1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include <linux/iomap.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "btrfs_inode.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "qgroup.h" 28 #include "compression.h" 29 #include "delalloc-space.h" 30 #include "reflink.h" 31 #include "subpage.h" 32 #include "fs.h" 33 #include "accessors.h" 34 #include "extent-tree.h" 35 #include "file-item.h" 36 #include "ioctl.h" 37 #include "file.h" 38 #include "super.h" 39 40 /* simple helper to fault in pages and copy. This should go away 41 * and be replaced with calls into generic code. 42 */ 43 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 44 struct page **prepared_pages, 45 struct iov_iter *i) 46 { 47 size_t copied = 0; 48 size_t total_copied = 0; 49 int pg = 0; 50 int offset = offset_in_page(pos); 51 52 while (write_bytes > 0) { 53 size_t count = min_t(size_t, 54 PAGE_SIZE - offset, write_bytes); 55 struct page *page = prepared_pages[pg]; 56 /* 57 * Copy data from userspace to the current page 58 */ 59 copied = copy_page_from_iter_atomic(page, offset, count, i); 60 61 /* Flush processor's dcache for this page */ 62 flush_dcache_page(page); 63 64 /* 65 * if we get a partial write, we can end up with 66 * partially up to date pages. These add 67 * a lot of complexity, so make sure they don't 68 * happen by forcing this copy to be retried. 69 * 70 * The rest of the btrfs_file_write code will fall 71 * back to page at a time copies after we return 0. 72 */ 73 if (unlikely(copied < count)) { 74 if (!PageUptodate(page)) { 75 iov_iter_revert(i, copied); 76 copied = 0; 77 } 78 if (!copied) 79 break; 80 } 81 82 write_bytes -= copied; 83 total_copied += copied; 84 offset += copied; 85 if (offset == PAGE_SIZE) { 86 pg++; 87 offset = 0; 88 } 89 } 90 return total_copied; 91 } 92 93 /* 94 * unlocks pages after btrfs_file_write is done with them 95 */ 96 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 97 struct page **pages, size_t num_pages, 98 u64 pos, u64 copied) 99 { 100 size_t i; 101 u64 block_start = round_down(pos, fs_info->sectorsize); 102 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 103 104 ASSERT(block_len <= U32_MAX); 105 for (i = 0; i < num_pages; i++) { 106 /* page checked is some magic around finding pages that 107 * have been modified without going through btrfs_set_page_dirty 108 * clear it here. There should be no need to mark the pages 109 * accessed as prepare_pages should have marked them accessed 110 * in prepare_pages via find_or_create_page() 111 */ 112 btrfs_folio_clamp_clear_checked(fs_info, page_folio(pages[i]), 113 block_start, block_len); 114 unlock_page(pages[i]); 115 put_page(pages[i]); 116 } 117 } 118 119 /* 120 * After btrfs_copy_from_user(), update the following things for delalloc: 121 * - Mark newly dirtied pages as DELALLOC in the io tree. 122 * Used to advise which range is to be written back. 123 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 124 * - Update inode size for past EOF write 125 */ 126 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 127 size_t num_pages, loff_t pos, size_t write_bytes, 128 struct extent_state **cached, bool noreserve) 129 { 130 struct btrfs_fs_info *fs_info = inode->root->fs_info; 131 int err = 0; 132 int i; 133 u64 num_bytes; 134 u64 start_pos; 135 u64 end_of_last_block; 136 u64 end_pos = pos + write_bytes; 137 loff_t isize = i_size_read(&inode->vfs_inode); 138 unsigned int extra_bits = 0; 139 140 if (write_bytes == 0) 141 return 0; 142 143 if (noreserve) 144 extra_bits |= EXTENT_NORESERVE; 145 146 start_pos = round_down(pos, fs_info->sectorsize); 147 num_bytes = round_up(write_bytes + pos - start_pos, 148 fs_info->sectorsize); 149 ASSERT(num_bytes <= U32_MAX); 150 151 end_of_last_block = start_pos + num_bytes - 1; 152 153 /* 154 * The pages may have already been dirty, clear out old accounting so 155 * we can set things up properly 156 */ 157 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 158 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 159 cached); 160 161 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 162 extra_bits, cached); 163 if (err) 164 return err; 165 166 for (i = 0; i < num_pages; i++) { 167 struct page *p = pages[i]; 168 169 btrfs_folio_clamp_set_uptodate(fs_info, page_folio(p), 170 start_pos, num_bytes); 171 btrfs_folio_clamp_clear_checked(fs_info, page_folio(p), 172 start_pos, num_bytes); 173 btrfs_folio_clamp_set_dirty(fs_info, page_folio(p), 174 start_pos, num_bytes); 175 } 176 177 /* 178 * we've only changed i_size in ram, and we haven't updated 179 * the disk i_size. There is no need to log the inode 180 * at this time. 181 */ 182 if (end_pos > isize) 183 i_size_write(&inode->vfs_inode, end_pos); 184 return 0; 185 } 186 187 /* 188 * this is very complex, but the basic idea is to drop all extents 189 * in the range start - end. hint_block is filled in with a block number 190 * that would be a good hint to the block allocator for this file. 191 * 192 * If an extent intersects the range but is not entirely inside the range 193 * it is either truncated or split. Anything entirely inside the range 194 * is deleted from the tree. 195 * 196 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 197 * to deal with that. We set the field 'bytes_found' of the arguments structure 198 * with the number of allocated bytes found in the target range, so that the 199 * caller can update the inode's number of bytes in an atomic way when 200 * replacing extents in a range to avoid races with stat(2). 201 */ 202 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 203 struct btrfs_root *root, struct btrfs_inode *inode, 204 struct btrfs_drop_extents_args *args) 205 { 206 struct btrfs_fs_info *fs_info = root->fs_info; 207 struct extent_buffer *leaf; 208 struct btrfs_file_extent_item *fi; 209 struct btrfs_ref ref = { 0 }; 210 struct btrfs_key key; 211 struct btrfs_key new_key; 212 u64 ino = btrfs_ino(inode); 213 u64 search_start = args->start; 214 u64 disk_bytenr = 0; 215 u64 num_bytes = 0; 216 u64 extent_offset = 0; 217 u64 extent_end = 0; 218 u64 last_end = args->start; 219 int del_nr = 0; 220 int del_slot = 0; 221 int extent_type; 222 int recow; 223 int ret; 224 int modify_tree = -1; 225 int update_refs; 226 int found = 0; 227 struct btrfs_path *path = args->path; 228 229 args->bytes_found = 0; 230 args->extent_inserted = false; 231 232 /* Must always have a path if ->replace_extent is true */ 233 ASSERT(!(args->replace_extent && !args->path)); 234 235 if (!path) { 236 path = btrfs_alloc_path(); 237 if (!path) { 238 ret = -ENOMEM; 239 goto out; 240 } 241 } 242 243 if (args->drop_cache) 244 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); 245 246 if (args->start >= inode->disk_i_size && !args->replace_extent) 247 modify_tree = 0; 248 249 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 250 while (1) { 251 recow = 0; 252 ret = btrfs_lookup_file_extent(trans, root, path, ino, 253 search_start, modify_tree); 254 if (ret < 0) 255 break; 256 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 257 leaf = path->nodes[0]; 258 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 259 if (key.objectid == ino && 260 key.type == BTRFS_EXTENT_DATA_KEY) 261 path->slots[0]--; 262 } 263 ret = 0; 264 next_slot: 265 leaf = path->nodes[0]; 266 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 267 BUG_ON(del_nr > 0); 268 ret = btrfs_next_leaf(root, path); 269 if (ret < 0) 270 break; 271 if (ret > 0) { 272 ret = 0; 273 break; 274 } 275 leaf = path->nodes[0]; 276 recow = 1; 277 } 278 279 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 280 281 if (key.objectid > ino) 282 break; 283 if (WARN_ON_ONCE(key.objectid < ino) || 284 key.type < BTRFS_EXTENT_DATA_KEY) { 285 ASSERT(del_nr == 0); 286 path->slots[0]++; 287 goto next_slot; 288 } 289 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 290 break; 291 292 fi = btrfs_item_ptr(leaf, path->slots[0], 293 struct btrfs_file_extent_item); 294 extent_type = btrfs_file_extent_type(leaf, fi); 295 296 if (extent_type == BTRFS_FILE_EXTENT_REG || 297 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 298 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 299 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 300 extent_offset = btrfs_file_extent_offset(leaf, fi); 301 extent_end = key.offset + 302 btrfs_file_extent_num_bytes(leaf, fi); 303 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 304 extent_end = key.offset + 305 btrfs_file_extent_ram_bytes(leaf, fi); 306 } else { 307 /* can't happen */ 308 BUG(); 309 } 310 311 /* 312 * Don't skip extent items representing 0 byte lengths. They 313 * used to be created (bug) if while punching holes we hit 314 * -ENOSPC condition. So if we find one here, just ensure we 315 * delete it, otherwise we would insert a new file extent item 316 * with the same key (offset) as that 0 bytes length file 317 * extent item in the call to setup_items_for_insert() later 318 * in this function. 319 */ 320 if (extent_end == key.offset && extent_end >= search_start) { 321 last_end = extent_end; 322 goto delete_extent_item; 323 } 324 325 if (extent_end <= search_start) { 326 path->slots[0]++; 327 goto next_slot; 328 } 329 330 found = 1; 331 search_start = max(key.offset, args->start); 332 if (recow || !modify_tree) { 333 modify_tree = -1; 334 btrfs_release_path(path); 335 continue; 336 } 337 338 /* 339 * | - range to drop - | 340 * | -------- extent -------- | 341 */ 342 if (args->start > key.offset && args->end < extent_end) { 343 BUG_ON(del_nr > 0); 344 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 345 ret = -EOPNOTSUPP; 346 break; 347 } 348 349 memcpy(&new_key, &key, sizeof(new_key)); 350 new_key.offset = args->start; 351 ret = btrfs_duplicate_item(trans, root, path, 352 &new_key); 353 if (ret == -EAGAIN) { 354 btrfs_release_path(path); 355 continue; 356 } 357 if (ret < 0) 358 break; 359 360 leaf = path->nodes[0]; 361 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 362 struct btrfs_file_extent_item); 363 btrfs_set_file_extent_num_bytes(leaf, fi, 364 args->start - key.offset); 365 366 fi = btrfs_item_ptr(leaf, path->slots[0], 367 struct btrfs_file_extent_item); 368 369 extent_offset += args->start - key.offset; 370 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 371 btrfs_set_file_extent_num_bytes(leaf, fi, 372 extent_end - args->start); 373 btrfs_mark_buffer_dirty(trans, leaf); 374 375 if (update_refs && disk_bytenr > 0) { 376 btrfs_init_generic_ref(&ref, 377 BTRFS_ADD_DELAYED_REF, 378 disk_bytenr, num_bytes, 0, 379 root->root_key.objectid); 380 btrfs_init_data_ref(&ref, 381 root->root_key.objectid, 382 new_key.objectid, 383 args->start - extent_offset, 384 0, false); 385 ret = btrfs_inc_extent_ref(trans, &ref); 386 if (ret) { 387 btrfs_abort_transaction(trans, ret); 388 break; 389 } 390 } 391 key.offset = args->start; 392 } 393 /* 394 * From here on out we will have actually dropped something, so 395 * last_end can be updated. 396 */ 397 last_end = extent_end; 398 399 /* 400 * | ---- range to drop ----- | 401 * | -------- extent -------- | 402 */ 403 if (args->start <= key.offset && args->end < extent_end) { 404 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 405 ret = -EOPNOTSUPP; 406 break; 407 } 408 409 memcpy(&new_key, &key, sizeof(new_key)); 410 new_key.offset = args->end; 411 btrfs_set_item_key_safe(trans, path, &new_key); 412 413 extent_offset += args->end - key.offset; 414 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 415 btrfs_set_file_extent_num_bytes(leaf, fi, 416 extent_end - args->end); 417 btrfs_mark_buffer_dirty(trans, leaf); 418 if (update_refs && disk_bytenr > 0) 419 args->bytes_found += args->end - key.offset; 420 break; 421 } 422 423 search_start = extent_end; 424 /* 425 * | ---- range to drop ----- | 426 * | -------- extent -------- | 427 */ 428 if (args->start > key.offset && args->end >= extent_end) { 429 BUG_ON(del_nr > 0); 430 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 431 ret = -EOPNOTSUPP; 432 break; 433 } 434 435 btrfs_set_file_extent_num_bytes(leaf, fi, 436 args->start - key.offset); 437 btrfs_mark_buffer_dirty(trans, leaf); 438 if (update_refs && disk_bytenr > 0) 439 args->bytes_found += extent_end - args->start; 440 if (args->end == extent_end) 441 break; 442 443 path->slots[0]++; 444 goto next_slot; 445 } 446 447 /* 448 * | ---- range to drop ----- | 449 * | ------ extent ------ | 450 */ 451 if (args->start <= key.offset && args->end >= extent_end) { 452 delete_extent_item: 453 if (del_nr == 0) { 454 del_slot = path->slots[0]; 455 del_nr = 1; 456 } else { 457 BUG_ON(del_slot + del_nr != path->slots[0]); 458 del_nr++; 459 } 460 461 if (update_refs && 462 extent_type == BTRFS_FILE_EXTENT_INLINE) { 463 args->bytes_found += extent_end - key.offset; 464 extent_end = ALIGN(extent_end, 465 fs_info->sectorsize); 466 } else if (update_refs && disk_bytenr > 0) { 467 btrfs_init_generic_ref(&ref, 468 BTRFS_DROP_DELAYED_REF, 469 disk_bytenr, num_bytes, 0, 470 root->root_key.objectid); 471 btrfs_init_data_ref(&ref, 472 root->root_key.objectid, 473 key.objectid, 474 key.offset - extent_offset, 0, 475 false); 476 ret = btrfs_free_extent(trans, &ref); 477 if (ret) { 478 btrfs_abort_transaction(trans, ret); 479 break; 480 } 481 args->bytes_found += extent_end - key.offset; 482 } 483 484 if (args->end == extent_end) 485 break; 486 487 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 488 path->slots[0]++; 489 goto next_slot; 490 } 491 492 ret = btrfs_del_items(trans, root, path, del_slot, 493 del_nr); 494 if (ret) { 495 btrfs_abort_transaction(trans, ret); 496 break; 497 } 498 499 del_nr = 0; 500 del_slot = 0; 501 502 btrfs_release_path(path); 503 continue; 504 } 505 506 BUG(); 507 } 508 509 if (!ret && del_nr > 0) { 510 /* 511 * Set path->slots[0] to first slot, so that after the delete 512 * if items are move off from our leaf to its immediate left or 513 * right neighbor leafs, we end up with a correct and adjusted 514 * path->slots[0] for our insertion (if args->replace_extent). 515 */ 516 path->slots[0] = del_slot; 517 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 518 if (ret) 519 btrfs_abort_transaction(trans, ret); 520 } 521 522 leaf = path->nodes[0]; 523 /* 524 * If btrfs_del_items() was called, it might have deleted a leaf, in 525 * which case it unlocked our path, so check path->locks[0] matches a 526 * write lock. 527 */ 528 if (!ret && args->replace_extent && 529 path->locks[0] == BTRFS_WRITE_LOCK && 530 btrfs_leaf_free_space(leaf) >= 531 sizeof(struct btrfs_item) + args->extent_item_size) { 532 533 key.objectid = ino; 534 key.type = BTRFS_EXTENT_DATA_KEY; 535 key.offset = args->start; 536 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 537 struct btrfs_key slot_key; 538 539 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 540 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 541 path->slots[0]++; 542 } 543 btrfs_setup_item_for_insert(trans, root, path, &key, 544 args->extent_item_size); 545 args->extent_inserted = true; 546 } 547 548 if (!args->path) 549 btrfs_free_path(path); 550 else if (!args->extent_inserted) 551 btrfs_release_path(path); 552 out: 553 args->drop_end = found ? min(args->end, last_end) : args->end; 554 555 return ret; 556 } 557 558 static int extent_mergeable(struct extent_buffer *leaf, int slot, 559 u64 objectid, u64 bytenr, u64 orig_offset, 560 u64 *start, u64 *end) 561 { 562 struct btrfs_file_extent_item *fi; 563 struct btrfs_key key; 564 u64 extent_end; 565 566 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 567 return 0; 568 569 btrfs_item_key_to_cpu(leaf, &key, slot); 570 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 571 return 0; 572 573 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 574 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 575 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 576 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 577 btrfs_file_extent_compression(leaf, fi) || 578 btrfs_file_extent_encryption(leaf, fi) || 579 btrfs_file_extent_other_encoding(leaf, fi)) 580 return 0; 581 582 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 583 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 584 return 0; 585 586 *start = key.offset; 587 *end = extent_end; 588 return 1; 589 } 590 591 /* 592 * Mark extent in the range start - end as written. 593 * 594 * This changes extent type from 'pre-allocated' to 'regular'. If only 595 * part of extent is marked as written, the extent will be split into 596 * two or three. 597 */ 598 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 599 struct btrfs_inode *inode, u64 start, u64 end) 600 { 601 struct btrfs_root *root = inode->root; 602 struct extent_buffer *leaf; 603 struct btrfs_path *path; 604 struct btrfs_file_extent_item *fi; 605 struct btrfs_ref ref = { 0 }; 606 struct btrfs_key key; 607 struct btrfs_key new_key; 608 u64 bytenr; 609 u64 num_bytes; 610 u64 extent_end; 611 u64 orig_offset; 612 u64 other_start; 613 u64 other_end; 614 u64 split; 615 int del_nr = 0; 616 int del_slot = 0; 617 int recow; 618 int ret = 0; 619 u64 ino = btrfs_ino(inode); 620 621 path = btrfs_alloc_path(); 622 if (!path) 623 return -ENOMEM; 624 again: 625 recow = 0; 626 split = start; 627 key.objectid = ino; 628 key.type = BTRFS_EXTENT_DATA_KEY; 629 key.offset = split; 630 631 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 632 if (ret < 0) 633 goto out; 634 if (ret > 0 && path->slots[0] > 0) 635 path->slots[0]--; 636 637 leaf = path->nodes[0]; 638 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 639 if (key.objectid != ino || 640 key.type != BTRFS_EXTENT_DATA_KEY) { 641 ret = -EINVAL; 642 btrfs_abort_transaction(trans, ret); 643 goto out; 644 } 645 fi = btrfs_item_ptr(leaf, path->slots[0], 646 struct btrfs_file_extent_item); 647 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 648 ret = -EINVAL; 649 btrfs_abort_transaction(trans, ret); 650 goto out; 651 } 652 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 653 if (key.offset > start || extent_end < end) { 654 ret = -EINVAL; 655 btrfs_abort_transaction(trans, ret); 656 goto out; 657 } 658 659 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 660 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 661 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 662 memcpy(&new_key, &key, sizeof(new_key)); 663 664 if (start == key.offset && end < extent_end) { 665 other_start = 0; 666 other_end = start; 667 if (extent_mergeable(leaf, path->slots[0] - 1, 668 ino, bytenr, orig_offset, 669 &other_start, &other_end)) { 670 new_key.offset = end; 671 btrfs_set_item_key_safe(trans, path, &new_key); 672 fi = btrfs_item_ptr(leaf, path->slots[0], 673 struct btrfs_file_extent_item); 674 btrfs_set_file_extent_generation(leaf, fi, 675 trans->transid); 676 btrfs_set_file_extent_num_bytes(leaf, fi, 677 extent_end - end); 678 btrfs_set_file_extent_offset(leaf, fi, 679 end - orig_offset); 680 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 681 struct btrfs_file_extent_item); 682 btrfs_set_file_extent_generation(leaf, fi, 683 trans->transid); 684 btrfs_set_file_extent_num_bytes(leaf, fi, 685 end - other_start); 686 btrfs_mark_buffer_dirty(trans, leaf); 687 goto out; 688 } 689 } 690 691 if (start > key.offset && end == extent_end) { 692 other_start = end; 693 other_end = 0; 694 if (extent_mergeable(leaf, path->slots[0] + 1, 695 ino, bytenr, orig_offset, 696 &other_start, &other_end)) { 697 fi = btrfs_item_ptr(leaf, path->slots[0], 698 struct btrfs_file_extent_item); 699 btrfs_set_file_extent_num_bytes(leaf, fi, 700 start - key.offset); 701 btrfs_set_file_extent_generation(leaf, fi, 702 trans->transid); 703 path->slots[0]++; 704 new_key.offset = start; 705 btrfs_set_item_key_safe(trans, path, &new_key); 706 707 fi = btrfs_item_ptr(leaf, path->slots[0], 708 struct btrfs_file_extent_item); 709 btrfs_set_file_extent_generation(leaf, fi, 710 trans->transid); 711 btrfs_set_file_extent_num_bytes(leaf, fi, 712 other_end - start); 713 btrfs_set_file_extent_offset(leaf, fi, 714 start - orig_offset); 715 btrfs_mark_buffer_dirty(trans, leaf); 716 goto out; 717 } 718 } 719 720 while (start > key.offset || end < extent_end) { 721 if (key.offset == start) 722 split = end; 723 724 new_key.offset = split; 725 ret = btrfs_duplicate_item(trans, root, path, &new_key); 726 if (ret == -EAGAIN) { 727 btrfs_release_path(path); 728 goto again; 729 } 730 if (ret < 0) { 731 btrfs_abort_transaction(trans, ret); 732 goto out; 733 } 734 735 leaf = path->nodes[0]; 736 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 737 struct btrfs_file_extent_item); 738 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 739 btrfs_set_file_extent_num_bytes(leaf, fi, 740 split - key.offset); 741 742 fi = btrfs_item_ptr(leaf, path->slots[0], 743 struct btrfs_file_extent_item); 744 745 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 746 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 747 btrfs_set_file_extent_num_bytes(leaf, fi, 748 extent_end - split); 749 btrfs_mark_buffer_dirty(trans, leaf); 750 751 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 752 num_bytes, 0, root->root_key.objectid); 753 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 754 orig_offset, 0, false); 755 ret = btrfs_inc_extent_ref(trans, &ref); 756 if (ret) { 757 btrfs_abort_transaction(trans, ret); 758 goto out; 759 } 760 761 if (split == start) { 762 key.offset = start; 763 } else { 764 if (start != key.offset) { 765 ret = -EINVAL; 766 btrfs_abort_transaction(trans, ret); 767 goto out; 768 } 769 path->slots[0]--; 770 extent_end = end; 771 } 772 recow = 1; 773 } 774 775 other_start = end; 776 other_end = 0; 777 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 778 num_bytes, 0, root->root_key.objectid); 779 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset, 780 0, false); 781 if (extent_mergeable(leaf, path->slots[0] + 1, 782 ino, bytenr, orig_offset, 783 &other_start, &other_end)) { 784 if (recow) { 785 btrfs_release_path(path); 786 goto again; 787 } 788 extent_end = other_end; 789 del_slot = path->slots[0] + 1; 790 del_nr++; 791 ret = btrfs_free_extent(trans, &ref); 792 if (ret) { 793 btrfs_abort_transaction(trans, ret); 794 goto out; 795 } 796 } 797 other_start = 0; 798 other_end = start; 799 if (extent_mergeable(leaf, path->slots[0] - 1, 800 ino, bytenr, orig_offset, 801 &other_start, &other_end)) { 802 if (recow) { 803 btrfs_release_path(path); 804 goto again; 805 } 806 key.offset = other_start; 807 del_slot = path->slots[0]; 808 del_nr++; 809 ret = btrfs_free_extent(trans, &ref); 810 if (ret) { 811 btrfs_abort_transaction(trans, ret); 812 goto out; 813 } 814 } 815 if (del_nr == 0) { 816 fi = btrfs_item_ptr(leaf, path->slots[0], 817 struct btrfs_file_extent_item); 818 btrfs_set_file_extent_type(leaf, fi, 819 BTRFS_FILE_EXTENT_REG); 820 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 821 btrfs_mark_buffer_dirty(trans, leaf); 822 } else { 823 fi = btrfs_item_ptr(leaf, del_slot - 1, 824 struct btrfs_file_extent_item); 825 btrfs_set_file_extent_type(leaf, fi, 826 BTRFS_FILE_EXTENT_REG); 827 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 828 btrfs_set_file_extent_num_bytes(leaf, fi, 829 extent_end - key.offset); 830 btrfs_mark_buffer_dirty(trans, leaf); 831 832 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 833 if (ret < 0) { 834 btrfs_abort_transaction(trans, ret); 835 goto out; 836 } 837 } 838 out: 839 btrfs_free_path(path); 840 return ret; 841 } 842 843 /* 844 * on error we return an unlocked page and the error value 845 * on success we return a locked page and 0 846 */ 847 static int prepare_uptodate_page(struct inode *inode, 848 struct page *page, u64 pos, 849 bool force_uptodate) 850 { 851 struct folio *folio = page_folio(page); 852 int ret = 0; 853 854 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 855 !PageUptodate(page)) { 856 ret = btrfs_read_folio(NULL, folio); 857 if (ret) 858 return ret; 859 lock_page(page); 860 if (!PageUptodate(page)) { 861 unlock_page(page); 862 return -EIO; 863 } 864 865 /* 866 * Since btrfs_read_folio() will unlock the folio before it 867 * returns, there is a window where btrfs_release_folio() can be 868 * called to release the page. Here we check both inode 869 * mapping and PagePrivate() to make sure the page was not 870 * released. 871 * 872 * The private flag check is essential for subpage as we need 873 * to store extra bitmap using folio private. 874 */ 875 if (page->mapping != inode->i_mapping || !folio_test_private(folio)) { 876 unlock_page(page); 877 return -EAGAIN; 878 } 879 } 880 return 0; 881 } 882 883 static fgf_t get_prepare_fgp_flags(bool nowait) 884 { 885 fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT; 886 887 if (nowait) 888 fgp_flags |= FGP_NOWAIT; 889 890 return fgp_flags; 891 } 892 893 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) 894 { 895 gfp_t gfp; 896 897 gfp = btrfs_alloc_write_mask(inode->i_mapping); 898 if (nowait) { 899 gfp &= ~__GFP_DIRECT_RECLAIM; 900 gfp |= GFP_NOWAIT; 901 } 902 903 return gfp; 904 } 905 906 /* 907 * this just gets pages into the page cache and locks them down. 908 */ 909 static noinline int prepare_pages(struct inode *inode, struct page **pages, 910 size_t num_pages, loff_t pos, 911 size_t write_bytes, bool force_uptodate, 912 bool nowait) 913 { 914 int i; 915 unsigned long index = pos >> PAGE_SHIFT; 916 gfp_t mask = get_prepare_gfp_flags(inode, nowait); 917 fgf_t fgp_flags = get_prepare_fgp_flags(nowait); 918 int err = 0; 919 int faili; 920 921 for (i = 0; i < num_pages; i++) { 922 again: 923 pages[i] = pagecache_get_page(inode->i_mapping, index + i, 924 fgp_flags, mask | __GFP_WRITE); 925 if (!pages[i]) { 926 faili = i - 1; 927 if (nowait) 928 err = -EAGAIN; 929 else 930 err = -ENOMEM; 931 goto fail; 932 } 933 934 err = set_page_extent_mapped(pages[i]); 935 if (err < 0) { 936 faili = i; 937 goto fail; 938 } 939 940 if (i == 0) 941 err = prepare_uptodate_page(inode, pages[i], pos, 942 force_uptodate); 943 if (!err && i == num_pages - 1) 944 err = prepare_uptodate_page(inode, pages[i], 945 pos + write_bytes, false); 946 if (err) { 947 put_page(pages[i]); 948 if (!nowait && err == -EAGAIN) { 949 err = 0; 950 goto again; 951 } 952 faili = i - 1; 953 goto fail; 954 } 955 wait_on_page_writeback(pages[i]); 956 } 957 958 return 0; 959 fail: 960 while (faili >= 0) { 961 unlock_page(pages[faili]); 962 put_page(pages[faili]); 963 faili--; 964 } 965 return err; 966 967 } 968 969 /* 970 * This function locks the extent and properly waits for data=ordered extents 971 * to finish before allowing the pages to be modified if need. 972 * 973 * The return value: 974 * 1 - the extent is locked 975 * 0 - the extent is not locked, and everything is OK 976 * -EAGAIN - need re-prepare the pages 977 * the other < 0 number - Something wrong happens 978 */ 979 static noinline int 980 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 981 size_t num_pages, loff_t pos, 982 size_t write_bytes, 983 u64 *lockstart, u64 *lockend, bool nowait, 984 struct extent_state **cached_state) 985 { 986 struct btrfs_fs_info *fs_info = inode->root->fs_info; 987 u64 start_pos; 988 u64 last_pos; 989 int i; 990 int ret = 0; 991 992 start_pos = round_down(pos, fs_info->sectorsize); 993 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 994 995 if (start_pos < inode->vfs_inode.i_size) { 996 struct btrfs_ordered_extent *ordered; 997 998 if (nowait) { 999 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos, 1000 cached_state)) { 1001 for (i = 0; i < num_pages; i++) { 1002 unlock_page(pages[i]); 1003 put_page(pages[i]); 1004 pages[i] = NULL; 1005 } 1006 1007 return -EAGAIN; 1008 } 1009 } else { 1010 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state); 1011 } 1012 1013 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1014 last_pos - start_pos + 1); 1015 if (ordered && 1016 ordered->file_offset + ordered->num_bytes > start_pos && 1017 ordered->file_offset <= last_pos) { 1018 unlock_extent(&inode->io_tree, start_pos, last_pos, 1019 cached_state); 1020 for (i = 0; i < num_pages; i++) { 1021 unlock_page(pages[i]); 1022 put_page(pages[i]); 1023 } 1024 btrfs_start_ordered_extent(ordered); 1025 btrfs_put_ordered_extent(ordered); 1026 return -EAGAIN; 1027 } 1028 if (ordered) 1029 btrfs_put_ordered_extent(ordered); 1030 1031 *lockstart = start_pos; 1032 *lockend = last_pos; 1033 ret = 1; 1034 } 1035 1036 /* 1037 * We should be called after prepare_pages() which should have locked 1038 * all pages in the range. 1039 */ 1040 for (i = 0; i < num_pages; i++) 1041 WARN_ON(!PageLocked(pages[i])); 1042 1043 return ret; 1044 } 1045 1046 /* 1047 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1048 * 1049 * @pos: File offset. 1050 * @write_bytes: The length to write, will be updated to the nocow writeable 1051 * range. 1052 * 1053 * This function will flush ordered extents in the range to ensure proper 1054 * nocow checks. 1055 * 1056 * Return: 1057 * > 0 If we can nocow, and updates @write_bytes. 1058 * 0 If we can't do a nocow write. 1059 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's 1060 * root is in progress. 1061 * < 0 If an error happened. 1062 * 1063 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 1064 */ 1065 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1066 size_t *write_bytes, bool nowait) 1067 { 1068 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1069 struct btrfs_root *root = inode->root; 1070 struct extent_state *cached_state = NULL; 1071 u64 lockstart, lockend; 1072 u64 num_bytes; 1073 int ret; 1074 1075 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1076 return 0; 1077 1078 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1079 return -EAGAIN; 1080 1081 lockstart = round_down(pos, fs_info->sectorsize); 1082 lockend = round_up(pos + *write_bytes, 1083 fs_info->sectorsize) - 1; 1084 num_bytes = lockend - lockstart + 1; 1085 1086 if (nowait) { 1087 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend, 1088 &cached_state)) { 1089 btrfs_drew_write_unlock(&root->snapshot_lock); 1090 return -EAGAIN; 1091 } 1092 } else { 1093 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, 1094 &cached_state); 1095 } 1096 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1097 NULL, NULL, NULL, nowait, false); 1098 if (ret <= 0) 1099 btrfs_drew_write_unlock(&root->snapshot_lock); 1100 else 1101 *write_bytes = min_t(size_t, *write_bytes , 1102 num_bytes - pos + lockstart); 1103 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 1104 1105 return ret; 1106 } 1107 1108 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1109 { 1110 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1111 } 1112 1113 static void update_time_for_write(struct inode *inode) 1114 { 1115 struct timespec64 now, ts; 1116 1117 if (IS_NOCMTIME(inode)) 1118 return; 1119 1120 now = current_time(inode); 1121 ts = inode_get_mtime(inode); 1122 if (!timespec64_equal(&ts, &now)) 1123 inode_set_mtime_to_ts(inode, now); 1124 1125 ts = inode_get_ctime(inode); 1126 if (!timespec64_equal(&ts, &now)) 1127 inode_set_ctime_to_ts(inode, now); 1128 1129 if (IS_I_VERSION(inode)) 1130 inode_inc_iversion(inode); 1131 } 1132 1133 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1134 size_t count) 1135 { 1136 struct file *file = iocb->ki_filp; 1137 struct inode *inode = file_inode(file); 1138 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1139 loff_t pos = iocb->ki_pos; 1140 int ret; 1141 loff_t oldsize; 1142 loff_t start_pos; 1143 1144 /* 1145 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1146 * prealloc flags, as without those flags we always have to COW. We will 1147 * later check if we can really COW into the target range (using 1148 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1149 */ 1150 if ((iocb->ki_flags & IOCB_NOWAIT) && 1151 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1152 return -EAGAIN; 1153 1154 ret = file_remove_privs(file); 1155 if (ret) 1156 return ret; 1157 1158 /* 1159 * We reserve space for updating the inode when we reserve space for the 1160 * extent we are going to write, so we will enospc out there. We don't 1161 * need to start yet another transaction to update the inode as we will 1162 * update the inode when we finish writing whatever data we write. 1163 */ 1164 update_time_for_write(inode); 1165 1166 start_pos = round_down(pos, fs_info->sectorsize); 1167 oldsize = i_size_read(inode); 1168 if (start_pos > oldsize) { 1169 /* Expand hole size to cover write data, preventing empty gap */ 1170 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1171 1172 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1173 if (ret) 1174 return ret; 1175 } 1176 1177 return 0; 1178 } 1179 1180 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1181 struct iov_iter *i) 1182 { 1183 struct file *file = iocb->ki_filp; 1184 loff_t pos; 1185 struct inode *inode = file_inode(file); 1186 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1187 struct page **pages = NULL; 1188 struct extent_changeset *data_reserved = NULL; 1189 u64 release_bytes = 0; 1190 u64 lockstart; 1191 u64 lockend; 1192 size_t num_written = 0; 1193 int nrptrs; 1194 ssize_t ret; 1195 bool only_release_metadata = false; 1196 bool force_page_uptodate = false; 1197 loff_t old_isize = i_size_read(inode); 1198 unsigned int ilock_flags = 0; 1199 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 1200 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); 1201 1202 if (nowait) 1203 ilock_flags |= BTRFS_ILOCK_TRY; 1204 1205 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1206 if (ret < 0) 1207 return ret; 1208 1209 ret = generic_write_checks(iocb, i); 1210 if (ret <= 0) 1211 goto out; 1212 1213 ret = btrfs_write_check(iocb, i, ret); 1214 if (ret < 0) 1215 goto out; 1216 1217 pos = iocb->ki_pos; 1218 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1219 PAGE_SIZE / (sizeof(struct page *))); 1220 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1221 nrptrs = max(nrptrs, 8); 1222 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1223 if (!pages) { 1224 ret = -ENOMEM; 1225 goto out; 1226 } 1227 1228 while (iov_iter_count(i) > 0) { 1229 struct extent_state *cached_state = NULL; 1230 size_t offset = offset_in_page(pos); 1231 size_t sector_offset; 1232 size_t write_bytes = min(iov_iter_count(i), 1233 nrptrs * (size_t)PAGE_SIZE - 1234 offset); 1235 size_t num_pages; 1236 size_t reserve_bytes; 1237 size_t dirty_pages; 1238 size_t copied; 1239 size_t dirty_sectors; 1240 size_t num_sectors; 1241 int extents_locked; 1242 1243 /* 1244 * Fault pages before locking them in prepare_pages 1245 * to avoid recursive lock 1246 */ 1247 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1248 ret = -EFAULT; 1249 break; 1250 } 1251 1252 only_release_metadata = false; 1253 sector_offset = pos & (fs_info->sectorsize - 1); 1254 1255 extent_changeset_release(data_reserved); 1256 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1257 &data_reserved, pos, 1258 write_bytes, nowait); 1259 if (ret < 0) { 1260 int can_nocow; 1261 1262 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) { 1263 ret = -EAGAIN; 1264 break; 1265 } 1266 1267 /* 1268 * If we don't have to COW at the offset, reserve 1269 * metadata only. write_bytes may get smaller than 1270 * requested here. 1271 */ 1272 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1273 &write_bytes, nowait); 1274 if (can_nocow < 0) 1275 ret = can_nocow; 1276 if (can_nocow > 0) 1277 ret = 0; 1278 if (ret) 1279 break; 1280 only_release_metadata = true; 1281 } 1282 1283 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1284 WARN_ON(num_pages > nrptrs); 1285 reserve_bytes = round_up(write_bytes + sector_offset, 1286 fs_info->sectorsize); 1287 WARN_ON(reserve_bytes == 0); 1288 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1289 reserve_bytes, 1290 reserve_bytes, nowait); 1291 if (ret) { 1292 if (!only_release_metadata) 1293 btrfs_free_reserved_data_space(BTRFS_I(inode), 1294 data_reserved, pos, 1295 write_bytes); 1296 else 1297 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1298 1299 if (nowait && ret == -ENOSPC) 1300 ret = -EAGAIN; 1301 break; 1302 } 1303 1304 release_bytes = reserve_bytes; 1305 again: 1306 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags); 1307 if (ret) { 1308 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1309 break; 1310 } 1311 1312 /* 1313 * This is going to setup the pages array with the number of 1314 * pages we want, so we don't really need to worry about the 1315 * contents of pages from loop to loop 1316 */ 1317 ret = prepare_pages(inode, pages, num_pages, 1318 pos, write_bytes, force_page_uptodate, false); 1319 if (ret) { 1320 btrfs_delalloc_release_extents(BTRFS_I(inode), 1321 reserve_bytes); 1322 break; 1323 } 1324 1325 extents_locked = lock_and_cleanup_extent_if_need( 1326 BTRFS_I(inode), pages, 1327 num_pages, pos, write_bytes, &lockstart, 1328 &lockend, nowait, &cached_state); 1329 if (extents_locked < 0) { 1330 if (!nowait && extents_locked == -EAGAIN) 1331 goto again; 1332 1333 btrfs_delalloc_release_extents(BTRFS_I(inode), 1334 reserve_bytes); 1335 ret = extents_locked; 1336 break; 1337 } 1338 1339 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1340 1341 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1342 dirty_sectors = round_up(copied + sector_offset, 1343 fs_info->sectorsize); 1344 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1345 1346 /* 1347 * if we have trouble faulting in the pages, fall 1348 * back to one page at a time 1349 */ 1350 if (copied < write_bytes) 1351 nrptrs = 1; 1352 1353 if (copied == 0) { 1354 force_page_uptodate = true; 1355 dirty_sectors = 0; 1356 dirty_pages = 0; 1357 } else { 1358 force_page_uptodate = false; 1359 dirty_pages = DIV_ROUND_UP(copied + offset, 1360 PAGE_SIZE); 1361 } 1362 1363 if (num_sectors > dirty_sectors) { 1364 /* release everything except the sectors we dirtied */ 1365 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1366 if (only_release_metadata) { 1367 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1368 release_bytes, true); 1369 } else { 1370 u64 __pos; 1371 1372 __pos = round_down(pos, 1373 fs_info->sectorsize) + 1374 (dirty_pages << PAGE_SHIFT); 1375 btrfs_delalloc_release_space(BTRFS_I(inode), 1376 data_reserved, __pos, 1377 release_bytes, true); 1378 } 1379 } 1380 1381 release_bytes = round_up(copied + sector_offset, 1382 fs_info->sectorsize); 1383 1384 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1385 dirty_pages, pos, copied, 1386 &cached_state, only_release_metadata); 1387 1388 /* 1389 * If we have not locked the extent range, because the range's 1390 * start offset is >= i_size, we might still have a non-NULL 1391 * cached extent state, acquired while marking the extent range 1392 * as delalloc through btrfs_dirty_pages(). Therefore free any 1393 * possible cached extent state to avoid a memory leak. 1394 */ 1395 if (extents_locked) 1396 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 1397 lockend, &cached_state); 1398 else 1399 free_extent_state(cached_state); 1400 1401 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1402 if (ret) { 1403 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1404 break; 1405 } 1406 1407 release_bytes = 0; 1408 if (only_release_metadata) 1409 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1410 1411 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1412 1413 cond_resched(); 1414 1415 pos += copied; 1416 num_written += copied; 1417 } 1418 1419 kfree(pages); 1420 1421 if (release_bytes) { 1422 if (only_release_metadata) { 1423 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1424 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1425 release_bytes, true); 1426 } else { 1427 btrfs_delalloc_release_space(BTRFS_I(inode), 1428 data_reserved, 1429 round_down(pos, fs_info->sectorsize), 1430 release_bytes, true); 1431 } 1432 } 1433 1434 extent_changeset_free(data_reserved); 1435 if (num_written > 0) { 1436 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1437 iocb->ki_pos += num_written; 1438 } 1439 out: 1440 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1441 return num_written ? num_written : ret; 1442 } 1443 1444 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1445 const struct iov_iter *iter, loff_t offset) 1446 { 1447 const u32 blocksize_mask = fs_info->sectorsize - 1; 1448 1449 if (offset & blocksize_mask) 1450 return -EINVAL; 1451 1452 if (iov_iter_alignment(iter) & blocksize_mask) 1453 return -EINVAL; 1454 1455 return 0; 1456 } 1457 1458 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1459 { 1460 struct file *file = iocb->ki_filp; 1461 struct inode *inode = file_inode(file); 1462 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1463 loff_t pos; 1464 ssize_t written = 0; 1465 ssize_t written_buffered; 1466 size_t prev_left = 0; 1467 loff_t endbyte; 1468 ssize_t err; 1469 unsigned int ilock_flags = 0; 1470 struct iomap_dio *dio; 1471 1472 if (iocb->ki_flags & IOCB_NOWAIT) 1473 ilock_flags |= BTRFS_ILOCK_TRY; 1474 1475 /* 1476 * If the write DIO is within EOF, use a shared lock and also only if 1477 * security bits will likely not be dropped by file_remove_privs() called 1478 * from btrfs_write_check(). Either will need to be rechecked after the 1479 * lock was acquired. 1480 */ 1481 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode)) 1482 ilock_flags |= BTRFS_ILOCK_SHARED; 1483 1484 relock: 1485 err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1486 if (err < 0) 1487 return err; 1488 1489 /* Shared lock cannot be used with security bits set. */ 1490 if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) { 1491 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1492 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1493 goto relock; 1494 } 1495 1496 err = generic_write_checks(iocb, from); 1497 if (err <= 0) { 1498 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1499 return err; 1500 } 1501 1502 err = btrfs_write_check(iocb, from, err); 1503 if (err < 0) { 1504 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1505 goto out; 1506 } 1507 1508 pos = iocb->ki_pos; 1509 /* 1510 * Re-check since file size may have changed just before taking the 1511 * lock or pos may have changed because of O_APPEND in generic_write_check() 1512 */ 1513 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1514 pos + iov_iter_count(from) > i_size_read(inode)) { 1515 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1516 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1517 goto relock; 1518 } 1519 1520 if (check_direct_IO(fs_info, from, pos)) { 1521 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1522 goto buffered; 1523 } 1524 1525 /* 1526 * The iov_iter can be mapped to the same file range we are writing to. 1527 * If that's the case, then we will deadlock in the iomap code, because 1528 * it first calls our callback btrfs_dio_iomap_begin(), which will create 1529 * an ordered extent, and after that it will fault in the pages that the 1530 * iov_iter refers to. During the fault in we end up in the readahead 1531 * pages code (starting at btrfs_readahead()), which will lock the range, 1532 * find that ordered extent and then wait for it to complete (at 1533 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since 1534 * obviously the ordered extent can never complete as we didn't submit 1535 * yet the respective bio(s). This always happens when the buffer is 1536 * memory mapped to the same file range, since the iomap DIO code always 1537 * invalidates pages in the target file range (after starting and waiting 1538 * for any writeback). 1539 * 1540 * So here we disable page faults in the iov_iter and then retry if we 1541 * got -EFAULT, faulting in the pages before the retry. 1542 */ 1543 from->nofault = true; 1544 dio = btrfs_dio_write(iocb, from, written); 1545 from->nofault = false; 1546 1547 /* 1548 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync 1549 * iocb, and that needs to lock the inode. So unlock it before calling 1550 * iomap_dio_complete() to avoid a deadlock. 1551 */ 1552 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1553 1554 if (IS_ERR_OR_NULL(dio)) 1555 err = PTR_ERR_OR_ZERO(dio); 1556 else 1557 err = iomap_dio_complete(dio); 1558 1559 /* No increment (+=) because iomap returns a cumulative value. */ 1560 if (err > 0) 1561 written = err; 1562 1563 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) { 1564 const size_t left = iov_iter_count(from); 1565 /* 1566 * We have more data left to write. Try to fault in as many as 1567 * possible of the remainder pages and retry. We do this without 1568 * releasing and locking again the inode, to prevent races with 1569 * truncate. 1570 * 1571 * Also, in case the iov refers to pages in the file range of the 1572 * file we want to write to (due to a mmap), we could enter an 1573 * infinite loop if we retry after faulting the pages in, since 1574 * iomap will invalidate any pages in the range early on, before 1575 * it tries to fault in the pages of the iov. So we keep track of 1576 * how much was left of iov in the previous EFAULT and fallback 1577 * to buffered IO in case we haven't made any progress. 1578 */ 1579 if (left == prev_left) { 1580 err = -ENOTBLK; 1581 } else { 1582 fault_in_iov_iter_readable(from, left); 1583 prev_left = left; 1584 goto relock; 1585 } 1586 } 1587 1588 /* 1589 * If 'err' is -ENOTBLK or we have not written all data, then it means 1590 * we must fallback to buffered IO. 1591 */ 1592 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from)) 1593 goto out; 1594 1595 buffered: 1596 /* 1597 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller 1598 * it must retry the operation in a context where blocking is acceptable, 1599 * because even if we end up not blocking during the buffered IO attempt 1600 * below, we will block when flushing and waiting for the IO. 1601 */ 1602 if (iocb->ki_flags & IOCB_NOWAIT) { 1603 err = -EAGAIN; 1604 goto out; 1605 } 1606 1607 pos = iocb->ki_pos; 1608 written_buffered = btrfs_buffered_write(iocb, from); 1609 if (written_buffered < 0) { 1610 err = written_buffered; 1611 goto out; 1612 } 1613 /* 1614 * Ensure all data is persisted. We want the next direct IO read to be 1615 * able to read what was just written. 1616 */ 1617 endbyte = pos + written_buffered - 1; 1618 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1619 if (err) 1620 goto out; 1621 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1622 if (err) 1623 goto out; 1624 written += written_buffered; 1625 iocb->ki_pos = pos + written_buffered; 1626 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1627 endbyte >> PAGE_SHIFT); 1628 out: 1629 return err < 0 ? err : written; 1630 } 1631 1632 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 1633 const struct btrfs_ioctl_encoded_io_args *encoded) 1634 { 1635 struct file *file = iocb->ki_filp; 1636 struct inode *inode = file_inode(file); 1637 loff_t count; 1638 ssize_t ret; 1639 1640 btrfs_inode_lock(BTRFS_I(inode), 0); 1641 count = encoded->len; 1642 ret = generic_write_checks_count(iocb, &count); 1643 if (ret == 0 && count != encoded->len) { 1644 /* 1645 * The write got truncated by generic_write_checks_count(). We 1646 * can't do a partial encoded write. 1647 */ 1648 ret = -EFBIG; 1649 } 1650 if (ret || encoded->len == 0) 1651 goto out; 1652 1653 ret = btrfs_write_check(iocb, from, encoded->len); 1654 if (ret < 0) 1655 goto out; 1656 1657 ret = btrfs_do_encoded_write(iocb, from, encoded); 1658 out: 1659 btrfs_inode_unlock(BTRFS_I(inode), 0); 1660 return ret; 1661 } 1662 1663 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 1664 const struct btrfs_ioctl_encoded_io_args *encoded) 1665 { 1666 struct file *file = iocb->ki_filp; 1667 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1668 ssize_t num_written, num_sync; 1669 1670 /* 1671 * If the fs flips readonly due to some impossible error, although we 1672 * have opened a file as writable, we have to stop this write operation 1673 * to ensure consistency. 1674 */ 1675 if (BTRFS_FS_ERROR(inode->root->fs_info)) 1676 return -EROFS; 1677 1678 if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) 1679 return -EOPNOTSUPP; 1680 1681 if (encoded) { 1682 num_written = btrfs_encoded_write(iocb, from, encoded); 1683 num_sync = encoded->len; 1684 } else if (iocb->ki_flags & IOCB_DIRECT) { 1685 num_written = btrfs_direct_write(iocb, from); 1686 num_sync = num_written; 1687 } else { 1688 num_written = btrfs_buffered_write(iocb, from); 1689 num_sync = num_written; 1690 } 1691 1692 btrfs_set_inode_last_sub_trans(inode); 1693 1694 if (num_sync > 0) { 1695 num_sync = generic_write_sync(iocb, num_sync); 1696 if (num_sync < 0) 1697 num_written = num_sync; 1698 } 1699 1700 return num_written; 1701 } 1702 1703 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1704 { 1705 return btrfs_do_write_iter(iocb, from, NULL); 1706 } 1707 1708 int btrfs_release_file(struct inode *inode, struct file *filp) 1709 { 1710 struct btrfs_file_private *private = filp->private_data; 1711 1712 if (private) { 1713 kfree(private->filldir_buf); 1714 free_extent_state(private->llseek_cached_state); 1715 kfree(private); 1716 filp->private_data = NULL; 1717 } 1718 1719 /* 1720 * Set by setattr when we are about to truncate a file from a non-zero 1721 * size to a zero size. This tries to flush down new bytes that may 1722 * have been written if the application were using truncate to replace 1723 * a file in place. 1724 */ 1725 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 1726 &BTRFS_I(inode)->runtime_flags)) 1727 filemap_flush(inode->i_mapping); 1728 return 0; 1729 } 1730 1731 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 1732 { 1733 int ret; 1734 struct blk_plug plug; 1735 1736 /* 1737 * This is only called in fsync, which would do synchronous writes, so 1738 * a plug can merge adjacent IOs as much as possible. Esp. in case of 1739 * multiple disks using raid profile, a large IO can be split to 1740 * several segments of stripe length (currently 64K). 1741 */ 1742 blk_start_plug(&plug); 1743 ret = btrfs_fdatawrite_range(inode, start, end); 1744 blk_finish_plug(&plug); 1745 1746 return ret; 1747 } 1748 1749 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 1750 { 1751 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 1752 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1753 1754 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) && 1755 list_empty(&ctx->ordered_extents)) 1756 return true; 1757 1758 /* 1759 * If we are doing a fast fsync we can not bail out if the inode's 1760 * last_trans is <= then the last committed transaction, because we only 1761 * update the last_trans of the inode during ordered extent completion, 1762 * and for a fast fsync we don't wait for that, we only wait for the 1763 * writeback to complete. 1764 */ 1765 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) && 1766 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 1767 list_empty(&ctx->ordered_extents))) 1768 return true; 1769 1770 return false; 1771 } 1772 1773 /* 1774 * fsync call for both files and directories. This logs the inode into 1775 * the tree log instead of forcing full commits whenever possible. 1776 * 1777 * It needs to call filemap_fdatawait so that all ordered extent updates are 1778 * in the metadata btree are up to date for copying to the log. 1779 * 1780 * It drops the inode mutex before doing the tree log commit. This is an 1781 * important optimization for directories because holding the mutex prevents 1782 * new operations on the dir while we write to disk. 1783 */ 1784 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1785 { 1786 struct dentry *dentry = file_dentry(file); 1787 struct inode *inode = d_inode(dentry); 1788 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1789 struct btrfs_root *root = BTRFS_I(inode)->root; 1790 struct btrfs_trans_handle *trans; 1791 struct btrfs_log_ctx ctx; 1792 int ret = 0, err; 1793 u64 len; 1794 bool full_sync; 1795 1796 trace_btrfs_sync_file(file, datasync); 1797 1798 btrfs_init_log_ctx(&ctx, inode); 1799 1800 /* 1801 * Always set the range to a full range, otherwise we can get into 1802 * several problems, from missing file extent items to represent holes 1803 * when not using the NO_HOLES feature, to log tree corruption due to 1804 * races between hole detection during logging and completion of ordered 1805 * extents outside the range, to missing checksums due to ordered extents 1806 * for which we flushed only a subset of their pages. 1807 */ 1808 start = 0; 1809 end = LLONG_MAX; 1810 len = (u64)LLONG_MAX + 1; 1811 1812 /* 1813 * We write the dirty pages in the range and wait until they complete 1814 * out of the ->i_mutex. If so, we can flush the dirty pages by 1815 * multi-task, and make the performance up. See 1816 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1817 */ 1818 ret = start_ordered_ops(inode, start, end); 1819 if (ret) 1820 goto out; 1821 1822 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1823 1824 atomic_inc(&root->log_batch); 1825 1826 /* 1827 * Before we acquired the inode's lock and the mmap lock, someone may 1828 * have dirtied more pages in the target range. We need to make sure 1829 * that writeback for any such pages does not start while we are logging 1830 * the inode, because if it does, any of the following might happen when 1831 * we are not doing a full inode sync: 1832 * 1833 * 1) We log an extent after its writeback finishes but before its 1834 * checksums are added to the csum tree, leading to -EIO errors 1835 * when attempting to read the extent after a log replay. 1836 * 1837 * 2) We can end up logging an extent before its writeback finishes. 1838 * Therefore after the log replay we will have a file extent item 1839 * pointing to an unwritten extent (and no data checksums as well). 1840 * 1841 * So trigger writeback for any eventual new dirty pages and then we 1842 * wait for all ordered extents to complete below. 1843 */ 1844 ret = start_ordered_ops(inode, start, end); 1845 if (ret) { 1846 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1847 goto out; 1848 } 1849 1850 /* 1851 * Always check for the full sync flag while holding the inode's lock, 1852 * to avoid races with other tasks. The flag must be either set all the 1853 * time during logging or always off all the time while logging. 1854 * We check the flag here after starting delalloc above, because when 1855 * running delalloc the full sync flag may be set if we need to drop 1856 * extra extent map ranges due to temporary memory allocation failures. 1857 */ 1858 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1859 &BTRFS_I(inode)->runtime_flags); 1860 1861 /* 1862 * We have to do this here to avoid the priority inversion of waiting on 1863 * IO of a lower priority task while holding a transaction open. 1864 * 1865 * For a full fsync we wait for the ordered extents to complete while 1866 * for a fast fsync we wait just for writeback to complete, and then 1867 * attach the ordered extents to the transaction so that a transaction 1868 * commit waits for their completion, to avoid data loss if we fsync, 1869 * the current transaction commits before the ordered extents complete 1870 * and a power failure happens right after that. 1871 * 1872 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 1873 * logical address recorded in the ordered extent may change. We need 1874 * to wait for the IO to stabilize the logical address. 1875 */ 1876 if (full_sync || btrfs_is_zoned(fs_info)) { 1877 ret = btrfs_wait_ordered_range(inode, start, len); 1878 } else { 1879 /* 1880 * Get our ordered extents as soon as possible to avoid doing 1881 * checksum lookups in the csum tree, and use instead the 1882 * checksums attached to the ordered extents. 1883 */ 1884 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 1885 &ctx.ordered_extents); 1886 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 1887 } 1888 1889 if (ret) 1890 goto out_release_extents; 1891 1892 atomic_inc(&root->log_batch); 1893 1894 if (skip_inode_logging(&ctx)) { 1895 /* 1896 * We've had everything committed since the last time we were 1897 * modified so clear this flag in case it was set for whatever 1898 * reason, it's no longer relevant. 1899 */ 1900 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1901 &BTRFS_I(inode)->runtime_flags); 1902 /* 1903 * An ordered extent might have started before and completed 1904 * already with io errors, in which case the inode was not 1905 * updated and we end up here. So check the inode's mapping 1906 * for any errors that might have happened since we last 1907 * checked called fsync. 1908 */ 1909 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 1910 goto out_release_extents; 1911 } 1912 1913 btrfs_init_log_ctx_scratch_eb(&ctx); 1914 1915 /* 1916 * We use start here because we will need to wait on the IO to complete 1917 * in btrfs_sync_log, which could require joining a transaction (for 1918 * example checking cross references in the nocow path). If we use join 1919 * here we could get into a situation where we're waiting on IO to 1920 * happen that is blocked on a transaction trying to commit. With start 1921 * we inc the extwriter counter, so we wait for all extwriters to exit 1922 * before we start blocking joiners. This comment is to keep somebody 1923 * from thinking they are super smart and changing this to 1924 * btrfs_join_transaction *cough*Josef*cough*. 1925 */ 1926 trans = btrfs_start_transaction(root, 0); 1927 if (IS_ERR(trans)) { 1928 ret = PTR_ERR(trans); 1929 goto out_release_extents; 1930 } 1931 trans->in_fsync = true; 1932 1933 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 1934 /* 1935 * Scratch eb no longer needed, release before syncing log or commit 1936 * transaction, to avoid holding unnecessary memory during such long 1937 * operations. 1938 */ 1939 if (ctx.scratch_eb) { 1940 free_extent_buffer(ctx.scratch_eb); 1941 ctx.scratch_eb = NULL; 1942 } 1943 btrfs_release_log_ctx_extents(&ctx); 1944 if (ret < 0) { 1945 /* Fallthrough and commit/free transaction. */ 1946 ret = BTRFS_LOG_FORCE_COMMIT; 1947 } 1948 1949 /* we've logged all the items and now have a consistent 1950 * version of the file in the log. It is possible that 1951 * someone will come in and modify the file, but that's 1952 * fine because the log is consistent on disk, and we 1953 * have references to all of the file's extents 1954 * 1955 * It is possible that someone will come in and log the 1956 * file again, but that will end up using the synchronization 1957 * inside btrfs_sync_log to keep things safe. 1958 */ 1959 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1960 1961 if (ret == BTRFS_NO_LOG_SYNC) { 1962 ret = btrfs_end_transaction(trans); 1963 goto out; 1964 } 1965 1966 /* We successfully logged the inode, attempt to sync the log. */ 1967 if (!ret) { 1968 ret = btrfs_sync_log(trans, root, &ctx); 1969 if (!ret) { 1970 ret = btrfs_end_transaction(trans); 1971 goto out; 1972 } 1973 } 1974 1975 /* 1976 * At this point we need to commit the transaction because we had 1977 * btrfs_need_log_full_commit() or some other error. 1978 * 1979 * If we didn't do a full sync we have to stop the trans handle, wait on 1980 * the ordered extents, start it again and commit the transaction. If 1981 * we attempt to wait on the ordered extents here we could deadlock with 1982 * something like fallocate() that is holding the extent lock trying to 1983 * start a transaction while some other thread is trying to commit the 1984 * transaction while we (fsync) are currently holding the transaction 1985 * open. 1986 */ 1987 if (!full_sync) { 1988 ret = btrfs_end_transaction(trans); 1989 if (ret) 1990 goto out; 1991 ret = btrfs_wait_ordered_range(inode, start, len); 1992 if (ret) 1993 goto out; 1994 1995 /* 1996 * This is safe to use here because we're only interested in 1997 * making sure the transaction that had the ordered extents is 1998 * committed. We aren't waiting on anything past this point, 1999 * we're purely getting the transaction and committing it. 2000 */ 2001 trans = btrfs_attach_transaction_barrier(root); 2002 if (IS_ERR(trans)) { 2003 ret = PTR_ERR(trans); 2004 2005 /* 2006 * We committed the transaction and there's no currently 2007 * running transaction, this means everything we care 2008 * about made it to disk and we are done. 2009 */ 2010 if (ret == -ENOENT) 2011 ret = 0; 2012 goto out; 2013 } 2014 } 2015 2016 ret = btrfs_commit_transaction(trans); 2017 out: 2018 free_extent_buffer(ctx.scratch_eb); 2019 ASSERT(list_empty(&ctx.list)); 2020 ASSERT(list_empty(&ctx.conflict_inodes)); 2021 err = file_check_and_advance_wb_err(file); 2022 if (!ret) 2023 ret = err; 2024 return ret > 0 ? -EIO : ret; 2025 2026 out_release_extents: 2027 btrfs_release_log_ctx_extents(&ctx); 2028 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2029 goto out; 2030 } 2031 2032 static const struct vm_operations_struct btrfs_file_vm_ops = { 2033 .fault = filemap_fault, 2034 .map_pages = filemap_map_pages, 2035 .page_mkwrite = btrfs_page_mkwrite, 2036 }; 2037 2038 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2039 { 2040 struct address_space *mapping = filp->f_mapping; 2041 2042 if (!mapping->a_ops->read_folio) 2043 return -ENOEXEC; 2044 2045 file_accessed(filp); 2046 vma->vm_ops = &btrfs_file_vm_ops; 2047 2048 return 0; 2049 } 2050 2051 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2052 int slot, u64 start, u64 end) 2053 { 2054 struct btrfs_file_extent_item *fi; 2055 struct btrfs_key key; 2056 2057 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2058 return 0; 2059 2060 btrfs_item_key_to_cpu(leaf, &key, slot); 2061 if (key.objectid != btrfs_ino(inode) || 2062 key.type != BTRFS_EXTENT_DATA_KEY) 2063 return 0; 2064 2065 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2066 2067 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2068 return 0; 2069 2070 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2071 return 0; 2072 2073 if (key.offset == end) 2074 return 1; 2075 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2076 return 1; 2077 return 0; 2078 } 2079 2080 static int fill_holes(struct btrfs_trans_handle *trans, 2081 struct btrfs_inode *inode, 2082 struct btrfs_path *path, u64 offset, u64 end) 2083 { 2084 struct btrfs_fs_info *fs_info = trans->fs_info; 2085 struct btrfs_root *root = inode->root; 2086 struct extent_buffer *leaf; 2087 struct btrfs_file_extent_item *fi; 2088 struct extent_map *hole_em; 2089 struct btrfs_key key; 2090 int ret; 2091 2092 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2093 goto out; 2094 2095 key.objectid = btrfs_ino(inode); 2096 key.type = BTRFS_EXTENT_DATA_KEY; 2097 key.offset = offset; 2098 2099 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2100 if (ret <= 0) { 2101 /* 2102 * We should have dropped this offset, so if we find it then 2103 * something has gone horribly wrong. 2104 */ 2105 if (ret == 0) 2106 ret = -EINVAL; 2107 return ret; 2108 } 2109 2110 leaf = path->nodes[0]; 2111 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2112 u64 num_bytes; 2113 2114 path->slots[0]--; 2115 fi = btrfs_item_ptr(leaf, path->slots[0], 2116 struct btrfs_file_extent_item); 2117 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2118 end - offset; 2119 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2120 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2121 btrfs_set_file_extent_offset(leaf, fi, 0); 2122 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2123 btrfs_mark_buffer_dirty(trans, leaf); 2124 goto out; 2125 } 2126 2127 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2128 u64 num_bytes; 2129 2130 key.offset = offset; 2131 btrfs_set_item_key_safe(trans, path, &key); 2132 fi = btrfs_item_ptr(leaf, path->slots[0], 2133 struct btrfs_file_extent_item); 2134 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2135 offset; 2136 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2137 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2138 btrfs_set_file_extent_offset(leaf, fi, 0); 2139 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2140 btrfs_mark_buffer_dirty(trans, leaf); 2141 goto out; 2142 } 2143 btrfs_release_path(path); 2144 2145 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, 2146 end - offset); 2147 if (ret) 2148 return ret; 2149 2150 out: 2151 btrfs_release_path(path); 2152 2153 hole_em = alloc_extent_map(); 2154 if (!hole_em) { 2155 btrfs_drop_extent_map_range(inode, offset, end - 1, false); 2156 btrfs_set_inode_full_sync(inode); 2157 } else { 2158 hole_em->start = offset; 2159 hole_em->len = end - offset; 2160 hole_em->ram_bytes = hole_em->len; 2161 hole_em->orig_start = offset; 2162 2163 hole_em->block_start = EXTENT_MAP_HOLE; 2164 hole_em->block_len = 0; 2165 hole_em->orig_block_len = 0; 2166 hole_em->generation = trans->transid; 2167 2168 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 2169 free_extent_map(hole_em); 2170 if (ret) 2171 btrfs_set_inode_full_sync(inode); 2172 } 2173 2174 return 0; 2175 } 2176 2177 /* 2178 * Find a hole extent on given inode and change start/len to the end of hole 2179 * extent.(hole/vacuum extent whose em->start <= start && 2180 * em->start + em->len > start) 2181 * When a hole extent is found, return 1 and modify start/len. 2182 */ 2183 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2184 { 2185 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2186 struct extent_map *em; 2187 int ret = 0; 2188 2189 em = btrfs_get_extent(inode, NULL, 2190 round_down(*start, fs_info->sectorsize), 2191 round_up(*len, fs_info->sectorsize)); 2192 if (IS_ERR(em)) 2193 return PTR_ERR(em); 2194 2195 /* Hole or vacuum extent(only exists in no-hole mode) */ 2196 if (em->block_start == EXTENT_MAP_HOLE) { 2197 ret = 1; 2198 *len = em->start + em->len > *start + *len ? 2199 0 : *start + *len - em->start - em->len; 2200 *start = em->start + em->len; 2201 } 2202 free_extent_map(em); 2203 return ret; 2204 } 2205 2206 static void btrfs_punch_hole_lock_range(struct inode *inode, 2207 const u64 lockstart, 2208 const u64 lockend, 2209 struct extent_state **cached_state) 2210 { 2211 /* 2212 * For subpage case, if the range is not at page boundary, we could 2213 * have pages at the leading/tailing part of the range. 2214 * This could lead to dead loop since filemap_range_has_page() 2215 * will always return true. 2216 * So here we need to do extra page alignment for 2217 * filemap_range_has_page(). 2218 */ 2219 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2220 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2221 2222 while (1) { 2223 truncate_pagecache_range(inode, lockstart, lockend); 2224 2225 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2226 cached_state); 2227 /* 2228 * We can't have ordered extents in the range, nor dirty/writeback 2229 * pages, because we have locked the inode's VFS lock in exclusive 2230 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2231 * we have flushed all delalloc in the range and we have waited 2232 * for any ordered extents in the range to complete. 2233 * We can race with anyone reading pages from this range, so after 2234 * locking the range check if we have pages in the range, and if 2235 * we do, unlock the range and retry. 2236 */ 2237 if (!filemap_range_has_page(inode->i_mapping, page_lockstart, 2238 page_lockend)) 2239 break; 2240 2241 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2242 cached_state); 2243 } 2244 2245 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2246 } 2247 2248 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2249 struct btrfs_inode *inode, 2250 struct btrfs_path *path, 2251 struct btrfs_replace_extent_info *extent_info, 2252 const u64 replace_len, 2253 const u64 bytes_to_drop) 2254 { 2255 struct btrfs_fs_info *fs_info = trans->fs_info; 2256 struct btrfs_root *root = inode->root; 2257 struct btrfs_file_extent_item *extent; 2258 struct extent_buffer *leaf; 2259 struct btrfs_key key; 2260 int slot; 2261 struct btrfs_ref ref = { 0 }; 2262 int ret; 2263 2264 if (replace_len == 0) 2265 return 0; 2266 2267 if (extent_info->disk_offset == 0 && 2268 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2269 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2270 return 0; 2271 } 2272 2273 key.objectid = btrfs_ino(inode); 2274 key.type = BTRFS_EXTENT_DATA_KEY; 2275 key.offset = extent_info->file_offset; 2276 ret = btrfs_insert_empty_item(trans, root, path, &key, 2277 sizeof(struct btrfs_file_extent_item)); 2278 if (ret) 2279 return ret; 2280 leaf = path->nodes[0]; 2281 slot = path->slots[0]; 2282 write_extent_buffer(leaf, extent_info->extent_buf, 2283 btrfs_item_ptr_offset(leaf, slot), 2284 sizeof(struct btrfs_file_extent_item)); 2285 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2286 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2287 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2288 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2289 if (extent_info->is_new_extent) 2290 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2291 btrfs_mark_buffer_dirty(trans, leaf); 2292 btrfs_release_path(path); 2293 2294 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2295 replace_len); 2296 if (ret) 2297 return ret; 2298 2299 /* If it's a hole, nothing more needs to be done. */ 2300 if (extent_info->disk_offset == 0) { 2301 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2302 return 0; 2303 } 2304 2305 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2306 2307 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2308 key.objectid = extent_info->disk_offset; 2309 key.type = BTRFS_EXTENT_ITEM_KEY; 2310 key.offset = extent_info->disk_len; 2311 ret = btrfs_alloc_reserved_file_extent(trans, root, 2312 btrfs_ino(inode), 2313 extent_info->file_offset, 2314 extent_info->qgroup_reserved, 2315 &key); 2316 } else { 2317 u64 ref_offset; 2318 2319 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2320 extent_info->disk_offset, 2321 extent_info->disk_len, 0, 2322 root->root_key.objectid); 2323 ref_offset = extent_info->file_offset - extent_info->data_offset; 2324 btrfs_init_data_ref(&ref, root->root_key.objectid, 2325 btrfs_ino(inode), ref_offset, 0, false); 2326 ret = btrfs_inc_extent_ref(trans, &ref); 2327 } 2328 2329 extent_info->insertions++; 2330 2331 return ret; 2332 } 2333 2334 /* 2335 * The respective range must have been previously locked, as well as the inode. 2336 * The end offset is inclusive (last byte of the range). 2337 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2338 * the file range with an extent. 2339 * When not punching a hole, we don't want to end up in a state where we dropped 2340 * extents without inserting a new one, so we must abort the transaction to avoid 2341 * a corruption. 2342 */ 2343 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2344 struct btrfs_path *path, const u64 start, 2345 const u64 end, 2346 struct btrfs_replace_extent_info *extent_info, 2347 struct btrfs_trans_handle **trans_out) 2348 { 2349 struct btrfs_drop_extents_args drop_args = { 0 }; 2350 struct btrfs_root *root = inode->root; 2351 struct btrfs_fs_info *fs_info = root->fs_info; 2352 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2353 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2354 struct btrfs_trans_handle *trans = NULL; 2355 struct btrfs_block_rsv *rsv; 2356 unsigned int rsv_count; 2357 u64 cur_offset; 2358 u64 len = end - start; 2359 int ret = 0; 2360 2361 if (end <= start) 2362 return -EINVAL; 2363 2364 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2365 if (!rsv) { 2366 ret = -ENOMEM; 2367 goto out; 2368 } 2369 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2370 rsv->failfast = true; 2371 2372 /* 2373 * 1 - update the inode 2374 * 1 - removing the extents in the range 2375 * 1 - adding the hole extent if no_holes isn't set or if we are 2376 * replacing the range with a new extent 2377 */ 2378 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2379 rsv_count = 3; 2380 else 2381 rsv_count = 2; 2382 2383 trans = btrfs_start_transaction(root, rsv_count); 2384 if (IS_ERR(trans)) { 2385 ret = PTR_ERR(trans); 2386 trans = NULL; 2387 goto out_free; 2388 } 2389 2390 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2391 min_size, false); 2392 if (WARN_ON(ret)) 2393 goto out_trans; 2394 trans->block_rsv = rsv; 2395 2396 cur_offset = start; 2397 drop_args.path = path; 2398 drop_args.end = end + 1; 2399 drop_args.drop_cache = true; 2400 while (cur_offset < end) { 2401 drop_args.start = cur_offset; 2402 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2403 /* If we are punching a hole decrement the inode's byte count */ 2404 if (!extent_info) 2405 btrfs_update_inode_bytes(inode, 0, 2406 drop_args.bytes_found); 2407 if (ret != -ENOSPC) { 2408 /* 2409 * The only time we don't want to abort is if we are 2410 * attempting to clone a partial inline extent, in which 2411 * case we'll get EOPNOTSUPP. However if we aren't 2412 * clone we need to abort no matter what, because if we 2413 * got EOPNOTSUPP via prealloc then we messed up and 2414 * need to abort. 2415 */ 2416 if (ret && 2417 (ret != -EOPNOTSUPP || 2418 (extent_info && extent_info->is_new_extent))) 2419 btrfs_abort_transaction(trans, ret); 2420 break; 2421 } 2422 2423 trans->block_rsv = &fs_info->trans_block_rsv; 2424 2425 if (!extent_info && cur_offset < drop_args.drop_end && 2426 cur_offset < ino_size) { 2427 ret = fill_holes(trans, inode, path, cur_offset, 2428 drop_args.drop_end); 2429 if (ret) { 2430 /* 2431 * If we failed then we didn't insert our hole 2432 * entries for the area we dropped, so now the 2433 * fs is corrupted, so we must abort the 2434 * transaction. 2435 */ 2436 btrfs_abort_transaction(trans, ret); 2437 break; 2438 } 2439 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2440 /* 2441 * We are past the i_size here, but since we didn't 2442 * insert holes we need to clear the mapped area so we 2443 * know to not set disk_i_size in this area until a new 2444 * file extent is inserted here. 2445 */ 2446 ret = btrfs_inode_clear_file_extent_range(inode, 2447 cur_offset, 2448 drop_args.drop_end - cur_offset); 2449 if (ret) { 2450 /* 2451 * We couldn't clear our area, so we could 2452 * presumably adjust up and corrupt the fs, so 2453 * we need to abort. 2454 */ 2455 btrfs_abort_transaction(trans, ret); 2456 break; 2457 } 2458 } 2459 2460 if (extent_info && 2461 drop_args.drop_end > extent_info->file_offset) { 2462 u64 replace_len = drop_args.drop_end - 2463 extent_info->file_offset; 2464 2465 ret = btrfs_insert_replace_extent(trans, inode, path, 2466 extent_info, replace_len, 2467 drop_args.bytes_found); 2468 if (ret) { 2469 btrfs_abort_transaction(trans, ret); 2470 break; 2471 } 2472 extent_info->data_len -= replace_len; 2473 extent_info->data_offset += replace_len; 2474 extent_info->file_offset += replace_len; 2475 } 2476 2477 /* 2478 * We are releasing our handle on the transaction, balance the 2479 * dirty pages of the btree inode and flush delayed items, and 2480 * then get a new transaction handle, which may now point to a 2481 * new transaction in case someone else may have committed the 2482 * transaction we used to replace/drop file extent items. So 2483 * bump the inode's iversion and update mtime and ctime except 2484 * if we are called from a dedupe context. This is because a 2485 * power failure/crash may happen after the transaction is 2486 * committed and before we finish replacing/dropping all the 2487 * file extent items we need. 2488 */ 2489 inode_inc_iversion(&inode->vfs_inode); 2490 2491 if (!extent_info || extent_info->update_times) 2492 inode_set_mtime_to_ts(&inode->vfs_inode, 2493 inode_set_ctime_current(&inode->vfs_inode)); 2494 2495 ret = btrfs_update_inode(trans, inode); 2496 if (ret) 2497 break; 2498 2499 btrfs_end_transaction(trans); 2500 btrfs_btree_balance_dirty(fs_info); 2501 2502 trans = btrfs_start_transaction(root, rsv_count); 2503 if (IS_ERR(trans)) { 2504 ret = PTR_ERR(trans); 2505 trans = NULL; 2506 break; 2507 } 2508 2509 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2510 rsv, min_size, false); 2511 if (WARN_ON(ret)) 2512 break; 2513 trans->block_rsv = rsv; 2514 2515 cur_offset = drop_args.drop_end; 2516 len = end - cur_offset; 2517 if (!extent_info && len) { 2518 ret = find_first_non_hole(inode, &cur_offset, &len); 2519 if (unlikely(ret < 0)) 2520 break; 2521 if (ret && !len) { 2522 ret = 0; 2523 break; 2524 } 2525 } 2526 } 2527 2528 /* 2529 * If we were cloning, force the next fsync to be a full one since we 2530 * we replaced (or just dropped in the case of cloning holes when 2531 * NO_HOLES is enabled) file extent items and did not setup new extent 2532 * maps for the replacement extents (or holes). 2533 */ 2534 if (extent_info && !extent_info->is_new_extent) 2535 btrfs_set_inode_full_sync(inode); 2536 2537 if (ret) 2538 goto out_trans; 2539 2540 trans->block_rsv = &fs_info->trans_block_rsv; 2541 /* 2542 * If we are using the NO_HOLES feature we might have had already an 2543 * hole that overlaps a part of the region [lockstart, lockend] and 2544 * ends at (or beyond) lockend. Since we have no file extent items to 2545 * represent holes, drop_end can be less than lockend and so we must 2546 * make sure we have an extent map representing the existing hole (the 2547 * call to __btrfs_drop_extents() might have dropped the existing extent 2548 * map representing the existing hole), otherwise the fast fsync path 2549 * will not record the existence of the hole region 2550 * [existing_hole_start, lockend]. 2551 */ 2552 if (drop_args.drop_end <= end) 2553 drop_args.drop_end = end + 1; 2554 /* 2555 * Don't insert file hole extent item if it's for a range beyond eof 2556 * (because it's useless) or if it represents a 0 bytes range (when 2557 * cur_offset == drop_end). 2558 */ 2559 if (!extent_info && cur_offset < ino_size && 2560 cur_offset < drop_args.drop_end) { 2561 ret = fill_holes(trans, inode, path, cur_offset, 2562 drop_args.drop_end); 2563 if (ret) { 2564 /* Same comment as above. */ 2565 btrfs_abort_transaction(trans, ret); 2566 goto out_trans; 2567 } 2568 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2569 /* See the comment in the loop above for the reasoning here. */ 2570 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2571 drop_args.drop_end - cur_offset); 2572 if (ret) { 2573 btrfs_abort_transaction(trans, ret); 2574 goto out_trans; 2575 } 2576 2577 } 2578 if (extent_info) { 2579 ret = btrfs_insert_replace_extent(trans, inode, path, 2580 extent_info, extent_info->data_len, 2581 drop_args.bytes_found); 2582 if (ret) { 2583 btrfs_abort_transaction(trans, ret); 2584 goto out_trans; 2585 } 2586 } 2587 2588 out_trans: 2589 if (!trans) 2590 goto out_free; 2591 2592 trans->block_rsv = &fs_info->trans_block_rsv; 2593 if (ret) 2594 btrfs_end_transaction(trans); 2595 else 2596 *trans_out = trans; 2597 out_free: 2598 btrfs_free_block_rsv(fs_info, rsv); 2599 out: 2600 return ret; 2601 } 2602 2603 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2604 { 2605 struct inode *inode = file_inode(file); 2606 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2607 struct btrfs_root *root = BTRFS_I(inode)->root; 2608 struct extent_state *cached_state = NULL; 2609 struct btrfs_path *path; 2610 struct btrfs_trans_handle *trans = NULL; 2611 u64 lockstart; 2612 u64 lockend; 2613 u64 tail_start; 2614 u64 tail_len; 2615 u64 orig_start = offset; 2616 int ret = 0; 2617 bool same_block; 2618 u64 ino_size; 2619 bool truncated_block = false; 2620 bool updated_inode = false; 2621 2622 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2623 2624 ret = btrfs_wait_ordered_range(inode, offset, len); 2625 if (ret) 2626 goto out_only_mutex; 2627 2628 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2629 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2630 if (ret < 0) 2631 goto out_only_mutex; 2632 if (ret && !len) { 2633 /* Already in a large hole */ 2634 ret = 0; 2635 goto out_only_mutex; 2636 } 2637 2638 ret = file_modified(file); 2639 if (ret) 2640 goto out_only_mutex; 2641 2642 lockstart = round_up(offset, fs_info->sectorsize); 2643 lockend = round_down(offset + len, fs_info->sectorsize) - 1; 2644 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2645 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2646 /* 2647 * We needn't truncate any block which is beyond the end of the file 2648 * because we are sure there is no data there. 2649 */ 2650 /* 2651 * Only do this if we are in the same block and we aren't doing the 2652 * entire block. 2653 */ 2654 if (same_block && len < fs_info->sectorsize) { 2655 if (offset < ino_size) { 2656 truncated_block = true; 2657 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2658 0); 2659 } else { 2660 ret = 0; 2661 } 2662 goto out_only_mutex; 2663 } 2664 2665 /* zero back part of the first block */ 2666 if (offset < ino_size) { 2667 truncated_block = true; 2668 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2669 if (ret) { 2670 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2671 return ret; 2672 } 2673 } 2674 2675 /* Check the aligned pages after the first unaligned page, 2676 * if offset != orig_start, which means the first unaligned page 2677 * including several following pages are already in holes, 2678 * the extra check can be skipped */ 2679 if (offset == orig_start) { 2680 /* after truncate page, check hole again */ 2681 len = offset + len - lockstart; 2682 offset = lockstart; 2683 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2684 if (ret < 0) 2685 goto out_only_mutex; 2686 if (ret && !len) { 2687 ret = 0; 2688 goto out_only_mutex; 2689 } 2690 lockstart = offset; 2691 } 2692 2693 /* Check the tail unaligned part is in a hole */ 2694 tail_start = lockend + 1; 2695 tail_len = offset + len - tail_start; 2696 if (tail_len) { 2697 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2698 if (unlikely(ret < 0)) 2699 goto out_only_mutex; 2700 if (!ret) { 2701 /* zero the front end of the last page */ 2702 if (tail_start + tail_len < ino_size) { 2703 truncated_block = true; 2704 ret = btrfs_truncate_block(BTRFS_I(inode), 2705 tail_start + tail_len, 2706 0, 1); 2707 if (ret) 2708 goto out_only_mutex; 2709 } 2710 } 2711 } 2712 2713 if (lockend < lockstart) { 2714 ret = 0; 2715 goto out_only_mutex; 2716 } 2717 2718 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 2719 2720 path = btrfs_alloc_path(); 2721 if (!path) { 2722 ret = -ENOMEM; 2723 goto out; 2724 } 2725 2726 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 2727 lockend, NULL, &trans); 2728 btrfs_free_path(path); 2729 if (ret) 2730 goto out; 2731 2732 ASSERT(trans != NULL); 2733 inode_inc_iversion(inode); 2734 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2735 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2736 updated_inode = true; 2737 btrfs_end_transaction(trans); 2738 btrfs_btree_balance_dirty(fs_info); 2739 out: 2740 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2741 &cached_state); 2742 out_only_mutex: 2743 if (!updated_inode && truncated_block && !ret) { 2744 /* 2745 * If we only end up zeroing part of a page, we still need to 2746 * update the inode item, so that all the time fields are 2747 * updated as well as the necessary btrfs inode in memory fields 2748 * for detecting, at fsync time, if the inode isn't yet in the 2749 * log tree or it's there but not up to date. 2750 */ 2751 struct timespec64 now = inode_set_ctime_current(inode); 2752 2753 inode_inc_iversion(inode); 2754 inode_set_mtime_to_ts(inode, now); 2755 trans = btrfs_start_transaction(root, 1); 2756 if (IS_ERR(trans)) { 2757 ret = PTR_ERR(trans); 2758 } else { 2759 int ret2; 2760 2761 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2762 ret2 = btrfs_end_transaction(trans); 2763 if (!ret) 2764 ret = ret2; 2765 } 2766 } 2767 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2768 return ret; 2769 } 2770 2771 /* Helper structure to record which range is already reserved */ 2772 struct falloc_range { 2773 struct list_head list; 2774 u64 start; 2775 u64 len; 2776 }; 2777 2778 /* 2779 * Helper function to add falloc range 2780 * 2781 * Caller should have locked the larger range of extent containing 2782 * [start, len) 2783 */ 2784 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2785 { 2786 struct falloc_range *range = NULL; 2787 2788 if (!list_empty(head)) { 2789 /* 2790 * As fallocate iterates by bytenr order, we only need to check 2791 * the last range. 2792 */ 2793 range = list_last_entry(head, struct falloc_range, list); 2794 if (range->start + range->len == start) { 2795 range->len += len; 2796 return 0; 2797 } 2798 } 2799 2800 range = kmalloc(sizeof(*range), GFP_KERNEL); 2801 if (!range) 2802 return -ENOMEM; 2803 range->start = start; 2804 range->len = len; 2805 list_add_tail(&range->list, head); 2806 return 0; 2807 } 2808 2809 static int btrfs_fallocate_update_isize(struct inode *inode, 2810 const u64 end, 2811 const int mode) 2812 { 2813 struct btrfs_trans_handle *trans; 2814 struct btrfs_root *root = BTRFS_I(inode)->root; 2815 int ret; 2816 int ret2; 2817 2818 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2819 return 0; 2820 2821 trans = btrfs_start_transaction(root, 1); 2822 if (IS_ERR(trans)) 2823 return PTR_ERR(trans); 2824 2825 inode_set_ctime_current(inode); 2826 i_size_write(inode, end); 2827 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 2828 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2829 ret2 = btrfs_end_transaction(trans); 2830 2831 return ret ? ret : ret2; 2832 } 2833 2834 enum { 2835 RANGE_BOUNDARY_WRITTEN_EXTENT, 2836 RANGE_BOUNDARY_PREALLOC_EXTENT, 2837 RANGE_BOUNDARY_HOLE, 2838 }; 2839 2840 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 2841 u64 offset) 2842 { 2843 const u64 sectorsize = inode->root->fs_info->sectorsize; 2844 struct extent_map *em; 2845 int ret; 2846 2847 offset = round_down(offset, sectorsize); 2848 em = btrfs_get_extent(inode, NULL, offset, sectorsize); 2849 if (IS_ERR(em)) 2850 return PTR_ERR(em); 2851 2852 if (em->block_start == EXTENT_MAP_HOLE) 2853 ret = RANGE_BOUNDARY_HOLE; 2854 else if (em->flags & EXTENT_FLAG_PREALLOC) 2855 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2856 else 2857 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2858 2859 free_extent_map(em); 2860 return ret; 2861 } 2862 2863 static int btrfs_zero_range(struct inode *inode, 2864 loff_t offset, 2865 loff_t len, 2866 const int mode) 2867 { 2868 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2869 struct extent_map *em; 2870 struct extent_changeset *data_reserved = NULL; 2871 int ret; 2872 u64 alloc_hint = 0; 2873 const u64 sectorsize = fs_info->sectorsize; 2874 u64 alloc_start = round_down(offset, sectorsize); 2875 u64 alloc_end = round_up(offset + len, sectorsize); 2876 u64 bytes_to_reserve = 0; 2877 bool space_reserved = false; 2878 2879 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, 2880 alloc_end - alloc_start); 2881 if (IS_ERR(em)) { 2882 ret = PTR_ERR(em); 2883 goto out; 2884 } 2885 2886 /* 2887 * Avoid hole punching and extent allocation for some cases. More cases 2888 * could be considered, but these are unlikely common and we keep things 2889 * as simple as possible for now. Also, intentionally, if the target 2890 * range contains one or more prealloc extents together with regular 2891 * extents and holes, we drop all the existing extents and allocate a 2892 * new prealloc extent, so that we get a larger contiguous disk extent. 2893 */ 2894 if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) { 2895 const u64 em_end = em->start + em->len; 2896 2897 if (em_end >= offset + len) { 2898 /* 2899 * The whole range is already a prealloc extent, 2900 * do nothing except updating the inode's i_size if 2901 * needed. 2902 */ 2903 free_extent_map(em); 2904 ret = btrfs_fallocate_update_isize(inode, offset + len, 2905 mode); 2906 goto out; 2907 } 2908 /* 2909 * Part of the range is already a prealloc extent, so operate 2910 * only on the remaining part of the range. 2911 */ 2912 alloc_start = em_end; 2913 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2914 len = offset + len - alloc_start; 2915 offset = alloc_start; 2916 alloc_hint = em->block_start + em->len; 2917 } 2918 free_extent_map(em); 2919 2920 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2921 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2922 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize); 2923 if (IS_ERR(em)) { 2924 ret = PTR_ERR(em); 2925 goto out; 2926 } 2927 2928 if (em->flags & EXTENT_FLAG_PREALLOC) { 2929 free_extent_map(em); 2930 ret = btrfs_fallocate_update_isize(inode, offset + len, 2931 mode); 2932 goto out; 2933 } 2934 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 2935 free_extent_map(em); 2936 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2937 0); 2938 if (!ret) 2939 ret = btrfs_fallocate_update_isize(inode, 2940 offset + len, 2941 mode); 2942 return ret; 2943 } 2944 free_extent_map(em); 2945 alloc_start = round_down(offset, sectorsize); 2946 alloc_end = alloc_start + sectorsize; 2947 goto reserve_space; 2948 } 2949 2950 alloc_start = round_up(offset, sectorsize); 2951 alloc_end = round_down(offset + len, sectorsize); 2952 2953 /* 2954 * For unaligned ranges, check the pages at the boundaries, they might 2955 * map to an extent, in which case we need to partially zero them, or 2956 * they might map to a hole, in which case we need our allocation range 2957 * to cover them. 2958 */ 2959 if (!IS_ALIGNED(offset, sectorsize)) { 2960 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2961 offset); 2962 if (ret < 0) 2963 goto out; 2964 if (ret == RANGE_BOUNDARY_HOLE) { 2965 alloc_start = round_down(offset, sectorsize); 2966 ret = 0; 2967 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2968 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2969 if (ret) 2970 goto out; 2971 } else { 2972 ret = 0; 2973 } 2974 } 2975 2976 if (!IS_ALIGNED(offset + len, sectorsize)) { 2977 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2978 offset + len); 2979 if (ret < 0) 2980 goto out; 2981 if (ret == RANGE_BOUNDARY_HOLE) { 2982 alloc_end = round_up(offset + len, sectorsize); 2983 ret = 0; 2984 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2985 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 2986 0, 1); 2987 if (ret) 2988 goto out; 2989 } else { 2990 ret = 0; 2991 } 2992 } 2993 2994 reserve_space: 2995 if (alloc_start < alloc_end) { 2996 struct extent_state *cached_state = NULL; 2997 const u64 lockstart = alloc_start; 2998 const u64 lockend = alloc_end - 1; 2999 3000 bytes_to_reserve = alloc_end - alloc_start; 3001 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3002 bytes_to_reserve); 3003 if (ret < 0) 3004 goto out; 3005 space_reserved = true; 3006 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3007 &cached_state); 3008 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3009 alloc_start, bytes_to_reserve); 3010 if (ret) { 3011 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 3012 lockend, &cached_state); 3013 goto out; 3014 } 3015 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3016 alloc_end - alloc_start, 3017 fs_info->sectorsize, 3018 offset + len, &alloc_hint); 3019 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3020 &cached_state); 3021 /* btrfs_prealloc_file_range releases reserved space on error */ 3022 if (ret) { 3023 space_reserved = false; 3024 goto out; 3025 } 3026 } 3027 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3028 out: 3029 if (ret && space_reserved) 3030 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3031 alloc_start, bytes_to_reserve); 3032 extent_changeset_free(data_reserved); 3033 3034 return ret; 3035 } 3036 3037 static long btrfs_fallocate(struct file *file, int mode, 3038 loff_t offset, loff_t len) 3039 { 3040 struct inode *inode = file_inode(file); 3041 struct extent_state *cached_state = NULL; 3042 struct extent_changeset *data_reserved = NULL; 3043 struct falloc_range *range; 3044 struct falloc_range *tmp; 3045 LIST_HEAD(reserve_list); 3046 u64 cur_offset; 3047 u64 last_byte; 3048 u64 alloc_start; 3049 u64 alloc_end; 3050 u64 alloc_hint = 0; 3051 u64 locked_end; 3052 u64 actual_end = 0; 3053 u64 data_space_needed = 0; 3054 u64 data_space_reserved = 0; 3055 u64 qgroup_reserved = 0; 3056 struct extent_map *em; 3057 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; 3058 int ret; 3059 3060 /* Do not allow fallocate in ZONED mode */ 3061 if (btrfs_is_zoned(inode_to_fs_info(inode))) 3062 return -EOPNOTSUPP; 3063 3064 alloc_start = round_down(offset, blocksize); 3065 alloc_end = round_up(offset + len, blocksize); 3066 cur_offset = alloc_start; 3067 3068 /* Make sure we aren't being give some crap mode */ 3069 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3070 FALLOC_FL_ZERO_RANGE)) 3071 return -EOPNOTSUPP; 3072 3073 if (mode & FALLOC_FL_PUNCH_HOLE) 3074 return btrfs_punch_hole(file, offset, len); 3075 3076 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3077 3078 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3079 ret = inode_newsize_ok(inode, offset + len); 3080 if (ret) 3081 goto out; 3082 } 3083 3084 ret = file_modified(file); 3085 if (ret) 3086 goto out; 3087 3088 /* 3089 * TODO: Move these two operations after we have checked 3090 * accurate reserved space, or fallocate can still fail but 3091 * with page truncated or size expanded. 3092 * 3093 * But that's a minor problem and won't do much harm BTW. 3094 */ 3095 if (alloc_start > inode->i_size) { 3096 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3097 alloc_start); 3098 if (ret) 3099 goto out; 3100 } else if (offset + len > inode->i_size) { 3101 /* 3102 * If we are fallocating from the end of the file onward we 3103 * need to zero out the end of the block if i_size lands in the 3104 * middle of a block. 3105 */ 3106 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3107 if (ret) 3108 goto out; 3109 } 3110 3111 /* 3112 * We have locked the inode at the VFS level (in exclusive mode) and we 3113 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3114 * locking the file range, flush all dealloc in the range and wait for 3115 * all ordered extents in the range to complete. After this we can lock 3116 * the file range and, due to the previous locking we did, we know there 3117 * can't be more delalloc or ordered extents in the range. 3118 */ 3119 ret = btrfs_wait_ordered_range(inode, alloc_start, 3120 alloc_end - alloc_start); 3121 if (ret) 3122 goto out; 3123 3124 if (mode & FALLOC_FL_ZERO_RANGE) { 3125 ret = btrfs_zero_range(inode, offset, len, mode); 3126 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3127 return ret; 3128 } 3129 3130 locked_end = alloc_end - 1; 3131 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3132 &cached_state); 3133 3134 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3135 3136 /* First, check if we exceed the qgroup limit */ 3137 while (cur_offset < alloc_end) { 3138 em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset, 3139 alloc_end - cur_offset); 3140 if (IS_ERR(em)) { 3141 ret = PTR_ERR(em); 3142 break; 3143 } 3144 last_byte = min(extent_map_end(em), alloc_end); 3145 actual_end = min_t(u64, extent_map_end(em), offset + len); 3146 last_byte = ALIGN(last_byte, blocksize); 3147 if (em->block_start == EXTENT_MAP_HOLE || 3148 (cur_offset >= inode->i_size && 3149 !(em->flags & EXTENT_FLAG_PREALLOC))) { 3150 const u64 range_len = last_byte - cur_offset; 3151 3152 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3153 if (ret < 0) { 3154 free_extent_map(em); 3155 break; 3156 } 3157 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3158 &data_reserved, cur_offset, range_len); 3159 if (ret < 0) { 3160 free_extent_map(em); 3161 break; 3162 } 3163 qgroup_reserved += range_len; 3164 data_space_needed += range_len; 3165 } 3166 free_extent_map(em); 3167 cur_offset = last_byte; 3168 } 3169 3170 if (!ret && data_space_needed > 0) { 3171 /* 3172 * We are safe to reserve space here as we can't have delalloc 3173 * in the range, see above. 3174 */ 3175 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3176 data_space_needed); 3177 if (!ret) 3178 data_space_reserved = data_space_needed; 3179 } 3180 3181 /* 3182 * If ret is still 0, means we're OK to fallocate. 3183 * Or just cleanup the list and exit. 3184 */ 3185 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3186 if (!ret) { 3187 ret = btrfs_prealloc_file_range(inode, mode, 3188 range->start, 3189 range->len, blocksize, 3190 offset + len, &alloc_hint); 3191 /* 3192 * btrfs_prealloc_file_range() releases space even 3193 * if it returns an error. 3194 */ 3195 data_space_reserved -= range->len; 3196 qgroup_reserved -= range->len; 3197 } else if (data_space_reserved > 0) { 3198 btrfs_free_reserved_data_space(BTRFS_I(inode), 3199 data_reserved, range->start, 3200 range->len); 3201 data_space_reserved -= range->len; 3202 qgroup_reserved -= range->len; 3203 } else if (qgroup_reserved > 0) { 3204 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3205 range->start, range->len, NULL); 3206 qgroup_reserved -= range->len; 3207 } 3208 list_del(&range->list); 3209 kfree(range); 3210 } 3211 if (ret < 0) 3212 goto out_unlock; 3213 3214 /* 3215 * We didn't need to allocate any more space, but we still extended the 3216 * size of the file so we need to update i_size and the inode item. 3217 */ 3218 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3219 out_unlock: 3220 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3221 &cached_state); 3222 out: 3223 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3224 extent_changeset_free(data_reserved); 3225 return ret; 3226 } 3227 3228 /* 3229 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range 3230 * that has unflushed and/or flushing delalloc. There might be other adjacent 3231 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps 3232 * looping while it gets adjacent subranges, and merging them together. 3233 */ 3234 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, 3235 struct extent_state **cached_state, 3236 bool *search_io_tree, 3237 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3238 { 3239 u64 len = end + 1 - start; 3240 u64 delalloc_len = 0; 3241 struct btrfs_ordered_extent *oe; 3242 u64 oe_start; 3243 u64 oe_end; 3244 3245 /* 3246 * Search the io tree first for EXTENT_DELALLOC. If we find any, it 3247 * means we have delalloc (dirty pages) for which writeback has not 3248 * started yet. 3249 */ 3250 if (*search_io_tree) { 3251 spin_lock(&inode->lock); 3252 if (inode->delalloc_bytes > 0) { 3253 spin_unlock(&inode->lock); 3254 *delalloc_start_ret = start; 3255 delalloc_len = count_range_bits(&inode->io_tree, 3256 delalloc_start_ret, end, 3257 len, EXTENT_DELALLOC, 1, 3258 cached_state); 3259 } else { 3260 spin_unlock(&inode->lock); 3261 } 3262 } 3263 3264 if (delalloc_len > 0) { 3265 /* 3266 * If delalloc was found then *delalloc_start_ret has a sector size 3267 * aligned value (rounded down). 3268 */ 3269 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; 3270 3271 if (*delalloc_start_ret == start) { 3272 /* Delalloc for the whole range, nothing more to do. */ 3273 if (*delalloc_end_ret == end) 3274 return true; 3275 /* Else trim our search range for ordered extents. */ 3276 start = *delalloc_end_ret + 1; 3277 len = end + 1 - start; 3278 } 3279 } else { 3280 /* No delalloc, future calls don't need to search again. */ 3281 *search_io_tree = false; 3282 } 3283 3284 /* 3285 * Now also check if there's any ordered extent in the range. 3286 * We do this because: 3287 * 3288 * 1) When delalloc is flushed, the file range is locked, we clear the 3289 * EXTENT_DELALLOC bit from the io tree and create an extent map and 3290 * an ordered extent for the write. So we might just have been called 3291 * after delalloc is flushed and before the ordered extent completes 3292 * and inserts the new file extent item in the subvolume's btree; 3293 * 3294 * 2) We may have an ordered extent created by flushing delalloc for a 3295 * subrange that starts before the subrange we found marked with 3296 * EXTENT_DELALLOC in the io tree. 3297 * 3298 * We could also use the extent map tree to find such delalloc that is 3299 * being flushed, but using the ordered extents tree is more efficient 3300 * because it's usually much smaller as ordered extents are removed from 3301 * the tree once they complete. With the extent maps, we mau have them 3302 * in the extent map tree for a very long time, and they were either 3303 * created by previous writes or loaded by read operations. 3304 */ 3305 oe = btrfs_lookup_first_ordered_range(inode, start, len); 3306 if (!oe) 3307 return (delalloc_len > 0); 3308 3309 /* The ordered extent may span beyond our search range. */ 3310 oe_start = max(oe->file_offset, start); 3311 oe_end = min(oe->file_offset + oe->num_bytes - 1, end); 3312 3313 btrfs_put_ordered_extent(oe); 3314 3315 /* Don't have unflushed delalloc, return the ordered extent range. */ 3316 if (delalloc_len == 0) { 3317 *delalloc_start_ret = oe_start; 3318 *delalloc_end_ret = oe_end; 3319 return true; 3320 } 3321 3322 /* 3323 * We have both unflushed delalloc (io_tree) and an ordered extent. 3324 * If the ranges are adjacent returned a combined range, otherwise 3325 * return the leftmost range. 3326 */ 3327 if (oe_start < *delalloc_start_ret) { 3328 if (oe_end < *delalloc_start_ret) 3329 *delalloc_end_ret = oe_end; 3330 *delalloc_start_ret = oe_start; 3331 } else if (*delalloc_end_ret + 1 == oe_start) { 3332 *delalloc_end_ret = oe_end; 3333 } 3334 3335 return true; 3336 } 3337 3338 /* 3339 * Check if there's delalloc in a given range. 3340 * 3341 * @inode: The inode. 3342 * @start: The start offset of the range. It does not need to be 3343 * sector size aligned. 3344 * @end: The end offset (inclusive value) of the search range. 3345 * It does not need to be sector size aligned. 3346 * @cached_state: Extent state record used for speeding up delalloc 3347 * searches in the inode's io_tree. Can be NULL. 3348 * @delalloc_start_ret: Output argument, set to the start offset of the 3349 * subrange found with delalloc (may not be sector size 3350 * aligned). 3351 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value) 3352 * of the subrange found with delalloc. 3353 * 3354 * Returns true if a subrange with delalloc is found within the given range, and 3355 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and 3356 * end offsets of the subrange. 3357 */ 3358 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3359 struct extent_state **cached_state, 3360 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3361 { 3362 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); 3363 u64 prev_delalloc_end = 0; 3364 bool search_io_tree = true; 3365 bool ret = false; 3366 3367 while (cur_offset <= end) { 3368 u64 delalloc_start; 3369 u64 delalloc_end; 3370 bool delalloc; 3371 3372 delalloc = find_delalloc_subrange(inode, cur_offset, end, 3373 cached_state, &search_io_tree, 3374 &delalloc_start, 3375 &delalloc_end); 3376 if (!delalloc) 3377 break; 3378 3379 if (prev_delalloc_end == 0) { 3380 /* First subrange found. */ 3381 *delalloc_start_ret = max(delalloc_start, start); 3382 *delalloc_end_ret = delalloc_end; 3383 ret = true; 3384 } else if (delalloc_start == prev_delalloc_end + 1) { 3385 /* Subrange adjacent to the previous one, merge them. */ 3386 *delalloc_end_ret = delalloc_end; 3387 } else { 3388 /* Subrange not adjacent to the previous one, exit. */ 3389 break; 3390 } 3391 3392 prev_delalloc_end = delalloc_end; 3393 cur_offset = delalloc_end + 1; 3394 cond_resched(); 3395 } 3396 3397 return ret; 3398 } 3399 3400 /* 3401 * Check if there's a hole or delalloc range in a range representing a hole (or 3402 * prealloc extent) found in the inode's subvolume btree. 3403 * 3404 * @inode: The inode. 3405 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE). 3406 * @start: Start offset of the hole region. It does not need to be sector 3407 * size aligned. 3408 * @end: End offset (inclusive value) of the hole region. It does not 3409 * need to be sector size aligned. 3410 * @start_ret: Return parameter, used to set the start of the subrange in the 3411 * hole that matches the search criteria (seek mode), if such 3412 * subrange is found (return value of the function is true). 3413 * The value returned here may not be sector size aligned. 3414 * 3415 * Returns true if a subrange matching the given seek mode is found, and if one 3416 * is found, it updates @start_ret with the start of the subrange. 3417 */ 3418 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, 3419 struct extent_state **cached_state, 3420 u64 start, u64 end, u64 *start_ret) 3421 { 3422 u64 delalloc_start; 3423 u64 delalloc_end; 3424 bool delalloc; 3425 3426 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state, 3427 &delalloc_start, &delalloc_end); 3428 if (delalloc && whence == SEEK_DATA) { 3429 *start_ret = delalloc_start; 3430 return true; 3431 } 3432 3433 if (delalloc && whence == SEEK_HOLE) { 3434 /* 3435 * We found delalloc but it starts after out start offset. So we 3436 * have a hole between our start offset and the delalloc start. 3437 */ 3438 if (start < delalloc_start) { 3439 *start_ret = start; 3440 return true; 3441 } 3442 /* 3443 * Delalloc range starts at our start offset. 3444 * If the delalloc range's length is smaller than our range, 3445 * then it means we have a hole that starts where the delalloc 3446 * subrange ends. 3447 */ 3448 if (delalloc_end < end) { 3449 *start_ret = delalloc_end + 1; 3450 return true; 3451 } 3452 3453 /* There's delalloc for the whole range. */ 3454 return false; 3455 } 3456 3457 if (!delalloc && whence == SEEK_HOLE) { 3458 *start_ret = start; 3459 return true; 3460 } 3461 3462 /* 3463 * No delalloc in the range and we are seeking for data. The caller has 3464 * to iterate to the next extent item in the subvolume btree. 3465 */ 3466 return false; 3467 } 3468 3469 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence) 3470 { 3471 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host); 3472 struct btrfs_file_private *private = file->private_data; 3473 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3474 struct extent_state *cached_state = NULL; 3475 struct extent_state **delalloc_cached_state; 3476 const loff_t i_size = i_size_read(&inode->vfs_inode); 3477 const u64 ino = btrfs_ino(inode); 3478 struct btrfs_root *root = inode->root; 3479 struct btrfs_path *path; 3480 struct btrfs_key key; 3481 u64 last_extent_end; 3482 u64 lockstart; 3483 u64 lockend; 3484 u64 start; 3485 int ret; 3486 bool found = false; 3487 3488 if (i_size == 0 || offset >= i_size) 3489 return -ENXIO; 3490 3491 /* 3492 * Quick path. If the inode has no prealloc extents and its number of 3493 * bytes used matches its i_size, then it can not have holes. 3494 */ 3495 if (whence == SEEK_HOLE && 3496 !(inode->flags & BTRFS_INODE_PREALLOC) && 3497 inode_get_bytes(&inode->vfs_inode) == i_size) 3498 return i_size; 3499 3500 if (!private) { 3501 private = kzalloc(sizeof(*private), GFP_KERNEL); 3502 /* 3503 * No worries if memory allocation failed. 3504 * The private structure is used only for speeding up multiple 3505 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc, 3506 * so everything will still be correct. 3507 */ 3508 file->private_data = private; 3509 } 3510 3511 if (private) 3512 delalloc_cached_state = &private->llseek_cached_state; 3513 else 3514 delalloc_cached_state = NULL; 3515 3516 /* 3517 * offset can be negative, in this case we start finding DATA/HOLE from 3518 * the very start of the file. 3519 */ 3520 start = max_t(loff_t, 0, offset); 3521 3522 lockstart = round_down(start, fs_info->sectorsize); 3523 lockend = round_up(i_size, fs_info->sectorsize); 3524 if (lockend <= lockstart) 3525 lockend = lockstart + fs_info->sectorsize; 3526 lockend--; 3527 3528 path = btrfs_alloc_path(); 3529 if (!path) 3530 return -ENOMEM; 3531 path->reada = READA_FORWARD; 3532 3533 key.objectid = ino; 3534 key.type = BTRFS_EXTENT_DATA_KEY; 3535 key.offset = start; 3536 3537 last_extent_end = lockstart; 3538 3539 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3540 3541 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3542 if (ret < 0) { 3543 goto out; 3544 } else if (ret > 0 && path->slots[0] > 0) { 3545 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3546 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3547 path->slots[0]--; 3548 } 3549 3550 while (start < i_size) { 3551 struct extent_buffer *leaf = path->nodes[0]; 3552 struct btrfs_file_extent_item *extent; 3553 u64 extent_end; 3554 u8 type; 3555 3556 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3557 ret = btrfs_next_leaf(root, path); 3558 if (ret < 0) 3559 goto out; 3560 else if (ret > 0) 3561 break; 3562 3563 leaf = path->nodes[0]; 3564 } 3565 3566 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3567 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3568 break; 3569 3570 extent_end = btrfs_file_extent_end(path); 3571 3572 /* 3573 * In the first iteration we may have a slot that points to an 3574 * extent that ends before our start offset, so skip it. 3575 */ 3576 if (extent_end <= start) { 3577 path->slots[0]++; 3578 continue; 3579 } 3580 3581 /* We have an implicit hole, NO_HOLES feature is likely set. */ 3582 if (last_extent_end < key.offset) { 3583 u64 search_start = last_extent_end; 3584 u64 found_start; 3585 3586 /* 3587 * First iteration, @start matches @offset and it's 3588 * within the hole. 3589 */ 3590 if (start == offset) 3591 search_start = offset; 3592 3593 found = find_desired_extent_in_hole(inode, whence, 3594 delalloc_cached_state, 3595 search_start, 3596 key.offset - 1, 3597 &found_start); 3598 if (found) { 3599 start = found_start; 3600 break; 3601 } 3602 /* 3603 * Didn't find data or a hole (due to delalloc) in the 3604 * implicit hole range, so need to analyze the extent. 3605 */ 3606 } 3607 3608 extent = btrfs_item_ptr(leaf, path->slots[0], 3609 struct btrfs_file_extent_item); 3610 type = btrfs_file_extent_type(leaf, extent); 3611 3612 /* 3613 * Can't access the extent's disk_bytenr field if this is an 3614 * inline extent, since at that offset, it's where the extent 3615 * data starts. 3616 */ 3617 if (type == BTRFS_FILE_EXTENT_PREALLOC || 3618 (type == BTRFS_FILE_EXTENT_REG && 3619 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) { 3620 /* 3621 * Explicit hole or prealloc extent, search for delalloc. 3622 * A prealloc extent is treated like a hole. 3623 */ 3624 u64 search_start = key.offset; 3625 u64 found_start; 3626 3627 /* 3628 * First iteration, @start matches @offset and it's 3629 * within the hole. 3630 */ 3631 if (start == offset) 3632 search_start = offset; 3633 3634 found = find_desired_extent_in_hole(inode, whence, 3635 delalloc_cached_state, 3636 search_start, 3637 extent_end - 1, 3638 &found_start); 3639 if (found) { 3640 start = found_start; 3641 break; 3642 } 3643 /* 3644 * Didn't find data or a hole (due to delalloc) in the 3645 * implicit hole range, so need to analyze the next 3646 * extent item. 3647 */ 3648 } else { 3649 /* 3650 * Found a regular or inline extent. 3651 * If we are seeking for data, adjust the start offset 3652 * and stop, we're done. 3653 */ 3654 if (whence == SEEK_DATA) { 3655 start = max_t(u64, key.offset, offset); 3656 found = true; 3657 break; 3658 } 3659 /* 3660 * Else, we are seeking for a hole, check the next file 3661 * extent item. 3662 */ 3663 } 3664 3665 start = extent_end; 3666 last_extent_end = extent_end; 3667 path->slots[0]++; 3668 if (fatal_signal_pending(current)) { 3669 ret = -EINTR; 3670 goto out; 3671 } 3672 cond_resched(); 3673 } 3674 3675 /* We have an implicit hole from the last extent found up to i_size. */ 3676 if (!found && start < i_size) { 3677 found = find_desired_extent_in_hole(inode, whence, 3678 delalloc_cached_state, start, 3679 i_size - 1, &start); 3680 if (!found) 3681 start = i_size; 3682 } 3683 3684 out: 3685 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3686 btrfs_free_path(path); 3687 3688 if (ret < 0) 3689 return ret; 3690 3691 if (whence == SEEK_DATA && start >= i_size) 3692 return -ENXIO; 3693 3694 return min_t(loff_t, start, i_size); 3695 } 3696 3697 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3698 { 3699 struct inode *inode = file->f_mapping->host; 3700 3701 switch (whence) { 3702 default: 3703 return generic_file_llseek(file, offset, whence); 3704 case SEEK_DATA: 3705 case SEEK_HOLE: 3706 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3707 offset = find_desired_extent(file, offset, whence); 3708 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3709 break; 3710 } 3711 3712 if (offset < 0) 3713 return offset; 3714 3715 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3716 } 3717 3718 static int btrfs_file_open(struct inode *inode, struct file *filp) 3719 { 3720 int ret; 3721 3722 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC | 3723 FMODE_CAN_ODIRECT; 3724 3725 ret = fsverity_file_open(inode, filp); 3726 if (ret) 3727 return ret; 3728 return generic_file_open(inode, filp); 3729 } 3730 3731 static int check_direct_read(struct btrfs_fs_info *fs_info, 3732 const struct iov_iter *iter, loff_t offset) 3733 { 3734 int ret; 3735 int i, seg; 3736 3737 ret = check_direct_IO(fs_info, iter, offset); 3738 if (ret < 0) 3739 return ret; 3740 3741 if (!iter_is_iovec(iter)) 3742 return 0; 3743 3744 for (seg = 0; seg < iter->nr_segs; seg++) { 3745 for (i = seg + 1; i < iter->nr_segs; i++) { 3746 const struct iovec *iov1 = iter_iov(iter) + seg; 3747 const struct iovec *iov2 = iter_iov(iter) + i; 3748 3749 if (iov1->iov_base == iov2->iov_base) 3750 return -EINVAL; 3751 } 3752 } 3753 return 0; 3754 } 3755 3756 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 3757 { 3758 struct inode *inode = file_inode(iocb->ki_filp); 3759 size_t prev_left = 0; 3760 ssize_t read = 0; 3761 ssize_t ret; 3762 3763 if (fsverity_active(inode)) 3764 return 0; 3765 3766 if (check_direct_read(inode_to_fs_info(inode), to, iocb->ki_pos)) 3767 return 0; 3768 3769 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3770 again: 3771 /* 3772 * This is similar to what we do for direct IO writes, see the comment 3773 * at btrfs_direct_write(), but we also disable page faults in addition 3774 * to disabling them only at the iov_iter level. This is because when 3775 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(), 3776 * which can still trigger page fault ins despite having set ->nofault 3777 * to true of our 'to' iov_iter. 3778 * 3779 * The difference to direct IO writes is that we deadlock when trying 3780 * to lock the extent range in the inode's tree during he page reads 3781 * triggered by the fault in (while for writes it is due to waiting for 3782 * our own ordered extent). This is because for direct IO reads, 3783 * btrfs_dio_iomap_begin() returns with the extent range locked, which 3784 * is only unlocked in the endio callback (end_bio_extent_readpage()). 3785 */ 3786 pagefault_disable(); 3787 to->nofault = true; 3788 ret = btrfs_dio_read(iocb, to, read); 3789 to->nofault = false; 3790 pagefault_enable(); 3791 3792 /* No increment (+=) because iomap returns a cumulative value. */ 3793 if (ret > 0) 3794 read = ret; 3795 3796 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) { 3797 const size_t left = iov_iter_count(to); 3798 3799 if (left == prev_left) { 3800 /* 3801 * We didn't make any progress since the last attempt, 3802 * fallback to a buffered read for the remainder of the 3803 * range. This is just to avoid any possibility of looping 3804 * for too long. 3805 */ 3806 ret = read; 3807 } else { 3808 /* 3809 * We made some progress since the last retry or this is 3810 * the first time we are retrying. Fault in as many pages 3811 * as possible and retry. 3812 */ 3813 fault_in_iov_iter_writeable(to, left); 3814 prev_left = left; 3815 goto again; 3816 } 3817 } 3818 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3819 return ret < 0 ? ret : read; 3820 } 3821 3822 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3823 { 3824 ssize_t ret = 0; 3825 3826 if (iocb->ki_flags & IOCB_DIRECT) { 3827 ret = btrfs_direct_read(iocb, to); 3828 if (ret < 0 || !iov_iter_count(to) || 3829 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3830 return ret; 3831 } 3832 3833 return filemap_read(iocb, to, ret); 3834 } 3835 3836 const struct file_operations btrfs_file_operations = { 3837 .llseek = btrfs_file_llseek, 3838 .read_iter = btrfs_file_read_iter, 3839 .splice_read = filemap_splice_read, 3840 .write_iter = btrfs_file_write_iter, 3841 .splice_write = iter_file_splice_write, 3842 .mmap = btrfs_file_mmap, 3843 .open = btrfs_file_open, 3844 .release = btrfs_release_file, 3845 .get_unmapped_area = thp_get_unmapped_area, 3846 .fsync = btrfs_sync_file, 3847 .fallocate = btrfs_fallocate, 3848 .unlocked_ioctl = btrfs_ioctl, 3849 #ifdef CONFIG_COMPAT 3850 .compat_ioctl = btrfs_compat_ioctl, 3851 #endif 3852 .remap_file_range = btrfs_remap_file_range, 3853 }; 3854 3855 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3856 { 3857 int ret; 3858 3859 /* 3860 * So with compression we will find and lock a dirty page and clear the 3861 * first one as dirty, setup an async extent, and immediately return 3862 * with the entire range locked but with nobody actually marked with 3863 * writeback. So we can't just filemap_write_and_wait_range() and 3864 * expect it to work since it will just kick off a thread to do the 3865 * actual work. So we need to call filemap_fdatawrite_range _again_ 3866 * since it will wait on the page lock, which won't be unlocked until 3867 * after the pages have been marked as writeback and so we're good to go 3868 * from there. We have to do this otherwise we'll miss the ordered 3869 * extents and that results in badness. Please Josef, do not think you 3870 * know better and pull this out at some point in the future, it is 3871 * right and you are wrong. 3872 */ 3873 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3874 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3875 &BTRFS_I(inode)->runtime_flags)) 3876 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3877 3878 return ret; 3879 } 3880