1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include <linux/iomap.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "btrfs_inode.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "qgroup.h" 28 #include "compression.h" 29 #include "delalloc-space.h" 30 #include "reflink.h" 31 #include "subpage.h" 32 #include "fs.h" 33 #include "accessors.h" 34 #include "extent-tree.h" 35 #include "file-item.h" 36 #include "ioctl.h" 37 #include "file.h" 38 #include "super.h" 39 40 /* simple helper to fault in pages and copy. This should go away 41 * and be replaced with calls into generic code. 42 */ 43 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 44 struct page **prepared_pages, 45 struct iov_iter *i) 46 { 47 size_t copied = 0; 48 size_t total_copied = 0; 49 int pg = 0; 50 int offset = offset_in_page(pos); 51 52 while (write_bytes > 0) { 53 size_t count = min_t(size_t, 54 PAGE_SIZE - offset, write_bytes); 55 struct page *page = prepared_pages[pg]; 56 /* 57 * Copy data from userspace to the current page 58 */ 59 copied = copy_page_from_iter_atomic(page, offset, count, i); 60 61 /* Flush processor's dcache for this page */ 62 flush_dcache_page(page); 63 64 /* 65 * if we get a partial write, we can end up with 66 * partially up to date pages. These add 67 * a lot of complexity, so make sure they don't 68 * happen by forcing this copy to be retried. 69 * 70 * The rest of the btrfs_file_write code will fall 71 * back to page at a time copies after we return 0. 72 */ 73 if (unlikely(copied < count)) { 74 if (!PageUptodate(page)) { 75 iov_iter_revert(i, copied); 76 copied = 0; 77 } 78 if (!copied) 79 break; 80 } 81 82 write_bytes -= copied; 83 total_copied += copied; 84 offset += copied; 85 if (offset == PAGE_SIZE) { 86 pg++; 87 offset = 0; 88 } 89 } 90 return total_copied; 91 } 92 93 /* 94 * unlocks pages after btrfs_file_write is done with them 95 */ 96 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 97 struct page **pages, size_t num_pages, 98 u64 pos, u64 copied) 99 { 100 size_t i; 101 u64 block_start = round_down(pos, fs_info->sectorsize); 102 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 103 104 ASSERT(block_len <= U32_MAX); 105 for (i = 0; i < num_pages; i++) { 106 /* page checked is some magic around finding pages that 107 * have been modified without going through btrfs_set_page_dirty 108 * clear it here. There should be no need to mark the pages 109 * accessed as prepare_pages should have marked them accessed 110 * in prepare_pages via find_or_create_page() 111 */ 112 btrfs_folio_clamp_clear_checked(fs_info, page_folio(pages[i]), 113 block_start, block_len); 114 unlock_page(pages[i]); 115 put_page(pages[i]); 116 } 117 } 118 119 /* 120 * After btrfs_copy_from_user(), update the following things for delalloc: 121 * - Mark newly dirtied pages as DELALLOC in the io tree. 122 * Used to advise which range is to be written back. 123 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 124 * - Update inode size for past EOF write 125 */ 126 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 127 size_t num_pages, loff_t pos, size_t write_bytes, 128 struct extent_state **cached, bool noreserve) 129 { 130 struct btrfs_fs_info *fs_info = inode->root->fs_info; 131 int ret = 0; 132 int i; 133 u64 num_bytes; 134 u64 start_pos; 135 u64 end_of_last_block; 136 u64 end_pos = pos + write_bytes; 137 loff_t isize = i_size_read(&inode->vfs_inode); 138 unsigned int extra_bits = 0; 139 140 if (write_bytes == 0) 141 return 0; 142 143 if (noreserve) 144 extra_bits |= EXTENT_NORESERVE; 145 146 start_pos = round_down(pos, fs_info->sectorsize); 147 num_bytes = round_up(write_bytes + pos - start_pos, 148 fs_info->sectorsize); 149 ASSERT(num_bytes <= U32_MAX); 150 151 end_of_last_block = start_pos + num_bytes - 1; 152 153 /* 154 * The pages may have already been dirty, clear out old accounting so 155 * we can set things up properly 156 */ 157 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 158 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 159 cached); 160 161 ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 162 extra_bits, cached); 163 if (ret) 164 return ret; 165 166 for (i = 0; i < num_pages; i++) { 167 struct page *p = pages[i]; 168 169 btrfs_folio_clamp_set_uptodate(fs_info, page_folio(p), 170 start_pos, num_bytes); 171 btrfs_folio_clamp_clear_checked(fs_info, page_folio(p), 172 start_pos, num_bytes); 173 btrfs_folio_clamp_set_dirty(fs_info, page_folio(p), 174 start_pos, num_bytes); 175 } 176 177 /* 178 * we've only changed i_size in ram, and we haven't updated 179 * the disk i_size. There is no need to log the inode 180 * at this time. 181 */ 182 if (end_pos > isize) 183 i_size_write(&inode->vfs_inode, end_pos); 184 return 0; 185 } 186 187 /* 188 * this is very complex, but the basic idea is to drop all extents 189 * in the range start - end. hint_block is filled in with a block number 190 * that would be a good hint to the block allocator for this file. 191 * 192 * If an extent intersects the range but is not entirely inside the range 193 * it is either truncated or split. Anything entirely inside the range 194 * is deleted from the tree. 195 * 196 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 197 * to deal with that. We set the field 'bytes_found' of the arguments structure 198 * with the number of allocated bytes found in the target range, so that the 199 * caller can update the inode's number of bytes in an atomic way when 200 * replacing extents in a range to avoid races with stat(2). 201 */ 202 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 203 struct btrfs_root *root, struct btrfs_inode *inode, 204 struct btrfs_drop_extents_args *args) 205 { 206 struct btrfs_fs_info *fs_info = root->fs_info; 207 struct extent_buffer *leaf; 208 struct btrfs_file_extent_item *fi; 209 struct btrfs_key key; 210 struct btrfs_key new_key; 211 u64 ino = btrfs_ino(inode); 212 u64 search_start = args->start; 213 u64 disk_bytenr = 0; 214 u64 num_bytes = 0; 215 u64 extent_offset = 0; 216 u64 extent_end = 0; 217 u64 last_end = args->start; 218 int del_nr = 0; 219 int del_slot = 0; 220 int extent_type; 221 int recow; 222 int ret; 223 int modify_tree = -1; 224 int update_refs; 225 int found = 0; 226 struct btrfs_path *path = args->path; 227 228 args->bytes_found = 0; 229 args->extent_inserted = false; 230 231 /* Must always have a path if ->replace_extent is true */ 232 ASSERT(!(args->replace_extent && !args->path)); 233 234 if (!path) { 235 path = btrfs_alloc_path(); 236 if (!path) { 237 ret = -ENOMEM; 238 goto out; 239 } 240 } 241 242 if (args->drop_cache) 243 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); 244 245 if (args->start >= inode->disk_i_size && !args->replace_extent) 246 modify_tree = 0; 247 248 update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID); 249 while (1) { 250 recow = 0; 251 ret = btrfs_lookup_file_extent(trans, root, path, ino, 252 search_start, modify_tree); 253 if (ret < 0) 254 break; 255 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 256 leaf = path->nodes[0]; 257 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 258 if (key.objectid == ino && 259 key.type == BTRFS_EXTENT_DATA_KEY) 260 path->slots[0]--; 261 } 262 ret = 0; 263 next_slot: 264 leaf = path->nodes[0]; 265 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 266 BUG_ON(del_nr > 0); 267 ret = btrfs_next_leaf(root, path); 268 if (ret < 0) 269 break; 270 if (ret > 0) { 271 ret = 0; 272 break; 273 } 274 leaf = path->nodes[0]; 275 recow = 1; 276 } 277 278 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 279 280 if (key.objectid > ino) 281 break; 282 if (WARN_ON_ONCE(key.objectid < ino) || 283 key.type < BTRFS_EXTENT_DATA_KEY) { 284 ASSERT(del_nr == 0); 285 path->slots[0]++; 286 goto next_slot; 287 } 288 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 289 break; 290 291 fi = btrfs_item_ptr(leaf, path->slots[0], 292 struct btrfs_file_extent_item); 293 extent_type = btrfs_file_extent_type(leaf, fi); 294 295 if (extent_type == BTRFS_FILE_EXTENT_REG || 296 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 297 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 298 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 299 extent_offset = btrfs_file_extent_offset(leaf, fi); 300 extent_end = key.offset + 301 btrfs_file_extent_num_bytes(leaf, fi); 302 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 303 extent_end = key.offset + 304 btrfs_file_extent_ram_bytes(leaf, fi); 305 } else { 306 /* can't happen */ 307 BUG(); 308 } 309 310 /* 311 * Don't skip extent items representing 0 byte lengths. They 312 * used to be created (bug) if while punching holes we hit 313 * -ENOSPC condition. So if we find one here, just ensure we 314 * delete it, otherwise we would insert a new file extent item 315 * with the same key (offset) as that 0 bytes length file 316 * extent item in the call to setup_items_for_insert() later 317 * in this function. 318 */ 319 if (extent_end == key.offset && extent_end >= search_start) { 320 last_end = extent_end; 321 goto delete_extent_item; 322 } 323 324 if (extent_end <= search_start) { 325 path->slots[0]++; 326 goto next_slot; 327 } 328 329 found = 1; 330 search_start = max(key.offset, args->start); 331 if (recow || !modify_tree) { 332 modify_tree = -1; 333 btrfs_release_path(path); 334 continue; 335 } 336 337 /* 338 * | - range to drop - | 339 * | -------- extent -------- | 340 */ 341 if (args->start > key.offset && args->end < extent_end) { 342 BUG_ON(del_nr > 0); 343 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 344 ret = -EOPNOTSUPP; 345 break; 346 } 347 348 memcpy(&new_key, &key, sizeof(new_key)); 349 new_key.offset = args->start; 350 ret = btrfs_duplicate_item(trans, root, path, 351 &new_key); 352 if (ret == -EAGAIN) { 353 btrfs_release_path(path); 354 continue; 355 } 356 if (ret < 0) 357 break; 358 359 leaf = path->nodes[0]; 360 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 361 struct btrfs_file_extent_item); 362 btrfs_set_file_extent_num_bytes(leaf, fi, 363 args->start - key.offset); 364 365 fi = btrfs_item_ptr(leaf, path->slots[0], 366 struct btrfs_file_extent_item); 367 368 extent_offset += args->start - key.offset; 369 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 370 btrfs_set_file_extent_num_bytes(leaf, fi, 371 extent_end - args->start); 372 btrfs_mark_buffer_dirty(trans, leaf); 373 374 if (update_refs && disk_bytenr > 0) { 375 struct btrfs_ref ref = { 376 .action = BTRFS_ADD_DELAYED_REF, 377 .bytenr = disk_bytenr, 378 .num_bytes = num_bytes, 379 .parent = 0, 380 .owning_root = btrfs_root_id(root), 381 .ref_root = btrfs_root_id(root), 382 }; 383 btrfs_init_data_ref(&ref, new_key.objectid, 384 args->start - extent_offset, 385 0, false); 386 ret = btrfs_inc_extent_ref(trans, &ref); 387 if (ret) { 388 btrfs_abort_transaction(trans, ret); 389 break; 390 } 391 } 392 key.offset = args->start; 393 } 394 /* 395 * From here on out we will have actually dropped something, so 396 * last_end can be updated. 397 */ 398 last_end = extent_end; 399 400 /* 401 * | ---- range to drop ----- | 402 * | -------- extent -------- | 403 */ 404 if (args->start <= key.offset && args->end < extent_end) { 405 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 406 ret = -EOPNOTSUPP; 407 break; 408 } 409 410 memcpy(&new_key, &key, sizeof(new_key)); 411 new_key.offset = args->end; 412 btrfs_set_item_key_safe(trans, path, &new_key); 413 414 extent_offset += args->end - key.offset; 415 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 416 btrfs_set_file_extent_num_bytes(leaf, fi, 417 extent_end - args->end); 418 btrfs_mark_buffer_dirty(trans, leaf); 419 if (update_refs && disk_bytenr > 0) 420 args->bytes_found += args->end - key.offset; 421 break; 422 } 423 424 search_start = extent_end; 425 /* 426 * | ---- range to drop ----- | 427 * | -------- extent -------- | 428 */ 429 if (args->start > key.offset && args->end >= extent_end) { 430 BUG_ON(del_nr > 0); 431 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 432 ret = -EOPNOTSUPP; 433 break; 434 } 435 436 btrfs_set_file_extent_num_bytes(leaf, fi, 437 args->start - key.offset); 438 btrfs_mark_buffer_dirty(trans, leaf); 439 if (update_refs && disk_bytenr > 0) 440 args->bytes_found += extent_end - args->start; 441 if (args->end == extent_end) 442 break; 443 444 path->slots[0]++; 445 goto next_slot; 446 } 447 448 /* 449 * | ---- range to drop ----- | 450 * | ------ extent ------ | 451 */ 452 if (args->start <= key.offset && args->end >= extent_end) { 453 delete_extent_item: 454 if (del_nr == 0) { 455 del_slot = path->slots[0]; 456 del_nr = 1; 457 } else { 458 BUG_ON(del_slot + del_nr != path->slots[0]); 459 del_nr++; 460 } 461 462 if (update_refs && 463 extent_type == BTRFS_FILE_EXTENT_INLINE) { 464 args->bytes_found += extent_end - key.offset; 465 extent_end = ALIGN(extent_end, 466 fs_info->sectorsize); 467 } else if (update_refs && disk_bytenr > 0) { 468 struct btrfs_ref ref = { 469 .action = BTRFS_DROP_DELAYED_REF, 470 .bytenr = disk_bytenr, 471 .num_bytes = num_bytes, 472 .parent = 0, 473 .owning_root = btrfs_root_id(root), 474 .ref_root = btrfs_root_id(root), 475 }; 476 btrfs_init_data_ref(&ref, key.objectid, 477 key.offset - extent_offset, 478 0, false); 479 ret = btrfs_free_extent(trans, &ref); 480 if (ret) { 481 btrfs_abort_transaction(trans, ret); 482 break; 483 } 484 args->bytes_found += extent_end - key.offset; 485 } 486 487 if (args->end == extent_end) 488 break; 489 490 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 491 path->slots[0]++; 492 goto next_slot; 493 } 494 495 ret = btrfs_del_items(trans, root, path, del_slot, 496 del_nr); 497 if (ret) { 498 btrfs_abort_transaction(trans, ret); 499 break; 500 } 501 502 del_nr = 0; 503 del_slot = 0; 504 505 btrfs_release_path(path); 506 continue; 507 } 508 509 BUG(); 510 } 511 512 if (!ret && del_nr > 0) { 513 /* 514 * Set path->slots[0] to first slot, so that after the delete 515 * if items are move off from our leaf to its immediate left or 516 * right neighbor leafs, we end up with a correct and adjusted 517 * path->slots[0] for our insertion (if args->replace_extent). 518 */ 519 path->slots[0] = del_slot; 520 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 521 if (ret) 522 btrfs_abort_transaction(trans, ret); 523 } 524 525 leaf = path->nodes[0]; 526 /* 527 * If btrfs_del_items() was called, it might have deleted a leaf, in 528 * which case it unlocked our path, so check path->locks[0] matches a 529 * write lock. 530 */ 531 if (!ret && args->replace_extent && 532 path->locks[0] == BTRFS_WRITE_LOCK && 533 btrfs_leaf_free_space(leaf) >= 534 sizeof(struct btrfs_item) + args->extent_item_size) { 535 536 key.objectid = ino; 537 key.type = BTRFS_EXTENT_DATA_KEY; 538 key.offset = args->start; 539 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 540 struct btrfs_key slot_key; 541 542 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 543 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 544 path->slots[0]++; 545 } 546 btrfs_setup_item_for_insert(trans, root, path, &key, 547 args->extent_item_size); 548 args->extent_inserted = true; 549 } 550 551 if (!args->path) 552 btrfs_free_path(path); 553 else if (!args->extent_inserted) 554 btrfs_release_path(path); 555 out: 556 args->drop_end = found ? min(args->end, last_end) : args->end; 557 558 return ret; 559 } 560 561 static int extent_mergeable(struct extent_buffer *leaf, int slot, 562 u64 objectid, u64 bytenr, u64 orig_offset, 563 u64 *start, u64 *end) 564 { 565 struct btrfs_file_extent_item *fi; 566 struct btrfs_key key; 567 u64 extent_end; 568 569 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 570 return 0; 571 572 btrfs_item_key_to_cpu(leaf, &key, slot); 573 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 574 return 0; 575 576 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 577 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 578 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 579 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 580 btrfs_file_extent_compression(leaf, fi) || 581 btrfs_file_extent_encryption(leaf, fi) || 582 btrfs_file_extent_other_encoding(leaf, fi)) 583 return 0; 584 585 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 586 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 587 return 0; 588 589 *start = key.offset; 590 *end = extent_end; 591 return 1; 592 } 593 594 /* 595 * Mark extent in the range start - end as written. 596 * 597 * This changes extent type from 'pre-allocated' to 'regular'. If only 598 * part of extent is marked as written, the extent will be split into 599 * two or three. 600 */ 601 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 602 struct btrfs_inode *inode, u64 start, u64 end) 603 { 604 struct btrfs_root *root = inode->root; 605 struct extent_buffer *leaf; 606 struct btrfs_path *path; 607 struct btrfs_file_extent_item *fi; 608 struct btrfs_ref ref = { 0 }; 609 struct btrfs_key key; 610 struct btrfs_key new_key; 611 u64 bytenr; 612 u64 num_bytes; 613 u64 extent_end; 614 u64 orig_offset; 615 u64 other_start; 616 u64 other_end; 617 u64 split; 618 int del_nr = 0; 619 int del_slot = 0; 620 int recow; 621 int ret = 0; 622 u64 ino = btrfs_ino(inode); 623 624 path = btrfs_alloc_path(); 625 if (!path) 626 return -ENOMEM; 627 again: 628 recow = 0; 629 split = start; 630 key.objectid = ino; 631 key.type = BTRFS_EXTENT_DATA_KEY; 632 key.offset = split; 633 634 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 635 if (ret < 0) 636 goto out; 637 if (ret > 0 && path->slots[0] > 0) 638 path->slots[0]--; 639 640 leaf = path->nodes[0]; 641 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 642 if (key.objectid != ino || 643 key.type != BTRFS_EXTENT_DATA_KEY) { 644 ret = -EINVAL; 645 btrfs_abort_transaction(trans, ret); 646 goto out; 647 } 648 fi = btrfs_item_ptr(leaf, path->slots[0], 649 struct btrfs_file_extent_item); 650 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 651 ret = -EINVAL; 652 btrfs_abort_transaction(trans, ret); 653 goto out; 654 } 655 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 656 if (key.offset > start || extent_end < end) { 657 ret = -EINVAL; 658 btrfs_abort_transaction(trans, ret); 659 goto out; 660 } 661 662 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 663 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 664 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 665 memcpy(&new_key, &key, sizeof(new_key)); 666 667 if (start == key.offset && end < extent_end) { 668 other_start = 0; 669 other_end = start; 670 if (extent_mergeable(leaf, path->slots[0] - 1, 671 ino, bytenr, orig_offset, 672 &other_start, &other_end)) { 673 new_key.offset = end; 674 btrfs_set_item_key_safe(trans, path, &new_key); 675 fi = btrfs_item_ptr(leaf, path->slots[0], 676 struct btrfs_file_extent_item); 677 btrfs_set_file_extent_generation(leaf, fi, 678 trans->transid); 679 btrfs_set_file_extent_num_bytes(leaf, fi, 680 extent_end - end); 681 btrfs_set_file_extent_offset(leaf, fi, 682 end - orig_offset); 683 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 684 struct btrfs_file_extent_item); 685 btrfs_set_file_extent_generation(leaf, fi, 686 trans->transid); 687 btrfs_set_file_extent_num_bytes(leaf, fi, 688 end - other_start); 689 btrfs_mark_buffer_dirty(trans, leaf); 690 goto out; 691 } 692 } 693 694 if (start > key.offset && end == extent_end) { 695 other_start = end; 696 other_end = 0; 697 if (extent_mergeable(leaf, path->slots[0] + 1, 698 ino, bytenr, orig_offset, 699 &other_start, &other_end)) { 700 fi = btrfs_item_ptr(leaf, path->slots[0], 701 struct btrfs_file_extent_item); 702 btrfs_set_file_extent_num_bytes(leaf, fi, 703 start - key.offset); 704 btrfs_set_file_extent_generation(leaf, fi, 705 trans->transid); 706 path->slots[0]++; 707 new_key.offset = start; 708 btrfs_set_item_key_safe(trans, path, &new_key); 709 710 fi = btrfs_item_ptr(leaf, path->slots[0], 711 struct btrfs_file_extent_item); 712 btrfs_set_file_extent_generation(leaf, fi, 713 trans->transid); 714 btrfs_set_file_extent_num_bytes(leaf, fi, 715 other_end - start); 716 btrfs_set_file_extent_offset(leaf, fi, 717 start - orig_offset); 718 btrfs_mark_buffer_dirty(trans, leaf); 719 goto out; 720 } 721 } 722 723 while (start > key.offset || end < extent_end) { 724 if (key.offset == start) 725 split = end; 726 727 new_key.offset = split; 728 ret = btrfs_duplicate_item(trans, root, path, &new_key); 729 if (ret == -EAGAIN) { 730 btrfs_release_path(path); 731 goto again; 732 } 733 if (ret < 0) { 734 btrfs_abort_transaction(trans, ret); 735 goto out; 736 } 737 738 leaf = path->nodes[0]; 739 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 740 struct btrfs_file_extent_item); 741 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 742 btrfs_set_file_extent_num_bytes(leaf, fi, 743 split - key.offset); 744 745 fi = btrfs_item_ptr(leaf, path->slots[0], 746 struct btrfs_file_extent_item); 747 748 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 749 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 750 btrfs_set_file_extent_num_bytes(leaf, fi, 751 extent_end - split); 752 btrfs_mark_buffer_dirty(trans, leaf); 753 754 ref.action = BTRFS_ADD_DELAYED_REF; 755 ref.bytenr = bytenr; 756 ref.num_bytes = num_bytes; 757 ref.parent = 0; 758 ref.owning_root = btrfs_root_id(root); 759 ref.ref_root = btrfs_root_id(root); 760 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false); 761 ret = btrfs_inc_extent_ref(trans, &ref); 762 if (ret) { 763 btrfs_abort_transaction(trans, ret); 764 goto out; 765 } 766 767 if (split == start) { 768 key.offset = start; 769 } else { 770 if (start != key.offset) { 771 ret = -EINVAL; 772 btrfs_abort_transaction(trans, ret); 773 goto out; 774 } 775 path->slots[0]--; 776 extent_end = end; 777 } 778 recow = 1; 779 } 780 781 other_start = end; 782 other_end = 0; 783 784 ref.action = BTRFS_DROP_DELAYED_REF; 785 ref.bytenr = bytenr; 786 ref.num_bytes = num_bytes; 787 ref.parent = 0; 788 ref.owning_root = btrfs_root_id(root); 789 ref.ref_root = btrfs_root_id(root); 790 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false); 791 if (extent_mergeable(leaf, path->slots[0] + 1, 792 ino, bytenr, orig_offset, 793 &other_start, &other_end)) { 794 if (recow) { 795 btrfs_release_path(path); 796 goto again; 797 } 798 extent_end = other_end; 799 del_slot = path->slots[0] + 1; 800 del_nr++; 801 ret = btrfs_free_extent(trans, &ref); 802 if (ret) { 803 btrfs_abort_transaction(trans, ret); 804 goto out; 805 } 806 } 807 other_start = 0; 808 other_end = start; 809 if (extent_mergeable(leaf, path->slots[0] - 1, 810 ino, bytenr, orig_offset, 811 &other_start, &other_end)) { 812 if (recow) { 813 btrfs_release_path(path); 814 goto again; 815 } 816 key.offset = other_start; 817 del_slot = path->slots[0]; 818 del_nr++; 819 ret = btrfs_free_extent(trans, &ref); 820 if (ret) { 821 btrfs_abort_transaction(trans, ret); 822 goto out; 823 } 824 } 825 if (del_nr == 0) { 826 fi = btrfs_item_ptr(leaf, path->slots[0], 827 struct btrfs_file_extent_item); 828 btrfs_set_file_extent_type(leaf, fi, 829 BTRFS_FILE_EXTENT_REG); 830 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 831 btrfs_mark_buffer_dirty(trans, leaf); 832 } else { 833 fi = btrfs_item_ptr(leaf, del_slot - 1, 834 struct btrfs_file_extent_item); 835 btrfs_set_file_extent_type(leaf, fi, 836 BTRFS_FILE_EXTENT_REG); 837 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 838 btrfs_set_file_extent_num_bytes(leaf, fi, 839 extent_end - key.offset); 840 btrfs_mark_buffer_dirty(trans, leaf); 841 842 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 843 if (ret < 0) { 844 btrfs_abort_transaction(trans, ret); 845 goto out; 846 } 847 } 848 out: 849 btrfs_free_path(path); 850 return ret; 851 } 852 853 /* 854 * on error we return an unlocked page and the error value 855 * on success we return a locked page and 0 856 */ 857 static int prepare_uptodate_page(struct inode *inode, 858 struct page *page, u64 pos, 859 bool force_uptodate) 860 { 861 struct folio *folio = page_folio(page); 862 int ret = 0; 863 864 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 865 !PageUptodate(page)) { 866 ret = btrfs_read_folio(NULL, folio); 867 if (ret) 868 return ret; 869 lock_page(page); 870 if (!PageUptodate(page)) { 871 unlock_page(page); 872 return -EIO; 873 } 874 875 /* 876 * Since btrfs_read_folio() will unlock the folio before it 877 * returns, there is a window where btrfs_release_folio() can be 878 * called to release the page. Here we check both inode 879 * mapping and PagePrivate() to make sure the page was not 880 * released. 881 * 882 * The private flag check is essential for subpage as we need 883 * to store extra bitmap using folio private. 884 */ 885 if (page->mapping != inode->i_mapping || !folio_test_private(folio)) { 886 unlock_page(page); 887 return -EAGAIN; 888 } 889 } 890 return 0; 891 } 892 893 static fgf_t get_prepare_fgp_flags(bool nowait) 894 { 895 fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT; 896 897 if (nowait) 898 fgp_flags |= FGP_NOWAIT; 899 900 return fgp_flags; 901 } 902 903 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) 904 { 905 gfp_t gfp; 906 907 gfp = btrfs_alloc_write_mask(inode->i_mapping); 908 if (nowait) { 909 gfp &= ~__GFP_DIRECT_RECLAIM; 910 gfp |= GFP_NOWAIT; 911 } 912 913 return gfp; 914 } 915 916 /* 917 * this just gets pages into the page cache and locks them down. 918 */ 919 static noinline int prepare_pages(struct inode *inode, struct page **pages, 920 size_t num_pages, loff_t pos, 921 size_t write_bytes, bool force_uptodate, 922 bool nowait) 923 { 924 int i; 925 unsigned long index = pos >> PAGE_SHIFT; 926 gfp_t mask = get_prepare_gfp_flags(inode, nowait); 927 fgf_t fgp_flags = get_prepare_fgp_flags(nowait); 928 int ret = 0; 929 int faili; 930 931 for (i = 0; i < num_pages; i++) { 932 again: 933 pages[i] = pagecache_get_page(inode->i_mapping, index + i, 934 fgp_flags, mask | __GFP_WRITE); 935 if (!pages[i]) { 936 faili = i - 1; 937 if (nowait) 938 ret = -EAGAIN; 939 else 940 ret = -ENOMEM; 941 goto fail; 942 } 943 944 ret = set_page_extent_mapped(pages[i]); 945 if (ret < 0) { 946 faili = i; 947 goto fail; 948 } 949 950 if (i == 0) 951 ret = prepare_uptodate_page(inode, pages[i], pos, 952 force_uptodate); 953 if (!ret && i == num_pages - 1) 954 ret = prepare_uptodate_page(inode, pages[i], 955 pos + write_bytes, false); 956 if (ret) { 957 put_page(pages[i]); 958 if (!nowait && ret == -EAGAIN) { 959 ret = 0; 960 goto again; 961 } 962 faili = i - 1; 963 goto fail; 964 } 965 wait_on_page_writeback(pages[i]); 966 } 967 968 return 0; 969 fail: 970 while (faili >= 0) { 971 unlock_page(pages[faili]); 972 put_page(pages[faili]); 973 faili--; 974 } 975 return ret; 976 977 } 978 979 /* 980 * This function locks the extent and properly waits for data=ordered extents 981 * to finish before allowing the pages to be modified if need. 982 * 983 * The return value: 984 * 1 - the extent is locked 985 * 0 - the extent is not locked, and everything is OK 986 * -EAGAIN - need re-prepare the pages 987 * the other < 0 number - Something wrong happens 988 */ 989 static noinline int 990 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 991 size_t num_pages, loff_t pos, 992 size_t write_bytes, 993 u64 *lockstart, u64 *lockend, bool nowait, 994 struct extent_state **cached_state) 995 { 996 struct btrfs_fs_info *fs_info = inode->root->fs_info; 997 u64 start_pos; 998 u64 last_pos; 999 int i; 1000 int ret = 0; 1001 1002 start_pos = round_down(pos, fs_info->sectorsize); 1003 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 1004 1005 if (start_pos < inode->vfs_inode.i_size) { 1006 struct btrfs_ordered_extent *ordered; 1007 1008 if (nowait) { 1009 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos, 1010 cached_state)) { 1011 for (i = 0; i < num_pages; i++) { 1012 unlock_page(pages[i]); 1013 put_page(pages[i]); 1014 pages[i] = NULL; 1015 } 1016 1017 return -EAGAIN; 1018 } 1019 } else { 1020 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state); 1021 } 1022 1023 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1024 last_pos - start_pos + 1); 1025 if (ordered && 1026 ordered->file_offset + ordered->num_bytes > start_pos && 1027 ordered->file_offset <= last_pos) { 1028 unlock_extent(&inode->io_tree, start_pos, last_pos, 1029 cached_state); 1030 for (i = 0; i < num_pages; i++) { 1031 unlock_page(pages[i]); 1032 put_page(pages[i]); 1033 } 1034 btrfs_start_ordered_extent(ordered); 1035 btrfs_put_ordered_extent(ordered); 1036 return -EAGAIN; 1037 } 1038 if (ordered) 1039 btrfs_put_ordered_extent(ordered); 1040 1041 *lockstart = start_pos; 1042 *lockend = last_pos; 1043 ret = 1; 1044 } 1045 1046 /* 1047 * We should be called after prepare_pages() which should have locked 1048 * all pages in the range. 1049 */ 1050 for (i = 0; i < num_pages; i++) 1051 WARN_ON(!PageLocked(pages[i])); 1052 1053 return ret; 1054 } 1055 1056 /* 1057 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1058 * 1059 * @pos: File offset. 1060 * @write_bytes: The length to write, will be updated to the nocow writeable 1061 * range. 1062 * 1063 * This function will flush ordered extents in the range to ensure proper 1064 * nocow checks. 1065 * 1066 * Return: 1067 * > 0 If we can nocow, and updates @write_bytes. 1068 * 0 If we can't do a nocow write. 1069 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's 1070 * root is in progress. 1071 * < 0 If an error happened. 1072 * 1073 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 1074 */ 1075 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1076 size_t *write_bytes, bool nowait) 1077 { 1078 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1079 struct btrfs_root *root = inode->root; 1080 struct extent_state *cached_state = NULL; 1081 u64 lockstart, lockend; 1082 u64 num_bytes; 1083 int ret; 1084 1085 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1086 return 0; 1087 1088 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1089 return -EAGAIN; 1090 1091 lockstart = round_down(pos, fs_info->sectorsize); 1092 lockend = round_up(pos + *write_bytes, 1093 fs_info->sectorsize) - 1; 1094 num_bytes = lockend - lockstart + 1; 1095 1096 if (nowait) { 1097 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend, 1098 &cached_state)) { 1099 btrfs_drew_write_unlock(&root->snapshot_lock); 1100 return -EAGAIN; 1101 } 1102 } else { 1103 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, 1104 &cached_state); 1105 } 1106 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1107 NULL, NULL, NULL, nowait, false); 1108 if (ret <= 0) 1109 btrfs_drew_write_unlock(&root->snapshot_lock); 1110 else 1111 *write_bytes = min_t(size_t, *write_bytes , 1112 num_bytes - pos + lockstart); 1113 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 1114 1115 return ret; 1116 } 1117 1118 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1119 { 1120 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1121 } 1122 1123 static void update_time_for_write(struct inode *inode) 1124 { 1125 struct timespec64 now, ts; 1126 1127 if (IS_NOCMTIME(inode)) 1128 return; 1129 1130 now = current_time(inode); 1131 ts = inode_get_mtime(inode); 1132 if (!timespec64_equal(&ts, &now)) 1133 inode_set_mtime_to_ts(inode, now); 1134 1135 ts = inode_get_ctime(inode); 1136 if (!timespec64_equal(&ts, &now)) 1137 inode_set_ctime_to_ts(inode, now); 1138 1139 if (IS_I_VERSION(inode)) 1140 inode_inc_iversion(inode); 1141 } 1142 1143 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1144 size_t count) 1145 { 1146 struct file *file = iocb->ki_filp; 1147 struct inode *inode = file_inode(file); 1148 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1149 loff_t pos = iocb->ki_pos; 1150 int ret; 1151 loff_t oldsize; 1152 loff_t start_pos; 1153 1154 /* 1155 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1156 * prealloc flags, as without those flags we always have to COW. We will 1157 * later check if we can really COW into the target range (using 1158 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1159 */ 1160 if ((iocb->ki_flags & IOCB_NOWAIT) && 1161 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1162 return -EAGAIN; 1163 1164 ret = file_remove_privs(file); 1165 if (ret) 1166 return ret; 1167 1168 /* 1169 * We reserve space for updating the inode when we reserve space for the 1170 * extent we are going to write, so we will enospc out there. We don't 1171 * need to start yet another transaction to update the inode as we will 1172 * update the inode when we finish writing whatever data we write. 1173 */ 1174 update_time_for_write(inode); 1175 1176 start_pos = round_down(pos, fs_info->sectorsize); 1177 oldsize = i_size_read(inode); 1178 if (start_pos > oldsize) { 1179 /* Expand hole size to cover write data, preventing empty gap */ 1180 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1181 1182 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1183 if (ret) 1184 return ret; 1185 } 1186 1187 return 0; 1188 } 1189 1190 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1191 struct iov_iter *i) 1192 { 1193 struct file *file = iocb->ki_filp; 1194 loff_t pos; 1195 struct inode *inode = file_inode(file); 1196 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1197 struct page **pages = NULL; 1198 struct extent_changeset *data_reserved = NULL; 1199 u64 release_bytes = 0; 1200 u64 lockstart; 1201 u64 lockend; 1202 size_t num_written = 0; 1203 int nrptrs; 1204 ssize_t ret; 1205 bool only_release_metadata = false; 1206 bool force_page_uptodate = false; 1207 loff_t old_isize = i_size_read(inode); 1208 unsigned int ilock_flags = 0; 1209 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 1210 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); 1211 1212 if (nowait) 1213 ilock_flags |= BTRFS_ILOCK_TRY; 1214 1215 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1216 if (ret < 0) 1217 return ret; 1218 1219 ret = generic_write_checks(iocb, i); 1220 if (ret <= 0) 1221 goto out; 1222 1223 ret = btrfs_write_check(iocb, i, ret); 1224 if (ret < 0) 1225 goto out; 1226 1227 pos = iocb->ki_pos; 1228 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1229 PAGE_SIZE / (sizeof(struct page *))); 1230 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1231 nrptrs = max(nrptrs, 8); 1232 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1233 if (!pages) { 1234 ret = -ENOMEM; 1235 goto out; 1236 } 1237 1238 while (iov_iter_count(i) > 0) { 1239 struct extent_state *cached_state = NULL; 1240 size_t offset = offset_in_page(pos); 1241 size_t sector_offset; 1242 size_t write_bytes = min(iov_iter_count(i), 1243 nrptrs * (size_t)PAGE_SIZE - 1244 offset); 1245 size_t num_pages; 1246 size_t reserve_bytes; 1247 size_t dirty_pages; 1248 size_t copied; 1249 size_t dirty_sectors; 1250 size_t num_sectors; 1251 int extents_locked; 1252 1253 /* 1254 * Fault pages before locking them in prepare_pages 1255 * to avoid recursive lock 1256 */ 1257 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1258 ret = -EFAULT; 1259 break; 1260 } 1261 1262 only_release_metadata = false; 1263 sector_offset = pos & (fs_info->sectorsize - 1); 1264 1265 extent_changeset_release(data_reserved); 1266 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1267 &data_reserved, pos, 1268 write_bytes, nowait); 1269 if (ret < 0) { 1270 int can_nocow; 1271 1272 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) { 1273 ret = -EAGAIN; 1274 break; 1275 } 1276 1277 /* 1278 * If we don't have to COW at the offset, reserve 1279 * metadata only. write_bytes may get smaller than 1280 * requested here. 1281 */ 1282 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1283 &write_bytes, nowait); 1284 if (can_nocow < 0) 1285 ret = can_nocow; 1286 if (can_nocow > 0) 1287 ret = 0; 1288 if (ret) 1289 break; 1290 only_release_metadata = true; 1291 } 1292 1293 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1294 WARN_ON(num_pages > nrptrs); 1295 reserve_bytes = round_up(write_bytes + sector_offset, 1296 fs_info->sectorsize); 1297 WARN_ON(reserve_bytes == 0); 1298 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1299 reserve_bytes, 1300 reserve_bytes, nowait); 1301 if (ret) { 1302 if (!only_release_metadata) 1303 btrfs_free_reserved_data_space(BTRFS_I(inode), 1304 data_reserved, pos, 1305 write_bytes); 1306 else 1307 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1308 1309 if (nowait && ret == -ENOSPC) 1310 ret = -EAGAIN; 1311 break; 1312 } 1313 1314 release_bytes = reserve_bytes; 1315 again: 1316 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags); 1317 if (ret) { 1318 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1319 break; 1320 } 1321 1322 /* 1323 * This is going to setup the pages array with the number of 1324 * pages we want, so we don't really need to worry about the 1325 * contents of pages from loop to loop 1326 */ 1327 ret = prepare_pages(inode, pages, num_pages, 1328 pos, write_bytes, force_page_uptodate, false); 1329 if (ret) { 1330 btrfs_delalloc_release_extents(BTRFS_I(inode), 1331 reserve_bytes); 1332 break; 1333 } 1334 1335 extents_locked = lock_and_cleanup_extent_if_need( 1336 BTRFS_I(inode), pages, 1337 num_pages, pos, write_bytes, &lockstart, 1338 &lockend, nowait, &cached_state); 1339 if (extents_locked < 0) { 1340 if (!nowait && extents_locked == -EAGAIN) 1341 goto again; 1342 1343 btrfs_delalloc_release_extents(BTRFS_I(inode), 1344 reserve_bytes); 1345 ret = extents_locked; 1346 break; 1347 } 1348 1349 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1350 1351 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1352 dirty_sectors = round_up(copied + sector_offset, 1353 fs_info->sectorsize); 1354 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1355 1356 /* 1357 * if we have trouble faulting in the pages, fall 1358 * back to one page at a time 1359 */ 1360 if (copied < write_bytes) 1361 nrptrs = 1; 1362 1363 if (copied == 0) { 1364 force_page_uptodate = true; 1365 dirty_sectors = 0; 1366 dirty_pages = 0; 1367 } else { 1368 force_page_uptodate = false; 1369 dirty_pages = DIV_ROUND_UP(copied + offset, 1370 PAGE_SIZE); 1371 } 1372 1373 if (num_sectors > dirty_sectors) { 1374 /* release everything except the sectors we dirtied */ 1375 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1376 if (only_release_metadata) { 1377 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1378 release_bytes, true); 1379 } else { 1380 u64 __pos; 1381 1382 __pos = round_down(pos, 1383 fs_info->sectorsize) + 1384 (dirty_pages << PAGE_SHIFT); 1385 btrfs_delalloc_release_space(BTRFS_I(inode), 1386 data_reserved, __pos, 1387 release_bytes, true); 1388 } 1389 } 1390 1391 release_bytes = round_up(copied + sector_offset, 1392 fs_info->sectorsize); 1393 1394 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1395 dirty_pages, pos, copied, 1396 &cached_state, only_release_metadata); 1397 1398 /* 1399 * If we have not locked the extent range, because the range's 1400 * start offset is >= i_size, we might still have a non-NULL 1401 * cached extent state, acquired while marking the extent range 1402 * as delalloc through btrfs_dirty_pages(). Therefore free any 1403 * possible cached extent state to avoid a memory leak. 1404 */ 1405 if (extents_locked) 1406 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 1407 lockend, &cached_state); 1408 else 1409 free_extent_state(cached_state); 1410 1411 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1412 if (ret) { 1413 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1414 break; 1415 } 1416 1417 release_bytes = 0; 1418 if (only_release_metadata) 1419 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1420 1421 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1422 1423 cond_resched(); 1424 1425 pos += copied; 1426 num_written += copied; 1427 } 1428 1429 kfree(pages); 1430 1431 if (release_bytes) { 1432 if (only_release_metadata) { 1433 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1434 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1435 release_bytes, true); 1436 } else { 1437 btrfs_delalloc_release_space(BTRFS_I(inode), 1438 data_reserved, 1439 round_down(pos, fs_info->sectorsize), 1440 release_bytes, true); 1441 } 1442 } 1443 1444 extent_changeset_free(data_reserved); 1445 if (num_written > 0) { 1446 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1447 iocb->ki_pos += num_written; 1448 } 1449 out: 1450 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1451 return num_written ? num_written : ret; 1452 } 1453 1454 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1455 const struct iov_iter *iter, loff_t offset) 1456 { 1457 const u32 blocksize_mask = fs_info->sectorsize - 1; 1458 1459 if (offset & blocksize_mask) 1460 return -EINVAL; 1461 1462 if (iov_iter_alignment(iter) & blocksize_mask) 1463 return -EINVAL; 1464 1465 return 0; 1466 } 1467 1468 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1469 { 1470 struct file *file = iocb->ki_filp; 1471 struct inode *inode = file_inode(file); 1472 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1473 loff_t pos; 1474 ssize_t written = 0; 1475 ssize_t written_buffered; 1476 size_t prev_left = 0; 1477 loff_t endbyte; 1478 ssize_t ret; 1479 unsigned int ilock_flags = 0; 1480 struct iomap_dio *dio; 1481 1482 if (iocb->ki_flags & IOCB_NOWAIT) 1483 ilock_flags |= BTRFS_ILOCK_TRY; 1484 1485 /* 1486 * If the write DIO is within EOF, use a shared lock and also only if 1487 * security bits will likely not be dropped by file_remove_privs() called 1488 * from btrfs_write_check(). Either will need to be rechecked after the 1489 * lock was acquired. 1490 */ 1491 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode)) 1492 ilock_flags |= BTRFS_ILOCK_SHARED; 1493 1494 relock: 1495 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1496 if (ret < 0) 1497 return ret; 1498 1499 /* Shared lock cannot be used with security bits set. */ 1500 if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) { 1501 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1502 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1503 goto relock; 1504 } 1505 1506 ret = generic_write_checks(iocb, from); 1507 if (ret <= 0) { 1508 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1509 return ret; 1510 } 1511 1512 ret = btrfs_write_check(iocb, from, ret); 1513 if (ret < 0) { 1514 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1515 goto out; 1516 } 1517 1518 pos = iocb->ki_pos; 1519 /* 1520 * Re-check since file size may have changed just before taking the 1521 * lock or pos may have changed because of O_APPEND in generic_write_check() 1522 */ 1523 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1524 pos + iov_iter_count(from) > i_size_read(inode)) { 1525 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1526 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1527 goto relock; 1528 } 1529 1530 if (check_direct_IO(fs_info, from, pos)) { 1531 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1532 goto buffered; 1533 } 1534 1535 /* 1536 * The iov_iter can be mapped to the same file range we are writing to. 1537 * If that's the case, then we will deadlock in the iomap code, because 1538 * it first calls our callback btrfs_dio_iomap_begin(), which will create 1539 * an ordered extent, and after that it will fault in the pages that the 1540 * iov_iter refers to. During the fault in we end up in the readahead 1541 * pages code (starting at btrfs_readahead()), which will lock the range, 1542 * find that ordered extent and then wait for it to complete (at 1543 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since 1544 * obviously the ordered extent can never complete as we didn't submit 1545 * yet the respective bio(s). This always happens when the buffer is 1546 * memory mapped to the same file range, since the iomap DIO code always 1547 * invalidates pages in the target file range (after starting and waiting 1548 * for any writeback). 1549 * 1550 * So here we disable page faults in the iov_iter and then retry if we 1551 * got -EFAULT, faulting in the pages before the retry. 1552 */ 1553 from->nofault = true; 1554 dio = btrfs_dio_write(iocb, from, written); 1555 from->nofault = false; 1556 1557 /* 1558 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync 1559 * iocb, and that needs to lock the inode. So unlock it before calling 1560 * iomap_dio_complete() to avoid a deadlock. 1561 */ 1562 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1563 1564 if (IS_ERR_OR_NULL(dio)) 1565 ret = PTR_ERR_OR_ZERO(dio); 1566 else 1567 ret = iomap_dio_complete(dio); 1568 1569 /* No increment (+=) because iomap returns a cumulative value. */ 1570 if (ret > 0) 1571 written = ret; 1572 1573 if (iov_iter_count(from) > 0 && (ret == -EFAULT || ret > 0)) { 1574 const size_t left = iov_iter_count(from); 1575 /* 1576 * We have more data left to write. Try to fault in as many as 1577 * possible of the remainder pages and retry. We do this without 1578 * releasing and locking again the inode, to prevent races with 1579 * truncate. 1580 * 1581 * Also, in case the iov refers to pages in the file range of the 1582 * file we want to write to (due to a mmap), we could enter an 1583 * infinite loop if we retry after faulting the pages in, since 1584 * iomap will invalidate any pages in the range early on, before 1585 * it tries to fault in the pages of the iov. So we keep track of 1586 * how much was left of iov in the previous EFAULT and fallback 1587 * to buffered IO in case we haven't made any progress. 1588 */ 1589 if (left == prev_left) { 1590 ret = -ENOTBLK; 1591 } else { 1592 fault_in_iov_iter_readable(from, left); 1593 prev_left = left; 1594 goto relock; 1595 } 1596 } 1597 1598 /* 1599 * If 'ret' is -ENOTBLK or we have not written all data, then it means 1600 * we must fallback to buffered IO. 1601 */ 1602 if ((ret < 0 && ret != -ENOTBLK) || !iov_iter_count(from)) 1603 goto out; 1604 1605 buffered: 1606 /* 1607 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller 1608 * it must retry the operation in a context where blocking is acceptable, 1609 * because even if we end up not blocking during the buffered IO attempt 1610 * below, we will block when flushing and waiting for the IO. 1611 */ 1612 if (iocb->ki_flags & IOCB_NOWAIT) { 1613 ret = -EAGAIN; 1614 goto out; 1615 } 1616 1617 pos = iocb->ki_pos; 1618 written_buffered = btrfs_buffered_write(iocb, from); 1619 if (written_buffered < 0) { 1620 ret = written_buffered; 1621 goto out; 1622 } 1623 /* 1624 * Ensure all data is persisted. We want the next direct IO read to be 1625 * able to read what was just written. 1626 */ 1627 endbyte = pos + written_buffered - 1; 1628 ret = btrfs_fdatawrite_range(inode, pos, endbyte); 1629 if (ret) 1630 goto out; 1631 ret = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1632 if (ret) 1633 goto out; 1634 written += written_buffered; 1635 iocb->ki_pos = pos + written_buffered; 1636 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1637 endbyte >> PAGE_SHIFT); 1638 out: 1639 return ret < 0 ? ret : written; 1640 } 1641 1642 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 1643 const struct btrfs_ioctl_encoded_io_args *encoded) 1644 { 1645 struct file *file = iocb->ki_filp; 1646 struct inode *inode = file_inode(file); 1647 loff_t count; 1648 ssize_t ret; 1649 1650 btrfs_inode_lock(BTRFS_I(inode), 0); 1651 count = encoded->len; 1652 ret = generic_write_checks_count(iocb, &count); 1653 if (ret == 0 && count != encoded->len) { 1654 /* 1655 * The write got truncated by generic_write_checks_count(). We 1656 * can't do a partial encoded write. 1657 */ 1658 ret = -EFBIG; 1659 } 1660 if (ret || encoded->len == 0) 1661 goto out; 1662 1663 ret = btrfs_write_check(iocb, from, encoded->len); 1664 if (ret < 0) 1665 goto out; 1666 1667 ret = btrfs_do_encoded_write(iocb, from, encoded); 1668 out: 1669 btrfs_inode_unlock(BTRFS_I(inode), 0); 1670 return ret; 1671 } 1672 1673 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 1674 const struct btrfs_ioctl_encoded_io_args *encoded) 1675 { 1676 struct file *file = iocb->ki_filp; 1677 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1678 ssize_t num_written, num_sync; 1679 1680 /* 1681 * If the fs flips readonly due to some impossible error, although we 1682 * have opened a file as writable, we have to stop this write operation 1683 * to ensure consistency. 1684 */ 1685 if (BTRFS_FS_ERROR(inode->root->fs_info)) 1686 return -EROFS; 1687 1688 if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) 1689 return -EOPNOTSUPP; 1690 1691 if (encoded) { 1692 num_written = btrfs_encoded_write(iocb, from, encoded); 1693 num_sync = encoded->len; 1694 } else if (iocb->ki_flags & IOCB_DIRECT) { 1695 num_written = btrfs_direct_write(iocb, from); 1696 num_sync = num_written; 1697 } else { 1698 num_written = btrfs_buffered_write(iocb, from); 1699 num_sync = num_written; 1700 } 1701 1702 btrfs_set_inode_last_sub_trans(inode); 1703 1704 if (num_sync > 0) { 1705 num_sync = generic_write_sync(iocb, num_sync); 1706 if (num_sync < 0) 1707 num_written = num_sync; 1708 } 1709 1710 return num_written; 1711 } 1712 1713 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1714 { 1715 return btrfs_do_write_iter(iocb, from, NULL); 1716 } 1717 1718 int btrfs_release_file(struct inode *inode, struct file *filp) 1719 { 1720 struct btrfs_file_private *private = filp->private_data; 1721 1722 if (private) { 1723 kfree(private->filldir_buf); 1724 free_extent_state(private->llseek_cached_state); 1725 kfree(private); 1726 filp->private_data = NULL; 1727 } 1728 1729 /* 1730 * Set by setattr when we are about to truncate a file from a non-zero 1731 * size to a zero size. This tries to flush down new bytes that may 1732 * have been written if the application were using truncate to replace 1733 * a file in place. 1734 */ 1735 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 1736 &BTRFS_I(inode)->runtime_flags)) 1737 filemap_flush(inode->i_mapping); 1738 return 0; 1739 } 1740 1741 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 1742 { 1743 int ret; 1744 struct blk_plug plug; 1745 1746 /* 1747 * This is only called in fsync, which would do synchronous writes, so 1748 * a plug can merge adjacent IOs as much as possible. Esp. in case of 1749 * multiple disks using raid profile, a large IO can be split to 1750 * several segments of stripe length (currently 64K). 1751 */ 1752 blk_start_plug(&plug); 1753 ret = btrfs_fdatawrite_range(inode, start, end); 1754 blk_finish_plug(&plug); 1755 1756 return ret; 1757 } 1758 1759 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 1760 { 1761 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 1762 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1763 1764 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) && 1765 list_empty(&ctx->ordered_extents)) 1766 return true; 1767 1768 /* 1769 * If we are doing a fast fsync we can not bail out if the inode's 1770 * last_trans is <= then the last committed transaction, because we only 1771 * update the last_trans of the inode during ordered extent completion, 1772 * and for a fast fsync we don't wait for that, we only wait for the 1773 * writeback to complete. 1774 */ 1775 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) && 1776 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 1777 list_empty(&ctx->ordered_extents))) 1778 return true; 1779 1780 return false; 1781 } 1782 1783 /* 1784 * fsync call for both files and directories. This logs the inode into 1785 * the tree log instead of forcing full commits whenever possible. 1786 * 1787 * It needs to call filemap_fdatawait so that all ordered extent updates are 1788 * in the metadata btree are up to date for copying to the log. 1789 * 1790 * It drops the inode mutex before doing the tree log commit. This is an 1791 * important optimization for directories because holding the mutex prevents 1792 * new operations on the dir while we write to disk. 1793 */ 1794 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1795 { 1796 struct dentry *dentry = file_dentry(file); 1797 struct inode *inode = d_inode(dentry); 1798 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1799 struct btrfs_root *root = BTRFS_I(inode)->root; 1800 struct btrfs_trans_handle *trans; 1801 struct btrfs_log_ctx ctx; 1802 int ret = 0, err; 1803 u64 len; 1804 bool full_sync; 1805 1806 trace_btrfs_sync_file(file, datasync); 1807 1808 btrfs_init_log_ctx(&ctx, inode); 1809 1810 /* 1811 * Always set the range to a full range, otherwise we can get into 1812 * several problems, from missing file extent items to represent holes 1813 * when not using the NO_HOLES feature, to log tree corruption due to 1814 * races between hole detection during logging and completion of ordered 1815 * extents outside the range, to missing checksums due to ordered extents 1816 * for which we flushed only a subset of their pages. 1817 */ 1818 start = 0; 1819 end = LLONG_MAX; 1820 len = (u64)LLONG_MAX + 1; 1821 1822 /* 1823 * We write the dirty pages in the range and wait until they complete 1824 * out of the ->i_mutex. If so, we can flush the dirty pages by 1825 * multi-task, and make the performance up. See 1826 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1827 */ 1828 ret = start_ordered_ops(inode, start, end); 1829 if (ret) 1830 goto out; 1831 1832 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1833 1834 atomic_inc(&root->log_batch); 1835 1836 /* 1837 * Before we acquired the inode's lock and the mmap lock, someone may 1838 * have dirtied more pages in the target range. We need to make sure 1839 * that writeback for any such pages does not start while we are logging 1840 * the inode, because if it does, any of the following might happen when 1841 * we are not doing a full inode sync: 1842 * 1843 * 1) We log an extent after its writeback finishes but before its 1844 * checksums are added to the csum tree, leading to -EIO errors 1845 * when attempting to read the extent after a log replay. 1846 * 1847 * 2) We can end up logging an extent before its writeback finishes. 1848 * Therefore after the log replay we will have a file extent item 1849 * pointing to an unwritten extent (and no data checksums as well). 1850 * 1851 * So trigger writeback for any eventual new dirty pages and then we 1852 * wait for all ordered extents to complete below. 1853 */ 1854 ret = start_ordered_ops(inode, start, end); 1855 if (ret) { 1856 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1857 goto out; 1858 } 1859 1860 /* 1861 * Always check for the full sync flag while holding the inode's lock, 1862 * to avoid races with other tasks. The flag must be either set all the 1863 * time during logging or always off all the time while logging. 1864 * We check the flag here after starting delalloc above, because when 1865 * running delalloc the full sync flag may be set if we need to drop 1866 * extra extent map ranges due to temporary memory allocation failures. 1867 */ 1868 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1869 &BTRFS_I(inode)->runtime_flags); 1870 1871 /* 1872 * We have to do this here to avoid the priority inversion of waiting on 1873 * IO of a lower priority task while holding a transaction open. 1874 * 1875 * For a full fsync we wait for the ordered extents to complete while 1876 * for a fast fsync we wait just for writeback to complete, and then 1877 * attach the ordered extents to the transaction so that a transaction 1878 * commit waits for their completion, to avoid data loss if we fsync, 1879 * the current transaction commits before the ordered extents complete 1880 * and a power failure happens right after that. 1881 * 1882 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 1883 * logical address recorded in the ordered extent may change. We need 1884 * to wait for the IO to stabilize the logical address. 1885 */ 1886 if (full_sync || btrfs_is_zoned(fs_info)) { 1887 ret = btrfs_wait_ordered_range(inode, start, len); 1888 clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &BTRFS_I(inode)->runtime_flags); 1889 } else { 1890 /* 1891 * Get our ordered extents as soon as possible to avoid doing 1892 * checksum lookups in the csum tree, and use instead the 1893 * checksums attached to the ordered extents. 1894 */ 1895 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 1896 &ctx.ordered_extents); 1897 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 1898 if (ret) 1899 goto out_release_extents; 1900 1901 /* 1902 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after 1903 * starting and waiting for writeback, because for buffered IO 1904 * it may have been set during the end IO callback 1905 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in 1906 * case an error happened and we need to wait for ordered 1907 * extents to complete so that any extent maps that point to 1908 * unwritten locations are dropped and we don't log them. 1909 */ 1910 if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, 1911 &BTRFS_I(inode)->runtime_flags)) 1912 ret = btrfs_wait_ordered_range(inode, start, len); 1913 } 1914 1915 if (ret) 1916 goto out_release_extents; 1917 1918 atomic_inc(&root->log_batch); 1919 1920 if (skip_inode_logging(&ctx)) { 1921 /* 1922 * We've had everything committed since the last time we were 1923 * modified so clear this flag in case it was set for whatever 1924 * reason, it's no longer relevant. 1925 */ 1926 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1927 &BTRFS_I(inode)->runtime_flags); 1928 /* 1929 * An ordered extent might have started before and completed 1930 * already with io errors, in which case the inode was not 1931 * updated and we end up here. So check the inode's mapping 1932 * for any errors that might have happened since we last 1933 * checked called fsync. 1934 */ 1935 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 1936 goto out_release_extents; 1937 } 1938 1939 btrfs_init_log_ctx_scratch_eb(&ctx); 1940 1941 /* 1942 * We use start here because we will need to wait on the IO to complete 1943 * in btrfs_sync_log, which could require joining a transaction (for 1944 * example checking cross references in the nocow path). If we use join 1945 * here we could get into a situation where we're waiting on IO to 1946 * happen that is blocked on a transaction trying to commit. With start 1947 * we inc the extwriter counter, so we wait for all extwriters to exit 1948 * before we start blocking joiners. This comment is to keep somebody 1949 * from thinking they are super smart and changing this to 1950 * btrfs_join_transaction *cough*Josef*cough*. 1951 */ 1952 trans = btrfs_start_transaction(root, 0); 1953 if (IS_ERR(trans)) { 1954 ret = PTR_ERR(trans); 1955 goto out_release_extents; 1956 } 1957 trans->in_fsync = true; 1958 1959 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 1960 /* 1961 * Scratch eb no longer needed, release before syncing log or commit 1962 * transaction, to avoid holding unnecessary memory during such long 1963 * operations. 1964 */ 1965 if (ctx.scratch_eb) { 1966 free_extent_buffer(ctx.scratch_eb); 1967 ctx.scratch_eb = NULL; 1968 } 1969 btrfs_release_log_ctx_extents(&ctx); 1970 if (ret < 0) { 1971 /* Fallthrough and commit/free transaction. */ 1972 ret = BTRFS_LOG_FORCE_COMMIT; 1973 } 1974 1975 /* we've logged all the items and now have a consistent 1976 * version of the file in the log. It is possible that 1977 * someone will come in and modify the file, but that's 1978 * fine because the log is consistent on disk, and we 1979 * have references to all of the file's extents 1980 * 1981 * It is possible that someone will come in and log the 1982 * file again, but that will end up using the synchronization 1983 * inside btrfs_sync_log to keep things safe. 1984 */ 1985 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1986 1987 if (ret == BTRFS_NO_LOG_SYNC) { 1988 ret = btrfs_end_transaction(trans); 1989 goto out; 1990 } 1991 1992 /* We successfully logged the inode, attempt to sync the log. */ 1993 if (!ret) { 1994 ret = btrfs_sync_log(trans, root, &ctx); 1995 if (!ret) { 1996 ret = btrfs_end_transaction(trans); 1997 goto out; 1998 } 1999 } 2000 2001 /* 2002 * At this point we need to commit the transaction because we had 2003 * btrfs_need_log_full_commit() or some other error. 2004 * 2005 * If we didn't do a full sync we have to stop the trans handle, wait on 2006 * the ordered extents, start it again and commit the transaction. If 2007 * we attempt to wait on the ordered extents here we could deadlock with 2008 * something like fallocate() that is holding the extent lock trying to 2009 * start a transaction while some other thread is trying to commit the 2010 * transaction while we (fsync) are currently holding the transaction 2011 * open. 2012 */ 2013 if (!full_sync) { 2014 ret = btrfs_end_transaction(trans); 2015 if (ret) 2016 goto out; 2017 ret = btrfs_wait_ordered_range(inode, start, len); 2018 if (ret) 2019 goto out; 2020 2021 /* 2022 * This is safe to use here because we're only interested in 2023 * making sure the transaction that had the ordered extents is 2024 * committed. We aren't waiting on anything past this point, 2025 * we're purely getting the transaction and committing it. 2026 */ 2027 trans = btrfs_attach_transaction_barrier(root); 2028 if (IS_ERR(trans)) { 2029 ret = PTR_ERR(trans); 2030 2031 /* 2032 * We committed the transaction and there's no currently 2033 * running transaction, this means everything we care 2034 * about made it to disk and we are done. 2035 */ 2036 if (ret == -ENOENT) 2037 ret = 0; 2038 goto out; 2039 } 2040 } 2041 2042 ret = btrfs_commit_transaction(trans); 2043 out: 2044 free_extent_buffer(ctx.scratch_eb); 2045 ASSERT(list_empty(&ctx.list)); 2046 ASSERT(list_empty(&ctx.conflict_inodes)); 2047 err = file_check_and_advance_wb_err(file); 2048 if (!ret) 2049 ret = err; 2050 return ret > 0 ? -EIO : ret; 2051 2052 out_release_extents: 2053 btrfs_release_log_ctx_extents(&ctx); 2054 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2055 goto out; 2056 } 2057 2058 /* 2059 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 2060 * called from a page fault handler when a page is first dirtied. Hence we must 2061 * be careful to check for EOF conditions here. We set the page up correctly 2062 * for a written page which means we get ENOSPC checking when writing into 2063 * holes and correct delalloc and unwritten extent mapping on filesystems that 2064 * support these features. 2065 * 2066 * We are not allowed to take the i_mutex here so we have to play games to 2067 * protect against truncate races as the page could now be beyond EOF. Because 2068 * truncate_setsize() writes the inode size before removing pages, once we have 2069 * the page lock we can determine safely if the page is beyond EOF. If it is not 2070 * beyond EOF, then the page is guaranteed safe against truncation until we 2071 * unlock the page. 2072 */ 2073 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 2074 { 2075 struct page *page = vmf->page; 2076 struct folio *folio = page_folio(page); 2077 struct inode *inode = file_inode(vmf->vma->vm_file); 2078 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2079 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2080 struct btrfs_ordered_extent *ordered; 2081 struct extent_state *cached_state = NULL; 2082 struct extent_changeset *data_reserved = NULL; 2083 unsigned long zero_start; 2084 loff_t size; 2085 vm_fault_t ret; 2086 int ret2; 2087 int reserved = 0; 2088 u64 reserved_space; 2089 u64 page_start; 2090 u64 page_end; 2091 u64 end; 2092 2093 ASSERT(folio_order(folio) == 0); 2094 2095 reserved_space = PAGE_SIZE; 2096 2097 sb_start_pagefault(inode->i_sb); 2098 page_start = page_offset(page); 2099 page_end = page_start + PAGE_SIZE - 1; 2100 end = page_end; 2101 2102 /* 2103 * Reserving delalloc space after obtaining the page lock can lead to 2104 * deadlock. For example, if a dirty page is locked by this function 2105 * and the call to btrfs_delalloc_reserve_space() ends up triggering 2106 * dirty page write out, then the btrfs_writepages() function could 2107 * end up waiting indefinitely to get a lock on the page currently 2108 * being processed by btrfs_page_mkwrite() function. 2109 */ 2110 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 2111 page_start, reserved_space); 2112 if (!ret2) { 2113 ret2 = file_update_time(vmf->vma->vm_file); 2114 reserved = 1; 2115 } 2116 if (ret2) { 2117 ret = vmf_error(ret2); 2118 if (reserved) 2119 goto out; 2120 goto out_noreserve; 2121 } 2122 2123 /* Make the VM retry the fault. */ 2124 ret = VM_FAULT_NOPAGE; 2125 again: 2126 down_read(&BTRFS_I(inode)->i_mmap_lock); 2127 lock_page(page); 2128 size = i_size_read(inode); 2129 2130 if ((page->mapping != inode->i_mapping) || 2131 (page_start >= size)) { 2132 /* Page got truncated out from underneath us. */ 2133 goto out_unlock; 2134 } 2135 wait_on_page_writeback(page); 2136 2137 lock_extent(io_tree, page_start, page_end, &cached_state); 2138 ret2 = set_page_extent_mapped(page); 2139 if (ret2 < 0) { 2140 ret = vmf_error(ret2); 2141 unlock_extent(io_tree, page_start, page_end, &cached_state); 2142 goto out_unlock; 2143 } 2144 2145 /* 2146 * We can't set the delalloc bits if there are pending ordered 2147 * extents. Drop our locks and wait for them to finish. 2148 */ 2149 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE); 2150 if (ordered) { 2151 unlock_extent(io_tree, page_start, page_end, &cached_state); 2152 unlock_page(page); 2153 up_read(&BTRFS_I(inode)->i_mmap_lock); 2154 btrfs_start_ordered_extent(ordered); 2155 btrfs_put_ordered_extent(ordered); 2156 goto again; 2157 } 2158 2159 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 2160 reserved_space = round_up(size - page_start, fs_info->sectorsize); 2161 if (reserved_space < PAGE_SIZE) { 2162 end = page_start + reserved_space - 1; 2163 btrfs_delalloc_release_space(BTRFS_I(inode), 2164 data_reserved, page_start, 2165 PAGE_SIZE - reserved_space, true); 2166 } 2167 } 2168 2169 /* 2170 * page_mkwrite gets called when the page is firstly dirtied after it's 2171 * faulted in, but write(2) could also dirty a page and set delalloc 2172 * bits, thus in this case for space account reason, we still need to 2173 * clear any delalloc bits within this page range since we have to 2174 * reserve data&meta space before lock_page() (see above comments). 2175 */ 2176 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 2177 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 2178 EXTENT_DEFRAG, &cached_state); 2179 2180 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 2181 &cached_state); 2182 if (ret2) { 2183 unlock_extent(io_tree, page_start, page_end, &cached_state); 2184 ret = VM_FAULT_SIGBUS; 2185 goto out_unlock; 2186 } 2187 2188 /* Page is wholly or partially inside EOF. */ 2189 if (page_start + PAGE_SIZE > size) 2190 zero_start = offset_in_page(size); 2191 else 2192 zero_start = PAGE_SIZE; 2193 2194 if (zero_start != PAGE_SIZE) 2195 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 2196 2197 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2198 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start); 2199 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start); 2200 2201 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 2202 2203 unlock_extent(io_tree, page_start, page_end, &cached_state); 2204 up_read(&BTRFS_I(inode)->i_mmap_lock); 2205 2206 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2207 sb_end_pagefault(inode->i_sb); 2208 extent_changeset_free(data_reserved); 2209 return VM_FAULT_LOCKED; 2210 2211 out_unlock: 2212 unlock_page(page); 2213 up_read(&BTRFS_I(inode)->i_mmap_lock); 2214 out: 2215 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2216 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 2217 reserved_space, (ret != 0)); 2218 out_noreserve: 2219 sb_end_pagefault(inode->i_sb); 2220 extent_changeset_free(data_reserved); 2221 return ret; 2222 } 2223 2224 static const struct vm_operations_struct btrfs_file_vm_ops = { 2225 .fault = filemap_fault, 2226 .map_pages = filemap_map_pages, 2227 .page_mkwrite = btrfs_page_mkwrite, 2228 }; 2229 2230 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2231 { 2232 struct address_space *mapping = filp->f_mapping; 2233 2234 if (!mapping->a_ops->read_folio) 2235 return -ENOEXEC; 2236 2237 file_accessed(filp); 2238 vma->vm_ops = &btrfs_file_vm_ops; 2239 2240 return 0; 2241 } 2242 2243 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2244 int slot, u64 start, u64 end) 2245 { 2246 struct btrfs_file_extent_item *fi; 2247 struct btrfs_key key; 2248 2249 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2250 return 0; 2251 2252 btrfs_item_key_to_cpu(leaf, &key, slot); 2253 if (key.objectid != btrfs_ino(inode) || 2254 key.type != BTRFS_EXTENT_DATA_KEY) 2255 return 0; 2256 2257 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2258 2259 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2260 return 0; 2261 2262 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2263 return 0; 2264 2265 if (key.offset == end) 2266 return 1; 2267 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2268 return 1; 2269 return 0; 2270 } 2271 2272 static int fill_holes(struct btrfs_trans_handle *trans, 2273 struct btrfs_inode *inode, 2274 struct btrfs_path *path, u64 offset, u64 end) 2275 { 2276 struct btrfs_fs_info *fs_info = trans->fs_info; 2277 struct btrfs_root *root = inode->root; 2278 struct extent_buffer *leaf; 2279 struct btrfs_file_extent_item *fi; 2280 struct extent_map *hole_em; 2281 struct btrfs_key key; 2282 int ret; 2283 2284 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2285 goto out; 2286 2287 key.objectid = btrfs_ino(inode); 2288 key.type = BTRFS_EXTENT_DATA_KEY; 2289 key.offset = offset; 2290 2291 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2292 if (ret <= 0) { 2293 /* 2294 * We should have dropped this offset, so if we find it then 2295 * something has gone horribly wrong. 2296 */ 2297 if (ret == 0) 2298 ret = -EINVAL; 2299 return ret; 2300 } 2301 2302 leaf = path->nodes[0]; 2303 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2304 u64 num_bytes; 2305 2306 path->slots[0]--; 2307 fi = btrfs_item_ptr(leaf, path->slots[0], 2308 struct btrfs_file_extent_item); 2309 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2310 end - offset; 2311 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2312 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2313 btrfs_set_file_extent_offset(leaf, fi, 0); 2314 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2315 btrfs_mark_buffer_dirty(trans, leaf); 2316 goto out; 2317 } 2318 2319 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2320 u64 num_bytes; 2321 2322 key.offset = offset; 2323 btrfs_set_item_key_safe(trans, path, &key); 2324 fi = btrfs_item_ptr(leaf, path->slots[0], 2325 struct btrfs_file_extent_item); 2326 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2327 offset; 2328 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2329 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2330 btrfs_set_file_extent_offset(leaf, fi, 0); 2331 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2332 btrfs_mark_buffer_dirty(trans, leaf); 2333 goto out; 2334 } 2335 btrfs_release_path(path); 2336 2337 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, 2338 end - offset); 2339 if (ret) 2340 return ret; 2341 2342 out: 2343 btrfs_release_path(path); 2344 2345 hole_em = alloc_extent_map(); 2346 if (!hole_em) { 2347 btrfs_drop_extent_map_range(inode, offset, end - 1, false); 2348 btrfs_set_inode_full_sync(inode); 2349 } else { 2350 hole_em->start = offset; 2351 hole_em->len = end - offset; 2352 hole_em->ram_bytes = hole_em->len; 2353 hole_em->orig_start = offset; 2354 2355 hole_em->block_start = EXTENT_MAP_HOLE; 2356 hole_em->block_len = 0; 2357 hole_em->orig_block_len = 0; 2358 hole_em->generation = trans->transid; 2359 2360 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 2361 free_extent_map(hole_em); 2362 if (ret) 2363 btrfs_set_inode_full_sync(inode); 2364 } 2365 2366 return 0; 2367 } 2368 2369 /* 2370 * Find a hole extent on given inode and change start/len to the end of hole 2371 * extent.(hole/vacuum extent whose em->start <= start && 2372 * em->start + em->len > start) 2373 * When a hole extent is found, return 1 and modify start/len. 2374 */ 2375 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2376 { 2377 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2378 struct extent_map *em; 2379 int ret = 0; 2380 2381 em = btrfs_get_extent(inode, NULL, 2382 round_down(*start, fs_info->sectorsize), 2383 round_up(*len, fs_info->sectorsize)); 2384 if (IS_ERR(em)) 2385 return PTR_ERR(em); 2386 2387 /* Hole or vacuum extent(only exists in no-hole mode) */ 2388 if (em->block_start == EXTENT_MAP_HOLE) { 2389 ret = 1; 2390 *len = em->start + em->len > *start + *len ? 2391 0 : *start + *len - em->start - em->len; 2392 *start = em->start + em->len; 2393 } 2394 free_extent_map(em); 2395 return ret; 2396 } 2397 2398 static void btrfs_punch_hole_lock_range(struct inode *inode, 2399 const u64 lockstart, 2400 const u64 lockend, 2401 struct extent_state **cached_state) 2402 { 2403 /* 2404 * For subpage case, if the range is not at page boundary, we could 2405 * have pages at the leading/tailing part of the range. 2406 * This could lead to dead loop since filemap_range_has_page() 2407 * will always return true. 2408 * So here we need to do extra page alignment for 2409 * filemap_range_has_page(). 2410 */ 2411 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2412 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2413 2414 while (1) { 2415 truncate_pagecache_range(inode, lockstart, lockend); 2416 2417 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2418 cached_state); 2419 /* 2420 * We can't have ordered extents in the range, nor dirty/writeback 2421 * pages, because we have locked the inode's VFS lock in exclusive 2422 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2423 * we have flushed all delalloc in the range and we have waited 2424 * for any ordered extents in the range to complete. 2425 * We can race with anyone reading pages from this range, so after 2426 * locking the range check if we have pages in the range, and if 2427 * we do, unlock the range and retry. 2428 */ 2429 if (!filemap_range_has_page(inode->i_mapping, page_lockstart, 2430 page_lockend)) 2431 break; 2432 2433 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2434 cached_state); 2435 } 2436 2437 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2438 } 2439 2440 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2441 struct btrfs_inode *inode, 2442 struct btrfs_path *path, 2443 struct btrfs_replace_extent_info *extent_info, 2444 const u64 replace_len, 2445 const u64 bytes_to_drop) 2446 { 2447 struct btrfs_fs_info *fs_info = trans->fs_info; 2448 struct btrfs_root *root = inode->root; 2449 struct btrfs_file_extent_item *extent; 2450 struct extent_buffer *leaf; 2451 struct btrfs_key key; 2452 int slot; 2453 int ret; 2454 2455 if (replace_len == 0) 2456 return 0; 2457 2458 if (extent_info->disk_offset == 0 && 2459 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2460 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2461 return 0; 2462 } 2463 2464 key.objectid = btrfs_ino(inode); 2465 key.type = BTRFS_EXTENT_DATA_KEY; 2466 key.offset = extent_info->file_offset; 2467 ret = btrfs_insert_empty_item(trans, root, path, &key, 2468 sizeof(struct btrfs_file_extent_item)); 2469 if (ret) 2470 return ret; 2471 leaf = path->nodes[0]; 2472 slot = path->slots[0]; 2473 write_extent_buffer(leaf, extent_info->extent_buf, 2474 btrfs_item_ptr_offset(leaf, slot), 2475 sizeof(struct btrfs_file_extent_item)); 2476 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2477 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2478 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2479 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2480 if (extent_info->is_new_extent) 2481 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2482 btrfs_mark_buffer_dirty(trans, leaf); 2483 btrfs_release_path(path); 2484 2485 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2486 replace_len); 2487 if (ret) 2488 return ret; 2489 2490 /* If it's a hole, nothing more needs to be done. */ 2491 if (extent_info->disk_offset == 0) { 2492 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2493 return 0; 2494 } 2495 2496 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2497 2498 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2499 key.objectid = extent_info->disk_offset; 2500 key.type = BTRFS_EXTENT_ITEM_KEY; 2501 key.offset = extent_info->disk_len; 2502 ret = btrfs_alloc_reserved_file_extent(trans, root, 2503 btrfs_ino(inode), 2504 extent_info->file_offset, 2505 extent_info->qgroup_reserved, 2506 &key); 2507 } else { 2508 struct btrfs_ref ref = { 2509 .action = BTRFS_ADD_DELAYED_REF, 2510 .bytenr = extent_info->disk_offset, 2511 .num_bytes = extent_info->disk_len, 2512 .owning_root = btrfs_root_id(root), 2513 .ref_root = btrfs_root_id(root), 2514 }; 2515 u64 ref_offset; 2516 2517 ref_offset = extent_info->file_offset - extent_info->data_offset; 2518 btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false); 2519 ret = btrfs_inc_extent_ref(trans, &ref); 2520 } 2521 2522 extent_info->insertions++; 2523 2524 return ret; 2525 } 2526 2527 /* 2528 * The respective range must have been previously locked, as well as the inode. 2529 * The end offset is inclusive (last byte of the range). 2530 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2531 * the file range with an extent. 2532 * When not punching a hole, we don't want to end up in a state where we dropped 2533 * extents without inserting a new one, so we must abort the transaction to avoid 2534 * a corruption. 2535 */ 2536 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2537 struct btrfs_path *path, const u64 start, 2538 const u64 end, 2539 struct btrfs_replace_extent_info *extent_info, 2540 struct btrfs_trans_handle **trans_out) 2541 { 2542 struct btrfs_drop_extents_args drop_args = { 0 }; 2543 struct btrfs_root *root = inode->root; 2544 struct btrfs_fs_info *fs_info = root->fs_info; 2545 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2546 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2547 struct btrfs_trans_handle *trans = NULL; 2548 struct btrfs_block_rsv *rsv; 2549 unsigned int rsv_count; 2550 u64 cur_offset; 2551 u64 len = end - start; 2552 int ret = 0; 2553 2554 if (end <= start) 2555 return -EINVAL; 2556 2557 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2558 if (!rsv) { 2559 ret = -ENOMEM; 2560 goto out; 2561 } 2562 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2563 rsv->failfast = true; 2564 2565 /* 2566 * 1 - update the inode 2567 * 1 - removing the extents in the range 2568 * 1 - adding the hole extent if no_holes isn't set or if we are 2569 * replacing the range with a new extent 2570 */ 2571 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2572 rsv_count = 3; 2573 else 2574 rsv_count = 2; 2575 2576 trans = btrfs_start_transaction(root, rsv_count); 2577 if (IS_ERR(trans)) { 2578 ret = PTR_ERR(trans); 2579 trans = NULL; 2580 goto out_free; 2581 } 2582 2583 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2584 min_size, false); 2585 if (WARN_ON(ret)) 2586 goto out_trans; 2587 trans->block_rsv = rsv; 2588 2589 cur_offset = start; 2590 drop_args.path = path; 2591 drop_args.end = end + 1; 2592 drop_args.drop_cache = true; 2593 while (cur_offset < end) { 2594 drop_args.start = cur_offset; 2595 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2596 /* If we are punching a hole decrement the inode's byte count */ 2597 if (!extent_info) 2598 btrfs_update_inode_bytes(inode, 0, 2599 drop_args.bytes_found); 2600 if (ret != -ENOSPC) { 2601 /* 2602 * The only time we don't want to abort is if we are 2603 * attempting to clone a partial inline extent, in which 2604 * case we'll get EOPNOTSUPP. However if we aren't 2605 * clone we need to abort no matter what, because if we 2606 * got EOPNOTSUPP via prealloc then we messed up and 2607 * need to abort. 2608 */ 2609 if (ret && 2610 (ret != -EOPNOTSUPP || 2611 (extent_info && extent_info->is_new_extent))) 2612 btrfs_abort_transaction(trans, ret); 2613 break; 2614 } 2615 2616 trans->block_rsv = &fs_info->trans_block_rsv; 2617 2618 if (!extent_info && cur_offset < drop_args.drop_end && 2619 cur_offset < ino_size) { 2620 ret = fill_holes(trans, inode, path, cur_offset, 2621 drop_args.drop_end); 2622 if (ret) { 2623 /* 2624 * If we failed then we didn't insert our hole 2625 * entries for the area we dropped, so now the 2626 * fs is corrupted, so we must abort the 2627 * transaction. 2628 */ 2629 btrfs_abort_transaction(trans, ret); 2630 break; 2631 } 2632 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2633 /* 2634 * We are past the i_size here, but since we didn't 2635 * insert holes we need to clear the mapped area so we 2636 * know to not set disk_i_size in this area until a new 2637 * file extent is inserted here. 2638 */ 2639 ret = btrfs_inode_clear_file_extent_range(inode, 2640 cur_offset, 2641 drop_args.drop_end - cur_offset); 2642 if (ret) { 2643 /* 2644 * We couldn't clear our area, so we could 2645 * presumably adjust up and corrupt the fs, so 2646 * we need to abort. 2647 */ 2648 btrfs_abort_transaction(trans, ret); 2649 break; 2650 } 2651 } 2652 2653 if (extent_info && 2654 drop_args.drop_end > extent_info->file_offset) { 2655 u64 replace_len = drop_args.drop_end - 2656 extent_info->file_offset; 2657 2658 ret = btrfs_insert_replace_extent(trans, inode, path, 2659 extent_info, replace_len, 2660 drop_args.bytes_found); 2661 if (ret) { 2662 btrfs_abort_transaction(trans, ret); 2663 break; 2664 } 2665 extent_info->data_len -= replace_len; 2666 extent_info->data_offset += replace_len; 2667 extent_info->file_offset += replace_len; 2668 } 2669 2670 /* 2671 * We are releasing our handle on the transaction, balance the 2672 * dirty pages of the btree inode and flush delayed items, and 2673 * then get a new transaction handle, which may now point to a 2674 * new transaction in case someone else may have committed the 2675 * transaction we used to replace/drop file extent items. So 2676 * bump the inode's iversion and update mtime and ctime except 2677 * if we are called from a dedupe context. This is because a 2678 * power failure/crash may happen after the transaction is 2679 * committed and before we finish replacing/dropping all the 2680 * file extent items we need. 2681 */ 2682 inode_inc_iversion(&inode->vfs_inode); 2683 2684 if (!extent_info || extent_info->update_times) 2685 inode_set_mtime_to_ts(&inode->vfs_inode, 2686 inode_set_ctime_current(&inode->vfs_inode)); 2687 2688 ret = btrfs_update_inode(trans, inode); 2689 if (ret) 2690 break; 2691 2692 btrfs_end_transaction(trans); 2693 btrfs_btree_balance_dirty(fs_info); 2694 2695 trans = btrfs_start_transaction(root, rsv_count); 2696 if (IS_ERR(trans)) { 2697 ret = PTR_ERR(trans); 2698 trans = NULL; 2699 break; 2700 } 2701 2702 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2703 rsv, min_size, false); 2704 if (WARN_ON(ret)) 2705 break; 2706 trans->block_rsv = rsv; 2707 2708 cur_offset = drop_args.drop_end; 2709 len = end - cur_offset; 2710 if (!extent_info && len) { 2711 ret = find_first_non_hole(inode, &cur_offset, &len); 2712 if (unlikely(ret < 0)) 2713 break; 2714 if (ret && !len) { 2715 ret = 0; 2716 break; 2717 } 2718 } 2719 } 2720 2721 /* 2722 * If we were cloning, force the next fsync to be a full one since we 2723 * we replaced (or just dropped in the case of cloning holes when 2724 * NO_HOLES is enabled) file extent items and did not setup new extent 2725 * maps for the replacement extents (or holes). 2726 */ 2727 if (extent_info && !extent_info->is_new_extent) 2728 btrfs_set_inode_full_sync(inode); 2729 2730 if (ret) 2731 goto out_trans; 2732 2733 trans->block_rsv = &fs_info->trans_block_rsv; 2734 /* 2735 * If we are using the NO_HOLES feature we might have had already an 2736 * hole that overlaps a part of the region [lockstart, lockend] and 2737 * ends at (or beyond) lockend. Since we have no file extent items to 2738 * represent holes, drop_end can be less than lockend and so we must 2739 * make sure we have an extent map representing the existing hole (the 2740 * call to __btrfs_drop_extents() might have dropped the existing extent 2741 * map representing the existing hole), otherwise the fast fsync path 2742 * will not record the existence of the hole region 2743 * [existing_hole_start, lockend]. 2744 */ 2745 if (drop_args.drop_end <= end) 2746 drop_args.drop_end = end + 1; 2747 /* 2748 * Don't insert file hole extent item if it's for a range beyond eof 2749 * (because it's useless) or if it represents a 0 bytes range (when 2750 * cur_offset == drop_end). 2751 */ 2752 if (!extent_info && cur_offset < ino_size && 2753 cur_offset < drop_args.drop_end) { 2754 ret = fill_holes(trans, inode, path, cur_offset, 2755 drop_args.drop_end); 2756 if (ret) { 2757 /* Same comment as above. */ 2758 btrfs_abort_transaction(trans, ret); 2759 goto out_trans; 2760 } 2761 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2762 /* See the comment in the loop above for the reasoning here. */ 2763 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2764 drop_args.drop_end - cur_offset); 2765 if (ret) { 2766 btrfs_abort_transaction(trans, ret); 2767 goto out_trans; 2768 } 2769 2770 } 2771 if (extent_info) { 2772 ret = btrfs_insert_replace_extent(trans, inode, path, 2773 extent_info, extent_info->data_len, 2774 drop_args.bytes_found); 2775 if (ret) { 2776 btrfs_abort_transaction(trans, ret); 2777 goto out_trans; 2778 } 2779 } 2780 2781 out_trans: 2782 if (!trans) 2783 goto out_free; 2784 2785 trans->block_rsv = &fs_info->trans_block_rsv; 2786 if (ret) 2787 btrfs_end_transaction(trans); 2788 else 2789 *trans_out = trans; 2790 out_free: 2791 btrfs_free_block_rsv(fs_info, rsv); 2792 out: 2793 return ret; 2794 } 2795 2796 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2797 { 2798 struct inode *inode = file_inode(file); 2799 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2800 struct btrfs_root *root = BTRFS_I(inode)->root; 2801 struct extent_state *cached_state = NULL; 2802 struct btrfs_path *path; 2803 struct btrfs_trans_handle *trans = NULL; 2804 u64 lockstart; 2805 u64 lockend; 2806 u64 tail_start; 2807 u64 tail_len; 2808 u64 orig_start = offset; 2809 int ret = 0; 2810 bool same_block; 2811 u64 ino_size; 2812 bool truncated_block = false; 2813 bool updated_inode = false; 2814 2815 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2816 2817 ret = btrfs_wait_ordered_range(inode, offset, len); 2818 if (ret) 2819 goto out_only_mutex; 2820 2821 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2822 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2823 if (ret < 0) 2824 goto out_only_mutex; 2825 if (ret && !len) { 2826 /* Already in a large hole */ 2827 ret = 0; 2828 goto out_only_mutex; 2829 } 2830 2831 ret = file_modified(file); 2832 if (ret) 2833 goto out_only_mutex; 2834 2835 lockstart = round_up(offset, fs_info->sectorsize); 2836 lockend = round_down(offset + len, fs_info->sectorsize) - 1; 2837 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2838 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2839 /* 2840 * We needn't truncate any block which is beyond the end of the file 2841 * because we are sure there is no data there. 2842 */ 2843 /* 2844 * Only do this if we are in the same block and we aren't doing the 2845 * entire block. 2846 */ 2847 if (same_block && len < fs_info->sectorsize) { 2848 if (offset < ino_size) { 2849 truncated_block = true; 2850 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2851 0); 2852 } else { 2853 ret = 0; 2854 } 2855 goto out_only_mutex; 2856 } 2857 2858 /* zero back part of the first block */ 2859 if (offset < ino_size) { 2860 truncated_block = true; 2861 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2862 if (ret) { 2863 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2864 return ret; 2865 } 2866 } 2867 2868 /* Check the aligned pages after the first unaligned page, 2869 * if offset != orig_start, which means the first unaligned page 2870 * including several following pages are already in holes, 2871 * the extra check can be skipped */ 2872 if (offset == orig_start) { 2873 /* after truncate page, check hole again */ 2874 len = offset + len - lockstart; 2875 offset = lockstart; 2876 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2877 if (ret < 0) 2878 goto out_only_mutex; 2879 if (ret && !len) { 2880 ret = 0; 2881 goto out_only_mutex; 2882 } 2883 lockstart = offset; 2884 } 2885 2886 /* Check the tail unaligned part is in a hole */ 2887 tail_start = lockend + 1; 2888 tail_len = offset + len - tail_start; 2889 if (tail_len) { 2890 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2891 if (unlikely(ret < 0)) 2892 goto out_only_mutex; 2893 if (!ret) { 2894 /* zero the front end of the last page */ 2895 if (tail_start + tail_len < ino_size) { 2896 truncated_block = true; 2897 ret = btrfs_truncate_block(BTRFS_I(inode), 2898 tail_start + tail_len, 2899 0, 1); 2900 if (ret) 2901 goto out_only_mutex; 2902 } 2903 } 2904 } 2905 2906 if (lockend < lockstart) { 2907 ret = 0; 2908 goto out_only_mutex; 2909 } 2910 2911 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 2912 2913 path = btrfs_alloc_path(); 2914 if (!path) { 2915 ret = -ENOMEM; 2916 goto out; 2917 } 2918 2919 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 2920 lockend, NULL, &trans); 2921 btrfs_free_path(path); 2922 if (ret) 2923 goto out; 2924 2925 ASSERT(trans != NULL); 2926 inode_inc_iversion(inode); 2927 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2928 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2929 updated_inode = true; 2930 btrfs_end_transaction(trans); 2931 btrfs_btree_balance_dirty(fs_info); 2932 out: 2933 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2934 &cached_state); 2935 out_only_mutex: 2936 if (!updated_inode && truncated_block && !ret) { 2937 /* 2938 * If we only end up zeroing part of a page, we still need to 2939 * update the inode item, so that all the time fields are 2940 * updated as well as the necessary btrfs inode in memory fields 2941 * for detecting, at fsync time, if the inode isn't yet in the 2942 * log tree or it's there but not up to date. 2943 */ 2944 struct timespec64 now = inode_set_ctime_current(inode); 2945 2946 inode_inc_iversion(inode); 2947 inode_set_mtime_to_ts(inode, now); 2948 trans = btrfs_start_transaction(root, 1); 2949 if (IS_ERR(trans)) { 2950 ret = PTR_ERR(trans); 2951 } else { 2952 int ret2; 2953 2954 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2955 ret2 = btrfs_end_transaction(trans); 2956 if (!ret) 2957 ret = ret2; 2958 } 2959 } 2960 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2961 return ret; 2962 } 2963 2964 /* Helper structure to record which range is already reserved */ 2965 struct falloc_range { 2966 struct list_head list; 2967 u64 start; 2968 u64 len; 2969 }; 2970 2971 /* 2972 * Helper function to add falloc range 2973 * 2974 * Caller should have locked the larger range of extent containing 2975 * [start, len) 2976 */ 2977 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2978 { 2979 struct falloc_range *range = NULL; 2980 2981 if (!list_empty(head)) { 2982 /* 2983 * As fallocate iterates by bytenr order, we only need to check 2984 * the last range. 2985 */ 2986 range = list_last_entry(head, struct falloc_range, list); 2987 if (range->start + range->len == start) { 2988 range->len += len; 2989 return 0; 2990 } 2991 } 2992 2993 range = kmalloc(sizeof(*range), GFP_KERNEL); 2994 if (!range) 2995 return -ENOMEM; 2996 range->start = start; 2997 range->len = len; 2998 list_add_tail(&range->list, head); 2999 return 0; 3000 } 3001 3002 static int btrfs_fallocate_update_isize(struct inode *inode, 3003 const u64 end, 3004 const int mode) 3005 { 3006 struct btrfs_trans_handle *trans; 3007 struct btrfs_root *root = BTRFS_I(inode)->root; 3008 int ret; 3009 int ret2; 3010 3011 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 3012 return 0; 3013 3014 trans = btrfs_start_transaction(root, 1); 3015 if (IS_ERR(trans)) 3016 return PTR_ERR(trans); 3017 3018 inode_set_ctime_current(inode); 3019 i_size_write(inode, end); 3020 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 3021 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 3022 ret2 = btrfs_end_transaction(trans); 3023 3024 return ret ? ret : ret2; 3025 } 3026 3027 enum { 3028 RANGE_BOUNDARY_WRITTEN_EXTENT, 3029 RANGE_BOUNDARY_PREALLOC_EXTENT, 3030 RANGE_BOUNDARY_HOLE, 3031 }; 3032 3033 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 3034 u64 offset) 3035 { 3036 const u64 sectorsize = inode->root->fs_info->sectorsize; 3037 struct extent_map *em; 3038 int ret; 3039 3040 offset = round_down(offset, sectorsize); 3041 em = btrfs_get_extent(inode, NULL, offset, sectorsize); 3042 if (IS_ERR(em)) 3043 return PTR_ERR(em); 3044 3045 if (em->block_start == EXTENT_MAP_HOLE) 3046 ret = RANGE_BOUNDARY_HOLE; 3047 else if (em->flags & EXTENT_FLAG_PREALLOC) 3048 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 3049 else 3050 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 3051 3052 free_extent_map(em); 3053 return ret; 3054 } 3055 3056 static int btrfs_zero_range(struct inode *inode, 3057 loff_t offset, 3058 loff_t len, 3059 const int mode) 3060 { 3061 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3062 struct extent_map *em; 3063 struct extent_changeset *data_reserved = NULL; 3064 int ret; 3065 u64 alloc_hint = 0; 3066 const u64 sectorsize = fs_info->sectorsize; 3067 u64 alloc_start = round_down(offset, sectorsize); 3068 u64 alloc_end = round_up(offset + len, sectorsize); 3069 u64 bytes_to_reserve = 0; 3070 bool space_reserved = false; 3071 3072 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, 3073 alloc_end - alloc_start); 3074 if (IS_ERR(em)) { 3075 ret = PTR_ERR(em); 3076 goto out; 3077 } 3078 3079 /* 3080 * Avoid hole punching and extent allocation for some cases. More cases 3081 * could be considered, but these are unlikely common and we keep things 3082 * as simple as possible for now. Also, intentionally, if the target 3083 * range contains one or more prealloc extents together with regular 3084 * extents and holes, we drop all the existing extents and allocate a 3085 * new prealloc extent, so that we get a larger contiguous disk extent. 3086 */ 3087 if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) { 3088 const u64 em_end = em->start + em->len; 3089 3090 if (em_end >= offset + len) { 3091 /* 3092 * The whole range is already a prealloc extent, 3093 * do nothing except updating the inode's i_size if 3094 * needed. 3095 */ 3096 free_extent_map(em); 3097 ret = btrfs_fallocate_update_isize(inode, offset + len, 3098 mode); 3099 goto out; 3100 } 3101 /* 3102 * Part of the range is already a prealloc extent, so operate 3103 * only on the remaining part of the range. 3104 */ 3105 alloc_start = em_end; 3106 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 3107 len = offset + len - alloc_start; 3108 offset = alloc_start; 3109 alloc_hint = em->block_start + em->len; 3110 } 3111 free_extent_map(em); 3112 3113 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 3114 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 3115 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize); 3116 if (IS_ERR(em)) { 3117 ret = PTR_ERR(em); 3118 goto out; 3119 } 3120 3121 if (em->flags & EXTENT_FLAG_PREALLOC) { 3122 free_extent_map(em); 3123 ret = btrfs_fallocate_update_isize(inode, offset + len, 3124 mode); 3125 goto out; 3126 } 3127 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 3128 free_extent_map(em); 3129 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 3130 0); 3131 if (!ret) 3132 ret = btrfs_fallocate_update_isize(inode, 3133 offset + len, 3134 mode); 3135 return ret; 3136 } 3137 free_extent_map(em); 3138 alloc_start = round_down(offset, sectorsize); 3139 alloc_end = alloc_start + sectorsize; 3140 goto reserve_space; 3141 } 3142 3143 alloc_start = round_up(offset, sectorsize); 3144 alloc_end = round_down(offset + len, sectorsize); 3145 3146 /* 3147 * For unaligned ranges, check the pages at the boundaries, they might 3148 * map to an extent, in which case we need to partially zero them, or 3149 * they might map to a hole, in which case we need our allocation range 3150 * to cover them. 3151 */ 3152 if (!IS_ALIGNED(offset, sectorsize)) { 3153 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3154 offset); 3155 if (ret < 0) 3156 goto out; 3157 if (ret == RANGE_BOUNDARY_HOLE) { 3158 alloc_start = round_down(offset, sectorsize); 3159 ret = 0; 3160 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3161 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 3162 if (ret) 3163 goto out; 3164 } else { 3165 ret = 0; 3166 } 3167 } 3168 3169 if (!IS_ALIGNED(offset + len, sectorsize)) { 3170 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3171 offset + len); 3172 if (ret < 0) 3173 goto out; 3174 if (ret == RANGE_BOUNDARY_HOLE) { 3175 alloc_end = round_up(offset + len, sectorsize); 3176 ret = 0; 3177 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3178 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 3179 0, 1); 3180 if (ret) 3181 goto out; 3182 } else { 3183 ret = 0; 3184 } 3185 } 3186 3187 reserve_space: 3188 if (alloc_start < alloc_end) { 3189 struct extent_state *cached_state = NULL; 3190 const u64 lockstart = alloc_start; 3191 const u64 lockend = alloc_end - 1; 3192 3193 bytes_to_reserve = alloc_end - alloc_start; 3194 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3195 bytes_to_reserve); 3196 if (ret < 0) 3197 goto out; 3198 space_reserved = true; 3199 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3200 &cached_state); 3201 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3202 alloc_start, bytes_to_reserve); 3203 if (ret) { 3204 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 3205 lockend, &cached_state); 3206 goto out; 3207 } 3208 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3209 alloc_end - alloc_start, 3210 fs_info->sectorsize, 3211 offset + len, &alloc_hint); 3212 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3213 &cached_state); 3214 /* btrfs_prealloc_file_range releases reserved space on error */ 3215 if (ret) { 3216 space_reserved = false; 3217 goto out; 3218 } 3219 } 3220 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3221 out: 3222 if (ret && space_reserved) 3223 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3224 alloc_start, bytes_to_reserve); 3225 extent_changeset_free(data_reserved); 3226 3227 return ret; 3228 } 3229 3230 static long btrfs_fallocate(struct file *file, int mode, 3231 loff_t offset, loff_t len) 3232 { 3233 struct inode *inode = file_inode(file); 3234 struct extent_state *cached_state = NULL; 3235 struct extent_changeset *data_reserved = NULL; 3236 struct falloc_range *range; 3237 struct falloc_range *tmp; 3238 LIST_HEAD(reserve_list); 3239 u64 cur_offset; 3240 u64 last_byte; 3241 u64 alloc_start; 3242 u64 alloc_end; 3243 u64 alloc_hint = 0; 3244 u64 locked_end; 3245 u64 actual_end = 0; 3246 u64 data_space_needed = 0; 3247 u64 data_space_reserved = 0; 3248 u64 qgroup_reserved = 0; 3249 struct extent_map *em; 3250 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; 3251 int ret; 3252 3253 /* Do not allow fallocate in ZONED mode */ 3254 if (btrfs_is_zoned(inode_to_fs_info(inode))) 3255 return -EOPNOTSUPP; 3256 3257 alloc_start = round_down(offset, blocksize); 3258 alloc_end = round_up(offset + len, blocksize); 3259 cur_offset = alloc_start; 3260 3261 /* Make sure we aren't being give some crap mode */ 3262 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3263 FALLOC_FL_ZERO_RANGE)) 3264 return -EOPNOTSUPP; 3265 3266 if (mode & FALLOC_FL_PUNCH_HOLE) 3267 return btrfs_punch_hole(file, offset, len); 3268 3269 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3270 3271 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3272 ret = inode_newsize_ok(inode, offset + len); 3273 if (ret) 3274 goto out; 3275 } 3276 3277 ret = file_modified(file); 3278 if (ret) 3279 goto out; 3280 3281 /* 3282 * TODO: Move these two operations after we have checked 3283 * accurate reserved space, or fallocate can still fail but 3284 * with page truncated or size expanded. 3285 * 3286 * But that's a minor problem and won't do much harm BTW. 3287 */ 3288 if (alloc_start > inode->i_size) { 3289 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3290 alloc_start); 3291 if (ret) 3292 goto out; 3293 } else if (offset + len > inode->i_size) { 3294 /* 3295 * If we are fallocating from the end of the file onward we 3296 * need to zero out the end of the block if i_size lands in the 3297 * middle of a block. 3298 */ 3299 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3300 if (ret) 3301 goto out; 3302 } 3303 3304 /* 3305 * We have locked the inode at the VFS level (in exclusive mode) and we 3306 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3307 * locking the file range, flush all dealloc in the range and wait for 3308 * all ordered extents in the range to complete. After this we can lock 3309 * the file range and, due to the previous locking we did, we know there 3310 * can't be more delalloc or ordered extents in the range. 3311 */ 3312 ret = btrfs_wait_ordered_range(inode, alloc_start, 3313 alloc_end - alloc_start); 3314 if (ret) 3315 goto out; 3316 3317 if (mode & FALLOC_FL_ZERO_RANGE) { 3318 ret = btrfs_zero_range(inode, offset, len, mode); 3319 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3320 return ret; 3321 } 3322 3323 locked_end = alloc_end - 1; 3324 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3325 &cached_state); 3326 3327 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3328 3329 /* First, check if we exceed the qgroup limit */ 3330 while (cur_offset < alloc_end) { 3331 em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset, 3332 alloc_end - cur_offset); 3333 if (IS_ERR(em)) { 3334 ret = PTR_ERR(em); 3335 break; 3336 } 3337 last_byte = min(extent_map_end(em), alloc_end); 3338 actual_end = min_t(u64, extent_map_end(em), offset + len); 3339 last_byte = ALIGN(last_byte, blocksize); 3340 if (em->block_start == EXTENT_MAP_HOLE || 3341 (cur_offset >= inode->i_size && 3342 !(em->flags & EXTENT_FLAG_PREALLOC))) { 3343 const u64 range_len = last_byte - cur_offset; 3344 3345 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3346 if (ret < 0) { 3347 free_extent_map(em); 3348 break; 3349 } 3350 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3351 &data_reserved, cur_offset, range_len); 3352 if (ret < 0) { 3353 free_extent_map(em); 3354 break; 3355 } 3356 qgroup_reserved += range_len; 3357 data_space_needed += range_len; 3358 } 3359 free_extent_map(em); 3360 cur_offset = last_byte; 3361 } 3362 3363 if (!ret && data_space_needed > 0) { 3364 /* 3365 * We are safe to reserve space here as we can't have delalloc 3366 * in the range, see above. 3367 */ 3368 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3369 data_space_needed); 3370 if (!ret) 3371 data_space_reserved = data_space_needed; 3372 } 3373 3374 /* 3375 * If ret is still 0, means we're OK to fallocate. 3376 * Or just cleanup the list and exit. 3377 */ 3378 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3379 if (!ret) { 3380 ret = btrfs_prealloc_file_range(inode, mode, 3381 range->start, 3382 range->len, blocksize, 3383 offset + len, &alloc_hint); 3384 /* 3385 * btrfs_prealloc_file_range() releases space even 3386 * if it returns an error. 3387 */ 3388 data_space_reserved -= range->len; 3389 qgroup_reserved -= range->len; 3390 } else if (data_space_reserved > 0) { 3391 btrfs_free_reserved_data_space(BTRFS_I(inode), 3392 data_reserved, range->start, 3393 range->len); 3394 data_space_reserved -= range->len; 3395 qgroup_reserved -= range->len; 3396 } else if (qgroup_reserved > 0) { 3397 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3398 range->start, range->len, NULL); 3399 qgroup_reserved -= range->len; 3400 } 3401 list_del(&range->list); 3402 kfree(range); 3403 } 3404 if (ret < 0) 3405 goto out_unlock; 3406 3407 /* 3408 * We didn't need to allocate any more space, but we still extended the 3409 * size of the file so we need to update i_size and the inode item. 3410 */ 3411 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3412 out_unlock: 3413 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3414 &cached_state); 3415 out: 3416 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3417 extent_changeset_free(data_reserved); 3418 return ret; 3419 } 3420 3421 /* 3422 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range 3423 * that has unflushed and/or flushing delalloc. There might be other adjacent 3424 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps 3425 * looping while it gets adjacent subranges, and merging them together. 3426 */ 3427 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, 3428 struct extent_state **cached_state, 3429 bool *search_io_tree, 3430 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3431 { 3432 u64 len = end + 1 - start; 3433 u64 delalloc_len = 0; 3434 struct btrfs_ordered_extent *oe; 3435 u64 oe_start; 3436 u64 oe_end; 3437 3438 /* 3439 * Search the io tree first for EXTENT_DELALLOC. If we find any, it 3440 * means we have delalloc (dirty pages) for which writeback has not 3441 * started yet. 3442 */ 3443 if (*search_io_tree) { 3444 spin_lock(&inode->lock); 3445 if (inode->delalloc_bytes > 0) { 3446 spin_unlock(&inode->lock); 3447 *delalloc_start_ret = start; 3448 delalloc_len = count_range_bits(&inode->io_tree, 3449 delalloc_start_ret, end, 3450 len, EXTENT_DELALLOC, 1, 3451 cached_state); 3452 } else { 3453 spin_unlock(&inode->lock); 3454 } 3455 } 3456 3457 if (delalloc_len > 0) { 3458 /* 3459 * If delalloc was found then *delalloc_start_ret has a sector size 3460 * aligned value (rounded down). 3461 */ 3462 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; 3463 3464 if (*delalloc_start_ret == start) { 3465 /* Delalloc for the whole range, nothing more to do. */ 3466 if (*delalloc_end_ret == end) 3467 return true; 3468 /* Else trim our search range for ordered extents. */ 3469 start = *delalloc_end_ret + 1; 3470 len = end + 1 - start; 3471 } 3472 } else { 3473 /* No delalloc, future calls don't need to search again. */ 3474 *search_io_tree = false; 3475 } 3476 3477 /* 3478 * Now also check if there's any ordered extent in the range. 3479 * We do this because: 3480 * 3481 * 1) When delalloc is flushed, the file range is locked, we clear the 3482 * EXTENT_DELALLOC bit from the io tree and create an extent map and 3483 * an ordered extent for the write. So we might just have been called 3484 * after delalloc is flushed and before the ordered extent completes 3485 * and inserts the new file extent item in the subvolume's btree; 3486 * 3487 * 2) We may have an ordered extent created by flushing delalloc for a 3488 * subrange that starts before the subrange we found marked with 3489 * EXTENT_DELALLOC in the io tree. 3490 * 3491 * We could also use the extent map tree to find such delalloc that is 3492 * being flushed, but using the ordered extents tree is more efficient 3493 * because it's usually much smaller as ordered extents are removed from 3494 * the tree once they complete. With the extent maps, we mau have them 3495 * in the extent map tree for a very long time, and they were either 3496 * created by previous writes or loaded by read operations. 3497 */ 3498 oe = btrfs_lookup_first_ordered_range(inode, start, len); 3499 if (!oe) 3500 return (delalloc_len > 0); 3501 3502 /* The ordered extent may span beyond our search range. */ 3503 oe_start = max(oe->file_offset, start); 3504 oe_end = min(oe->file_offset + oe->num_bytes - 1, end); 3505 3506 btrfs_put_ordered_extent(oe); 3507 3508 /* Don't have unflushed delalloc, return the ordered extent range. */ 3509 if (delalloc_len == 0) { 3510 *delalloc_start_ret = oe_start; 3511 *delalloc_end_ret = oe_end; 3512 return true; 3513 } 3514 3515 /* 3516 * We have both unflushed delalloc (io_tree) and an ordered extent. 3517 * If the ranges are adjacent returned a combined range, otherwise 3518 * return the leftmost range. 3519 */ 3520 if (oe_start < *delalloc_start_ret) { 3521 if (oe_end < *delalloc_start_ret) 3522 *delalloc_end_ret = oe_end; 3523 *delalloc_start_ret = oe_start; 3524 } else if (*delalloc_end_ret + 1 == oe_start) { 3525 *delalloc_end_ret = oe_end; 3526 } 3527 3528 return true; 3529 } 3530 3531 /* 3532 * Check if there's delalloc in a given range. 3533 * 3534 * @inode: The inode. 3535 * @start: The start offset of the range. It does not need to be 3536 * sector size aligned. 3537 * @end: The end offset (inclusive value) of the search range. 3538 * It does not need to be sector size aligned. 3539 * @cached_state: Extent state record used for speeding up delalloc 3540 * searches in the inode's io_tree. Can be NULL. 3541 * @delalloc_start_ret: Output argument, set to the start offset of the 3542 * subrange found with delalloc (may not be sector size 3543 * aligned). 3544 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value) 3545 * of the subrange found with delalloc. 3546 * 3547 * Returns true if a subrange with delalloc is found within the given range, and 3548 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and 3549 * end offsets of the subrange. 3550 */ 3551 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3552 struct extent_state **cached_state, 3553 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3554 { 3555 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); 3556 u64 prev_delalloc_end = 0; 3557 bool search_io_tree = true; 3558 bool ret = false; 3559 3560 while (cur_offset <= end) { 3561 u64 delalloc_start; 3562 u64 delalloc_end; 3563 bool delalloc; 3564 3565 delalloc = find_delalloc_subrange(inode, cur_offset, end, 3566 cached_state, &search_io_tree, 3567 &delalloc_start, 3568 &delalloc_end); 3569 if (!delalloc) 3570 break; 3571 3572 if (prev_delalloc_end == 0) { 3573 /* First subrange found. */ 3574 *delalloc_start_ret = max(delalloc_start, start); 3575 *delalloc_end_ret = delalloc_end; 3576 ret = true; 3577 } else if (delalloc_start == prev_delalloc_end + 1) { 3578 /* Subrange adjacent to the previous one, merge them. */ 3579 *delalloc_end_ret = delalloc_end; 3580 } else { 3581 /* Subrange not adjacent to the previous one, exit. */ 3582 break; 3583 } 3584 3585 prev_delalloc_end = delalloc_end; 3586 cur_offset = delalloc_end + 1; 3587 cond_resched(); 3588 } 3589 3590 return ret; 3591 } 3592 3593 /* 3594 * Check if there's a hole or delalloc range in a range representing a hole (or 3595 * prealloc extent) found in the inode's subvolume btree. 3596 * 3597 * @inode: The inode. 3598 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE). 3599 * @start: Start offset of the hole region. It does not need to be sector 3600 * size aligned. 3601 * @end: End offset (inclusive value) of the hole region. It does not 3602 * need to be sector size aligned. 3603 * @start_ret: Return parameter, used to set the start of the subrange in the 3604 * hole that matches the search criteria (seek mode), if such 3605 * subrange is found (return value of the function is true). 3606 * The value returned here may not be sector size aligned. 3607 * 3608 * Returns true if a subrange matching the given seek mode is found, and if one 3609 * is found, it updates @start_ret with the start of the subrange. 3610 */ 3611 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, 3612 struct extent_state **cached_state, 3613 u64 start, u64 end, u64 *start_ret) 3614 { 3615 u64 delalloc_start; 3616 u64 delalloc_end; 3617 bool delalloc; 3618 3619 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state, 3620 &delalloc_start, &delalloc_end); 3621 if (delalloc && whence == SEEK_DATA) { 3622 *start_ret = delalloc_start; 3623 return true; 3624 } 3625 3626 if (delalloc && whence == SEEK_HOLE) { 3627 /* 3628 * We found delalloc but it starts after out start offset. So we 3629 * have a hole between our start offset and the delalloc start. 3630 */ 3631 if (start < delalloc_start) { 3632 *start_ret = start; 3633 return true; 3634 } 3635 /* 3636 * Delalloc range starts at our start offset. 3637 * If the delalloc range's length is smaller than our range, 3638 * then it means we have a hole that starts where the delalloc 3639 * subrange ends. 3640 */ 3641 if (delalloc_end < end) { 3642 *start_ret = delalloc_end + 1; 3643 return true; 3644 } 3645 3646 /* There's delalloc for the whole range. */ 3647 return false; 3648 } 3649 3650 if (!delalloc && whence == SEEK_HOLE) { 3651 *start_ret = start; 3652 return true; 3653 } 3654 3655 /* 3656 * No delalloc in the range and we are seeking for data. The caller has 3657 * to iterate to the next extent item in the subvolume btree. 3658 */ 3659 return false; 3660 } 3661 3662 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence) 3663 { 3664 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host); 3665 struct btrfs_file_private *private = file->private_data; 3666 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3667 struct extent_state *cached_state = NULL; 3668 struct extent_state **delalloc_cached_state; 3669 const loff_t i_size = i_size_read(&inode->vfs_inode); 3670 const u64 ino = btrfs_ino(inode); 3671 struct btrfs_root *root = inode->root; 3672 struct btrfs_path *path; 3673 struct btrfs_key key; 3674 u64 last_extent_end; 3675 u64 lockstart; 3676 u64 lockend; 3677 u64 start; 3678 int ret; 3679 bool found = false; 3680 3681 if (i_size == 0 || offset >= i_size) 3682 return -ENXIO; 3683 3684 /* 3685 * Quick path. If the inode has no prealloc extents and its number of 3686 * bytes used matches its i_size, then it can not have holes. 3687 */ 3688 if (whence == SEEK_HOLE && 3689 !(inode->flags & BTRFS_INODE_PREALLOC) && 3690 inode_get_bytes(&inode->vfs_inode) == i_size) 3691 return i_size; 3692 3693 if (!private) { 3694 private = kzalloc(sizeof(*private), GFP_KERNEL); 3695 /* 3696 * No worries if memory allocation failed. 3697 * The private structure is used only for speeding up multiple 3698 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc, 3699 * so everything will still be correct. 3700 */ 3701 file->private_data = private; 3702 } 3703 3704 if (private) 3705 delalloc_cached_state = &private->llseek_cached_state; 3706 else 3707 delalloc_cached_state = NULL; 3708 3709 /* 3710 * offset can be negative, in this case we start finding DATA/HOLE from 3711 * the very start of the file. 3712 */ 3713 start = max_t(loff_t, 0, offset); 3714 3715 lockstart = round_down(start, fs_info->sectorsize); 3716 lockend = round_up(i_size, fs_info->sectorsize); 3717 if (lockend <= lockstart) 3718 lockend = lockstart + fs_info->sectorsize; 3719 lockend--; 3720 3721 path = btrfs_alloc_path(); 3722 if (!path) 3723 return -ENOMEM; 3724 path->reada = READA_FORWARD; 3725 3726 key.objectid = ino; 3727 key.type = BTRFS_EXTENT_DATA_KEY; 3728 key.offset = start; 3729 3730 last_extent_end = lockstart; 3731 3732 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3733 3734 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3735 if (ret < 0) { 3736 goto out; 3737 } else if (ret > 0 && path->slots[0] > 0) { 3738 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3739 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3740 path->slots[0]--; 3741 } 3742 3743 while (start < i_size) { 3744 struct extent_buffer *leaf = path->nodes[0]; 3745 struct btrfs_file_extent_item *extent; 3746 u64 extent_end; 3747 u8 type; 3748 3749 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3750 ret = btrfs_next_leaf(root, path); 3751 if (ret < 0) 3752 goto out; 3753 else if (ret > 0) 3754 break; 3755 3756 leaf = path->nodes[0]; 3757 } 3758 3759 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3760 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3761 break; 3762 3763 extent_end = btrfs_file_extent_end(path); 3764 3765 /* 3766 * In the first iteration we may have a slot that points to an 3767 * extent that ends before our start offset, so skip it. 3768 */ 3769 if (extent_end <= start) { 3770 path->slots[0]++; 3771 continue; 3772 } 3773 3774 /* We have an implicit hole, NO_HOLES feature is likely set. */ 3775 if (last_extent_end < key.offset) { 3776 u64 search_start = last_extent_end; 3777 u64 found_start; 3778 3779 /* 3780 * First iteration, @start matches @offset and it's 3781 * within the hole. 3782 */ 3783 if (start == offset) 3784 search_start = offset; 3785 3786 found = find_desired_extent_in_hole(inode, whence, 3787 delalloc_cached_state, 3788 search_start, 3789 key.offset - 1, 3790 &found_start); 3791 if (found) { 3792 start = found_start; 3793 break; 3794 } 3795 /* 3796 * Didn't find data or a hole (due to delalloc) in the 3797 * implicit hole range, so need to analyze the extent. 3798 */ 3799 } 3800 3801 extent = btrfs_item_ptr(leaf, path->slots[0], 3802 struct btrfs_file_extent_item); 3803 type = btrfs_file_extent_type(leaf, extent); 3804 3805 /* 3806 * Can't access the extent's disk_bytenr field if this is an 3807 * inline extent, since at that offset, it's where the extent 3808 * data starts. 3809 */ 3810 if (type == BTRFS_FILE_EXTENT_PREALLOC || 3811 (type == BTRFS_FILE_EXTENT_REG && 3812 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) { 3813 /* 3814 * Explicit hole or prealloc extent, search for delalloc. 3815 * A prealloc extent is treated like a hole. 3816 */ 3817 u64 search_start = key.offset; 3818 u64 found_start; 3819 3820 /* 3821 * First iteration, @start matches @offset and it's 3822 * within the hole. 3823 */ 3824 if (start == offset) 3825 search_start = offset; 3826 3827 found = find_desired_extent_in_hole(inode, whence, 3828 delalloc_cached_state, 3829 search_start, 3830 extent_end - 1, 3831 &found_start); 3832 if (found) { 3833 start = found_start; 3834 break; 3835 } 3836 /* 3837 * Didn't find data or a hole (due to delalloc) in the 3838 * implicit hole range, so need to analyze the next 3839 * extent item. 3840 */ 3841 } else { 3842 /* 3843 * Found a regular or inline extent. 3844 * If we are seeking for data, adjust the start offset 3845 * and stop, we're done. 3846 */ 3847 if (whence == SEEK_DATA) { 3848 start = max_t(u64, key.offset, offset); 3849 found = true; 3850 break; 3851 } 3852 /* 3853 * Else, we are seeking for a hole, check the next file 3854 * extent item. 3855 */ 3856 } 3857 3858 start = extent_end; 3859 last_extent_end = extent_end; 3860 path->slots[0]++; 3861 if (fatal_signal_pending(current)) { 3862 ret = -EINTR; 3863 goto out; 3864 } 3865 cond_resched(); 3866 } 3867 3868 /* We have an implicit hole from the last extent found up to i_size. */ 3869 if (!found && start < i_size) { 3870 found = find_desired_extent_in_hole(inode, whence, 3871 delalloc_cached_state, start, 3872 i_size - 1, &start); 3873 if (!found) 3874 start = i_size; 3875 } 3876 3877 out: 3878 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3879 btrfs_free_path(path); 3880 3881 if (ret < 0) 3882 return ret; 3883 3884 if (whence == SEEK_DATA && start >= i_size) 3885 return -ENXIO; 3886 3887 return min_t(loff_t, start, i_size); 3888 } 3889 3890 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3891 { 3892 struct inode *inode = file->f_mapping->host; 3893 3894 switch (whence) { 3895 default: 3896 return generic_file_llseek(file, offset, whence); 3897 case SEEK_DATA: 3898 case SEEK_HOLE: 3899 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3900 offset = find_desired_extent(file, offset, whence); 3901 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3902 break; 3903 } 3904 3905 if (offset < 0) 3906 return offset; 3907 3908 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3909 } 3910 3911 static int btrfs_file_open(struct inode *inode, struct file *filp) 3912 { 3913 int ret; 3914 3915 filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT; 3916 3917 ret = fsverity_file_open(inode, filp); 3918 if (ret) 3919 return ret; 3920 return generic_file_open(inode, filp); 3921 } 3922 3923 static int check_direct_read(struct btrfs_fs_info *fs_info, 3924 const struct iov_iter *iter, loff_t offset) 3925 { 3926 int ret; 3927 int i, seg; 3928 3929 ret = check_direct_IO(fs_info, iter, offset); 3930 if (ret < 0) 3931 return ret; 3932 3933 if (!iter_is_iovec(iter)) 3934 return 0; 3935 3936 for (seg = 0; seg < iter->nr_segs; seg++) { 3937 for (i = seg + 1; i < iter->nr_segs; i++) { 3938 const struct iovec *iov1 = iter_iov(iter) + seg; 3939 const struct iovec *iov2 = iter_iov(iter) + i; 3940 3941 if (iov1->iov_base == iov2->iov_base) 3942 return -EINVAL; 3943 } 3944 } 3945 return 0; 3946 } 3947 3948 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 3949 { 3950 struct inode *inode = file_inode(iocb->ki_filp); 3951 size_t prev_left = 0; 3952 ssize_t read = 0; 3953 ssize_t ret; 3954 3955 if (fsverity_active(inode)) 3956 return 0; 3957 3958 if (check_direct_read(inode_to_fs_info(inode), to, iocb->ki_pos)) 3959 return 0; 3960 3961 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3962 again: 3963 /* 3964 * This is similar to what we do for direct IO writes, see the comment 3965 * at btrfs_direct_write(), but we also disable page faults in addition 3966 * to disabling them only at the iov_iter level. This is because when 3967 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(), 3968 * which can still trigger page fault ins despite having set ->nofault 3969 * to true of our 'to' iov_iter. 3970 * 3971 * The difference to direct IO writes is that we deadlock when trying 3972 * to lock the extent range in the inode's tree during he page reads 3973 * triggered by the fault in (while for writes it is due to waiting for 3974 * our own ordered extent). This is because for direct IO reads, 3975 * btrfs_dio_iomap_begin() returns with the extent range locked, which 3976 * is only unlocked in the endio callback (end_bio_extent_readpage()). 3977 */ 3978 pagefault_disable(); 3979 to->nofault = true; 3980 ret = btrfs_dio_read(iocb, to, read); 3981 to->nofault = false; 3982 pagefault_enable(); 3983 3984 /* No increment (+=) because iomap returns a cumulative value. */ 3985 if (ret > 0) 3986 read = ret; 3987 3988 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) { 3989 const size_t left = iov_iter_count(to); 3990 3991 if (left == prev_left) { 3992 /* 3993 * We didn't make any progress since the last attempt, 3994 * fallback to a buffered read for the remainder of the 3995 * range. This is just to avoid any possibility of looping 3996 * for too long. 3997 */ 3998 ret = read; 3999 } else { 4000 /* 4001 * We made some progress since the last retry or this is 4002 * the first time we are retrying. Fault in as many pages 4003 * as possible and retry. 4004 */ 4005 fault_in_iov_iter_writeable(to, left); 4006 prev_left = left; 4007 goto again; 4008 } 4009 } 4010 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 4011 return ret < 0 ? ret : read; 4012 } 4013 4014 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 4015 { 4016 ssize_t ret = 0; 4017 4018 if (iocb->ki_flags & IOCB_DIRECT) { 4019 ret = btrfs_direct_read(iocb, to); 4020 if (ret < 0 || !iov_iter_count(to) || 4021 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 4022 return ret; 4023 } 4024 4025 return filemap_read(iocb, to, ret); 4026 } 4027 4028 const struct file_operations btrfs_file_operations = { 4029 .llseek = btrfs_file_llseek, 4030 .read_iter = btrfs_file_read_iter, 4031 .splice_read = filemap_splice_read, 4032 .write_iter = btrfs_file_write_iter, 4033 .splice_write = iter_file_splice_write, 4034 .mmap = btrfs_file_mmap, 4035 .open = btrfs_file_open, 4036 .release = btrfs_release_file, 4037 .get_unmapped_area = thp_get_unmapped_area, 4038 .fsync = btrfs_sync_file, 4039 .fallocate = btrfs_fallocate, 4040 .unlocked_ioctl = btrfs_ioctl, 4041 #ifdef CONFIG_COMPAT 4042 .compat_ioctl = btrfs_compat_ioctl, 4043 #endif 4044 .remap_file_range = btrfs_remap_file_range, 4045 .fop_flags = FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC, 4046 }; 4047 4048 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 4049 { 4050 int ret; 4051 4052 /* 4053 * So with compression we will find and lock a dirty page and clear the 4054 * first one as dirty, setup an async extent, and immediately return 4055 * with the entire range locked but with nobody actually marked with 4056 * writeback. So we can't just filemap_write_and_wait_range() and 4057 * expect it to work since it will just kick off a thread to do the 4058 * actual work. So we need to call filemap_fdatawrite_range _again_ 4059 * since it will wait on the page lock, which won't be unlocked until 4060 * after the pages have been marked as writeback and so we're good to go 4061 * from there. We have to do this otherwise we'll miss the ordered 4062 * extents and that results in badness. Please Josef, do not think you 4063 * know better and pull this out at some point in the future, it is 4064 * right and you are wrong. 4065 */ 4066 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 4067 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 4068 &BTRFS_I(inode)->runtime_flags)) 4069 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 4070 4071 return ret; 4072 } 4073