1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include <linux/iomap.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "btrfs_inode.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "qgroup.h" 28 #include "compression.h" 29 #include "delalloc-space.h" 30 #include "reflink.h" 31 #include "subpage.h" 32 #include "fs.h" 33 #include "accessors.h" 34 #include "extent-tree.h" 35 #include "file-item.h" 36 #include "ioctl.h" 37 #include "file.h" 38 #include "super.h" 39 40 /* simple helper to fault in pages and copy. This should go away 41 * and be replaced with calls into generic code. 42 */ 43 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 44 struct page **prepared_pages, 45 struct iov_iter *i) 46 { 47 size_t copied = 0; 48 size_t total_copied = 0; 49 int pg = 0; 50 int offset = offset_in_page(pos); 51 52 while (write_bytes > 0) { 53 size_t count = min_t(size_t, 54 PAGE_SIZE - offset, write_bytes); 55 struct page *page = prepared_pages[pg]; 56 /* 57 * Copy data from userspace to the current page 58 */ 59 copied = copy_page_from_iter_atomic(page, offset, count, i); 60 61 /* Flush processor's dcache for this page */ 62 flush_dcache_page(page); 63 64 /* 65 * if we get a partial write, we can end up with 66 * partially up to date pages. These add 67 * a lot of complexity, so make sure they don't 68 * happen by forcing this copy to be retried. 69 * 70 * The rest of the btrfs_file_write code will fall 71 * back to page at a time copies after we return 0. 72 */ 73 if (unlikely(copied < count)) { 74 if (!PageUptodate(page)) { 75 iov_iter_revert(i, copied); 76 copied = 0; 77 } 78 if (!copied) 79 break; 80 } 81 82 write_bytes -= copied; 83 total_copied += copied; 84 offset += copied; 85 if (offset == PAGE_SIZE) { 86 pg++; 87 offset = 0; 88 } 89 } 90 return total_copied; 91 } 92 93 /* 94 * unlocks pages after btrfs_file_write is done with them 95 */ 96 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 97 struct page **pages, size_t num_pages, 98 u64 pos, u64 copied) 99 { 100 size_t i; 101 u64 block_start = round_down(pos, fs_info->sectorsize); 102 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 103 104 ASSERT(block_len <= U32_MAX); 105 for (i = 0; i < num_pages; i++) { 106 /* page checked is some magic around finding pages that 107 * have been modified without going through btrfs_set_page_dirty 108 * clear it here. There should be no need to mark the pages 109 * accessed as prepare_pages should have marked them accessed 110 * in prepare_pages via find_or_create_page() 111 */ 112 btrfs_folio_clamp_clear_checked(fs_info, page_folio(pages[i]), 113 block_start, block_len); 114 unlock_page(pages[i]); 115 put_page(pages[i]); 116 } 117 } 118 119 /* 120 * After btrfs_copy_from_user(), update the following things for delalloc: 121 * - Mark newly dirtied pages as DELALLOC in the io tree. 122 * Used to advise which range is to be written back. 123 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 124 * - Update inode size for past EOF write 125 */ 126 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 127 size_t num_pages, loff_t pos, size_t write_bytes, 128 struct extent_state **cached, bool noreserve) 129 { 130 struct btrfs_fs_info *fs_info = inode->root->fs_info; 131 int ret = 0; 132 int i; 133 u64 num_bytes; 134 u64 start_pos; 135 u64 end_of_last_block; 136 u64 end_pos = pos + write_bytes; 137 loff_t isize = i_size_read(&inode->vfs_inode); 138 unsigned int extra_bits = 0; 139 140 if (write_bytes == 0) 141 return 0; 142 143 if (noreserve) 144 extra_bits |= EXTENT_NORESERVE; 145 146 start_pos = round_down(pos, fs_info->sectorsize); 147 num_bytes = round_up(write_bytes + pos - start_pos, 148 fs_info->sectorsize); 149 ASSERT(num_bytes <= U32_MAX); 150 151 end_of_last_block = start_pos + num_bytes - 1; 152 153 /* 154 * The pages may have already been dirty, clear out old accounting so 155 * we can set things up properly 156 */ 157 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 158 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 159 cached); 160 161 ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 162 extra_bits, cached); 163 if (ret) 164 return ret; 165 166 for (i = 0; i < num_pages; i++) { 167 struct page *p = pages[i]; 168 169 btrfs_folio_clamp_set_uptodate(fs_info, page_folio(p), 170 start_pos, num_bytes); 171 btrfs_folio_clamp_clear_checked(fs_info, page_folio(p), 172 start_pos, num_bytes); 173 btrfs_folio_clamp_set_dirty(fs_info, page_folio(p), 174 start_pos, num_bytes); 175 } 176 177 /* 178 * we've only changed i_size in ram, and we haven't updated 179 * the disk i_size. There is no need to log the inode 180 * at this time. 181 */ 182 if (end_pos > isize) 183 i_size_write(&inode->vfs_inode, end_pos); 184 return 0; 185 } 186 187 /* 188 * this is very complex, but the basic idea is to drop all extents 189 * in the range start - end. hint_block is filled in with a block number 190 * that would be a good hint to the block allocator for this file. 191 * 192 * If an extent intersects the range but is not entirely inside the range 193 * it is either truncated or split. Anything entirely inside the range 194 * is deleted from the tree. 195 * 196 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 197 * to deal with that. We set the field 'bytes_found' of the arguments structure 198 * with the number of allocated bytes found in the target range, so that the 199 * caller can update the inode's number of bytes in an atomic way when 200 * replacing extents in a range to avoid races with stat(2). 201 */ 202 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 203 struct btrfs_root *root, struct btrfs_inode *inode, 204 struct btrfs_drop_extents_args *args) 205 { 206 struct btrfs_fs_info *fs_info = root->fs_info; 207 struct extent_buffer *leaf; 208 struct btrfs_file_extent_item *fi; 209 struct btrfs_key key; 210 struct btrfs_key new_key; 211 u64 ino = btrfs_ino(inode); 212 u64 search_start = args->start; 213 u64 disk_bytenr = 0; 214 u64 num_bytes = 0; 215 u64 extent_offset = 0; 216 u64 extent_end = 0; 217 u64 last_end = args->start; 218 int del_nr = 0; 219 int del_slot = 0; 220 int extent_type; 221 int recow; 222 int ret; 223 int modify_tree = -1; 224 int update_refs; 225 int found = 0; 226 struct btrfs_path *path = args->path; 227 228 args->bytes_found = 0; 229 args->extent_inserted = false; 230 231 /* Must always have a path if ->replace_extent is true */ 232 ASSERT(!(args->replace_extent && !args->path)); 233 234 if (!path) { 235 path = btrfs_alloc_path(); 236 if (!path) { 237 ret = -ENOMEM; 238 goto out; 239 } 240 } 241 242 if (args->drop_cache) 243 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); 244 245 if (args->start >= inode->disk_i_size && !args->replace_extent) 246 modify_tree = 0; 247 248 update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID); 249 while (1) { 250 recow = 0; 251 ret = btrfs_lookup_file_extent(trans, root, path, ino, 252 search_start, modify_tree); 253 if (ret < 0) 254 break; 255 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 256 leaf = path->nodes[0]; 257 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 258 if (key.objectid == ino && 259 key.type == BTRFS_EXTENT_DATA_KEY) 260 path->slots[0]--; 261 } 262 ret = 0; 263 next_slot: 264 leaf = path->nodes[0]; 265 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 266 BUG_ON(del_nr > 0); 267 ret = btrfs_next_leaf(root, path); 268 if (ret < 0) 269 break; 270 if (ret > 0) { 271 ret = 0; 272 break; 273 } 274 leaf = path->nodes[0]; 275 recow = 1; 276 } 277 278 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 279 280 if (key.objectid > ino) 281 break; 282 if (WARN_ON_ONCE(key.objectid < ino) || 283 key.type < BTRFS_EXTENT_DATA_KEY) { 284 ASSERT(del_nr == 0); 285 path->slots[0]++; 286 goto next_slot; 287 } 288 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 289 break; 290 291 fi = btrfs_item_ptr(leaf, path->slots[0], 292 struct btrfs_file_extent_item); 293 extent_type = btrfs_file_extent_type(leaf, fi); 294 295 if (extent_type == BTRFS_FILE_EXTENT_REG || 296 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 297 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 298 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 299 extent_offset = btrfs_file_extent_offset(leaf, fi); 300 extent_end = key.offset + 301 btrfs_file_extent_num_bytes(leaf, fi); 302 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 303 extent_end = key.offset + 304 btrfs_file_extent_ram_bytes(leaf, fi); 305 } else { 306 /* can't happen */ 307 BUG(); 308 } 309 310 /* 311 * Don't skip extent items representing 0 byte lengths. They 312 * used to be created (bug) if while punching holes we hit 313 * -ENOSPC condition. So if we find one here, just ensure we 314 * delete it, otherwise we would insert a new file extent item 315 * with the same key (offset) as that 0 bytes length file 316 * extent item in the call to setup_items_for_insert() later 317 * in this function. 318 */ 319 if (extent_end == key.offset && extent_end >= search_start) { 320 last_end = extent_end; 321 goto delete_extent_item; 322 } 323 324 if (extent_end <= search_start) { 325 path->slots[0]++; 326 goto next_slot; 327 } 328 329 found = 1; 330 search_start = max(key.offset, args->start); 331 if (recow || !modify_tree) { 332 modify_tree = -1; 333 btrfs_release_path(path); 334 continue; 335 } 336 337 /* 338 * | - range to drop - | 339 * | -------- extent -------- | 340 */ 341 if (args->start > key.offset && args->end < extent_end) { 342 BUG_ON(del_nr > 0); 343 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 344 ret = -EOPNOTSUPP; 345 break; 346 } 347 348 memcpy(&new_key, &key, sizeof(new_key)); 349 new_key.offset = args->start; 350 ret = btrfs_duplicate_item(trans, root, path, 351 &new_key); 352 if (ret == -EAGAIN) { 353 btrfs_release_path(path); 354 continue; 355 } 356 if (ret < 0) 357 break; 358 359 leaf = path->nodes[0]; 360 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 361 struct btrfs_file_extent_item); 362 btrfs_set_file_extent_num_bytes(leaf, fi, 363 args->start - key.offset); 364 365 fi = btrfs_item_ptr(leaf, path->slots[0], 366 struct btrfs_file_extent_item); 367 368 extent_offset += args->start - key.offset; 369 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 370 btrfs_set_file_extent_num_bytes(leaf, fi, 371 extent_end - args->start); 372 btrfs_mark_buffer_dirty(trans, leaf); 373 374 if (update_refs && disk_bytenr > 0) { 375 struct btrfs_ref ref = { 376 .action = BTRFS_ADD_DELAYED_REF, 377 .bytenr = disk_bytenr, 378 .num_bytes = num_bytes, 379 .parent = 0, 380 .owning_root = btrfs_root_id(root), 381 .ref_root = btrfs_root_id(root), 382 }; 383 btrfs_init_data_ref(&ref, new_key.objectid, 384 args->start - extent_offset, 385 0, false); 386 ret = btrfs_inc_extent_ref(trans, &ref); 387 if (ret) { 388 btrfs_abort_transaction(trans, ret); 389 break; 390 } 391 } 392 key.offset = args->start; 393 } 394 /* 395 * From here on out we will have actually dropped something, so 396 * last_end can be updated. 397 */ 398 last_end = extent_end; 399 400 /* 401 * | ---- range to drop ----- | 402 * | -------- extent -------- | 403 */ 404 if (args->start <= key.offset && args->end < extent_end) { 405 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 406 ret = -EOPNOTSUPP; 407 break; 408 } 409 410 memcpy(&new_key, &key, sizeof(new_key)); 411 new_key.offset = args->end; 412 btrfs_set_item_key_safe(trans, path, &new_key); 413 414 extent_offset += args->end - key.offset; 415 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 416 btrfs_set_file_extent_num_bytes(leaf, fi, 417 extent_end - args->end); 418 btrfs_mark_buffer_dirty(trans, leaf); 419 if (update_refs && disk_bytenr > 0) 420 args->bytes_found += args->end - key.offset; 421 break; 422 } 423 424 search_start = extent_end; 425 /* 426 * | ---- range to drop ----- | 427 * | -------- extent -------- | 428 */ 429 if (args->start > key.offset && args->end >= extent_end) { 430 BUG_ON(del_nr > 0); 431 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 432 ret = -EOPNOTSUPP; 433 break; 434 } 435 436 btrfs_set_file_extent_num_bytes(leaf, fi, 437 args->start - key.offset); 438 btrfs_mark_buffer_dirty(trans, leaf); 439 if (update_refs && disk_bytenr > 0) 440 args->bytes_found += extent_end - args->start; 441 if (args->end == extent_end) 442 break; 443 444 path->slots[0]++; 445 goto next_slot; 446 } 447 448 /* 449 * | ---- range to drop ----- | 450 * | ------ extent ------ | 451 */ 452 if (args->start <= key.offset && args->end >= extent_end) { 453 delete_extent_item: 454 if (del_nr == 0) { 455 del_slot = path->slots[0]; 456 del_nr = 1; 457 } else { 458 BUG_ON(del_slot + del_nr != path->slots[0]); 459 del_nr++; 460 } 461 462 if (update_refs && 463 extent_type == BTRFS_FILE_EXTENT_INLINE) { 464 args->bytes_found += extent_end - key.offset; 465 extent_end = ALIGN(extent_end, 466 fs_info->sectorsize); 467 } else if (update_refs && disk_bytenr > 0) { 468 struct btrfs_ref ref = { 469 .action = BTRFS_DROP_DELAYED_REF, 470 .bytenr = disk_bytenr, 471 .num_bytes = num_bytes, 472 .parent = 0, 473 .owning_root = btrfs_root_id(root), 474 .ref_root = btrfs_root_id(root), 475 }; 476 btrfs_init_data_ref(&ref, key.objectid, 477 key.offset - extent_offset, 478 0, false); 479 ret = btrfs_free_extent(trans, &ref); 480 if (ret) { 481 btrfs_abort_transaction(trans, ret); 482 break; 483 } 484 args->bytes_found += extent_end - key.offset; 485 } 486 487 if (args->end == extent_end) 488 break; 489 490 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 491 path->slots[0]++; 492 goto next_slot; 493 } 494 495 ret = btrfs_del_items(trans, root, path, del_slot, 496 del_nr); 497 if (ret) { 498 btrfs_abort_transaction(trans, ret); 499 break; 500 } 501 502 del_nr = 0; 503 del_slot = 0; 504 505 btrfs_release_path(path); 506 continue; 507 } 508 509 BUG(); 510 } 511 512 if (!ret && del_nr > 0) { 513 /* 514 * Set path->slots[0] to first slot, so that after the delete 515 * if items are move off from our leaf to its immediate left or 516 * right neighbor leafs, we end up with a correct and adjusted 517 * path->slots[0] for our insertion (if args->replace_extent). 518 */ 519 path->slots[0] = del_slot; 520 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 521 if (ret) 522 btrfs_abort_transaction(trans, ret); 523 } 524 525 leaf = path->nodes[0]; 526 /* 527 * If btrfs_del_items() was called, it might have deleted a leaf, in 528 * which case it unlocked our path, so check path->locks[0] matches a 529 * write lock. 530 */ 531 if (!ret && args->replace_extent && 532 path->locks[0] == BTRFS_WRITE_LOCK && 533 btrfs_leaf_free_space(leaf) >= 534 sizeof(struct btrfs_item) + args->extent_item_size) { 535 536 key.objectid = ino; 537 key.type = BTRFS_EXTENT_DATA_KEY; 538 key.offset = args->start; 539 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 540 struct btrfs_key slot_key; 541 542 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 543 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 544 path->slots[0]++; 545 } 546 btrfs_setup_item_for_insert(trans, root, path, &key, 547 args->extent_item_size); 548 args->extent_inserted = true; 549 } 550 551 if (!args->path) 552 btrfs_free_path(path); 553 else if (!args->extent_inserted) 554 btrfs_release_path(path); 555 out: 556 args->drop_end = found ? min(args->end, last_end) : args->end; 557 558 return ret; 559 } 560 561 static int extent_mergeable(struct extent_buffer *leaf, int slot, 562 u64 objectid, u64 bytenr, u64 orig_offset, 563 u64 *start, u64 *end) 564 { 565 struct btrfs_file_extent_item *fi; 566 struct btrfs_key key; 567 u64 extent_end; 568 569 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 570 return 0; 571 572 btrfs_item_key_to_cpu(leaf, &key, slot); 573 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 574 return 0; 575 576 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 577 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 578 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 579 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 580 btrfs_file_extent_compression(leaf, fi) || 581 btrfs_file_extent_encryption(leaf, fi) || 582 btrfs_file_extent_other_encoding(leaf, fi)) 583 return 0; 584 585 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 586 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 587 return 0; 588 589 *start = key.offset; 590 *end = extent_end; 591 return 1; 592 } 593 594 /* 595 * Mark extent in the range start - end as written. 596 * 597 * This changes extent type from 'pre-allocated' to 'regular'. If only 598 * part of extent is marked as written, the extent will be split into 599 * two or three. 600 */ 601 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 602 struct btrfs_inode *inode, u64 start, u64 end) 603 { 604 struct btrfs_root *root = inode->root; 605 struct extent_buffer *leaf; 606 struct btrfs_path *path; 607 struct btrfs_file_extent_item *fi; 608 struct btrfs_ref ref = { 0 }; 609 struct btrfs_key key; 610 struct btrfs_key new_key; 611 u64 bytenr; 612 u64 num_bytes; 613 u64 extent_end; 614 u64 orig_offset; 615 u64 other_start; 616 u64 other_end; 617 u64 split; 618 int del_nr = 0; 619 int del_slot = 0; 620 int recow; 621 int ret = 0; 622 u64 ino = btrfs_ino(inode); 623 624 path = btrfs_alloc_path(); 625 if (!path) 626 return -ENOMEM; 627 again: 628 recow = 0; 629 split = start; 630 key.objectid = ino; 631 key.type = BTRFS_EXTENT_DATA_KEY; 632 key.offset = split; 633 634 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 635 if (ret < 0) 636 goto out; 637 if (ret > 0 && path->slots[0] > 0) 638 path->slots[0]--; 639 640 leaf = path->nodes[0]; 641 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 642 if (key.objectid != ino || 643 key.type != BTRFS_EXTENT_DATA_KEY) { 644 ret = -EINVAL; 645 btrfs_abort_transaction(trans, ret); 646 goto out; 647 } 648 fi = btrfs_item_ptr(leaf, path->slots[0], 649 struct btrfs_file_extent_item); 650 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 651 ret = -EINVAL; 652 btrfs_abort_transaction(trans, ret); 653 goto out; 654 } 655 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 656 if (key.offset > start || extent_end < end) { 657 ret = -EINVAL; 658 btrfs_abort_transaction(trans, ret); 659 goto out; 660 } 661 662 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 663 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 664 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 665 memcpy(&new_key, &key, sizeof(new_key)); 666 667 if (start == key.offset && end < extent_end) { 668 other_start = 0; 669 other_end = start; 670 if (extent_mergeable(leaf, path->slots[0] - 1, 671 ino, bytenr, orig_offset, 672 &other_start, &other_end)) { 673 new_key.offset = end; 674 btrfs_set_item_key_safe(trans, path, &new_key); 675 fi = btrfs_item_ptr(leaf, path->slots[0], 676 struct btrfs_file_extent_item); 677 btrfs_set_file_extent_generation(leaf, fi, 678 trans->transid); 679 btrfs_set_file_extent_num_bytes(leaf, fi, 680 extent_end - end); 681 btrfs_set_file_extent_offset(leaf, fi, 682 end - orig_offset); 683 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 684 struct btrfs_file_extent_item); 685 btrfs_set_file_extent_generation(leaf, fi, 686 trans->transid); 687 btrfs_set_file_extent_num_bytes(leaf, fi, 688 end - other_start); 689 btrfs_mark_buffer_dirty(trans, leaf); 690 goto out; 691 } 692 } 693 694 if (start > key.offset && end == extent_end) { 695 other_start = end; 696 other_end = 0; 697 if (extent_mergeable(leaf, path->slots[0] + 1, 698 ino, bytenr, orig_offset, 699 &other_start, &other_end)) { 700 fi = btrfs_item_ptr(leaf, path->slots[0], 701 struct btrfs_file_extent_item); 702 btrfs_set_file_extent_num_bytes(leaf, fi, 703 start - key.offset); 704 btrfs_set_file_extent_generation(leaf, fi, 705 trans->transid); 706 path->slots[0]++; 707 new_key.offset = start; 708 btrfs_set_item_key_safe(trans, path, &new_key); 709 710 fi = btrfs_item_ptr(leaf, path->slots[0], 711 struct btrfs_file_extent_item); 712 btrfs_set_file_extent_generation(leaf, fi, 713 trans->transid); 714 btrfs_set_file_extent_num_bytes(leaf, fi, 715 other_end - start); 716 btrfs_set_file_extent_offset(leaf, fi, 717 start - orig_offset); 718 btrfs_mark_buffer_dirty(trans, leaf); 719 goto out; 720 } 721 } 722 723 while (start > key.offset || end < extent_end) { 724 if (key.offset == start) 725 split = end; 726 727 new_key.offset = split; 728 ret = btrfs_duplicate_item(trans, root, path, &new_key); 729 if (ret == -EAGAIN) { 730 btrfs_release_path(path); 731 goto again; 732 } 733 if (ret < 0) { 734 btrfs_abort_transaction(trans, ret); 735 goto out; 736 } 737 738 leaf = path->nodes[0]; 739 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 740 struct btrfs_file_extent_item); 741 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 742 btrfs_set_file_extent_num_bytes(leaf, fi, 743 split - key.offset); 744 745 fi = btrfs_item_ptr(leaf, path->slots[0], 746 struct btrfs_file_extent_item); 747 748 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 749 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 750 btrfs_set_file_extent_num_bytes(leaf, fi, 751 extent_end - split); 752 btrfs_mark_buffer_dirty(trans, leaf); 753 754 ref.action = BTRFS_ADD_DELAYED_REF; 755 ref.bytenr = bytenr; 756 ref.num_bytes = num_bytes; 757 ref.parent = 0; 758 ref.owning_root = btrfs_root_id(root); 759 ref.ref_root = btrfs_root_id(root); 760 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false); 761 ret = btrfs_inc_extent_ref(trans, &ref); 762 if (ret) { 763 btrfs_abort_transaction(trans, ret); 764 goto out; 765 } 766 767 if (split == start) { 768 key.offset = start; 769 } else { 770 if (start != key.offset) { 771 ret = -EINVAL; 772 btrfs_abort_transaction(trans, ret); 773 goto out; 774 } 775 path->slots[0]--; 776 extent_end = end; 777 } 778 recow = 1; 779 } 780 781 other_start = end; 782 other_end = 0; 783 784 ref.action = BTRFS_DROP_DELAYED_REF; 785 ref.bytenr = bytenr; 786 ref.num_bytes = num_bytes; 787 ref.parent = 0; 788 ref.owning_root = btrfs_root_id(root); 789 ref.ref_root = btrfs_root_id(root); 790 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false); 791 if (extent_mergeable(leaf, path->slots[0] + 1, 792 ino, bytenr, orig_offset, 793 &other_start, &other_end)) { 794 if (recow) { 795 btrfs_release_path(path); 796 goto again; 797 } 798 extent_end = other_end; 799 del_slot = path->slots[0] + 1; 800 del_nr++; 801 ret = btrfs_free_extent(trans, &ref); 802 if (ret) { 803 btrfs_abort_transaction(trans, ret); 804 goto out; 805 } 806 } 807 other_start = 0; 808 other_end = start; 809 if (extent_mergeable(leaf, path->slots[0] - 1, 810 ino, bytenr, orig_offset, 811 &other_start, &other_end)) { 812 if (recow) { 813 btrfs_release_path(path); 814 goto again; 815 } 816 key.offset = other_start; 817 del_slot = path->slots[0]; 818 del_nr++; 819 ret = btrfs_free_extent(trans, &ref); 820 if (ret) { 821 btrfs_abort_transaction(trans, ret); 822 goto out; 823 } 824 } 825 if (del_nr == 0) { 826 fi = btrfs_item_ptr(leaf, path->slots[0], 827 struct btrfs_file_extent_item); 828 btrfs_set_file_extent_type(leaf, fi, 829 BTRFS_FILE_EXTENT_REG); 830 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 831 btrfs_mark_buffer_dirty(trans, leaf); 832 } else { 833 fi = btrfs_item_ptr(leaf, del_slot - 1, 834 struct btrfs_file_extent_item); 835 btrfs_set_file_extent_type(leaf, fi, 836 BTRFS_FILE_EXTENT_REG); 837 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 838 btrfs_set_file_extent_num_bytes(leaf, fi, 839 extent_end - key.offset); 840 btrfs_mark_buffer_dirty(trans, leaf); 841 842 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 843 if (ret < 0) { 844 btrfs_abort_transaction(trans, ret); 845 goto out; 846 } 847 } 848 out: 849 btrfs_free_path(path); 850 return ret; 851 } 852 853 /* 854 * on error we return an unlocked page and the error value 855 * on success we return a locked page and 0 856 */ 857 static int prepare_uptodate_page(struct inode *inode, 858 struct page *page, u64 pos, 859 bool force_uptodate) 860 { 861 struct folio *folio = page_folio(page); 862 int ret = 0; 863 864 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 865 !PageUptodate(page)) { 866 ret = btrfs_read_folio(NULL, folio); 867 if (ret) 868 return ret; 869 lock_page(page); 870 if (!PageUptodate(page)) { 871 unlock_page(page); 872 return -EIO; 873 } 874 875 /* 876 * Since btrfs_read_folio() will unlock the folio before it 877 * returns, there is a window where btrfs_release_folio() can be 878 * called to release the page. Here we check both inode 879 * mapping and PagePrivate() to make sure the page was not 880 * released. 881 * 882 * The private flag check is essential for subpage as we need 883 * to store extra bitmap using folio private. 884 */ 885 if (page->mapping != inode->i_mapping || !folio_test_private(folio)) { 886 unlock_page(page); 887 return -EAGAIN; 888 } 889 } 890 return 0; 891 } 892 893 static fgf_t get_prepare_fgp_flags(bool nowait) 894 { 895 fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT; 896 897 if (nowait) 898 fgp_flags |= FGP_NOWAIT; 899 900 return fgp_flags; 901 } 902 903 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) 904 { 905 gfp_t gfp; 906 907 gfp = btrfs_alloc_write_mask(inode->i_mapping); 908 if (nowait) { 909 gfp &= ~__GFP_DIRECT_RECLAIM; 910 gfp |= GFP_NOWAIT; 911 } 912 913 return gfp; 914 } 915 916 /* 917 * this just gets pages into the page cache and locks them down. 918 */ 919 static noinline int prepare_pages(struct inode *inode, struct page **pages, 920 size_t num_pages, loff_t pos, 921 size_t write_bytes, bool force_uptodate, 922 bool nowait) 923 { 924 int i; 925 unsigned long index = pos >> PAGE_SHIFT; 926 gfp_t mask = get_prepare_gfp_flags(inode, nowait); 927 fgf_t fgp_flags = get_prepare_fgp_flags(nowait); 928 int ret = 0; 929 int faili; 930 931 for (i = 0; i < num_pages; i++) { 932 again: 933 pages[i] = pagecache_get_page(inode->i_mapping, index + i, 934 fgp_flags, mask | __GFP_WRITE); 935 if (!pages[i]) { 936 faili = i - 1; 937 if (nowait) 938 ret = -EAGAIN; 939 else 940 ret = -ENOMEM; 941 goto fail; 942 } 943 944 ret = set_page_extent_mapped(pages[i]); 945 if (ret < 0) { 946 faili = i; 947 goto fail; 948 } 949 950 if (i == 0) 951 ret = prepare_uptodate_page(inode, pages[i], pos, 952 force_uptodate); 953 if (!ret && i == num_pages - 1) 954 ret = prepare_uptodate_page(inode, pages[i], 955 pos + write_bytes, false); 956 if (ret) { 957 put_page(pages[i]); 958 if (!nowait && ret == -EAGAIN) { 959 ret = 0; 960 goto again; 961 } 962 faili = i - 1; 963 goto fail; 964 } 965 wait_on_page_writeback(pages[i]); 966 } 967 968 return 0; 969 fail: 970 while (faili >= 0) { 971 unlock_page(pages[faili]); 972 put_page(pages[faili]); 973 faili--; 974 } 975 return ret; 976 977 } 978 979 /* 980 * This function locks the extent and properly waits for data=ordered extents 981 * to finish before allowing the pages to be modified if need. 982 * 983 * The return value: 984 * 1 - the extent is locked 985 * 0 - the extent is not locked, and everything is OK 986 * -EAGAIN - need re-prepare the pages 987 * the other < 0 number - Something wrong happens 988 */ 989 static noinline int 990 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 991 size_t num_pages, loff_t pos, 992 size_t write_bytes, 993 u64 *lockstart, u64 *lockend, bool nowait, 994 struct extent_state **cached_state) 995 { 996 struct btrfs_fs_info *fs_info = inode->root->fs_info; 997 u64 start_pos; 998 u64 last_pos; 999 int i; 1000 int ret = 0; 1001 1002 start_pos = round_down(pos, fs_info->sectorsize); 1003 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 1004 1005 if (start_pos < inode->vfs_inode.i_size) { 1006 struct btrfs_ordered_extent *ordered; 1007 1008 if (nowait) { 1009 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos, 1010 cached_state)) { 1011 for (i = 0; i < num_pages; i++) { 1012 unlock_page(pages[i]); 1013 put_page(pages[i]); 1014 pages[i] = NULL; 1015 } 1016 1017 return -EAGAIN; 1018 } 1019 } else { 1020 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state); 1021 } 1022 1023 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1024 last_pos - start_pos + 1); 1025 if (ordered && 1026 ordered->file_offset + ordered->num_bytes > start_pos && 1027 ordered->file_offset <= last_pos) { 1028 unlock_extent(&inode->io_tree, start_pos, last_pos, 1029 cached_state); 1030 for (i = 0; i < num_pages; i++) { 1031 unlock_page(pages[i]); 1032 put_page(pages[i]); 1033 } 1034 btrfs_start_ordered_extent(ordered); 1035 btrfs_put_ordered_extent(ordered); 1036 return -EAGAIN; 1037 } 1038 if (ordered) 1039 btrfs_put_ordered_extent(ordered); 1040 1041 *lockstart = start_pos; 1042 *lockend = last_pos; 1043 ret = 1; 1044 } 1045 1046 /* 1047 * We should be called after prepare_pages() which should have locked 1048 * all pages in the range. 1049 */ 1050 for (i = 0; i < num_pages; i++) 1051 WARN_ON(!PageLocked(pages[i])); 1052 1053 return ret; 1054 } 1055 1056 /* 1057 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1058 * 1059 * @pos: File offset. 1060 * @write_bytes: The length to write, will be updated to the nocow writeable 1061 * range. 1062 * 1063 * This function will flush ordered extents in the range to ensure proper 1064 * nocow checks. 1065 * 1066 * Return: 1067 * > 0 If we can nocow, and updates @write_bytes. 1068 * 0 If we can't do a nocow write. 1069 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's 1070 * root is in progress. 1071 * < 0 If an error happened. 1072 * 1073 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 1074 */ 1075 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1076 size_t *write_bytes, bool nowait) 1077 { 1078 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1079 struct btrfs_root *root = inode->root; 1080 struct extent_state *cached_state = NULL; 1081 u64 lockstart, lockend; 1082 u64 num_bytes; 1083 int ret; 1084 1085 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1086 return 0; 1087 1088 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1089 return -EAGAIN; 1090 1091 lockstart = round_down(pos, fs_info->sectorsize); 1092 lockend = round_up(pos + *write_bytes, 1093 fs_info->sectorsize) - 1; 1094 num_bytes = lockend - lockstart + 1; 1095 1096 if (nowait) { 1097 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend, 1098 &cached_state)) { 1099 btrfs_drew_write_unlock(&root->snapshot_lock); 1100 return -EAGAIN; 1101 } 1102 } else { 1103 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, 1104 &cached_state); 1105 } 1106 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1107 NULL, NULL, NULL, nowait, false); 1108 if (ret <= 0) 1109 btrfs_drew_write_unlock(&root->snapshot_lock); 1110 else 1111 *write_bytes = min_t(size_t, *write_bytes , 1112 num_bytes - pos + lockstart); 1113 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 1114 1115 return ret; 1116 } 1117 1118 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1119 { 1120 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1121 } 1122 1123 static void update_time_for_write(struct inode *inode) 1124 { 1125 struct timespec64 now, ts; 1126 1127 if (IS_NOCMTIME(inode)) 1128 return; 1129 1130 now = current_time(inode); 1131 ts = inode_get_mtime(inode); 1132 if (!timespec64_equal(&ts, &now)) 1133 inode_set_mtime_to_ts(inode, now); 1134 1135 ts = inode_get_ctime(inode); 1136 if (!timespec64_equal(&ts, &now)) 1137 inode_set_ctime_to_ts(inode, now); 1138 1139 if (IS_I_VERSION(inode)) 1140 inode_inc_iversion(inode); 1141 } 1142 1143 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1144 size_t count) 1145 { 1146 struct file *file = iocb->ki_filp; 1147 struct inode *inode = file_inode(file); 1148 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1149 loff_t pos = iocb->ki_pos; 1150 int ret; 1151 loff_t oldsize; 1152 loff_t start_pos; 1153 1154 /* 1155 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1156 * prealloc flags, as without those flags we always have to COW. We will 1157 * later check if we can really COW into the target range (using 1158 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1159 */ 1160 if ((iocb->ki_flags & IOCB_NOWAIT) && 1161 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1162 return -EAGAIN; 1163 1164 ret = file_remove_privs(file); 1165 if (ret) 1166 return ret; 1167 1168 /* 1169 * We reserve space for updating the inode when we reserve space for the 1170 * extent we are going to write, so we will enospc out there. We don't 1171 * need to start yet another transaction to update the inode as we will 1172 * update the inode when we finish writing whatever data we write. 1173 */ 1174 update_time_for_write(inode); 1175 1176 start_pos = round_down(pos, fs_info->sectorsize); 1177 oldsize = i_size_read(inode); 1178 if (start_pos > oldsize) { 1179 /* Expand hole size to cover write data, preventing empty gap */ 1180 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1181 1182 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1183 if (ret) 1184 return ret; 1185 } 1186 1187 return 0; 1188 } 1189 1190 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1191 struct iov_iter *i) 1192 { 1193 struct file *file = iocb->ki_filp; 1194 loff_t pos; 1195 struct inode *inode = file_inode(file); 1196 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1197 struct page **pages = NULL; 1198 struct extent_changeset *data_reserved = NULL; 1199 u64 release_bytes = 0; 1200 u64 lockstart; 1201 u64 lockend; 1202 size_t num_written = 0; 1203 int nrptrs; 1204 ssize_t ret; 1205 bool only_release_metadata = false; 1206 bool force_page_uptodate = false; 1207 loff_t old_isize = i_size_read(inode); 1208 unsigned int ilock_flags = 0; 1209 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 1210 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); 1211 1212 if (nowait) 1213 ilock_flags |= BTRFS_ILOCK_TRY; 1214 1215 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1216 if (ret < 0) 1217 return ret; 1218 1219 ret = generic_write_checks(iocb, i); 1220 if (ret <= 0) 1221 goto out; 1222 1223 ret = btrfs_write_check(iocb, i, ret); 1224 if (ret < 0) 1225 goto out; 1226 1227 pos = iocb->ki_pos; 1228 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1229 PAGE_SIZE / (sizeof(struct page *))); 1230 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1231 nrptrs = max(nrptrs, 8); 1232 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1233 if (!pages) { 1234 ret = -ENOMEM; 1235 goto out; 1236 } 1237 1238 while (iov_iter_count(i) > 0) { 1239 struct extent_state *cached_state = NULL; 1240 size_t offset = offset_in_page(pos); 1241 size_t sector_offset; 1242 size_t write_bytes = min(iov_iter_count(i), 1243 nrptrs * (size_t)PAGE_SIZE - 1244 offset); 1245 size_t num_pages; 1246 size_t reserve_bytes; 1247 size_t dirty_pages; 1248 size_t copied; 1249 size_t dirty_sectors; 1250 size_t num_sectors; 1251 int extents_locked; 1252 1253 /* 1254 * Fault pages before locking them in prepare_pages 1255 * to avoid recursive lock 1256 */ 1257 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1258 ret = -EFAULT; 1259 break; 1260 } 1261 1262 only_release_metadata = false; 1263 sector_offset = pos & (fs_info->sectorsize - 1); 1264 1265 extent_changeset_release(data_reserved); 1266 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1267 &data_reserved, pos, 1268 write_bytes, nowait); 1269 if (ret < 0) { 1270 int can_nocow; 1271 1272 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) { 1273 ret = -EAGAIN; 1274 break; 1275 } 1276 1277 /* 1278 * If we don't have to COW at the offset, reserve 1279 * metadata only. write_bytes may get smaller than 1280 * requested here. 1281 */ 1282 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1283 &write_bytes, nowait); 1284 if (can_nocow < 0) 1285 ret = can_nocow; 1286 if (can_nocow > 0) 1287 ret = 0; 1288 if (ret) 1289 break; 1290 only_release_metadata = true; 1291 } 1292 1293 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1294 WARN_ON(num_pages > nrptrs); 1295 reserve_bytes = round_up(write_bytes + sector_offset, 1296 fs_info->sectorsize); 1297 WARN_ON(reserve_bytes == 0); 1298 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1299 reserve_bytes, 1300 reserve_bytes, nowait); 1301 if (ret) { 1302 if (!only_release_metadata) 1303 btrfs_free_reserved_data_space(BTRFS_I(inode), 1304 data_reserved, pos, 1305 write_bytes); 1306 else 1307 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1308 1309 if (nowait && ret == -ENOSPC) 1310 ret = -EAGAIN; 1311 break; 1312 } 1313 1314 release_bytes = reserve_bytes; 1315 again: 1316 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags); 1317 if (ret) { 1318 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1319 break; 1320 } 1321 1322 /* 1323 * This is going to setup the pages array with the number of 1324 * pages we want, so we don't really need to worry about the 1325 * contents of pages from loop to loop 1326 */ 1327 ret = prepare_pages(inode, pages, num_pages, 1328 pos, write_bytes, force_page_uptodate, false); 1329 if (ret) { 1330 btrfs_delalloc_release_extents(BTRFS_I(inode), 1331 reserve_bytes); 1332 break; 1333 } 1334 1335 extents_locked = lock_and_cleanup_extent_if_need( 1336 BTRFS_I(inode), pages, 1337 num_pages, pos, write_bytes, &lockstart, 1338 &lockend, nowait, &cached_state); 1339 if (extents_locked < 0) { 1340 if (!nowait && extents_locked == -EAGAIN) 1341 goto again; 1342 1343 btrfs_delalloc_release_extents(BTRFS_I(inode), 1344 reserve_bytes); 1345 ret = extents_locked; 1346 break; 1347 } 1348 1349 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1350 1351 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1352 dirty_sectors = round_up(copied + sector_offset, 1353 fs_info->sectorsize); 1354 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1355 1356 /* 1357 * if we have trouble faulting in the pages, fall 1358 * back to one page at a time 1359 */ 1360 if (copied < write_bytes) 1361 nrptrs = 1; 1362 1363 if (copied == 0) { 1364 force_page_uptodate = true; 1365 dirty_sectors = 0; 1366 dirty_pages = 0; 1367 } else { 1368 force_page_uptodate = false; 1369 dirty_pages = DIV_ROUND_UP(copied + offset, 1370 PAGE_SIZE); 1371 } 1372 1373 if (num_sectors > dirty_sectors) { 1374 /* release everything except the sectors we dirtied */ 1375 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1376 if (only_release_metadata) { 1377 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1378 release_bytes, true); 1379 } else { 1380 u64 __pos; 1381 1382 __pos = round_down(pos, 1383 fs_info->sectorsize) + 1384 (dirty_pages << PAGE_SHIFT); 1385 btrfs_delalloc_release_space(BTRFS_I(inode), 1386 data_reserved, __pos, 1387 release_bytes, true); 1388 } 1389 } 1390 1391 release_bytes = round_up(copied + sector_offset, 1392 fs_info->sectorsize); 1393 1394 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1395 dirty_pages, pos, copied, 1396 &cached_state, only_release_metadata); 1397 1398 /* 1399 * If we have not locked the extent range, because the range's 1400 * start offset is >= i_size, we might still have a non-NULL 1401 * cached extent state, acquired while marking the extent range 1402 * as delalloc through btrfs_dirty_pages(). Therefore free any 1403 * possible cached extent state to avoid a memory leak. 1404 */ 1405 if (extents_locked) 1406 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 1407 lockend, &cached_state); 1408 else 1409 free_extent_state(cached_state); 1410 1411 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1412 if (ret) { 1413 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1414 break; 1415 } 1416 1417 release_bytes = 0; 1418 if (only_release_metadata) 1419 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1420 1421 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1422 1423 cond_resched(); 1424 1425 pos += copied; 1426 num_written += copied; 1427 } 1428 1429 kfree(pages); 1430 1431 if (release_bytes) { 1432 if (only_release_metadata) { 1433 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1434 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1435 release_bytes, true); 1436 } else { 1437 btrfs_delalloc_release_space(BTRFS_I(inode), 1438 data_reserved, 1439 round_down(pos, fs_info->sectorsize), 1440 release_bytes, true); 1441 } 1442 } 1443 1444 extent_changeset_free(data_reserved); 1445 if (num_written > 0) { 1446 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1447 iocb->ki_pos += num_written; 1448 } 1449 out: 1450 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1451 return num_written ? num_written : ret; 1452 } 1453 1454 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1455 const struct iov_iter *iter, loff_t offset) 1456 { 1457 const u32 blocksize_mask = fs_info->sectorsize - 1; 1458 1459 if (offset & blocksize_mask) 1460 return -EINVAL; 1461 1462 if (iov_iter_alignment(iter) & blocksize_mask) 1463 return -EINVAL; 1464 1465 return 0; 1466 } 1467 1468 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1469 { 1470 struct file *file = iocb->ki_filp; 1471 struct inode *inode = file_inode(file); 1472 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1473 loff_t pos; 1474 ssize_t written = 0; 1475 ssize_t written_buffered; 1476 size_t prev_left = 0; 1477 loff_t endbyte; 1478 ssize_t ret; 1479 unsigned int ilock_flags = 0; 1480 struct iomap_dio *dio; 1481 1482 if (iocb->ki_flags & IOCB_NOWAIT) 1483 ilock_flags |= BTRFS_ILOCK_TRY; 1484 1485 /* 1486 * If the write DIO is within EOF, use a shared lock and also only if 1487 * security bits will likely not be dropped by file_remove_privs() called 1488 * from btrfs_write_check(). Either will need to be rechecked after the 1489 * lock was acquired. 1490 */ 1491 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode)) 1492 ilock_flags |= BTRFS_ILOCK_SHARED; 1493 1494 relock: 1495 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags); 1496 if (ret < 0) 1497 return ret; 1498 1499 /* Shared lock cannot be used with security bits set. */ 1500 if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) { 1501 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1502 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1503 goto relock; 1504 } 1505 1506 ret = generic_write_checks(iocb, from); 1507 if (ret <= 0) { 1508 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1509 return ret; 1510 } 1511 1512 ret = btrfs_write_check(iocb, from, ret); 1513 if (ret < 0) { 1514 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1515 goto out; 1516 } 1517 1518 pos = iocb->ki_pos; 1519 /* 1520 * Re-check since file size may have changed just before taking the 1521 * lock or pos may have changed because of O_APPEND in generic_write_check() 1522 */ 1523 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1524 pos + iov_iter_count(from) > i_size_read(inode)) { 1525 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1526 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1527 goto relock; 1528 } 1529 1530 if (check_direct_IO(fs_info, from, pos)) { 1531 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1532 goto buffered; 1533 } 1534 1535 /* 1536 * The iov_iter can be mapped to the same file range we are writing to. 1537 * If that's the case, then we will deadlock in the iomap code, because 1538 * it first calls our callback btrfs_dio_iomap_begin(), which will create 1539 * an ordered extent, and after that it will fault in the pages that the 1540 * iov_iter refers to. During the fault in we end up in the readahead 1541 * pages code (starting at btrfs_readahead()), which will lock the range, 1542 * find that ordered extent and then wait for it to complete (at 1543 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since 1544 * obviously the ordered extent can never complete as we didn't submit 1545 * yet the respective bio(s). This always happens when the buffer is 1546 * memory mapped to the same file range, since the iomap DIO code always 1547 * invalidates pages in the target file range (after starting and waiting 1548 * for any writeback). 1549 * 1550 * So here we disable page faults in the iov_iter and then retry if we 1551 * got -EFAULT, faulting in the pages before the retry. 1552 */ 1553 from->nofault = true; 1554 dio = btrfs_dio_write(iocb, from, written); 1555 from->nofault = false; 1556 1557 /* 1558 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync 1559 * iocb, and that needs to lock the inode. So unlock it before calling 1560 * iomap_dio_complete() to avoid a deadlock. 1561 */ 1562 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags); 1563 1564 if (IS_ERR_OR_NULL(dio)) 1565 ret = PTR_ERR_OR_ZERO(dio); 1566 else 1567 ret = iomap_dio_complete(dio); 1568 1569 /* No increment (+=) because iomap returns a cumulative value. */ 1570 if (ret > 0) 1571 written = ret; 1572 1573 if (iov_iter_count(from) > 0 && (ret == -EFAULT || ret > 0)) { 1574 const size_t left = iov_iter_count(from); 1575 /* 1576 * We have more data left to write. Try to fault in as many as 1577 * possible of the remainder pages and retry. We do this without 1578 * releasing and locking again the inode, to prevent races with 1579 * truncate. 1580 * 1581 * Also, in case the iov refers to pages in the file range of the 1582 * file we want to write to (due to a mmap), we could enter an 1583 * infinite loop if we retry after faulting the pages in, since 1584 * iomap will invalidate any pages in the range early on, before 1585 * it tries to fault in the pages of the iov. So we keep track of 1586 * how much was left of iov in the previous EFAULT and fallback 1587 * to buffered IO in case we haven't made any progress. 1588 */ 1589 if (left == prev_left) { 1590 ret = -ENOTBLK; 1591 } else { 1592 fault_in_iov_iter_readable(from, left); 1593 prev_left = left; 1594 goto relock; 1595 } 1596 } 1597 1598 /* 1599 * If 'ret' is -ENOTBLK or we have not written all data, then it means 1600 * we must fallback to buffered IO. 1601 */ 1602 if ((ret < 0 && ret != -ENOTBLK) || !iov_iter_count(from)) 1603 goto out; 1604 1605 buffered: 1606 /* 1607 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller 1608 * it must retry the operation in a context where blocking is acceptable, 1609 * because even if we end up not blocking during the buffered IO attempt 1610 * below, we will block when flushing and waiting for the IO. 1611 */ 1612 if (iocb->ki_flags & IOCB_NOWAIT) { 1613 ret = -EAGAIN; 1614 goto out; 1615 } 1616 1617 pos = iocb->ki_pos; 1618 written_buffered = btrfs_buffered_write(iocb, from); 1619 if (written_buffered < 0) { 1620 ret = written_buffered; 1621 goto out; 1622 } 1623 /* 1624 * Ensure all data is persisted. We want the next direct IO read to be 1625 * able to read what was just written. 1626 */ 1627 endbyte = pos + written_buffered - 1; 1628 ret = btrfs_fdatawrite_range(inode, pos, endbyte); 1629 if (ret) 1630 goto out; 1631 ret = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1632 if (ret) 1633 goto out; 1634 written += written_buffered; 1635 iocb->ki_pos = pos + written_buffered; 1636 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1637 endbyte >> PAGE_SHIFT); 1638 out: 1639 return ret < 0 ? ret : written; 1640 } 1641 1642 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 1643 const struct btrfs_ioctl_encoded_io_args *encoded) 1644 { 1645 struct file *file = iocb->ki_filp; 1646 struct inode *inode = file_inode(file); 1647 loff_t count; 1648 ssize_t ret; 1649 1650 btrfs_inode_lock(BTRFS_I(inode), 0); 1651 count = encoded->len; 1652 ret = generic_write_checks_count(iocb, &count); 1653 if (ret == 0 && count != encoded->len) { 1654 /* 1655 * The write got truncated by generic_write_checks_count(). We 1656 * can't do a partial encoded write. 1657 */ 1658 ret = -EFBIG; 1659 } 1660 if (ret || encoded->len == 0) 1661 goto out; 1662 1663 ret = btrfs_write_check(iocb, from, encoded->len); 1664 if (ret < 0) 1665 goto out; 1666 1667 ret = btrfs_do_encoded_write(iocb, from, encoded); 1668 out: 1669 btrfs_inode_unlock(BTRFS_I(inode), 0); 1670 return ret; 1671 } 1672 1673 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 1674 const struct btrfs_ioctl_encoded_io_args *encoded) 1675 { 1676 struct file *file = iocb->ki_filp; 1677 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1678 ssize_t num_written, num_sync; 1679 1680 /* 1681 * If the fs flips readonly due to some impossible error, although we 1682 * have opened a file as writable, we have to stop this write operation 1683 * to ensure consistency. 1684 */ 1685 if (BTRFS_FS_ERROR(inode->root->fs_info)) 1686 return -EROFS; 1687 1688 if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) 1689 return -EOPNOTSUPP; 1690 1691 if (encoded) { 1692 num_written = btrfs_encoded_write(iocb, from, encoded); 1693 num_sync = encoded->len; 1694 } else if (iocb->ki_flags & IOCB_DIRECT) { 1695 num_written = btrfs_direct_write(iocb, from); 1696 num_sync = num_written; 1697 } else { 1698 num_written = btrfs_buffered_write(iocb, from); 1699 num_sync = num_written; 1700 } 1701 1702 btrfs_set_inode_last_sub_trans(inode); 1703 1704 if (num_sync > 0) { 1705 num_sync = generic_write_sync(iocb, num_sync); 1706 if (num_sync < 0) 1707 num_written = num_sync; 1708 } 1709 1710 return num_written; 1711 } 1712 1713 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1714 { 1715 return btrfs_do_write_iter(iocb, from, NULL); 1716 } 1717 1718 int btrfs_release_file(struct inode *inode, struct file *filp) 1719 { 1720 struct btrfs_file_private *private = filp->private_data; 1721 1722 if (private) { 1723 kfree(private->filldir_buf); 1724 free_extent_state(private->llseek_cached_state); 1725 kfree(private); 1726 filp->private_data = NULL; 1727 } 1728 1729 /* 1730 * Set by setattr when we are about to truncate a file from a non-zero 1731 * size to a zero size. This tries to flush down new bytes that may 1732 * have been written if the application were using truncate to replace 1733 * a file in place. 1734 */ 1735 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 1736 &BTRFS_I(inode)->runtime_flags)) 1737 filemap_flush(inode->i_mapping); 1738 return 0; 1739 } 1740 1741 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 1742 { 1743 int ret; 1744 struct blk_plug plug; 1745 1746 /* 1747 * This is only called in fsync, which would do synchronous writes, so 1748 * a plug can merge adjacent IOs as much as possible. Esp. in case of 1749 * multiple disks using raid profile, a large IO can be split to 1750 * several segments of stripe length (currently 64K). 1751 */ 1752 blk_start_plug(&plug); 1753 ret = btrfs_fdatawrite_range(inode, start, end); 1754 blk_finish_plug(&plug); 1755 1756 return ret; 1757 } 1758 1759 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 1760 { 1761 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 1762 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1763 1764 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) && 1765 list_empty(&ctx->ordered_extents)) 1766 return true; 1767 1768 /* 1769 * If we are doing a fast fsync we can not bail out if the inode's 1770 * last_trans is <= then the last committed transaction, because we only 1771 * update the last_trans of the inode during ordered extent completion, 1772 * and for a fast fsync we don't wait for that, we only wait for the 1773 * writeback to complete. 1774 */ 1775 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) && 1776 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 1777 list_empty(&ctx->ordered_extents))) 1778 return true; 1779 1780 return false; 1781 } 1782 1783 /* 1784 * fsync call for both files and directories. This logs the inode into 1785 * the tree log instead of forcing full commits whenever possible. 1786 * 1787 * It needs to call filemap_fdatawait so that all ordered extent updates are 1788 * in the metadata btree are up to date for copying to the log. 1789 * 1790 * It drops the inode mutex before doing the tree log commit. This is an 1791 * important optimization for directories because holding the mutex prevents 1792 * new operations on the dir while we write to disk. 1793 */ 1794 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1795 { 1796 struct dentry *dentry = file_dentry(file); 1797 struct inode *inode = d_inode(dentry); 1798 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1799 struct btrfs_root *root = BTRFS_I(inode)->root; 1800 struct btrfs_trans_handle *trans; 1801 struct btrfs_log_ctx ctx; 1802 int ret = 0, err; 1803 u64 len; 1804 bool full_sync; 1805 1806 trace_btrfs_sync_file(file, datasync); 1807 1808 btrfs_init_log_ctx(&ctx, inode); 1809 1810 /* 1811 * Always set the range to a full range, otherwise we can get into 1812 * several problems, from missing file extent items to represent holes 1813 * when not using the NO_HOLES feature, to log tree corruption due to 1814 * races between hole detection during logging and completion of ordered 1815 * extents outside the range, to missing checksums due to ordered extents 1816 * for which we flushed only a subset of their pages. 1817 */ 1818 start = 0; 1819 end = LLONG_MAX; 1820 len = (u64)LLONG_MAX + 1; 1821 1822 /* 1823 * We write the dirty pages in the range and wait until they complete 1824 * out of the ->i_mutex. If so, we can flush the dirty pages by 1825 * multi-task, and make the performance up. See 1826 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1827 */ 1828 ret = start_ordered_ops(inode, start, end); 1829 if (ret) 1830 goto out; 1831 1832 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1833 1834 atomic_inc(&root->log_batch); 1835 1836 /* 1837 * Before we acquired the inode's lock and the mmap lock, someone may 1838 * have dirtied more pages in the target range. We need to make sure 1839 * that writeback for any such pages does not start while we are logging 1840 * the inode, because if it does, any of the following might happen when 1841 * we are not doing a full inode sync: 1842 * 1843 * 1) We log an extent after its writeback finishes but before its 1844 * checksums are added to the csum tree, leading to -EIO errors 1845 * when attempting to read the extent after a log replay. 1846 * 1847 * 2) We can end up logging an extent before its writeback finishes. 1848 * Therefore after the log replay we will have a file extent item 1849 * pointing to an unwritten extent (and no data checksums as well). 1850 * 1851 * So trigger writeback for any eventual new dirty pages and then we 1852 * wait for all ordered extents to complete below. 1853 */ 1854 ret = start_ordered_ops(inode, start, end); 1855 if (ret) { 1856 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1857 goto out; 1858 } 1859 1860 /* 1861 * Always check for the full sync flag while holding the inode's lock, 1862 * to avoid races with other tasks. The flag must be either set all the 1863 * time during logging or always off all the time while logging. 1864 * We check the flag here after starting delalloc above, because when 1865 * running delalloc the full sync flag may be set if we need to drop 1866 * extra extent map ranges due to temporary memory allocation failures. 1867 */ 1868 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1869 &BTRFS_I(inode)->runtime_flags); 1870 1871 /* 1872 * We have to do this here to avoid the priority inversion of waiting on 1873 * IO of a lower priority task while holding a transaction open. 1874 * 1875 * For a full fsync we wait for the ordered extents to complete while 1876 * for a fast fsync we wait just for writeback to complete, and then 1877 * attach the ordered extents to the transaction so that a transaction 1878 * commit waits for their completion, to avoid data loss if we fsync, 1879 * the current transaction commits before the ordered extents complete 1880 * and a power failure happens right after that. 1881 * 1882 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 1883 * logical address recorded in the ordered extent may change. We need 1884 * to wait for the IO to stabilize the logical address. 1885 */ 1886 if (full_sync || btrfs_is_zoned(fs_info)) { 1887 ret = btrfs_wait_ordered_range(inode, start, len); 1888 } else { 1889 /* 1890 * Get our ordered extents as soon as possible to avoid doing 1891 * checksum lookups in the csum tree, and use instead the 1892 * checksums attached to the ordered extents. 1893 */ 1894 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 1895 &ctx.ordered_extents); 1896 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 1897 } 1898 1899 if (ret) 1900 goto out_release_extents; 1901 1902 atomic_inc(&root->log_batch); 1903 1904 if (skip_inode_logging(&ctx)) { 1905 /* 1906 * We've had everything committed since the last time we were 1907 * modified so clear this flag in case it was set for whatever 1908 * reason, it's no longer relevant. 1909 */ 1910 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1911 &BTRFS_I(inode)->runtime_flags); 1912 /* 1913 * An ordered extent might have started before and completed 1914 * already with io errors, in which case the inode was not 1915 * updated and we end up here. So check the inode's mapping 1916 * for any errors that might have happened since we last 1917 * checked called fsync. 1918 */ 1919 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 1920 goto out_release_extents; 1921 } 1922 1923 btrfs_init_log_ctx_scratch_eb(&ctx); 1924 1925 /* 1926 * We use start here because we will need to wait on the IO to complete 1927 * in btrfs_sync_log, which could require joining a transaction (for 1928 * example checking cross references in the nocow path). If we use join 1929 * here we could get into a situation where we're waiting on IO to 1930 * happen that is blocked on a transaction trying to commit. With start 1931 * we inc the extwriter counter, so we wait for all extwriters to exit 1932 * before we start blocking joiners. This comment is to keep somebody 1933 * from thinking they are super smart and changing this to 1934 * btrfs_join_transaction *cough*Josef*cough*. 1935 */ 1936 trans = btrfs_start_transaction(root, 0); 1937 if (IS_ERR(trans)) { 1938 ret = PTR_ERR(trans); 1939 goto out_release_extents; 1940 } 1941 trans->in_fsync = true; 1942 1943 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 1944 /* 1945 * Scratch eb no longer needed, release before syncing log or commit 1946 * transaction, to avoid holding unnecessary memory during such long 1947 * operations. 1948 */ 1949 if (ctx.scratch_eb) { 1950 free_extent_buffer(ctx.scratch_eb); 1951 ctx.scratch_eb = NULL; 1952 } 1953 btrfs_release_log_ctx_extents(&ctx); 1954 if (ret < 0) { 1955 /* Fallthrough and commit/free transaction. */ 1956 ret = BTRFS_LOG_FORCE_COMMIT; 1957 } 1958 1959 /* we've logged all the items and now have a consistent 1960 * version of the file in the log. It is possible that 1961 * someone will come in and modify the file, but that's 1962 * fine because the log is consistent on disk, and we 1963 * have references to all of the file's extents 1964 * 1965 * It is possible that someone will come in and log the 1966 * file again, but that will end up using the synchronization 1967 * inside btrfs_sync_log to keep things safe. 1968 */ 1969 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 1970 1971 if (ret == BTRFS_NO_LOG_SYNC) { 1972 ret = btrfs_end_transaction(trans); 1973 goto out; 1974 } 1975 1976 /* We successfully logged the inode, attempt to sync the log. */ 1977 if (!ret) { 1978 ret = btrfs_sync_log(trans, root, &ctx); 1979 if (!ret) { 1980 ret = btrfs_end_transaction(trans); 1981 goto out; 1982 } 1983 } 1984 1985 /* 1986 * At this point we need to commit the transaction because we had 1987 * btrfs_need_log_full_commit() or some other error. 1988 * 1989 * If we didn't do a full sync we have to stop the trans handle, wait on 1990 * the ordered extents, start it again and commit the transaction. If 1991 * we attempt to wait on the ordered extents here we could deadlock with 1992 * something like fallocate() that is holding the extent lock trying to 1993 * start a transaction while some other thread is trying to commit the 1994 * transaction while we (fsync) are currently holding the transaction 1995 * open. 1996 */ 1997 if (!full_sync) { 1998 ret = btrfs_end_transaction(trans); 1999 if (ret) 2000 goto out; 2001 ret = btrfs_wait_ordered_range(inode, start, len); 2002 if (ret) 2003 goto out; 2004 2005 /* 2006 * This is safe to use here because we're only interested in 2007 * making sure the transaction that had the ordered extents is 2008 * committed. We aren't waiting on anything past this point, 2009 * we're purely getting the transaction and committing it. 2010 */ 2011 trans = btrfs_attach_transaction_barrier(root); 2012 if (IS_ERR(trans)) { 2013 ret = PTR_ERR(trans); 2014 2015 /* 2016 * We committed the transaction and there's no currently 2017 * running transaction, this means everything we care 2018 * about made it to disk and we are done. 2019 */ 2020 if (ret == -ENOENT) 2021 ret = 0; 2022 goto out; 2023 } 2024 } 2025 2026 ret = btrfs_commit_transaction(trans); 2027 out: 2028 free_extent_buffer(ctx.scratch_eb); 2029 ASSERT(list_empty(&ctx.list)); 2030 ASSERT(list_empty(&ctx.conflict_inodes)); 2031 err = file_check_and_advance_wb_err(file); 2032 if (!ret) 2033 ret = err; 2034 return ret > 0 ? -EIO : ret; 2035 2036 out_release_extents: 2037 btrfs_release_log_ctx_extents(&ctx); 2038 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2039 goto out; 2040 } 2041 2042 /* 2043 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 2044 * called from a page fault handler when a page is first dirtied. Hence we must 2045 * be careful to check for EOF conditions here. We set the page up correctly 2046 * for a written page which means we get ENOSPC checking when writing into 2047 * holes and correct delalloc and unwritten extent mapping on filesystems that 2048 * support these features. 2049 * 2050 * We are not allowed to take the i_mutex here so we have to play games to 2051 * protect against truncate races as the page could now be beyond EOF. Because 2052 * truncate_setsize() writes the inode size before removing pages, once we have 2053 * the page lock we can determine safely if the page is beyond EOF. If it is not 2054 * beyond EOF, then the page is guaranteed safe against truncation until we 2055 * unlock the page. 2056 */ 2057 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 2058 { 2059 struct page *page = vmf->page; 2060 struct folio *folio = page_folio(page); 2061 struct inode *inode = file_inode(vmf->vma->vm_file); 2062 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2063 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2064 struct btrfs_ordered_extent *ordered; 2065 struct extent_state *cached_state = NULL; 2066 struct extent_changeset *data_reserved = NULL; 2067 unsigned long zero_start; 2068 loff_t size; 2069 vm_fault_t ret; 2070 int ret2; 2071 int reserved = 0; 2072 u64 reserved_space; 2073 u64 page_start; 2074 u64 page_end; 2075 u64 end; 2076 2077 ASSERT(folio_order(folio) == 0); 2078 2079 reserved_space = PAGE_SIZE; 2080 2081 sb_start_pagefault(inode->i_sb); 2082 page_start = page_offset(page); 2083 page_end = page_start + PAGE_SIZE - 1; 2084 end = page_end; 2085 2086 /* 2087 * Reserving delalloc space after obtaining the page lock can lead to 2088 * deadlock. For example, if a dirty page is locked by this function 2089 * and the call to btrfs_delalloc_reserve_space() ends up triggering 2090 * dirty page write out, then the btrfs_writepages() function could 2091 * end up waiting indefinitely to get a lock on the page currently 2092 * being processed by btrfs_page_mkwrite() function. 2093 */ 2094 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 2095 page_start, reserved_space); 2096 if (!ret2) { 2097 ret2 = file_update_time(vmf->vma->vm_file); 2098 reserved = 1; 2099 } 2100 if (ret2) { 2101 ret = vmf_error(ret2); 2102 if (reserved) 2103 goto out; 2104 goto out_noreserve; 2105 } 2106 2107 /* Make the VM retry the fault. */ 2108 ret = VM_FAULT_NOPAGE; 2109 again: 2110 down_read(&BTRFS_I(inode)->i_mmap_lock); 2111 lock_page(page); 2112 size = i_size_read(inode); 2113 2114 if ((page->mapping != inode->i_mapping) || 2115 (page_start >= size)) { 2116 /* Page got truncated out from underneath us. */ 2117 goto out_unlock; 2118 } 2119 wait_on_page_writeback(page); 2120 2121 lock_extent(io_tree, page_start, page_end, &cached_state); 2122 ret2 = set_page_extent_mapped(page); 2123 if (ret2 < 0) { 2124 ret = vmf_error(ret2); 2125 unlock_extent(io_tree, page_start, page_end, &cached_state); 2126 goto out_unlock; 2127 } 2128 2129 /* 2130 * We can't set the delalloc bits if there are pending ordered 2131 * extents. Drop our locks and wait for them to finish. 2132 */ 2133 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE); 2134 if (ordered) { 2135 unlock_extent(io_tree, page_start, page_end, &cached_state); 2136 unlock_page(page); 2137 up_read(&BTRFS_I(inode)->i_mmap_lock); 2138 btrfs_start_ordered_extent(ordered); 2139 btrfs_put_ordered_extent(ordered); 2140 goto again; 2141 } 2142 2143 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 2144 reserved_space = round_up(size - page_start, fs_info->sectorsize); 2145 if (reserved_space < PAGE_SIZE) { 2146 end = page_start + reserved_space - 1; 2147 btrfs_delalloc_release_space(BTRFS_I(inode), 2148 data_reserved, page_start, 2149 PAGE_SIZE - reserved_space, true); 2150 } 2151 } 2152 2153 /* 2154 * page_mkwrite gets called when the page is firstly dirtied after it's 2155 * faulted in, but write(2) could also dirty a page and set delalloc 2156 * bits, thus in this case for space account reason, we still need to 2157 * clear any delalloc bits within this page range since we have to 2158 * reserve data&meta space before lock_page() (see above comments). 2159 */ 2160 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 2161 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 2162 EXTENT_DEFRAG, &cached_state); 2163 2164 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 2165 &cached_state); 2166 if (ret2) { 2167 unlock_extent(io_tree, page_start, page_end, &cached_state); 2168 ret = VM_FAULT_SIGBUS; 2169 goto out_unlock; 2170 } 2171 2172 /* Page is wholly or partially inside EOF. */ 2173 if (page_start + PAGE_SIZE > size) 2174 zero_start = offset_in_page(size); 2175 else 2176 zero_start = PAGE_SIZE; 2177 2178 if (zero_start != PAGE_SIZE) 2179 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 2180 2181 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2182 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start); 2183 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start); 2184 2185 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 2186 2187 unlock_extent(io_tree, page_start, page_end, &cached_state); 2188 up_read(&BTRFS_I(inode)->i_mmap_lock); 2189 2190 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2191 sb_end_pagefault(inode->i_sb); 2192 extent_changeset_free(data_reserved); 2193 return VM_FAULT_LOCKED; 2194 2195 out_unlock: 2196 unlock_page(page); 2197 up_read(&BTRFS_I(inode)->i_mmap_lock); 2198 out: 2199 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2200 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 2201 reserved_space, (ret != 0)); 2202 out_noreserve: 2203 sb_end_pagefault(inode->i_sb); 2204 extent_changeset_free(data_reserved); 2205 return ret; 2206 } 2207 2208 static const struct vm_operations_struct btrfs_file_vm_ops = { 2209 .fault = filemap_fault, 2210 .map_pages = filemap_map_pages, 2211 .page_mkwrite = btrfs_page_mkwrite, 2212 }; 2213 2214 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2215 { 2216 struct address_space *mapping = filp->f_mapping; 2217 2218 if (!mapping->a_ops->read_folio) 2219 return -ENOEXEC; 2220 2221 file_accessed(filp); 2222 vma->vm_ops = &btrfs_file_vm_ops; 2223 2224 return 0; 2225 } 2226 2227 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2228 int slot, u64 start, u64 end) 2229 { 2230 struct btrfs_file_extent_item *fi; 2231 struct btrfs_key key; 2232 2233 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2234 return 0; 2235 2236 btrfs_item_key_to_cpu(leaf, &key, slot); 2237 if (key.objectid != btrfs_ino(inode) || 2238 key.type != BTRFS_EXTENT_DATA_KEY) 2239 return 0; 2240 2241 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2242 2243 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2244 return 0; 2245 2246 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2247 return 0; 2248 2249 if (key.offset == end) 2250 return 1; 2251 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2252 return 1; 2253 return 0; 2254 } 2255 2256 static int fill_holes(struct btrfs_trans_handle *trans, 2257 struct btrfs_inode *inode, 2258 struct btrfs_path *path, u64 offset, u64 end) 2259 { 2260 struct btrfs_fs_info *fs_info = trans->fs_info; 2261 struct btrfs_root *root = inode->root; 2262 struct extent_buffer *leaf; 2263 struct btrfs_file_extent_item *fi; 2264 struct extent_map *hole_em; 2265 struct btrfs_key key; 2266 int ret; 2267 2268 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2269 goto out; 2270 2271 key.objectid = btrfs_ino(inode); 2272 key.type = BTRFS_EXTENT_DATA_KEY; 2273 key.offset = offset; 2274 2275 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2276 if (ret <= 0) { 2277 /* 2278 * We should have dropped this offset, so if we find it then 2279 * something has gone horribly wrong. 2280 */ 2281 if (ret == 0) 2282 ret = -EINVAL; 2283 return ret; 2284 } 2285 2286 leaf = path->nodes[0]; 2287 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2288 u64 num_bytes; 2289 2290 path->slots[0]--; 2291 fi = btrfs_item_ptr(leaf, path->slots[0], 2292 struct btrfs_file_extent_item); 2293 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2294 end - offset; 2295 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2296 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2297 btrfs_set_file_extent_offset(leaf, fi, 0); 2298 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2299 btrfs_mark_buffer_dirty(trans, leaf); 2300 goto out; 2301 } 2302 2303 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2304 u64 num_bytes; 2305 2306 key.offset = offset; 2307 btrfs_set_item_key_safe(trans, path, &key); 2308 fi = btrfs_item_ptr(leaf, path->slots[0], 2309 struct btrfs_file_extent_item); 2310 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2311 offset; 2312 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2313 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2314 btrfs_set_file_extent_offset(leaf, fi, 0); 2315 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2316 btrfs_mark_buffer_dirty(trans, leaf); 2317 goto out; 2318 } 2319 btrfs_release_path(path); 2320 2321 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, 2322 end - offset); 2323 if (ret) 2324 return ret; 2325 2326 out: 2327 btrfs_release_path(path); 2328 2329 hole_em = alloc_extent_map(); 2330 if (!hole_em) { 2331 btrfs_drop_extent_map_range(inode, offset, end - 1, false); 2332 btrfs_set_inode_full_sync(inode); 2333 } else { 2334 hole_em->start = offset; 2335 hole_em->len = end - offset; 2336 hole_em->ram_bytes = hole_em->len; 2337 hole_em->orig_start = offset; 2338 2339 hole_em->block_start = EXTENT_MAP_HOLE; 2340 hole_em->block_len = 0; 2341 hole_em->orig_block_len = 0; 2342 hole_em->generation = trans->transid; 2343 2344 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 2345 free_extent_map(hole_em); 2346 if (ret) 2347 btrfs_set_inode_full_sync(inode); 2348 } 2349 2350 return 0; 2351 } 2352 2353 /* 2354 * Find a hole extent on given inode and change start/len to the end of hole 2355 * extent.(hole/vacuum extent whose em->start <= start && 2356 * em->start + em->len > start) 2357 * When a hole extent is found, return 1 and modify start/len. 2358 */ 2359 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2360 { 2361 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2362 struct extent_map *em; 2363 int ret = 0; 2364 2365 em = btrfs_get_extent(inode, NULL, 2366 round_down(*start, fs_info->sectorsize), 2367 round_up(*len, fs_info->sectorsize)); 2368 if (IS_ERR(em)) 2369 return PTR_ERR(em); 2370 2371 /* Hole or vacuum extent(only exists in no-hole mode) */ 2372 if (em->block_start == EXTENT_MAP_HOLE) { 2373 ret = 1; 2374 *len = em->start + em->len > *start + *len ? 2375 0 : *start + *len - em->start - em->len; 2376 *start = em->start + em->len; 2377 } 2378 free_extent_map(em); 2379 return ret; 2380 } 2381 2382 static void btrfs_punch_hole_lock_range(struct inode *inode, 2383 const u64 lockstart, 2384 const u64 lockend, 2385 struct extent_state **cached_state) 2386 { 2387 /* 2388 * For subpage case, if the range is not at page boundary, we could 2389 * have pages at the leading/tailing part of the range. 2390 * This could lead to dead loop since filemap_range_has_page() 2391 * will always return true. 2392 * So here we need to do extra page alignment for 2393 * filemap_range_has_page(). 2394 */ 2395 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2396 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2397 2398 while (1) { 2399 truncate_pagecache_range(inode, lockstart, lockend); 2400 2401 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2402 cached_state); 2403 /* 2404 * We can't have ordered extents in the range, nor dirty/writeback 2405 * pages, because we have locked the inode's VFS lock in exclusive 2406 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2407 * we have flushed all delalloc in the range and we have waited 2408 * for any ordered extents in the range to complete. 2409 * We can race with anyone reading pages from this range, so after 2410 * locking the range check if we have pages in the range, and if 2411 * we do, unlock the range and retry. 2412 */ 2413 if (!filemap_range_has_page(inode->i_mapping, page_lockstart, 2414 page_lockend)) 2415 break; 2416 2417 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2418 cached_state); 2419 } 2420 2421 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2422 } 2423 2424 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2425 struct btrfs_inode *inode, 2426 struct btrfs_path *path, 2427 struct btrfs_replace_extent_info *extent_info, 2428 const u64 replace_len, 2429 const u64 bytes_to_drop) 2430 { 2431 struct btrfs_fs_info *fs_info = trans->fs_info; 2432 struct btrfs_root *root = inode->root; 2433 struct btrfs_file_extent_item *extent; 2434 struct extent_buffer *leaf; 2435 struct btrfs_key key; 2436 int slot; 2437 int ret; 2438 2439 if (replace_len == 0) 2440 return 0; 2441 2442 if (extent_info->disk_offset == 0 && 2443 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2444 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2445 return 0; 2446 } 2447 2448 key.objectid = btrfs_ino(inode); 2449 key.type = BTRFS_EXTENT_DATA_KEY; 2450 key.offset = extent_info->file_offset; 2451 ret = btrfs_insert_empty_item(trans, root, path, &key, 2452 sizeof(struct btrfs_file_extent_item)); 2453 if (ret) 2454 return ret; 2455 leaf = path->nodes[0]; 2456 slot = path->slots[0]; 2457 write_extent_buffer(leaf, extent_info->extent_buf, 2458 btrfs_item_ptr_offset(leaf, slot), 2459 sizeof(struct btrfs_file_extent_item)); 2460 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2461 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2462 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2463 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2464 if (extent_info->is_new_extent) 2465 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2466 btrfs_mark_buffer_dirty(trans, leaf); 2467 btrfs_release_path(path); 2468 2469 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2470 replace_len); 2471 if (ret) 2472 return ret; 2473 2474 /* If it's a hole, nothing more needs to be done. */ 2475 if (extent_info->disk_offset == 0) { 2476 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2477 return 0; 2478 } 2479 2480 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2481 2482 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2483 key.objectid = extent_info->disk_offset; 2484 key.type = BTRFS_EXTENT_ITEM_KEY; 2485 key.offset = extent_info->disk_len; 2486 ret = btrfs_alloc_reserved_file_extent(trans, root, 2487 btrfs_ino(inode), 2488 extent_info->file_offset, 2489 extent_info->qgroup_reserved, 2490 &key); 2491 } else { 2492 struct btrfs_ref ref = { 2493 .action = BTRFS_ADD_DELAYED_REF, 2494 .bytenr = extent_info->disk_offset, 2495 .num_bytes = extent_info->disk_len, 2496 .owning_root = btrfs_root_id(root), 2497 .ref_root = btrfs_root_id(root), 2498 }; 2499 u64 ref_offset; 2500 2501 ref_offset = extent_info->file_offset - extent_info->data_offset; 2502 btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false); 2503 ret = btrfs_inc_extent_ref(trans, &ref); 2504 } 2505 2506 extent_info->insertions++; 2507 2508 return ret; 2509 } 2510 2511 /* 2512 * The respective range must have been previously locked, as well as the inode. 2513 * The end offset is inclusive (last byte of the range). 2514 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2515 * the file range with an extent. 2516 * When not punching a hole, we don't want to end up in a state where we dropped 2517 * extents without inserting a new one, so we must abort the transaction to avoid 2518 * a corruption. 2519 */ 2520 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2521 struct btrfs_path *path, const u64 start, 2522 const u64 end, 2523 struct btrfs_replace_extent_info *extent_info, 2524 struct btrfs_trans_handle **trans_out) 2525 { 2526 struct btrfs_drop_extents_args drop_args = { 0 }; 2527 struct btrfs_root *root = inode->root; 2528 struct btrfs_fs_info *fs_info = root->fs_info; 2529 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2530 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2531 struct btrfs_trans_handle *trans = NULL; 2532 struct btrfs_block_rsv *rsv; 2533 unsigned int rsv_count; 2534 u64 cur_offset; 2535 u64 len = end - start; 2536 int ret = 0; 2537 2538 if (end <= start) 2539 return -EINVAL; 2540 2541 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2542 if (!rsv) { 2543 ret = -ENOMEM; 2544 goto out; 2545 } 2546 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2547 rsv->failfast = true; 2548 2549 /* 2550 * 1 - update the inode 2551 * 1 - removing the extents in the range 2552 * 1 - adding the hole extent if no_holes isn't set or if we are 2553 * replacing the range with a new extent 2554 */ 2555 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2556 rsv_count = 3; 2557 else 2558 rsv_count = 2; 2559 2560 trans = btrfs_start_transaction(root, rsv_count); 2561 if (IS_ERR(trans)) { 2562 ret = PTR_ERR(trans); 2563 trans = NULL; 2564 goto out_free; 2565 } 2566 2567 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2568 min_size, false); 2569 if (WARN_ON(ret)) 2570 goto out_trans; 2571 trans->block_rsv = rsv; 2572 2573 cur_offset = start; 2574 drop_args.path = path; 2575 drop_args.end = end + 1; 2576 drop_args.drop_cache = true; 2577 while (cur_offset < end) { 2578 drop_args.start = cur_offset; 2579 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2580 /* If we are punching a hole decrement the inode's byte count */ 2581 if (!extent_info) 2582 btrfs_update_inode_bytes(inode, 0, 2583 drop_args.bytes_found); 2584 if (ret != -ENOSPC) { 2585 /* 2586 * The only time we don't want to abort is if we are 2587 * attempting to clone a partial inline extent, in which 2588 * case we'll get EOPNOTSUPP. However if we aren't 2589 * clone we need to abort no matter what, because if we 2590 * got EOPNOTSUPP via prealloc then we messed up and 2591 * need to abort. 2592 */ 2593 if (ret && 2594 (ret != -EOPNOTSUPP || 2595 (extent_info && extent_info->is_new_extent))) 2596 btrfs_abort_transaction(trans, ret); 2597 break; 2598 } 2599 2600 trans->block_rsv = &fs_info->trans_block_rsv; 2601 2602 if (!extent_info && cur_offset < drop_args.drop_end && 2603 cur_offset < ino_size) { 2604 ret = fill_holes(trans, inode, path, cur_offset, 2605 drop_args.drop_end); 2606 if (ret) { 2607 /* 2608 * If we failed then we didn't insert our hole 2609 * entries for the area we dropped, so now the 2610 * fs is corrupted, so we must abort the 2611 * transaction. 2612 */ 2613 btrfs_abort_transaction(trans, ret); 2614 break; 2615 } 2616 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2617 /* 2618 * We are past the i_size here, but since we didn't 2619 * insert holes we need to clear the mapped area so we 2620 * know to not set disk_i_size in this area until a new 2621 * file extent is inserted here. 2622 */ 2623 ret = btrfs_inode_clear_file_extent_range(inode, 2624 cur_offset, 2625 drop_args.drop_end - cur_offset); 2626 if (ret) { 2627 /* 2628 * We couldn't clear our area, so we could 2629 * presumably adjust up and corrupt the fs, so 2630 * we need to abort. 2631 */ 2632 btrfs_abort_transaction(trans, ret); 2633 break; 2634 } 2635 } 2636 2637 if (extent_info && 2638 drop_args.drop_end > extent_info->file_offset) { 2639 u64 replace_len = drop_args.drop_end - 2640 extent_info->file_offset; 2641 2642 ret = btrfs_insert_replace_extent(trans, inode, path, 2643 extent_info, replace_len, 2644 drop_args.bytes_found); 2645 if (ret) { 2646 btrfs_abort_transaction(trans, ret); 2647 break; 2648 } 2649 extent_info->data_len -= replace_len; 2650 extent_info->data_offset += replace_len; 2651 extent_info->file_offset += replace_len; 2652 } 2653 2654 /* 2655 * We are releasing our handle on the transaction, balance the 2656 * dirty pages of the btree inode and flush delayed items, and 2657 * then get a new transaction handle, which may now point to a 2658 * new transaction in case someone else may have committed the 2659 * transaction we used to replace/drop file extent items. So 2660 * bump the inode's iversion and update mtime and ctime except 2661 * if we are called from a dedupe context. This is because a 2662 * power failure/crash may happen after the transaction is 2663 * committed and before we finish replacing/dropping all the 2664 * file extent items we need. 2665 */ 2666 inode_inc_iversion(&inode->vfs_inode); 2667 2668 if (!extent_info || extent_info->update_times) 2669 inode_set_mtime_to_ts(&inode->vfs_inode, 2670 inode_set_ctime_current(&inode->vfs_inode)); 2671 2672 ret = btrfs_update_inode(trans, inode); 2673 if (ret) 2674 break; 2675 2676 btrfs_end_transaction(trans); 2677 btrfs_btree_balance_dirty(fs_info); 2678 2679 trans = btrfs_start_transaction(root, rsv_count); 2680 if (IS_ERR(trans)) { 2681 ret = PTR_ERR(trans); 2682 trans = NULL; 2683 break; 2684 } 2685 2686 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2687 rsv, min_size, false); 2688 if (WARN_ON(ret)) 2689 break; 2690 trans->block_rsv = rsv; 2691 2692 cur_offset = drop_args.drop_end; 2693 len = end - cur_offset; 2694 if (!extent_info && len) { 2695 ret = find_first_non_hole(inode, &cur_offset, &len); 2696 if (unlikely(ret < 0)) 2697 break; 2698 if (ret && !len) { 2699 ret = 0; 2700 break; 2701 } 2702 } 2703 } 2704 2705 /* 2706 * If we were cloning, force the next fsync to be a full one since we 2707 * we replaced (or just dropped in the case of cloning holes when 2708 * NO_HOLES is enabled) file extent items and did not setup new extent 2709 * maps for the replacement extents (or holes). 2710 */ 2711 if (extent_info && !extent_info->is_new_extent) 2712 btrfs_set_inode_full_sync(inode); 2713 2714 if (ret) 2715 goto out_trans; 2716 2717 trans->block_rsv = &fs_info->trans_block_rsv; 2718 /* 2719 * If we are using the NO_HOLES feature we might have had already an 2720 * hole that overlaps a part of the region [lockstart, lockend] and 2721 * ends at (or beyond) lockend. Since we have no file extent items to 2722 * represent holes, drop_end can be less than lockend and so we must 2723 * make sure we have an extent map representing the existing hole (the 2724 * call to __btrfs_drop_extents() might have dropped the existing extent 2725 * map representing the existing hole), otherwise the fast fsync path 2726 * will not record the existence of the hole region 2727 * [existing_hole_start, lockend]. 2728 */ 2729 if (drop_args.drop_end <= end) 2730 drop_args.drop_end = end + 1; 2731 /* 2732 * Don't insert file hole extent item if it's for a range beyond eof 2733 * (because it's useless) or if it represents a 0 bytes range (when 2734 * cur_offset == drop_end). 2735 */ 2736 if (!extent_info && cur_offset < ino_size && 2737 cur_offset < drop_args.drop_end) { 2738 ret = fill_holes(trans, inode, path, cur_offset, 2739 drop_args.drop_end); 2740 if (ret) { 2741 /* Same comment as above. */ 2742 btrfs_abort_transaction(trans, ret); 2743 goto out_trans; 2744 } 2745 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2746 /* See the comment in the loop above for the reasoning here. */ 2747 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2748 drop_args.drop_end - cur_offset); 2749 if (ret) { 2750 btrfs_abort_transaction(trans, ret); 2751 goto out_trans; 2752 } 2753 2754 } 2755 if (extent_info) { 2756 ret = btrfs_insert_replace_extent(trans, inode, path, 2757 extent_info, extent_info->data_len, 2758 drop_args.bytes_found); 2759 if (ret) { 2760 btrfs_abort_transaction(trans, ret); 2761 goto out_trans; 2762 } 2763 } 2764 2765 out_trans: 2766 if (!trans) 2767 goto out_free; 2768 2769 trans->block_rsv = &fs_info->trans_block_rsv; 2770 if (ret) 2771 btrfs_end_transaction(trans); 2772 else 2773 *trans_out = trans; 2774 out_free: 2775 btrfs_free_block_rsv(fs_info, rsv); 2776 out: 2777 return ret; 2778 } 2779 2780 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2781 { 2782 struct inode *inode = file_inode(file); 2783 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2784 struct btrfs_root *root = BTRFS_I(inode)->root; 2785 struct extent_state *cached_state = NULL; 2786 struct btrfs_path *path; 2787 struct btrfs_trans_handle *trans = NULL; 2788 u64 lockstart; 2789 u64 lockend; 2790 u64 tail_start; 2791 u64 tail_len; 2792 u64 orig_start = offset; 2793 int ret = 0; 2794 bool same_block; 2795 u64 ino_size; 2796 bool truncated_block = false; 2797 bool updated_inode = false; 2798 2799 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2800 2801 ret = btrfs_wait_ordered_range(inode, offset, len); 2802 if (ret) 2803 goto out_only_mutex; 2804 2805 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2806 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2807 if (ret < 0) 2808 goto out_only_mutex; 2809 if (ret && !len) { 2810 /* Already in a large hole */ 2811 ret = 0; 2812 goto out_only_mutex; 2813 } 2814 2815 ret = file_modified(file); 2816 if (ret) 2817 goto out_only_mutex; 2818 2819 lockstart = round_up(offset, fs_info->sectorsize); 2820 lockend = round_down(offset + len, fs_info->sectorsize) - 1; 2821 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2822 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2823 /* 2824 * We needn't truncate any block which is beyond the end of the file 2825 * because we are sure there is no data there. 2826 */ 2827 /* 2828 * Only do this if we are in the same block and we aren't doing the 2829 * entire block. 2830 */ 2831 if (same_block && len < fs_info->sectorsize) { 2832 if (offset < ino_size) { 2833 truncated_block = true; 2834 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2835 0); 2836 } else { 2837 ret = 0; 2838 } 2839 goto out_only_mutex; 2840 } 2841 2842 /* zero back part of the first block */ 2843 if (offset < ino_size) { 2844 truncated_block = true; 2845 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2846 if (ret) { 2847 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2848 return ret; 2849 } 2850 } 2851 2852 /* Check the aligned pages after the first unaligned page, 2853 * if offset != orig_start, which means the first unaligned page 2854 * including several following pages are already in holes, 2855 * the extra check can be skipped */ 2856 if (offset == orig_start) { 2857 /* after truncate page, check hole again */ 2858 len = offset + len - lockstart; 2859 offset = lockstart; 2860 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2861 if (ret < 0) 2862 goto out_only_mutex; 2863 if (ret && !len) { 2864 ret = 0; 2865 goto out_only_mutex; 2866 } 2867 lockstart = offset; 2868 } 2869 2870 /* Check the tail unaligned part is in a hole */ 2871 tail_start = lockend + 1; 2872 tail_len = offset + len - tail_start; 2873 if (tail_len) { 2874 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2875 if (unlikely(ret < 0)) 2876 goto out_only_mutex; 2877 if (!ret) { 2878 /* zero the front end of the last page */ 2879 if (tail_start + tail_len < ino_size) { 2880 truncated_block = true; 2881 ret = btrfs_truncate_block(BTRFS_I(inode), 2882 tail_start + tail_len, 2883 0, 1); 2884 if (ret) 2885 goto out_only_mutex; 2886 } 2887 } 2888 } 2889 2890 if (lockend < lockstart) { 2891 ret = 0; 2892 goto out_only_mutex; 2893 } 2894 2895 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 2896 2897 path = btrfs_alloc_path(); 2898 if (!path) { 2899 ret = -ENOMEM; 2900 goto out; 2901 } 2902 2903 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 2904 lockend, NULL, &trans); 2905 btrfs_free_path(path); 2906 if (ret) 2907 goto out; 2908 2909 ASSERT(trans != NULL); 2910 inode_inc_iversion(inode); 2911 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2912 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2913 updated_inode = true; 2914 btrfs_end_transaction(trans); 2915 btrfs_btree_balance_dirty(fs_info); 2916 out: 2917 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2918 &cached_state); 2919 out_only_mutex: 2920 if (!updated_inode && truncated_block && !ret) { 2921 /* 2922 * If we only end up zeroing part of a page, we still need to 2923 * update the inode item, so that all the time fields are 2924 * updated as well as the necessary btrfs inode in memory fields 2925 * for detecting, at fsync time, if the inode isn't yet in the 2926 * log tree or it's there but not up to date. 2927 */ 2928 struct timespec64 now = inode_set_ctime_current(inode); 2929 2930 inode_inc_iversion(inode); 2931 inode_set_mtime_to_ts(inode, now); 2932 trans = btrfs_start_transaction(root, 1); 2933 if (IS_ERR(trans)) { 2934 ret = PTR_ERR(trans); 2935 } else { 2936 int ret2; 2937 2938 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 2939 ret2 = btrfs_end_transaction(trans); 2940 if (!ret) 2941 ret = ret2; 2942 } 2943 } 2944 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 2945 return ret; 2946 } 2947 2948 /* Helper structure to record which range is already reserved */ 2949 struct falloc_range { 2950 struct list_head list; 2951 u64 start; 2952 u64 len; 2953 }; 2954 2955 /* 2956 * Helper function to add falloc range 2957 * 2958 * Caller should have locked the larger range of extent containing 2959 * [start, len) 2960 */ 2961 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2962 { 2963 struct falloc_range *range = NULL; 2964 2965 if (!list_empty(head)) { 2966 /* 2967 * As fallocate iterates by bytenr order, we only need to check 2968 * the last range. 2969 */ 2970 range = list_last_entry(head, struct falloc_range, list); 2971 if (range->start + range->len == start) { 2972 range->len += len; 2973 return 0; 2974 } 2975 } 2976 2977 range = kmalloc(sizeof(*range), GFP_KERNEL); 2978 if (!range) 2979 return -ENOMEM; 2980 range->start = start; 2981 range->len = len; 2982 list_add_tail(&range->list, head); 2983 return 0; 2984 } 2985 2986 static int btrfs_fallocate_update_isize(struct inode *inode, 2987 const u64 end, 2988 const int mode) 2989 { 2990 struct btrfs_trans_handle *trans; 2991 struct btrfs_root *root = BTRFS_I(inode)->root; 2992 int ret; 2993 int ret2; 2994 2995 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 2996 return 0; 2997 2998 trans = btrfs_start_transaction(root, 1); 2999 if (IS_ERR(trans)) 3000 return PTR_ERR(trans); 3001 3002 inode_set_ctime_current(inode); 3003 i_size_write(inode, end); 3004 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 3005 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 3006 ret2 = btrfs_end_transaction(trans); 3007 3008 return ret ? ret : ret2; 3009 } 3010 3011 enum { 3012 RANGE_BOUNDARY_WRITTEN_EXTENT, 3013 RANGE_BOUNDARY_PREALLOC_EXTENT, 3014 RANGE_BOUNDARY_HOLE, 3015 }; 3016 3017 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 3018 u64 offset) 3019 { 3020 const u64 sectorsize = inode->root->fs_info->sectorsize; 3021 struct extent_map *em; 3022 int ret; 3023 3024 offset = round_down(offset, sectorsize); 3025 em = btrfs_get_extent(inode, NULL, offset, sectorsize); 3026 if (IS_ERR(em)) 3027 return PTR_ERR(em); 3028 3029 if (em->block_start == EXTENT_MAP_HOLE) 3030 ret = RANGE_BOUNDARY_HOLE; 3031 else if (em->flags & EXTENT_FLAG_PREALLOC) 3032 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 3033 else 3034 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 3035 3036 free_extent_map(em); 3037 return ret; 3038 } 3039 3040 static int btrfs_zero_range(struct inode *inode, 3041 loff_t offset, 3042 loff_t len, 3043 const int mode) 3044 { 3045 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3046 struct extent_map *em; 3047 struct extent_changeset *data_reserved = NULL; 3048 int ret; 3049 u64 alloc_hint = 0; 3050 const u64 sectorsize = fs_info->sectorsize; 3051 u64 alloc_start = round_down(offset, sectorsize); 3052 u64 alloc_end = round_up(offset + len, sectorsize); 3053 u64 bytes_to_reserve = 0; 3054 bool space_reserved = false; 3055 3056 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, 3057 alloc_end - alloc_start); 3058 if (IS_ERR(em)) { 3059 ret = PTR_ERR(em); 3060 goto out; 3061 } 3062 3063 /* 3064 * Avoid hole punching and extent allocation for some cases. More cases 3065 * could be considered, but these are unlikely common and we keep things 3066 * as simple as possible for now. Also, intentionally, if the target 3067 * range contains one or more prealloc extents together with regular 3068 * extents and holes, we drop all the existing extents and allocate a 3069 * new prealloc extent, so that we get a larger contiguous disk extent. 3070 */ 3071 if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) { 3072 const u64 em_end = em->start + em->len; 3073 3074 if (em_end >= offset + len) { 3075 /* 3076 * The whole range is already a prealloc extent, 3077 * do nothing except updating the inode's i_size if 3078 * needed. 3079 */ 3080 free_extent_map(em); 3081 ret = btrfs_fallocate_update_isize(inode, offset + len, 3082 mode); 3083 goto out; 3084 } 3085 /* 3086 * Part of the range is already a prealloc extent, so operate 3087 * only on the remaining part of the range. 3088 */ 3089 alloc_start = em_end; 3090 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 3091 len = offset + len - alloc_start; 3092 offset = alloc_start; 3093 alloc_hint = em->block_start + em->len; 3094 } 3095 free_extent_map(em); 3096 3097 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 3098 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 3099 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize); 3100 if (IS_ERR(em)) { 3101 ret = PTR_ERR(em); 3102 goto out; 3103 } 3104 3105 if (em->flags & EXTENT_FLAG_PREALLOC) { 3106 free_extent_map(em); 3107 ret = btrfs_fallocate_update_isize(inode, offset + len, 3108 mode); 3109 goto out; 3110 } 3111 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 3112 free_extent_map(em); 3113 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 3114 0); 3115 if (!ret) 3116 ret = btrfs_fallocate_update_isize(inode, 3117 offset + len, 3118 mode); 3119 return ret; 3120 } 3121 free_extent_map(em); 3122 alloc_start = round_down(offset, sectorsize); 3123 alloc_end = alloc_start + sectorsize; 3124 goto reserve_space; 3125 } 3126 3127 alloc_start = round_up(offset, sectorsize); 3128 alloc_end = round_down(offset + len, sectorsize); 3129 3130 /* 3131 * For unaligned ranges, check the pages at the boundaries, they might 3132 * map to an extent, in which case we need to partially zero them, or 3133 * they might map to a hole, in which case we need our allocation range 3134 * to cover them. 3135 */ 3136 if (!IS_ALIGNED(offset, sectorsize)) { 3137 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3138 offset); 3139 if (ret < 0) 3140 goto out; 3141 if (ret == RANGE_BOUNDARY_HOLE) { 3142 alloc_start = round_down(offset, sectorsize); 3143 ret = 0; 3144 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3145 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 3146 if (ret) 3147 goto out; 3148 } else { 3149 ret = 0; 3150 } 3151 } 3152 3153 if (!IS_ALIGNED(offset + len, sectorsize)) { 3154 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3155 offset + len); 3156 if (ret < 0) 3157 goto out; 3158 if (ret == RANGE_BOUNDARY_HOLE) { 3159 alloc_end = round_up(offset + len, sectorsize); 3160 ret = 0; 3161 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3162 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 3163 0, 1); 3164 if (ret) 3165 goto out; 3166 } else { 3167 ret = 0; 3168 } 3169 } 3170 3171 reserve_space: 3172 if (alloc_start < alloc_end) { 3173 struct extent_state *cached_state = NULL; 3174 const u64 lockstart = alloc_start; 3175 const u64 lockend = alloc_end - 1; 3176 3177 bytes_to_reserve = alloc_end - alloc_start; 3178 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3179 bytes_to_reserve); 3180 if (ret < 0) 3181 goto out; 3182 space_reserved = true; 3183 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3184 &cached_state); 3185 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3186 alloc_start, bytes_to_reserve); 3187 if (ret) { 3188 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 3189 lockend, &cached_state); 3190 goto out; 3191 } 3192 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3193 alloc_end - alloc_start, 3194 fs_info->sectorsize, 3195 offset + len, &alloc_hint); 3196 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3197 &cached_state); 3198 /* btrfs_prealloc_file_range releases reserved space on error */ 3199 if (ret) { 3200 space_reserved = false; 3201 goto out; 3202 } 3203 } 3204 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3205 out: 3206 if (ret && space_reserved) 3207 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3208 alloc_start, bytes_to_reserve); 3209 extent_changeset_free(data_reserved); 3210 3211 return ret; 3212 } 3213 3214 static long btrfs_fallocate(struct file *file, int mode, 3215 loff_t offset, loff_t len) 3216 { 3217 struct inode *inode = file_inode(file); 3218 struct extent_state *cached_state = NULL; 3219 struct extent_changeset *data_reserved = NULL; 3220 struct falloc_range *range; 3221 struct falloc_range *tmp; 3222 LIST_HEAD(reserve_list); 3223 u64 cur_offset; 3224 u64 last_byte; 3225 u64 alloc_start; 3226 u64 alloc_end; 3227 u64 alloc_hint = 0; 3228 u64 locked_end; 3229 u64 actual_end = 0; 3230 u64 data_space_needed = 0; 3231 u64 data_space_reserved = 0; 3232 u64 qgroup_reserved = 0; 3233 struct extent_map *em; 3234 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; 3235 int ret; 3236 3237 /* Do not allow fallocate in ZONED mode */ 3238 if (btrfs_is_zoned(inode_to_fs_info(inode))) 3239 return -EOPNOTSUPP; 3240 3241 alloc_start = round_down(offset, blocksize); 3242 alloc_end = round_up(offset + len, blocksize); 3243 cur_offset = alloc_start; 3244 3245 /* Make sure we aren't being give some crap mode */ 3246 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3247 FALLOC_FL_ZERO_RANGE)) 3248 return -EOPNOTSUPP; 3249 3250 if (mode & FALLOC_FL_PUNCH_HOLE) 3251 return btrfs_punch_hole(file, offset, len); 3252 3253 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3254 3255 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3256 ret = inode_newsize_ok(inode, offset + len); 3257 if (ret) 3258 goto out; 3259 } 3260 3261 ret = file_modified(file); 3262 if (ret) 3263 goto out; 3264 3265 /* 3266 * TODO: Move these two operations after we have checked 3267 * accurate reserved space, or fallocate can still fail but 3268 * with page truncated or size expanded. 3269 * 3270 * But that's a minor problem and won't do much harm BTW. 3271 */ 3272 if (alloc_start > inode->i_size) { 3273 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3274 alloc_start); 3275 if (ret) 3276 goto out; 3277 } else if (offset + len > inode->i_size) { 3278 /* 3279 * If we are fallocating from the end of the file onward we 3280 * need to zero out the end of the block if i_size lands in the 3281 * middle of a block. 3282 */ 3283 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3284 if (ret) 3285 goto out; 3286 } 3287 3288 /* 3289 * We have locked the inode at the VFS level (in exclusive mode) and we 3290 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3291 * locking the file range, flush all dealloc in the range and wait for 3292 * all ordered extents in the range to complete. After this we can lock 3293 * the file range and, due to the previous locking we did, we know there 3294 * can't be more delalloc or ordered extents in the range. 3295 */ 3296 ret = btrfs_wait_ordered_range(inode, alloc_start, 3297 alloc_end - alloc_start); 3298 if (ret) 3299 goto out; 3300 3301 if (mode & FALLOC_FL_ZERO_RANGE) { 3302 ret = btrfs_zero_range(inode, offset, len, mode); 3303 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3304 return ret; 3305 } 3306 3307 locked_end = alloc_end - 1; 3308 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3309 &cached_state); 3310 3311 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3312 3313 /* First, check if we exceed the qgroup limit */ 3314 while (cur_offset < alloc_end) { 3315 em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset, 3316 alloc_end - cur_offset); 3317 if (IS_ERR(em)) { 3318 ret = PTR_ERR(em); 3319 break; 3320 } 3321 last_byte = min(extent_map_end(em), alloc_end); 3322 actual_end = min_t(u64, extent_map_end(em), offset + len); 3323 last_byte = ALIGN(last_byte, blocksize); 3324 if (em->block_start == EXTENT_MAP_HOLE || 3325 (cur_offset >= inode->i_size && 3326 !(em->flags & EXTENT_FLAG_PREALLOC))) { 3327 const u64 range_len = last_byte - cur_offset; 3328 3329 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3330 if (ret < 0) { 3331 free_extent_map(em); 3332 break; 3333 } 3334 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3335 &data_reserved, cur_offset, range_len); 3336 if (ret < 0) { 3337 free_extent_map(em); 3338 break; 3339 } 3340 qgroup_reserved += range_len; 3341 data_space_needed += range_len; 3342 } 3343 free_extent_map(em); 3344 cur_offset = last_byte; 3345 } 3346 3347 if (!ret && data_space_needed > 0) { 3348 /* 3349 * We are safe to reserve space here as we can't have delalloc 3350 * in the range, see above. 3351 */ 3352 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3353 data_space_needed); 3354 if (!ret) 3355 data_space_reserved = data_space_needed; 3356 } 3357 3358 /* 3359 * If ret is still 0, means we're OK to fallocate. 3360 * Or just cleanup the list and exit. 3361 */ 3362 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3363 if (!ret) { 3364 ret = btrfs_prealloc_file_range(inode, mode, 3365 range->start, 3366 range->len, blocksize, 3367 offset + len, &alloc_hint); 3368 /* 3369 * btrfs_prealloc_file_range() releases space even 3370 * if it returns an error. 3371 */ 3372 data_space_reserved -= range->len; 3373 qgroup_reserved -= range->len; 3374 } else if (data_space_reserved > 0) { 3375 btrfs_free_reserved_data_space(BTRFS_I(inode), 3376 data_reserved, range->start, 3377 range->len); 3378 data_space_reserved -= range->len; 3379 qgroup_reserved -= range->len; 3380 } else if (qgroup_reserved > 0) { 3381 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3382 range->start, range->len, NULL); 3383 qgroup_reserved -= range->len; 3384 } 3385 list_del(&range->list); 3386 kfree(range); 3387 } 3388 if (ret < 0) 3389 goto out_unlock; 3390 3391 /* 3392 * We didn't need to allocate any more space, but we still extended the 3393 * size of the file so we need to update i_size and the inode item. 3394 */ 3395 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3396 out_unlock: 3397 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3398 &cached_state); 3399 out: 3400 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP); 3401 extent_changeset_free(data_reserved); 3402 return ret; 3403 } 3404 3405 /* 3406 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range 3407 * that has unflushed and/or flushing delalloc. There might be other adjacent 3408 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps 3409 * looping while it gets adjacent subranges, and merging them together. 3410 */ 3411 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, 3412 struct extent_state **cached_state, 3413 bool *search_io_tree, 3414 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3415 { 3416 u64 len = end + 1 - start; 3417 u64 delalloc_len = 0; 3418 struct btrfs_ordered_extent *oe; 3419 u64 oe_start; 3420 u64 oe_end; 3421 3422 /* 3423 * Search the io tree first for EXTENT_DELALLOC. If we find any, it 3424 * means we have delalloc (dirty pages) for which writeback has not 3425 * started yet. 3426 */ 3427 if (*search_io_tree) { 3428 spin_lock(&inode->lock); 3429 if (inode->delalloc_bytes > 0) { 3430 spin_unlock(&inode->lock); 3431 *delalloc_start_ret = start; 3432 delalloc_len = count_range_bits(&inode->io_tree, 3433 delalloc_start_ret, end, 3434 len, EXTENT_DELALLOC, 1, 3435 cached_state); 3436 } else { 3437 spin_unlock(&inode->lock); 3438 } 3439 } 3440 3441 if (delalloc_len > 0) { 3442 /* 3443 * If delalloc was found then *delalloc_start_ret has a sector size 3444 * aligned value (rounded down). 3445 */ 3446 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; 3447 3448 if (*delalloc_start_ret == start) { 3449 /* Delalloc for the whole range, nothing more to do. */ 3450 if (*delalloc_end_ret == end) 3451 return true; 3452 /* Else trim our search range for ordered extents. */ 3453 start = *delalloc_end_ret + 1; 3454 len = end + 1 - start; 3455 } 3456 } else { 3457 /* No delalloc, future calls don't need to search again. */ 3458 *search_io_tree = false; 3459 } 3460 3461 /* 3462 * Now also check if there's any ordered extent in the range. 3463 * We do this because: 3464 * 3465 * 1) When delalloc is flushed, the file range is locked, we clear the 3466 * EXTENT_DELALLOC bit from the io tree and create an extent map and 3467 * an ordered extent for the write. So we might just have been called 3468 * after delalloc is flushed and before the ordered extent completes 3469 * and inserts the new file extent item in the subvolume's btree; 3470 * 3471 * 2) We may have an ordered extent created by flushing delalloc for a 3472 * subrange that starts before the subrange we found marked with 3473 * EXTENT_DELALLOC in the io tree. 3474 * 3475 * We could also use the extent map tree to find such delalloc that is 3476 * being flushed, but using the ordered extents tree is more efficient 3477 * because it's usually much smaller as ordered extents are removed from 3478 * the tree once they complete. With the extent maps, we mau have them 3479 * in the extent map tree for a very long time, and they were either 3480 * created by previous writes or loaded by read operations. 3481 */ 3482 oe = btrfs_lookup_first_ordered_range(inode, start, len); 3483 if (!oe) 3484 return (delalloc_len > 0); 3485 3486 /* The ordered extent may span beyond our search range. */ 3487 oe_start = max(oe->file_offset, start); 3488 oe_end = min(oe->file_offset + oe->num_bytes - 1, end); 3489 3490 btrfs_put_ordered_extent(oe); 3491 3492 /* Don't have unflushed delalloc, return the ordered extent range. */ 3493 if (delalloc_len == 0) { 3494 *delalloc_start_ret = oe_start; 3495 *delalloc_end_ret = oe_end; 3496 return true; 3497 } 3498 3499 /* 3500 * We have both unflushed delalloc (io_tree) and an ordered extent. 3501 * If the ranges are adjacent returned a combined range, otherwise 3502 * return the leftmost range. 3503 */ 3504 if (oe_start < *delalloc_start_ret) { 3505 if (oe_end < *delalloc_start_ret) 3506 *delalloc_end_ret = oe_end; 3507 *delalloc_start_ret = oe_start; 3508 } else if (*delalloc_end_ret + 1 == oe_start) { 3509 *delalloc_end_ret = oe_end; 3510 } 3511 3512 return true; 3513 } 3514 3515 /* 3516 * Check if there's delalloc in a given range. 3517 * 3518 * @inode: The inode. 3519 * @start: The start offset of the range. It does not need to be 3520 * sector size aligned. 3521 * @end: The end offset (inclusive value) of the search range. 3522 * It does not need to be sector size aligned. 3523 * @cached_state: Extent state record used for speeding up delalloc 3524 * searches in the inode's io_tree. Can be NULL. 3525 * @delalloc_start_ret: Output argument, set to the start offset of the 3526 * subrange found with delalloc (may not be sector size 3527 * aligned). 3528 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value) 3529 * of the subrange found with delalloc. 3530 * 3531 * Returns true if a subrange with delalloc is found within the given range, and 3532 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and 3533 * end offsets of the subrange. 3534 */ 3535 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3536 struct extent_state **cached_state, 3537 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3538 { 3539 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); 3540 u64 prev_delalloc_end = 0; 3541 bool search_io_tree = true; 3542 bool ret = false; 3543 3544 while (cur_offset <= end) { 3545 u64 delalloc_start; 3546 u64 delalloc_end; 3547 bool delalloc; 3548 3549 delalloc = find_delalloc_subrange(inode, cur_offset, end, 3550 cached_state, &search_io_tree, 3551 &delalloc_start, 3552 &delalloc_end); 3553 if (!delalloc) 3554 break; 3555 3556 if (prev_delalloc_end == 0) { 3557 /* First subrange found. */ 3558 *delalloc_start_ret = max(delalloc_start, start); 3559 *delalloc_end_ret = delalloc_end; 3560 ret = true; 3561 } else if (delalloc_start == prev_delalloc_end + 1) { 3562 /* Subrange adjacent to the previous one, merge them. */ 3563 *delalloc_end_ret = delalloc_end; 3564 } else { 3565 /* Subrange not adjacent to the previous one, exit. */ 3566 break; 3567 } 3568 3569 prev_delalloc_end = delalloc_end; 3570 cur_offset = delalloc_end + 1; 3571 cond_resched(); 3572 } 3573 3574 return ret; 3575 } 3576 3577 /* 3578 * Check if there's a hole or delalloc range in a range representing a hole (or 3579 * prealloc extent) found in the inode's subvolume btree. 3580 * 3581 * @inode: The inode. 3582 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE). 3583 * @start: Start offset of the hole region. It does not need to be sector 3584 * size aligned. 3585 * @end: End offset (inclusive value) of the hole region. It does not 3586 * need to be sector size aligned. 3587 * @start_ret: Return parameter, used to set the start of the subrange in the 3588 * hole that matches the search criteria (seek mode), if such 3589 * subrange is found (return value of the function is true). 3590 * The value returned here may not be sector size aligned. 3591 * 3592 * Returns true if a subrange matching the given seek mode is found, and if one 3593 * is found, it updates @start_ret with the start of the subrange. 3594 */ 3595 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, 3596 struct extent_state **cached_state, 3597 u64 start, u64 end, u64 *start_ret) 3598 { 3599 u64 delalloc_start; 3600 u64 delalloc_end; 3601 bool delalloc; 3602 3603 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state, 3604 &delalloc_start, &delalloc_end); 3605 if (delalloc && whence == SEEK_DATA) { 3606 *start_ret = delalloc_start; 3607 return true; 3608 } 3609 3610 if (delalloc && whence == SEEK_HOLE) { 3611 /* 3612 * We found delalloc but it starts after out start offset. So we 3613 * have a hole between our start offset and the delalloc start. 3614 */ 3615 if (start < delalloc_start) { 3616 *start_ret = start; 3617 return true; 3618 } 3619 /* 3620 * Delalloc range starts at our start offset. 3621 * If the delalloc range's length is smaller than our range, 3622 * then it means we have a hole that starts where the delalloc 3623 * subrange ends. 3624 */ 3625 if (delalloc_end < end) { 3626 *start_ret = delalloc_end + 1; 3627 return true; 3628 } 3629 3630 /* There's delalloc for the whole range. */ 3631 return false; 3632 } 3633 3634 if (!delalloc && whence == SEEK_HOLE) { 3635 *start_ret = start; 3636 return true; 3637 } 3638 3639 /* 3640 * No delalloc in the range and we are seeking for data. The caller has 3641 * to iterate to the next extent item in the subvolume btree. 3642 */ 3643 return false; 3644 } 3645 3646 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence) 3647 { 3648 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host); 3649 struct btrfs_file_private *private = file->private_data; 3650 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3651 struct extent_state *cached_state = NULL; 3652 struct extent_state **delalloc_cached_state; 3653 const loff_t i_size = i_size_read(&inode->vfs_inode); 3654 const u64 ino = btrfs_ino(inode); 3655 struct btrfs_root *root = inode->root; 3656 struct btrfs_path *path; 3657 struct btrfs_key key; 3658 u64 last_extent_end; 3659 u64 lockstart; 3660 u64 lockend; 3661 u64 start; 3662 int ret; 3663 bool found = false; 3664 3665 if (i_size == 0 || offset >= i_size) 3666 return -ENXIO; 3667 3668 /* 3669 * Quick path. If the inode has no prealloc extents and its number of 3670 * bytes used matches its i_size, then it can not have holes. 3671 */ 3672 if (whence == SEEK_HOLE && 3673 !(inode->flags & BTRFS_INODE_PREALLOC) && 3674 inode_get_bytes(&inode->vfs_inode) == i_size) 3675 return i_size; 3676 3677 if (!private) { 3678 private = kzalloc(sizeof(*private), GFP_KERNEL); 3679 /* 3680 * No worries if memory allocation failed. 3681 * The private structure is used only for speeding up multiple 3682 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc, 3683 * so everything will still be correct. 3684 */ 3685 file->private_data = private; 3686 } 3687 3688 if (private) 3689 delalloc_cached_state = &private->llseek_cached_state; 3690 else 3691 delalloc_cached_state = NULL; 3692 3693 /* 3694 * offset can be negative, in this case we start finding DATA/HOLE from 3695 * the very start of the file. 3696 */ 3697 start = max_t(loff_t, 0, offset); 3698 3699 lockstart = round_down(start, fs_info->sectorsize); 3700 lockend = round_up(i_size, fs_info->sectorsize); 3701 if (lockend <= lockstart) 3702 lockend = lockstart + fs_info->sectorsize; 3703 lockend--; 3704 3705 path = btrfs_alloc_path(); 3706 if (!path) 3707 return -ENOMEM; 3708 path->reada = READA_FORWARD; 3709 3710 key.objectid = ino; 3711 key.type = BTRFS_EXTENT_DATA_KEY; 3712 key.offset = start; 3713 3714 last_extent_end = lockstart; 3715 3716 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3717 3718 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3719 if (ret < 0) { 3720 goto out; 3721 } else if (ret > 0 && path->slots[0] > 0) { 3722 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3723 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3724 path->slots[0]--; 3725 } 3726 3727 while (start < i_size) { 3728 struct extent_buffer *leaf = path->nodes[0]; 3729 struct btrfs_file_extent_item *extent; 3730 u64 extent_end; 3731 u8 type; 3732 3733 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3734 ret = btrfs_next_leaf(root, path); 3735 if (ret < 0) 3736 goto out; 3737 else if (ret > 0) 3738 break; 3739 3740 leaf = path->nodes[0]; 3741 } 3742 3743 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3744 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3745 break; 3746 3747 extent_end = btrfs_file_extent_end(path); 3748 3749 /* 3750 * In the first iteration we may have a slot that points to an 3751 * extent that ends before our start offset, so skip it. 3752 */ 3753 if (extent_end <= start) { 3754 path->slots[0]++; 3755 continue; 3756 } 3757 3758 /* We have an implicit hole, NO_HOLES feature is likely set. */ 3759 if (last_extent_end < key.offset) { 3760 u64 search_start = last_extent_end; 3761 u64 found_start; 3762 3763 /* 3764 * First iteration, @start matches @offset and it's 3765 * within the hole. 3766 */ 3767 if (start == offset) 3768 search_start = offset; 3769 3770 found = find_desired_extent_in_hole(inode, whence, 3771 delalloc_cached_state, 3772 search_start, 3773 key.offset - 1, 3774 &found_start); 3775 if (found) { 3776 start = found_start; 3777 break; 3778 } 3779 /* 3780 * Didn't find data or a hole (due to delalloc) in the 3781 * implicit hole range, so need to analyze the extent. 3782 */ 3783 } 3784 3785 extent = btrfs_item_ptr(leaf, path->slots[0], 3786 struct btrfs_file_extent_item); 3787 type = btrfs_file_extent_type(leaf, extent); 3788 3789 /* 3790 * Can't access the extent's disk_bytenr field if this is an 3791 * inline extent, since at that offset, it's where the extent 3792 * data starts. 3793 */ 3794 if (type == BTRFS_FILE_EXTENT_PREALLOC || 3795 (type == BTRFS_FILE_EXTENT_REG && 3796 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) { 3797 /* 3798 * Explicit hole or prealloc extent, search for delalloc. 3799 * A prealloc extent is treated like a hole. 3800 */ 3801 u64 search_start = key.offset; 3802 u64 found_start; 3803 3804 /* 3805 * First iteration, @start matches @offset and it's 3806 * within the hole. 3807 */ 3808 if (start == offset) 3809 search_start = offset; 3810 3811 found = find_desired_extent_in_hole(inode, whence, 3812 delalloc_cached_state, 3813 search_start, 3814 extent_end - 1, 3815 &found_start); 3816 if (found) { 3817 start = found_start; 3818 break; 3819 } 3820 /* 3821 * Didn't find data or a hole (due to delalloc) in the 3822 * implicit hole range, so need to analyze the next 3823 * extent item. 3824 */ 3825 } else { 3826 /* 3827 * Found a regular or inline extent. 3828 * If we are seeking for data, adjust the start offset 3829 * and stop, we're done. 3830 */ 3831 if (whence == SEEK_DATA) { 3832 start = max_t(u64, key.offset, offset); 3833 found = true; 3834 break; 3835 } 3836 /* 3837 * Else, we are seeking for a hole, check the next file 3838 * extent item. 3839 */ 3840 } 3841 3842 start = extent_end; 3843 last_extent_end = extent_end; 3844 path->slots[0]++; 3845 if (fatal_signal_pending(current)) { 3846 ret = -EINTR; 3847 goto out; 3848 } 3849 cond_resched(); 3850 } 3851 3852 /* We have an implicit hole from the last extent found up to i_size. */ 3853 if (!found && start < i_size) { 3854 found = find_desired_extent_in_hole(inode, whence, 3855 delalloc_cached_state, start, 3856 i_size - 1, &start); 3857 if (!found) 3858 start = i_size; 3859 } 3860 3861 out: 3862 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3863 btrfs_free_path(path); 3864 3865 if (ret < 0) 3866 return ret; 3867 3868 if (whence == SEEK_DATA && start >= i_size) 3869 return -ENXIO; 3870 3871 return min_t(loff_t, start, i_size); 3872 } 3873 3874 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3875 { 3876 struct inode *inode = file->f_mapping->host; 3877 3878 switch (whence) { 3879 default: 3880 return generic_file_llseek(file, offset, whence); 3881 case SEEK_DATA: 3882 case SEEK_HOLE: 3883 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3884 offset = find_desired_extent(file, offset, whence); 3885 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3886 break; 3887 } 3888 3889 if (offset < 0) 3890 return offset; 3891 3892 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3893 } 3894 3895 static int btrfs_file_open(struct inode *inode, struct file *filp) 3896 { 3897 int ret; 3898 3899 filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT; 3900 3901 ret = fsverity_file_open(inode, filp); 3902 if (ret) 3903 return ret; 3904 return generic_file_open(inode, filp); 3905 } 3906 3907 static int check_direct_read(struct btrfs_fs_info *fs_info, 3908 const struct iov_iter *iter, loff_t offset) 3909 { 3910 int ret; 3911 int i, seg; 3912 3913 ret = check_direct_IO(fs_info, iter, offset); 3914 if (ret < 0) 3915 return ret; 3916 3917 if (!iter_is_iovec(iter)) 3918 return 0; 3919 3920 for (seg = 0; seg < iter->nr_segs; seg++) { 3921 for (i = seg + 1; i < iter->nr_segs; i++) { 3922 const struct iovec *iov1 = iter_iov(iter) + seg; 3923 const struct iovec *iov2 = iter_iov(iter) + i; 3924 3925 if (iov1->iov_base == iov2->iov_base) 3926 return -EINVAL; 3927 } 3928 } 3929 return 0; 3930 } 3931 3932 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 3933 { 3934 struct inode *inode = file_inode(iocb->ki_filp); 3935 size_t prev_left = 0; 3936 ssize_t read = 0; 3937 ssize_t ret; 3938 3939 if (fsverity_active(inode)) 3940 return 0; 3941 3942 if (check_direct_read(inode_to_fs_info(inode), to, iocb->ki_pos)) 3943 return 0; 3944 3945 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3946 again: 3947 /* 3948 * This is similar to what we do for direct IO writes, see the comment 3949 * at btrfs_direct_write(), but we also disable page faults in addition 3950 * to disabling them only at the iov_iter level. This is because when 3951 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(), 3952 * which can still trigger page fault ins despite having set ->nofault 3953 * to true of our 'to' iov_iter. 3954 * 3955 * The difference to direct IO writes is that we deadlock when trying 3956 * to lock the extent range in the inode's tree during he page reads 3957 * triggered by the fault in (while for writes it is due to waiting for 3958 * our own ordered extent). This is because for direct IO reads, 3959 * btrfs_dio_iomap_begin() returns with the extent range locked, which 3960 * is only unlocked in the endio callback (end_bio_extent_readpage()). 3961 */ 3962 pagefault_disable(); 3963 to->nofault = true; 3964 ret = btrfs_dio_read(iocb, to, read); 3965 to->nofault = false; 3966 pagefault_enable(); 3967 3968 /* No increment (+=) because iomap returns a cumulative value. */ 3969 if (ret > 0) 3970 read = ret; 3971 3972 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) { 3973 const size_t left = iov_iter_count(to); 3974 3975 if (left == prev_left) { 3976 /* 3977 * We didn't make any progress since the last attempt, 3978 * fallback to a buffered read for the remainder of the 3979 * range. This is just to avoid any possibility of looping 3980 * for too long. 3981 */ 3982 ret = read; 3983 } else { 3984 /* 3985 * We made some progress since the last retry or this is 3986 * the first time we are retrying. Fault in as many pages 3987 * as possible and retry. 3988 */ 3989 fault_in_iov_iter_writeable(to, left); 3990 prev_left = left; 3991 goto again; 3992 } 3993 } 3994 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 3995 return ret < 0 ? ret : read; 3996 } 3997 3998 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3999 { 4000 ssize_t ret = 0; 4001 4002 if (iocb->ki_flags & IOCB_DIRECT) { 4003 ret = btrfs_direct_read(iocb, to); 4004 if (ret < 0 || !iov_iter_count(to) || 4005 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 4006 return ret; 4007 } 4008 4009 return filemap_read(iocb, to, ret); 4010 } 4011 4012 const struct file_operations btrfs_file_operations = { 4013 .llseek = btrfs_file_llseek, 4014 .read_iter = btrfs_file_read_iter, 4015 .splice_read = filemap_splice_read, 4016 .write_iter = btrfs_file_write_iter, 4017 .splice_write = iter_file_splice_write, 4018 .mmap = btrfs_file_mmap, 4019 .open = btrfs_file_open, 4020 .release = btrfs_release_file, 4021 .get_unmapped_area = thp_get_unmapped_area, 4022 .fsync = btrfs_sync_file, 4023 .fallocate = btrfs_fallocate, 4024 .unlocked_ioctl = btrfs_ioctl, 4025 #ifdef CONFIG_COMPAT 4026 .compat_ioctl = btrfs_compat_ioctl, 4027 #endif 4028 .remap_file_range = btrfs_remap_file_range, 4029 .fop_flags = FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC, 4030 }; 4031 4032 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 4033 { 4034 int ret; 4035 4036 /* 4037 * So with compression we will find and lock a dirty page and clear the 4038 * first one as dirty, setup an async extent, and immediately return 4039 * with the entire range locked but with nobody actually marked with 4040 * writeback. So we can't just filemap_write_and_wait_range() and 4041 * expect it to work since it will just kick off a thread to do the 4042 * actual work. So we need to call filemap_fdatawrite_range _again_ 4043 * since it will wait on the page lock, which won't be unlocked until 4044 * after the pages have been marked as writeback and so we're good to go 4045 * from there. We have to do this otherwise we'll miss the ordered 4046 * extents and that results in badness. Please Josef, do not think you 4047 * know better and pull this out at some point in the future, it is 4048 * right and you are wrong. 4049 */ 4050 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 4051 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 4052 &BTRFS_I(inode)->runtime_flags)) 4053 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 4054 4055 return ret; 4056 } 4057