_iter_count(from) > i_size_read(inode)) {
1514 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1515 		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1516 		goto relock;
1517 	}
1518 
1519 	if (check_direct_IO(fs_info, from, pos)) {
1520 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1521 		goto buffered;
1522 	}
1523 
1524 	/*
1525 	 * The iov_iter can be mapped to the same file range we are writing to.
1526 	 * If that's the case, then we will deadlock in the iomap code, because
1527 	 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1528 	 * an ordered extent, and after that it will fault in the pages that the
1529 	 * iov_iter refers to. During the fault in we end up in the readahead
1530 	 * pages code (starting at btrfs_readahead()), which will lock the range,
1531 	 * find that ordered extent and then wait for it to complete (at
1532 	 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1533 	 * obviously the ordered extent can never complete as we didn't submit
1534 	 * yet the respective bio(s). This always happens when the buffer is
1535 	 * memory mapped to the same file range, since the iomap DIO code always
1536 	 * invalidates pages in the target file range (after starting and waiting
1537 	 * for any writeback).
1538 	 *
1539 	 * So here we disable page faults in the iov_iter and then retry if we
1540 	 * got -EFAULT, faulting in the pages before the retry.
1541 	 */
1542 	from->nofault = true;
1543 	dio = btrfs_dio_write(iocb, from, written);
1544 	from->nofault = false;
1545 
1546 	/*
1547 	 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1548 	 * iocb, and that needs to lock the inode. So unlock it before calling
1549 	 * iomap_dio_complete() to avoid a deadlock.
1550 	 */
1551 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1552 
1553 	if (IS_ERR_OR_NULL(dio))
1554 		err = PTR_ERR_OR_ZERO(dio);
1555 	else
1556 		err = iomap_dio_complete(dio);
1557 
1558 	/* No increment (+=) because iomap returns a cumulative value. */
1559 	if (err > 0)
1560 		written = err;
1561 
1562 	if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1563 		const size_t left = iov_iter_count(from);
1564 		/*
1565 		 * We have more data left to write. Try to fault in as many as
1566 		 * possible of the remainder pages and retry. We do this without
1567 		 * releasing and locking again the inode, to prevent races with
1568 		 * truncate.
1569 		 *
1570 		 * Also, in case the iov refers to pages in the file range of the
1571 		 * file we want to write to (due to a mmap), we could enter an
1572 		 * infinite loop if we retry after faulting the pages in, since
1573 		 * iomap will invalidate any pages in the range early on, before
1574 		 * it tries to fault in the pages of the iov. So we keep track of
1575 		 * how much was left of iov in the previous EFAULT and fallback
1576 		 * to buffered IO in case we haven't made any progress.
1577 		 */
1578 		if (left == prev_left) {
1579 			err = -ENOTBLK;
1580 		} else {
1581 			fault_in_iov_iter_readable(from, left);
1582 			prev_left = left;
1583 			goto relock;
1584 		}
1585 	}
1586 
1587 	/*
1588 	 * If 'err' is -ENOTBLK or we have not written all data, then it means
1589 	 * we must fallback to buffered IO.
1590 	 */
1591 	if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
1592 		goto out;
1593 
1594 buffered:
1595 	/*
1596 	 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1597 	 * it must retry the operation in a context where blocking is acceptable,
1598 	 * because even if we end up not blocking during the buffered IO attempt
1599 	 * below, we will block when flushing and waiting for the IO.
1600 	 */
1601 	if (iocb->ki_flags & IOCB_NOWAIT) {
1602 		err = -EAGAIN;
1603 		goto out;
1604 	}
1605 
1606 	pos = iocb->ki_pos;
1607 	written_buffered = btrfs_buffered_write(iocb, from);
1608 	if (written_buffered < 0) {
1609 		err = written_buffered;
1610 		goto out;
1611 	}
1612 	/*
1613 	 * Ensure all data is persisted. We want the next direct IO read to be
1614 	 * able to read what was just written.
1615 	 */
1616 	endbyte = pos + written_buffered - 1;
1617 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1618 	if (err)
1619 		goto out;
1620 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1621 	if (err)
1622 		goto out;
1623 	written += written_buffered;
1624 	iocb->ki_pos = pos + written_buffered;
1625 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1626 				 endbyte >> PAGE_SHIFT);
1627 out:
1628 	return err < 0 ? err : written;
1629 }
1630 
1631 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1632 			const struct btrfs_ioctl_encoded_io_args *encoded)
1633 {
1634 	struct file *file = iocb->ki_filp;
1635 	struct inode *inode = file_inode(file);
1636 	loff_t count;
1637 	ssize_t ret;
1638 
1639 	btrfs_inode_lock(BTRFS_I(inode), 0);
1640 	count = encoded->len;
1641 	ret = generic_write_checks_count(iocb, &count);
1642 	if (ret == 0 && count != encoded->len) {
1643 		/*
1644 		 * The write got truncated by generic_write_checks_count(). We
1645 		 * can't do a partial encoded write.
1646 		 */
1647 		ret = -EFBIG;
1648 	}
1649 	if (ret || encoded->len == 0)
1650 		goto out;
1651 
1652 	ret = btrfs_write_check(iocb, from, encoded->len);
1653 	if (ret < 0)
1654 		goto out;
1655 
1656 	ret = btrfs_do_encoded_write(iocb, from, encoded);
1657 out:
1658 	btrfs_inode_unlock(BTRFS_I(inode), 0);
1659 	return ret;
1660 }
1661 
1662 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1663 			    const struct btrfs_ioctl_encoded_io_args *encoded)
1664 {
1665 	struct file *file = iocb->ki_filp;
1666 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1667 	ssize_t num_written, num_sync;
1668 
1669 	/*
1670 	 * If the fs flips readonly due to some impossible error, although we
1671 	 * have opened a file as writable, we have to stop this write operation
1672 	 * to ensure consistency.
1673 	 */
1674 	if (BTRFS_FS_ERROR(inode->root->fs_info))
1675 		return -EROFS;
1676 
1677 	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1678 		return -EOPNOTSUPP;
1679 
1680 	if (encoded) {
1681 		num_written = btrfs_encoded_write(iocb, from, encoded);
1682 		num_sync = encoded->len;
1683 	} else if (iocb->ki_flags & IOCB_DIRECT) {
1684 		num_written = btrfs_direct_write(iocb, from);
1685 		num_sync = num_written;
1686 	} else {
1687 		num_written = btrfs_buffered_write(iocb, from);
1688 		num_sync = num_written;
1689 	}
1690 
1691 	btrfs_set_inode_last_sub_trans(inode);
1692 
1693 	if (num_sync > 0) {
1694 		num_sync = generic_write_sync(iocb, num_sync);
1695 		if (num_sync < 0)
1696 			num_written = num_sync;
1697 	}
1698 
1699 	return num_written;
1700 }
1701 
1702 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1703 {
1704 	return btrfs_do_write_iter(iocb, from, NULL);
1705 }
1706 
1707 int btrfs_release_file(struct inode *inode, struct file *filp)
1708 {
1709 	struct btrfs_file_private *private = filp->private_data;
1710 
1711 	if (private) {
1712 		kfree(private->filldir_buf);
1713 		free_extent_state(private->llseek_cached_state);
1714 		kfree(private);
1715 		filp->private_data = NULL;
1716 	}
1717 
1718 	/*
1719 	 * Set by setattr when we are about to truncate a file from a non-zero
1720 	 * size to a zero size.  This tries to flush down new bytes that may
1721 	 * have been written if the application were using truncate to replace
1722 	 * a file in place.
1723 	 */
1724 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1725 			       &BTRFS_I(inode)->runtime_flags))
1726 			filemap_flush(inode->i_mapping);
1727 	return 0;
1728 }
1729 
1730 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1731 {
1732 	int ret;
1733 	struct blk_plug plug;
1734 
1735 	/*
1736 	 * This is only called in fsync, which would do synchronous writes, so
1737 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1738 	 * multiple disks using raid profile, a large IO can be split to
1739 	 * several segments of stripe length (currently 64K).
1740 	 */
1741 	blk_start_plug(&plug);
1742 	ret = btrfs_fdatawrite_range(inode, start, end);
1743 	blk_finish_plug(&plug);
1744 
1745 	return ret;
1746 }
1747 
1748 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1749 {
1750 	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1751 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1752 
1753 	if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1754 	    list_empty(&ctx->ordered_extents))
1755 		return true;
1756 
1757 	/*
1758 	 * If we are doing a fast fsync we can not bail out if the inode's
1759 	 * last_trans is <= then the last committed transaction, because we only
1760 	 * update the last_trans of the inode during ordered extent completion,
1761 	 * and for a fast fsync we don't wait for that, we only wait for the
1762 	 * writeback to complete.
1763 	 */
1764 	if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1765 	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1766 	     list_empty(&ctx->ordered_extents)))
1767 		return true;
1768 
1769 	return false;
1770 }
1771 
1772 /*
1773  * fsync call for both files and directories.  This logs the inode into
1774  * the tree log instead of forcing full commits whenever possible.
1775  *
1776  * It needs to call filemap_fdatawait so that all ordered extent updates are
1777  * in the metadata btree are up to date for copying to the log.
1778  *
1779  * It drops the inode mutex before doing the tree log commit.  This is an
1780  * important optimization for directories because holding the mutex prevents
1781  * new operations on the dir while we write to disk.
1782  */
1783 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1784 {
1785 	struct dentry *dentry = file_dentry(file);
1786 	struct inode *inode = d_inode(dentry);
1787 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1788 	struct btrfs_root *root = BTRFS_I(inode)->root;
1789 	struct btrfs_trans_handle *trans;
1790 	struct btrfs_log_ctx ctx;
1791 	int ret = 0, err;
1792 	u64 len;
1793 	bool full_sync;
1794 
1795 	trace_btrfs_sync_file(file, datasync);
1796 
1797 	btrfs_init_log_ctx(&ctx, inode);
1798 
1799 	/*
1800 	 * Always set the range to a full range, otherwise we can get into
1801 	 * several problems, from missing file extent items to represent holes
1802 	 * when not using the NO_HOLES feature, to log tree corruption due to
1803 	 * races between hole detection during logging and completion of ordered
1804 	 * extents outside the range, to missing checksums due to ordered extents
1805 	 * for which we flushed only a subset of their pages.
1806 	 */
1807 	start = 0;
1808 	end = LLONG_MAX;
1809 	len = (u64)LLONG_MAX + 1;
1810 
1811 	/*
1812 	 * We write the dirty pages in the range and wait until they complete
1813 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1814 	 * multi-task, and make the performance up.  See
1815 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1816 	 */
1817 	ret = start_ordered_ops(inode, start, end);
1818 	if (ret)
1819 		goto out;
1820 
1821 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1822 
1823 	atomic_inc(&root->log_batch);
1824 
1825 	/*
1826 	 * Before we acquired the inode's lock and the mmap lock, someone may
1827 	 * have dirtied more pages in the target range. We need to make sure
1828 	 * that writeback for any such pages does not start while we are logging
1829 	 * the inode, because if it does, any of the following might happen when
1830 	 * we are not doing a full inode sync:
1831 	 *
1832 	 * 1) We log an extent after its writeback finishes but before its
1833 	 *    checksums are added to the csum tree, leading to -EIO errors
1834 	 *    when attempting to read the extent after a log replay.
1835 	 *
1836 	 * 2) We can end up logging an extent before its writeback finishes.
1837 	 *    Therefore after the log replay we will have a file extent item
1838 	 *    pointing to an unwritten extent (and no data checksums as well).
1839 	 *
1840 	 * So trigger writeback for any eventual new dirty pages and then we
1841 	 * wait for all ordered extents to complete below.
1842 	 */
1843 	ret = start_ordered_ops(inode, start, end);
1844 	if (ret) {
1845 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1846 		goto out;
1847 	}
1848 
1849 	/*
1850 	 * Always check for the full sync flag while holding the inode's lock,
1851 	 * to avoid races with other tasks. The flag must be either set all the
1852 	 * time during logging or always off all the time while logging.
1853 	 * We check the flag here after starting delalloc above, because when
1854 	 * running delalloc the full sync flag may be set if we need to drop
1855 	 * extra extent map ranges due to temporary memory allocation failures.
1856 	 */
1857 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1858 			     &BTRFS_I(inode)->runtime_flags);
1859 
1860 	/*
1861 	 * We have to do this here to avoid the priority inversion of waiting on
1862 	 * IO of a lower priority task while holding a transaction open.
1863 	 *
1864 	 * For a full fsync we wait for the ordered extents to complete while
1865 	 * for a fast fsync we wait just for writeback to complete, and then
1866 	 * attach the ordered extents to the transaction so that a transaction
1867 	 * commit waits for their completion, to avoid data loss if we fsync,
1868 	 * the current transaction commits before the ordered extents complete
1869 	 * and a power failure happens right after that.
1870 	 *
1871 	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1872 	 * logical address recorded in the ordered extent may change. We need
1873 	 * to wait for the IO to stabilize the logical address.
1874 	 */
1875 	if (full_sync || btrfs_is_zoned(fs_info)) {
1876 		ret = btrfs_wait_ordered_range(inode, start, len);
1877 	} else {
1878 		/*
1879 		 * Get our ordered extents as soon as possible to avoid doing
1880 		 * checksum lookups in the csum tree, and use instead the
1881 		 * checksums attached to the ordered extents.
1882 		 */
1883 		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1884 						      &ctx.ordered_extents);
1885 		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
1886 	}
1887 
1888 	if (ret)
1889 		goto out_release_extents;
1890 
1891 	atomic_inc(&root->log_batch);
1892 
1893 	if (skip_inode_logging(&ctx)) {
1894 		/*
1895 		 * We've had everything committed since the last time we were
1896 		 * modified so clear this flag in case it was set for whatever
1897 		 * reason, it's no longer relevant.
1898 		 */
1899 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1900 			  &BTRFS_I(inode)->runtime_flags);
1901 		/*
1902 		 * An ordered extent might have started before and completed
1903 		 * already with io errors, in which case the inode was not
1904 		 * updated and we end up here. So check the inode's mapping
1905 		 * for any errors that might have happened since we last
1906 		 * checked called fsync.
1907 		 */
1908 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
1909 		goto out_release_extents;
1910 	}
1911 
1912 	/*
1913 	 * We use start here because we will need to wait on the IO to complete
1914 	 * in btrfs_sync_log, which could require joining a transaction (for
1915 	 * example checking cross references in the nocow path).  If we use join
1916 	 * here we could get into a situation where we're waiting on IO to
1917 	 * happen that is blocked on a transaction trying to commit.  With start
1918 	 * we inc the extwriter counter, so we wait for all extwriters to exit
1919 	 * before we start blocking joiners.  This comment is to keep somebody
1920 	 * from thinking they are super smart and changing this to
1921 	 * btrfs_join_transaction *cough*Josef*cough*.
1922 	 */
1923 	trans = btrfs_start_transaction(root, 0);
1924 	if (IS_ERR(trans)) {
1925 		ret = PTR_ERR(trans);
1926 		goto out_release_extents;
1927 	}
1928 	trans->in_fsync = true;
1929 
1930 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1931 	btrfs_release_log_ctx_extents(&ctx);
1932 	if (ret < 0) {
1933 		/* Fallthrough and commit/free transaction. */
1934 		ret = BTRFS_LOG_FORCE_COMMIT;
1935 	}
1936 
1937 	/* we've logged all the items and now have a consistent
1938 	 * version of the file in the log.  It is possible that
1939 	 * someone will come in and modify the file, but that's
1940 	 * fine because the log is consistent on disk, and we
1941 	 * have references to all of the file's extents
1942 	 *
1943 	 * It is possible that someone will come in and log the
1944 	 * file again, but that will end up using the synchronization
1945 	 * inside btrfs_sync_log to keep things safe.
1946 	 */
1947 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1948 
1949 	if (ret == BTRFS_NO_LOG_SYNC) {
1950 		ret = btrfs_end_transaction(trans);
1951 		goto out;
1952 	}
1953 
1954 	/* We successfully logged the inode, attempt to sync the log. */
1955 	if (!ret) {
1956 		ret = btrfs_sync_log(trans, root, &ctx);
1957 		if (!ret) {
1958 			ret = btrfs_end_transaction(trans);
1959 			goto out;
1960 		}
1961 	}
1962 
1963 	/*
1964 	 * At this point we need to commit the transaction because we had
1965 	 * btrfs_need_log_full_commit() or some other error.
1966 	 *
1967 	 * If we didn't do a full sync we have to stop the trans handle, wait on
1968 	 * the ordered extents, start it again and commit the transaction.  If
1969 	 * we attempt to wait on the ordered extents here we could deadlock with
1970 	 * something like fallocate() that is holding the extent lock trying to
1971 	 * start a transaction while some other thread is trying to commit the
1972 	 * transaction while we (fsync) are currently holding the transaction
1973 	 * open.
1974 	 */
1975 	if (!full_sync) {
1976 		ret = btrfs_end_transaction(trans);
1977 		if (ret)
1978 			goto out;
1979 		ret = btrfs_wait_ordered_range(inode, start, len);
1980 		if (ret)
1981 			goto out;
1982 
1983 		/*
1984 		 * This is safe to use here because we're only interested in
1985 		 * making sure the transaction that had the ordered extents is
1986 		 * committed.  We aren't waiting on anything past this point,
1987 		 * we're purely getting the transaction and committing it.
1988 		 */
1989 		trans = btrfs_attach_transaction_barrier(root);
1990 		if (IS_ERR(trans)) {
1991 			ret = PTR_ERR(trans);
1992 
1993 			/*
1994 			 * We committed the transaction and there's no currently
1995 			 * running transaction, this means everything we care
1996 			 * about made it to disk and we are done.
1997 			 */
1998 			if (ret == -ENOENT)
1999 				ret = 0;
2000 			goto out;
2001 		}
2002 	}
2003 
2004 	ret = btrfs_commit_transaction(trans);
2005 out:
2006 	ASSERT(list_empty(&ctx.list));
2007 	ASSERT(list_empty(&ctx.conflict_inodes));
2008 	err = file_check_and_advance_wb_err(file);
2009 	if (!ret)
2010 		ret = err;
2011 	return ret > 0 ? -EIO : ret;
2012 
2013 out_release_extents:
2014 	btrfs_release_log_ctx_extents(&ctx);
2015 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2016 	goto out;
2017 }
2018 
2019 static const struct vm_operations_struct btrfs_file_vm_ops = {
2020 	.fault		= filemap_fault,
2021 	.map_pages	= filemap_map_pages,
2022 	.page_mkwrite	= btrfs_page_mkwrite,
2023 };
2024 
2025 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2026 {
2027 	struct address_space *mapping = filp->f_mapping;
2028 
2029 	if (!mapping->a_ops->read_folio)
2030 		return -ENOEXEC;
2031 
2032 	file_accessed(filp);
2033 	vma->vm_ops = &btrfs_file_vm_ops;
2034 
2035 	return 0;
2036 }
2037 
2038 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2039 			  int slot, u64 start, u64 end)
2040 {
2041 	struct btrfs_file_extent_item *fi;
2042 	struct btrfs_key key;
2043 
2044 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2045 		return 0;
2046 
2047 	btrfs_item_key_to_cpu(leaf, &key, slot);
2048 	if (key.objectid != btrfs_ino(inode) ||
2049 	    key.type != BTRFS_EXTENT_DATA_KEY)
2050 		return 0;
2051 
2052 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2053 
2054 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2055 		return 0;
2056 
2057 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2058 		return 0;
2059 
2060 	if (key.offset == end)
2061 		return 1;
2062 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2063 		return 1;
2064 	return 0;
2065 }
2066 
2067 static int fill_holes(struct btrfs_trans_handle *trans,
2068 		struct btrfs_inode *inode,
2069 		struct btrfs_path *path, u64 offset, u64 end)
2070 {
2071 	struct btrfs_fs_info *fs_info = trans->fs_info;
2072 	struct btrfs_root *root = inode->root;
2073 	struct extent_buffer *leaf;
2074 	struct btrfs_file_extent_item *fi;
2075 	struct extent_map *hole_em;
2076 	struct btrfs_key key;
2077 	int ret;
2078 
2079 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2080 		goto out;
2081 
2082 	key.objectid = btrfs_ino(inode);
2083 	key.type = BTRFS_EXTENT_DATA_KEY;
2084 	key.offset = offset;
2085 
2086 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2087 	if (ret <= 0) {
2088 		/*
2089 		 * We should have dropped this offset, so if we find it then
2090 		 * something has gone horribly wrong.
2091 		 */
2092 		if (ret == 0)
2093 			ret = -EINVAL;
2094 		return ret;
2095 	}
2096 
2097 	leaf = path->nodes[0];
2098 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2099 		u64 num_bytes;
2100 
2101 		path->slots[0]--;
2102 		fi = btrfs_item_ptr(leaf, path->slots[0],
2103 				    struct btrfs_file_extent_item);
2104 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2105 			end - offset;
2106 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2107 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2108 		btrfs_set_file_extent_offset(leaf, fi, 0);
2109 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2110 		btrfs_mark_buffer_dirty(trans, leaf);
2111 		goto out;
2112 	}
2113 
2114 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2115 		u64 num_bytes;
2116 
2117 		key.offset = offset;
2118 		btrfs_set_item_key_safe(trans, path, &key);
2119 		fi = btrfs_item_ptr(leaf, path->slots[0],
2120 				    struct btrfs_file_extent_item);
2121 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2122 			offset;
2123 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2124 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2125 		btrfs_set_file_extent_offset(leaf, fi, 0);
2126 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2127 		btrfs_mark_buffer_dirty(trans, leaf);
2128 		goto out;
2129 	}
2130 	btrfs_release_path(path);
2131 
2132 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2133 				       end - offset);
2134 	if (ret)
2135 		return ret;
2136 
2137 out:
2138 	btrfs_release_path(path);
2139 
2140 	hole_em = alloc_extent_map();
2141 	if (!hole_em) {
2142 		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2143 		btrfs_set_inode_full_sync(inode);
2144 	} else {
2145 		hole_em->start = offset;
2146 		hole_em->len = end - offset;
2147 		hole_em->ram_bytes = hole_em->len;
2148 		hole_em->orig_start = offset;
2149 
2150 		hole_em->block_start = EXTENT_MAP_HOLE;
2151 		hole_em->block_len = 0;
2152 		hole_em->orig_block_len = 0;
2153 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2154 		hole_em->generation = trans->transid;
2155 
2156 		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2157 		free_extent_map(hole_em);
2158 		if (ret)
2159 			btrfs_set_inode_full_sync(inode);
2160 	}
2161 
2162 	return 0;
2163 }
2164 
2165 /*
2166  * Find a hole extent on given inode and change start/len to the end of hole
2167  * extent.(hole/vacuum extent whose em->start <= start &&
2168  *	   em->start + em->len > start)
2169  * When a hole extent is found, return 1 and modify start/len.
2170  */
2171 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2172 {
2173 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2174 	struct extent_map *em;
2175 	int ret = 0;
2176 
2177 	em = btrfs_get_extent(inode, NULL, 0,
2178 			      round_down(*start, fs_info->sectorsize),
2179 			      round_up(*len, fs_info->sectorsize));
2180 	if (IS_ERR(em))
2181 		return PTR_ERR(em);
2182 
2183 	/* Hole or vacuum extent(only exists in no-hole mode) */
2184 	if (em->block_start == EXTENT_MAP_HOLE) {
2185 		ret = 1;
2186 		*len = em->start + em->len > *start + *len ?
2187 		       0 : *start + *len - em->start - em->len;
2188 		*start = em->start + em->len;
2189 	}
2190 	free_extent_map(em);
2191 	return ret;
2192 }
2193 
2194 static void btrfs_punch_hole_lock_range(struct inode *inode,
2195 					const u64 lockstart,
2196 					const u64 lockend,
2197 					struct extent_state **cached_state)
2198 {
2199 	/*
2200 	 * For subpage case, if the range is not at page boundary, we could
2201 	 * have pages at the leading/tailing part of the range.
2202 	 * This could lead to dead loop since filemap_range_has_page()
2203 	 * will always return true.
2204 	 * So here we need to do extra page alignment for
2205 	 * filemap_range_has_page().
2206 	 */
2207 	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2208 	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2209 
2210 	while (1) {
2211 		truncate_pagecache_range(inode, lockstart, lockend);
2212 
2213 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2214 			    cached_state);
2215 		/*
2216 		 * We can't have ordered extents in the range, nor dirty/writeback
2217 		 * pages, because we have locked the inode's VFS lock in exclusive
2218 		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2219 		 * we have flushed all delalloc in the range and we have waited
2220 		 * for any ordered extents in the range to complete.
2221 		 * We can race with anyone reading pages from this range, so after
2222 		 * locking the range check if we have pages in the range, and if
2223 		 * we do, unlock the range and retry.
2224 		 */
2225 		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2226 					    page_lockend))
2227 			break;
2228 
2229 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2230 			      cached_state);
2231 	}
2232 
2233 	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2234 }
2235 
2236 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2237 				     struct btrfs_inode *inode,
2238 				     struct btrfs_path *path,
2239 				     struct btrfs_replace_extent_info *extent_info,
2240 				     const u64 replace_len,
2241 				     const u64 bytes_to_drop)
2242 {
2243 	struct btrfs_fs_info *fs_info = trans->fs_info;
2244 	struct btrfs_root *root = inode->root;
2245 	struct btrfs_file_extent_item *extent;
2246 	struct extent_buffer *leaf;
2247 	struct btrfs_key key;
2248 	int slot;
2249 	struct btrfs_ref ref = { 0 };
2250 	int ret;
2251 
2252 	if (replace_len == 0)
2253 		return 0;
2254 
2255 	if (extent_info->disk_offset == 0 &&
2256 	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2257 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2258 		return 0;
2259 	}
2260 
2261 	key.objectid = btrfs_ino(inode);
2262 	key.type = BTRFS_EXTENT_DATA_KEY;
2263 	key.offset = extent_info->file_offset;
2264 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2265 				      sizeof(struct btrfs_file_extent_item));
2266 	if (ret)
2267 		return ret;
2268 	leaf = path->nodes[0];
2269 	slot = path->slots[0];
2270 	write_extent_buffer(leaf, extent_info->extent_buf,
2271 			    btrfs_item_ptr_offset(leaf, slot),
2272 			    sizeof(struct btrfs_file_extent_item));
2273 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2274 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2275 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2276 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2277 	if (extent_info->is_new_extent)
2278 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2279 	btrfs_mark_buffer_dirty(trans, leaf);
2280 	btrfs_release_path(path);
2281 
2282 	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2283 						replace_len);
2284 	if (ret)
2285 		return ret;
2286 
2287 	/* If it's a hole, nothing more needs to be done. */
2288 	if (extent_info->disk_offset == 0) {
2289 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2290 		return 0;
2291 	}
2292 
2293 	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2294 
2295 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2296 		key.objectid = extent_info->disk_offset;
2297 		key.type = BTRFS_EXTENT_ITEM_KEY;
2298 		key.offset = extent_info->disk_len;
2299 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2300 						       btrfs_ino(inode),
2301 						       extent_info->file_offset,
2302 						       extent_info->qgroup_reserved,
2303 						       &key);
2304 	} else {
2305 		u64 ref_offset;
2306 
2307 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2308 				       extent_info->disk_offset,
2309 				       extent_info->disk_len, 0,
2310 				       root->root_key.objectid);
2311 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2312 		btrfs_init_data_ref(&ref, root->root_key.objectid,
2313 				    btrfs_ino(inode), ref_offset, 0, false);
2314 		ret = btrfs_inc_extent_ref(trans, &ref);
2315 	}
2316 
2317 	extent_info->insertions++;
2318 
2319 	return ret;
2320 }
2321 
2322 /*
2323  * The respective range must have been previously locked, as well as the inode.
2324  * The end offset is inclusive (last byte of the range).
2325  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2326  * the file range with an extent.
2327  * When not punching a hole, we don't want to end up in a state where we dropped
2328  * extents without inserting a new one, so we must abort the transaction to avoid
2329  * a corruption.
2330  */
2331 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2332 			       struct btrfs_path *path, const u64 start,
2333 			       const u64 end,
2334 			       struct btrfs_replace_extent_info *extent_info,
2335 			       struct btrfs_trans_handle **trans_out)
2336 {
2337 	struct btrfs_drop_extents_args drop_args = { 0 };
2338 	struct btrfs_root *root = inode->root;
2339 	struct btrfs_fs_info *fs_info = root->fs_info;
2340 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2341 	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2342 	struct btrfs_trans_handle *trans = NULL;
2343 	struct btrfs_block_rsv *rsv;
2344 	unsigned int rsv_count;
2345 	u64 cur_offset;
2346 	u64 len = end - start;
2347 	int ret = 0;
2348 
2349 	if (end <= start)
2350 		return -EINVAL;
2351 
2352 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2353 	if (!rsv) {
2354 		ret = -ENOMEM;
2355 		goto out;
2356 	}
2357 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2358 	rsv->failfast = true;
2359 
2360 	/*
2361 	 * 1 - update the inode
2362 	 * 1 - removing the extents in the range
2363 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2364 	 *     replacing the range with a new extent
2365 	 */
2366 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2367 		rsv_count = 3;
2368 	else
2369 		rsv_count = 2;
2370 
2371 	trans = btrfs_start_transaction(root, rsv_count);
2372 	if (IS_ERR(trans)) {
2373 		ret = PTR_ERR(trans);
2374 		trans = NULL;
2375 		goto out_free;
2376 	}
2377 
2378 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2379 				      min_size, false);
2380 	if (WARN_ON(ret))
2381 		goto out_trans;
2382 	trans->block_rsv = rsv;
2383 
2384 	cur_offset = start;
2385 	drop_args.path = path;
2386 	drop_args.end = end + 1;
2387 	drop_args.drop_cache = true;
2388 	while (cur_offset < end) {
2389 		drop_args.start = cur_offset;
2390 		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2391 		/* If we are punching a hole decrement the inode's byte count */
2392 		if (!extent_info)
2393 			btrfs_update_inode_bytes(inode, 0,
2394 						 drop_args.bytes_found);
2395 		if (ret != -ENOSPC) {
2396 			/*
2397 			 * The only time we don't want to abort is if we are
2398 			 * attempting to clone a partial inline extent, in which
2399 			 * case we'll get EOPNOTSUPP.  However if we aren't
2400 			 * clone we need to abort no matter what, because if we
2401 			 * got EOPNOTSUPP via prealloc then we messed up and
2402 			 * need to abort.
2403 			 */
2404 			if (ret &&
2405 			    (ret != -EOPNOTSUPP ||
2406 			     (extent_info && extent_info->is_new_extent)))
2407 				btrfs_abort_transaction(trans, ret);
2408 			break;
2409 		}
2410 
2411 		trans->block_rsv = &fs_info->trans_block_rsv;
2412 
2413 		if (!extent_info && cur_offset < drop_args.drop_end &&
2414 		    cur_offset < ino_size) {
2415 			ret = fill_holes(trans, inode, path, cur_offset,
2416 					 drop_args.drop_end);
2417 			if (ret) {
2418 				/*
2419 				 * If we failed then we didn't insert our hole
2420 				 * entries for the area we dropped, so now the
2421 				 * fs is corrupted, so we must abort the
2422 				 * transaction.
2423 				 */
2424 				btrfs_abort_transaction(trans, ret);
2425 				break;
2426 			}
2427 		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2428 			/*
2429 			 * We are past the i_size here, but since we didn't
2430 			 * insert holes we need to clear the mapped area so we
2431 			 * know to not set disk_i_size in this area until a new
2432 			 * file extent is inserted here.
2433 			 */
2434 			ret = btrfs_inode_clear_file_extent_range(inode,
2435 					cur_offset,
2436 					drop_args.drop_end - cur_offset);
2437 			if (ret) {
2438 				/*
2439 				 * We couldn't clear our area, so we could
2440 				 * presumably adjust up and corrupt the fs, so
2441 				 * we need to abort.
2442 				 */
2443 				btrfs_abort_transaction(trans, ret);
2444 				break;
2445 			}
2446 		}
2447 
2448 		if (extent_info &&
2449 		    drop_args.drop_end > extent_info->file_offset) {
2450 			u64 replace_len = drop_args.drop_end -
2451 					  extent_info->file_offset;
2452 
2453 			ret = btrfs_insert_replace_extent(trans, inode,	path,
2454 					extent_info, replace_len,
2455 					drop_args.bytes_found);
2456 			if (ret) {
2457 				btrfs_abort_transaction(trans, ret);
2458 				break;
2459 			}
2460 			extent_info->data_len -= replace_len;
2461 			extent_info->data_offset += replace_len;
2462 			extent_info->file_offset += replace_len;
2463 		}
2464 
2465 		/*
2466 		 * We are releasing our handle on the transaction, balance the
2467 		 * dirty pages of the btree inode and flush delayed items, and
2468 		 * then get a new transaction handle, which may now point to a
2469 		 * new transaction in case someone else may have committed the
2470 		 * transaction we used to replace/drop file extent items. So
2471 		 * bump the inode's iversion and update mtime and ctime except
2472 		 * if we are called from a dedupe context. This is because a
2473 		 * power failure/crash may happen after the transaction is
2474 		 * committed and before we finish replacing/dropping all the
2475 		 * file extent items we need.
2476 		 */
2477 		inode_inc_iversion(&inode->vfs_inode);
2478 
2479 		if (!extent_info || extent_info->update_times)
2480 			inode_set_mtime_to_ts(&inode->vfs_inode,
2481 					      inode_set_ctime_current(&inode->vfs_inode));
2482 
2483 		ret = btrfs_update_inode(trans, inode);
2484 		if (ret)
2485 			break;
2486 
2487 		btrfs_end_transaction(trans);
2488 		btrfs_btree_balance_dirty(fs_info);
2489 
2490 		trans = btrfs_start_transaction(root, rsv_count);
2491 		if (IS_ERR(trans)) {
2492 			ret = PTR_ERR(trans);
2493 			trans = NULL;
2494 			break;
2495 		}
2496 
2497 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2498 					      rsv, min_size, false);
2499 		if (WARN_ON(ret))
2500 			break;
2501 		trans->block_rsv = rsv;
2502 
2503 		cur_offset = drop_args.drop_end;
2504 		len = end - cur_offset;
2505 		if (!extent_info && len) {
2506 			ret = find_first_non_hole(inode, &cur_offset, &len);
2507 			if (unlikely(ret < 0))
2508 				break;
2509 			if (ret && !len) {
2510 				ret = 0;
2511 				break;
2512 			}
2513 		}
2514 	}
2515 
2516 	/*
2517 	 * If we were cloning, force the next fsync to be a full one since we
2518 	 * we replaced (or just dropped in the case of cloning holes when
2519 	 * NO_HOLES is enabled) file extent items and did not setup new extent
2520 	 * maps for the replacement extents (or holes).
2521 	 */
2522 	if (extent_info && !extent_info->is_new_extent)
2523 		btrfs_set_inode_full_sync(inode);
2524 
2525 	if (ret)
2526 		goto out_trans;
2527 
2528 	trans->block_rsv = &fs_info->trans_block_rsv;
2529 	/*
2530 	 * If we are using the NO_HOLES feature we might have had already an
2531 	 * hole that overlaps a part of the region [lockstart, lockend] and
2532 	 * ends at (or beyond) lockend. Since we have no file extent items to
2533 	 * represent holes, drop_end can be less than lockend and so we must
2534 	 * make sure we have an extent map representing the existing hole (the
2535 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2536 	 * map representing the existing hole), otherwise the fast fsync path
2537 	 * will not record the existence of the hole region
2538 	 * [existing_hole_start, lockend].
2539 	 */
2540 	if (drop_args.drop_end <= end)
2541 		drop_args.drop_end = end + 1;
2542 	/*
2543 	 * Don't insert file hole extent item if it's for a range beyond eof
2544 	 * (because it's useless) or if it represents a 0 bytes range (when
2545 	 * cur_offset == drop_end).
2546 	 */
2547 	if (!extent_info && cur_offset < ino_size &&
2548 	    cur_offset < drop_args.drop_end) {
2549 		ret = fill_holes(trans, inode, path, cur_offset,
2550 				 drop_args.drop_end);
2551 		if (ret) {
2552 			/* Same comment as above. */
2553 			btrfs_abort_transaction(trans, ret);
2554 			goto out_trans;
2555 		}
2556 	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2557 		/* See the comment in the loop above for the reasoning here. */
2558 		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2559 					drop_args.drop_end - cur_offset);
2560 		if (ret) {
2561 			btrfs_abort_transaction(trans, ret);
2562 			goto out_trans;
2563 		}
2564 
2565 	}
2566 	if (extent_info) {
2567 		ret = btrfs_insert_replace_extent(trans, inode, path,
2568 				extent_info, extent_info->data_len,
2569 				drop_args.bytes_found);
2570 		if (ret) {
2571 			btrfs_abort_transaction(trans, ret);
2572 			goto out_trans;
2573 		}
2574 	}
2575 
2576 out_trans:
2577 	if (!trans)
2578 		goto out_free;
2579 
2580 	trans->block_rsv = &fs_info->trans_block_rsv;
2581 	if (ret)
2582 		btrfs_end_transaction(trans);
2583 	else
2584 		*trans_out = trans;
2585 out_free:
2586 	btrfs_free_block_rsv(fs_info, rsv);
2587 out:
2588 	return ret;
2589 }
2590 
2591 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2592 {
2593 	struct inode *inode = file_inode(file);
2594 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2595 	struct btrfs_root *root = BTRFS_I(inode)->root;
2596 	struct extent_state *cached_state = NULL;
2597 	struct btrfs_path *path;
2598 	struct btrfs_trans_handle *trans = NULL;
2599 	u64 lockstart;
2600 	u64 lockend;
2601 	u64 tail_start;
2602 	u64 tail_len;
2603 	u64 orig_start = offset;
2604 	int ret = 0;
2605 	bool same_block;
2606 	u64 ino_size;
2607 	bool truncated_block = false;
2608 	bool updated_inode = false;
2609 
2610 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2611 
2612 	ret = btrfs_wait_ordered_range(inode, offset, len);
2613 	if (ret)
2614 		goto out_only_mutex;
2615 
2616 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2617 	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2618 	if (ret < 0)
2619 		goto out_only_mutex;
2620 	if (ret && !len) {
2621 		/* Already in a large hole */
2622 		ret = 0;
2623 		goto out_only_mutex;
2624 	}
2625 
2626 	ret = file_modified(file);
2627 	if (ret)
2628 		goto out_only_mutex;
2629 
2630 	lockstart = round_up(offset, fs_info->sectorsize);
2631 	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2632 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2633 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2634 	/*
2635 	 * We needn't truncate any block which is beyond the end of the file
2636 	 * because we are sure there is no data there.
2637 	 */
2638 	/*
2639 	 * Only do this if we are in the same block and we aren't doing the
2640 	 * entire block.
2641 	 */
2642 	if (same_block && len < fs_info->sectorsize) {
2643 		if (offset < ino_size) {
2644 			truncated_block = true;
2645 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2646 						   0);
2647 		} else {
2648 			ret = 0;
2649 		}
2650 		goto out_only_mutex;
2651 	}
2652 
2653 	/* zero back part of the first block */
2654 	if (offset < ino_size) {
2655 		truncated_block = true;
2656 		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2657 		if (ret) {
2658 			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2659 			return ret;
2660 		}
2661 	}
2662 
2663 	/* Check the aligned pages after the first unaligned page,
2664 	 * if offset != orig_start, which means the first unaligned page
2665 	 * including several following pages are already in holes,
2666 	 * the extra check can be skipped */
2667 	if (offset == orig_start) {
2668 		/* after truncate page, check hole again */
2669 		len = offset + len - lockstart;
2670 		offset = lockstart;
2671 		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2672 		if (ret < 0)
2673 			goto out_only_mutex;
2674 		if (ret && !len) {
2675 			ret = 0;
2676 			goto out_only_mutex;
2677 		}
2678 		lockstart = offset;
2679 	}
2680 
2681 	/* Check the tail unaligned part is in a hole */
2682 	tail_start = lockend + 1;
2683 	tail_len = offset + len - tail_start;
2684 	if (tail_len) {
2685 		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2686 		if (unlikely(ret < 0))
2687 			goto out_only_mutex;
2688 		if (!ret) {
2689 			/* zero the front end of the last page */
2690 			if (tail_start + tail_len < ino_size) {
2691 				truncated_block = true;
2692 				ret = btrfs_truncate_block(BTRFS_I(inode),
2693 							tail_start + tail_len,
2694 							0, 1);
2695 				if (ret)
2696 					goto out_only_mutex;
2697 			}
2698 		}
2699 	}
2700 
2701 	if (lockend < lockstart) {
2702 		ret = 0;
2703 		goto out_only_mutex;
2704 	}
2705 
2706 	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2707 
2708 	path = btrfs_alloc_path();
2709 	if (!path) {
2710 		ret = -ENOMEM;
2711 		goto out;
2712 	}
2713 
2714 	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2715 					 lockend, NULL, &trans);
2716 	btrfs_free_path(path);
2717 	if (ret)
2718 		goto out;
2719 
2720 	ASSERT(trans != NULL);
2721 	inode_inc_iversion(inode);
2722 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2723 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2724 	updated_inode = true;
2725 	btrfs_end_transaction(trans);
2726 	btrfs_btree_balance_dirty(fs_info);
2727 out:
2728 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2729 		      &cached_state);
2730 out_only_mutex:
2731 	if (!updated_inode && truncated_block && !ret) {
2732 		/*
2733 		 * If we only end up zeroing part of a page, we still need to
2734 		 * update the inode item, so that all the time fields are
2735 		 * updated as well as the necessary btrfs inode in memory fields
2736 		 * for detecting, at fsync time, if the inode isn't yet in the
2737 		 * log tree or it's there but not up to date.
2738 		 */
2739 		struct timespec64 now = inode_set_ctime_current(inode);
2740 
2741 		inode_inc_iversion(inode);
2742 		inode_set_mtime_to_ts(inode, now);
2743 		trans = btrfs_start_transaction(root, 1);
2744 		if (IS_ERR(trans)) {
2745 			ret = PTR_ERR(trans);
2746 		} else {
2747 			int ret2;
2748 
2749 			ret = btrfs_update_inode(trans, BTRFS_I(inode));
2750 			ret2 = btrfs_end_transaction(trans);
2751 			if (!ret)
2752 				ret = ret2;
2753 		}
2754 	}
2755 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2756 	return ret;
2757 }
2758 
2759 /* Helper structure to record which range is already reserved */
2760 struct falloc_range {
2761 	struct list_head list;
2762 	u64 start;
2763 	u64 len;
2764 };
2765 
2766 /*
2767  * Helper function to add falloc range
2768  *
2769  * Caller should have locked the larger range of extent containing
2770  * [start, len)
2771  */
2772 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2773 {
2774 	struct falloc_range *range = NULL;
2775 
2776 	if (!list_empty(head)) {
2777 		/*
2778 		 * As fallocate iterates by bytenr order, we only need to check
2779 		 * the last range.
2780 		 */
2781 		range = list_last_entry(head, struct falloc_range, list);
2782 		if (range->start + range->len == start) {
2783 			range->len += len;
2784 			return 0;
2785 		}
2786 	}
2787 
2788 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2789 	if (!range)
2790 		return -ENOMEM;
2791 	range->start = start;
2792 	range->len = len;
2793 	list_add_tail(&range->list, head);
2794 	return 0;
2795 }
2796 
2797 static int btrfs_fallocate_update_isize(struct inode *inode,
2798 					const u64 end,
2799 					const int mode)
2800 {
2801 	struct btrfs_trans_handle *trans;
2802 	struct btrfs_root *root = BTRFS_I(inode)->root;
2803 	int ret;
2804 	int ret2;
2805 
2806 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2807 		return 0;
2808 
2809 	trans = btrfs_start_transaction(root, 1);
2810 	if (IS_ERR(trans))
2811 		return PTR_ERR(trans);
2812 
2813 	inode_set_ctime_current(inode);
2814 	i_size_write(inode, end);
2815 	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2816 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2817 	ret2 = btrfs_end_transaction(trans);
2818 
2819 	return ret ? ret : ret2;
2820 }
2821 
2822 enum {
2823 	RANGE_BOUNDARY_WRITTEN_EXTENT,
2824 	RANGE_BOUNDARY_PREALLOC_EXTENT,
2825 	RANGE_BOUNDARY_HOLE,
2826 };
2827 
2828 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2829 						 u64 offset)
2830 {
2831 	const u64 sectorsize = inode->root->fs_info->sectorsize;
2832 	struct extent_map *em;
2833 	int ret;
2834 
2835 	offset = round_down(offset, sectorsize);
2836 	em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
2837 	if (IS_ERR(em))
2838 		return PTR_ERR(em);
2839 
2840 	if (em->block_start == EXTENT_MAP_HOLE)
2841 		ret = RANGE_BOUNDARY_HOLE;
2842 	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2843 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2844 	else
2845 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2846 
2847 	free_extent_map(em);
2848 	return ret;
2849 }
2850 
2851 static int btrfs_zero_range(struct inode *inode,
2852 			    loff_t offset,
2853 			    loff_t len,
2854 			    const int mode)
2855 {
2856 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2857 	struct extent_map *em;
2858 	struct extent_changeset *data_reserved = NULL;
2859 	int ret;
2860 	u64 alloc_hint = 0;
2861 	const u64 sectorsize = fs_info->sectorsize;
2862 	u64 alloc_start = round_down(offset, sectorsize);
2863 	u64 alloc_end = round_up(offset + len, sectorsize);
2864 	u64 bytes_to_reserve = 0;
2865 	bool space_reserved = false;
2866 
2867 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2868 			      alloc_end - alloc_start);
2869 	if (IS_ERR(em)) {
2870 		ret = PTR_ERR(em);
2871 		goto out;
2872 	}
2873 
2874 	/*
2875 	 * Avoid hole punching and extent allocation for some cases. More cases
2876 	 * could be considered, but these are unlikely common and we keep things
2877 	 * as simple as possible for now. Also, intentionally, if the target
2878 	 * range contains one or more prealloc extents together with regular
2879 	 * extents and holes, we drop all the existing extents and allocate a
2880 	 * new prealloc extent, so that we get a larger contiguous disk extent.
2881 	 */
2882 	if (em->start <= alloc_start &&
2883 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2884 		const u64 em_end = em->start + em->len;
2885 
2886 		if (em_end >= offset + len) {
2887 			/*
2888 			 * The whole range is already a prealloc extent,
2889 			 * do nothing except updating the inode's i_size if
2890 			 * needed.
2891 			 */
2892 			free_extent_map(em);
2893 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2894 							   mode);
2895 			goto out;
2896 		}
2897 		/*
2898 		 * Part of the range is already a prealloc extent, so operate
2899 		 * only on the remaining part of the range.
2900 		 */
2901 		alloc_start = em_end;
2902 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2903 		len = offset + len - alloc_start;
2904 		offset = alloc_start;
2905 		alloc_hint = em->block_start + em->len;
2906 	}
2907 	free_extent_map(em);
2908 
2909 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2910 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2911 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2912 				      sectorsize);
2913 		if (IS_ERR(em)) {
2914 			ret = PTR_ERR(em);
2915 			goto out;
2916 		}
2917 
2918 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2919 			free_extent_map(em);
2920 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2921 							   mode);
2922 			goto out;
2923 		}
2924 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2925 			free_extent_map(em);
2926 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2927 						   0);
2928 			if (!ret)
2929 				ret = btrfs_fallocate_update_isize(inode,
2930 								   offset + len,
2931 								   mode);
2932 			return ret;
2933 		}
2934 		free_extent_map(em);
2935 		alloc_start = round_down(offset, sectorsize);
2936 		alloc_end = alloc_start + sectorsize;
2937 		goto reserve_space;
2938 	}
2939 
2940 	alloc_start = round_up(offset, sectorsize);
2941 	alloc_end = round_down(offset + len, sectorsize);
2942 
2943 	/*
2944 	 * For unaligned ranges, check the pages at the boundaries, they might
2945 	 * map to an extent, in which case we need to partially zero them, or
2946 	 * they might map to a hole, in which case we need our allocation range
2947 	 * to cover them.
2948 	 */
2949 	if (!IS_ALIGNED(offset, sectorsize)) {
2950 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2951 							    offset);
2952 		if (ret < 0)
2953 			goto out;
2954 		if (ret == RANGE_BOUNDARY_HOLE) {
2955 			alloc_start = round_down(offset, sectorsize);
2956 			ret = 0;
2957 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2958 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2959 			if (ret)
2960 				goto out;
2961 		} else {
2962 			ret = 0;
2963 		}
2964 	}
2965 
2966 	if (!IS_ALIGNED(offset + len, sectorsize)) {
2967 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2968 							    offset + len);
2969 		if (ret < 0)
2970 			goto out;
2971 		if (ret == RANGE_BOUNDARY_HOLE) {
2972 			alloc_end = round_up(offset + len, sectorsize);
2973 			ret = 0;
2974 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2975 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2976 						   0, 1);
2977 			if (ret)
2978 				goto out;
2979 		} else {
2980 			ret = 0;
2981 		}
2982 	}
2983 
2984 reserve_space:
2985 	if (alloc_start < alloc_end) {
2986 		struct extent_state *cached_state = NULL;
2987 		const u64 lockstart = alloc_start;
2988 		const u64 lockend = alloc_end - 1;
2989 
2990 		bytes_to_reserve = alloc_end - alloc_start;
2991 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2992 						      bytes_to_reserve);
2993 		if (ret < 0)
2994 			goto out;
2995 		space_reserved = true;
2996 		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2997 					    &cached_state);
2998 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
2999 						alloc_start, bytes_to_reserve);
3000 		if (ret) {
3001 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3002 				      lockend, &cached_state);
3003 			goto out;
3004 		}
3005 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3006 						alloc_end - alloc_start,
3007 						i_blocksize(inode),
3008 						offset + len, &alloc_hint);
3009 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3010 			      &cached_state);
3011 		/* btrfs_prealloc_file_range releases reserved space on error */
3012 		if (ret) {
3013 			space_reserved = false;
3014 			goto out;
3015 		}
3016 	}
3017 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3018  out:
3019 	if (ret && space_reserved)
3020 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3021 					       alloc_start, bytes_to_reserve);
3022 	extent_changeset_free(data_reserved);
3023 
3024 	return ret;
3025 }
3026 
3027 static long btrfs_fallocate(struct file *file, int mode,
3028 			    loff_t offset, loff_t len)
3029 {
3030 	struct inode *inode = file_inode(file);
3031 	struct extent_state *cached_state = NULL;
3032 	struct extent_changeset *data_reserved = NULL;
3033 	struct falloc_range *range;
3034 	struct falloc_range *tmp;
3035 	LIST_HEAD(reserve_list);
3036 	u64 cur_offset;
3037 	u64 last_byte;
3038 	u64 alloc_start;
3039 	u64 alloc_end;
3040 	u64 alloc_hint = 0;
3041 	u64 locked_end;
3042 	u64 actual_end = 0;
3043 	u64 data_space_needed = 0;
3044 	u64 data_space_reserved = 0;
3045 	u64 qgroup_reserved = 0;
3046 	struct extent_map *em;
3047 	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3048 	int ret;
3049 
3050 	/* Do not allow fallocate in ZONED mode */
3051 	if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3052 		return -EOPNOTSUPP;
3053 
3054 	alloc_start = round_down(offset, blocksize);
3055 	alloc_end = round_up(offset + len, blocksize);
3056 	cur_offset = alloc_start;
3057 
3058 	/* Make sure we aren't being give some crap mode */
3059 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3060 		     FALLOC_FL_ZERO_RANGE))
3061 		return -EOPNOTSUPP;
3062 
3063 	if (mode & FALLOC_FL_PUNCH_HOLE)
3064 		return btrfs_punch_hole(file, offset, len);
3065 
3066 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3067 
3068 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3069 		ret = inode_newsize_ok(inode, offset + len);
3070 		if (ret)
3071 			goto out;
3072 	}
3073 
3074 	ret = file_modified(file);
3075 	if (ret)
3076 		goto out;
3077 
3078 	/*
3079 	 * TODO: Move these two operations after we have checked
3080 	 * accurate reserved space, or fallocate can still fail but
3081 	 * with page truncated or size expanded.
3082 	 *
3083 	 * But that's a minor problem and won't do much harm BTW.
3084 	 */
3085 	if (alloc_start > inode->i_size) {
3086 		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3087 					alloc_start);
3088 		if (ret)
3089 			goto out;
3090 	} else if (offset + len > inode->i_size) {
3091 		/*
3092 		 * If we are fallocating from the end of the file onward we
3093 		 * need to zero out the end of the block if i_size lands in the
3094 		 * middle of a block.
3095 		 */
3096 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3097 		if (ret)
3098 			goto out;
3099 	}
3100 
3101 	/*
3102 	 * We have locked the inode at the VFS level (in exclusive mode) and we
3103 	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3104 	 * locking the file range, flush all dealloc in the range and wait for
3105 	 * all ordered extents in the range to complete. After this we can lock
3106 	 * the file range and, due to the previous locking we did, we know there
3107 	 * can't be more delalloc or ordered extents in the range.
3108 	 */
3109 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3110 				       alloc_end - alloc_start);
3111 	if (ret)
3112 		goto out;
3113 
3114 	if (mode & FALLOC_FL_ZERO_RANGE) {
3115 		ret = btrfs_zero_range(inode, offset, len, mode);
3116 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3117 		return ret;
3118 	}
3119 
3120 	locked_end = alloc_end - 1;
3121 	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3122 		    &cached_state);
3123 
3124 	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3125 
3126 	/* First, check if we exceed the qgroup limit */
3127 	while (cur_offset < alloc_end) {
3128 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3129 				      alloc_end - cur_offset);
3130 		if (IS_ERR(em)) {
3131 			ret = PTR_ERR(em);
3132 			break;
3133 		}
3134 		last_byte = min(extent_map_end(em), alloc_end);
3135 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3136 		last_byte = ALIGN(last_byte, blocksize);
3137 		if (em->block_start == EXTENT_MAP_HOLE ||
3138 		    (cur_offset >= inode->i_size &&
3139 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3140 			const u64 range_len = last_byte - cur_offset;
3141 
3142 			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3143 			if (ret < 0) {
3144 				free_extent_map(em);
3145 				break;
3146 			}
3147 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3148 					&data_reserved, cur_offset, range_len);
3149 			if (ret < 0) {
3150 				free_extent_map(em);
3151 				break;
3152 			}
3153 			qgroup_reserved += range_len;
3154 			data_space_needed += range_len;
3155 		}
3156 		free_extent_map(em);
3157 		cur_offset = last_byte;
3158 	}
3159 
3160 	if (!ret && data_space_needed > 0) {
3161 		/*
3162 		 * We are safe to reserve space here as we can't have delalloc
3163 		 * in the range, see above.
3164 		 */
3165 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3166 						      data_space_needed);
3167 		if (!ret)
3168 			data_space_reserved = data_space_needed;
3169 	}
3170 
3171 	/*
3172 	 * If ret is still 0, means we're OK to fallocate.
3173 	 * Or just cleanup the list and exit.
3174 	 */
3175 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3176 		if (!ret) {
3177 			ret = btrfs_prealloc_file_range(inode, mode,
3178 					range->start,
3179 					range->len, i_blocksize(inode),
3180 					offset + len, &alloc_hint);
3181 			/*
3182 			 * btrfs_prealloc_file_range() releases space even
3183 			 * if it returns an error.
3184 			 */
3185 			data_space_reserved -= range->len;
3186 			qgroup_reserved -= range->len;
3187 		} else if (data_space_reserved > 0) {
3188 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3189 					       data_reserved, range->start,
3190 					       range->len);
3191 			data_space_reserved -= range->len;
3192 			qgroup_reserved -= range->len;
3193 		} else if (qgroup_reserved > 0) {
3194 			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3195 					       range->start, range->len);
3196 			qgroup_reserved -= range->len;
3197 		}
3198 		list_del(&range->list);
3199 		kfree(range);
3200 	}
3201 	if (ret < 0)
3202 		goto out_unlock;
3203 
3204 	/*
3205 	 * We didn't need to allocate any more space, but we still extended the
3206 	 * size of the file so we need to update i_size and the inode item.
3207 	 */
3208 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3209 out_unlock:
3210 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3211 		      &cached_state);
3212 out:
3213 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3214 	extent_changeset_free(data_reserved);
3215 	return ret;
3216 }
3217 
3218 /*
3219  * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3220  * that has unflushed and/or flushing delalloc. There might be other adjacent
3221  * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3222  * looping while it gets adjacent subranges, and merging them together.
3223  */
3224 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3225 				   struct extent_state **cached_state,
3226 				   bool *search_io_tree,
3227 				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3228 {
3229 	u64 len = end + 1 - start;
3230 	u64 delalloc_len = 0;
3231 	struct btrfs_ordered_extent *oe;
3232 	u64 oe_start;
3233 	u64 oe_end;
3234 
3235 	/*
3236 	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3237 	 * means we have delalloc (dirty pages) for which writeback has not
3238 	 * started yet.
3239 	 */
3240 	if (*search_io_tree) {
3241 		spin_lock(&inode->lock);
3242 		if (inode->delalloc_bytes > 0) {
3243 			spin_unlock(&inode->lock);
3244 			*delalloc_start_ret = start;
3245 			delalloc_len = count_range_bits(&inode->io_tree,
3246 							delalloc_start_ret, end,
3247 							len, EXTENT_DELALLOC, 1,
3248 							cached_state);
3249 		} else {
3250 			spin_unlock(&inode->lock);
3251 		}
3252 	}
3253 
3254 	if (delalloc_len > 0) {
3255 		/*
3256 		 * If delalloc was found then *delalloc_start_ret has a sector size
3257 		 * aligned value (rounded down).
3258 		 */
3259 		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3260 
3261 		if (*delalloc_start_ret == start) {
3262 			/* Delalloc for the whole range, nothing more to do. */
3263 			if (*delalloc_end_ret == end)
3264 				return true;
3265 			/* Else trim our search range for ordered extents. */
3266 			start = *delalloc_end_ret + 1;
3267 			len = end + 1 - start;
3268 		}
3269 	} else {
3270 		/* No delalloc, future calls don't need to search again. */
3271 		*search_io_tree = false;
3272 	}
3273 
3274 	/*
3275 	 * Now also check if there's any ordered extent in the range.
3276 	 * We do this because:
3277 	 *
3278 	 * 1) When delalloc is flushed, the file range is locked, we clear the
3279 	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3280 	 *    an ordered extent for the write. So we might just have been called
3281 	 *    after delalloc is flushed and before the ordered extent completes
3282 	 *    and inserts the new file extent item in the subvolume's btree;
3283 	 *
3284 	 * 2) We may have an ordered extent created by flushing delalloc for a
3285 	 *    subrange that starts before the subrange we found marked with
3286 	 *    EXTENT_DELALLOC in the io tree.
3287 	 *
3288 	 * We could also use the extent map tree to find such delalloc that is
3289 	 * being flushed, but using the ordered extents tree is more efficient
3290 	 * because it's usually much smaller as ordered extents are removed from
3291 	 * the tree once they complete. With the extent maps, we mau have them
3292 	 * in the extent map tree for a very long time, and they were either
3293 	 * created by previous writes or loaded by read operations.
3294 	 */
3295 	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3296 	if (!oe)
3297 		return (delalloc_len > 0);
3298 
3299 	/* The ordered extent may span beyond our search range. */
3300 	oe_start = max(oe->file_offset, start);
3301 	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3302 
3303 	btrfs_put_ordered_extent(oe);
3304 
3305 	/* Don't have unflushed delalloc, return the ordered extent range. */
3306 	if (delalloc_len == 0) {
3307 		*delalloc_start_ret = oe_start;
3308 		*delalloc_end_ret = oe_end;
3309 		return true;
3310 	}
3311 
3312 	/*
3313 	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3314 	 * If the ranges are adjacent returned a combined range, otherwise
3315 	 * return the leftmost range.
3316 	 */
3317 	if (oe_start < *delalloc_start_ret) {
3318 		if (oe_end < *delalloc_start_ret)
3319 			*delalloc_end_ret = oe_end;
3320 		*delalloc_start_ret = oe_start;
3321 	} else if (*delalloc_end_ret + 1 == oe_start) {
3322 		*delalloc_end_ret = oe_end;
3323 	}
3324 
3325 	return true;
3326 }
3327 
3328 /*
3329  * Check if there's delalloc in a given range.
3330  *
3331  * @inode:               The inode.
3332  * @start:               The start offset of the range. It does not need to be
3333  *                       sector size aligned.
3334  * @end:                 The end offset (inclusive value) of the search range.
3335  *                       It does not need to be sector size aligned.
3336  * @cached_state:        Extent state record used for speeding up delalloc
3337  *                       searches in the inode's io_tree. Can be NULL.
3338  * @delalloc_start_ret:  Output argument, set to the start offset of the
3339  *                       subrange found with delalloc (may not be sector size
3340  *                       aligned).
3341  * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3342  *                       of the subrange found with delalloc.
3343  *
3344  * Returns true if a subrange with delalloc is found within the given range, and
3345  * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3346  * end offsets of the subrange.
3347  */
3348 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3349 				  struct extent_state **cached_state,
3350 				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3351 {
3352 	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3353 	u64 prev_delalloc_end = 0;
3354 	bool search_io_tree = true;
3355 	bool ret = false;
3356 
3357 	while (cur_offset <= end) {
3358 		u64 delalloc_start;
3359 		u64 delalloc_end;
3360 		bool delalloc;
3361 
3362 		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3363 						  cached_state, &search_io_tree,
3364 						  &delalloc_start,
3365 						  &delalloc_end);
3366 		if (!delalloc)
3367 			break;
3368 
3369 		if (prev_delalloc_end == 0) {
3370 			/* First subrange found. */
3371 			*delalloc_start_ret = max(delalloc_start, start);
3372 			*delalloc_end_ret = delalloc_end;
3373 			ret = true;
3374 		} else if (delalloc_start == prev_delalloc_end + 1) {
3375 			/* Subrange adjacent to the previous one, merge them. */
3376 			*delalloc_end_ret = delalloc_end;
3377 		} else {
3378 			/* Subrange not adjacent to the previous one, exit. */
3379 			break;
3380 		}
3381 
3382 		prev_delalloc_end = delalloc_end;
3383 		cur_offset = delalloc_end + 1;
3384 		cond_resched();
3385 	}
3386 
3387 	return ret;
3388 }
3389 
3390 /*
3391  * Check if there's a hole or delalloc range in a range representing a hole (or
3392  * prealloc extent) found in the inode's subvolume btree.
3393  *
3394  * @inode:      The inode.
3395  * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3396  * @start:      Start offset of the hole region. It does not need to be sector
3397  *              size aligned.
3398  * @end:        End offset (inclusive value) of the hole region. It does not
3399  *              need to be sector size aligned.
3400  * @start_ret:  Return parameter, used to set the start of the subrange in the
3401  *              hole that matches the search criteria (seek mode), if such
3402  *              subrange is found (return value of the function is true).
3403  *              The value returned here may not be sector size aligned.
3404  *
3405  * Returns true if a subrange matching the given seek mode is found, and if one
3406  * is found, it updates @start_ret with the start of the subrange.
3407  */
3408 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3409 					struct extent_state **cached_state,
3410 					u64 start, u64 end, u64 *start_ret)
3411 {
3412 	u64 delalloc_start;
3413 	u64 delalloc_end;
3414 	bool delalloc;
3415 
3416 	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3417 						&delalloc_start, &delalloc_end);
3418 	if (delalloc && whence == SEEK_DATA) {
3419 		*start_ret = delalloc_start;
3420 		return true;
3421 	}
3422 
3423 	if (delalloc && whence == SEEK_HOLE) {
3424 		/*
3425 		 * We found delalloc but it starts after out start offset. So we
3426 		 * have a hole between our start offset and the delalloc start.
3427 		 */
3428 		if (start < delalloc_start) {
3429 			*start_ret = start;
3430 			return true;
3431 		}
3432 		/*
3433 		 * Delalloc range starts at our start offset.
3434 		 * If the delalloc range's length is smaller than our range,
3435 		 * then it means we have a hole that starts where the delalloc
3436 		 * subrange ends.
3437 		 */
3438 		if (delalloc_end < end) {
3439 			*start_ret = delalloc_end + 1;
3440 			return true;
3441 		}
3442 
3443 		/* There's delalloc for the whole range. */
3444 		return false;
3445 	}
3446 
3447 	if (!delalloc && whence == SEEK_HOLE) {
3448 		*start_ret = start;
3449 		return true;
3450 	}
3451 
3452 	/*
3453 	 * No delalloc in the range and we are seeking for data. The caller has
3454 	 * to iterate to the next extent item in the subvolume btree.
3455 	 */
3456 	return false;
3457 }
3458 
3459 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3460 {
3461 	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3462 	struct btrfs_file_private *private = file->private_data;
3463 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3464 	struct extent_state *cached_state = NULL;
3465 	struct extent_state **delalloc_cached_state;
3466 	const loff_t i_size = i_size_read(&inode->vfs_inode);
3467 	const u64 ino = btrfs_ino(inode);
3468 	struct btrfs_root *root = inode->root;
3469 	struct btrfs_path *path;
3470 	struct btrfs_key key;
3471 	u64 last_extent_end;
3472 	u64 lockstart;
3473 	u64 lockend;
3474 	u64 start;
3475 	int ret;
3476 	bool found = false;
3477 
3478 	if (i_size == 0 || offset >= i_size)
3479 		return -ENXIO;
3480 
3481 	/*
3482 	 * Quick path. If the inode has no prealloc extents and its number of
3483 	 * bytes used matches its i_size, then it can not have holes.
3484 	 */
3485 	if (whence == SEEK_HOLE &&
3486 	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3487 	    inode_get_bytes(&inode->vfs_inode) == i_size)
3488 		return i_size;
3489 
3490 	if (!private) {
3491 		private = kzalloc(sizeof(*private), GFP_KERNEL);
3492 		/*
3493 		 * No worries if memory allocation failed.
3494 		 * The private structure is used only for speeding up multiple
3495 		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3496 		 * so everything will still be correct.
3497 		 */
3498 		file->private_data = private;
3499 	}
3500 
3501 	if (private)
3502 		delalloc_cached_state = &private->llseek_cached_state;
3503 	else
3504 		delalloc_cached_state = NULL;
3505 
3506 	/*
3507 	 * offset can be negative, in this case we start finding DATA/HOLE from
3508 	 * the very start of the file.
3509 	 */
3510 	start = max_t(loff_t, 0, offset);
3511 
3512 	lockstart = round_down(start, fs_info->sectorsize);
3513 	lockend = round_up(i_size, fs_info->sectorsize);
3514 	if (lockend <= lockstart)
3515 		lockend = lockstart + fs_info->sectorsize;
3516 	lockend--;
3517 
3518 	path = btrfs_alloc_path();
3519 	if (!path)
3520 		return -ENOMEM;
3521 	path->reada = READA_FORWARD;
3522 
3523 	key.objectid = ino;
3524 	key.type = BTRFS_EXTENT_DATA_KEY;
3525 	key.offset = start;
3526 
3527 	last_extent_end = lockstart;
3528 
3529 	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3530 
3531 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3532 	if (ret < 0) {
3533 		goto out;
3534 	} else if (ret > 0 && path->slots[0] > 0) {
3535 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3536 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3537 			path->slots[0]--;
3538 	}
3539 
3540 	while (start < i_size) {
3541 		struct extent_buffer *leaf = path->nodes[0];
3542 		struct btrfs_file_extent_item *extent;
3543 		u64 extent_end;
3544 		u8 type;
3545 
3546 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3547 			ret = btrfs_next_leaf(root, path);
3548 			if (ret < 0)
3549 				goto out;
3550 			else if (ret > 0)
3551 				break;
3552 
3553 			leaf = path->nodes[0];
3554 		}
3555 
3556 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3557 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3558 			break;
3559 
3560 		extent_end = btrfs_file_extent_end(path);
3561 
3562 		/*
3563 		 * In the first iteration we may have a slot that points to an
3564 		 * extent that ends before our start offset, so skip it.
3565 		 */
3566 		if (extent_end <= start) {
3567 			path->slots[0]++;
3568 			continue;
3569 		}
3570 
3571 		/* We have an implicit hole, NO_HOLES feature is likely set. */
3572 		if (last_extent_end < key.offset) {
3573 			u64 search_start = last_extent_end;
3574 			u64 found_start;
3575 
3576 			/*
3577 			 * First iteration, @start matches @offset and it's
3578 			 * within the hole.
3579 			 */
3580 			if (start == offset)
3581 				search_start = offset;
3582 
3583 			found = find_desired_extent_in_hole(inode, whence,
3584 							    delalloc_cached_state,
3585 							    search_start,
3586 							    key.offset - 1,
3587 							    &found_start);
3588 			if (found) {
3589 				start = found_start;
3590 				break;
3591 			}
3592 			/*
3593 			 * Didn't find data or a hole (due to delalloc) in the
3594 			 * implicit hole range, so need to analyze the extent.
3595 			 */
3596 		}
3597 
3598 		extent = btrfs_item_ptr(leaf, path->slots[0],
3599 					struct btrfs_file_extent_item);
3600 		type = btrfs_file_extent_type(leaf, extent);
3601 
3602 		/*
3603 		 * Can't access the extent's disk_bytenr field if this is an
3604 		 * inline extent, since at that offset, it's where the extent
3605 		 * data starts.
3606 		 */
3607 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3608 		    (type == BTRFS_FILE_EXTENT_REG &&
3609 		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3610 			/*
3611 			 * Explicit hole or prealloc extent, search for delalloc.
3612 			 * A prealloc extent is treated like a hole.
3613 			 */
3614 			u64 search_start = key.offset;
3615 			u64 found_start;
3616 
3617 			/*
3618 			 * First iteration, @start matches @offset and it's
3619 			 * within the hole.
3620 			 */
3621 			if (start == offset)
3622 				search_start = offset;
3623 
3624 			found = find_desired_extent_in_hole(inode, whence,
3625 							    delalloc_cached_state,
3626 							    search_start,
3627 							    extent_end - 1,
3628 							    &found_start);
3629 			if (found) {
3630 				start = found_start;
3631 				break;
3632 			}
3633 			/*
3634 			 * Didn't find data or a hole (due to delalloc) in the
3635 			 * implicit hole range, so need to analyze the next
3636 			 * extent item.
3637 			 */
3638 		} else {
3639 			/*
3640 			 * Found a regular or inline extent.
3641 			 * If we are seeking for data, adjust the start offset
3642 			 * and stop, we're done.
3643 			 */
3644 			if (whence == SEEK_DATA) {
3645 				start = max_t(u64, key.offset, offset);
3646 				found = true;
3647 				break;
3648 			}
3649 			/*
3650 			 * Else, we are seeking for a hole, check the next file
3651 			 * extent item.
3652 			 */
3653 		}
3654 
3655 		start = extent_end;
3656 		last_extent_end = extent_end;
3657 		path->slots[0]++;
3658 		if (fatal_signal_pending(current)) {
3659 			ret = -EINTR;
3660 			goto out;
3661 		}
3662 		cond_resched();
3663 	}
3664 
3665 	/* We have an implicit hole from the last extent found up to i_size. */
3666 	if (!found && start < i_size) {
3667 		found = find_desired_extent_in_hole(inode, whence,
3668 						    delalloc_cached_state, start,
3669 						    i_size - 1, &start);
3670 		if (!found)
3671 			start = i_size;
3672 	}
3673 
3674 out:
3675 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3676 	btrfs_free_path(path);
3677 
3678 	if (ret < 0)
3679 		return ret;
3680 
3681 	if (whence == SEEK_DATA && start >= i_size)
3682 		return -ENXIO;
3683 
3684 	return min_t(loff_t, start, i_size);
3685 }
3686 
3687 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3688 {
3689 	struct inode *inode = file->f_mapping->host;
3690 
3691 	switch (whence) {
3692 	default:
3693 		return generic_file_llseek(file, offset, whence);
3694 	case SEEK_DATA:
3695 	case SEEK_HOLE:
3696 		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3697 		offset = find_desired_extent(file, offset, whence);
3698 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3699 		break;
3700 	}
3701 
3702 	if (offset < 0)
3703 		return offset;
3704 
3705 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3706 }
3707 
3708 static int btrfs_file_open(struct inode *inode, struct file *filp)
3709 {
3710 	int ret;
3711 
3712 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
3713 		        FMODE_CAN_ODIRECT;
3714 
3715 	ret = fsverity_file_open(inode, filp);
3716 	if (ret)
3717 		return ret;
3718 	return generic_file_open(inode, filp);
3719 }
3720 
3721 static int check_direct_read(struct btrfs_fs_info *fs_info,
3722 			     const struct iov_iter *iter, loff_t offset)
3723 {
3724 	int ret;
3725 	int i, seg;
3726 
3727 	ret = check_direct_IO(fs_info, iter, offset);
3728 	if (ret < 0)
3729 		return ret;
3730 
3731 	if (!iter_is_iovec(iter))
3732 		return 0;
3733 
3734 	for (seg = 0; seg < iter->nr_segs; seg++) {
3735 		for (i = seg + 1; i < iter->nr_segs; i++) {
3736 			const struct iovec *iov1 = iter_iov(iter) + seg;
3737 			const struct iovec *iov2 = iter_iov(iter) + i;
3738 
3739 			if (iov1->iov_base == iov2->iov_base)
3740 				return -EINVAL;
3741 		}
3742 	}
3743 	return 0;
3744 }
3745 
3746 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3747 {
3748 	struct inode *inode = file_inode(iocb->ki_filp);
3749 	size_t prev_left = 0;
3750 	ssize_t read = 0;
3751 	ssize_t ret;
3752 
3753 	if (fsverity_active(inode))
3754 		return 0;
3755 
3756 	if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3757 		return 0;
3758 
3759 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3760 again:
3761 	/*
3762 	 * This is similar to what we do for direct IO writes, see the comment
3763 	 * at btrfs_direct_write(), but we also disable page faults in addition
3764 	 * to disabling them only at the iov_iter level. This is because when
3765 	 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3766 	 * which can still trigger page fault ins despite having set ->nofault
3767 	 * to true of our 'to' iov_iter.
3768 	 *
3769 	 * The difference to direct IO writes is that we deadlock when trying
3770 	 * to lock the extent range in the inode's tree during he page reads
3771 	 * triggered by the fault in (while for writes it is due to waiting for
3772 	 * our own ordered extent). This is because for direct IO reads,
3773 	 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3774 	 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3775 	 */
3776 	pagefault_disable();
3777 	to->nofault = true;
3778 	ret = btrfs_dio_read(iocb, to, read);
3779 	to->nofault = false;
3780 	pagefault_enable();
3781 
3782 	/* No increment (+=) because iomap returns a cumulative value. */
3783 	if (ret > 0)
3784 		read = ret;
3785 
3786 	if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3787 		const size_t left = iov_iter_count(to);
3788 
3789 		if (left == prev_left) {
3790 			/*
3791 			 * We didn't make any progress since the last attempt,
3792 			 * fallback to a buffered read for the remainder of the
3793 			 * range. This is just to avoid any possibility of looping
3794 			 * for too long.
3795 			 */
3796 			ret = read;
3797 		} else {
3798 			/*
3799 			 * We made some progress since the last retry or this is
3800 			 * the first time we are retrying. Fault in as many pages
3801 			 * as possible and retry.
3802 			 */
3803 			fault_in_iov_iter_writeable(to, left);
3804 			prev_left = left;
3805 			goto again;
3806 		}
3807 	}
3808 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3809 	return ret < 0 ? ret : read;
3810 }
3811 
3812 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3813 {
3814 	ssize_t ret = 0;
3815 
3816 	if (iocb->ki_flags & IOCB_DIRECT) {
3817 		ret = btrfs_direct_read(iocb, to);
3818 		if (ret < 0 || !iov_iter_count(to) ||
3819 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3820 			return ret;
3821 	}
3822 
3823 	return filemap_read(iocb, to, ret);
3824 }
3825 
3826 const struct file_operations btrfs_file_operations = {
3827 	.llseek		= btrfs_file_llseek,
3828 	.read_iter      = btrfs_file_read_iter,
3829 	.splice_read	= filemap_splice_read,
3830 	.write_iter	= btrfs_file_write_iter,
3831 	.splice_write	= iter_file_splice_write,
3832 	.mmap		= btrfs_file_mmap,
3833 	.open		= btrfs_file_open,
3834 	.release	= btrfs_release_file,
3835 	.get_unmapped_area = thp_get_unmapped_area,
3836 	.fsync		= btrfs_sync_file,
3837 	.fallocate	= btrfs_fallocate,
3838 	.unlocked_ioctl	= btrfs_ioctl,
3839 #ifdef CONFIG_COMPAT
3840 	.compat_ioctl	= btrfs_compat_ioctl,
3841 #endif
3842 	.remap_file_range = btrfs_remap_file_range,
3843 };
3844 
3845 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3846 {
3847 	int ret;
3848 
3849 	/*
3850 	 * So with compression we will find and lock a dirty page and clear the
3851 	 * first one as dirty, setup an async extent, and immediately return
3852 	 * with the entire range locked but with nobody actually marked with
3853 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3854 	 * expect it to work since it will just kick off a thread to do the
3855 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3856 	 * since it will wait on the page lock, which won't be unlocked until
3857 	 * after the pages have been marked as writeback and so we're good to go
3858 	 * from there.  We have to do this otherwise we'll miss the ordered
3859 	 * extents and that results in badness.  Please Josef, do not think you
3860 	 * know better and pull this out at some point in the future, it is
3861 	 * right and you are wrong.
3862 	 */
3863 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3864 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3865 			     &BTRFS_I(inode)->runtime_flags))
3866 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3867 
3868 	return ret;
3869 }
3870