1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include <linux/iomap.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "btrfs_inode.h" 25 #include "print-tree.h" 26 #include "tree-log.h" 27 #include "locking.h" 28 #include "volumes.h" 29 #include "qgroup.h" 30 #include "compression.h" 31 #include "delalloc-space.h" 32 #include "reflink.h" 33 #include "subpage.h" 34 #include "fs.h" 35 #include "accessors.h" 36 #include "extent-tree.h" 37 #include "file-item.h" 38 #include "ioctl.h" 39 #include "file.h" 40 #include "super.h" 41 42 /* simple helper to fault in pages and copy. This should go away 43 * and be replaced with calls into generic code. 44 */ 45 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 46 struct page **prepared_pages, 47 struct iov_iter *i) 48 { 49 size_t copied = 0; 50 size_t total_copied = 0; 51 int pg = 0; 52 int offset = offset_in_page(pos); 53 54 while (write_bytes > 0) { 55 size_t count = min_t(size_t, 56 PAGE_SIZE - offset, write_bytes); 57 struct page *page = prepared_pages[pg]; 58 /* 59 * Copy data from userspace to the current page 60 */ 61 copied = copy_page_from_iter_atomic(page, offset, count, i); 62 63 /* Flush processor's dcache for this page */ 64 flush_dcache_page(page); 65 66 /* 67 * if we get a partial write, we can end up with 68 * partially up to date pages. These add 69 * a lot of complexity, so make sure they don't 70 * happen by forcing this copy to be retried. 71 * 72 * The rest of the btrfs_file_write code will fall 73 * back to page at a time copies after we return 0. 74 */ 75 if (unlikely(copied < count)) { 76 if (!PageUptodate(page)) { 77 iov_iter_revert(i, copied); 78 copied = 0; 79 } 80 if (!copied) 81 break; 82 } 83 84 write_bytes -= copied; 85 total_copied += copied; 86 offset += copied; 87 if (offset == PAGE_SIZE) { 88 pg++; 89 offset = 0; 90 } 91 } 92 return total_copied; 93 } 94 95 /* 96 * unlocks pages after btrfs_file_write is done with them 97 */ 98 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 99 struct page **pages, size_t num_pages, 100 u64 pos, u64 copied) 101 { 102 size_t i; 103 u64 block_start = round_down(pos, fs_info->sectorsize); 104 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 105 106 ASSERT(block_len <= U32_MAX); 107 for (i = 0; i < num_pages; i++) { 108 /* page checked is some magic around finding pages that 109 * have been modified without going through btrfs_set_page_dirty 110 * clear it here. There should be no need to mark the pages 111 * accessed as prepare_pages should have marked them accessed 112 * in prepare_pages via find_or_create_page() 113 */ 114 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start, 115 block_len); 116 unlock_page(pages[i]); 117 put_page(pages[i]); 118 } 119 } 120 121 /* 122 * After btrfs_copy_from_user(), update the following things for delalloc: 123 * - Mark newly dirtied pages as DELALLOC in the io tree. 124 * Used to advise which range is to be written back. 125 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 126 * - Update inode size for past EOF write 127 */ 128 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 129 size_t num_pages, loff_t pos, size_t write_bytes, 130 struct extent_state **cached, bool noreserve) 131 { 132 struct btrfs_fs_info *fs_info = inode->root->fs_info; 133 int err = 0; 134 int i; 135 u64 num_bytes; 136 u64 start_pos; 137 u64 end_of_last_block; 138 u64 end_pos = pos + write_bytes; 139 loff_t isize = i_size_read(&inode->vfs_inode); 140 unsigned int extra_bits = 0; 141 142 if (write_bytes == 0) 143 return 0; 144 145 if (noreserve) 146 extra_bits |= EXTENT_NORESERVE; 147 148 start_pos = round_down(pos, fs_info->sectorsize); 149 num_bytes = round_up(write_bytes + pos - start_pos, 150 fs_info->sectorsize); 151 ASSERT(num_bytes <= U32_MAX); 152 153 end_of_last_block = start_pos + num_bytes - 1; 154 155 /* 156 * The pages may have already been dirty, clear out old accounting so 157 * we can set things up properly 158 */ 159 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 160 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 161 cached); 162 163 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 164 extra_bits, cached); 165 if (err) 166 return err; 167 168 for (i = 0; i < num_pages; i++) { 169 struct page *p = pages[i]; 170 171 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes); 172 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes); 173 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes); 174 } 175 176 /* 177 * we've only changed i_size in ram, and we haven't updated 178 * the disk i_size. There is no need to log the inode 179 * at this time. 180 */ 181 if (end_pos > isize) 182 i_size_write(&inode->vfs_inode, end_pos); 183 return 0; 184 } 185 186 /* 187 * this is very complex, but the basic idea is to drop all extents 188 * in the range start - end. hint_block is filled in with a block number 189 * that would be a good hint to the block allocator for this file. 190 * 191 * If an extent intersects the range but is not entirely inside the range 192 * it is either truncated or split. Anything entirely inside the range 193 * is deleted from the tree. 194 * 195 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 196 * to deal with that. We set the field 'bytes_found' of the arguments structure 197 * with the number of allocated bytes found in the target range, so that the 198 * caller can update the inode's number of bytes in an atomic way when 199 * replacing extents in a range to avoid races with stat(2). 200 */ 201 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 202 struct btrfs_root *root, struct btrfs_inode *inode, 203 struct btrfs_drop_extents_args *args) 204 { 205 struct btrfs_fs_info *fs_info = root->fs_info; 206 struct extent_buffer *leaf; 207 struct btrfs_file_extent_item *fi; 208 struct btrfs_ref ref = { 0 }; 209 struct btrfs_key key; 210 struct btrfs_key new_key; 211 u64 ino = btrfs_ino(inode); 212 u64 search_start = args->start; 213 u64 disk_bytenr = 0; 214 u64 num_bytes = 0; 215 u64 extent_offset = 0; 216 u64 extent_end = 0; 217 u64 last_end = args->start; 218 int del_nr = 0; 219 int del_slot = 0; 220 int extent_type; 221 int recow; 222 int ret; 223 int modify_tree = -1; 224 int update_refs; 225 int found = 0; 226 struct btrfs_path *path = args->path; 227 228 args->bytes_found = 0; 229 args->extent_inserted = false; 230 231 /* Must always have a path if ->replace_extent is true */ 232 ASSERT(!(args->replace_extent && !args->path)); 233 234 if (!path) { 235 path = btrfs_alloc_path(); 236 if (!path) { 237 ret = -ENOMEM; 238 goto out; 239 } 240 } 241 242 if (args->drop_cache) 243 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); 244 245 if (args->start >= inode->disk_i_size && !args->replace_extent) 246 modify_tree = 0; 247 248 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 249 while (1) { 250 recow = 0; 251 ret = btrfs_lookup_file_extent(trans, root, path, ino, 252 search_start, modify_tree); 253 if (ret < 0) 254 break; 255 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 256 leaf = path->nodes[0]; 257 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 258 if (key.objectid == ino && 259 key.type == BTRFS_EXTENT_DATA_KEY) 260 path->slots[0]--; 261 } 262 ret = 0; 263 next_slot: 264 leaf = path->nodes[0]; 265 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 266 BUG_ON(del_nr > 0); 267 ret = btrfs_next_leaf(root, path); 268 if (ret < 0) 269 break; 270 if (ret > 0) { 271 ret = 0; 272 break; 273 } 274 leaf = path->nodes[0]; 275 recow = 1; 276 } 277 278 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 279 280 if (key.objectid > ino) 281 break; 282 if (WARN_ON_ONCE(key.objectid < ino) || 283 key.type < BTRFS_EXTENT_DATA_KEY) { 284 ASSERT(del_nr == 0); 285 path->slots[0]++; 286 goto next_slot; 287 } 288 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 289 break; 290 291 fi = btrfs_item_ptr(leaf, path->slots[0], 292 struct btrfs_file_extent_item); 293 extent_type = btrfs_file_extent_type(leaf, fi); 294 295 if (extent_type == BTRFS_FILE_EXTENT_REG || 296 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 297 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 298 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 299 extent_offset = btrfs_file_extent_offset(leaf, fi); 300 extent_end = key.offset + 301 btrfs_file_extent_num_bytes(leaf, fi); 302 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 303 extent_end = key.offset + 304 btrfs_file_extent_ram_bytes(leaf, fi); 305 } else { 306 /* can't happen */ 307 BUG(); 308 } 309 310 /* 311 * Don't skip extent items representing 0 byte lengths. They 312 * used to be created (bug) if while punching holes we hit 313 * -ENOSPC condition. So if we find one here, just ensure we 314 * delete it, otherwise we would insert a new file extent item 315 * with the same key (offset) as that 0 bytes length file 316 * extent item in the call to setup_items_for_insert() later 317 * in this function. 318 */ 319 if (extent_end == key.offset && extent_end >= search_start) { 320 last_end = extent_end; 321 goto delete_extent_item; 322 } 323 324 if (extent_end <= search_start) { 325 path->slots[0]++; 326 goto next_slot; 327 } 328 329 found = 1; 330 search_start = max(key.offset, args->start); 331 if (recow || !modify_tree) { 332 modify_tree = -1; 333 btrfs_release_path(path); 334 continue; 335 } 336 337 /* 338 * | - range to drop - | 339 * | -------- extent -------- | 340 */ 341 if (args->start > key.offset && args->end < extent_end) { 342 BUG_ON(del_nr > 0); 343 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 344 ret = -EOPNOTSUPP; 345 break; 346 } 347 348 memcpy(&new_key, &key, sizeof(new_key)); 349 new_key.offset = args->start; 350 ret = btrfs_duplicate_item(trans, root, path, 351 &new_key); 352 if (ret == -EAGAIN) { 353 btrfs_release_path(path); 354 continue; 355 } 356 if (ret < 0) 357 break; 358 359 leaf = path->nodes[0]; 360 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 361 struct btrfs_file_extent_item); 362 btrfs_set_file_extent_num_bytes(leaf, fi, 363 args->start - key.offset); 364 365 fi = btrfs_item_ptr(leaf, path->slots[0], 366 struct btrfs_file_extent_item); 367 368 extent_offset += args->start - key.offset; 369 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 370 btrfs_set_file_extent_num_bytes(leaf, fi, 371 extent_end - args->start); 372 btrfs_mark_buffer_dirty(trans, leaf); 373 374 if (update_refs && disk_bytenr > 0) { 375 btrfs_init_generic_ref(&ref, 376 BTRFS_ADD_DELAYED_REF, 377 disk_bytenr, num_bytes, 0, 378 root->root_key.objectid); 379 btrfs_init_data_ref(&ref, 380 root->root_key.objectid, 381 new_key.objectid, 382 args->start - extent_offset, 383 0, false); 384 ret = btrfs_inc_extent_ref(trans, &ref); 385 if (ret) { 386 btrfs_abort_transaction(trans, ret); 387 break; 388 } 389 } 390 key.offset = args->start; 391 } 392 /* 393 * From here on out we will have actually dropped something, so 394 * last_end can be updated. 395 */ 396 last_end = extent_end; 397 398 /* 399 * | ---- range to drop ----- | 400 * | -------- extent -------- | 401 */ 402 if (args->start <= key.offset && args->end < extent_end) { 403 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 404 ret = -EOPNOTSUPP; 405 break; 406 } 407 408 memcpy(&new_key, &key, sizeof(new_key)); 409 new_key.offset = args->end; 410 btrfs_set_item_key_safe(trans, path, &new_key); 411 412 extent_offset += args->end - key.offset; 413 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 414 btrfs_set_file_extent_num_bytes(leaf, fi, 415 extent_end - args->end); 416 btrfs_mark_buffer_dirty(trans, leaf); 417 if (update_refs && disk_bytenr > 0) 418 args->bytes_found += args->end - key.offset; 419 break; 420 } 421 422 search_start = extent_end; 423 /* 424 * | ---- range to drop ----- | 425 * | -------- extent -------- | 426 */ 427 if (args->start > key.offset && args->end >= extent_end) { 428 BUG_ON(del_nr > 0); 429 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 430 ret = -EOPNOTSUPP; 431 break; 432 } 433 434 btrfs_set_file_extent_num_bytes(leaf, fi, 435 args->start - key.offset); 436 btrfs_mark_buffer_dirty(trans, leaf); 437 if (update_refs && disk_bytenr > 0) 438 args->bytes_found += extent_end - args->start; 439 if (args->end == extent_end) 440 break; 441 442 path->slots[0]++; 443 goto next_slot; 444 } 445 446 /* 447 * | ---- range to drop ----- | 448 * | ------ extent ------ | 449 */ 450 if (args->start <= key.offset && args->end >= extent_end) { 451 delete_extent_item: 452 if (del_nr == 0) { 453 del_slot = path->slots[0]; 454 del_nr = 1; 455 } else { 456 BUG_ON(del_slot + del_nr != path->slots[0]); 457 del_nr++; 458 } 459 460 if (update_refs && 461 extent_type == BTRFS_FILE_EXTENT_INLINE) { 462 args->bytes_found += extent_end - key.offset; 463 extent_end = ALIGN(extent_end, 464 fs_info->sectorsize); 465 } else if (update_refs && disk_bytenr > 0) { 466 btrfs_init_generic_ref(&ref, 467 BTRFS_DROP_DELAYED_REF, 468 disk_bytenr, num_bytes, 0, 469 root->root_key.objectid); 470 btrfs_init_data_ref(&ref, 471 root->root_key.objectid, 472 key.objectid, 473 key.offset - extent_offset, 0, 474 false); 475 ret = btrfs_free_extent(trans, &ref); 476 if (ret) { 477 btrfs_abort_transaction(trans, ret); 478 break; 479 } 480 args->bytes_found += extent_end - key.offset; 481 } 482 483 if (args->end == extent_end) 484 break; 485 486 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 487 path->slots[0]++; 488 goto next_slot; 489 } 490 491 ret = btrfs_del_items(trans, root, path, del_slot, 492 del_nr); 493 if (ret) { 494 btrfs_abort_transaction(trans, ret); 495 break; 496 } 497 498 del_nr = 0; 499 del_slot = 0; 500 501 btrfs_release_path(path); 502 continue; 503 } 504 505 BUG(); 506 } 507 508 if (!ret && del_nr > 0) { 509 /* 510 * Set path->slots[0] to first slot, so that after the delete 511 * if items are move off from our leaf to its immediate left or 512 * right neighbor leafs, we end up with a correct and adjusted 513 * path->slots[0] for our insertion (if args->replace_extent). 514 */ 515 path->slots[0] = del_slot; 516 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 517 if (ret) 518 btrfs_abort_transaction(trans, ret); 519 } 520 521 leaf = path->nodes[0]; 522 /* 523 * If btrfs_del_items() was called, it might have deleted a leaf, in 524 * which case it unlocked our path, so check path->locks[0] matches a 525 * write lock. 526 */ 527 if (!ret && args->replace_extent && 528 path->locks[0] == BTRFS_WRITE_LOCK && 529 btrfs_leaf_free_space(leaf) >= 530 sizeof(struct btrfs_item) + args->extent_item_size) { 531 532 key.objectid = ino; 533 key.type = BTRFS_EXTENT_DATA_KEY; 534 key.offset = args->start; 535 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 536 struct btrfs_key slot_key; 537 538 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 539 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 540 path->slots[0]++; 541 } 542 btrfs_setup_item_for_insert(trans, root, path, &key, 543 args->extent_item_size); 544 args->extent_inserted = true; 545 } 546 547 if (!args->path) 548 btrfs_free_path(path); 549 else if (!args->extent_inserted) 550 btrfs_release_path(path); 551 out: 552 args->drop_end = found ? min(args->end, last_end) : args->end; 553 554 return ret; 555 } 556 557 static int extent_mergeable(struct extent_buffer *leaf, int slot, 558 u64 objectid, u64 bytenr, u64 orig_offset, 559 u64 *start, u64 *end) 560 { 561 struct btrfs_file_extent_item *fi; 562 struct btrfs_key key; 563 u64 extent_end; 564 565 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 566 return 0; 567 568 btrfs_item_key_to_cpu(leaf, &key, slot); 569 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 570 return 0; 571 572 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 573 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 574 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 575 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 576 btrfs_file_extent_compression(leaf, fi) || 577 btrfs_file_extent_encryption(leaf, fi) || 578 btrfs_file_extent_other_encoding(leaf, fi)) 579 return 0; 580 581 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 582 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 583 return 0; 584 585 *start = key.offset; 586 *end = extent_end; 587 return 1; 588 } 589 590 /* 591 * Mark extent in the range start - end as written. 592 * 593 * This changes extent type from 'pre-allocated' to 'regular'. If only 594 * part of extent is marked as written, the extent will be split into 595 * two or three. 596 */ 597 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 598 struct btrfs_inode *inode, u64 start, u64 end) 599 { 600 struct btrfs_root *root = inode->root; 601 struct extent_buffer *leaf; 602 struct btrfs_path *path; 603 struct btrfs_file_extent_item *fi; 604 struct btrfs_ref ref = { 0 }; 605 struct btrfs_key key; 606 struct btrfs_key new_key; 607 u64 bytenr; 608 u64 num_bytes; 609 u64 extent_end; 610 u64 orig_offset; 611 u64 other_start; 612 u64 other_end; 613 u64 split; 614 int del_nr = 0; 615 int del_slot = 0; 616 int recow; 617 int ret = 0; 618 u64 ino = btrfs_ino(inode); 619 620 path = btrfs_alloc_path(); 621 if (!path) 622 return -ENOMEM; 623 again: 624 recow = 0; 625 split = start; 626 key.objectid = ino; 627 key.type = BTRFS_EXTENT_DATA_KEY; 628 key.offset = split; 629 630 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 631 if (ret < 0) 632 goto out; 633 if (ret > 0 && path->slots[0] > 0) 634 path->slots[0]--; 635 636 leaf = path->nodes[0]; 637 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 638 if (key.objectid != ino || 639 key.type != BTRFS_EXTENT_DATA_KEY) { 640 ret = -EINVAL; 641 btrfs_abort_transaction(trans, ret); 642 goto out; 643 } 644 fi = btrfs_item_ptr(leaf, path->slots[0], 645 struct btrfs_file_extent_item); 646 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 647 ret = -EINVAL; 648 btrfs_abort_transaction(trans, ret); 649 goto out; 650 } 651 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 652 if (key.offset > start || extent_end < end) { 653 ret = -EINVAL; 654 btrfs_abort_transaction(trans, ret); 655 goto out; 656 } 657 658 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 659 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 660 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 661 memcpy(&new_key, &key, sizeof(new_key)); 662 663 if (start == key.offset && end < extent_end) { 664 other_start = 0; 665 other_end = start; 666 if (extent_mergeable(leaf, path->slots[0] - 1, 667 ino, bytenr, orig_offset, 668 &other_start, &other_end)) { 669 new_key.offset = end; 670 btrfs_set_item_key_safe(trans, path, &new_key); 671 fi = btrfs_item_ptr(leaf, path->slots[0], 672 struct btrfs_file_extent_item); 673 btrfs_set_file_extent_generation(leaf, fi, 674 trans->transid); 675 btrfs_set_file_extent_num_bytes(leaf, fi, 676 extent_end - end); 677 btrfs_set_file_extent_offset(leaf, fi, 678 end - orig_offset); 679 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 680 struct btrfs_file_extent_item); 681 btrfs_set_file_extent_generation(leaf, fi, 682 trans->transid); 683 btrfs_set_file_extent_num_bytes(leaf, fi, 684 end - other_start); 685 btrfs_mark_buffer_dirty(trans, leaf); 686 goto out; 687 } 688 } 689 690 if (start > key.offset && end == extent_end) { 691 other_start = end; 692 other_end = 0; 693 if (extent_mergeable(leaf, path->slots[0] + 1, 694 ino, bytenr, orig_offset, 695 &other_start, &other_end)) { 696 fi = btrfs_item_ptr(leaf, path->slots[0], 697 struct btrfs_file_extent_item); 698 btrfs_set_file_extent_num_bytes(leaf, fi, 699 start - key.offset); 700 btrfs_set_file_extent_generation(leaf, fi, 701 trans->transid); 702 path->slots[0]++; 703 new_key.offset = start; 704 btrfs_set_item_key_safe(trans, path, &new_key); 705 706 fi = btrfs_item_ptr(leaf, path->slots[0], 707 struct btrfs_file_extent_item); 708 btrfs_set_file_extent_generation(leaf, fi, 709 trans->transid); 710 btrfs_set_file_extent_num_bytes(leaf, fi, 711 other_end - start); 712 btrfs_set_file_extent_offset(leaf, fi, 713 start - orig_offset); 714 btrfs_mark_buffer_dirty(trans, leaf); 715 goto out; 716 } 717 } 718 719 while (start > key.offset || end < extent_end) { 720 if (key.offset == start) 721 split = end; 722 723 new_key.offset = split; 724 ret = btrfs_duplicate_item(trans, root, path, &new_key); 725 if (ret == -EAGAIN) { 726 btrfs_release_path(path); 727 goto again; 728 } 729 if (ret < 0) { 730 btrfs_abort_transaction(trans, ret); 731 goto out; 732 } 733 734 leaf = path->nodes[0]; 735 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 736 struct btrfs_file_extent_item); 737 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 738 btrfs_set_file_extent_num_bytes(leaf, fi, 739 split - key.offset); 740 741 fi = btrfs_item_ptr(leaf, path->slots[0], 742 struct btrfs_file_extent_item); 743 744 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 745 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 746 btrfs_set_file_extent_num_bytes(leaf, fi, 747 extent_end - split); 748 btrfs_mark_buffer_dirty(trans, leaf); 749 750 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 751 num_bytes, 0, root->root_key.objectid); 752 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 753 orig_offset, 0, false); 754 ret = btrfs_inc_extent_ref(trans, &ref); 755 if (ret) { 756 btrfs_abort_transaction(trans, ret); 757 goto out; 758 } 759 760 if (split == start) { 761 key.offset = start; 762 } else { 763 if (start != key.offset) { 764 ret = -EINVAL; 765 btrfs_abort_transaction(trans, ret); 766 goto out; 767 } 768 path->slots[0]--; 769 extent_end = end; 770 } 771 recow = 1; 772 } 773 774 other_start = end; 775 other_end = 0; 776 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 777 num_bytes, 0, root->root_key.objectid); 778 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset, 779 0, false); 780 if (extent_mergeable(leaf, path->slots[0] + 1, 781 ino, bytenr, orig_offset, 782 &other_start, &other_end)) { 783 if (recow) { 784 btrfs_release_path(path); 785 goto again; 786 } 787 extent_end = other_end; 788 del_slot = path->slots[0] + 1; 789 del_nr++; 790 ret = btrfs_free_extent(trans, &ref); 791 if (ret) { 792 btrfs_abort_transaction(trans, ret); 793 goto out; 794 } 795 } 796 other_start = 0; 797 other_end = start; 798 if (extent_mergeable(leaf, path->slots[0] - 1, 799 ino, bytenr, orig_offset, 800 &other_start, &other_end)) { 801 if (recow) { 802 btrfs_release_path(path); 803 goto again; 804 } 805 key.offset = other_start; 806 del_slot = path->slots[0]; 807 del_nr++; 808 ret = btrfs_free_extent(trans, &ref); 809 if (ret) { 810 btrfs_abort_transaction(trans, ret); 811 goto out; 812 } 813 } 814 if (del_nr == 0) { 815 fi = btrfs_item_ptr(leaf, path->slots[0], 816 struct btrfs_file_extent_item); 817 btrfs_set_file_extent_type(leaf, fi, 818 BTRFS_FILE_EXTENT_REG); 819 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 820 btrfs_mark_buffer_dirty(trans, leaf); 821 } else { 822 fi = btrfs_item_ptr(leaf, del_slot - 1, 823 struct btrfs_file_extent_item); 824 btrfs_set_file_extent_type(leaf, fi, 825 BTRFS_FILE_EXTENT_REG); 826 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 827 btrfs_set_file_extent_num_bytes(leaf, fi, 828 extent_end - key.offset); 829 btrfs_mark_buffer_dirty(trans, leaf); 830 831 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 832 if (ret < 0) { 833 btrfs_abort_transaction(trans, ret); 834 goto out; 835 } 836 } 837 out: 838 btrfs_free_path(path); 839 return ret; 840 } 841 842 /* 843 * on error we return an unlocked page and the error value 844 * on success we return a locked page and 0 845 */ 846 static int prepare_uptodate_page(struct inode *inode, 847 struct page *page, u64 pos, 848 bool force_uptodate) 849 { 850 struct folio *folio = page_folio(page); 851 int ret = 0; 852 853 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 854 !PageUptodate(page)) { 855 ret = btrfs_read_folio(NULL, folio); 856 if (ret) 857 return ret; 858 lock_page(page); 859 if (!PageUptodate(page)) { 860 unlock_page(page); 861 return -EIO; 862 } 863 864 /* 865 * Since btrfs_read_folio() will unlock the folio before it 866 * returns, there is a window where btrfs_release_folio() can be 867 * called to release the page. Here we check both inode 868 * mapping and PagePrivate() to make sure the page was not 869 * released. 870 * 871 * The private flag check is essential for subpage as we need 872 * to store extra bitmap using page->private. 873 */ 874 if (page->mapping != inode->i_mapping || !PagePrivate(page)) { 875 unlock_page(page); 876 return -EAGAIN; 877 } 878 } 879 return 0; 880 } 881 882 static fgf_t get_prepare_fgp_flags(bool nowait) 883 { 884 fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT; 885 886 if (nowait) 887 fgp_flags |= FGP_NOWAIT; 888 889 return fgp_flags; 890 } 891 892 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) 893 { 894 gfp_t gfp; 895 896 gfp = btrfs_alloc_write_mask(inode->i_mapping); 897 if (nowait) { 898 gfp &= ~__GFP_DIRECT_RECLAIM; 899 gfp |= GFP_NOWAIT; 900 } 901 902 return gfp; 903 } 904 905 /* 906 * this just gets pages into the page cache and locks them down. 907 */ 908 static noinline int prepare_pages(struct inode *inode, struct page **pages, 909 size_t num_pages, loff_t pos, 910 size_t write_bytes, bool force_uptodate, 911 bool nowait) 912 { 913 int i; 914 unsigned long index = pos >> PAGE_SHIFT; 915 gfp_t mask = get_prepare_gfp_flags(inode, nowait); 916 fgf_t fgp_flags = get_prepare_fgp_flags(nowait); 917 int err = 0; 918 int faili; 919 920 for (i = 0; i < num_pages; i++) { 921 again: 922 pages[i] = pagecache_get_page(inode->i_mapping, index + i, 923 fgp_flags, mask | __GFP_WRITE); 924 if (!pages[i]) { 925 faili = i - 1; 926 if (nowait) 927 err = -EAGAIN; 928 else 929 err = -ENOMEM; 930 goto fail; 931 } 932 933 err = set_page_extent_mapped(pages[i]); 934 if (err < 0) { 935 faili = i; 936 goto fail; 937 } 938 939 if (i == 0) 940 err = prepare_uptodate_page(inode, pages[i], pos, 941 force_uptodate); 942 if (!err && i == num_pages - 1) 943 err = prepare_uptodate_page(inode, pages[i], 944 pos + write_bytes, false); 945 if (err) { 946 put_page(pages[i]); 947 if (!nowait && err == -EAGAIN) { 948 err = 0; 949 goto again; 950 } 951 faili = i - 1; 952 goto fail; 953 } 954 wait_on_page_writeback(pages[i]); 955 } 956 957 return 0; 958 fail: 959 while (faili >= 0) { 960 unlock_page(pages[faili]); 961 put_page(pages[faili]); 962 faili--; 963 } 964 return err; 965 966 } 967 968 /* 969 * This function locks the extent and properly waits for data=ordered extents 970 * to finish before allowing the pages to be modified if need. 971 * 972 * The return value: 973 * 1 - the extent is locked 974 * 0 - the extent is not locked, and everything is OK 975 * -EAGAIN - need re-prepare the pages 976 * the other < 0 number - Something wrong happens 977 */ 978 static noinline int 979 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 980 size_t num_pages, loff_t pos, 981 size_t write_bytes, 982 u64 *lockstart, u64 *lockend, bool nowait, 983 struct extent_state **cached_state) 984 { 985 struct btrfs_fs_info *fs_info = inode->root->fs_info; 986 u64 start_pos; 987 u64 last_pos; 988 int i; 989 int ret = 0; 990 991 start_pos = round_down(pos, fs_info->sectorsize); 992 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 993 994 if (start_pos < inode->vfs_inode.i_size) { 995 struct btrfs_ordered_extent *ordered; 996 997 if (nowait) { 998 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos, 999 cached_state)) { 1000 for (i = 0; i < num_pages; i++) { 1001 unlock_page(pages[i]); 1002 put_page(pages[i]); 1003 pages[i] = NULL; 1004 } 1005 1006 return -EAGAIN; 1007 } 1008 } else { 1009 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state); 1010 } 1011 1012 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1013 last_pos - start_pos + 1); 1014 if (ordered && 1015 ordered->file_offset + ordered->num_bytes > start_pos && 1016 ordered->file_offset <= last_pos) { 1017 unlock_extent(&inode->io_tree, start_pos, last_pos, 1018 cached_state); 1019 for (i = 0; i < num_pages; i++) { 1020 unlock_page(pages[i]); 1021 put_page(pages[i]); 1022 } 1023 btrfs_start_ordered_extent(ordered); 1024 btrfs_put_ordered_extent(ordered); 1025 return -EAGAIN; 1026 } 1027 if (ordered) 1028 btrfs_put_ordered_extent(ordered); 1029 1030 *lockstart = start_pos; 1031 *lockend = last_pos; 1032 ret = 1; 1033 } 1034 1035 /* 1036 * We should be called after prepare_pages() which should have locked 1037 * all pages in the range. 1038 */ 1039 for (i = 0; i < num_pages; i++) 1040 WARN_ON(!PageLocked(pages[i])); 1041 1042 return ret; 1043 } 1044 1045 /* 1046 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1047 * 1048 * @pos: File offset. 1049 * @write_bytes: The length to write, will be updated to the nocow writeable 1050 * range. 1051 * 1052 * This function will flush ordered extents in the range to ensure proper 1053 * nocow checks. 1054 * 1055 * Return: 1056 * > 0 If we can nocow, and updates @write_bytes. 1057 * 0 If we can't do a nocow write. 1058 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's 1059 * root is in progress. 1060 * < 0 If an error happened. 1061 * 1062 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 1063 */ 1064 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1065 size_t *write_bytes, bool nowait) 1066 { 1067 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1068 struct btrfs_root *root = inode->root; 1069 struct extent_state *cached_state = NULL; 1070 u64 lockstart, lockend; 1071 u64 num_bytes; 1072 int ret; 1073 1074 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1075 return 0; 1076 1077 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1078 return -EAGAIN; 1079 1080 lockstart = round_down(pos, fs_info->sectorsize); 1081 lockend = round_up(pos + *write_bytes, 1082 fs_info->sectorsize) - 1; 1083 num_bytes = lockend - lockstart + 1; 1084 1085 if (nowait) { 1086 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend, 1087 &cached_state)) { 1088 btrfs_drew_write_unlock(&root->snapshot_lock); 1089 return -EAGAIN; 1090 } 1091 } else { 1092 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, 1093 &cached_state); 1094 } 1095 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1096 NULL, NULL, NULL, nowait, false); 1097 if (ret <= 0) 1098 btrfs_drew_write_unlock(&root->snapshot_lock); 1099 else 1100 *write_bytes = min_t(size_t, *write_bytes , 1101 num_bytes - pos + lockstart); 1102 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 1103 1104 return ret; 1105 } 1106 1107 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1108 { 1109 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1110 } 1111 1112 static void update_time_for_write(struct inode *inode) 1113 { 1114 struct timespec64 now, ts; 1115 1116 if (IS_NOCMTIME(inode)) 1117 return; 1118 1119 now = current_time(inode); 1120 ts = inode_get_mtime(inode); 1121 if (!timespec64_equal(&ts, &now)) 1122 inode_set_mtime_to_ts(inode, now); 1123 1124 ts = inode_get_ctime(inode); 1125 if (!timespec64_equal(&ts, &now)) 1126 inode_set_ctime_to_ts(inode, now); 1127 1128 if (IS_I_VERSION(inode)) 1129 inode_inc_iversion(inode); 1130 } 1131 1132 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1133 size_t count) 1134 { 1135 struct file *file = iocb->ki_filp; 1136 struct inode *inode = file_inode(file); 1137 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1138 loff_t pos = iocb->ki_pos; 1139 int ret; 1140 loff_t oldsize; 1141 loff_t start_pos; 1142 1143 /* 1144 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1145 * prealloc flags, as without those flags we always have to COW. We will 1146 * later check if we can really COW into the target range (using 1147 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1148 */ 1149 if ((iocb->ki_flags & IOCB_NOWAIT) && 1150 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1151 return -EAGAIN; 1152 1153 ret = file_remove_privs(file); 1154 if (ret) 1155 return ret; 1156 1157 /* 1158 * We reserve space for updating the inode when we reserve space for the 1159 * extent we are going to write, so we will enospc out there. We don't 1160 * need to start yet another transaction to update the inode as we will 1161 * update the inode when we finish writing whatever data we write. 1162 */ 1163 update_time_for_write(inode); 1164 1165 start_pos = round_down(pos, fs_info->sectorsize); 1166 oldsize = i_size_read(inode); 1167 if (start_pos > oldsize) { 1168 /* Expand hole size to cover write data, preventing empty gap */ 1169 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1170 1171 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1172 if (ret) 1173 return ret; 1174 } 1175 1176 return 0; 1177 } 1178 1179 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1180 struct iov_iter *i) 1181 { 1182 struct file *file = iocb->ki_filp; 1183 loff_t pos; 1184 struct inode *inode = file_inode(file); 1185 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1186 struct page **pages = NULL; 1187 struct extent_changeset *data_reserved = NULL; 1188 u64 release_bytes = 0; 1189 u64 lockstart; 1190 u64 lockend; 1191 size_t num_written = 0; 1192 int nrptrs; 1193 ssize_t ret; 1194 bool only_release_metadata = false; 1195 bool force_page_uptodate = false; 1196 loff_t old_isize = i_size_read(inode); 1197 unsigned int ilock_flags = 0; 1198 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 1199 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); 1200 1201 if (nowait) 1202 ilock_flags |= BTRFS_ILOCK_TRY; 1203 1204 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1205 if (ret < 0) 1206 return ret; 1207 1208 ret = generic_write_checks(iocb, i); 1209 if (ret <= 0) 1210 goto out; 1211 1212 ret = btrfs_write_check(iocb, i, ret); 1213 if (ret < 0) 1214 goto out; 1215 1216 pos = iocb->ki_pos; 1217 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1218 PAGE_SIZE / (sizeof(struct page *))); 1219 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1220 nrptrs = max(nrptrs, 8); 1221 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1222 if (!pages) { 1223 ret = -ENOMEM; 1224 goto out; 1225 } 1226 1227 while (iov_iter_count(i) > 0) { 1228 struct extent_state *cached_state = NULL; 1229 size_t offset = offset_in_page(pos); 1230 size_t sector_offset; 1231 size_t write_bytes = min(iov_iter_count(i), 1232 nrptrs * (size_t)PAGE_SIZE - 1233 offset); 1234 size_t num_pages; 1235 size_t reserve_bytes; 1236 size_t dirty_pages; 1237 size_t copied; 1238 size_t dirty_sectors; 1239 size_t num_sectors; 1240 int extents_locked; 1241 1242 /* 1243 * Fault pages before locking them in prepare_pages 1244 * to avoid recursive lock 1245 */ 1246 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1247 ret = -EFAULT; 1248 break; 1249 } 1250 1251 only_release_metadata = false; 1252 sector_offset = pos & (fs_info->sectorsize - 1); 1253 1254 extent_changeset_release(data_reserved); 1255 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1256 &data_reserved, pos, 1257 write_bytes, nowait); 1258 if (ret < 0) { 1259 int can_nocow; 1260 1261 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) { 1262 ret = -EAGAIN; 1263 break; 1264 } 1265 1266 /* 1267 * If we don't have to COW at the offset, reserve 1268 * metadata only. write_bytes may get smaller than 1269 * requested here. 1270 */ 1271 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1272 &write_bytes, nowait); 1273 if (can_nocow < 0) 1274 ret = can_nocow; 1275 if (can_nocow > 0) 1276 ret = 0; 1277 if (ret) 1278 break; 1279 only_release_metadata = true; 1280 } 1281 1282 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1283 WARN_ON(num_pages > nrptrs); 1284 reserve_bytes = round_up(write_bytes + sector_offset, 1285 fs_info->sectorsize); 1286 WARN_ON(reserve_bytes == 0); 1287 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1288 reserve_bytes, 1289 reserve_bytes, nowait); 1290 if (ret) { 1291 if (!only_release_metadata) 1292 btrfs_free_reserved_data_space(BTRFS_I(inode), 1293 data_reserved, pos, 1294 write_bytes); 1295 else 1296 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1297 1298 if (nowait && ret == -ENOSPC) 1299 ret = -EAGAIN; 1300 break; 1301 } 1302 1303 release_bytes = reserve_bytes; 1304 again: 1305 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags); 1306 if (ret) { 1307 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1308 break; 1309 } 1310 1311 /* 1312 * This is going to setup the pages array with the number of 1313 * pages we want, so we don't really need to worry about the 1314 * contents of pages from loop to loop 1315 */ 1316 ret = prepare_pages(inode, pages, num_pages, 1317 pos, write_bytes, force_page_uptodate, false); 1318 if (ret) { 1319 btrfs_delalloc_release_extents(BTRFS_I(inode), 1320 reserve_bytes); 1321 break; 1322 } 1323 1324 extents_locked = lock_and_cleanup_extent_if_need( 1325 BTRFS_I(inode), pages, 1326 num_pages, pos, write_bytes, &lockstart, 1327 &lockend, nowait, &cached_state); 1328 if (extents_locked < 0) { 1329 if (!nowait && extents_locked == -EAGAIN) 1330 goto again; 1331 1332 btrfs_delalloc_release_extents(BTRFS_I(inode), 1333 reserve_bytes); 1334 ret = extents_locked; 1335 break; 1336 } 1337 1338 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1339 1340 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1341 dirty_sectors = round_up(copied + sector_offset, 1342 fs_info->sectorsize); 1343 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1344 1345 /* 1346 * if we have trouble faulting in the pages, fall 1347 * back to one page at a time 1348 */ 1349 if (copied < write_bytes) 1350 nrptrs = 1; 1351 1352 if (copied == 0) { 1353 force_page_uptodate = true; 1354 dirty_sectors = 0; 1355 dirty_pages = 0; 1356 } else { 1357 force_page_uptodate = false; 1358 dirty_pages = DIV_ROUND_UP(copied + offset, 1359 PAGE_SIZE); 1360 } 1361 1362 if (num_sectors > dirty_sectors) { 1363 /* release everything except the sectors we dirtied */ 1364 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1365 if (only_release_metadata) { 1366 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1367 release_bytes, true); 1368 } else { 1369 u64 __pos; 1370 1371 __pos = round_down(pos, 1372 fs_info->sectorsize) + 1373 (dirty_pages << PAGE_SHIFT); 1374 btrfs_delalloc_release_space(BTRFS_I(inode), 1375 data_reserved, __pos, 1376 release_bytes, true); 1377 } 1378 } 1379 1380 release_bytes = round_up(copied + sector_offset, 1381 fs_info->sectorsize); 1382 1383 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1384 dirty_pages, pos, copied, 1385 &cached_state, only_release_metadata); 1386 1387 /* 1388 * If we have not locked the extent range, because the range's 1389 * start offset is >= i_size, we might still have a non-NULL 1390 * cached extent state, acquired while marking the extent range 1391 * as delalloc through btrfs_dirty_pages(). Therefore free any 1392 * possible cached extent state to avoid a memory leak. 1393 */ 1394 if (extents_locked) 1395 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 1396 lockend, &cached_state); 1397 else 1398 free_extent_state(cached_state); 1399 1400 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1401 if (ret) { 1402 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1403 break; 1404 } 1405 1406 release_bytes = 0; 1407 if (only_release_metadata) 1408 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1409 1410 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1411 1412 cond_resched(); 1413 1414 pos += copied; 1415 num_written += copied; 1416 } 1417 1418 kfree(pages); 1419 1420 if (release_bytes) { 1421 if (only_release_metadata) { 1422 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1423 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1424 release_bytes, true); 1425 } else { 1426 btrfs_delalloc_release_space(BTRFS_I(inode), 1427 data_reserved, 1428 round_down(pos, fs_info->sectorsize), 1429 release_bytes, true); 1430 } 1431 } 1432 1433 extent_changeset_free(data_reserved); 1434 if (num_written > 0) { 1435 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1436 iocb->ki_pos += num_written; 1437 } 1438 out: 1439 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1440 return num_written ? num_written : ret; 1441 } 1442 1443 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1444 const struct iov_iter *iter, loff_t offset) 1445 { 1446 const u32 blocksize_mask = fs_info->sectorsize - 1; 1447 1448 if (offset & blocksize_mask) 1449 return -EINVAL; 1450 1451 if (iov_iter_alignment(iter) & blocksize_mask) 1452 return -EINVAL; 1453 1454 return 0; 1455 } 1456 1457 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1458 { 1459 struct file *file = iocb->ki_filp; 1460 struct inode *inode = file_inode(file); 1461 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1462 loff_t pos; 1463 ssize_t written = 0; 1464 ssize_t written_buffered; 1465 size_t prev_left = 0; 1466 loff_t endbyte; 1467 ssize_t err; 1468 unsigned int ilock_flags = 0; 1469 struct iomap_dio *dio; 1470 1471 if (iocb->ki_flags & IOCB_NOWAIT) 1472 ilock_flags |= BTRFS_ILOCK_TRY; 1473 1474 /* 1475 * If the write DIO is within EOF, use a shared lock and also only if 1476 * security bits will likely not be dropped by file_remove_privs() called 1477 * from btrfs_write_check(). Either will need to be rechecked after the 1478 * lock was acquired. 1479 */ 1480 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode)) 1481 ilock_flags |= BTRFS_ILOCK_SHARED; 1482 1483 relock: 1484 err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1485 if (err < 0) 1486 return err; 1487 1488 /* Shared lock cannot be used with security bits set. */ 1489 if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) { 1490 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1491 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1492 goto relock; 1493 } 1494 1495 err = generic_write_checks(iocb, from); 1496 if (err <= 0) { 1497 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1498 return err; 1499 } 1500 1501 err = btrfs_write_check(iocb, from, err); 1502 if (err < 0) { 1503 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1504 goto out; 1505 } 1506 1507 pos = iocb->ki_pos; 1508 /* 1509 * Re-check since file size may have changed just before taking the 1510 * lock or pos may have changed because of O_APPEND in generic_write_check() 1511 */ 1512 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1513 pos + iov_iter_count(from) > i_size_read(inode)) { 1514 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1515 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1516 goto relock; 1517 } 1518 1519 if (check_direct_IO(fs_info, from, pos)) { 1520 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1521 goto buffered; 1522 } 1523 1524 /* 1525 * The iov_iter can be mapped to the same file range we are writing to. 1526 * If that's the case, then we will deadlock in the iomap code, because 1527 * it first calls our callback btrfs_dio_iomap_begin(), which will create 1528 * an ordered extent, and after that it will fault in the pages that the 1529 * iov_iter refers to. During the fault in we end up in the readahead 1530 * pages code (starting at btrfs_readahead()), which will lock the range, 1531 * find that ordered extent and then wait for it to complete (at 1532 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since 1533 * obviously the ordered extent can never complete as we didn't submit 1534 * yet the respective bio(s). This always happens when the buffer is 1535 * memory mapped to the same file range, since the iomap DIO code always 1536 * invalidates pages in the target file range (after starting and waiting 1537 * for any writeback). 1538 * 1539 * So here we disable page faults in the iov_iter and then retry if we 1540 * got -EFAULT, faulting in the pages before the retry. 1541 */ 1542 from->nofault = true; 1543 dio = btrfs_dio_write(iocb, from, written); 1544 from->nofault = false; 1545 1546 /* 1547 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync 1548 * iocb, and that needs to lock the inode. So unlock it before calling 1549 * iomap_dio_complete() to avoid a deadlock. 1550 */ 1551 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1552 1553 if (IS_ERR_OR_NULL(dio)) 1554 err = PTR_ERR_OR_ZERO(dio); 1555 else 1556 err = iomap_dio_complete(dio); 1557 1558 /* No increment (+=) because iomap returns a cumulative value. */ 1559 if (err > 0) 1560 written = err; 1561 1562 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) { 1563 const size_t left = iov_iter_count(from); 1564 /* 1565 * We have more data left to write. Try to fault in as many as 1566 * possible of the remainder pages and retry. We do this without 1567 * releasing and locking again the inode, to prevent races with 1568 * truncate. 1569 * 1570 * Also, in case the iov refers to pages in the file range of the 1571 * file we want to write to (due to a mmap), we could enter an 1572 * infinite loop if we retry after faulting the pages in, since 1573 * iomap will invalidate any pages in the range early on, before 1574 * it tries to fault in the pages of the iov. So we keep track of 1575 * how much was left of iov in the previous EFAULT and fallback 1576 * to buffered IO in case we haven't made any progress. 1577 */ 1578 if (left == prev_left) { 1579 err = -ENOTBLK; 1580 } else { 1581 fault_in_iov_iter_readable(from, left); 1582 prev_left = left; 1583 goto relock; 1584 } 1585 } 1586 1587 /* 1588 * If 'err' is -ENOTBLK or we have not written all data, then it means 1589 * we must fallback to buffered IO. 1590 */ 1591 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from)) 1592 goto out; 1593 1594 buffered: 1595 /* 1596 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller 1597 * it must retry the operation in a context where blocking is acceptable, 1598 * because even if we end up not blocking during the buffered IO attempt 1599 * below, we will block when flushing and waiting for the IO. 1600 */ 1601 if (iocb->ki_flags & IOCB_NOWAIT) { 1602 err = -EAGAIN; 1603 goto out; 1604 } 1605 1606 pos = iocb->ki_pos; 1607 written_buffered = btrfs_buffered_write(iocb, from); 1608 if (written_buffered < 0) { 1609 err = written_buffered; 1610 goto out; 1611 } 1612 /* 1613 * Ensure all data is persisted. We want the next direct IO read to be 1614 * able to read what was just written. 1615 */ 1616 endbyte = pos + written_buffered - 1; 1617 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1618 if (err) 1619 goto out; 1620 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1621 if (err) 1622 goto out; 1623 written += written_buffered; 1624 iocb->ki_pos = pos + written_buffered; 1625 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1626 endbyte >> PAGE_SHIFT); 1627 out: 1628 return err < 0 ? err : written; 1629 } 1630 1631 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 1632 const struct btrfs_ioctl_encoded_io_args *encoded) 1633 { 1634 struct file *file = iocb->ki_filp; 1635 struct inode *inode = file_inode(file); 1636 loff_t count; 1637 ssize_t ret; 1638 1639 btrfs_inode_lock(BTRFS_I(inode), 0); 1640 count = encoded->len; 1641 ret = generic_write_checks_count(iocb, &count); 1642 if (ret == 0 && count != encoded->len) { 1643 /* 1644 * The write got truncated by generic_write_checks_count(). We 1645 * can't do a partial encoded write. 1646 */ 1647 ret = -EFBIG; 1648 } 1649 if (ret || encoded->len == 0) 1650 goto out; 1651 1652 ret = btrfs_write_check(iocb, from, encoded->len); 1653 if (ret < 0) 1654 goto out; 1655 1656 ret = btrfs_do_encoded_write(iocb, from, encoded); 1657 out: 1658 btrfs_inode_unlock(BTRFS_I(inode), 0); 1659 return ret; 1660 } 1661 1662 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 1663 const struct btrfs_ioctl_encoded_io_args *encoded) 1664 { 1665 struct file *file = iocb->ki_filp; 1666 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1667 ssize_t num_written, num_sync; 1668 1669 /* 1670 * If the fs flips readonly due to some impossible error, although we 1671 * have opened a file as writable, we have to stop this write operation 1672 * to ensure consistency. 1673 */ 1674 if (BTRFS_FS_ERROR(inode->root->fs_info)) 1675 return -EROFS; 1676 1677 if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) 1678 return -EOPNOTSUPP; 1679 1680 if (encoded) { 1681 num_written = btrfs_encoded_write(iocb, from, encoded); 1682 num_sync = encoded->len; 1683 } else if (iocb->ki_flags & IOCB_DIRECT) { 1684 num_written = btrfs_direct_write(iocb, from); 1685 num_sync = num_written; 1686 } else { 1687 num_written = btrfs_buffered_write(iocb, from); 1688 num_sync = num_written; 1689 } 1690 1691 btrfs_set_inode_last_sub_trans(inode); 1692 1693 if (num_sync > 0) { 1694 num_sync = generic_write_sync(iocb, num_sync); 1695 if (num_sync < 0) 1696 num_written = num_sync; 1697 } 1698 1699 return num_written; 1700 } 1701 1702 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1703 { 1704 return btrfs_do_write_iter(iocb, from, NULL); 1705 } 1706 1707 int btrfs_release_file(struct inode *inode, struct file *filp) 1708 { 1709 struct btrfs_file_private *private = filp->private_data; 1710 1711 if (private) { 1712 kfree(private->filldir_buf); 1713 free_extent_state(private->llseek_cached_state); 1714 kfree(private); 1715 filp->private_data = NULL; 1716 } 1717 1718 /* 1719 * Set by setattr when we are about to truncate a file from a non-zero 1720 * size to a zero size. This tries to flush down new bytes that may 1721 * have been written if the application were using truncate to replace 1722 * a file in place. 1723 */ 1724 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 1725 &BTRFS_I(inode)->runtime_flags)) 1726 filemap_flush(inode->i_mapping); 1727 return 0; 1728 } 1729 1730 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 1731 { 1732 int ret; 1733 struct blk_plug plug; 1734 1735 /* 1736 * This is only called in fsync, which would do synchronous writes, so 1737 * a plug can merge adjacent IOs as much as possible. Esp. in case of 1738 * multiple disks using raid profile, a large IO can be split to 1739 * several segments of stripe length (currently 64K). 1740 */ 1741 blk_start_plug(&plug); 1742 ret = btrfs_fdatawrite_range(inode, start, end); 1743 blk_finish_plug(&plug); 1744 1745 return ret; 1746 } 1747 1748 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 1749 { 1750 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 1751 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1752 1753 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) && 1754 list_empty(&ctx->ordered_extents)) 1755 return true; 1756 1757 /* 1758 * If we are doing a fast fsync we can not bail out if the inode's 1759 * last_trans is <= then the last committed transaction, because we only 1760 * update the last_trans of the inode during ordered extent completion, 1761 * and for a fast fsync we don't wait for that, we only wait for the 1762 * writeback to complete. 1763 */ 1764 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) && 1765 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 1766 list_empty(&ctx->ordered_extents))) 1767 return true; 1768 1769 return false; 1770 } 1771 1772 /* 1773 * fsync call for both files and directories. This logs the inode into 1774 * the tree log instead of forcing full commits whenever possible. 1775 * 1776 * It needs to call filemap_fdatawait so that all ordered extent updates are 1777 * in the metadata btree are up to date for copying to the log. 1778 * 1779 * It drops the inode mutex before doing the tree log commit. This is an 1780 * important optimization for directories because holding the mutex prevents 1781 * new operations on the dir while we write to disk. 1782 */ 1783 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1784 { 1785 struct dentry *dentry = file_dentry(file); 1786 struct inode *inode = d_inode(dentry); 1787 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1788 struct btrfs_root *root = BTRFS_I(inode)->root; 1789 struct btrfs_trans_handle *trans; 1790 struct btrfs_log_ctx ctx; 1791 int ret = 0, err; 1792 u64 len; 1793 bool full_sync; 1794 1795 trace_btrfs_sync_file(file, datasync); 1796 1797 btrfs_init_log_ctx(&ctx, inode); 1798 1799 /* 1800 * Always set the range to a full range, otherwise we can get into 1801 * several problems, from missing file extent items to represent holes 1802 * when not using the NO_HOLES feature, to log tree corruption due to 1803 * races between hole detection during logging and completion of ordered 1804 * extents outside the range, to missing checksums due to ordered extents 1805 * for which we flushed only a subset of their pages. 1806 */ 1807 start = 0; 1808 end = LLONG_MAX; 1809 len = (u64)LLONG_MAX + 1; 1810 1811 /* 1812 * We write the dirty pages in the range and wait until they complete 1813 * out of the ->i_mutex. If so, we can flush the dirty pages by 1814 * multi-task, and make the performance up. See 1815 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1816 */ 1817 ret = start_ordered_ops(inode, start, end); 1818 if (ret) 1819 goto out; 1820 1821 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1822 1823 atomic_inc(&root->log_batch); 1824 1825 /* 1826 * Before we acquired the inode's lock and the mmap lock, someone may 1827 * have dirtied more pages in the target range. We need to make sure 1828 * that writeback for any such pages does not start while we are logging 1829 * the inode, because if it does, any of the following might happen when 1830 * we are not doing a full inode sync: 1831 * 1832 * 1) We log an extent after its writeback finishes but before its 1833 * checksums are added to the csum tree, leading to -EIO errors 1834 * when attempting to read the extent after a log replay. 1835 * 1836 * 2) We can end up logging an extent before its writeback finishes. 1837 * Therefore after the log replay we will have a file extent item 1838 * pointing to an unwritten extent (and no data checksums as well). 1839 * 1840 * So trigger writeback for any eventual new dirty pages and then we 1841 * wait for all ordered extents to complete below. 1842 */ 1843 ret = start_ordered_ops(inode, start, end); 1844 if (ret) { 1845 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1846 goto out; 1847 } 1848 1849 /* 1850 * Always check for the full sync flag while holding the inode's lock, 1851 * to avoid races with other tasks. The flag must be either set all the 1852 * time during logging or always off all the time while logging. 1853 * We check the flag here after starting delalloc above, because when 1854 * running delalloc the full sync flag may be set if we need to drop 1855 * extra extent map ranges due to temporary memory allocation failures. 1856 */ 1857 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1858 &BTRFS_I(inode)->runtime_flags); 1859 1860 /* 1861 * We have to do this here to avoid the priority inversion of waiting on 1862 * IO of a lower priority task while holding a transaction open. 1863 * 1864 * For a full fsync we wait for the ordered extents to complete while 1865 * for a fast fsync we wait just for writeback to complete, and then 1866 * attach the ordered extents to the transaction so that a transaction 1867 * commit waits for their completion, to avoid data loss if we fsync, 1868 * the current transaction commits before the ordered extents complete 1869 * and a power failure happens right after that. 1870 * 1871 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 1872 * logical address recorded in the ordered extent may change. We need 1873 * to wait for the IO to stabilize the logical address. 1874 */ 1875 if (full_sync || btrfs_is_zoned(fs_info)) { 1876 ret = btrfs_wait_ordered_range(inode, start, len); 1877 } else { 1878 /* 1879 * Get our ordered extents as soon as possible to avoid doing 1880 * checksum lookups in the csum tree, and use instead the 1881 * checksums attached to the ordered extents. 1882 */ 1883 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 1884 &ctx.ordered_extents); 1885 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 1886 } 1887 1888 if (ret) 1889 goto out_release_extents; 1890 1891 atomic_inc(&root->log_batch); 1892 1893 if (skip_inode_logging(&ctx)) { 1894 /* 1895 * We've had everything committed since the last time we were 1896 * modified so clear this flag in case it was set for whatever 1897 * reason, it's no longer relevant. 1898 */ 1899 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1900 &BTRFS_I(inode)->runtime_flags); 1901 /* 1902 * An ordered extent might have started before and completed 1903 * already with io errors, in which case the inode was not 1904 * updated and we end up here. So check the inode's mapping 1905 * for any errors that might have happened since we last 1906 * checked called fsync. 1907 */ 1908 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 1909 goto out_release_extents; 1910 } 1911 1912 /* 1913 * We use start here because we will need to wait on the IO to complete 1914 * in btrfs_sync_log, which could require joining a transaction (for 1915 * example checking cross references in the nocow path). If we use join 1916 * here we could get into a situation where we're waiting on IO to 1917 * happen that is blocked on a transaction trying to commit. With start 1918 * we inc the extwriter counter, so we wait for all extwriters to exit 1919 * before we start blocking joiners. This comment is to keep somebody 1920 * from thinking they are super smart and changing this to 1921 * btrfs_join_transaction *cough*Josef*cough*. 1922 */ 1923 trans = btrfs_start_transaction(root, 0); 1924 if (IS_ERR(trans)) { 1925 ret = PTR_ERR(trans); 1926 goto out_release_extents; 1927 } 1928 trans->in_fsync = true; 1929 1930 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 1931 btrfs_release_log_ctx_extents(&ctx); 1932 if (ret < 0) { 1933 /* Fallthrough and commit/free transaction. */ 1934 ret = BTRFS_LOG_FORCE_COMMIT; 1935 } 1936 1937 /* we've logged all the items and now have a consistent 1938 * version of the file in the log. It is possible that 1939 * someone will come in and modify the file, but that's 1940 * fine because the log is consistent on disk, and we 1941 * have references to all of the file's extents 1942 * 1943 * It is possible that someone will come in and log the 1944 * file again, but that will end up using the synchronization 1945 * inside btrfs_sync_log to keep things safe. 1946 */ 1947 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1948 1949 if (ret == BTRFS_NO_LOG_SYNC) { 1950 ret = btrfs_end_transaction(trans); 1951 goto out; 1952 } 1953 1954 /* We successfully logged the inode, attempt to sync the log. */ 1955 if (!ret) { 1956 ret = btrfs_sync_log(trans, root, &ctx); 1957 if (!ret) { 1958 ret = btrfs_end_transaction(trans); 1959 goto out; 1960 } 1961 } 1962 1963 /* 1964 * At this point we need to commit the transaction because we had 1965 * btrfs_need_log_full_commit() or some other error. 1966 * 1967 * If we didn't do a full sync we have to stop the trans handle, wait on 1968 * the ordered extents, start it again and commit the transaction. If 1969 * we attempt to wait on the ordered extents here we could deadlock with 1970 * something like fallocate() that is holding the extent lock trying to 1971 * start a transaction while some other thread is trying to commit the 1972 * transaction while we (fsync) are currently holding the transaction 1973 * open. 1974 */ 1975 if (!full_sync) { 1976 ret = btrfs_end_transaction(trans); 1977 if (ret) 1978 goto out; 1979 ret = btrfs_wait_ordered_range(inode, start, len); 1980 if (ret) 1981 goto out; 1982 1983 /* 1984 * This is safe to use here because we're only interested in 1985 * making sure the transaction that had the ordered extents is 1986 * committed. We aren't waiting on anything past this point, 1987 * we're purely getting the transaction and committing it. 1988 */ 1989 trans = btrfs_attach_transaction_barrier(root); 1990 if (IS_ERR(trans)) { 1991 ret = PTR_ERR(trans); 1992 1993 /* 1994 * We committed the transaction and there's no currently 1995 * running transaction, this means everything we care 1996 * about made it to disk and we are done. 1997 */ 1998 if (ret == -ENOENT) 1999 ret = 0; 2000 goto out; 2001 } 2002 } 2003 2004 ret = btrfs_commit_transaction(trans); 2005 out: 2006 ASSERT(list_empty(&ctx.list)); 2007 ASSERT(list_empty(&ctx.conflict_inodes)); 2008 err = file_check_and_advance_wb_err(file); 2009 if (!ret) 2010 ret = err; 2011 return ret > 0 ? -EIO : ret; 2012 2013 out_release_extents: 2014 btrfs_release_log_ctx_extents(&ctx); 2015 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2016 goto out; 2017 } 2018 2019 static const struct vm_operations_struct btrfs_file_vm_ops = { 2020 .fault = filemap_fault, 2021 .map_pages = filemap_map_pages, 2022 .page_mkwrite = btrfs_page_mkwrite, 2023 }; 2024 2025 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2026 { 2027 struct address_space *mapping = filp->f_mapping; 2028 2029 if (!mapping->a_ops->read_folio) 2030 return -ENOEXEC; 2031 2032 file_accessed(filp); 2033 vma->vm_ops = &btrfs_file_vm_ops; 2034 2035 return 0; 2036 } 2037 2038 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2039 int slot, u64 start, u64 end) 2040 { 2041 struct btrfs_file_extent_item *fi; 2042 struct btrfs_key key; 2043 2044 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2045 return 0; 2046 2047 btrfs_item_key_to_cpu(leaf, &key, slot); 2048 if (key.objectid != btrfs_ino(inode) || 2049 key.type != BTRFS_EXTENT_DATA_KEY) 2050 return 0; 2051 2052 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2053 2054 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2055 return 0; 2056 2057 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2058 return 0; 2059 2060 if (key.offset == end) 2061 return 1; 2062 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2063 return 1; 2064 return 0; 2065 } 2066 2067 static int fill_holes(struct btrfs_trans_handle *trans, 2068 struct btrfs_inode *inode, 2069 struct btrfs_path *path, u64 offset, u64 end) 2070 { 2071 struct btrfs_fs_info *fs_info = trans->fs_info; 2072 struct btrfs_root *root = inode->root; 2073 struct extent_buffer *leaf; 2074 struct btrfs_file_extent_item *fi; 2075 struct extent_map *hole_em; 2076 struct btrfs_key key; 2077 int ret; 2078 2079 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2080 goto out; 2081 2082 key.objectid = btrfs_ino(inode); 2083 key.type = BTRFS_EXTENT_DATA_KEY; 2084 key.offset = offset; 2085 2086 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2087 if (ret <= 0) { 2088 /* 2089 * We should have dropped this offset, so if we find it then 2090 * something has gone horribly wrong. 2091 */ 2092 if (ret == 0) 2093 ret = -EINVAL; 2094 return ret; 2095 } 2096 2097 leaf = path->nodes[0]; 2098 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2099 u64 num_bytes; 2100 2101 path->slots[0]--; 2102 fi = btrfs_item_ptr(leaf, path->slots[0], 2103 struct btrfs_file_extent_item); 2104 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2105 end - offset; 2106 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2107 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2108 btrfs_set_file_extent_offset(leaf, fi, 0); 2109 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2110 btrfs_mark_buffer_dirty(trans, leaf); 2111 goto out; 2112 } 2113 2114 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2115 u64 num_bytes; 2116 2117 key.offset = offset; 2118 btrfs_set_item_key_safe(trans, path, &key); 2119 fi = btrfs_item_ptr(leaf, path->slots[0], 2120 struct btrfs_file_extent_item); 2121 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2122 offset; 2123 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2124 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2125 btrfs_set_file_extent_offset(leaf, fi, 0); 2126 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2127 btrfs_mark_buffer_dirty(trans, leaf); 2128 goto out; 2129 } 2130 btrfs_release_path(path); 2131 2132 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, 2133 end - offset); 2134 if (ret) 2135 return ret; 2136 2137 out: 2138 btrfs_release_path(path); 2139 2140 hole_em = alloc_extent_map(); 2141 if (!hole_em) { 2142 btrfs_drop_extent_map_range(inode, offset, end - 1, false); 2143 btrfs_set_inode_full_sync(inode); 2144 } else { 2145 hole_em->start = offset; 2146 hole_em->len = end - offset; 2147 hole_em->ram_bytes = hole_em->len; 2148 hole_em->orig_start = offset; 2149 2150 hole_em->block_start = EXTENT_MAP_HOLE; 2151 hole_em->block_len = 0; 2152 hole_em->orig_block_len = 0; 2153 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2154 hole_em->generation = trans->transid; 2155 2156 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 2157 free_extent_map(hole_em); 2158 if (ret) 2159 btrfs_set_inode_full_sync(inode); 2160 } 2161 2162 return 0; 2163 } 2164 2165 /* 2166 * Find a hole extent on given inode and change start/len to the end of hole 2167 * extent.(hole/vacuum extent whose em->start <= start && 2168 * em->start + em->len > start) 2169 * When a hole extent is found, return 1 and modify start/len. 2170 */ 2171 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2172 { 2173 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2174 struct extent_map *em; 2175 int ret = 0; 2176 2177 em = btrfs_get_extent(inode, NULL, 0, 2178 round_down(*start, fs_info->sectorsize), 2179 round_up(*len, fs_info->sectorsize)); 2180 if (IS_ERR(em)) 2181 return PTR_ERR(em); 2182 2183 /* Hole or vacuum extent(only exists in no-hole mode) */ 2184 if (em->block_start == EXTENT_MAP_HOLE) { 2185 ret = 1; 2186 *len = em->start + em->len > *start + *len ? 2187 0 : *start + *len - em->start - em->len; 2188 *start = em->start + em->len; 2189 } 2190 free_extent_map(em); 2191 return ret; 2192 } 2193 2194 static void btrfs_punch_hole_lock_range(struct inode *inode, 2195 const u64 lockstart, 2196 const u64 lockend, 2197 struct extent_state **cached_state) 2198 { 2199 /* 2200 * For subpage case, if the range is not at page boundary, we could 2201 * have pages at the leading/tailing part of the range. 2202 * This could lead to dead loop since filemap_range_has_page() 2203 * will always return true. 2204 * So here we need to do extra page alignment for 2205 * filemap_range_has_page(). 2206 */ 2207 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2208 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2209 2210 while (1) { 2211 truncate_pagecache_range(inode, lockstart, lockend); 2212 2213 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2214 cached_state); 2215 /* 2216 * We can't have ordered extents in the range, nor dirty/writeback 2217 * pages, because we have locked the inode's VFS lock in exclusive 2218 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2219 * we have flushed all delalloc in the range and we have waited 2220 * for any ordered extents in the range to complete. 2221 * We can race with anyone reading pages from this range, so after 2222 * locking the range check if we have pages in the range, and if 2223 * we do, unlock the range and retry. 2224 */ 2225 if (!filemap_range_has_page(inode->i_mapping, page_lockstart, 2226 page_lockend)) 2227 break; 2228 2229 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2230 cached_state); 2231 } 2232 2233 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2234 } 2235 2236 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2237 struct btrfs_inode *inode, 2238 struct btrfs_path *path, 2239 struct btrfs_replace_extent_info *extent_info, 2240 const u64 replace_len, 2241 const u64 bytes_to_drop) 2242 { 2243 struct btrfs_fs_info *fs_info = trans->fs_info; 2244 struct btrfs_root *root = inode->root; 2245 struct btrfs_file_extent_item *extent; 2246 struct extent_buffer *leaf; 2247 struct btrfs_key key; 2248 int slot; 2249 struct btrfs_ref ref = { 0 }; 2250 int ret; 2251 2252 if (replace_len == 0) 2253 return 0; 2254 2255 if (extent_info->disk_offset == 0 && 2256 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2257 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2258 return 0; 2259 } 2260 2261 key.objectid = btrfs_ino(inode); 2262 key.type = BTRFS_EXTENT_DATA_KEY; 2263 key.offset = extent_info->file_offset; 2264 ret = btrfs_insert_empty_item(trans, root, path, &key, 2265 sizeof(struct btrfs_file_extent_item)); 2266 if (ret) 2267 return ret; 2268 leaf = path->nodes[0]; 2269 slot = path->slots[0]; 2270 write_extent_buffer(leaf, extent_info->extent_buf, 2271 btrfs_item_ptr_offset(leaf, slot), 2272 sizeof(struct btrfs_file_extent_item)); 2273 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2274 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2275 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2276 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2277 if (extent_info->is_new_extent) 2278 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2279 btrfs_mark_buffer_dirty(trans, leaf); 2280 btrfs_release_path(path); 2281 2282 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2283 replace_len); 2284 if (ret) 2285 return ret; 2286 2287 /* If it's a hole, nothing more needs to be done. */ 2288 if (extent_info->disk_offset == 0) { 2289 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2290 return 0; 2291 } 2292 2293 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2294 2295 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2296 key.objectid = extent_info->disk_offset; 2297 key.type = BTRFS_EXTENT_ITEM_KEY; 2298 key.offset = extent_info->disk_len; 2299 ret = btrfs_alloc_reserved_file_extent(trans, root, 2300 btrfs_ino(inode), 2301 extent_info->file_offset, 2302 extent_info->qgroup_reserved, 2303 &key); 2304 } else { 2305 u64 ref_offset; 2306 2307 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2308 extent_info->disk_offset, 2309 extent_info->disk_len, 0, 2310 root->root_key.objectid); 2311 ref_offset = extent_info->file_offset - extent_info->data_offset; 2312 btrfs_init_data_ref(&ref, root->root_key.objectid, 2313 btrfs_ino(inode), ref_offset, 0, false); 2314 ret = btrfs_inc_extent_ref(trans, &ref); 2315 } 2316 2317 extent_info->insertions++; 2318 2319 return ret; 2320 } 2321 2322 /* 2323 * The respective range must have been previously locked, as well as the inode. 2324 * The end offset is inclusive (last byte of the range). 2325 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2326 * the file range with an extent. 2327 * When not punching a hole, we don't want to end up in a state where we dropped 2328 * extents without inserting a new one, so we must abort the transaction to avoid 2329 * a corruption. 2330 */ 2331 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2332 struct btrfs_path *path, const u64 start, 2333 const u64 end, 2334 struct btrfs_replace_extent_info *extent_info, 2335 struct btrfs_trans_handle **trans_out) 2336 { 2337 struct btrfs_drop_extents_args drop_args = { 0 }; 2338 struct btrfs_root *root = inode->root; 2339 struct btrfs_fs_info *fs_info = root->fs_info; 2340 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2341 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2342 struct btrfs_trans_handle *trans = NULL; 2343 struct btrfs_block_rsv *rsv; 2344 unsigned int rsv_count; 2345 u64 cur_offset; 2346 u64 len = end - start; 2347 int ret = 0; 2348 2349 if (end <= start) 2350 return -EINVAL; 2351 2352 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2353 if (!rsv) { 2354 ret = -ENOMEM; 2355 goto out; 2356 } 2357 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2358 rsv->failfast = true; 2359 2360 /* 2361 * 1 - update the inode 2362 * 1 - removing the extents in the range 2363 * 1 - adding the hole extent if no_holes isn't set or if we are 2364 * replacing the range with a new extent 2365 */ 2366 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2367 rsv_count = 3; 2368 else 2369 rsv_count = 2; 2370 2371 trans = btrfs_start_transaction(root, rsv_count); 2372 if (IS_ERR(trans)) { 2373 ret = PTR_ERR(trans); 2374 trans = NULL; 2375 goto out_free; 2376 } 2377 2378 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2379 min_size, false); 2380 if (WARN_ON(ret)) 2381 goto out_trans; 2382 trans->block_rsv = rsv; 2383 2384 cur_offset = start; 2385 drop_args.path = path; 2386 drop_args.end = end + 1; 2387 drop_args.drop_cache = true; 2388 while (cur_offset < end) { 2389 drop_args.start = cur_offset; 2390 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2391 /* If we are punching a hole decrement the inode's byte count */ 2392 if (!extent_info) 2393 btrfs_update_inode_bytes(inode, 0, 2394 drop_args.bytes_found); 2395 if (ret != -ENOSPC) { 2396 /* 2397 * The only time we don't want to abort is if we are 2398 * attempting to clone a partial inline extent, in which 2399 * case we'll get EOPNOTSUPP. However if we aren't 2400 * clone we need to abort no matter what, because if we 2401 * got EOPNOTSUPP via prealloc then we messed up and 2402 * need to abort. 2403 */ 2404 if (ret && 2405 (ret != -EOPNOTSUPP || 2406 (extent_info && extent_info->is_new_extent))) 2407 btrfs_abort_transaction(trans, ret); 2408 break; 2409 } 2410 2411 trans->block_rsv = &fs_info->trans_block_rsv; 2412 2413 if (!extent_info && cur_offset < drop_args.drop_end && 2414 cur_offset < ino_size) { 2415 ret = fill_holes(trans, inode, path, cur_offset, 2416 drop_args.drop_end); 2417 if (ret) { 2418 /* 2419 * If we failed then we didn't insert our hole 2420 * entries for the area we dropped, so now the 2421 * fs is corrupted, so we must abort the 2422 * transaction. 2423 */ 2424 btrfs_abort_transaction(trans, ret); 2425 break; 2426 } 2427 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2428 /* 2429 * We are past the i_size here, but since we didn't 2430 * insert holes we need to clear the mapped area so we 2431 * know to not set disk_i_size in this area until a new 2432 * file extent is inserted here. 2433 */ 2434 ret = btrfs_inode_clear_file_extent_range(inode, 2435 cur_offset, 2436 drop_args.drop_end - cur_offset); 2437 if (ret) { 2438 /* 2439 * We couldn't clear our area, so we could 2440 * presumably adjust up and corrupt the fs, so 2441 * we need to abort. 2442 */ 2443 btrfs_abort_transaction(trans, ret); 2444 break; 2445 } 2446 } 2447 2448 if (extent_info && 2449 drop_args.drop_end > extent_info->file_offset) { 2450 u64 replace_len = drop_args.drop_end - 2451 extent_info->file_offset; 2452 2453 ret = btrfs_insert_replace_extent(trans, inode, path, 2454 extent_info, replace_len, 2455 drop_args.bytes_found); 2456 if (ret) { 2457 btrfs_abort_transaction(trans, ret); 2458 break; 2459 } 2460 extent_info->data_len -= replace_len; 2461 extent_info->data_offset += replace_len; 2462 extent_info->file_offset += replace_len; 2463 } 2464 2465 /* 2466 * We are releasing our handle on the transaction, balance the 2467 * dirty pages of the btree inode and flush delayed items, and 2468 * then get a new transaction handle, which may now point to a 2469 * new transaction in case someone else may have committed the 2470 * transaction we used to replace/drop file extent items. So 2471 * bump the inode's iversion and update mtime and ctime except 2472 * if we are called from a dedupe context. This is because a 2473 * power failure/crash may happen after the transaction is 2474 * committed and before we finish replacing/dropping all the 2475 * file extent items we need. 2476 */ 2477 inode_inc_iversion(&inode->vfs_inode); 2478 2479 if (!extent_info || extent_info->update_times) 2480 inode_set_mtime_to_ts(&inode->vfs_inode, 2481 inode_set_ctime_current(&inode->vfs_inode)); 2482 2483 ret = btrfs_update_inode(trans, inode); 2484 if (ret) 2485 break; 2486 2487 btrfs_end_transaction(trans); 2488 btrfs_btree_balance_dirty(fs_info); 2489 2490 trans = btrfs_start_transaction(root, rsv_count); 2491 if (IS_ERR(trans)) { 2492 ret = PTR_ERR(trans); 2493 trans = NULL; 2494 break; 2495 } 2496 2497 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2498 rsv, min_size, false); 2499 if (WARN_ON(ret)) 2500 break; 2501 trans->block_rsv = rsv; 2502 2503 cur_offset = drop_args.drop_end; 2504 len = end - cur_offset; 2505 if (!extent_info && len) { 2506 ret = find_first_non_hole(inode, &cur_offset, &len); 2507 if (unlikely(ret < 0)) 2508 break; 2509 if (ret && !len) { 2510 ret = 0; 2511 break; 2512 } 2513 } 2514 } 2515 2516 /* 2517 * If we were cloning, force the next fsync to be a full one since we 2518 * we replaced (or just dropped in the case of cloning holes when 2519 * NO_HOLES is enabled) file extent items and did not setup new extent 2520 * maps for the replacement extents (or holes). 2521 */ 2522 if (extent_info && !extent_info->is_new_extent) 2523 btrfs_set_inode_full_sync(inode); 2524 2525 if (ret) 2526 goto out_trans; 2527 2528 trans->block_rsv = &fs_info->trans_block_rsv; 2529 /* 2530 * If we are using the NO_HOLES feature we might have had already an 2531 * hole that overlaps a part of the region [lockstart, lockend] and 2532 * ends at (or beyond) lockend. Since we have no file extent items to 2533 * represent holes, drop_end can be less than lockend and so we must 2534 * make sure we have an extent map representing the existing hole (the 2535 * call to __btrfs_drop_extents() might have dropped the existing extent 2536 * map representing the existing hole), otherwise the fast fsync path 2537 * will not record the existence of the hole region 2538 * [existing_hole_start, lockend]. 2539 */ 2540 if (drop_args.drop_end <= end) 2541 drop_args.drop_end = end + 1; 2542 /* 2543 * Don't insert file hole extent item if it's for a range beyond eof 2544 * (because it's useless) or if it represents a 0 bytes range (when 2545 * cur_offset == drop_end). 2546 */ 2547 if (!extent_info && cur_offset < ino_size && 2548 cur_offset < drop_args.drop_end) { 2549 ret = fill_holes(trans, inode, path, cur_offset, 2550 drop_args.drop_end); 2551 if (ret) { 2552 /* Same comment as above. */ 2553 btrfs_abort_transaction(trans, ret); 2554 goto out_trans; 2555 } 2556 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2557 /* See the comment in the loop above for the reasoning here. */ 2558 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2559 drop_args.drop_end - cur_offset); 2560 if (ret) { 2561 btrfs_abort_transaction(trans, ret); 2562 goto out_trans; 2563 } 2564 2565 } 2566 if (extent_info) { 2567 ret = btrfs_insert_replace_extent(trans, inode, path, 2568 extent_info, extent_info->data_len, 2569 drop_args.bytes_found); 2570 if (ret) { 2571 btrfs_abort_transaction(trans, ret); 2572 goto out_trans; 2573 } 2574 } 2575 2576 out_trans: 2577 if (!trans) 2578 goto out_free; 2579 2580 trans->block_rsv = &fs_info->trans_block_rsv; 2581 if (ret) 2582 btrfs_end_transaction(trans); 2583 else 2584 *trans_out = trans; 2585 out_free: 2586 btrfs_free_block_rsv(fs_info, rsv); 2587 out: 2588 return ret; 2589 } 2590 2591 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2592 { 2593 struct inode *inode = file_inode(file); 2594 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2595 struct btrfs_root *root = BTRFS_I(inode)->root; 2596 struct extent_state *cached_state = NULL; 2597 struct btrfs_path *path; 2598 struct btrfs_trans_handle *trans = NULL; 2599 u64 lockstart; 2600 u64 lockend; 2601 u64 tail_start; 2602 u64 tail_len; 2603 u64 orig_start = offset; 2604 int ret = 0; 2605 bool same_block; 2606 u64 ino_size; 2607 bool truncated_block = false; 2608 bool updated_inode = false; 2609 2610 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2611 2612 ret = btrfs_wait_ordered_range(inode, offset, len); 2613 if (ret) 2614 goto out_only_mutex; 2615 2616 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2617 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2618 if (ret < 0) 2619 goto out_only_mutex; 2620 if (ret && !len) { 2621 /* Already in a large hole */ 2622 ret = 0; 2623 goto out_only_mutex; 2624 } 2625 2626 ret = file_modified(file); 2627 if (ret) 2628 goto out_only_mutex; 2629 2630 lockstart = round_up(offset, fs_info->sectorsize); 2631 lockend = round_down(offset + len, fs_info->sectorsize) - 1; 2632 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2633 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2634 /* 2635 * We needn't truncate any block which is beyond the end of the file 2636 * because we are sure there is no data there. 2637 */ 2638 /* 2639 * Only do this if we are in the same block and we aren't doing the 2640 * entire block. 2641 */ 2642 if (same_block && len < fs_info->sectorsize) { 2643 if (offset < ino_size) { 2644 truncated_block = true; 2645 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2646 0); 2647 } else { 2648 ret = 0; 2649 } 2650 goto out_only_mutex; 2651 } 2652 2653 /* zero back part of the first block */ 2654 if (offset < ino_size) { 2655 truncated_block = true; 2656 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2657 if (ret) { 2658 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2659 return ret; 2660 } 2661 } 2662 2663 /* Check the aligned pages after the first unaligned page, 2664 * if offset != orig_start, which means the first unaligned page 2665 * including several following pages are already in holes, 2666 * the extra check can be skipped */ 2667 if (offset == orig_start) { 2668 /* after truncate page, check hole again */ 2669 len = offset + len - lockstart; 2670 offset = lockstart; 2671 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2672 if (ret < 0) 2673 goto out_only_mutex; 2674 if (ret && !len) { 2675 ret = 0; 2676 goto out_only_mutex; 2677 } 2678 lockstart = offset; 2679 } 2680 2681 /* Check the tail unaligned part is in a hole */ 2682 tail_start = lockend + 1; 2683 tail_len = offset + len - tail_start; 2684 if (tail_len) { 2685 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2686 if (unlikely(ret < 0)) 2687 goto out_only_mutex; 2688 if (!ret) { 2689 /* zero the front end of the last page */ 2690 if (tail_start + tail_len < ino_size) { 2691 truncated_block = true; 2692 ret = btrfs_truncate_block(BTRFS_I(inode), 2693 tail_start + tail_len, 2694 0, 1); 2695 if (ret) 2696 goto out_only_mutex; 2697 } 2698 } 2699 } 2700 2701 if (lockend < lockstart) { 2702 ret = 0; 2703 goto out_only_mutex; 2704 } 2705 2706 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 2707 2708 path = btrfs_alloc_path(); 2709 if (!path) { 2710 ret = -ENOMEM; 2711 goto out; 2712 } 2713 2714 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 2715 lockend, NULL, &trans); 2716 btrfs_free_path(path); 2717 if (ret) 2718 goto out; 2719 2720 ASSERT(trans != NULL); 2721 inode_inc_iversion(inode); 2722 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2723 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2724 updated_inode = true; 2725 btrfs_end_transaction(trans); 2726 btrfs_btree_balance_dirty(fs_info); 2727 out: 2728 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2729 &cached_state); 2730 out_only_mutex: 2731 if (!updated_inode && truncated_block && !ret) { 2732 /* 2733 * If we only end up zeroing part of a page, we still need to 2734 * update the inode item, so that all the time fields are 2735 * updated as well as the necessary btrfs inode in memory fields 2736 * for detecting, at fsync time, if the inode isn't yet in the 2737 * log tree or it's there but not up to date. 2738 */ 2739 struct timespec64 now = inode_set_ctime_current(inode); 2740 2741 inode_inc_iversion(inode); 2742 inode_set_mtime_to_ts(inode, now); 2743 trans = btrfs_start_transaction(root, 1); 2744 if (IS_ERR(trans)) { 2745 ret = PTR_ERR(trans); 2746 } else { 2747 int ret2; 2748 2749 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2750 ret2 = btrfs_end_transaction(trans); 2751 if (!ret) 2752 ret = ret2; 2753 } 2754 } 2755 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2756 return ret; 2757 } 2758 2759 /* Helper structure to record which range is already reserved */ 2760 struct falloc_range { 2761 struct list_head list; 2762 u64 start; 2763 u64 len; 2764 }; 2765 2766 /* 2767 * Helper function to add falloc range 2768 * 2769 * Caller should have locked the larger range of extent containing 2770 * [start, len) 2771 */ 2772 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2773 { 2774 struct falloc_range *range = NULL; 2775 2776 if (!list_empty(head)) { 2777 /* 2778 * As fallocate iterates by bytenr order, we only need to check 2779 * the last range. 2780 */ 2781 range = list_last_entry(head, struct falloc_range, list); 2782 if (range->start + range->len == start) { 2783 range->len += len; 2784 return 0; 2785 } 2786 } 2787 2788 range = kmalloc(sizeof(*range), GFP_KERNEL); 2789 if (!range) 2790 return -ENOMEM; 2791 range->start = start; 2792 range->len = len; 2793 list_add_tail(&range->list, head); 2794 return 0; 2795 } 2796 2797 static int btrfs_fallocate_update_isize(struct inode *inode, 2798 const u64 end, 2799 const int mode) 2800 { 2801 struct btrfs_trans_handle *trans; 2802 struct btrfs_root *root = BTRFS_I(inode)->root; 2803 int ret; 2804 int ret2; 2805 2806 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2807 return 0; 2808 2809 trans = btrfs_start_transaction(root, 1); 2810 if (IS_ERR(trans)) 2811 return PTR_ERR(trans); 2812 2813 inode_set_ctime_current(inode); 2814 i_size_write(inode, end); 2815 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 2816 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2817 ret2 = btrfs_end_transaction(trans); 2818 2819 return ret ? ret : ret2; 2820 } 2821 2822 enum { 2823 RANGE_BOUNDARY_WRITTEN_EXTENT, 2824 RANGE_BOUNDARY_PREALLOC_EXTENT, 2825 RANGE_BOUNDARY_HOLE, 2826 }; 2827 2828 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 2829 u64 offset) 2830 { 2831 const u64 sectorsize = inode->root->fs_info->sectorsize; 2832 struct extent_map *em; 2833 int ret; 2834 2835 offset = round_down(offset, sectorsize); 2836 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); 2837 if (IS_ERR(em)) 2838 return PTR_ERR(em); 2839 2840 if (em->block_start == EXTENT_MAP_HOLE) 2841 ret = RANGE_BOUNDARY_HOLE; 2842 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2843 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 2844 else 2845 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 2846 2847 free_extent_map(em); 2848 return ret; 2849 } 2850 2851 static int btrfs_zero_range(struct inode *inode, 2852 loff_t offset, 2853 loff_t len, 2854 const int mode) 2855 { 2856 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2857 struct extent_map *em; 2858 struct extent_changeset *data_reserved = NULL; 2859 int ret; 2860 u64 alloc_hint = 0; 2861 const u64 sectorsize = fs_info->sectorsize; 2862 u64 alloc_start = round_down(offset, sectorsize); 2863 u64 alloc_end = round_up(offset + len, sectorsize); 2864 u64 bytes_to_reserve = 0; 2865 bool space_reserved = false; 2866 2867 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 2868 alloc_end - alloc_start); 2869 if (IS_ERR(em)) { 2870 ret = PTR_ERR(em); 2871 goto out; 2872 } 2873 2874 /* 2875 * Avoid hole punching and extent allocation for some cases. More cases 2876 * could be considered, but these are unlikely common and we keep things 2877 * as simple as possible for now. Also, intentionally, if the target 2878 * range contains one or more prealloc extents together with regular 2879 * extents and holes, we drop all the existing extents and allocate a 2880 * new prealloc extent, so that we get a larger contiguous disk extent. 2881 */ 2882 if (em->start <= alloc_start && 2883 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2884 const u64 em_end = em->start + em->len; 2885 2886 if (em_end >= offset + len) { 2887 /* 2888 * The whole range is already a prealloc extent, 2889 * do nothing except updating the inode's i_size if 2890 * needed. 2891 */ 2892 free_extent_map(em); 2893 ret = btrfs_fallocate_update_isize(inode, offset + len, 2894 mode); 2895 goto out; 2896 } 2897 /* 2898 * Part of the range is already a prealloc extent, so operate 2899 * only on the remaining part of the range. 2900 */ 2901 alloc_start = em_end; 2902 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 2903 len = offset + len - alloc_start; 2904 offset = alloc_start; 2905 alloc_hint = em->block_start + em->len; 2906 } 2907 free_extent_map(em); 2908 2909 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 2910 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 2911 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 2912 sectorsize); 2913 if (IS_ERR(em)) { 2914 ret = PTR_ERR(em); 2915 goto out; 2916 } 2917 2918 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 2919 free_extent_map(em); 2920 ret = btrfs_fallocate_update_isize(inode, offset + len, 2921 mode); 2922 goto out; 2923 } 2924 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 2925 free_extent_map(em); 2926 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2927 0); 2928 if (!ret) 2929 ret = btrfs_fallocate_update_isize(inode, 2930 offset + len, 2931 mode); 2932 return ret; 2933 } 2934 free_extent_map(em); 2935 alloc_start = round_down(offset, sectorsize); 2936 alloc_end = alloc_start + sectorsize; 2937 goto reserve_space; 2938 } 2939 2940 alloc_start = round_up(offset, sectorsize); 2941 alloc_end = round_down(offset + len, sectorsize); 2942 2943 /* 2944 * For unaligned ranges, check the pages at the boundaries, they might 2945 * map to an extent, in which case we need to partially zero them, or 2946 * they might map to a hole, in which case we need our allocation range 2947 * to cover them. 2948 */ 2949 if (!IS_ALIGNED(offset, sectorsize)) { 2950 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2951 offset); 2952 if (ret < 0) 2953 goto out; 2954 if (ret == RANGE_BOUNDARY_HOLE) { 2955 alloc_start = round_down(offset, sectorsize); 2956 ret = 0; 2957 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2958 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2959 if (ret) 2960 goto out; 2961 } else { 2962 ret = 0; 2963 } 2964 } 2965 2966 if (!IS_ALIGNED(offset + len, sectorsize)) { 2967 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 2968 offset + len); 2969 if (ret < 0) 2970 goto out; 2971 if (ret == RANGE_BOUNDARY_HOLE) { 2972 alloc_end = round_up(offset + len, sectorsize); 2973 ret = 0; 2974 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 2975 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 2976 0, 1); 2977 if (ret) 2978 goto out; 2979 } else { 2980 ret = 0; 2981 } 2982 } 2983 2984 reserve_space: 2985 if (alloc_start < alloc_end) { 2986 struct extent_state *cached_state = NULL; 2987 const u64 lockstart = alloc_start; 2988 const u64 lockend = alloc_end - 1; 2989 2990 bytes_to_reserve = alloc_end - alloc_start; 2991 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 2992 bytes_to_reserve); 2993 if (ret < 0) 2994 goto out; 2995 space_reserved = true; 2996 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 2997 &cached_state); 2998 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 2999 alloc_start, bytes_to_reserve); 3000 if (ret) { 3001 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 3002 lockend, &cached_state); 3003 goto out; 3004 } 3005 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3006 alloc_end - alloc_start, 3007 i_blocksize(inode), 3008 offset + len, &alloc_hint); 3009 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3010 &cached_state); 3011 /* btrfs_prealloc_file_range releases reserved space on error */ 3012 if (ret) { 3013 space_reserved = false; 3014 goto out; 3015 } 3016 } 3017 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3018 out: 3019 if (ret && space_reserved) 3020 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3021 alloc_start, bytes_to_reserve); 3022 extent_changeset_free(data_reserved); 3023 3024 return ret; 3025 } 3026 3027 static long btrfs_fallocate(struct file *file, int mode, 3028 loff_t offset, loff_t len) 3029 { 3030 struct inode *inode = file_inode(file); 3031 struct extent_state *cached_state = NULL; 3032 struct extent_changeset *data_reserved = NULL; 3033 struct falloc_range *range; 3034 struct falloc_range *tmp; 3035 LIST_HEAD(reserve_list); 3036 u64 cur_offset; 3037 u64 last_byte; 3038 u64 alloc_start; 3039 u64 alloc_end; 3040 u64 alloc_hint = 0; 3041 u64 locked_end; 3042 u64 actual_end = 0; 3043 u64 data_space_needed = 0; 3044 u64 data_space_reserved = 0; 3045 u64 qgroup_reserved = 0; 3046 struct extent_map *em; 3047 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; 3048 int ret; 3049 3050 /* Do not allow fallocate in ZONED mode */ 3051 if (btrfs_is_zoned(btrfs_sb(inode->i_sb))) 3052 return -EOPNOTSUPP; 3053 3054 alloc_start = round_down(offset, blocksize); 3055 alloc_end = round_up(offset + len, blocksize); 3056 cur_offset = alloc_start; 3057 3058 /* Make sure we aren't being give some crap mode */ 3059 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3060 FALLOC_FL_ZERO_RANGE)) 3061 return -EOPNOTSUPP; 3062 3063 if (mode & FALLOC_FL_PUNCH_HOLE) 3064 return btrfs_punch_hole(file, offset, len); 3065 3066 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3067 3068 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3069 ret = inode_newsize_ok(inode, offset + len); 3070 if (ret) 3071 goto out; 3072 } 3073 3074 ret = file_modified(file); 3075 if (ret) 3076 goto out; 3077 3078 /* 3079 * TODO: Move these two operations after we have checked 3080 * accurate reserved space, or fallocate can still fail but 3081 * with page truncated or size expanded. 3082 * 3083 * But that's a minor problem and won't do much harm BTW. 3084 */ 3085 if (alloc_start > inode->i_size) { 3086 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3087 alloc_start); 3088 if (ret) 3089 goto out; 3090 } else if (offset + len > inode->i_size) { 3091 /* 3092 * If we are fallocating from the end of the file onward we 3093 * need to zero out the end of the block if i_size lands in the 3094 * middle of a block. 3095 */ 3096 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3097 if (ret) 3098 goto out; 3099 } 3100 3101 /* 3102 * We have locked the inode at the VFS level (in exclusive mode) and we 3103 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3104 * locking the file range, flush all dealloc in the range and wait for 3105 * all ordered extents in the range to complete. After this we can lock 3106 * the file range and, due to the previous locking we did, we know there 3107 * can't be more delalloc or ordered extents in the range. 3108 */ 3109 ret = btrfs_wait_ordered_range(inode, alloc_start, 3110 alloc_end - alloc_start); 3111 if (ret) 3112 goto out; 3113 3114 if (mode & FALLOC_FL_ZERO_RANGE) { 3115 ret = btrfs_zero_range(inode, offset, len, mode); 3116 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3117 return ret; 3118 } 3119 3120 locked_end = alloc_end - 1; 3121 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3122 &cached_state); 3123 3124 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3125 3126 /* First, check if we exceed the qgroup limit */ 3127 while (cur_offset < alloc_end) { 3128 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3129 alloc_end - cur_offset); 3130 if (IS_ERR(em)) { 3131 ret = PTR_ERR(em); 3132 break; 3133 } 3134 last_byte = min(extent_map_end(em), alloc_end); 3135 actual_end = min_t(u64, extent_map_end(em), offset + len); 3136 last_byte = ALIGN(last_byte, blocksize); 3137 if (em->block_start == EXTENT_MAP_HOLE || 3138 (cur_offset >= inode->i_size && 3139 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3140 const u64 range_len = last_byte - cur_offset; 3141 3142 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3143 if (ret < 0) { 3144 free_extent_map(em); 3145 break; 3146 } 3147 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3148 &data_reserved, cur_offset, range_len); 3149 if (ret < 0) { 3150 free_extent_map(em); 3151 break; 3152 } 3153 qgroup_reserved += range_len; 3154 data_space_needed += range_len; 3155 } 3156 free_extent_map(em); 3157 cur_offset = last_byte; 3158 } 3159 3160 if (!ret && data_space_needed > 0) { 3161 /* 3162 * We are safe to reserve space here as we can't have delalloc 3163 * in the range, see above. 3164 */ 3165 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3166 data_space_needed); 3167 if (!ret) 3168 data_space_reserved = data_space_needed; 3169 } 3170 3171 /* 3172 * If ret is still 0, means we're OK to fallocate. 3173 * Or just cleanup the list and exit. 3174 */ 3175 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3176 if (!ret) { 3177 ret = btrfs_prealloc_file_range(inode, mode, 3178 range->start, 3179 range->len, i_blocksize(inode), 3180 offset + len, &alloc_hint); 3181 /* 3182 * btrfs_prealloc_file_range() releases space even 3183 * if it returns an error. 3184 */ 3185 data_space_reserved -= range->len; 3186 qgroup_reserved -= range->len; 3187 } else if (data_space_reserved > 0) { 3188 btrfs_free_reserved_data_space(BTRFS_I(inode), 3189 data_reserved, range->start, 3190 range->len); 3191 data_space_reserved -= range->len; 3192 qgroup_reserved -= range->len; 3193 } else if (qgroup_reserved > 0) { 3194 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3195 range->start, range->len, NULL); 3196 qgroup_reserved -= range->len; 3197 } 3198 list_del(&range->list); 3199 kfree(range); 3200 } 3201 if (ret < 0) 3202 goto out_unlock; 3203 3204 /* 3205 * We didn't need to allocate any more space, but we still extended the 3206 * size of the file so we need to update i_size and the inode item. 3207 */ 3208 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3209 out_unlock: 3210 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3211 &cached_state); 3212 out: 3213 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3214 extent_changeset_free(data_reserved); 3215 return ret; 3216 } 3217 3218 /* 3219 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range 3220 * that has unflushed and/or flushing delalloc. There might be other adjacent 3221 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps 3222 * looping while it gets adjacent subranges, and merging them together. 3223 */ 3224 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, 3225 struct extent_state **cached_state, 3226 bool *search_io_tree, 3227 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3228 { 3229 u64 len = end + 1 - start; 3230 u64 delalloc_len = 0; 3231 struct btrfs_ordered_extent *oe; 3232 u64 oe_start; 3233 u64 oe_end; 3234 3235 /* 3236 * Search the io tree first for EXTENT_DELALLOC. If we find any, it 3237 * means we have delalloc (dirty pages) for which writeback has not 3238 * started yet. 3239 */ 3240 if (*search_io_tree) { 3241 spin_lock(&inode->lock); 3242 if (inode->delalloc_bytes > 0) { 3243 spin_unlock(&inode->lock); 3244 *delalloc_start_ret = start; 3245 delalloc_len = count_range_bits(&inode->io_tree, 3246 delalloc_start_ret, end, 3247 len, EXTENT_DELALLOC, 1, 3248 cached_state); 3249 } else { 3250 spin_unlock(&inode->lock); 3251 } 3252 } 3253 3254 if (delalloc_len > 0) { 3255 /* 3256 * If delalloc was found then *delalloc_start_ret has a sector size 3257 * aligned value (rounded down). 3258 */ 3259 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; 3260 3261 if (*delalloc_start_ret == start) { 3262 /* Delalloc for the whole range, nothing more to do. */ 3263 if (*delalloc_end_ret == end) 3264 return true; 3265 /* Else trim our search range for ordered extents. */ 3266 start = *delalloc_end_ret + 1; 3267 len = end + 1 - start; 3268 } 3269 } else { 3270 /* No delalloc, future calls don't need to search again. */ 3271 *search_io_tree = false; 3272 } 3273 3274 /* 3275 * Now also check if there's any ordered extent in the range. 3276 * We do this because: 3277 * 3278 * 1) When delalloc is flushed, the file range is locked, we clear the 3279 * EXTENT_DELALLOC bit from the io tree and create an extent map and 3280 * an ordered extent for the write. So we might just have been called 3281 * after delalloc is flushed and before the ordered extent completes 3282 * and inserts the new file extent item in the subvolume's btree; 3283 * 3284 * 2) We may have an ordered extent created by flushing delalloc for a 3285 * subrange that starts before the subrange we found marked with 3286 * EXTENT_DELALLOC in the io tree. 3287 * 3288 * We could also use the extent map tree to find such delalloc that is 3289 * being flushed, but using the ordered extents tree is more efficient 3290 * because it's usually much smaller as ordered extents are removed from 3291 * the tree once they complete. With the extent maps, we mau have them 3292 * in the extent map tree for a very long time, and they were either 3293 * created by previous writes or loaded by read operations. 3294 */ 3295 oe = btrfs_lookup_first_ordered_range(inode, start, len); 3296 if (!oe) 3297 return (delalloc_len > 0); 3298 3299 /* The ordered extent may span beyond our search range. */ 3300 oe_start = max(oe->file_offset, start); 3301 oe_end = min(oe->file_offset + oe->num_bytes - 1, end); 3302 3303 btrfs_put_ordered_extent(oe); 3304 3305 /* Don't have unflushed delalloc, return the ordered extent range. */ 3306 if (delalloc_len == 0) { 3307 *delalloc_start_ret = oe_start; 3308 *delalloc_end_ret = oe_end; 3309 return true; 3310 } 3311 3312 /* 3313 * We have both unflushed delalloc (io_tree) and an ordered extent. 3314 * If the ranges are adjacent returned a combined range, otherwise 3315 * return the leftmost range. 3316 */ 3317 if (oe_start < *delalloc_start_ret) { 3318 if (oe_end < *delalloc_start_ret) 3319 *delalloc_end_ret = oe_end; 3320 *delalloc_start_ret = oe_start; 3321 } else if (*delalloc_end_ret + 1 == oe_start) { 3322 *delalloc_end_ret = oe_end; 3323 } 3324 3325 return true; 3326 } 3327 3328 /* 3329 * Check if there's delalloc in a given range. 3330 * 3331 * @inode: The inode. 3332 * @start: The start offset of the range. It does not need to be 3333 * sector size aligned. 3334 * @end: The end offset (inclusive value) of the search range. 3335 * It does not need to be sector size aligned. 3336 * @cached_state: Extent state record used for speeding up delalloc 3337 * searches in the inode's io_tree. Can be NULL. 3338 * @delalloc_start_ret: Output argument, set to the start offset of the 3339 * subrange found with delalloc (may not be sector size 3340 * aligned). 3341 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value) 3342 * of the subrange found with delalloc. 3343 * 3344 * Returns true if a subrange with delalloc is found within the given range, and 3345 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and 3346 * end offsets of the subrange. 3347 */ 3348 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3349 struct extent_state **cached_state, 3350 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3351 { 3352 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); 3353 u64 prev_delalloc_end = 0; 3354 bool search_io_tree = true; 3355 bool ret = false; 3356 3357 while (cur_offset <= end) { 3358 u64 delalloc_start; 3359 u64 delalloc_end; 3360 bool delalloc; 3361 3362 delalloc = find_delalloc_subrange(inode, cur_offset, end, 3363 cached_state, &search_io_tree, 3364 &delalloc_start, 3365 &delalloc_end); 3366 if (!delalloc) 3367 break; 3368 3369 if (prev_delalloc_end == 0) { 3370 /* First subrange found. */ 3371 *delalloc_start_ret = max(delalloc_start, start); 3372 *delalloc_end_ret = delalloc_end; 3373 ret = true; 3374 } else if (delalloc_start == prev_delalloc_end + 1) { 3375 /* Subrange adjacent to the previous one, merge them. */ 3376 *delalloc_end_ret = delalloc_end; 3377 } else { 3378 /* Subrange not adjacent to the previous one, exit. */ 3379 break; 3380 } 3381 3382 prev_delalloc_end = delalloc_end; 3383 cur_offset = delalloc_end + 1; 3384 cond_resched(); 3385 } 3386 3387 return ret; 3388 } 3389 3390 /* 3391 * Check if there's a hole or delalloc range in a range representing a hole (or 3392 * prealloc extent) found in the inode's subvolume btree. 3393 * 3394 * @inode: The inode. 3395 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE). 3396 * @start: Start offset of the hole region. It does not need to be sector 3397 * size aligned. 3398 * @end: End offset (inclusive value) of the hole region. It does not 3399 * need to be sector size aligned. 3400 * @start_ret: Return parameter, used to set the start of the subrange in the 3401 * hole that matches the search criteria (seek mode), if such 3402 * subrange is found (return value of the function is true). 3403 * The value returned here may not be sector size aligned. 3404 * 3405 * Returns true if a subrange matching the given seek mode is found, and if one 3406 * is found, it updates @start_ret with the start of the subrange. 3407 */ 3408 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, 3409 struct extent_state **cached_state, 3410 u64 start, u64 end, u64 *start_ret) 3411 { 3412 u64 delalloc_start; 3413 u64 delalloc_end; 3414 bool delalloc; 3415 3416 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state, 3417 &delalloc_start, &delalloc_end); 3418 if (delalloc && whence == SEEK_DATA) { 3419 *start_ret = delalloc_start; 3420 return true; 3421 } 3422 3423 if (delalloc && whence == SEEK_HOLE) { 3424 /* 3425 * We found delalloc but it starts after out start offset. So we 3426 * have a hole between our start offset and the delalloc start. 3427 */ 3428 if (start < delalloc_start) { 3429 *start_ret = start; 3430 return true; 3431 } 3432 /* 3433 * Delalloc range starts at our start offset. 3434 * If the delalloc range's length is smaller than our range, 3435 * then it means we have a hole that starts where the delalloc 3436 * subrange ends. 3437 */ 3438 if (delalloc_end < end) { 3439 *start_ret = delalloc_end + 1; 3440 return true; 3441 } 3442 3443 /* There's delalloc for the whole range. */ 3444 return false; 3445 } 3446 3447 if (!delalloc && whence == SEEK_HOLE) { 3448 *start_ret = start; 3449 return true; 3450 } 3451 3452 /* 3453 * No delalloc in the range and we are seeking for data. The caller has 3454 * to iterate to the next extent item in the subvolume btree. 3455 */ 3456 return false; 3457 } 3458 3459 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence) 3460 { 3461 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host); 3462 struct btrfs_file_private *private = file->private_data; 3463 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3464 struct extent_state *cached_state = NULL; 3465 struct extent_state **delalloc_cached_state; 3466 const loff_t i_size = i_size_read(&inode->vfs_inode); 3467 const u64 ino = btrfs_ino(inode); 3468 struct btrfs_root *root = inode->root; 3469 struct btrfs_path *path; 3470 struct btrfs_key key; 3471 u64 last_extent_end; 3472 u64 lockstart; 3473 u64 lockend; 3474 u64 start; 3475 int ret; 3476 bool found = false; 3477 3478 if (i_size == 0 || offset >= i_size) 3479 return -ENXIO; 3480 3481 /* 3482 * Quick path. If the inode has no prealloc extents and its number of 3483 * bytes used matches its i_size, then it can not have holes. 3484 */ 3485 if (whence == SEEK_HOLE && 3486 !(inode->flags & BTRFS_INODE_PREALLOC) && 3487 inode_get_bytes(&inode->vfs_inode) == i_size) 3488 return i_size; 3489 3490 if (!private) { 3491 private = kzalloc(sizeof(*private), GFP_KERNEL); 3492 /* 3493 * No worries if memory allocation failed. 3494 * The private structure is used only for speeding up multiple 3495 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc, 3496 * so everything will still be correct. 3497 */ 3498 file->private_data = private; 3499 } 3500 3501 if (private) 3502 delalloc_cached_state = &private->llseek_cached_state; 3503 else 3504 delalloc_cached_state = NULL; 3505 3506 /* 3507 * offset can be negative, in this case we start finding DATA/HOLE from 3508 * the very start of the file. 3509 */ 3510 start = max_t(loff_t, 0, offset); 3511 3512 lockstart = round_down(start, fs_info->sectorsize); 3513 lockend = round_up(i_size, fs_info->sectorsize); 3514 if (lockend <= lockstart) 3515 lockend = lockstart + fs_info->sectorsize; 3516 lockend--; 3517 3518 path = btrfs_alloc_path(); 3519 if (!path) 3520 return -ENOMEM; 3521 path->reada = READA_FORWARD; 3522 3523 key.objectid = ino; 3524 key.type = BTRFS_EXTENT_DATA_KEY; 3525 key.offset = start; 3526 3527 last_extent_end = lockstart; 3528 3529 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3530 3531 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3532 if (ret < 0) { 3533 goto out; 3534 } else if (ret > 0 && path->slots[0] > 0) { 3535 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3536 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3537 path->slots[0]--; 3538 } 3539 3540 while (start < i_size) { 3541 struct extent_buffer *leaf = path->nodes[0]; 3542 struct btrfs_file_extent_item *extent; 3543 u64 extent_end; 3544 u8 type; 3545 3546 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3547 ret = btrfs_next_leaf(root, path); 3548 if (ret < 0) 3549 goto out; 3550 else if (ret > 0) 3551 break; 3552 3553 leaf = path->nodes[0]; 3554 } 3555 3556 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3557 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3558 break; 3559 3560 extent_end = btrfs_file_extent_end(path); 3561 3562 /* 3563 * In the first iteration we may have a slot that points to an 3564 * extent that ends before our start offset, so skip it. 3565 */ 3566 if (extent_end <= start) { 3567 path->slots[0]++; 3568 continue; 3569 } 3570 3571 /* We have an implicit hole, NO_HOLES feature is likely set. */ 3572 if (last_extent_end < key.offset) { 3573 u64 search_start = last_extent_end; 3574 u64 found_start; 3575 3576 /* 3577 * First iteration, @start matches @offset and it's 3578 * within the hole. 3579 */ 3580 if (start == offset) 3581 search_start = offset; 3582 3583 found = find_desired_extent_in_hole(inode, whence, 3584 delalloc_cached_state, 3585 search_start, 3586 key.offset - 1, 3587 &found_start); 3588 if (found) { 3589 start = found_start; 3590 break; 3591 } 3592 /* 3593 * Didn't find data or a hole (due to delalloc) in the 3594 * implicit hole range, so need to analyze the extent. 3595 */ 3596 } 3597 3598 extent = btrfs_item_ptr(leaf, path->slots[0], 3599 struct btrfs_file_extent_item); 3600 type = btrfs_file_extent_type(leaf, extent); 3601 3602 /* 3603 * Can't access the extent's disk_bytenr field if this is an 3604 * inline extent, since at that offset, it's where the extent 3605 * data starts. 3606 */ 3607 if (type == BTRFS_FILE_EXTENT_PREALLOC || 3608 (type == BTRFS_FILE_EXTENT_REG && 3609 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) { 3610 /* 3611 * Explicit hole or prealloc extent, search for delalloc. 3612 * A prealloc extent is treated like a hole. 3613 */ 3614 u64 search_start = key.offset; 3615 u64 found_start; 3616 3617 /* 3618 * First iteration, @start matches @offset and it's 3619 * within the hole. 3620 */ 3621 if (start == offset) 3622 search_start = offset; 3623 3624 found = find_desired_extent_in_hole(inode, whence, 3625 delalloc_cached_state, 3626 search_start, 3627 extent_end - 1, 3628 &found_start); 3629 if (found) { 3630 start = found_start; 3631 break; 3632 } 3633 /* 3634 * Didn't find data or a hole (due to delalloc) in the 3635 * implicit hole range, so need to analyze the next 3636 * extent item. 3637 */ 3638 } else { 3639 /* 3640 * Found a regular or inline extent. 3641 * If we are seeking for data, adjust the start offset 3642 * and stop, we're done. 3643 */ 3644 if (whence == SEEK_DATA) { 3645 start = max_t(u64, key.offset, offset); 3646 found = true; 3647 break; 3648 } 3649 /* 3650 * Else, we are seeking for a hole, check the next file 3651 * extent item. 3652 */ 3653 } 3654 3655 start = extent_end; 3656 last_extent_end = extent_end; 3657 path->slots[0]++; 3658 if (fatal_signal_pending(current)) { 3659 ret = -EINTR; 3660 goto out; 3661 } 3662 cond_resched(); 3663 } 3664 3665 /* We have an implicit hole from the last extent found up to i_size. */ 3666 if (!found && start < i_size) { 3667 found = find_desired_extent_in_hole(inode, whence, 3668 delalloc_cached_state, start, 3669 i_size - 1, &start); 3670 if (!found) 3671 start = i_size; 3672 } 3673 3674 out: 3675 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3676 btrfs_free_path(path); 3677 3678 if (ret < 0) 3679 return ret; 3680 3681 if (whence == SEEK_DATA && start >= i_size) 3682 return -ENXIO; 3683 3684 return min_t(loff_t, start, i_size); 3685 } 3686 3687 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3688 { 3689 struct inode *inode = file->f_mapping->host; 3690 3691 switch (whence) { 3692 default: 3693 return generic_file_llseek(file, offset, whence); 3694 case SEEK_DATA: 3695 case SEEK_HOLE: 3696 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3697 offset = find_desired_extent(file, offset, whence); 3698 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3699 break; 3700 } 3701 3702 if (offset < 0) 3703 return offset; 3704 3705 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3706 } 3707 3708 static int btrfs_file_open(struct inode *inode, struct file *filp) 3709 { 3710 int ret; 3711 3712 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC | 3713 FMODE_CAN_ODIRECT; 3714 3715 ret = fsverity_file_open(inode, filp); 3716 if (ret) 3717 return ret; 3718 return generic_file_open(inode, filp); 3719 } 3720 3721 static int check_direct_read(struct btrfs_fs_info *fs_info, 3722 const struct iov_iter *iter, loff_t offset) 3723 { 3724 int ret; 3725 int i, seg; 3726 3727 ret = check_direct_IO(fs_info, iter, offset); 3728 if (ret < 0) 3729 return ret; 3730 3731 if (!iter_is_iovec(iter)) 3732 return 0; 3733 3734 for (seg = 0; seg < iter->nr_segs; seg++) { 3735 for (i = seg + 1; i < iter->nr_segs; i++) { 3736 const struct iovec *iov1 = iter_iov(iter) + seg; 3737 const struct iovec *iov2 = iter_iov(iter) + i; 3738 3739 if (iov1->iov_base == iov2->iov_base) 3740 return -EINVAL; 3741 } 3742 } 3743 return 0; 3744 } 3745 3746 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 3747 { 3748 struct inode *inode = file_inode(iocb->ki_filp); 3749 size_t prev_left = 0; 3750 ssize_t read = 0; 3751 ssize_t ret; 3752 3753 if (fsverity_active(inode)) 3754 return 0; 3755 3756 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos)) 3757 return 0; 3758 3759 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3760 again: 3761 /* 3762 * This is similar to what we do for direct IO writes, see the comment 3763 * at btrfs_direct_write(), but we also disable page faults in addition 3764 * to disabling them only at the iov_iter level. This is because when 3765 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(), 3766 * which can still trigger page fault ins despite having set ->nofault 3767 * to true of our 'to' iov_iter. 3768 * 3769 * The difference to direct IO writes is that we deadlock when trying 3770 * to lock the extent range in the inode's tree during he page reads 3771 * triggered by the fault in (while for writes it is due to waiting for 3772 * our own ordered extent). This is because for direct IO reads, 3773 * btrfs_dio_iomap_begin() returns with the extent range locked, which 3774 * is only unlocked in the endio callback (end_bio_extent_readpage()). 3775 */ 3776 pagefault_disable(); 3777 to->nofault = true; 3778 ret = btrfs_dio_read(iocb, to, read); 3779 to->nofault = false; 3780 pagefault_enable(); 3781 3782 /* No increment (+=) because iomap returns a cumulative value. */ 3783 if (ret > 0) 3784 read = ret; 3785 3786 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) { 3787 const size_t left = iov_iter_count(to); 3788 3789 if (left == prev_left) { 3790 /* 3791 * We didn't make any progress since the last attempt, 3792 * fallback to a buffered read for the remainder of the 3793 * range. This is just to avoid any possibility of looping 3794 * for too long. 3795 */ 3796 ret = read; 3797 } else { 3798 /* 3799 * We made some progress since the last retry or this is 3800 * the first time we are retrying. Fault in as many pages 3801 * as possible and retry. 3802 */ 3803 fault_in_iov_iter_writeable(to, left); 3804 prev_left = left; 3805 goto again; 3806 } 3807 } 3808 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3809 return ret < 0 ? ret : read; 3810 } 3811 3812 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3813 { 3814 ssize_t ret = 0; 3815 3816 if (iocb->ki_flags & IOCB_DIRECT) { 3817 ret = btrfs_direct_read(iocb, to); 3818 if (ret < 0 || !iov_iter_count(to) || 3819 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 3820 return ret; 3821 } 3822 3823 return filemap_read(iocb, to, ret); 3824 } 3825 3826 const struct file_operations btrfs_file_operations = { 3827 .llseek = btrfs_file_llseek, 3828 .read_iter = btrfs_file_read_iter, 3829 .splice_read = filemap_splice_read, 3830 .write_iter = btrfs_file_write_iter, 3831 .splice_write = iter_file_splice_write, 3832 .mmap = btrfs_file_mmap, 3833 .open = btrfs_file_open, 3834 .release = btrfs_release_file, 3835 .get_unmapped_area = thp_get_unmapped_area, 3836 .fsync = btrfs_sync_file, 3837 .fallocate = btrfs_fallocate, 3838 .unlocked_ioctl = btrfs_ioctl, 3839 #ifdef CONFIG_COMPAT 3840 .compat_ioctl = btrfs_compat_ioctl, 3841 #endif 3842 .remap_file_range = btrfs_remap_file_range, 3843 }; 3844 3845 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 3846 { 3847 int ret; 3848 3849 /* 3850 * So with compression we will find and lock a dirty page and clear the 3851 * first one as dirty, setup an async extent, and immediately return 3852 * with the entire range locked but with nobody actually marked with 3853 * writeback. So we can't just filemap_write_and_wait_range() and 3854 * expect it to work since it will just kick off a thread to do the 3855 * actual work. So we need to call filemap_fdatawrite_range _again_ 3856 * since it will wait on the page lock, which won't be unlocked until 3857 * after the pages have been marked as writeback and so we're good to go 3858 * from there. We have to do this otherwise we'll miss the ordered 3859 * extents and that results in badness. Please Josef, do not think you 3860 * know better and pull this out at some point in the future, it is 3861 * right and you are wrong. 3862 */ 3863 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3864 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3865 &BTRFS_I(inode)->runtime_flags)) 3866 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3867 3868 return ret; 3869 } 3870