1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include "ctree.h" 21 #include "direct-io.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "btrfs_inode.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "qgroup.h" 28 #include "compression.h" 29 #include "delalloc-space.h" 30 #include "reflink.h" 31 #include "subpage.h" 32 #include "fs.h" 33 #include "accessors.h" 34 #include "extent-tree.h" 35 #include "file-item.h" 36 #include "ioctl.h" 37 #include "file.h" 38 #include "super.h" 39 #include "print-tree.h" 40 41 /* 42 * Unlock folio after btrfs_file_write() is done with it. 43 */ 44 static void btrfs_drop_folio(struct btrfs_fs_info *fs_info, struct folio *folio, 45 u64 pos, u64 copied) 46 { 47 u64 block_start = round_down(pos, fs_info->sectorsize); 48 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 49 50 ASSERT(block_len <= U32_MAX); 51 /* 52 * Folio checked is some magic around finding folios that have been 53 * modified without going through btrfs_dirty_folio(). Clear it here. 54 * There should be no need to mark the pages accessed as 55 * prepare_one_folio() should have marked them accessed in 56 * prepare_one_folio() via find_or_create_page() 57 */ 58 btrfs_folio_clamp_clear_checked(fs_info, folio, block_start, block_len); 59 folio_unlock(folio); 60 folio_put(folio); 61 } 62 63 /* 64 * After copy_folio_from_iter_atomic(), update the following things for delalloc: 65 * - Mark newly dirtied folio as DELALLOC in the io tree. 66 * Used to advise which range is to be written back. 67 * - Mark modified folio as Uptodate/Dirty and not needing COW fixup 68 * - Update inode size for past EOF write 69 */ 70 int btrfs_dirty_folio(struct btrfs_inode *inode, struct folio *folio, loff_t pos, 71 size_t write_bytes, struct extent_state **cached, bool noreserve) 72 { 73 struct btrfs_fs_info *fs_info = inode->root->fs_info; 74 int ret = 0; 75 u64 num_bytes; 76 u64 start_pos; 77 u64 end_of_last_block; 78 u64 end_pos = pos + write_bytes; 79 loff_t isize = i_size_read(&inode->vfs_inode); 80 unsigned int extra_bits = 0; 81 82 if (write_bytes == 0) 83 return 0; 84 85 if (noreserve) 86 extra_bits |= EXTENT_NORESERVE; 87 88 start_pos = round_down(pos, fs_info->sectorsize); 89 num_bytes = round_up(write_bytes + pos - start_pos, 90 fs_info->sectorsize); 91 ASSERT(num_bytes <= U32_MAX); 92 ASSERT(folio_pos(folio) <= pos && 93 folio_pos(folio) + folio_size(folio) >= pos + write_bytes); 94 95 end_of_last_block = start_pos + num_bytes - 1; 96 97 /* 98 * The pages may have already been dirty, clear out old accounting so 99 * we can set things up properly 100 */ 101 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 102 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 103 cached); 104 105 ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 106 extra_bits, cached); 107 if (ret) 108 return ret; 109 110 btrfs_folio_clamp_set_uptodate(fs_info, folio, start_pos, num_bytes); 111 btrfs_folio_clamp_clear_checked(fs_info, folio, start_pos, num_bytes); 112 btrfs_folio_clamp_set_dirty(fs_info, folio, start_pos, num_bytes); 113 114 /* 115 * we've only changed i_size in ram, and we haven't updated 116 * the disk i_size. There is no need to log the inode 117 * at this time. 118 */ 119 if (end_pos > isize) 120 i_size_write(&inode->vfs_inode, end_pos); 121 return 0; 122 } 123 124 /* 125 * this is very complex, but the basic idea is to drop all extents 126 * in the range start - end. hint_block is filled in with a block number 127 * that would be a good hint to the block allocator for this file. 128 * 129 * If an extent intersects the range but is not entirely inside the range 130 * it is either truncated or split. Anything entirely inside the range 131 * is deleted from the tree. 132 * 133 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 134 * to deal with that. We set the field 'bytes_found' of the arguments structure 135 * with the number of allocated bytes found in the target range, so that the 136 * caller can update the inode's number of bytes in an atomic way when 137 * replacing extents in a range to avoid races with stat(2). 138 */ 139 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 140 struct btrfs_root *root, struct btrfs_inode *inode, 141 struct btrfs_drop_extents_args *args) 142 { 143 struct btrfs_fs_info *fs_info = root->fs_info; 144 struct extent_buffer *leaf; 145 struct btrfs_file_extent_item *fi; 146 struct btrfs_key key; 147 struct btrfs_key new_key; 148 u64 ino = btrfs_ino(inode); 149 u64 search_start = args->start; 150 u64 disk_bytenr = 0; 151 u64 num_bytes = 0; 152 u64 extent_offset = 0; 153 u64 extent_end = 0; 154 u64 last_end = args->start; 155 int del_nr = 0; 156 int del_slot = 0; 157 int extent_type; 158 int recow; 159 int ret; 160 int modify_tree = -1; 161 int update_refs; 162 int found = 0; 163 struct btrfs_path *path = args->path; 164 165 args->bytes_found = 0; 166 args->extent_inserted = false; 167 168 /* Must always have a path if ->replace_extent is true */ 169 ASSERT(!(args->replace_extent && !args->path)); 170 171 if (!path) { 172 path = btrfs_alloc_path(); 173 if (!path) { 174 ret = -ENOMEM; 175 goto out; 176 } 177 } 178 179 if (args->drop_cache) 180 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); 181 182 if (data_race(args->start >= inode->disk_i_size) && !args->replace_extent) 183 modify_tree = 0; 184 185 update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID); 186 while (1) { 187 recow = 0; 188 ret = btrfs_lookup_file_extent(trans, root, path, ino, 189 search_start, modify_tree); 190 if (ret < 0) 191 break; 192 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 193 leaf = path->nodes[0]; 194 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 195 if (key.objectid == ino && 196 key.type == BTRFS_EXTENT_DATA_KEY) 197 path->slots[0]--; 198 } 199 ret = 0; 200 next_slot: 201 leaf = path->nodes[0]; 202 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 203 if (WARN_ON(del_nr > 0)) { 204 btrfs_print_leaf(leaf); 205 ret = -EINVAL; 206 break; 207 } 208 ret = btrfs_next_leaf(root, path); 209 if (ret < 0) 210 break; 211 if (ret > 0) { 212 ret = 0; 213 break; 214 } 215 leaf = path->nodes[0]; 216 recow = 1; 217 } 218 219 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 220 221 if (key.objectid > ino) 222 break; 223 if (WARN_ON_ONCE(key.objectid < ino) || 224 key.type < BTRFS_EXTENT_DATA_KEY) { 225 ASSERT(del_nr == 0); 226 path->slots[0]++; 227 goto next_slot; 228 } 229 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 230 break; 231 232 fi = btrfs_item_ptr(leaf, path->slots[0], 233 struct btrfs_file_extent_item); 234 extent_type = btrfs_file_extent_type(leaf, fi); 235 236 if (extent_type == BTRFS_FILE_EXTENT_REG || 237 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 238 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 239 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 240 extent_offset = btrfs_file_extent_offset(leaf, fi); 241 extent_end = key.offset + 242 btrfs_file_extent_num_bytes(leaf, fi); 243 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 244 extent_end = key.offset + 245 btrfs_file_extent_ram_bytes(leaf, fi); 246 } else { 247 /* can't happen */ 248 BUG(); 249 } 250 251 /* 252 * Don't skip extent items representing 0 byte lengths. They 253 * used to be created (bug) if while punching holes we hit 254 * -ENOSPC condition. So if we find one here, just ensure we 255 * delete it, otherwise we would insert a new file extent item 256 * with the same key (offset) as that 0 bytes length file 257 * extent item in the call to setup_items_for_insert() later 258 * in this function. 259 */ 260 if (extent_end == key.offset && extent_end >= search_start) { 261 last_end = extent_end; 262 goto delete_extent_item; 263 } 264 265 if (extent_end <= search_start) { 266 path->slots[0]++; 267 goto next_slot; 268 } 269 270 found = 1; 271 search_start = max(key.offset, args->start); 272 if (recow || !modify_tree) { 273 modify_tree = -1; 274 btrfs_release_path(path); 275 continue; 276 } 277 278 /* 279 * | - range to drop - | 280 * | -------- extent -------- | 281 */ 282 if (args->start > key.offset && args->end < extent_end) { 283 if (WARN_ON(del_nr > 0)) { 284 btrfs_print_leaf(leaf); 285 ret = -EINVAL; 286 break; 287 } 288 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 289 ret = -EOPNOTSUPP; 290 break; 291 } 292 293 memcpy(&new_key, &key, sizeof(new_key)); 294 new_key.offset = args->start; 295 ret = btrfs_duplicate_item(trans, root, path, 296 &new_key); 297 if (ret == -EAGAIN) { 298 btrfs_release_path(path); 299 continue; 300 } 301 if (ret < 0) 302 break; 303 304 leaf = path->nodes[0]; 305 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 306 struct btrfs_file_extent_item); 307 btrfs_set_file_extent_num_bytes(leaf, fi, 308 args->start - key.offset); 309 310 fi = btrfs_item_ptr(leaf, path->slots[0], 311 struct btrfs_file_extent_item); 312 313 extent_offset += args->start - key.offset; 314 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 315 btrfs_set_file_extent_num_bytes(leaf, fi, 316 extent_end - args->start); 317 318 if (update_refs && disk_bytenr > 0) { 319 struct btrfs_ref ref = { 320 .action = BTRFS_ADD_DELAYED_REF, 321 .bytenr = disk_bytenr, 322 .num_bytes = num_bytes, 323 .parent = 0, 324 .owning_root = btrfs_root_id(root), 325 .ref_root = btrfs_root_id(root), 326 }; 327 btrfs_init_data_ref(&ref, new_key.objectid, 328 args->start - extent_offset, 329 0, false); 330 ret = btrfs_inc_extent_ref(trans, &ref); 331 if (ret) { 332 btrfs_abort_transaction(trans, ret); 333 break; 334 } 335 } 336 key.offset = args->start; 337 } 338 /* 339 * From here on out we will have actually dropped something, so 340 * last_end can be updated. 341 */ 342 last_end = extent_end; 343 344 /* 345 * | ---- range to drop ----- | 346 * | -------- extent -------- | 347 */ 348 if (args->start <= key.offset && args->end < extent_end) { 349 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 350 ret = -EOPNOTSUPP; 351 break; 352 } 353 354 memcpy(&new_key, &key, sizeof(new_key)); 355 new_key.offset = args->end; 356 btrfs_set_item_key_safe(trans, path, &new_key); 357 358 extent_offset += args->end - key.offset; 359 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 360 btrfs_set_file_extent_num_bytes(leaf, fi, 361 extent_end - args->end); 362 if (update_refs && disk_bytenr > 0) 363 args->bytes_found += args->end - key.offset; 364 break; 365 } 366 367 search_start = extent_end; 368 /* 369 * | ---- range to drop ----- | 370 * | -------- extent -------- | 371 */ 372 if (args->start > key.offset && args->end >= extent_end) { 373 if (WARN_ON(del_nr > 0)) { 374 btrfs_print_leaf(leaf); 375 ret = -EINVAL; 376 break; 377 } 378 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 379 ret = -EOPNOTSUPP; 380 break; 381 } 382 383 btrfs_set_file_extent_num_bytes(leaf, fi, 384 args->start - key.offset); 385 if (update_refs && disk_bytenr > 0) 386 args->bytes_found += extent_end - args->start; 387 if (args->end == extent_end) 388 break; 389 390 path->slots[0]++; 391 goto next_slot; 392 } 393 394 /* 395 * | ---- range to drop ----- | 396 * | ------ extent ------ | 397 */ 398 if (args->start <= key.offset && args->end >= extent_end) { 399 delete_extent_item: 400 if (del_nr == 0) { 401 del_slot = path->slots[0]; 402 del_nr = 1; 403 } else { 404 if (WARN_ON(del_slot + del_nr != path->slots[0])) { 405 btrfs_print_leaf(leaf); 406 ret = -EINVAL; 407 break; 408 } 409 del_nr++; 410 } 411 412 if (update_refs && 413 extent_type == BTRFS_FILE_EXTENT_INLINE) { 414 args->bytes_found += extent_end - key.offset; 415 extent_end = ALIGN(extent_end, 416 fs_info->sectorsize); 417 } else if (update_refs && disk_bytenr > 0) { 418 struct btrfs_ref ref = { 419 .action = BTRFS_DROP_DELAYED_REF, 420 .bytenr = disk_bytenr, 421 .num_bytes = num_bytes, 422 .parent = 0, 423 .owning_root = btrfs_root_id(root), 424 .ref_root = btrfs_root_id(root), 425 }; 426 btrfs_init_data_ref(&ref, key.objectid, 427 key.offset - extent_offset, 428 0, false); 429 ret = btrfs_free_extent(trans, &ref); 430 if (ret) { 431 btrfs_abort_transaction(trans, ret); 432 break; 433 } 434 args->bytes_found += extent_end - key.offset; 435 } 436 437 if (args->end == extent_end) 438 break; 439 440 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 441 path->slots[0]++; 442 goto next_slot; 443 } 444 445 ret = btrfs_del_items(trans, root, path, del_slot, 446 del_nr); 447 if (ret) { 448 btrfs_abort_transaction(trans, ret); 449 break; 450 } 451 452 del_nr = 0; 453 del_slot = 0; 454 455 btrfs_release_path(path); 456 continue; 457 } 458 459 BUG(); 460 } 461 462 if (!ret && del_nr > 0) { 463 /* 464 * Set path->slots[0] to first slot, so that after the delete 465 * if items are move off from our leaf to its immediate left or 466 * right neighbor leafs, we end up with a correct and adjusted 467 * path->slots[0] for our insertion (if args->replace_extent). 468 */ 469 path->slots[0] = del_slot; 470 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 471 if (ret) 472 btrfs_abort_transaction(trans, ret); 473 } 474 475 leaf = path->nodes[0]; 476 /* 477 * If btrfs_del_items() was called, it might have deleted a leaf, in 478 * which case it unlocked our path, so check path->locks[0] matches a 479 * write lock. 480 */ 481 if (!ret && args->replace_extent && 482 path->locks[0] == BTRFS_WRITE_LOCK && 483 btrfs_leaf_free_space(leaf) >= 484 sizeof(struct btrfs_item) + args->extent_item_size) { 485 486 key.objectid = ino; 487 key.type = BTRFS_EXTENT_DATA_KEY; 488 key.offset = args->start; 489 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 490 struct btrfs_key slot_key; 491 492 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 493 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 494 path->slots[0]++; 495 } 496 btrfs_setup_item_for_insert(trans, root, path, &key, 497 args->extent_item_size); 498 args->extent_inserted = true; 499 } 500 501 if (!args->path) 502 btrfs_free_path(path); 503 else if (!args->extent_inserted) 504 btrfs_release_path(path); 505 out: 506 args->drop_end = found ? min(args->end, last_end) : args->end; 507 508 return ret; 509 } 510 511 static int extent_mergeable(struct extent_buffer *leaf, int slot, 512 u64 objectid, u64 bytenr, u64 orig_offset, 513 u64 *start, u64 *end) 514 { 515 struct btrfs_file_extent_item *fi; 516 struct btrfs_key key; 517 u64 extent_end; 518 519 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 520 return 0; 521 522 btrfs_item_key_to_cpu(leaf, &key, slot); 523 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 524 return 0; 525 526 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 527 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 528 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 529 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 530 btrfs_file_extent_compression(leaf, fi) || 531 btrfs_file_extent_encryption(leaf, fi) || 532 btrfs_file_extent_other_encoding(leaf, fi)) 533 return 0; 534 535 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 536 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 537 return 0; 538 539 *start = key.offset; 540 *end = extent_end; 541 return 1; 542 } 543 544 /* 545 * Mark extent in the range start - end as written. 546 * 547 * This changes extent type from 'pre-allocated' to 'regular'. If only 548 * part of extent is marked as written, the extent will be split into 549 * two or three. 550 */ 551 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 552 struct btrfs_inode *inode, u64 start, u64 end) 553 { 554 struct btrfs_root *root = inode->root; 555 struct extent_buffer *leaf; 556 struct btrfs_path *path; 557 struct btrfs_file_extent_item *fi; 558 struct btrfs_ref ref = { 0 }; 559 struct btrfs_key key; 560 struct btrfs_key new_key; 561 u64 bytenr; 562 u64 num_bytes; 563 u64 extent_end; 564 u64 orig_offset; 565 u64 other_start; 566 u64 other_end; 567 u64 split; 568 int del_nr = 0; 569 int del_slot = 0; 570 int recow; 571 int ret = 0; 572 u64 ino = btrfs_ino(inode); 573 574 path = btrfs_alloc_path(); 575 if (!path) 576 return -ENOMEM; 577 again: 578 recow = 0; 579 split = start; 580 key.objectid = ino; 581 key.type = BTRFS_EXTENT_DATA_KEY; 582 key.offset = split; 583 584 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 585 if (ret < 0) 586 goto out; 587 if (ret > 0 && path->slots[0] > 0) 588 path->slots[0]--; 589 590 leaf = path->nodes[0]; 591 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 592 if (key.objectid != ino || 593 key.type != BTRFS_EXTENT_DATA_KEY) { 594 ret = -EINVAL; 595 btrfs_abort_transaction(trans, ret); 596 goto out; 597 } 598 fi = btrfs_item_ptr(leaf, path->slots[0], 599 struct btrfs_file_extent_item); 600 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 601 ret = -EINVAL; 602 btrfs_abort_transaction(trans, ret); 603 goto out; 604 } 605 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 606 if (key.offset > start || extent_end < end) { 607 ret = -EINVAL; 608 btrfs_abort_transaction(trans, ret); 609 goto out; 610 } 611 612 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 613 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 614 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 615 memcpy(&new_key, &key, sizeof(new_key)); 616 617 if (start == key.offset && end < extent_end) { 618 other_start = 0; 619 other_end = start; 620 if (extent_mergeable(leaf, path->slots[0] - 1, 621 ino, bytenr, orig_offset, 622 &other_start, &other_end)) { 623 new_key.offset = end; 624 btrfs_set_item_key_safe(trans, path, &new_key); 625 fi = btrfs_item_ptr(leaf, path->slots[0], 626 struct btrfs_file_extent_item); 627 btrfs_set_file_extent_generation(leaf, fi, 628 trans->transid); 629 btrfs_set_file_extent_num_bytes(leaf, fi, 630 extent_end - end); 631 btrfs_set_file_extent_offset(leaf, fi, 632 end - orig_offset); 633 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 634 struct btrfs_file_extent_item); 635 btrfs_set_file_extent_generation(leaf, fi, 636 trans->transid); 637 btrfs_set_file_extent_num_bytes(leaf, fi, 638 end - other_start); 639 goto out; 640 } 641 } 642 643 if (start > key.offset && end == extent_end) { 644 other_start = end; 645 other_end = 0; 646 if (extent_mergeable(leaf, path->slots[0] + 1, 647 ino, bytenr, orig_offset, 648 &other_start, &other_end)) { 649 fi = btrfs_item_ptr(leaf, path->slots[0], 650 struct btrfs_file_extent_item); 651 btrfs_set_file_extent_num_bytes(leaf, fi, 652 start - key.offset); 653 btrfs_set_file_extent_generation(leaf, fi, 654 trans->transid); 655 path->slots[0]++; 656 new_key.offset = start; 657 btrfs_set_item_key_safe(trans, path, &new_key); 658 659 fi = btrfs_item_ptr(leaf, path->slots[0], 660 struct btrfs_file_extent_item); 661 btrfs_set_file_extent_generation(leaf, fi, 662 trans->transid); 663 btrfs_set_file_extent_num_bytes(leaf, fi, 664 other_end - start); 665 btrfs_set_file_extent_offset(leaf, fi, 666 start - orig_offset); 667 goto out; 668 } 669 } 670 671 while (start > key.offset || end < extent_end) { 672 if (key.offset == start) 673 split = end; 674 675 new_key.offset = split; 676 ret = btrfs_duplicate_item(trans, root, path, &new_key); 677 if (ret == -EAGAIN) { 678 btrfs_release_path(path); 679 goto again; 680 } 681 if (ret < 0) { 682 btrfs_abort_transaction(trans, ret); 683 goto out; 684 } 685 686 leaf = path->nodes[0]; 687 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 688 struct btrfs_file_extent_item); 689 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 690 btrfs_set_file_extent_num_bytes(leaf, fi, 691 split - key.offset); 692 693 fi = btrfs_item_ptr(leaf, path->slots[0], 694 struct btrfs_file_extent_item); 695 696 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 697 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 698 btrfs_set_file_extent_num_bytes(leaf, fi, 699 extent_end - split); 700 701 ref.action = BTRFS_ADD_DELAYED_REF; 702 ref.bytenr = bytenr; 703 ref.num_bytes = num_bytes; 704 ref.parent = 0; 705 ref.owning_root = btrfs_root_id(root); 706 ref.ref_root = btrfs_root_id(root); 707 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false); 708 ret = btrfs_inc_extent_ref(trans, &ref); 709 if (ret) { 710 btrfs_abort_transaction(trans, ret); 711 goto out; 712 } 713 714 if (split == start) { 715 key.offset = start; 716 } else { 717 if (start != key.offset) { 718 ret = -EINVAL; 719 btrfs_abort_transaction(trans, ret); 720 goto out; 721 } 722 path->slots[0]--; 723 extent_end = end; 724 } 725 recow = 1; 726 } 727 728 other_start = end; 729 other_end = 0; 730 731 ref.action = BTRFS_DROP_DELAYED_REF; 732 ref.bytenr = bytenr; 733 ref.num_bytes = num_bytes; 734 ref.parent = 0; 735 ref.owning_root = btrfs_root_id(root); 736 ref.ref_root = btrfs_root_id(root); 737 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false); 738 if (extent_mergeable(leaf, path->slots[0] + 1, 739 ino, bytenr, orig_offset, 740 &other_start, &other_end)) { 741 if (recow) { 742 btrfs_release_path(path); 743 goto again; 744 } 745 extent_end = other_end; 746 del_slot = path->slots[0] + 1; 747 del_nr++; 748 ret = btrfs_free_extent(trans, &ref); 749 if (ret) { 750 btrfs_abort_transaction(trans, ret); 751 goto out; 752 } 753 } 754 other_start = 0; 755 other_end = start; 756 if (extent_mergeable(leaf, path->slots[0] - 1, 757 ino, bytenr, orig_offset, 758 &other_start, &other_end)) { 759 if (recow) { 760 btrfs_release_path(path); 761 goto again; 762 } 763 key.offset = other_start; 764 del_slot = path->slots[0]; 765 del_nr++; 766 ret = btrfs_free_extent(trans, &ref); 767 if (ret) { 768 btrfs_abort_transaction(trans, ret); 769 goto out; 770 } 771 } 772 if (del_nr == 0) { 773 fi = btrfs_item_ptr(leaf, path->slots[0], 774 struct btrfs_file_extent_item); 775 btrfs_set_file_extent_type(leaf, fi, 776 BTRFS_FILE_EXTENT_REG); 777 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 778 } else { 779 fi = btrfs_item_ptr(leaf, del_slot - 1, 780 struct btrfs_file_extent_item); 781 btrfs_set_file_extent_type(leaf, fi, 782 BTRFS_FILE_EXTENT_REG); 783 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 784 btrfs_set_file_extent_num_bytes(leaf, fi, 785 extent_end - key.offset); 786 787 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 788 if (ret < 0) { 789 btrfs_abort_transaction(trans, ret); 790 goto out; 791 } 792 } 793 out: 794 btrfs_free_path(path); 795 return ret; 796 } 797 798 /* 799 * On error return an unlocked folio and the error value 800 * On success return a locked folio and 0 801 */ 802 static int prepare_uptodate_folio(struct inode *inode, struct folio *folio, u64 pos, 803 u64 len, bool force_uptodate) 804 { 805 u64 clamp_start = max_t(u64, pos, folio_pos(folio)); 806 u64 clamp_end = min_t(u64, pos + len, folio_pos(folio) + folio_size(folio)); 807 int ret = 0; 808 809 if (folio_test_uptodate(folio)) 810 return 0; 811 812 if (!force_uptodate && 813 IS_ALIGNED(clamp_start, PAGE_SIZE) && 814 IS_ALIGNED(clamp_end, PAGE_SIZE)) 815 return 0; 816 817 ret = btrfs_read_folio(NULL, folio); 818 if (ret) 819 return ret; 820 folio_lock(folio); 821 if (!folio_test_uptodate(folio)) { 822 folio_unlock(folio); 823 return -EIO; 824 } 825 826 /* 827 * Since btrfs_read_folio() will unlock the folio before it returns, 828 * there is a window where btrfs_release_folio() can be called to 829 * release the page. Here we check both inode mapping and page 830 * private to make sure the page was not released. 831 * 832 * The private flag check is essential for subpage as we need to store 833 * extra bitmap using folio private. 834 */ 835 if (folio->mapping != inode->i_mapping || !folio_test_private(folio)) { 836 folio_unlock(folio); 837 return -EAGAIN; 838 } 839 return 0; 840 } 841 842 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) 843 { 844 gfp_t gfp; 845 846 gfp = btrfs_alloc_write_mask(inode->i_mapping); 847 if (nowait) { 848 gfp &= ~__GFP_DIRECT_RECLAIM; 849 gfp |= GFP_NOWAIT; 850 } 851 852 return gfp; 853 } 854 855 /* 856 * Get folio into the page cache and lock it. 857 */ 858 static noinline int prepare_one_folio(struct inode *inode, struct folio **folio_ret, 859 loff_t pos, size_t write_bytes, 860 bool force_uptodate, bool nowait) 861 { 862 unsigned long index = pos >> PAGE_SHIFT; 863 gfp_t mask = get_prepare_gfp_flags(inode, nowait); 864 fgf_t fgp_flags = (nowait ? FGP_WRITEBEGIN | FGP_NOWAIT : FGP_WRITEBEGIN); 865 struct folio *folio; 866 int ret = 0; 867 868 again: 869 folio = __filemap_get_folio(inode->i_mapping, index, fgp_flags, mask); 870 if (IS_ERR(folio)) { 871 if (nowait) 872 ret = -EAGAIN; 873 else 874 ret = PTR_ERR(folio); 875 return ret; 876 } 877 folio_wait_writeback(folio); 878 /* Only support page sized folio yet. */ 879 ASSERT(folio_order(folio) == 0); 880 ret = set_folio_extent_mapped(folio); 881 if (ret < 0) { 882 folio_unlock(folio); 883 folio_put(folio); 884 return ret; 885 } 886 ret = prepare_uptodate_folio(inode, folio, pos, write_bytes, force_uptodate); 887 if (ret) { 888 /* The folio is already unlocked. */ 889 folio_put(folio); 890 if (!nowait && ret == -EAGAIN) { 891 ret = 0; 892 goto again; 893 } 894 return ret; 895 } 896 *folio_ret = folio; 897 return 0; 898 } 899 900 /* 901 * Locks the extent and properly waits for data=ordered extents to finish 902 * before allowing the folios to be modified if need. 903 * 904 * Return: 905 * 1 - the extent is locked 906 * 0 - the extent is not locked, and everything is OK 907 * -EAGAIN - need to prepare the folios again 908 */ 909 static noinline int 910 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct folio *folio, 911 loff_t pos, size_t write_bytes, 912 u64 *lockstart, u64 *lockend, bool nowait, 913 struct extent_state **cached_state) 914 { 915 struct btrfs_fs_info *fs_info = inode->root->fs_info; 916 u64 start_pos; 917 u64 last_pos; 918 int ret = 0; 919 920 start_pos = round_down(pos, fs_info->sectorsize); 921 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 922 923 if (start_pos < inode->vfs_inode.i_size) { 924 struct btrfs_ordered_extent *ordered; 925 926 if (nowait) { 927 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos, 928 cached_state)) { 929 folio_unlock(folio); 930 folio_put(folio); 931 return -EAGAIN; 932 } 933 } else { 934 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state); 935 } 936 937 ordered = btrfs_lookup_ordered_range(inode, start_pos, 938 last_pos - start_pos + 1); 939 if (ordered && 940 ordered->file_offset + ordered->num_bytes > start_pos && 941 ordered->file_offset <= last_pos) { 942 unlock_extent(&inode->io_tree, start_pos, last_pos, 943 cached_state); 944 folio_unlock(folio); 945 folio_put(folio); 946 btrfs_start_ordered_extent(ordered); 947 btrfs_put_ordered_extent(ordered); 948 return -EAGAIN; 949 } 950 if (ordered) 951 btrfs_put_ordered_extent(ordered); 952 953 *lockstart = start_pos; 954 *lockend = last_pos; 955 ret = 1; 956 } 957 958 /* 959 * We should be called after prepare_one_folio() which should have locked 960 * all pages in the range. 961 */ 962 WARN_ON(!folio_test_locked(folio)); 963 964 return ret; 965 } 966 967 /* 968 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 969 * 970 * @pos: File offset. 971 * @write_bytes: The length to write, will be updated to the nocow writeable 972 * range. 973 * 974 * This function will flush ordered extents in the range to ensure proper 975 * nocow checks. 976 * 977 * Return: 978 * > 0 If we can nocow, and updates @write_bytes. 979 * 0 If we can't do a nocow write. 980 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's 981 * root is in progress. 982 * < 0 If an error happened. 983 * 984 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 985 */ 986 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 987 size_t *write_bytes, bool nowait) 988 { 989 struct btrfs_fs_info *fs_info = inode->root->fs_info; 990 struct btrfs_root *root = inode->root; 991 struct extent_state *cached_state = NULL; 992 u64 lockstart, lockend; 993 u64 num_bytes; 994 int ret; 995 996 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 997 return 0; 998 999 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1000 return -EAGAIN; 1001 1002 lockstart = round_down(pos, fs_info->sectorsize); 1003 lockend = round_up(pos + *write_bytes, 1004 fs_info->sectorsize) - 1; 1005 num_bytes = lockend - lockstart + 1; 1006 1007 if (nowait) { 1008 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend, 1009 &cached_state)) { 1010 btrfs_drew_write_unlock(&root->snapshot_lock); 1011 return -EAGAIN; 1012 } 1013 } else { 1014 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, 1015 &cached_state); 1016 } 1017 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1018 NULL, nowait); 1019 if (ret <= 0) 1020 btrfs_drew_write_unlock(&root->snapshot_lock); 1021 else 1022 *write_bytes = min_t(size_t, *write_bytes , 1023 num_bytes - pos + lockstart); 1024 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 1025 1026 return ret; 1027 } 1028 1029 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1030 { 1031 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1032 } 1033 1034 int btrfs_write_check(struct kiocb *iocb, size_t count) 1035 { 1036 struct file *file = iocb->ki_filp; 1037 struct inode *inode = file_inode(file); 1038 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1039 loff_t pos = iocb->ki_pos; 1040 int ret; 1041 loff_t oldsize; 1042 1043 /* 1044 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1045 * prealloc flags, as without those flags we always have to COW. We will 1046 * later check if we can really COW into the target range (using 1047 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1048 */ 1049 if ((iocb->ki_flags & IOCB_NOWAIT) && 1050 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1051 return -EAGAIN; 1052 1053 ret = file_remove_privs(file); 1054 if (ret) 1055 return ret; 1056 1057 /* 1058 * We reserve space for updating the inode when we reserve space for the 1059 * extent we are going to write, so we will enospc out there. We don't 1060 * need to start yet another transaction to update the inode as we will 1061 * update the inode when we finish writing whatever data we write. 1062 */ 1063 if (!IS_NOCMTIME(inode)) { 1064 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1065 inode_inc_iversion(inode); 1066 } 1067 1068 oldsize = i_size_read(inode); 1069 if (pos > oldsize) { 1070 /* Expand hole size to cover write data, preventing empty gap */ 1071 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1072 1073 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1074 if (ret) 1075 return ret; 1076 } 1077 1078 return 0; 1079 } 1080 1081 ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *i) 1082 { 1083 struct file *file = iocb->ki_filp; 1084 loff_t pos; 1085 struct inode *inode = file_inode(file); 1086 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1087 struct extent_changeset *data_reserved = NULL; 1088 u64 release_bytes = 0; 1089 u64 lockstart; 1090 u64 lockend; 1091 size_t num_written = 0; 1092 ssize_t ret; 1093 loff_t old_isize = i_size_read(inode); 1094 unsigned int ilock_flags = 0; 1095 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 1096 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); 1097 bool only_release_metadata = false; 1098 1099 if (nowait) 1100 ilock_flags |= BTRFS_ILOCK_TRY; 1101 1102 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1103 if (ret < 0) 1104 return ret; 1105 1106 ret = generic_write_checks(iocb, i); 1107 if (ret <= 0) 1108 goto out; 1109 1110 ret = btrfs_write_check(iocb, ret); 1111 if (ret < 0) 1112 goto out; 1113 1114 pos = iocb->ki_pos; 1115 while (iov_iter_count(i) > 0) { 1116 struct extent_state *cached_state = NULL; 1117 size_t offset = offset_in_page(pos); 1118 size_t sector_offset; 1119 size_t write_bytes = min(iov_iter_count(i), PAGE_SIZE - offset); 1120 size_t reserve_bytes; 1121 size_t copied; 1122 size_t dirty_sectors; 1123 size_t num_sectors; 1124 struct folio *folio = NULL; 1125 int extents_locked; 1126 bool force_page_uptodate = false; 1127 1128 /* 1129 * Fault pages before locking them in prepare_one_folio() 1130 * to avoid recursive lock 1131 */ 1132 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1133 ret = -EFAULT; 1134 break; 1135 } 1136 1137 only_release_metadata = false; 1138 sector_offset = pos & (fs_info->sectorsize - 1); 1139 1140 extent_changeset_release(data_reserved); 1141 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1142 &data_reserved, pos, 1143 write_bytes, nowait); 1144 if (ret < 0) { 1145 int can_nocow; 1146 1147 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) { 1148 ret = -EAGAIN; 1149 break; 1150 } 1151 1152 /* 1153 * If we don't have to COW at the offset, reserve 1154 * metadata only. write_bytes may get smaller than 1155 * requested here. 1156 */ 1157 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1158 &write_bytes, nowait); 1159 if (can_nocow < 0) 1160 ret = can_nocow; 1161 if (can_nocow > 0) 1162 ret = 0; 1163 if (ret) 1164 break; 1165 only_release_metadata = true; 1166 } 1167 1168 reserve_bytes = round_up(write_bytes + sector_offset, 1169 fs_info->sectorsize); 1170 WARN_ON(reserve_bytes == 0); 1171 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1172 reserve_bytes, 1173 reserve_bytes, nowait); 1174 if (ret) { 1175 if (!only_release_metadata) 1176 btrfs_free_reserved_data_space(BTRFS_I(inode), 1177 data_reserved, pos, 1178 write_bytes); 1179 else 1180 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1181 1182 if (nowait && ret == -ENOSPC) 1183 ret = -EAGAIN; 1184 break; 1185 } 1186 1187 release_bytes = reserve_bytes; 1188 again: 1189 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags); 1190 if (ret) { 1191 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1192 break; 1193 } 1194 1195 ret = prepare_one_folio(inode, &folio, pos, write_bytes, 1196 force_page_uptodate, false); 1197 if (ret) { 1198 btrfs_delalloc_release_extents(BTRFS_I(inode), 1199 reserve_bytes); 1200 break; 1201 } 1202 1203 extents_locked = lock_and_cleanup_extent_if_need(BTRFS_I(inode), 1204 folio, pos, write_bytes, &lockstart, 1205 &lockend, nowait, &cached_state); 1206 if (extents_locked < 0) { 1207 if (!nowait && extents_locked == -EAGAIN) 1208 goto again; 1209 1210 btrfs_delalloc_release_extents(BTRFS_I(inode), 1211 reserve_bytes); 1212 ret = extents_locked; 1213 break; 1214 } 1215 1216 copied = copy_folio_from_iter_atomic(folio, 1217 offset_in_folio(folio, pos), write_bytes, i); 1218 flush_dcache_folio(folio); 1219 1220 /* 1221 * If we get a partial write, we can end up with partially 1222 * uptodate page. Although if sector size < page size we can 1223 * handle it, but if it's not sector aligned it can cause 1224 * a lot of complexity, so make sure they don't happen by 1225 * forcing retry this copy. 1226 */ 1227 if (unlikely(copied < write_bytes)) { 1228 if (!folio_test_uptodate(folio)) { 1229 iov_iter_revert(i, copied); 1230 copied = 0; 1231 } 1232 } 1233 1234 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1235 dirty_sectors = round_up(copied + sector_offset, 1236 fs_info->sectorsize); 1237 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1238 1239 if (copied == 0) { 1240 force_page_uptodate = true; 1241 dirty_sectors = 0; 1242 } else { 1243 force_page_uptodate = false; 1244 } 1245 1246 if (num_sectors > dirty_sectors) { 1247 /* release everything except the sectors we dirtied */ 1248 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1249 if (only_release_metadata) { 1250 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1251 release_bytes, true); 1252 } else { 1253 u64 release_start = round_up(pos + copied, 1254 fs_info->sectorsize); 1255 btrfs_delalloc_release_space(BTRFS_I(inode), 1256 data_reserved, release_start, 1257 release_bytes, true); 1258 } 1259 } 1260 1261 release_bytes = round_up(copied + sector_offset, 1262 fs_info->sectorsize); 1263 1264 ret = btrfs_dirty_folio(BTRFS_I(inode), folio, pos, copied, 1265 &cached_state, only_release_metadata); 1266 1267 /* 1268 * If we have not locked the extent range, because the range's 1269 * start offset is >= i_size, we might still have a non-NULL 1270 * cached extent state, acquired while marking the extent range 1271 * as delalloc through btrfs_dirty_page(). Therefore free any 1272 * possible cached extent state to avoid a memory leak. 1273 */ 1274 if (extents_locked) 1275 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 1276 lockend, &cached_state); 1277 else 1278 free_extent_state(cached_state); 1279 1280 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1281 if (ret) { 1282 btrfs_drop_folio(fs_info, folio, pos, copied); 1283 break; 1284 } 1285 1286 release_bytes = 0; 1287 if (only_release_metadata) 1288 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1289 1290 btrfs_drop_folio(fs_info, folio, pos, copied); 1291 1292 cond_resched(); 1293 1294 pos += copied; 1295 num_written += copied; 1296 } 1297 1298 if (release_bytes) { 1299 if (only_release_metadata) { 1300 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1301 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1302 release_bytes, true); 1303 } else { 1304 btrfs_delalloc_release_space(BTRFS_I(inode), 1305 data_reserved, 1306 round_down(pos, fs_info->sectorsize), 1307 release_bytes, true); 1308 } 1309 } 1310 1311 extent_changeset_free(data_reserved); 1312 if (num_written > 0) { 1313 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1314 iocb->ki_pos += num_written; 1315 } 1316 out: 1317 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1318 return num_written ? num_written : ret; 1319 } 1320 1321 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 1322 const struct btrfs_ioctl_encoded_io_args *encoded) 1323 { 1324 struct file *file = iocb->ki_filp; 1325 struct inode *inode = file_inode(file); 1326 loff_t count; 1327 ssize_t ret; 1328 1329 btrfs_inode_lock(BTRFS_I(inode), 0); 1330 count = encoded->len; 1331 ret = generic_write_checks_count(iocb, &count); 1332 if (ret == 0 && count != encoded->len) { 1333 /* 1334 * The write got truncated by generic_write_checks_count(). We 1335 * can't do a partial encoded write. 1336 */ 1337 ret = -EFBIG; 1338 } 1339 if (ret || encoded->len == 0) 1340 goto out; 1341 1342 ret = btrfs_write_check(iocb, encoded->len); 1343 if (ret < 0) 1344 goto out; 1345 1346 ret = btrfs_do_encoded_write(iocb, from, encoded); 1347 out: 1348 btrfs_inode_unlock(BTRFS_I(inode), 0); 1349 return ret; 1350 } 1351 1352 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 1353 const struct btrfs_ioctl_encoded_io_args *encoded) 1354 { 1355 struct file *file = iocb->ki_filp; 1356 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1357 ssize_t num_written, num_sync; 1358 1359 /* 1360 * If the fs flips readonly due to some impossible error, although we 1361 * have opened a file as writable, we have to stop this write operation 1362 * to ensure consistency. 1363 */ 1364 if (BTRFS_FS_ERROR(inode->root->fs_info)) 1365 return -EROFS; 1366 1367 if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) 1368 return -EOPNOTSUPP; 1369 1370 if (encoded) { 1371 num_written = btrfs_encoded_write(iocb, from, encoded); 1372 num_sync = encoded->len; 1373 } else if (iocb->ki_flags & IOCB_DIRECT) { 1374 num_written = btrfs_direct_write(iocb, from); 1375 num_sync = num_written; 1376 } else { 1377 num_written = btrfs_buffered_write(iocb, from); 1378 num_sync = num_written; 1379 } 1380 1381 btrfs_set_inode_last_sub_trans(inode); 1382 1383 if (num_sync > 0) { 1384 num_sync = generic_write_sync(iocb, num_sync); 1385 if (num_sync < 0) 1386 num_written = num_sync; 1387 } 1388 1389 return num_written; 1390 } 1391 1392 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1393 { 1394 return btrfs_do_write_iter(iocb, from, NULL); 1395 } 1396 1397 int btrfs_release_file(struct inode *inode, struct file *filp) 1398 { 1399 struct btrfs_file_private *private = filp->private_data; 1400 1401 if (private) { 1402 kfree(private->filldir_buf); 1403 free_extent_state(private->llseek_cached_state); 1404 kfree(private); 1405 filp->private_data = NULL; 1406 } 1407 1408 /* 1409 * Set by setattr when we are about to truncate a file from a non-zero 1410 * size to a zero size. This tries to flush down new bytes that may 1411 * have been written if the application were using truncate to replace 1412 * a file in place. 1413 */ 1414 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 1415 &BTRFS_I(inode)->runtime_flags)) 1416 filemap_flush(inode->i_mapping); 1417 return 0; 1418 } 1419 1420 static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end) 1421 { 1422 int ret; 1423 struct blk_plug plug; 1424 1425 /* 1426 * This is only called in fsync, which would do synchronous writes, so 1427 * a plug can merge adjacent IOs as much as possible. Esp. in case of 1428 * multiple disks using raid profile, a large IO can be split to 1429 * several segments of stripe length (currently 64K). 1430 */ 1431 blk_start_plug(&plug); 1432 ret = btrfs_fdatawrite_range(inode, start, end); 1433 blk_finish_plug(&plug); 1434 1435 return ret; 1436 } 1437 1438 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 1439 { 1440 struct btrfs_inode *inode = ctx->inode; 1441 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1442 1443 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) && 1444 list_empty(&ctx->ordered_extents)) 1445 return true; 1446 1447 /* 1448 * If we are doing a fast fsync we can not bail out if the inode's 1449 * last_trans is <= then the last committed transaction, because we only 1450 * update the last_trans of the inode during ordered extent completion, 1451 * and for a fast fsync we don't wait for that, we only wait for the 1452 * writeback to complete. 1453 */ 1454 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) && 1455 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 1456 list_empty(&ctx->ordered_extents))) 1457 return true; 1458 1459 return false; 1460 } 1461 1462 /* 1463 * fsync call for both files and directories. This logs the inode into 1464 * the tree log instead of forcing full commits whenever possible. 1465 * 1466 * It needs to call filemap_fdatawait so that all ordered extent updates are 1467 * in the metadata btree are up to date for copying to the log. 1468 * 1469 * It drops the inode mutex before doing the tree log commit. This is an 1470 * important optimization for directories because holding the mutex prevents 1471 * new operations on the dir while we write to disk. 1472 */ 1473 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1474 { 1475 struct dentry *dentry = file_dentry(file); 1476 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 1477 struct btrfs_root *root = inode->root; 1478 struct btrfs_fs_info *fs_info = root->fs_info; 1479 struct btrfs_trans_handle *trans; 1480 struct btrfs_log_ctx ctx; 1481 int ret = 0, err; 1482 u64 len; 1483 bool full_sync; 1484 bool skip_ilock = false; 1485 1486 if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) { 1487 skip_ilock = true; 1488 current->journal_info = NULL; 1489 btrfs_assert_inode_locked(inode); 1490 } 1491 1492 trace_btrfs_sync_file(file, datasync); 1493 1494 btrfs_init_log_ctx(&ctx, inode); 1495 1496 /* 1497 * Always set the range to a full range, otherwise we can get into 1498 * several problems, from missing file extent items to represent holes 1499 * when not using the NO_HOLES feature, to log tree corruption due to 1500 * races between hole detection during logging and completion of ordered 1501 * extents outside the range, to missing checksums due to ordered extents 1502 * for which we flushed only a subset of their pages. 1503 */ 1504 start = 0; 1505 end = LLONG_MAX; 1506 len = (u64)LLONG_MAX + 1; 1507 1508 /* 1509 * We write the dirty pages in the range and wait until they complete 1510 * out of the ->i_mutex. If so, we can flush the dirty pages by 1511 * multi-task, and make the performance up. See 1512 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1513 */ 1514 ret = start_ordered_ops(inode, start, end); 1515 if (ret) 1516 goto out; 1517 1518 if (skip_ilock) 1519 down_write(&inode->i_mmap_lock); 1520 else 1521 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 1522 1523 atomic_inc(&root->log_batch); 1524 1525 /* 1526 * Before we acquired the inode's lock and the mmap lock, someone may 1527 * have dirtied more pages in the target range. We need to make sure 1528 * that writeback for any such pages does not start while we are logging 1529 * the inode, because if it does, any of the following might happen when 1530 * we are not doing a full inode sync: 1531 * 1532 * 1) We log an extent after its writeback finishes but before its 1533 * checksums are added to the csum tree, leading to -EIO errors 1534 * when attempting to read the extent after a log replay. 1535 * 1536 * 2) We can end up logging an extent before its writeback finishes. 1537 * Therefore after the log replay we will have a file extent item 1538 * pointing to an unwritten extent (and no data checksums as well). 1539 * 1540 * So trigger writeback for any eventual new dirty pages and then we 1541 * wait for all ordered extents to complete below. 1542 */ 1543 ret = start_ordered_ops(inode, start, end); 1544 if (ret) { 1545 if (skip_ilock) 1546 up_write(&inode->i_mmap_lock); 1547 else 1548 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 1549 goto out; 1550 } 1551 1552 /* 1553 * Always check for the full sync flag while holding the inode's lock, 1554 * to avoid races with other tasks. The flag must be either set all the 1555 * time during logging or always off all the time while logging. 1556 * We check the flag here after starting delalloc above, because when 1557 * running delalloc the full sync flag may be set if we need to drop 1558 * extra extent map ranges due to temporary memory allocation failures. 1559 */ 1560 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 1561 1562 /* 1563 * We have to do this here to avoid the priority inversion of waiting on 1564 * IO of a lower priority task while holding a transaction open. 1565 * 1566 * For a full fsync we wait for the ordered extents to complete while 1567 * for a fast fsync we wait just for writeback to complete, and then 1568 * attach the ordered extents to the transaction so that a transaction 1569 * commit waits for their completion, to avoid data loss if we fsync, 1570 * the current transaction commits before the ordered extents complete 1571 * and a power failure happens right after that. 1572 * 1573 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 1574 * logical address recorded in the ordered extent may change. We need 1575 * to wait for the IO to stabilize the logical address. 1576 */ 1577 if (full_sync || btrfs_is_zoned(fs_info)) { 1578 ret = btrfs_wait_ordered_range(inode, start, len); 1579 clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags); 1580 } else { 1581 /* 1582 * Get our ordered extents as soon as possible to avoid doing 1583 * checksum lookups in the csum tree, and use instead the 1584 * checksums attached to the ordered extents. 1585 */ 1586 btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents); 1587 ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end); 1588 if (ret) 1589 goto out_release_extents; 1590 1591 /* 1592 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after 1593 * starting and waiting for writeback, because for buffered IO 1594 * it may have been set during the end IO callback 1595 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in 1596 * case an error happened and we need to wait for ordered 1597 * extents to complete so that any extent maps that point to 1598 * unwritten locations are dropped and we don't log them. 1599 */ 1600 if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags)) 1601 ret = btrfs_wait_ordered_range(inode, start, len); 1602 } 1603 1604 if (ret) 1605 goto out_release_extents; 1606 1607 atomic_inc(&root->log_batch); 1608 1609 if (skip_inode_logging(&ctx)) { 1610 /* 1611 * We've had everything committed since the last time we were 1612 * modified so clear this flag in case it was set for whatever 1613 * reason, it's no longer relevant. 1614 */ 1615 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 1616 /* 1617 * An ordered extent might have started before and completed 1618 * already with io errors, in which case the inode was not 1619 * updated and we end up here. So check the inode's mapping 1620 * for any errors that might have happened since we last 1621 * checked called fsync. 1622 */ 1623 ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err); 1624 goto out_release_extents; 1625 } 1626 1627 btrfs_init_log_ctx_scratch_eb(&ctx); 1628 1629 /* 1630 * We use start here because we will need to wait on the IO to complete 1631 * in btrfs_sync_log, which could require joining a transaction (for 1632 * example checking cross references in the nocow path). If we use join 1633 * here we could get into a situation where we're waiting on IO to 1634 * happen that is blocked on a transaction trying to commit. With start 1635 * we inc the extwriter counter, so we wait for all extwriters to exit 1636 * before we start blocking joiners. This comment is to keep somebody 1637 * from thinking they are super smart and changing this to 1638 * btrfs_join_transaction *cough*Josef*cough*. 1639 */ 1640 trans = btrfs_start_transaction(root, 0); 1641 if (IS_ERR(trans)) { 1642 ret = PTR_ERR(trans); 1643 goto out_release_extents; 1644 } 1645 trans->in_fsync = true; 1646 1647 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 1648 /* 1649 * Scratch eb no longer needed, release before syncing log or commit 1650 * transaction, to avoid holding unnecessary memory during such long 1651 * operations. 1652 */ 1653 if (ctx.scratch_eb) { 1654 free_extent_buffer(ctx.scratch_eb); 1655 ctx.scratch_eb = NULL; 1656 } 1657 btrfs_release_log_ctx_extents(&ctx); 1658 if (ret < 0) { 1659 /* Fallthrough and commit/free transaction. */ 1660 ret = BTRFS_LOG_FORCE_COMMIT; 1661 } 1662 1663 /* we've logged all the items and now have a consistent 1664 * version of the file in the log. It is possible that 1665 * someone will come in and modify the file, but that's 1666 * fine because the log is consistent on disk, and we 1667 * have references to all of the file's extents 1668 * 1669 * It is possible that someone will come in and log the 1670 * file again, but that will end up using the synchronization 1671 * inside btrfs_sync_log to keep things safe. 1672 */ 1673 if (skip_ilock) 1674 up_write(&inode->i_mmap_lock); 1675 else 1676 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 1677 1678 if (ret == BTRFS_NO_LOG_SYNC) { 1679 ret = btrfs_end_transaction(trans); 1680 goto out; 1681 } 1682 1683 /* We successfully logged the inode, attempt to sync the log. */ 1684 if (!ret) { 1685 ret = btrfs_sync_log(trans, root, &ctx); 1686 if (!ret) { 1687 ret = btrfs_end_transaction(trans); 1688 goto out; 1689 } 1690 } 1691 1692 /* 1693 * At this point we need to commit the transaction because we had 1694 * btrfs_need_log_full_commit() or some other error. 1695 * 1696 * If we didn't do a full sync we have to stop the trans handle, wait on 1697 * the ordered extents, start it again and commit the transaction. If 1698 * we attempt to wait on the ordered extents here we could deadlock with 1699 * something like fallocate() that is holding the extent lock trying to 1700 * start a transaction while some other thread is trying to commit the 1701 * transaction while we (fsync) are currently holding the transaction 1702 * open. 1703 */ 1704 if (!full_sync) { 1705 ret = btrfs_end_transaction(trans); 1706 if (ret) 1707 goto out; 1708 ret = btrfs_wait_ordered_range(inode, start, len); 1709 if (ret) 1710 goto out; 1711 1712 /* 1713 * This is safe to use here because we're only interested in 1714 * making sure the transaction that had the ordered extents is 1715 * committed. We aren't waiting on anything past this point, 1716 * we're purely getting the transaction and committing it. 1717 */ 1718 trans = btrfs_attach_transaction_barrier(root); 1719 if (IS_ERR(trans)) { 1720 ret = PTR_ERR(trans); 1721 1722 /* 1723 * We committed the transaction and there's no currently 1724 * running transaction, this means everything we care 1725 * about made it to disk and we are done. 1726 */ 1727 if (ret == -ENOENT) 1728 ret = 0; 1729 goto out; 1730 } 1731 } 1732 1733 ret = btrfs_commit_transaction(trans); 1734 out: 1735 free_extent_buffer(ctx.scratch_eb); 1736 ASSERT(list_empty(&ctx.list)); 1737 ASSERT(list_empty(&ctx.conflict_inodes)); 1738 err = file_check_and_advance_wb_err(file); 1739 if (!ret) 1740 ret = err; 1741 return ret > 0 ? -EIO : ret; 1742 1743 out_release_extents: 1744 btrfs_release_log_ctx_extents(&ctx); 1745 if (skip_ilock) 1746 up_write(&inode->i_mmap_lock); 1747 else 1748 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 1749 goto out; 1750 } 1751 1752 /* 1753 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 1754 * called from a page fault handler when a page is first dirtied. Hence we must 1755 * be careful to check for EOF conditions here. We set the page up correctly 1756 * for a written page which means we get ENOSPC checking when writing into 1757 * holes and correct delalloc and unwritten extent mapping on filesystems that 1758 * support these features. 1759 * 1760 * We are not allowed to take the i_mutex here so we have to play games to 1761 * protect against truncate races as the page could now be beyond EOF. Because 1762 * truncate_setsize() writes the inode size before removing pages, once we have 1763 * the page lock we can determine safely if the page is beyond EOF. If it is not 1764 * beyond EOF, then the page is guaranteed safe against truncation until we 1765 * unlock the page. 1766 */ 1767 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 1768 { 1769 struct page *page = vmf->page; 1770 struct folio *folio = page_folio(page); 1771 struct inode *inode = file_inode(vmf->vma->vm_file); 1772 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1773 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1774 struct btrfs_ordered_extent *ordered; 1775 struct extent_state *cached_state = NULL; 1776 struct extent_changeset *data_reserved = NULL; 1777 unsigned long zero_start; 1778 loff_t size; 1779 vm_fault_t ret; 1780 int ret2; 1781 int reserved = 0; 1782 u64 reserved_space; 1783 u64 page_start; 1784 u64 page_end; 1785 u64 end; 1786 1787 ASSERT(folio_order(folio) == 0); 1788 1789 reserved_space = PAGE_SIZE; 1790 1791 sb_start_pagefault(inode->i_sb); 1792 page_start = folio_pos(folio); 1793 page_end = page_start + folio_size(folio) - 1; 1794 end = page_end; 1795 1796 /* 1797 * Reserving delalloc space after obtaining the page lock can lead to 1798 * deadlock. For example, if a dirty page is locked by this function 1799 * and the call to btrfs_delalloc_reserve_space() ends up triggering 1800 * dirty page write out, then the btrfs_writepages() function could 1801 * end up waiting indefinitely to get a lock on the page currently 1802 * being processed by btrfs_page_mkwrite() function. 1803 */ 1804 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 1805 page_start, reserved_space); 1806 if (!ret2) { 1807 ret2 = file_update_time(vmf->vma->vm_file); 1808 reserved = 1; 1809 } 1810 if (ret2) { 1811 ret = vmf_error(ret2); 1812 if (reserved) 1813 goto out; 1814 goto out_noreserve; 1815 } 1816 1817 /* Make the VM retry the fault. */ 1818 ret = VM_FAULT_NOPAGE; 1819 again: 1820 down_read(&BTRFS_I(inode)->i_mmap_lock); 1821 folio_lock(folio); 1822 size = i_size_read(inode); 1823 1824 if ((folio->mapping != inode->i_mapping) || 1825 (page_start >= size)) { 1826 /* Page got truncated out from underneath us. */ 1827 goto out_unlock; 1828 } 1829 folio_wait_writeback(folio); 1830 1831 lock_extent(io_tree, page_start, page_end, &cached_state); 1832 ret2 = set_folio_extent_mapped(folio); 1833 if (ret2 < 0) { 1834 ret = vmf_error(ret2); 1835 unlock_extent(io_tree, page_start, page_end, &cached_state); 1836 goto out_unlock; 1837 } 1838 1839 /* 1840 * We can't set the delalloc bits if there are pending ordered 1841 * extents. Drop our locks and wait for them to finish. 1842 */ 1843 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE); 1844 if (ordered) { 1845 unlock_extent(io_tree, page_start, page_end, &cached_state); 1846 folio_unlock(folio); 1847 up_read(&BTRFS_I(inode)->i_mmap_lock); 1848 btrfs_start_ordered_extent(ordered); 1849 btrfs_put_ordered_extent(ordered); 1850 goto again; 1851 } 1852 1853 if (folio->index == ((size - 1) >> PAGE_SHIFT)) { 1854 reserved_space = round_up(size - page_start, fs_info->sectorsize); 1855 if (reserved_space < PAGE_SIZE) { 1856 end = page_start + reserved_space - 1; 1857 btrfs_delalloc_release_space(BTRFS_I(inode), 1858 data_reserved, page_start, 1859 PAGE_SIZE - reserved_space, true); 1860 } 1861 } 1862 1863 /* 1864 * page_mkwrite gets called when the page is firstly dirtied after it's 1865 * faulted in, but write(2) could also dirty a page and set delalloc 1866 * bits, thus in this case for space account reason, we still need to 1867 * clear any delalloc bits within this page range since we have to 1868 * reserve data&meta space before lock_page() (see above comments). 1869 */ 1870 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 1871 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1872 EXTENT_DEFRAG, &cached_state); 1873 1874 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 1875 &cached_state); 1876 if (ret2) { 1877 unlock_extent(io_tree, page_start, page_end, &cached_state); 1878 ret = VM_FAULT_SIGBUS; 1879 goto out_unlock; 1880 } 1881 1882 /* Page is wholly or partially inside EOF. */ 1883 if (page_start + folio_size(folio) > size) 1884 zero_start = offset_in_folio(folio, size); 1885 else 1886 zero_start = PAGE_SIZE; 1887 1888 if (zero_start != PAGE_SIZE) 1889 folio_zero_range(folio, zero_start, folio_size(folio) - zero_start); 1890 1891 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 1892 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start); 1893 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start); 1894 1895 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 1896 1897 unlock_extent(io_tree, page_start, page_end, &cached_state); 1898 up_read(&BTRFS_I(inode)->i_mmap_lock); 1899 1900 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 1901 sb_end_pagefault(inode->i_sb); 1902 extent_changeset_free(data_reserved); 1903 return VM_FAULT_LOCKED; 1904 1905 out_unlock: 1906 folio_unlock(folio); 1907 up_read(&BTRFS_I(inode)->i_mmap_lock); 1908 out: 1909 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 1910 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 1911 reserved_space, (ret != 0)); 1912 out_noreserve: 1913 sb_end_pagefault(inode->i_sb); 1914 extent_changeset_free(data_reserved); 1915 return ret; 1916 } 1917 1918 static const struct vm_operations_struct btrfs_file_vm_ops = { 1919 .fault = filemap_fault, 1920 .map_pages = filemap_map_pages, 1921 .page_mkwrite = btrfs_page_mkwrite, 1922 }; 1923 1924 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 1925 { 1926 struct address_space *mapping = filp->f_mapping; 1927 1928 if (!mapping->a_ops->read_folio) 1929 return -ENOEXEC; 1930 1931 file_accessed(filp); 1932 vma->vm_ops = &btrfs_file_vm_ops; 1933 1934 return 0; 1935 } 1936 1937 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 1938 int slot, u64 start, u64 end) 1939 { 1940 struct btrfs_file_extent_item *fi; 1941 struct btrfs_key key; 1942 1943 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1944 return 0; 1945 1946 btrfs_item_key_to_cpu(leaf, &key, slot); 1947 if (key.objectid != btrfs_ino(inode) || 1948 key.type != BTRFS_EXTENT_DATA_KEY) 1949 return 0; 1950 1951 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1952 1953 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 1954 return 0; 1955 1956 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 1957 return 0; 1958 1959 if (key.offset == end) 1960 return 1; 1961 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 1962 return 1; 1963 return 0; 1964 } 1965 1966 static int fill_holes(struct btrfs_trans_handle *trans, 1967 struct btrfs_inode *inode, 1968 struct btrfs_path *path, u64 offset, u64 end) 1969 { 1970 struct btrfs_fs_info *fs_info = trans->fs_info; 1971 struct btrfs_root *root = inode->root; 1972 struct extent_buffer *leaf; 1973 struct btrfs_file_extent_item *fi; 1974 struct extent_map *hole_em; 1975 struct btrfs_key key; 1976 int ret; 1977 1978 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 1979 goto out; 1980 1981 key.objectid = btrfs_ino(inode); 1982 key.type = BTRFS_EXTENT_DATA_KEY; 1983 key.offset = offset; 1984 1985 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1986 if (ret <= 0) { 1987 /* 1988 * We should have dropped this offset, so if we find it then 1989 * something has gone horribly wrong. 1990 */ 1991 if (ret == 0) 1992 ret = -EINVAL; 1993 return ret; 1994 } 1995 1996 leaf = path->nodes[0]; 1997 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 1998 u64 num_bytes; 1999 2000 path->slots[0]--; 2001 fi = btrfs_item_ptr(leaf, path->slots[0], 2002 struct btrfs_file_extent_item); 2003 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2004 end - offset; 2005 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2006 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2007 btrfs_set_file_extent_offset(leaf, fi, 0); 2008 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2009 goto out; 2010 } 2011 2012 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2013 u64 num_bytes; 2014 2015 key.offset = offset; 2016 btrfs_set_item_key_safe(trans, path, &key); 2017 fi = btrfs_item_ptr(leaf, path->slots[0], 2018 struct btrfs_file_extent_item); 2019 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2020 offset; 2021 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2022 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2023 btrfs_set_file_extent_offset(leaf, fi, 0); 2024 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2025 goto out; 2026 } 2027 btrfs_release_path(path); 2028 2029 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, 2030 end - offset); 2031 if (ret) 2032 return ret; 2033 2034 out: 2035 btrfs_release_path(path); 2036 2037 hole_em = alloc_extent_map(); 2038 if (!hole_em) { 2039 btrfs_drop_extent_map_range(inode, offset, end - 1, false); 2040 btrfs_set_inode_full_sync(inode); 2041 } else { 2042 hole_em->start = offset; 2043 hole_em->len = end - offset; 2044 hole_em->ram_bytes = hole_em->len; 2045 2046 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 2047 hole_em->disk_num_bytes = 0; 2048 hole_em->generation = trans->transid; 2049 2050 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 2051 free_extent_map(hole_em); 2052 if (ret) 2053 btrfs_set_inode_full_sync(inode); 2054 } 2055 2056 return 0; 2057 } 2058 2059 /* 2060 * Find a hole extent on given inode and change start/len to the end of hole 2061 * extent.(hole/vacuum extent whose em->start <= start && 2062 * em->start + em->len > start) 2063 * When a hole extent is found, return 1 and modify start/len. 2064 */ 2065 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2066 { 2067 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2068 struct extent_map *em; 2069 int ret = 0; 2070 2071 em = btrfs_get_extent(inode, NULL, 2072 round_down(*start, fs_info->sectorsize), 2073 round_up(*len, fs_info->sectorsize)); 2074 if (IS_ERR(em)) 2075 return PTR_ERR(em); 2076 2077 /* Hole or vacuum extent(only exists in no-hole mode) */ 2078 if (em->disk_bytenr == EXTENT_MAP_HOLE) { 2079 ret = 1; 2080 *len = em->start + em->len > *start + *len ? 2081 0 : *start + *len - em->start - em->len; 2082 *start = em->start + em->len; 2083 } 2084 free_extent_map(em); 2085 return ret; 2086 } 2087 2088 static void btrfs_punch_hole_lock_range(struct inode *inode, 2089 const u64 lockstart, 2090 const u64 lockend, 2091 struct extent_state **cached_state) 2092 { 2093 /* 2094 * For subpage case, if the range is not at page boundary, we could 2095 * have pages at the leading/tailing part of the range. 2096 * This could lead to dead loop since filemap_range_has_page() 2097 * will always return true. 2098 * So here we need to do extra page alignment for 2099 * filemap_range_has_page(). 2100 */ 2101 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2102 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2103 2104 while (1) { 2105 truncate_pagecache_range(inode, lockstart, lockend); 2106 2107 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2108 cached_state); 2109 /* 2110 * We can't have ordered extents in the range, nor dirty/writeback 2111 * pages, because we have locked the inode's VFS lock in exclusive 2112 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2113 * we have flushed all delalloc in the range and we have waited 2114 * for any ordered extents in the range to complete. 2115 * We can race with anyone reading pages from this range, so after 2116 * locking the range check if we have pages in the range, and if 2117 * we do, unlock the range and retry. 2118 */ 2119 if (!filemap_range_has_page(inode->i_mapping, page_lockstart, 2120 page_lockend)) 2121 break; 2122 2123 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2124 cached_state); 2125 } 2126 2127 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2128 } 2129 2130 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2131 struct btrfs_inode *inode, 2132 struct btrfs_path *path, 2133 struct btrfs_replace_extent_info *extent_info, 2134 const u64 replace_len, 2135 const u64 bytes_to_drop) 2136 { 2137 struct btrfs_fs_info *fs_info = trans->fs_info; 2138 struct btrfs_root *root = inode->root; 2139 struct btrfs_file_extent_item *extent; 2140 struct extent_buffer *leaf; 2141 struct btrfs_key key; 2142 int slot; 2143 int ret; 2144 2145 if (replace_len == 0) 2146 return 0; 2147 2148 if (extent_info->disk_offset == 0 && 2149 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2150 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2151 return 0; 2152 } 2153 2154 key.objectid = btrfs_ino(inode); 2155 key.type = BTRFS_EXTENT_DATA_KEY; 2156 key.offset = extent_info->file_offset; 2157 ret = btrfs_insert_empty_item(trans, root, path, &key, 2158 sizeof(struct btrfs_file_extent_item)); 2159 if (ret) 2160 return ret; 2161 leaf = path->nodes[0]; 2162 slot = path->slots[0]; 2163 write_extent_buffer(leaf, extent_info->extent_buf, 2164 btrfs_item_ptr_offset(leaf, slot), 2165 sizeof(struct btrfs_file_extent_item)); 2166 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2167 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2168 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2169 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2170 if (extent_info->is_new_extent) 2171 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2172 btrfs_release_path(path); 2173 2174 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2175 replace_len); 2176 if (ret) 2177 return ret; 2178 2179 /* If it's a hole, nothing more needs to be done. */ 2180 if (extent_info->disk_offset == 0) { 2181 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2182 return 0; 2183 } 2184 2185 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2186 2187 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2188 key.objectid = extent_info->disk_offset; 2189 key.type = BTRFS_EXTENT_ITEM_KEY; 2190 key.offset = extent_info->disk_len; 2191 ret = btrfs_alloc_reserved_file_extent(trans, root, 2192 btrfs_ino(inode), 2193 extent_info->file_offset, 2194 extent_info->qgroup_reserved, 2195 &key); 2196 } else { 2197 struct btrfs_ref ref = { 2198 .action = BTRFS_ADD_DELAYED_REF, 2199 .bytenr = extent_info->disk_offset, 2200 .num_bytes = extent_info->disk_len, 2201 .owning_root = btrfs_root_id(root), 2202 .ref_root = btrfs_root_id(root), 2203 }; 2204 u64 ref_offset; 2205 2206 ref_offset = extent_info->file_offset - extent_info->data_offset; 2207 btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false); 2208 ret = btrfs_inc_extent_ref(trans, &ref); 2209 } 2210 2211 extent_info->insertions++; 2212 2213 return ret; 2214 } 2215 2216 /* 2217 * The respective range must have been previously locked, as well as the inode. 2218 * The end offset is inclusive (last byte of the range). 2219 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2220 * the file range with an extent. 2221 * When not punching a hole, we don't want to end up in a state where we dropped 2222 * extents without inserting a new one, so we must abort the transaction to avoid 2223 * a corruption. 2224 */ 2225 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2226 struct btrfs_path *path, const u64 start, 2227 const u64 end, 2228 struct btrfs_replace_extent_info *extent_info, 2229 struct btrfs_trans_handle **trans_out) 2230 { 2231 struct btrfs_drop_extents_args drop_args = { 0 }; 2232 struct btrfs_root *root = inode->root; 2233 struct btrfs_fs_info *fs_info = root->fs_info; 2234 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2235 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2236 struct btrfs_trans_handle *trans = NULL; 2237 struct btrfs_block_rsv *rsv; 2238 unsigned int rsv_count; 2239 u64 cur_offset; 2240 u64 len = end - start; 2241 int ret = 0; 2242 2243 if (end <= start) 2244 return -EINVAL; 2245 2246 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2247 if (!rsv) { 2248 ret = -ENOMEM; 2249 goto out; 2250 } 2251 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2252 rsv->failfast = true; 2253 2254 /* 2255 * 1 - update the inode 2256 * 1 - removing the extents in the range 2257 * 1 - adding the hole extent if no_holes isn't set or if we are 2258 * replacing the range with a new extent 2259 */ 2260 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2261 rsv_count = 3; 2262 else 2263 rsv_count = 2; 2264 2265 trans = btrfs_start_transaction(root, rsv_count); 2266 if (IS_ERR(trans)) { 2267 ret = PTR_ERR(trans); 2268 trans = NULL; 2269 goto out_free; 2270 } 2271 2272 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2273 min_size, false); 2274 if (WARN_ON(ret)) 2275 goto out_trans; 2276 trans->block_rsv = rsv; 2277 2278 cur_offset = start; 2279 drop_args.path = path; 2280 drop_args.end = end + 1; 2281 drop_args.drop_cache = true; 2282 while (cur_offset < end) { 2283 drop_args.start = cur_offset; 2284 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2285 /* If we are punching a hole decrement the inode's byte count */ 2286 if (!extent_info) 2287 btrfs_update_inode_bytes(inode, 0, 2288 drop_args.bytes_found); 2289 if (ret != -ENOSPC) { 2290 /* 2291 * The only time we don't want to abort is if we are 2292 * attempting to clone a partial inline extent, in which 2293 * case we'll get EOPNOTSUPP. However if we aren't 2294 * clone we need to abort no matter what, because if we 2295 * got EOPNOTSUPP via prealloc then we messed up and 2296 * need to abort. 2297 */ 2298 if (ret && 2299 (ret != -EOPNOTSUPP || 2300 (extent_info && extent_info->is_new_extent))) 2301 btrfs_abort_transaction(trans, ret); 2302 break; 2303 } 2304 2305 trans->block_rsv = &fs_info->trans_block_rsv; 2306 2307 if (!extent_info && cur_offset < drop_args.drop_end && 2308 cur_offset < ino_size) { 2309 ret = fill_holes(trans, inode, path, cur_offset, 2310 drop_args.drop_end); 2311 if (ret) { 2312 /* 2313 * If we failed then we didn't insert our hole 2314 * entries for the area we dropped, so now the 2315 * fs is corrupted, so we must abort the 2316 * transaction. 2317 */ 2318 btrfs_abort_transaction(trans, ret); 2319 break; 2320 } 2321 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2322 /* 2323 * We are past the i_size here, but since we didn't 2324 * insert holes we need to clear the mapped area so we 2325 * know to not set disk_i_size in this area until a new 2326 * file extent is inserted here. 2327 */ 2328 ret = btrfs_inode_clear_file_extent_range(inode, 2329 cur_offset, 2330 drop_args.drop_end - cur_offset); 2331 if (ret) { 2332 /* 2333 * We couldn't clear our area, so we could 2334 * presumably adjust up and corrupt the fs, so 2335 * we need to abort. 2336 */ 2337 btrfs_abort_transaction(trans, ret); 2338 break; 2339 } 2340 } 2341 2342 if (extent_info && 2343 drop_args.drop_end > extent_info->file_offset) { 2344 u64 replace_len = drop_args.drop_end - 2345 extent_info->file_offset; 2346 2347 ret = btrfs_insert_replace_extent(trans, inode, path, 2348 extent_info, replace_len, 2349 drop_args.bytes_found); 2350 if (ret) { 2351 btrfs_abort_transaction(trans, ret); 2352 break; 2353 } 2354 extent_info->data_len -= replace_len; 2355 extent_info->data_offset += replace_len; 2356 extent_info->file_offset += replace_len; 2357 } 2358 2359 /* 2360 * We are releasing our handle on the transaction, balance the 2361 * dirty pages of the btree inode and flush delayed items, and 2362 * then get a new transaction handle, which may now point to a 2363 * new transaction in case someone else may have committed the 2364 * transaction we used to replace/drop file extent items. So 2365 * bump the inode's iversion and update mtime and ctime except 2366 * if we are called from a dedupe context. This is because a 2367 * power failure/crash may happen after the transaction is 2368 * committed and before we finish replacing/dropping all the 2369 * file extent items we need. 2370 */ 2371 inode_inc_iversion(&inode->vfs_inode); 2372 2373 if (!extent_info || extent_info->update_times) 2374 inode_set_mtime_to_ts(&inode->vfs_inode, 2375 inode_set_ctime_current(&inode->vfs_inode)); 2376 2377 ret = btrfs_update_inode(trans, inode); 2378 if (ret) 2379 break; 2380 2381 btrfs_end_transaction(trans); 2382 btrfs_btree_balance_dirty(fs_info); 2383 2384 trans = btrfs_start_transaction(root, rsv_count); 2385 if (IS_ERR(trans)) { 2386 ret = PTR_ERR(trans); 2387 trans = NULL; 2388 break; 2389 } 2390 2391 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2392 rsv, min_size, false); 2393 if (WARN_ON(ret)) 2394 break; 2395 trans->block_rsv = rsv; 2396 2397 cur_offset = drop_args.drop_end; 2398 len = end - cur_offset; 2399 if (!extent_info && len) { 2400 ret = find_first_non_hole(inode, &cur_offset, &len); 2401 if (unlikely(ret < 0)) 2402 break; 2403 if (ret && !len) { 2404 ret = 0; 2405 break; 2406 } 2407 } 2408 } 2409 2410 /* 2411 * If we were cloning, force the next fsync to be a full one since we 2412 * we replaced (or just dropped in the case of cloning holes when 2413 * NO_HOLES is enabled) file extent items and did not setup new extent 2414 * maps for the replacement extents (or holes). 2415 */ 2416 if (extent_info && !extent_info->is_new_extent) 2417 btrfs_set_inode_full_sync(inode); 2418 2419 if (ret) 2420 goto out_trans; 2421 2422 trans->block_rsv = &fs_info->trans_block_rsv; 2423 /* 2424 * If we are using the NO_HOLES feature we might have had already an 2425 * hole that overlaps a part of the region [lockstart, lockend] and 2426 * ends at (or beyond) lockend. Since we have no file extent items to 2427 * represent holes, drop_end can be less than lockend and so we must 2428 * make sure we have an extent map representing the existing hole (the 2429 * call to __btrfs_drop_extents() might have dropped the existing extent 2430 * map representing the existing hole), otherwise the fast fsync path 2431 * will not record the existence of the hole region 2432 * [existing_hole_start, lockend]. 2433 */ 2434 if (drop_args.drop_end <= end) 2435 drop_args.drop_end = end + 1; 2436 /* 2437 * Don't insert file hole extent item if it's for a range beyond eof 2438 * (because it's useless) or if it represents a 0 bytes range (when 2439 * cur_offset == drop_end). 2440 */ 2441 if (!extent_info && cur_offset < ino_size && 2442 cur_offset < drop_args.drop_end) { 2443 ret = fill_holes(trans, inode, path, cur_offset, 2444 drop_args.drop_end); 2445 if (ret) { 2446 /* Same comment as above. */ 2447 btrfs_abort_transaction(trans, ret); 2448 goto out_trans; 2449 } 2450 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2451 /* See the comment in the loop above for the reasoning here. */ 2452 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2453 drop_args.drop_end - cur_offset); 2454 if (ret) { 2455 btrfs_abort_transaction(trans, ret); 2456 goto out_trans; 2457 } 2458 2459 } 2460 if (extent_info) { 2461 ret = btrfs_insert_replace_extent(trans, inode, path, 2462 extent_info, extent_info->data_len, 2463 drop_args.bytes_found); 2464 if (ret) { 2465 btrfs_abort_transaction(trans, ret); 2466 goto out_trans; 2467 } 2468 } 2469 2470 out_trans: 2471 if (!trans) 2472 goto out_free; 2473 2474 trans->block_rsv = &fs_info->trans_block_rsv; 2475 if (ret) 2476 btrfs_end_transaction(trans); 2477 else 2478 *trans_out = trans; 2479 out_free: 2480 btrfs_free_block_rsv(fs_info, rsv); 2481 out: 2482 return ret; 2483 } 2484 2485 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2486 { 2487 struct inode *inode = file_inode(file); 2488 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2489 struct btrfs_root *root = BTRFS_I(inode)->root; 2490 struct extent_state *cached_state = NULL; 2491 struct btrfs_path *path; 2492 struct btrfs_trans_handle *trans = NULL; 2493 u64 lockstart; 2494 u64 lockend; 2495 u64 tail_start; 2496 u64 tail_len; 2497 u64 orig_start = offset; 2498 int ret = 0; 2499 bool same_block; 2500 u64 ino_size; 2501 bool truncated_block = false; 2502 bool updated_inode = false; 2503 2504 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2505 2506 ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len); 2507 if (ret) 2508 goto out_only_mutex; 2509 2510 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2511 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2512 if (ret < 0) 2513 goto out_only_mutex; 2514 if (ret && !len) { 2515 /* Already in a large hole */ 2516 ret = 0; 2517 goto out_only_mutex; 2518 } 2519 2520 ret = file_modified(file); 2521 if (ret) 2522 goto out_only_mutex; 2523 2524 lockstart = round_up(offset, fs_info->sectorsize); 2525 lockend = round_down(offset + len, fs_info->sectorsize) - 1; 2526 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2527 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2528 /* 2529 * We needn't truncate any block which is beyond the end of the file 2530 * because we are sure there is no data there. 2531 */ 2532 /* 2533 * Only do this if we are in the same block and we aren't doing the 2534 * entire block. 2535 */ 2536 if (same_block && len < fs_info->sectorsize) { 2537 if (offset < ino_size) { 2538 truncated_block = true; 2539 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2540 0); 2541 } else { 2542 ret = 0; 2543 } 2544 goto out_only_mutex; 2545 } 2546 2547 /* zero back part of the first block */ 2548 if (offset < ino_size) { 2549 truncated_block = true; 2550 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2551 if (ret) { 2552 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2553 return ret; 2554 } 2555 } 2556 2557 /* Check the aligned pages after the first unaligned page, 2558 * if offset != orig_start, which means the first unaligned page 2559 * including several following pages are already in holes, 2560 * the extra check can be skipped */ 2561 if (offset == orig_start) { 2562 /* after truncate page, check hole again */ 2563 len = offset + len - lockstart; 2564 offset = lockstart; 2565 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2566 if (ret < 0) 2567 goto out_only_mutex; 2568 if (ret && !len) { 2569 ret = 0; 2570 goto out_only_mutex; 2571 } 2572 lockstart = offset; 2573 } 2574 2575 /* Check the tail unaligned part is in a hole */ 2576 tail_start = lockend + 1; 2577 tail_len = offset + len - tail_start; 2578 if (tail_len) { 2579 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2580 if (unlikely(ret < 0)) 2581 goto out_only_mutex; 2582 if (!ret) { 2583 /* zero the front end of the last page */ 2584 if (tail_start + tail_len < ino_size) { 2585 truncated_block = true; 2586 ret = btrfs_truncate_block(BTRFS_I(inode), 2587 tail_start + tail_len, 2588 0, 1); 2589 if (ret) 2590 goto out_only_mutex; 2591 } 2592 } 2593 } 2594 2595 if (lockend < lockstart) { 2596 ret = 0; 2597 goto out_only_mutex; 2598 } 2599 2600 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 2601 2602 path = btrfs_alloc_path(); 2603 if (!path) { 2604 ret = -ENOMEM; 2605 goto out; 2606 } 2607 2608 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 2609 lockend, NULL, &trans); 2610 btrfs_free_path(path); 2611 if (ret) 2612 goto out; 2613 2614 ASSERT(trans != NULL); 2615 inode_inc_iversion(inode); 2616 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2617 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2618 updated_inode = true; 2619 btrfs_end_transaction(trans); 2620 btrfs_btree_balance_dirty(fs_info); 2621 out: 2622 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2623 &cached_state); 2624 out_only_mutex: 2625 if (!updated_inode && truncated_block && !ret) { 2626 /* 2627 * If we only end up zeroing part of a page, we still need to 2628 * update the inode item, so that all the time fields are 2629 * updated as well as the necessary btrfs inode in memory fields 2630 * for detecting, at fsync time, if the inode isn't yet in the 2631 * log tree or it's there but not up to date. 2632 */ 2633 struct timespec64 now = inode_set_ctime_current(inode); 2634 2635 inode_inc_iversion(inode); 2636 inode_set_mtime_to_ts(inode, now); 2637 trans = btrfs_start_transaction(root, 1); 2638 if (IS_ERR(trans)) { 2639 ret = PTR_ERR(trans); 2640 } else { 2641 int ret2; 2642 2643 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2644 ret2 = btrfs_end_transaction(trans); 2645 if (!ret) 2646 ret = ret2; 2647 } 2648 } 2649 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2650 return ret; 2651 } 2652 2653 /* Helper structure to record which range is already reserved */ 2654 struct falloc_range { 2655 struct list_head list; 2656 u64 start; 2657 u64 len; 2658 }; 2659 2660 /* 2661 * Helper function to add falloc range 2662 * 2663 * Caller should have locked the larger range of extent containing 2664 * [start, len) 2665 */ 2666 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2667 { 2668 struct falloc_range *range = NULL; 2669 2670 if (!list_empty(head)) { 2671 /* 2672 * As fallocate iterates by bytenr order, we only need to check 2673 * the last range. 2674 */ 2675 range = list_last_entry(head, struct falloc_range, list); 2676 if (range->start + range->len == start) { 2677 range->len += len; 2678 return 0; 2679 } 2680 } 2681 2682 range = kmalloc(sizeof(*range), GFP_KERNEL); 2683 if (!range) 2684 return -ENOMEM; 2685 range->start = start; 2686 range->len = len; 2687 list_add_tail(&range->list, head); 2688 return 0; 2689 } 2690 2691 static int btrfs_fallocate_update_isize(struct inode *inode, 2692 const u64 end, 2693 const int mode) 2694 { 2695 struct btrfs_trans_handle *trans; 2696 struct btrfs_root *root = BTRFS_I(inode)->root; 2697 int ret; 2698 int ret2; 2699 2700 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2701 return 0; 2702 2703 trans = btrfs_start_transaction(root, 1); 2704 if (IS_ERR(trans)) 2705 return PTR_ERR(trans); 2706 2707 inode_set_ctime_current(inode); 2708 i_size_write(inode, end); 2709 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 2710 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2711 ret2 = btrfs_end_transaction(trans); 2712 2713 return ret ? ret : ret2; 2714 } 2715 2716 enum { 2717 RANGE_BOUNDARY_WRITTEN_EXTENT, 2718 RANGE_BOUNDARY_PREALLOC_EXTENT, 2719 RANGE_BOUNDARY_HOLE, 2720 }; 2721 2722 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 2723 u64 offset) 2724 { 2725 const u64 sectorsize = inode->root->fs_info->sectorsize; 2726 struct extent_map *em; 2727 int ret; 2728 2729 offset = round_down(offset, sectorsize); 2730 em = btrfs_get_extent(inode, NULL, offset, sectorsize); 2731 if (IS_ERR(em)) 2732 return PTR_ERR(em); 2733 2734 if (em->disk_bytenr == EXTENT_MAP_HOLE) 2735 ret = RANGE_BOUNDARY_HOLE; 2736 else if (em->flags & EXTENT_FLAG_PREALLOC) 2737 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2738 else 2739 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2740 2741 free_extent_map(em); 2742 return ret; 2743 } 2744 2745 static int btrfs_zero_range(struct inode *inode, 2746 loff_t offset, 2747 loff_t len, 2748 const int mode) 2749 { 2750 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2751 struct extent_map *em; 2752 struct extent_changeset *data_reserved = NULL; 2753 int ret; 2754 u64 alloc_hint = 0; 2755 const u64 sectorsize = fs_info->sectorsize; 2756 u64 alloc_start = round_down(offset, sectorsize); 2757 u64 alloc_end = round_up(offset + len, sectorsize); 2758 u64 bytes_to_reserve = 0; 2759 bool space_reserved = false; 2760 2761 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, 2762 alloc_end - alloc_start); 2763 if (IS_ERR(em)) { 2764 ret = PTR_ERR(em); 2765 goto out; 2766 } 2767 2768 /* 2769 * Avoid hole punching and extent allocation for some cases. More cases 2770 * could be considered, but these are unlikely common and we keep things 2771 * as simple as possible for now. Also, intentionally, if the target 2772 * range contains one or more prealloc extents together with regular 2773 * extents and holes, we drop all the existing extents and allocate a 2774 * new prealloc extent, so that we get a larger contiguous disk extent. 2775 */ 2776 if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) { 2777 const u64 em_end = em->start + em->len; 2778 2779 if (em_end >= offset + len) { 2780 /* 2781 * The whole range is already a prealloc extent, 2782 * do nothing except updating the inode's i_size if 2783 * needed. 2784 */ 2785 free_extent_map(em); 2786 ret = btrfs_fallocate_update_isize(inode, offset + len, 2787 mode); 2788 goto out; 2789 } 2790 /* 2791 * Part of the range is already a prealloc extent, so operate 2792 * only on the remaining part of the range. 2793 */ 2794 alloc_start = em_end; 2795 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2796 len = offset + len - alloc_start; 2797 offset = alloc_start; 2798 alloc_hint = extent_map_block_start(em) + em->len; 2799 } 2800 free_extent_map(em); 2801 2802 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2803 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2804 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize); 2805 if (IS_ERR(em)) { 2806 ret = PTR_ERR(em); 2807 goto out; 2808 } 2809 2810 if (em->flags & EXTENT_FLAG_PREALLOC) { 2811 free_extent_map(em); 2812 ret = btrfs_fallocate_update_isize(inode, offset + len, 2813 mode); 2814 goto out; 2815 } 2816 if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) { 2817 free_extent_map(em); 2818 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2819 0); 2820 if (!ret) 2821 ret = btrfs_fallocate_update_isize(inode, 2822 offset + len, 2823 mode); 2824 return ret; 2825 } 2826 free_extent_map(em); 2827 alloc_start = round_down(offset, sectorsize); 2828 alloc_end = alloc_start + sectorsize; 2829 goto reserve_space; 2830 } 2831 2832 alloc_start = round_up(offset, sectorsize); 2833 alloc_end = round_down(offset + len, sectorsize); 2834 2835 /* 2836 * For unaligned ranges, check the pages at the boundaries, they might 2837 * map to an extent, in which case we need to partially zero them, or 2838 * they might map to a hole, in which case we need our allocation range 2839 * to cover them. 2840 */ 2841 if (!IS_ALIGNED(offset, sectorsize)) { 2842 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2843 offset); 2844 if (ret < 0) 2845 goto out; 2846 if (ret == RANGE_BOUNDARY_HOLE) { 2847 alloc_start = round_down(offset, sectorsize); 2848 ret = 0; 2849 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2850 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2851 if (ret) 2852 goto out; 2853 } else { 2854 ret = 0; 2855 } 2856 } 2857 2858 if (!IS_ALIGNED(offset + len, sectorsize)) { 2859 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2860 offset + len); 2861 if (ret < 0) 2862 goto out; 2863 if (ret == RANGE_BOUNDARY_HOLE) { 2864 alloc_end = round_up(offset + len, sectorsize); 2865 ret = 0; 2866 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2867 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 2868 0, 1); 2869 if (ret) 2870 goto out; 2871 } else { 2872 ret = 0; 2873 } 2874 } 2875 2876 reserve_space: 2877 if (alloc_start < alloc_end) { 2878 struct extent_state *cached_state = NULL; 2879 const u64 lockstart = alloc_start; 2880 const u64 lockend = alloc_end - 1; 2881 2882 bytes_to_reserve = alloc_end - alloc_start; 2883 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 2884 bytes_to_reserve); 2885 if (ret < 0) 2886 goto out; 2887 space_reserved = true; 2888 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2889 &cached_state); 2890 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 2891 alloc_start, bytes_to_reserve); 2892 if (ret) { 2893 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 2894 lockend, &cached_state); 2895 goto out; 2896 } 2897 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 2898 alloc_end - alloc_start, 2899 fs_info->sectorsize, 2900 offset + len, &alloc_hint); 2901 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2902 &cached_state); 2903 /* btrfs_prealloc_file_range releases reserved space on error */ 2904 if (ret) { 2905 space_reserved = false; 2906 goto out; 2907 } 2908 } 2909 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 2910 out: 2911 if (ret && space_reserved) 2912 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 2913 alloc_start, bytes_to_reserve); 2914 extent_changeset_free(data_reserved); 2915 2916 return ret; 2917 } 2918 2919 static long btrfs_fallocate(struct file *file, int mode, 2920 loff_t offset, loff_t len) 2921 { 2922 struct inode *inode = file_inode(file); 2923 struct extent_state *cached_state = NULL; 2924 struct extent_changeset *data_reserved = NULL; 2925 struct falloc_range *range; 2926 struct falloc_range *tmp; 2927 LIST_HEAD(reserve_list); 2928 u64 cur_offset; 2929 u64 last_byte; 2930 u64 alloc_start; 2931 u64 alloc_end; 2932 u64 alloc_hint = 0; 2933 u64 locked_end; 2934 u64 actual_end = 0; 2935 u64 data_space_needed = 0; 2936 u64 data_space_reserved = 0; 2937 u64 qgroup_reserved = 0; 2938 struct extent_map *em; 2939 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; 2940 int ret; 2941 2942 /* Do not allow fallocate in ZONED mode */ 2943 if (btrfs_is_zoned(inode_to_fs_info(inode))) 2944 return -EOPNOTSUPP; 2945 2946 alloc_start = round_down(offset, blocksize); 2947 alloc_end = round_up(offset + len, blocksize); 2948 cur_offset = alloc_start; 2949 2950 /* Make sure we aren't being give some crap mode */ 2951 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 2952 FALLOC_FL_ZERO_RANGE)) 2953 return -EOPNOTSUPP; 2954 2955 if (mode & FALLOC_FL_PUNCH_HOLE) 2956 return btrfs_punch_hole(file, offset, len); 2957 2958 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2959 2960 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 2961 ret = inode_newsize_ok(inode, offset + len); 2962 if (ret) 2963 goto out; 2964 } 2965 2966 ret = file_modified(file); 2967 if (ret) 2968 goto out; 2969 2970 /* 2971 * TODO: Move these two operations after we have checked 2972 * accurate reserved space, or fallocate can still fail but 2973 * with page truncated or size expanded. 2974 * 2975 * But that's a minor problem and won't do much harm BTW. 2976 */ 2977 if (alloc_start > inode->i_size) { 2978 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 2979 alloc_start); 2980 if (ret) 2981 goto out; 2982 } else if (offset + len > inode->i_size) { 2983 /* 2984 * If we are fallocating from the end of the file onward we 2985 * need to zero out the end of the block if i_size lands in the 2986 * middle of a block. 2987 */ 2988 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 2989 if (ret) 2990 goto out; 2991 } 2992 2993 /* 2994 * We have locked the inode at the VFS level (in exclusive mode) and we 2995 * have locked the i_mmap_lock lock (in exclusive mode). Now before 2996 * locking the file range, flush all dealloc in the range and wait for 2997 * all ordered extents in the range to complete. After this we can lock 2998 * the file range and, due to the previous locking we did, we know there 2999 * can't be more delalloc or ordered extents in the range. 3000 */ 3001 ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start, 3002 alloc_end - alloc_start); 3003 if (ret) 3004 goto out; 3005 3006 if (mode & FALLOC_FL_ZERO_RANGE) { 3007 ret = btrfs_zero_range(inode, offset, len, mode); 3008 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3009 return ret; 3010 } 3011 3012 locked_end = alloc_end - 1; 3013 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3014 &cached_state); 3015 3016 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3017 3018 /* First, check if we exceed the qgroup limit */ 3019 while (cur_offset < alloc_end) { 3020 em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset, 3021 alloc_end - cur_offset); 3022 if (IS_ERR(em)) { 3023 ret = PTR_ERR(em); 3024 break; 3025 } 3026 last_byte = min(extent_map_end(em), alloc_end); 3027 actual_end = min_t(u64, extent_map_end(em), offset + len); 3028 last_byte = ALIGN(last_byte, blocksize); 3029 if (em->disk_bytenr == EXTENT_MAP_HOLE || 3030 (cur_offset >= inode->i_size && 3031 !(em->flags & EXTENT_FLAG_PREALLOC))) { 3032 const u64 range_len = last_byte - cur_offset; 3033 3034 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3035 if (ret < 0) { 3036 free_extent_map(em); 3037 break; 3038 } 3039 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3040 &data_reserved, cur_offset, range_len); 3041 if (ret < 0) { 3042 free_extent_map(em); 3043 break; 3044 } 3045 qgroup_reserved += range_len; 3046 data_space_needed += range_len; 3047 } 3048 free_extent_map(em); 3049 cur_offset = last_byte; 3050 } 3051 3052 if (!ret && data_space_needed > 0) { 3053 /* 3054 * We are safe to reserve space here as we can't have delalloc 3055 * in the range, see above. 3056 */ 3057 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3058 data_space_needed); 3059 if (!ret) 3060 data_space_reserved = data_space_needed; 3061 } 3062 3063 /* 3064 * If ret is still 0, means we're OK to fallocate. 3065 * Or just cleanup the list and exit. 3066 */ 3067 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3068 if (!ret) { 3069 ret = btrfs_prealloc_file_range(inode, mode, 3070 range->start, 3071 range->len, blocksize, 3072 offset + len, &alloc_hint); 3073 /* 3074 * btrfs_prealloc_file_range() releases space even 3075 * if it returns an error. 3076 */ 3077 data_space_reserved -= range->len; 3078 qgroup_reserved -= range->len; 3079 } else if (data_space_reserved > 0) { 3080 btrfs_free_reserved_data_space(BTRFS_I(inode), 3081 data_reserved, range->start, 3082 range->len); 3083 data_space_reserved -= range->len; 3084 qgroup_reserved -= range->len; 3085 } else if (qgroup_reserved > 0) { 3086 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3087 range->start, range->len, NULL); 3088 qgroup_reserved -= range->len; 3089 } 3090 list_del(&range->list); 3091 kfree(range); 3092 } 3093 if (ret < 0) 3094 goto out_unlock; 3095 3096 /* 3097 * We didn't need to allocate any more space, but we still extended the 3098 * size of the file so we need to update i_size and the inode item. 3099 */ 3100 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3101 out_unlock: 3102 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3103 &cached_state); 3104 out: 3105 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3106 extent_changeset_free(data_reserved); 3107 return ret; 3108 } 3109 3110 /* 3111 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range 3112 * that has unflushed and/or flushing delalloc. There might be other adjacent 3113 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps 3114 * looping while it gets adjacent subranges, and merging them together. 3115 */ 3116 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, 3117 struct extent_state **cached_state, 3118 bool *search_io_tree, 3119 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3120 { 3121 u64 len = end + 1 - start; 3122 u64 delalloc_len = 0; 3123 struct btrfs_ordered_extent *oe; 3124 u64 oe_start; 3125 u64 oe_end; 3126 3127 /* 3128 * Search the io tree first for EXTENT_DELALLOC. If we find any, it 3129 * means we have delalloc (dirty pages) for which writeback has not 3130 * started yet. 3131 */ 3132 if (*search_io_tree) { 3133 spin_lock(&inode->lock); 3134 if (inode->delalloc_bytes > 0) { 3135 spin_unlock(&inode->lock); 3136 *delalloc_start_ret = start; 3137 delalloc_len = count_range_bits(&inode->io_tree, 3138 delalloc_start_ret, end, 3139 len, EXTENT_DELALLOC, 1, 3140 cached_state); 3141 } else { 3142 spin_unlock(&inode->lock); 3143 } 3144 } 3145 3146 if (delalloc_len > 0) { 3147 /* 3148 * If delalloc was found then *delalloc_start_ret has a sector size 3149 * aligned value (rounded down). 3150 */ 3151 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; 3152 3153 if (*delalloc_start_ret == start) { 3154 /* Delalloc for the whole range, nothing more to do. */ 3155 if (*delalloc_end_ret == end) 3156 return true; 3157 /* Else trim our search range for ordered extents. */ 3158 start = *delalloc_end_ret + 1; 3159 len = end + 1 - start; 3160 } 3161 } else { 3162 /* No delalloc, future calls don't need to search again. */ 3163 *search_io_tree = false; 3164 } 3165 3166 /* 3167 * Now also check if there's any ordered extent in the range. 3168 * We do this because: 3169 * 3170 * 1) When delalloc is flushed, the file range is locked, we clear the 3171 * EXTENT_DELALLOC bit from the io tree and create an extent map and 3172 * an ordered extent for the write. So we might just have been called 3173 * after delalloc is flushed and before the ordered extent completes 3174 * and inserts the new file extent item in the subvolume's btree; 3175 * 3176 * 2) We may have an ordered extent created by flushing delalloc for a 3177 * subrange that starts before the subrange we found marked with 3178 * EXTENT_DELALLOC in the io tree. 3179 * 3180 * We could also use the extent map tree to find such delalloc that is 3181 * being flushed, but using the ordered extents tree is more efficient 3182 * because it's usually much smaller as ordered extents are removed from 3183 * the tree once they complete. With the extent maps, we mau have them 3184 * in the extent map tree for a very long time, and they were either 3185 * created by previous writes or loaded by read operations. 3186 */ 3187 oe = btrfs_lookup_first_ordered_range(inode, start, len); 3188 if (!oe) 3189 return (delalloc_len > 0); 3190 3191 /* The ordered extent may span beyond our search range. */ 3192 oe_start = max(oe->file_offset, start); 3193 oe_end = min(oe->file_offset + oe->num_bytes - 1, end); 3194 3195 btrfs_put_ordered_extent(oe); 3196 3197 /* Don't have unflushed delalloc, return the ordered extent range. */ 3198 if (delalloc_len == 0) { 3199 *delalloc_start_ret = oe_start; 3200 *delalloc_end_ret = oe_end; 3201 return true; 3202 } 3203 3204 /* 3205 * We have both unflushed delalloc (io_tree) and an ordered extent. 3206 * If the ranges are adjacent returned a combined range, otherwise 3207 * return the leftmost range. 3208 */ 3209 if (oe_start < *delalloc_start_ret) { 3210 if (oe_end < *delalloc_start_ret) 3211 *delalloc_end_ret = oe_end; 3212 *delalloc_start_ret = oe_start; 3213 } else if (*delalloc_end_ret + 1 == oe_start) { 3214 *delalloc_end_ret = oe_end; 3215 } 3216 3217 return true; 3218 } 3219 3220 /* 3221 * Check if there's delalloc in a given range. 3222 * 3223 * @inode: The inode. 3224 * @start: The start offset of the range. It does not need to be 3225 * sector size aligned. 3226 * @end: The end offset (inclusive value) of the search range. 3227 * It does not need to be sector size aligned. 3228 * @cached_state: Extent state record used for speeding up delalloc 3229 * searches in the inode's io_tree. Can be NULL. 3230 * @delalloc_start_ret: Output argument, set to the start offset of the 3231 * subrange found with delalloc (may not be sector size 3232 * aligned). 3233 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value) 3234 * of the subrange found with delalloc. 3235 * 3236 * Returns true if a subrange with delalloc is found within the given range, and 3237 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and 3238 * end offsets of the subrange. 3239 */ 3240 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3241 struct extent_state **cached_state, 3242 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3243 { 3244 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); 3245 u64 prev_delalloc_end = 0; 3246 bool search_io_tree = true; 3247 bool ret = false; 3248 3249 while (cur_offset <= end) { 3250 u64 delalloc_start; 3251 u64 delalloc_end; 3252 bool delalloc; 3253 3254 delalloc = find_delalloc_subrange(inode, cur_offset, end, 3255 cached_state, &search_io_tree, 3256 &delalloc_start, 3257 &delalloc_end); 3258 if (!delalloc) 3259 break; 3260 3261 if (prev_delalloc_end == 0) { 3262 /* First subrange found. */ 3263 *delalloc_start_ret = max(delalloc_start, start); 3264 *delalloc_end_ret = delalloc_end; 3265 ret = true; 3266 } else if (delalloc_start == prev_delalloc_end + 1) { 3267 /* Subrange adjacent to the previous one, merge them. */ 3268 *delalloc_end_ret = delalloc_end; 3269 } else { 3270 /* Subrange not adjacent to the previous one, exit. */ 3271 break; 3272 } 3273 3274 prev_delalloc_end = delalloc_end; 3275 cur_offset = delalloc_end + 1; 3276 cond_resched(); 3277 } 3278 3279 return ret; 3280 } 3281 3282 /* 3283 * Check if there's a hole or delalloc range in a range representing a hole (or 3284 * prealloc extent) found in the inode's subvolume btree. 3285 * 3286 * @inode: The inode. 3287 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE). 3288 * @start: Start offset of the hole region. It does not need to be sector 3289 * size aligned. 3290 * @end: End offset (inclusive value) of the hole region. It does not 3291 * need to be sector size aligned. 3292 * @start_ret: Return parameter, used to set the start of the subrange in the 3293 * hole that matches the search criteria (seek mode), if such 3294 * subrange is found (return value of the function is true). 3295 * The value returned here may not be sector size aligned. 3296 * 3297 * Returns true if a subrange matching the given seek mode is found, and if one 3298 * is found, it updates @start_ret with the start of the subrange. 3299 */ 3300 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, 3301 struct extent_state **cached_state, 3302 u64 start, u64 end, u64 *start_ret) 3303 { 3304 u64 delalloc_start; 3305 u64 delalloc_end; 3306 bool delalloc; 3307 3308 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state, 3309 &delalloc_start, &delalloc_end); 3310 if (delalloc && whence == SEEK_DATA) { 3311 *start_ret = delalloc_start; 3312 return true; 3313 } 3314 3315 if (delalloc && whence == SEEK_HOLE) { 3316 /* 3317 * We found delalloc but it starts after out start offset. So we 3318 * have a hole between our start offset and the delalloc start. 3319 */ 3320 if (start < delalloc_start) { 3321 *start_ret = start; 3322 return true; 3323 } 3324 /* 3325 * Delalloc range starts at our start offset. 3326 * If the delalloc range's length is smaller than our range, 3327 * then it means we have a hole that starts where the delalloc 3328 * subrange ends. 3329 */ 3330 if (delalloc_end < end) { 3331 *start_ret = delalloc_end + 1; 3332 return true; 3333 } 3334 3335 /* There's delalloc for the whole range. */ 3336 return false; 3337 } 3338 3339 if (!delalloc && whence == SEEK_HOLE) { 3340 *start_ret = start; 3341 return true; 3342 } 3343 3344 /* 3345 * No delalloc in the range and we are seeking for data. The caller has 3346 * to iterate to the next extent item in the subvolume btree. 3347 */ 3348 return false; 3349 } 3350 3351 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence) 3352 { 3353 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host); 3354 struct btrfs_file_private *private; 3355 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3356 struct extent_state *cached_state = NULL; 3357 struct extent_state **delalloc_cached_state; 3358 const loff_t i_size = i_size_read(&inode->vfs_inode); 3359 const u64 ino = btrfs_ino(inode); 3360 struct btrfs_root *root = inode->root; 3361 struct btrfs_path *path; 3362 struct btrfs_key key; 3363 u64 last_extent_end; 3364 u64 lockstart; 3365 u64 lockend; 3366 u64 start; 3367 int ret; 3368 bool found = false; 3369 3370 if (i_size == 0 || offset >= i_size) 3371 return -ENXIO; 3372 3373 /* 3374 * Quick path. If the inode has no prealloc extents and its number of 3375 * bytes used matches its i_size, then it can not have holes. 3376 */ 3377 if (whence == SEEK_HOLE && 3378 !(inode->flags & BTRFS_INODE_PREALLOC) && 3379 inode_get_bytes(&inode->vfs_inode) == i_size) 3380 return i_size; 3381 3382 spin_lock(&inode->lock); 3383 private = file->private_data; 3384 spin_unlock(&inode->lock); 3385 3386 if (private && private->owner_task != current) { 3387 /* 3388 * Not allocated by us, don't use it as its cached state is used 3389 * by the task that allocated it and we don't want neither to 3390 * mess with it nor get incorrect results because it reflects an 3391 * invalid state for the current task. 3392 */ 3393 private = NULL; 3394 } else if (!private) { 3395 private = kzalloc(sizeof(*private), GFP_KERNEL); 3396 /* 3397 * No worries if memory allocation failed. 3398 * The private structure is used only for speeding up multiple 3399 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc, 3400 * so everything will still be correct. 3401 */ 3402 if (private) { 3403 bool free = false; 3404 3405 private->owner_task = current; 3406 3407 spin_lock(&inode->lock); 3408 if (file->private_data) 3409 free = true; 3410 else 3411 file->private_data = private; 3412 spin_unlock(&inode->lock); 3413 3414 if (free) { 3415 kfree(private); 3416 private = NULL; 3417 } 3418 } 3419 } 3420 3421 if (private) 3422 delalloc_cached_state = &private->llseek_cached_state; 3423 else 3424 delalloc_cached_state = NULL; 3425 3426 /* 3427 * offset can be negative, in this case we start finding DATA/HOLE from 3428 * the very start of the file. 3429 */ 3430 start = max_t(loff_t, 0, offset); 3431 3432 lockstart = round_down(start, fs_info->sectorsize); 3433 lockend = round_up(i_size, fs_info->sectorsize); 3434 if (lockend <= lockstart) 3435 lockend = lockstart + fs_info->sectorsize; 3436 lockend--; 3437 3438 path = btrfs_alloc_path(); 3439 if (!path) 3440 return -ENOMEM; 3441 path->reada = READA_FORWARD; 3442 3443 key.objectid = ino; 3444 key.type = BTRFS_EXTENT_DATA_KEY; 3445 key.offset = start; 3446 3447 last_extent_end = lockstart; 3448 3449 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3450 3451 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3452 if (ret < 0) { 3453 goto out; 3454 } else if (ret > 0 && path->slots[0] > 0) { 3455 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3456 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3457 path->slots[0]--; 3458 } 3459 3460 while (start < i_size) { 3461 struct extent_buffer *leaf = path->nodes[0]; 3462 struct btrfs_file_extent_item *extent; 3463 u64 extent_end; 3464 u8 type; 3465 3466 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3467 ret = btrfs_next_leaf(root, path); 3468 if (ret < 0) 3469 goto out; 3470 else if (ret > 0) 3471 break; 3472 3473 leaf = path->nodes[0]; 3474 } 3475 3476 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3477 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3478 break; 3479 3480 extent_end = btrfs_file_extent_end(path); 3481 3482 /* 3483 * In the first iteration we may have a slot that points to an 3484 * extent that ends before our start offset, so skip it. 3485 */ 3486 if (extent_end <= start) { 3487 path->slots[0]++; 3488 continue; 3489 } 3490 3491 /* We have an implicit hole, NO_HOLES feature is likely set. */ 3492 if (last_extent_end < key.offset) { 3493 u64 search_start = last_extent_end; 3494 u64 found_start; 3495 3496 /* 3497 * First iteration, @start matches @offset and it's 3498 * within the hole. 3499 */ 3500 if (start == offset) 3501 search_start = offset; 3502 3503 found = find_desired_extent_in_hole(inode, whence, 3504 delalloc_cached_state, 3505 search_start, 3506 key.offset - 1, 3507 &found_start); 3508 if (found) { 3509 start = found_start; 3510 break; 3511 } 3512 /* 3513 * Didn't find data or a hole (due to delalloc) in the 3514 * implicit hole range, so need to analyze the extent. 3515 */ 3516 } 3517 3518 extent = btrfs_item_ptr(leaf, path->slots[0], 3519 struct btrfs_file_extent_item); 3520 type = btrfs_file_extent_type(leaf, extent); 3521 3522 /* 3523 * Can't access the extent's disk_bytenr field if this is an 3524 * inline extent, since at that offset, it's where the extent 3525 * data starts. 3526 */ 3527 if (type == BTRFS_FILE_EXTENT_PREALLOC || 3528 (type == BTRFS_FILE_EXTENT_REG && 3529 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) { 3530 /* 3531 * Explicit hole or prealloc extent, search for delalloc. 3532 * A prealloc extent is treated like a hole. 3533 */ 3534 u64 search_start = key.offset; 3535 u64 found_start; 3536 3537 /* 3538 * First iteration, @start matches @offset and it's 3539 * within the hole. 3540 */ 3541 if (start == offset) 3542 search_start = offset; 3543 3544 found = find_desired_extent_in_hole(inode, whence, 3545 delalloc_cached_state, 3546 search_start, 3547 extent_end - 1, 3548 &found_start); 3549 if (found) { 3550 start = found_start; 3551 break; 3552 } 3553 /* 3554 * Didn't find data or a hole (due to delalloc) in the 3555 * implicit hole range, so need to analyze the next 3556 * extent item. 3557 */ 3558 } else { 3559 /* 3560 * Found a regular or inline extent. 3561 * If we are seeking for data, adjust the start offset 3562 * and stop, we're done. 3563 */ 3564 if (whence == SEEK_DATA) { 3565 start = max_t(u64, key.offset, offset); 3566 found = true; 3567 break; 3568 } 3569 /* 3570 * Else, we are seeking for a hole, check the next file 3571 * extent item. 3572 */ 3573 } 3574 3575 start = extent_end; 3576 last_extent_end = extent_end; 3577 path->slots[0]++; 3578 if (fatal_signal_pending(current)) { 3579 ret = -EINTR; 3580 goto out; 3581 } 3582 cond_resched(); 3583 } 3584 3585 /* We have an implicit hole from the last extent found up to i_size. */ 3586 if (!found && start < i_size) { 3587 found = find_desired_extent_in_hole(inode, whence, 3588 delalloc_cached_state, start, 3589 i_size - 1, &start); 3590 if (!found) 3591 start = i_size; 3592 } 3593 3594 out: 3595 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3596 btrfs_free_path(path); 3597 3598 if (ret < 0) 3599 return ret; 3600 3601 if (whence == SEEK_DATA && start >= i_size) 3602 return -ENXIO; 3603 3604 return min_t(loff_t, start, i_size); 3605 } 3606 3607 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3608 { 3609 struct inode *inode = file->f_mapping->host; 3610 3611 switch (whence) { 3612 default: 3613 return generic_file_llseek(file, offset, whence); 3614 case SEEK_DATA: 3615 case SEEK_HOLE: 3616 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3617 offset = find_desired_extent(file, offset, whence); 3618 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3619 break; 3620 } 3621 3622 if (offset < 0) 3623 return offset; 3624 3625 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3626 } 3627 3628 static int btrfs_file_open(struct inode *inode, struct file *filp) 3629 { 3630 int ret; 3631 3632 filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT; 3633 3634 ret = fsverity_file_open(inode, filp); 3635 if (ret) 3636 return ret; 3637 return generic_file_open(inode, filp); 3638 } 3639 3640 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3641 { 3642 ssize_t ret = 0; 3643 3644 if (iocb->ki_flags & IOCB_DIRECT) { 3645 ret = btrfs_direct_read(iocb, to); 3646 if (ret < 0 || !iov_iter_count(to) || 3647 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3648 return ret; 3649 } 3650 3651 return filemap_read(iocb, to, ret); 3652 } 3653 3654 const struct file_operations btrfs_file_operations = { 3655 .llseek = btrfs_file_llseek, 3656 .read_iter = btrfs_file_read_iter, 3657 .splice_read = filemap_splice_read, 3658 .write_iter = btrfs_file_write_iter, 3659 .splice_write = iter_file_splice_write, 3660 .mmap = btrfs_file_mmap, 3661 .open = btrfs_file_open, 3662 .release = btrfs_release_file, 3663 .get_unmapped_area = thp_get_unmapped_area, 3664 .fsync = btrfs_sync_file, 3665 .fallocate = btrfs_fallocate, 3666 .unlocked_ioctl = btrfs_ioctl, 3667 #ifdef CONFIG_COMPAT 3668 .compat_ioctl = btrfs_compat_ioctl, 3669 #endif 3670 .remap_file_range = btrfs_remap_file_range, 3671 .uring_cmd = btrfs_uring_cmd, 3672 .fop_flags = FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC, 3673 }; 3674 3675 int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end) 3676 { 3677 struct address_space *mapping = inode->vfs_inode.i_mapping; 3678 int ret; 3679 3680 /* 3681 * So with compression we will find and lock a dirty page and clear the 3682 * first one as dirty, setup an async extent, and immediately return 3683 * with the entire range locked but with nobody actually marked with 3684 * writeback. So we can't just filemap_write_and_wait_range() and 3685 * expect it to work since it will just kick off a thread to do the 3686 * actual work. So we need to call filemap_fdatawrite_range _again_ 3687 * since it will wait on the page lock, which won't be unlocked until 3688 * after the pages have been marked as writeback and so we're good to go 3689 * from there. We have to do this otherwise we'll miss the ordered 3690 * extents and that results in badness. Please Josef, do not think you 3691 * know better and pull this out at some point in the future, it is 3692 * right and you are wrong. 3693 */ 3694 ret = filemap_fdatawrite_range(mapping, start, end); 3695 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags)) 3696 ret = filemap_fdatawrite_range(mapping, start, end); 3697 3698 return ret; 3699 } 3700