xref: /linux/fs/btrfs/file.c (revision 1cd4bc987abb2823836cbb8f887026011ccddc8a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include <linux/iomap.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31 #include "subpage.h"
32 #include "fs.h"
33 #include "accessors.h"
34 #include "extent-tree.h"
35 #include "file-item.h"
36 #include "ioctl.h"
37 #include "file.h"
38 #include "super.h"
39 
40 /* simple helper to fault in pages and copy.  This should go away
41  * and be replaced with calls into generic code.
42  */
43 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
44 					 struct page **prepared_pages,
45 					 struct iov_iter *i)
46 {
47 	size_t copied = 0;
48 	size_t total_copied = 0;
49 	int pg = 0;
50 	int offset = offset_in_page(pos);
51 
52 	while (write_bytes > 0) {
53 		size_t count = min_t(size_t,
54 				     PAGE_SIZE - offset, write_bytes);
55 		struct page *page = prepared_pages[pg];
56 		/*
57 		 * Copy data from userspace to the current page
58 		 */
59 		copied = copy_page_from_iter_atomic(page, offset, count, i);
60 
61 		/* Flush processor's dcache for this page */
62 		flush_dcache_page(page);
63 
64 		/*
65 		 * if we get a partial write, we can end up with
66 		 * partially up to date pages.  These add
67 		 * a lot of complexity, so make sure they don't
68 		 * happen by forcing this copy to be retried.
69 		 *
70 		 * The rest of the btrfs_file_write code will fall
71 		 * back to page at a time copies after we return 0.
72 		 */
73 		if (unlikely(copied < count)) {
74 			if (!PageUptodate(page)) {
75 				iov_iter_revert(i, copied);
76 				copied = 0;
77 			}
78 			if (!copied)
79 				break;
80 		}
81 
82 		write_bytes -= copied;
83 		total_copied += copied;
84 		offset += copied;
85 		if (offset == PAGE_SIZE) {
86 			pg++;
87 			offset = 0;
88 		}
89 	}
90 	return total_copied;
91 }
92 
93 /*
94  * unlocks pages after btrfs_file_write is done with them
95  */
96 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
97 			     struct page **pages, size_t num_pages,
98 			     u64 pos, u64 copied)
99 {
100 	size_t i;
101 	u64 block_start = round_down(pos, fs_info->sectorsize);
102 	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
103 
104 	ASSERT(block_len <= U32_MAX);
105 	for (i = 0; i < num_pages; i++) {
106 		/* page checked is some magic around finding pages that
107 		 * have been modified without going through btrfs_set_page_dirty
108 		 * clear it here. There should be no need to mark the pages
109 		 * accessed as prepare_pages should have marked them accessed
110 		 * in prepare_pages via find_or_create_page()
111 		 */
112 		btrfs_folio_clamp_clear_checked(fs_info, page_folio(pages[i]),
113 						block_start, block_len);
114 		unlock_page(pages[i]);
115 		put_page(pages[i]);
116 	}
117 }
118 
119 /*
120  * After btrfs_copy_from_user(), update the following things for delalloc:
121  * - Mark newly dirtied pages as DELALLOC in the io tree.
122  *   Used to advise which range is to be written back.
123  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
124  * - Update inode size for past EOF write
125  */
126 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
127 		      size_t num_pages, loff_t pos, size_t write_bytes,
128 		      struct extent_state **cached, bool noreserve)
129 {
130 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
131 	int ret = 0;
132 	int i;
133 	u64 num_bytes;
134 	u64 start_pos;
135 	u64 end_of_last_block;
136 	u64 end_pos = pos + write_bytes;
137 	loff_t isize = i_size_read(&inode->vfs_inode);
138 	unsigned int extra_bits = 0;
139 
140 	if (write_bytes == 0)
141 		return 0;
142 
143 	if (noreserve)
144 		extra_bits |= EXTENT_NORESERVE;
145 
146 	start_pos = round_down(pos, fs_info->sectorsize);
147 	num_bytes = round_up(write_bytes + pos - start_pos,
148 			     fs_info->sectorsize);
149 	ASSERT(num_bytes <= U32_MAX);
150 
151 	end_of_last_block = start_pos + num_bytes - 1;
152 
153 	/*
154 	 * The pages may have already been dirty, clear out old accounting so
155 	 * we can set things up properly
156 	 */
157 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
158 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
159 			 cached);
160 
161 	ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
162 					extra_bits, cached);
163 	if (ret)
164 		return ret;
165 
166 	for (i = 0; i < num_pages; i++) {
167 		struct page *p = pages[i];
168 
169 		btrfs_folio_clamp_set_uptodate(fs_info, page_folio(p),
170 					       start_pos, num_bytes);
171 		btrfs_folio_clamp_clear_checked(fs_info, page_folio(p),
172 						start_pos, num_bytes);
173 		btrfs_folio_clamp_set_dirty(fs_info, page_folio(p),
174 					    start_pos, num_bytes);
175 	}
176 
177 	/*
178 	 * we've only changed i_size in ram, and we haven't updated
179 	 * the disk i_size.  There is no need to log the inode
180 	 * at this time.
181 	 */
182 	if (end_pos > isize)
183 		i_size_write(&inode->vfs_inode, end_pos);
184 	return 0;
185 }
186 
187 /*
188  * this is very complex, but the basic idea is to drop all extents
189  * in the range start - end.  hint_block is filled in with a block number
190  * that would be a good hint to the block allocator for this file.
191  *
192  * If an extent intersects the range but is not entirely inside the range
193  * it is either truncated or split.  Anything entirely inside the range
194  * is deleted from the tree.
195  *
196  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
197  * to deal with that. We set the field 'bytes_found' of the arguments structure
198  * with the number of allocated bytes found in the target range, so that the
199  * caller can update the inode's number of bytes in an atomic way when
200  * replacing extents in a range to avoid races with stat(2).
201  */
202 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
203 		       struct btrfs_root *root, struct btrfs_inode *inode,
204 		       struct btrfs_drop_extents_args *args)
205 {
206 	struct btrfs_fs_info *fs_info = root->fs_info;
207 	struct extent_buffer *leaf;
208 	struct btrfs_file_extent_item *fi;
209 	struct btrfs_key key;
210 	struct btrfs_key new_key;
211 	u64 ino = btrfs_ino(inode);
212 	u64 search_start = args->start;
213 	u64 disk_bytenr = 0;
214 	u64 num_bytes = 0;
215 	u64 extent_offset = 0;
216 	u64 extent_end = 0;
217 	u64 last_end = args->start;
218 	int del_nr = 0;
219 	int del_slot = 0;
220 	int extent_type;
221 	int recow;
222 	int ret;
223 	int modify_tree = -1;
224 	int update_refs;
225 	int found = 0;
226 	struct btrfs_path *path = args->path;
227 
228 	args->bytes_found = 0;
229 	args->extent_inserted = false;
230 
231 	/* Must always have a path if ->replace_extent is true */
232 	ASSERT(!(args->replace_extent && !args->path));
233 
234 	if (!path) {
235 		path = btrfs_alloc_path();
236 		if (!path) {
237 			ret = -ENOMEM;
238 			goto out;
239 		}
240 	}
241 
242 	if (args->drop_cache)
243 		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
244 
245 	if (args->start >= inode->disk_i_size && !args->replace_extent)
246 		modify_tree = 0;
247 
248 	update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
249 	while (1) {
250 		recow = 0;
251 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
252 					       search_start, modify_tree);
253 		if (ret < 0)
254 			break;
255 		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
256 			leaf = path->nodes[0];
257 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
258 			if (key.objectid == ino &&
259 			    key.type == BTRFS_EXTENT_DATA_KEY)
260 				path->slots[0]--;
261 		}
262 		ret = 0;
263 next_slot:
264 		leaf = path->nodes[0];
265 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
266 			BUG_ON(del_nr > 0);
267 			ret = btrfs_next_leaf(root, path);
268 			if (ret < 0)
269 				break;
270 			if (ret > 0) {
271 				ret = 0;
272 				break;
273 			}
274 			leaf = path->nodes[0];
275 			recow = 1;
276 		}
277 
278 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
279 
280 		if (key.objectid > ino)
281 			break;
282 		if (WARN_ON_ONCE(key.objectid < ino) ||
283 		    key.type < BTRFS_EXTENT_DATA_KEY) {
284 			ASSERT(del_nr == 0);
285 			path->slots[0]++;
286 			goto next_slot;
287 		}
288 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
289 			break;
290 
291 		fi = btrfs_item_ptr(leaf, path->slots[0],
292 				    struct btrfs_file_extent_item);
293 		extent_type = btrfs_file_extent_type(leaf, fi);
294 
295 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
296 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
297 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
298 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
299 			extent_offset = btrfs_file_extent_offset(leaf, fi);
300 			extent_end = key.offset +
301 				btrfs_file_extent_num_bytes(leaf, fi);
302 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
303 			extent_end = key.offset +
304 				btrfs_file_extent_ram_bytes(leaf, fi);
305 		} else {
306 			/* can't happen */
307 			BUG();
308 		}
309 
310 		/*
311 		 * Don't skip extent items representing 0 byte lengths. They
312 		 * used to be created (bug) if while punching holes we hit
313 		 * -ENOSPC condition. So if we find one here, just ensure we
314 		 * delete it, otherwise we would insert a new file extent item
315 		 * with the same key (offset) as that 0 bytes length file
316 		 * extent item in the call to setup_items_for_insert() later
317 		 * in this function.
318 		 */
319 		if (extent_end == key.offset && extent_end >= search_start) {
320 			last_end = extent_end;
321 			goto delete_extent_item;
322 		}
323 
324 		if (extent_end <= search_start) {
325 			path->slots[0]++;
326 			goto next_slot;
327 		}
328 
329 		found = 1;
330 		search_start = max(key.offset, args->start);
331 		if (recow || !modify_tree) {
332 			modify_tree = -1;
333 			btrfs_release_path(path);
334 			continue;
335 		}
336 
337 		/*
338 		 *     | - range to drop - |
339 		 *  | -------- extent -------- |
340 		 */
341 		if (args->start > key.offset && args->end < extent_end) {
342 			BUG_ON(del_nr > 0);
343 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
344 				ret = -EOPNOTSUPP;
345 				break;
346 			}
347 
348 			memcpy(&new_key, &key, sizeof(new_key));
349 			new_key.offset = args->start;
350 			ret = btrfs_duplicate_item(trans, root, path,
351 						   &new_key);
352 			if (ret == -EAGAIN) {
353 				btrfs_release_path(path);
354 				continue;
355 			}
356 			if (ret < 0)
357 				break;
358 
359 			leaf = path->nodes[0];
360 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
361 					    struct btrfs_file_extent_item);
362 			btrfs_set_file_extent_num_bytes(leaf, fi,
363 							args->start - key.offset);
364 
365 			fi = btrfs_item_ptr(leaf, path->slots[0],
366 					    struct btrfs_file_extent_item);
367 
368 			extent_offset += args->start - key.offset;
369 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
370 			btrfs_set_file_extent_num_bytes(leaf, fi,
371 							extent_end - args->start);
372 			btrfs_mark_buffer_dirty(trans, leaf);
373 
374 			if (update_refs && disk_bytenr > 0) {
375 				struct btrfs_ref ref = {
376 					.action = BTRFS_ADD_DELAYED_REF,
377 					.bytenr = disk_bytenr,
378 					.num_bytes = num_bytes,
379 					.parent = 0,
380 					.owning_root = btrfs_root_id(root),
381 					.ref_root = btrfs_root_id(root),
382 				};
383 				btrfs_init_data_ref(&ref, new_key.objectid,
384 						    args->start - extent_offset,
385 						    0, false);
386 				ret = btrfs_inc_extent_ref(trans, &ref);
387 				if (ret) {
388 					btrfs_abort_transaction(trans, ret);
389 					break;
390 				}
391 			}
392 			key.offset = args->start;
393 		}
394 		/*
395 		 * From here on out we will have actually dropped something, so
396 		 * last_end can be updated.
397 		 */
398 		last_end = extent_end;
399 
400 		/*
401 		 *  | ---- range to drop ----- |
402 		 *      | -------- extent -------- |
403 		 */
404 		if (args->start <= key.offset && args->end < extent_end) {
405 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
406 				ret = -EOPNOTSUPP;
407 				break;
408 			}
409 
410 			memcpy(&new_key, &key, sizeof(new_key));
411 			new_key.offset = args->end;
412 			btrfs_set_item_key_safe(trans, path, &new_key);
413 
414 			extent_offset += args->end - key.offset;
415 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
416 			btrfs_set_file_extent_num_bytes(leaf, fi,
417 							extent_end - args->end);
418 			btrfs_mark_buffer_dirty(trans, leaf);
419 			if (update_refs && disk_bytenr > 0)
420 				args->bytes_found += args->end - key.offset;
421 			break;
422 		}
423 
424 		search_start = extent_end;
425 		/*
426 		 *       | ---- range to drop ----- |
427 		 *  | -------- extent -------- |
428 		 */
429 		if (args->start > key.offset && args->end >= extent_end) {
430 			BUG_ON(del_nr > 0);
431 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
432 				ret = -EOPNOTSUPP;
433 				break;
434 			}
435 
436 			btrfs_set_file_extent_num_bytes(leaf, fi,
437 							args->start - key.offset);
438 			btrfs_mark_buffer_dirty(trans, leaf);
439 			if (update_refs && disk_bytenr > 0)
440 				args->bytes_found += extent_end - args->start;
441 			if (args->end == extent_end)
442 				break;
443 
444 			path->slots[0]++;
445 			goto next_slot;
446 		}
447 
448 		/*
449 		 *  | ---- range to drop ----- |
450 		 *    | ------ extent ------ |
451 		 */
452 		if (args->start <= key.offset && args->end >= extent_end) {
453 delete_extent_item:
454 			if (del_nr == 0) {
455 				del_slot = path->slots[0];
456 				del_nr = 1;
457 			} else {
458 				BUG_ON(del_slot + del_nr != path->slots[0]);
459 				del_nr++;
460 			}
461 
462 			if (update_refs &&
463 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
464 				args->bytes_found += extent_end - key.offset;
465 				extent_end = ALIGN(extent_end,
466 						   fs_info->sectorsize);
467 			} else if (update_refs && disk_bytenr > 0) {
468 				struct btrfs_ref ref = {
469 					.action = BTRFS_DROP_DELAYED_REF,
470 					.bytenr = disk_bytenr,
471 					.num_bytes = num_bytes,
472 					.parent = 0,
473 					.owning_root = btrfs_root_id(root),
474 					.ref_root = btrfs_root_id(root),
475 				};
476 				btrfs_init_data_ref(&ref, key.objectid,
477 						    key.offset - extent_offset,
478 						    0, false);
479 				ret = btrfs_free_extent(trans, &ref);
480 				if (ret) {
481 					btrfs_abort_transaction(trans, ret);
482 					break;
483 				}
484 				args->bytes_found += extent_end - key.offset;
485 			}
486 
487 			if (args->end == extent_end)
488 				break;
489 
490 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
491 				path->slots[0]++;
492 				goto next_slot;
493 			}
494 
495 			ret = btrfs_del_items(trans, root, path, del_slot,
496 					      del_nr);
497 			if (ret) {
498 				btrfs_abort_transaction(trans, ret);
499 				break;
500 			}
501 
502 			del_nr = 0;
503 			del_slot = 0;
504 
505 			btrfs_release_path(path);
506 			continue;
507 		}
508 
509 		BUG();
510 	}
511 
512 	if (!ret && del_nr > 0) {
513 		/*
514 		 * Set path->slots[0] to first slot, so that after the delete
515 		 * if items are move off from our leaf to its immediate left or
516 		 * right neighbor leafs, we end up with a correct and adjusted
517 		 * path->slots[0] for our insertion (if args->replace_extent).
518 		 */
519 		path->slots[0] = del_slot;
520 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
521 		if (ret)
522 			btrfs_abort_transaction(trans, ret);
523 	}
524 
525 	leaf = path->nodes[0];
526 	/*
527 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
528 	 * which case it unlocked our path, so check path->locks[0] matches a
529 	 * write lock.
530 	 */
531 	if (!ret && args->replace_extent &&
532 	    path->locks[0] == BTRFS_WRITE_LOCK &&
533 	    btrfs_leaf_free_space(leaf) >=
534 	    sizeof(struct btrfs_item) + args->extent_item_size) {
535 
536 		key.objectid = ino;
537 		key.type = BTRFS_EXTENT_DATA_KEY;
538 		key.offset = args->start;
539 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
540 			struct btrfs_key slot_key;
541 
542 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
543 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
544 				path->slots[0]++;
545 		}
546 		btrfs_setup_item_for_insert(trans, root, path, &key,
547 					    args->extent_item_size);
548 		args->extent_inserted = true;
549 	}
550 
551 	if (!args->path)
552 		btrfs_free_path(path);
553 	else if (!args->extent_inserted)
554 		btrfs_release_path(path);
555 out:
556 	args->drop_end = found ? min(args->end, last_end) : args->end;
557 
558 	return ret;
559 }
560 
561 static int extent_mergeable(struct extent_buffer *leaf, int slot,
562 			    u64 objectid, u64 bytenr, u64 orig_offset,
563 			    u64 *start, u64 *end)
564 {
565 	struct btrfs_file_extent_item *fi;
566 	struct btrfs_key key;
567 	u64 extent_end;
568 
569 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
570 		return 0;
571 
572 	btrfs_item_key_to_cpu(leaf, &key, slot);
573 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
574 		return 0;
575 
576 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
577 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
578 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
579 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
580 	    btrfs_file_extent_compression(leaf, fi) ||
581 	    btrfs_file_extent_encryption(leaf, fi) ||
582 	    btrfs_file_extent_other_encoding(leaf, fi))
583 		return 0;
584 
585 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
586 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
587 		return 0;
588 
589 	*start = key.offset;
590 	*end = extent_end;
591 	return 1;
592 }
593 
594 /*
595  * Mark extent in the range start - end as written.
596  *
597  * This changes extent type from 'pre-allocated' to 'regular'. If only
598  * part of extent is marked as written, the extent will be split into
599  * two or three.
600  */
601 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
602 			      struct btrfs_inode *inode, u64 start, u64 end)
603 {
604 	struct btrfs_root *root = inode->root;
605 	struct extent_buffer *leaf;
606 	struct btrfs_path *path;
607 	struct btrfs_file_extent_item *fi;
608 	struct btrfs_ref ref = { 0 };
609 	struct btrfs_key key;
610 	struct btrfs_key new_key;
611 	u64 bytenr;
612 	u64 num_bytes;
613 	u64 extent_end;
614 	u64 orig_offset;
615 	u64 other_start;
616 	u64 other_end;
617 	u64 split;
618 	int del_nr = 0;
619 	int del_slot = 0;
620 	int recow;
621 	int ret = 0;
622 	u64 ino = btrfs_ino(inode);
623 
624 	path = btrfs_alloc_path();
625 	if (!path)
626 		return -ENOMEM;
627 again:
628 	recow = 0;
629 	split = start;
630 	key.objectid = ino;
631 	key.type = BTRFS_EXTENT_DATA_KEY;
632 	key.offset = split;
633 
634 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
635 	if (ret < 0)
636 		goto out;
637 	if (ret > 0 && path->slots[0] > 0)
638 		path->slots[0]--;
639 
640 	leaf = path->nodes[0];
641 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
642 	if (key.objectid != ino ||
643 	    key.type != BTRFS_EXTENT_DATA_KEY) {
644 		ret = -EINVAL;
645 		btrfs_abort_transaction(trans, ret);
646 		goto out;
647 	}
648 	fi = btrfs_item_ptr(leaf, path->slots[0],
649 			    struct btrfs_file_extent_item);
650 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
651 		ret = -EINVAL;
652 		btrfs_abort_transaction(trans, ret);
653 		goto out;
654 	}
655 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
656 	if (key.offset > start || extent_end < end) {
657 		ret = -EINVAL;
658 		btrfs_abort_transaction(trans, ret);
659 		goto out;
660 	}
661 
662 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
663 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
664 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
665 	memcpy(&new_key, &key, sizeof(new_key));
666 
667 	if (start == key.offset && end < extent_end) {
668 		other_start = 0;
669 		other_end = start;
670 		if (extent_mergeable(leaf, path->slots[0] - 1,
671 				     ino, bytenr, orig_offset,
672 				     &other_start, &other_end)) {
673 			new_key.offset = end;
674 			btrfs_set_item_key_safe(trans, path, &new_key);
675 			fi = btrfs_item_ptr(leaf, path->slots[0],
676 					    struct btrfs_file_extent_item);
677 			btrfs_set_file_extent_generation(leaf, fi,
678 							 trans->transid);
679 			btrfs_set_file_extent_num_bytes(leaf, fi,
680 							extent_end - end);
681 			btrfs_set_file_extent_offset(leaf, fi,
682 						     end - orig_offset);
683 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
684 					    struct btrfs_file_extent_item);
685 			btrfs_set_file_extent_generation(leaf, fi,
686 							 trans->transid);
687 			btrfs_set_file_extent_num_bytes(leaf, fi,
688 							end - other_start);
689 			btrfs_mark_buffer_dirty(trans, leaf);
690 			goto out;
691 		}
692 	}
693 
694 	if (start > key.offset && end == extent_end) {
695 		other_start = end;
696 		other_end = 0;
697 		if (extent_mergeable(leaf, path->slots[0] + 1,
698 				     ino, bytenr, orig_offset,
699 				     &other_start, &other_end)) {
700 			fi = btrfs_item_ptr(leaf, path->slots[0],
701 					    struct btrfs_file_extent_item);
702 			btrfs_set_file_extent_num_bytes(leaf, fi,
703 							start - key.offset);
704 			btrfs_set_file_extent_generation(leaf, fi,
705 							 trans->transid);
706 			path->slots[0]++;
707 			new_key.offset = start;
708 			btrfs_set_item_key_safe(trans, path, &new_key);
709 
710 			fi = btrfs_item_ptr(leaf, path->slots[0],
711 					    struct btrfs_file_extent_item);
712 			btrfs_set_file_extent_generation(leaf, fi,
713 							 trans->transid);
714 			btrfs_set_file_extent_num_bytes(leaf, fi,
715 							other_end - start);
716 			btrfs_set_file_extent_offset(leaf, fi,
717 						     start - orig_offset);
718 			btrfs_mark_buffer_dirty(trans, leaf);
719 			goto out;
720 		}
721 	}
722 
723 	while (start > key.offset || end < extent_end) {
724 		if (key.offset == start)
725 			split = end;
726 
727 		new_key.offset = split;
728 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
729 		if (ret == -EAGAIN) {
730 			btrfs_release_path(path);
731 			goto again;
732 		}
733 		if (ret < 0) {
734 			btrfs_abort_transaction(trans, ret);
735 			goto out;
736 		}
737 
738 		leaf = path->nodes[0];
739 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
740 				    struct btrfs_file_extent_item);
741 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
742 		btrfs_set_file_extent_num_bytes(leaf, fi,
743 						split - key.offset);
744 
745 		fi = btrfs_item_ptr(leaf, path->slots[0],
746 				    struct btrfs_file_extent_item);
747 
748 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
749 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
750 		btrfs_set_file_extent_num_bytes(leaf, fi,
751 						extent_end - split);
752 		btrfs_mark_buffer_dirty(trans, leaf);
753 
754 		ref.action = BTRFS_ADD_DELAYED_REF;
755 		ref.bytenr = bytenr;
756 		ref.num_bytes = num_bytes;
757 		ref.parent = 0;
758 		ref.owning_root = btrfs_root_id(root);
759 		ref.ref_root = btrfs_root_id(root);
760 		btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
761 		ret = btrfs_inc_extent_ref(trans, &ref);
762 		if (ret) {
763 			btrfs_abort_transaction(trans, ret);
764 			goto out;
765 		}
766 
767 		if (split == start) {
768 			key.offset = start;
769 		} else {
770 			if (start != key.offset) {
771 				ret = -EINVAL;
772 				btrfs_abort_transaction(trans, ret);
773 				goto out;
774 			}
775 			path->slots[0]--;
776 			extent_end = end;
777 		}
778 		recow = 1;
779 	}
780 
781 	other_start = end;
782 	other_end = 0;
783 
784 	ref.action = BTRFS_DROP_DELAYED_REF;
785 	ref.bytenr = bytenr;
786 	ref.num_bytes = num_bytes;
787 	ref.parent = 0;
788 	ref.owning_root = btrfs_root_id(root);
789 	ref.ref_root = btrfs_root_id(root);
790 	btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
791 	if (extent_mergeable(leaf, path->slots[0] + 1,
792 			     ino, bytenr, orig_offset,
793 			     &other_start, &other_end)) {
794 		if (recow) {
795 			btrfs_release_path(path);
796 			goto again;
797 		}
798 		extent_end = other_end;
799 		del_slot = path->slots[0] + 1;
800 		del_nr++;
801 		ret = btrfs_free_extent(trans, &ref);
802 		if (ret) {
803 			btrfs_abort_transaction(trans, ret);
804 			goto out;
805 		}
806 	}
807 	other_start = 0;
808 	other_end = start;
809 	if (extent_mergeable(leaf, path->slots[0] - 1,
810 			     ino, bytenr, orig_offset,
811 			     &other_start, &other_end)) {
812 		if (recow) {
813 			btrfs_release_path(path);
814 			goto again;
815 		}
816 		key.offset = other_start;
817 		del_slot = path->slots[0];
818 		del_nr++;
819 		ret = btrfs_free_extent(trans, &ref);
820 		if (ret) {
821 			btrfs_abort_transaction(trans, ret);
822 			goto out;
823 		}
824 	}
825 	if (del_nr == 0) {
826 		fi = btrfs_item_ptr(leaf, path->slots[0],
827 			   struct btrfs_file_extent_item);
828 		btrfs_set_file_extent_type(leaf, fi,
829 					   BTRFS_FILE_EXTENT_REG);
830 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
831 		btrfs_mark_buffer_dirty(trans, leaf);
832 	} else {
833 		fi = btrfs_item_ptr(leaf, del_slot - 1,
834 			   struct btrfs_file_extent_item);
835 		btrfs_set_file_extent_type(leaf, fi,
836 					   BTRFS_FILE_EXTENT_REG);
837 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
838 		btrfs_set_file_extent_num_bytes(leaf, fi,
839 						extent_end - key.offset);
840 		btrfs_mark_buffer_dirty(trans, leaf);
841 
842 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
843 		if (ret < 0) {
844 			btrfs_abort_transaction(trans, ret);
845 			goto out;
846 		}
847 	}
848 out:
849 	btrfs_free_path(path);
850 	return ret;
851 }
852 
853 /*
854  * on error we return an unlocked page and the error value
855  * on success we return a locked page and 0
856  */
857 static int prepare_uptodate_page(struct inode *inode,
858 				 struct page *page, u64 pos,
859 				 bool force_uptodate)
860 {
861 	struct folio *folio = page_folio(page);
862 	int ret = 0;
863 
864 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
865 	    !PageUptodate(page)) {
866 		ret = btrfs_read_folio(NULL, folio);
867 		if (ret)
868 			return ret;
869 		lock_page(page);
870 		if (!PageUptodate(page)) {
871 			unlock_page(page);
872 			return -EIO;
873 		}
874 
875 		/*
876 		 * Since btrfs_read_folio() will unlock the folio before it
877 		 * returns, there is a window where btrfs_release_folio() can be
878 		 * called to release the page.  Here we check both inode
879 		 * mapping and PagePrivate() to make sure the page was not
880 		 * released.
881 		 *
882 		 * The private flag check is essential for subpage as we need
883 		 * to store extra bitmap using folio private.
884 		 */
885 		if (page->mapping != inode->i_mapping || !folio_test_private(folio)) {
886 			unlock_page(page);
887 			return -EAGAIN;
888 		}
889 	}
890 	return 0;
891 }
892 
893 static fgf_t get_prepare_fgp_flags(bool nowait)
894 {
895 	fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
896 
897 	if (nowait)
898 		fgp_flags |= FGP_NOWAIT;
899 
900 	return fgp_flags;
901 }
902 
903 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
904 {
905 	gfp_t gfp;
906 
907 	gfp = btrfs_alloc_write_mask(inode->i_mapping);
908 	if (nowait) {
909 		gfp &= ~__GFP_DIRECT_RECLAIM;
910 		gfp |= GFP_NOWAIT;
911 	}
912 
913 	return gfp;
914 }
915 
916 /*
917  * this just gets pages into the page cache and locks them down.
918  */
919 static noinline int prepare_pages(struct inode *inode, struct page **pages,
920 				  size_t num_pages, loff_t pos,
921 				  size_t write_bytes, bool force_uptodate,
922 				  bool nowait)
923 {
924 	int i;
925 	unsigned long index = pos >> PAGE_SHIFT;
926 	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
927 	fgf_t fgp_flags = get_prepare_fgp_flags(nowait);
928 	int ret = 0;
929 	int faili;
930 
931 	for (i = 0; i < num_pages; i++) {
932 again:
933 		pages[i] = pagecache_get_page(inode->i_mapping, index + i,
934 					      fgp_flags, mask | __GFP_WRITE);
935 		if (!pages[i]) {
936 			faili = i - 1;
937 			if (nowait)
938 				ret = -EAGAIN;
939 			else
940 				ret = -ENOMEM;
941 			goto fail;
942 		}
943 
944 		ret = set_page_extent_mapped(pages[i]);
945 		if (ret < 0) {
946 			faili = i;
947 			goto fail;
948 		}
949 
950 		if (i == 0)
951 			ret = prepare_uptodate_page(inode, pages[i], pos,
952 						    force_uptodate);
953 		if (!ret && i == num_pages - 1)
954 			ret = prepare_uptodate_page(inode, pages[i],
955 						    pos + write_bytes, false);
956 		if (ret) {
957 			put_page(pages[i]);
958 			if (!nowait && ret == -EAGAIN) {
959 				ret = 0;
960 				goto again;
961 			}
962 			faili = i - 1;
963 			goto fail;
964 		}
965 		wait_on_page_writeback(pages[i]);
966 	}
967 
968 	return 0;
969 fail:
970 	while (faili >= 0) {
971 		unlock_page(pages[faili]);
972 		put_page(pages[faili]);
973 		faili--;
974 	}
975 	return ret;
976 
977 }
978 
979 /*
980  * This function locks the extent and properly waits for data=ordered extents
981  * to finish before allowing the pages to be modified if need.
982  *
983  * The return value:
984  * 1 - the extent is locked
985  * 0 - the extent is not locked, and everything is OK
986  * -EAGAIN - need re-prepare the pages
987  * the other < 0 number - Something wrong happens
988  */
989 static noinline int
990 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
991 				size_t num_pages, loff_t pos,
992 				size_t write_bytes,
993 				u64 *lockstart, u64 *lockend, bool nowait,
994 				struct extent_state **cached_state)
995 {
996 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
997 	u64 start_pos;
998 	u64 last_pos;
999 	int i;
1000 	int ret = 0;
1001 
1002 	start_pos = round_down(pos, fs_info->sectorsize);
1003 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1004 
1005 	if (start_pos < inode->vfs_inode.i_size) {
1006 		struct btrfs_ordered_extent *ordered;
1007 
1008 		if (nowait) {
1009 			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
1010 					     cached_state)) {
1011 				for (i = 0; i < num_pages; i++) {
1012 					unlock_page(pages[i]);
1013 					put_page(pages[i]);
1014 					pages[i] = NULL;
1015 				}
1016 
1017 				return -EAGAIN;
1018 			}
1019 		} else {
1020 			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1021 		}
1022 
1023 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1024 						     last_pos - start_pos + 1);
1025 		if (ordered &&
1026 		    ordered->file_offset + ordered->num_bytes > start_pos &&
1027 		    ordered->file_offset <= last_pos) {
1028 			unlock_extent(&inode->io_tree, start_pos, last_pos,
1029 				      cached_state);
1030 			for (i = 0; i < num_pages; i++) {
1031 				unlock_page(pages[i]);
1032 				put_page(pages[i]);
1033 			}
1034 			btrfs_start_ordered_extent(ordered);
1035 			btrfs_put_ordered_extent(ordered);
1036 			return -EAGAIN;
1037 		}
1038 		if (ordered)
1039 			btrfs_put_ordered_extent(ordered);
1040 
1041 		*lockstart = start_pos;
1042 		*lockend = last_pos;
1043 		ret = 1;
1044 	}
1045 
1046 	/*
1047 	 * We should be called after prepare_pages() which should have locked
1048 	 * all pages in the range.
1049 	 */
1050 	for (i = 0; i < num_pages; i++)
1051 		WARN_ON(!PageLocked(pages[i]));
1052 
1053 	return ret;
1054 }
1055 
1056 /*
1057  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1058  *
1059  * @pos:         File offset.
1060  * @write_bytes: The length to write, will be updated to the nocow writeable
1061  *               range.
1062  *
1063  * This function will flush ordered extents in the range to ensure proper
1064  * nocow checks.
1065  *
1066  * Return:
1067  * > 0          If we can nocow, and updates @write_bytes.
1068  *  0           If we can't do a nocow write.
1069  * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1070  *              root is in progress.
1071  * < 0          If an error happened.
1072  *
1073  * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1074  */
1075 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1076 			   size_t *write_bytes, bool nowait)
1077 {
1078 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1079 	struct btrfs_root *root = inode->root;
1080 	struct extent_state *cached_state = NULL;
1081 	u64 lockstart, lockend;
1082 	u64 num_bytes;
1083 	int ret;
1084 
1085 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1086 		return 0;
1087 
1088 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1089 		return -EAGAIN;
1090 
1091 	lockstart = round_down(pos, fs_info->sectorsize);
1092 	lockend = round_up(pos + *write_bytes,
1093 			   fs_info->sectorsize) - 1;
1094 	num_bytes = lockend - lockstart + 1;
1095 
1096 	if (nowait) {
1097 		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1098 						  &cached_state)) {
1099 			btrfs_drew_write_unlock(&root->snapshot_lock);
1100 			return -EAGAIN;
1101 		}
1102 	} else {
1103 		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1104 						   &cached_state);
1105 	}
1106 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1107 			NULL, NULL, NULL, nowait, false);
1108 	if (ret <= 0)
1109 		btrfs_drew_write_unlock(&root->snapshot_lock);
1110 	else
1111 		*write_bytes = min_t(size_t, *write_bytes ,
1112 				     num_bytes - pos + lockstart);
1113 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1114 
1115 	return ret;
1116 }
1117 
1118 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1119 {
1120 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1121 }
1122 
1123 static void update_time_for_write(struct inode *inode)
1124 {
1125 	struct timespec64 now, ts;
1126 
1127 	if (IS_NOCMTIME(inode))
1128 		return;
1129 
1130 	now = current_time(inode);
1131 	ts = inode_get_mtime(inode);
1132 	if (!timespec64_equal(&ts, &now))
1133 		inode_set_mtime_to_ts(inode, now);
1134 
1135 	ts = inode_get_ctime(inode);
1136 	if (!timespec64_equal(&ts, &now))
1137 		inode_set_ctime_to_ts(inode, now);
1138 
1139 	if (IS_I_VERSION(inode))
1140 		inode_inc_iversion(inode);
1141 }
1142 
1143 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1144 			     size_t count)
1145 {
1146 	struct file *file = iocb->ki_filp;
1147 	struct inode *inode = file_inode(file);
1148 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1149 	loff_t pos = iocb->ki_pos;
1150 	int ret;
1151 	loff_t oldsize;
1152 	loff_t start_pos;
1153 
1154 	/*
1155 	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1156 	 * prealloc flags, as without those flags we always have to COW. We will
1157 	 * later check if we can really COW into the target range (using
1158 	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1159 	 */
1160 	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1161 	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1162 		return -EAGAIN;
1163 
1164 	ret = file_remove_privs(file);
1165 	if (ret)
1166 		return ret;
1167 
1168 	/*
1169 	 * We reserve space for updating the inode when we reserve space for the
1170 	 * extent we are going to write, so we will enospc out there.  We don't
1171 	 * need to start yet another transaction to update the inode as we will
1172 	 * update the inode when we finish writing whatever data we write.
1173 	 */
1174 	update_time_for_write(inode);
1175 
1176 	start_pos = round_down(pos, fs_info->sectorsize);
1177 	oldsize = i_size_read(inode);
1178 	if (start_pos > oldsize) {
1179 		/* Expand hole size to cover write data, preventing empty gap */
1180 		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1181 
1182 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1183 		if (ret)
1184 			return ret;
1185 	}
1186 
1187 	return 0;
1188 }
1189 
1190 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1191 					       struct iov_iter *i)
1192 {
1193 	struct file *file = iocb->ki_filp;
1194 	loff_t pos;
1195 	struct inode *inode = file_inode(file);
1196 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1197 	struct page **pages = NULL;
1198 	struct extent_changeset *data_reserved = NULL;
1199 	u64 release_bytes = 0;
1200 	u64 lockstart;
1201 	u64 lockend;
1202 	size_t num_written = 0;
1203 	int nrptrs;
1204 	ssize_t ret;
1205 	bool only_release_metadata = false;
1206 	bool force_page_uptodate = false;
1207 	loff_t old_isize = i_size_read(inode);
1208 	unsigned int ilock_flags = 0;
1209 	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1210 	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1211 
1212 	if (nowait)
1213 		ilock_flags |= BTRFS_ILOCK_TRY;
1214 
1215 	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1216 	if (ret < 0)
1217 		return ret;
1218 
1219 	ret = generic_write_checks(iocb, i);
1220 	if (ret <= 0)
1221 		goto out;
1222 
1223 	ret = btrfs_write_check(iocb, i, ret);
1224 	if (ret < 0)
1225 		goto out;
1226 
1227 	pos = iocb->ki_pos;
1228 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1229 			PAGE_SIZE / (sizeof(struct page *)));
1230 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1231 	nrptrs = max(nrptrs, 8);
1232 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1233 	if (!pages) {
1234 		ret = -ENOMEM;
1235 		goto out;
1236 	}
1237 
1238 	while (iov_iter_count(i) > 0) {
1239 		struct extent_state *cached_state = NULL;
1240 		size_t offset = offset_in_page(pos);
1241 		size_t sector_offset;
1242 		size_t write_bytes = min(iov_iter_count(i),
1243 					 nrptrs * (size_t)PAGE_SIZE -
1244 					 offset);
1245 		size_t num_pages;
1246 		size_t reserve_bytes;
1247 		size_t dirty_pages;
1248 		size_t copied;
1249 		size_t dirty_sectors;
1250 		size_t num_sectors;
1251 		int extents_locked;
1252 
1253 		/*
1254 		 * Fault pages before locking them in prepare_pages
1255 		 * to avoid recursive lock
1256 		 */
1257 		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1258 			ret = -EFAULT;
1259 			break;
1260 		}
1261 
1262 		only_release_metadata = false;
1263 		sector_offset = pos & (fs_info->sectorsize - 1);
1264 
1265 		extent_changeset_release(data_reserved);
1266 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1267 						  &data_reserved, pos,
1268 						  write_bytes, nowait);
1269 		if (ret < 0) {
1270 			int can_nocow;
1271 
1272 			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1273 				ret = -EAGAIN;
1274 				break;
1275 			}
1276 
1277 			/*
1278 			 * If we don't have to COW at the offset, reserve
1279 			 * metadata only. write_bytes may get smaller than
1280 			 * requested here.
1281 			 */
1282 			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1283 							   &write_bytes, nowait);
1284 			if (can_nocow < 0)
1285 				ret = can_nocow;
1286 			if (can_nocow > 0)
1287 				ret = 0;
1288 			if (ret)
1289 				break;
1290 			only_release_metadata = true;
1291 		}
1292 
1293 		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1294 		WARN_ON(num_pages > nrptrs);
1295 		reserve_bytes = round_up(write_bytes + sector_offset,
1296 					 fs_info->sectorsize);
1297 		WARN_ON(reserve_bytes == 0);
1298 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1299 						      reserve_bytes,
1300 						      reserve_bytes, nowait);
1301 		if (ret) {
1302 			if (!only_release_metadata)
1303 				btrfs_free_reserved_data_space(BTRFS_I(inode),
1304 						data_reserved, pos,
1305 						write_bytes);
1306 			else
1307 				btrfs_check_nocow_unlock(BTRFS_I(inode));
1308 
1309 			if (nowait && ret == -ENOSPC)
1310 				ret = -EAGAIN;
1311 			break;
1312 		}
1313 
1314 		release_bytes = reserve_bytes;
1315 again:
1316 		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1317 		if (ret) {
1318 			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1319 			break;
1320 		}
1321 
1322 		/*
1323 		 * This is going to setup the pages array with the number of
1324 		 * pages we want, so we don't really need to worry about the
1325 		 * contents of pages from loop to loop
1326 		 */
1327 		ret = prepare_pages(inode, pages, num_pages,
1328 				    pos, write_bytes, force_page_uptodate, false);
1329 		if (ret) {
1330 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1331 						       reserve_bytes);
1332 			break;
1333 		}
1334 
1335 		extents_locked = lock_and_cleanup_extent_if_need(
1336 				BTRFS_I(inode), pages,
1337 				num_pages, pos, write_bytes, &lockstart,
1338 				&lockend, nowait, &cached_state);
1339 		if (extents_locked < 0) {
1340 			if (!nowait && extents_locked == -EAGAIN)
1341 				goto again;
1342 
1343 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1344 						       reserve_bytes);
1345 			ret = extents_locked;
1346 			break;
1347 		}
1348 
1349 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1350 
1351 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1352 		dirty_sectors = round_up(copied + sector_offset,
1353 					fs_info->sectorsize);
1354 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1355 
1356 		/*
1357 		 * if we have trouble faulting in the pages, fall
1358 		 * back to one page at a time
1359 		 */
1360 		if (copied < write_bytes)
1361 			nrptrs = 1;
1362 
1363 		if (copied == 0) {
1364 			force_page_uptodate = true;
1365 			dirty_sectors = 0;
1366 			dirty_pages = 0;
1367 		} else {
1368 			force_page_uptodate = false;
1369 			dirty_pages = DIV_ROUND_UP(copied + offset,
1370 						   PAGE_SIZE);
1371 		}
1372 
1373 		if (num_sectors > dirty_sectors) {
1374 			/* release everything except the sectors we dirtied */
1375 			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1376 			if (only_release_metadata) {
1377 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1378 							release_bytes, true);
1379 			} else {
1380 				u64 __pos;
1381 
1382 				__pos = round_down(pos,
1383 						   fs_info->sectorsize) +
1384 					(dirty_pages << PAGE_SHIFT);
1385 				btrfs_delalloc_release_space(BTRFS_I(inode),
1386 						data_reserved, __pos,
1387 						release_bytes, true);
1388 			}
1389 		}
1390 
1391 		release_bytes = round_up(copied + sector_offset,
1392 					fs_info->sectorsize);
1393 
1394 		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1395 					dirty_pages, pos, copied,
1396 					&cached_state, only_release_metadata);
1397 
1398 		/*
1399 		 * If we have not locked the extent range, because the range's
1400 		 * start offset is >= i_size, we might still have a non-NULL
1401 		 * cached extent state, acquired while marking the extent range
1402 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1403 		 * possible cached extent state to avoid a memory leak.
1404 		 */
1405 		if (extents_locked)
1406 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1407 				      lockend, &cached_state);
1408 		else
1409 			free_extent_state(cached_state);
1410 
1411 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1412 		if (ret) {
1413 			btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1414 			break;
1415 		}
1416 
1417 		release_bytes = 0;
1418 		if (only_release_metadata)
1419 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1420 
1421 		btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1422 
1423 		cond_resched();
1424 
1425 		pos += copied;
1426 		num_written += copied;
1427 	}
1428 
1429 	kfree(pages);
1430 
1431 	if (release_bytes) {
1432 		if (only_release_metadata) {
1433 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1434 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1435 					release_bytes, true);
1436 		} else {
1437 			btrfs_delalloc_release_space(BTRFS_I(inode),
1438 					data_reserved,
1439 					round_down(pos, fs_info->sectorsize),
1440 					release_bytes, true);
1441 		}
1442 	}
1443 
1444 	extent_changeset_free(data_reserved);
1445 	if (num_written > 0) {
1446 		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1447 		iocb->ki_pos += num_written;
1448 	}
1449 out:
1450 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1451 	return num_written ? num_written : ret;
1452 }
1453 
1454 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1455 			       const struct iov_iter *iter, loff_t offset)
1456 {
1457 	const u32 blocksize_mask = fs_info->sectorsize - 1;
1458 
1459 	if (offset & blocksize_mask)
1460 		return -EINVAL;
1461 
1462 	if (iov_iter_alignment(iter) & blocksize_mask)
1463 		return -EINVAL;
1464 
1465 	return 0;
1466 }
1467 
1468 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1469 {
1470 	struct file *file = iocb->ki_filp;
1471 	struct inode *inode = file_inode(file);
1472 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1473 	loff_t pos;
1474 	ssize_t written = 0;
1475 	ssize_t written_buffered;
1476 	size_t prev_left = 0;
1477 	loff_t endbyte;
1478 	ssize_t ret;
1479 	unsigned int ilock_flags = 0;
1480 	struct iomap_dio *dio;
1481 
1482 	if (iocb->ki_flags & IOCB_NOWAIT)
1483 		ilock_flags |= BTRFS_ILOCK_TRY;
1484 
1485 	/*
1486 	 * If the write DIO is within EOF, use a shared lock and also only if
1487 	 * security bits will likely not be dropped by file_remove_privs() called
1488 	 * from btrfs_write_check(). Either will need to be rechecked after the
1489 	 * lock was acquired.
1490 	 */
1491 	if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode))
1492 		ilock_flags |= BTRFS_ILOCK_SHARED;
1493 
1494 relock:
1495 	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1496 	if (ret < 0)
1497 		return ret;
1498 
1499 	/* Shared lock cannot be used with security bits set. */
1500 	if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) {
1501 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1502 		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1503 		goto relock;
1504 	}
1505 
1506 	ret = generic_write_checks(iocb, from);
1507 	if (ret <= 0) {
1508 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1509 		return ret;
1510 	}
1511 
1512 	ret = btrfs_write_check(iocb, from, ret);
1513 	if (ret < 0) {
1514 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1515 		goto out;
1516 	}
1517 
1518 	pos = iocb->ki_pos;
1519 	/*
1520 	 * Re-check since file size may have changed just before taking the
1521 	 * lock or pos may have changed because of O_APPEND in generic_write_check()
1522 	 */
1523 	if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1524 	    pos + iov_iter_count(from) > i_size_read(inode)) {
1525 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1526 		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1527 		goto relock;
1528 	}
1529 
1530 	if (check_direct_IO(fs_info, from, pos)) {
1531 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1532 		goto buffered;
1533 	}
1534 
1535 	/*
1536 	 * The iov_iter can be mapped to the same file range we are writing to.
1537 	 * If that's the case, then we will deadlock in the iomap code, because
1538 	 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1539 	 * an ordered extent, and after that it will fault in the pages that the
1540 	 * iov_iter refers to. During the fault in we end up in the readahead
1541 	 * pages code (starting at btrfs_readahead()), which will lock the range,
1542 	 * find that ordered extent and then wait for it to complete (at
1543 	 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1544 	 * obviously the ordered extent can never complete as we didn't submit
1545 	 * yet the respective bio(s). This always happens when the buffer is
1546 	 * memory mapped to the same file range, since the iomap DIO code always
1547 	 * invalidates pages in the target file range (after starting and waiting
1548 	 * for any writeback).
1549 	 *
1550 	 * So here we disable page faults in the iov_iter and then retry if we
1551 	 * got -EFAULT, faulting in the pages before the retry.
1552 	 */
1553 	from->nofault = true;
1554 	dio = btrfs_dio_write(iocb, from, written);
1555 	from->nofault = false;
1556 
1557 	/*
1558 	 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1559 	 * iocb, and that needs to lock the inode. So unlock it before calling
1560 	 * iomap_dio_complete() to avoid a deadlock.
1561 	 */
1562 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1563 
1564 	if (IS_ERR_OR_NULL(dio))
1565 		ret = PTR_ERR_OR_ZERO(dio);
1566 	else
1567 		ret = iomap_dio_complete(dio);
1568 
1569 	/* No increment (+=) because iomap returns a cumulative value. */
1570 	if (ret > 0)
1571 		written = ret;
1572 
1573 	if (iov_iter_count(from) > 0 && (ret == -EFAULT || ret > 0)) {
1574 		const size_t left = iov_iter_count(from);
1575 		/*
1576 		 * We have more data left to write. Try to fault in as many as
1577 		 * possible of the remainder pages and retry. We do this without
1578 		 * releasing and locking again the inode, to prevent races with
1579 		 * truncate.
1580 		 *
1581 		 * Also, in case the iov refers to pages in the file range of the
1582 		 * file we want to write to (due to a mmap), we could enter an
1583 		 * infinite loop if we retry after faulting the pages in, since
1584 		 * iomap will invalidate any pages in the range early on, before
1585 		 * it tries to fault in the pages of the iov. So we keep track of
1586 		 * how much was left of iov in the previous EFAULT and fallback
1587 		 * to buffered IO in case we haven't made any progress.
1588 		 */
1589 		if (left == prev_left) {
1590 			ret = -ENOTBLK;
1591 		} else {
1592 			fault_in_iov_iter_readable(from, left);
1593 			prev_left = left;
1594 			goto relock;
1595 		}
1596 	}
1597 
1598 	/*
1599 	 * If 'ret' is -ENOTBLK or we have not written all data, then it means
1600 	 * we must fallback to buffered IO.
1601 	 */
1602 	if ((ret < 0 && ret != -ENOTBLK) || !iov_iter_count(from))
1603 		goto out;
1604 
1605 buffered:
1606 	/*
1607 	 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1608 	 * it must retry the operation in a context where blocking is acceptable,
1609 	 * because even if we end up not blocking during the buffered IO attempt
1610 	 * below, we will block when flushing and waiting for the IO.
1611 	 */
1612 	if (iocb->ki_flags & IOCB_NOWAIT) {
1613 		ret = -EAGAIN;
1614 		goto out;
1615 	}
1616 
1617 	pos = iocb->ki_pos;
1618 	written_buffered = btrfs_buffered_write(iocb, from);
1619 	if (written_buffered < 0) {
1620 		ret = written_buffered;
1621 		goto out;
1622 	}
1623 	/*
1624 	 * Ensure all data is persisted. We want the next direct IO read to be
1625 	 * able to read what was just written.
1626 	 */
1627 	endbyte = pos + written_buffered - 1;
1628 	ret = btrfs_fdatawrite_range(inode, pos, endbyte);
1629 	if (ret)
1630 		goto out;
1631 	ret = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1632 	if (ret)
1633 		goto out;
1634 	written += written_buffered;
1635 	iocb->ki_pos = pos + written_buffered;
1636 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1637 				 endbyte >> PAGE_SHIFT);
1638 out:
1639 	return ret < 0 ? ret : written;
1640 }
1641 
1642 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1643 			const struct btrfs_ioctl_encoded_io_args *encoded)
1644 {
1645 	struct file *file = iocb->ki_filp;
1646 	struct inode *inode = file_inode(file);
1647 	loff_t count;
1648 	ssize_t ret;
1649 
1650 	btrfs_inode_lock(BTRFS_I(inode), 0);
1651 	count = encoded->len;
1652 	ret = generic_write_checks_count(iocb, &count);
1653 	if (ret == 0 && count != encoded->len) {
1654 		/*
1655 		 * The write got truncated by generic_write_checks_count(). We
1656 		 * can't do a partial encoded write.
1657 		 */
1658 		ret = -EFBIG;
1659 	}
1660 	if (ret || encoded->len == 0)
1661 		goto out;
1662 
1663 	ret = btrfs_write_check(iocb, from, encoded->len);
1664 	if (ret < 0)
1665 		goto out;
1666 
1667 	ret = btrfs_do_encoded_write(iocb, from, encoded);
1668 out:
1669 	btrfs_inode_unlock(BTRFS_I(inode), 0);
1670 	return ret;
1671 }
1672 
1673 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1674 			    const struct btrfs_ioctl_encoded_io_args *encoded)
1675 {
1676 	struct file *file = iocb->ki_filp;
1677 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1678 	ssize_t num_written, num_sync;
1679 
1680 	/*
1681 	 * If the fs flips readonly due to some impossible error, although we
1682 	 * have opened a file as writable, we have to stop this write operation
1683 	 * to ensure consistency.
1684 	 */
1685 	if (BTRFS_FS_ERROR(inode->root->fs_info))
1686 		return -EROFS;
1687 
1688 	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1689 		return -EOPNOTSUPP;
1690 
1691 	if (encoded) {
1692 		num_written = btrfs_encoded_write(iocb, from, encoded);
1693 		num_sync = encoded->len;
1694 	} else if (iocb->ki_flags & IOCB_DIRECT) {
1695 		num_written = btrfs_direct_write(iocb, from);
1696 		num_sync = num_written;
1697 	} else {
1698 		num_written = btrfs_buffered_write(iocb, from);
1699 		num_sync = num_written;
1700 	}
1701 
1702 	btrfs_set_inode_last_sub_trans(inode);
1703 
1704 	if (num_sync > 0) {
1705 		num_sync = generic_write_sync(iocb, num_sync);
1706 		if (num_sync < 0)
1707 			num_written = num_sync;
1708 	}
1709 
1710 	return num_written;
1711 }
1712 
1713 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1714 {
1715 	return btrfs_do_write_iter(iocb, from, NULL);
1716 }
1717 
1718 int btrfs_release_file(struct inode *inode, struct file *filp)
1719 {
1720 	struct btrfs_file_private *private = filp->private_data;
1721 
1722 	if (private) {
1723 		kfree(private->filldir_buf);
1724 		free_extent_state(private->llseek_cached_state);
1725 		kfree(private);
1726 		filp->private_data = NULL;
1727 	}
1728 
1729 	/*
1730 	 * Set by setattr when we are about to truncate a file from a non-zero
1731 	 * size to a zero size.  This tries to flush down new bytes that may
1732 	 * have been written if the application were using truncate to replace
1733 	 * a file in place.
1734 	 */
1735 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1736 			       &BTRFS_I(inode)->runtime_flags))
1737 			filemap_flush(inode->i_mapping);
1738 	return 0;
1739 }
1740 
1741 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1742 {
1743 	int ret;
1744 	struct blk_plug plug;
1745 
1746 	/*
1747 	 * This is only called in fsync, which would do synchronous writes, so
1748 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1749 	 * multiple disks using raid profile, a large IO can be split to
1750 	 * several segments of stripe length (currently 64K).
1751 	 */
1752 	blk_start_plug(&plug);
1753 	ret = btrfs_fdatawrite_range(inode, start, end);
1754 	blk_finish_plug(&plug);
1755 
1756 	return ret;
1757 }
1758 
1759 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1760 {
1761 	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1762 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1763 
1764 	if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1765 	    list_empty(&ctx->ordered_extents))
1766 		return true;
1767 
1768 	/*
1769 	 * If we are doing a fast fsync we can not bail out if the inode's
1770 	 * last_trans is <= then the last committed transaction, because we only
1771 	 * update the last_trans of the inode during ordered extent completion,
1772 	 * and for a fast fsync we don't wait for that, we only wait for the
1773 	 * writeback to complete.
1774 	 */
1775 	if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1776 	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1777 	     list_empty(&ctx->ordered_extents)))
1778 		return true;
1779 
1780 	return false;
1781 }
1782 
1783 /*
1784  * fsync call for both files and directories.  This logs the inode into
1785  * the tree log instead of forcing full commits whenever possible.
1786  *
1787  * It needs to call filemap_fdatawait so that all ordered extent updates are
1788  * in the metadata btree are up to date for copying to the log.
1789  *
1790  * It drops the inode mutex before doing the tree log commit.  This is an
1791  * important optimization for directories because holding the mutex prevents
1792  * new operations on the dir while we write to disk.
1793  */
1794 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1795 {
1796 	struct dentry *dentry = file_dentry(file);
1797 	struct inode *inode = d_inode(dentry);
1798 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1799 	struct btrfs_root *root = BTRFS_I(inode)->root;
1800 	struct btrfs_trans_handle *trans;
1801 	struct btrfs_log_ctx ctx;
1802 	int ret = 0, err;
1803 	u64 len;
1804 	bool full_sync;
1805 
1806 	trace_btrfs_sync_file(file, datasync);
1807 
1808 	btrfs_init_log_ctx(&ctx, inode);
1809 
1810 	/*
1811 	 * Always set the range to a full range, otherwise we can get into
1812 	 * several problems, from missing file extent items to represent holes
1813 	 * when not using the NO_HOLES feature, to log tree corruption due to
1814 	 * races between hole detection during logging and completion of ordered
1815 	 * extents outside the range, to missing checksums due to ordered extents
1816 	 * for which we flushed only a subset of their pages.
1817 	 */
1818 	start = 0;
1819 	end = LLONG_MAX;
1820 	len = (u64)LLONG_MAX + 1;
1821 
1822 	/*
1823 	 * We write the dirty pages in the range and wait until they complete
1824 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1825 	 * multi-task, and make the performance up.  See
1826 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1827 	 */
1828 	ret = start_ordered_ops(inode, start, end);
1829 	if (ret)
1830 		goto out;
1831 
1832 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1833 
1834 	atomic_inc(&root->log_batch);
1835 
1836 	/*
1837 	 * Before we acquired the inode's lock and the mmap lock, someone may
1838 	 * have dirtied more pages in the target range. We need to make sure
1839 	 * that writeback for any such pages does not start while we are logging
1840 	 * the inode, because if it does, any of the following might happen when
1841 	 * we are not doing a full inode sync:
1842 	 *
1843 	 * 1) We log an extent after its writeback finishes but before its
1844 	 *    checksums are added to the csum tree, leading to -EIO errors
1845 	 *    when attempting to read the extent after a log replay.
1846 	 *
1847 	 * 2) We can end up logging an extent before its writeback finishes.
1848 	 *    Therefore after the log replay we will have a file extent item
1849 	 *    pointing to an unwritten extent (and no data checksums as well).
1850 	 *
1851 	 * So trigger writeback for any eventual new dirty pages and then we
1852 	 * wait for all ordered extents to complete below.
1853 	 */
1854 	ret = start_ordered_ops(inode, start, end);
1855 	if (ret) {
1856 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1857 		goto out;
1858 	}
1859 
1860 	/*
1861 	 * Always check for the full sync flag while holding the inode's lock,
1862 	 * to avoid races with other tasks. The flag must be either set all the
1863 	 * time during logging or always off all the time while logging.
1864 	 * We check the flag here after starting delalloc above, because when
1865 	 * running delalloc the full sync flag may be set if we need to drop
1866 	 * extra extent map ranges due to temporary memory allocation failures.
1867 	 */
1868 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1869 			     &BTRFS_I(inode)->runtime_flags);
1870 
1871 	/*
1872 	 * We have to do this here to avoid the priority inversion of waiting on
1873 	 * IO of a lower priority task while holding a transaction open.
1874 	 *
1875 	 * For a full fsync we wait for the ordered extents to complete while
1876 	 * for a fast fsync we wait just for writeback to complete, and then
1877 	 * attach the ordered extents to the transaction so that a transaction
1878 	 * commit waits for their completion, to avoid data loss if we fsync,
1879 	 * the current transaction commits before the ordered extents complete
1880 	 * and a power failure happens right after that.
1881 	 *
1882 	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1883 	 * logical address recorded in the ordered extent may change. We need
1884 	 * to wait for the IO to stabilize the logical address.
1885 	 */
1886 	if (full_sync || btrfs_is_zoned(fs_info)) {
1887 		ret = btrfs_wait_ordered_range(inode, start, len);
1888 	} else {
1889 		/*
1890 		 * Get our ordered extents as soon as possible to avoid doing
1891 		 * checksum lookups in the csum tree, and use instead the
1892 		 * checksums attached to the ordered extents.
1893 		 */
1894 		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1895 						      &ctx.ordered_extents);
1896 		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
1897 	}
1898 
1899 	if (ret)
1900 		goto out_release_extents;
1901 
1902 	atomic_inc(&root->log_batch);
1903 
1904 	if (skip_inode_logging(&ctx)) {
1905 		/*
1906 		 * We've had everything committed since the last time we were
1907 		 * modified so clear this flag in case it was set for whatever
1908 		 * reason, it's no longer relevant.
1909 		 */
1910 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1911 			  &BTRFS_I(inode)->runtime_flags);
1912 		/*
1913 		 * An ordered extent might have started before and completed
1914 		 * already with io errors, in which case the inode was not
1915 		 * updated and we end up here. So check the inode's mapping
1916 		 * for any errors that might have happened since we last
1917 		 * checked called fsync.
1918 		 */
1919 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
1920 		goto out_release_extents;
1921 	}
1922 
1923 	btrfs_init_log_ctx_scratch_eb(&ctx);
1924 
1925 	/*
1926 	 * We use start here because we will need to wait on the IO to complete
1927 	 * in btrfs_sync_log, which could require joining a transaction (for
1928 	 * example checking cross references in the nocow path).  If we use join
1929 	 * here we could get into a situation where we're waiting on IO to
1930 	 * happen that is blocked on a transaction trying to commit.  With start
1931 	 * we inc the extwriter counter, so we wait for all extwriters to exit
1932 	 * before we start blocking joiners.  This comment is to keep somebody
1933 	 * from thinking they are super smart and changing this to
1934 	 * btrfs_join_transaction *cough*Josef*cough*.
1935 	 */
1936 	trans = btrfs_start_transaction(root, 0);
1937 	if (IS_ERR(trans)) {
1938 		ret = PTR_ERR(trans);
1939 		goto out_release_extents;
1940 	}
1941 	trans->in_fsync = true;
1942 
1943 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1944 	/*
1945 	 * Scratch eb no longer needed, release before syncing log or commit
1946 	 * transaction, to avoid holding unnecessary memory during such long
1947 	 * operations.
1948 	 */
1949 	if (ctx.scratch_eb) {
1950 		free_extent_buffer(ctx.scratch_eb);
1951 		ctx.scratch_eb = NULL;
1952 	}
1953 	btrfs_release_log_ctx_extents(&ctx);
1954 	if (ret < 0) {
1955 		/* Fallthrough and commit/free transaction. */
1956 		ret = BTRFS_LOG_FORCE_COMMIT;
1957 	}
1958 
1959 	/* we've logged all the items and now have a consistent
1960 	 * version of the file in the log.  It is possible that
1961 	 * someone will come in and modify the file, but that's
1962 	 * fine because the log is consistent on disk, and we
1963 	 * have references to all of the file's extents
1964 	 *
1965 	 * It is possible that someone will come in and log the
1966 	 * file again, but that will end up using the synchronization
1967 	 * inside btrfs_sync_log to keep things safe.
1968 	 */
1969 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1970 
1971 	if (ret == BTRFS_NO_LOG_SYNC) {
1972 		ret = btrfs_end_transaction(trans);
1973 		goto out;
1974 	}
1975 
1976 	/* We successfully logged the inode, attempt to sync the log. */
1977 	if (!ret) {
1978 		ret = btrfs_sync_log(trans, root, &ctx);
1979 		if (!ret) {
1980 			ret = btrfs_end_transaction(trans);
1981 			goto out;
1982 		}
1983 	}
1984 
1985 	/*
1986 	 * At this point we need to commit the transaction because we had
1987 	 * btrfs_need_log_full_commit() or some other error.
1988 	 *
1989 	 * If we didn't do a full sync we have to stop the trans handle, wait on
1990 	 * the ordered extents, start it again and commit the transaction.  If
1991 	 * we attempt to wait on the ordered extents here we could deadlock with
1992 	 * something like fallocate() that is holding the extent lock trying to
1993 	 * start a transaction while some other thread is trying to commit the
1994 	 * transaction while we (fsync) are currently holding the transaction
1995 	 * open.
1996 	 */
1997 	if (!full_sync) {
1998 		ret = btrfs_end_transaction(trans);
1999 		if (ret)
2000 			goto out;
2001 		ret = btrfs_wait_ordered_range(inode, start, len);
2002 		if (ret)
2003 			goto out;
2004 
2005 		/*
2006 		 * This is safe to use here because we're only interested in
2007 		 * making sure the transaction that had the ordered extents is
2008 		 * committed.  We aren't waiting on anything past this point,
2009 		 * we're purely getting the transaction and committing it.
2010 		 */
2011 		trans = btrfs_attach_transaction_barrier(root);
2012 		if (IS_ERR(trans)) {
2013 			ret = PTR_ERR(trans);
2014 
2015 			/*
2016 			 * We committed the transaction and there's no currently
2017 			 * running transaction, this means everything we care
2018 			 * about made it to disk and we are done.
2019 			 */
2020 			if (ret == -ENOENT)
2021 				ret = 0;
2022 			goto out;
2023 		}
2024 	}
2025 
2026 	ret = btrfs_commit_transaction(trans);
2027 out:
2028 	free_extent_buffer(ctx.scratch_eb);
2029 	ASSERT(list_empty(&ctx.list));
2030 	ASSERT(list_empty(&ctx.conflict_inodes));
2031 	err = file_check_and_advance_wb_err(file);
2032 	if (!ret)
2033 		ret = err;
2034 	return ret > 0 ? -EIO : ret;
2035 
2036 out_release_extents:
2037 	btrfs_release_log_ctx_extents(&ctx);
2038 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2039 	goto out;
2040 }
2041 
2042 /*
2043  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
2044  * called from a page fault handler when a page is first dirtied. Hence we must
2045  * be careful to check for EOF conditions here. We set the page up correctly
2046  * for a written page which means we get ENOSPC checking when writing into
2047  * holes and correct delalloc and unwritten extent mapping on filesystems that
2048  * support these features.
2049  *
2050  * We are not allowed to take the i_mutex here so we have to play games to
2051  * protect against truncate races as the page could now be beyond EOF.  Because
2052  * truncate_setsize() writes the inode size before removing pages, once we have
2053  * the page lock we can determine safely if the page is beyond EOF. If it is not
2054  * beyond EOF, then the page is guaranteed safe against truncation until we
2055  * unlock the page.
2056  */
2057 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
2058 {
2059 	struct page *page = vmf->page;
2060 	struct folio *folio = page_folio(page);
2061 	struct inode *inode = file_inode(vmf->vma->vm_file);
2062 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2063 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2064 	struct btrfs_ordered_extent *ordered;
2065 	struct extent_state *cached_state = NULL;
2066 	struct extent_changeset *data_reserved = NULL;
2067 	unsigned long zero_start;
2068 	loff_t size;
2069 	vm_fault_t ret;
2070 	int ret2;
2071 	int reserved = 0;
2072 	u64 reserved_space;
2073 	u64 page_start;
2074 	u64 page_end;
2075 	u64 end;
2076 
2077 	ASSERT(folio_order(folio) == 0);
2078 
2079 	reserved_space = PAGE_SIZE;
2080 
2081 	sb_start_pagefault(inode->i_sb);
2082 	page_start = page_offset(page);
2083 	page_end = page_start + PAGE_SIZE - 1;
2084 	end = page_end;
2085 
2086 	/*
2087 	 * Reserving delalloc space after obtaining the page lock can lead to
2088 	 * deadlock. For example, if a dirty page is locked by this function
2089 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
2090 	 * dirty page write out, then the btrfs_writepages() function could
2091 	 * end up waiting indefinitely to get a lock on the page currently
2092 	 * being processed by btrfs_page_mkwrite() function.
2093 	 */
2094 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
2095 					    page_start, reserved_space);
2096 	if (!ret2) {
2097 		ret2 = file_update_time(vmf->vma->vm_file);
2098 		reserved = 1;
2099 	}
2100 	if (ret2) {
2101 		ret = vmf_error(ret2);
2102 		if (reserved)
2103 			goto out;
2104 		goto out_noreserve;
2105 	}
2106 
2107 	/* Make the VM retry the fault. */
2108 	ret = VM_FAULT_NOPAGE;
2109 again:
2110 	down_read(&BTRFS_I(inode)->i_mmap_lock);
2111 	lock_page(page);
2112 	size = i_size_read(inode);
2113 
2114 	if ((page->mapping != inode->i_mapping) ||
2115 	    (page_start >= size)) {
2116 		/* Page got truncated out from underneath us. */
2117 		goto out_unlock;
2118 	}
2119 	wait_on_page_writeback(page);
2120 
2121 	lock_extent(io_tree, page_start, page_end, &cached_state);
2122 	ret2 = set_page_extent_mapped(page);
2123 	if (ret2 < 0) {
2124 		ret = vmf_error(ret2);
2125 		unlock_extent(io_tree, page_start, page_end, &cached_state);
2126 		goto out_unlock;
2127 	}
2128 
2129 	/*
2130 	 * We can't set the delalloc bits if there are pending ordered
2131 	 * extents.  Drop our locks and wait for them to finish.
2132 	 */
2133 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE);
2134 	if (ordered) {
2135 		unlock_extent(io_tree, page_start, page_end, &cached_state);
2136 		unlock_page(page);
2137 		up_read(&BTRFS_I(inode)->i_mmap_lock);
2138 		btrfs_start_ordered_extent(ordered);
2139 		btrfs_put_ordered_extent(ordered);
2140 		goto again;
2141 	}
2142 
2143 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
2144 		reserved_space = round_up(size - page_start, fs_info->sectorsize);
2145 		if (reserved_space < PAGE_SIZE) {
2146 			end = page_start + reserved_space - 1;
2147 			btrfs_delalloc_release_space(BTRFS_I(inode),
2148 					data_reserved, page_start,
2149 					PAGE_SIZE - reserved_space, true);
2150 		}
2151 	}
2152 
2153 	/*
2154 	 * page_mkwrite gets called when the page is firstly dirtied after it's
2155 	 * faulted in, but write(2) could also dirty a page and set delalloc
2156 	 * bits, thus in this case for space account reason, we still need to
2157 	 * clear any delalloc bits within this page range since we have to
2158 	 * reserve data&meta space before lock_page() (see above comments).
2159 	 */
2160 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
2161 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
2162 			  EXTENT_DEFRAG, &cached_state);
2163 
2164 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
2165 					&cached_state);
2166 	if (ret2) {
2167 		unlock_extent(io_tree, page_start, page_end, &cached_state);
2168 		ret = VM_FAULT_SIGBUS;
2169 		goto out_unlock;
2170 	}
2171 
2172 	/* Page is wholly or partially inside EOF. */
2173 	if (page_start + PAGE_SIZE > size)
2174 		zero_start = offset_in_page(size);
2175 	else
2176 		zero_start = PAGE_SIZE;
2177 
2178 	if (zero_start != PAGE_SIZE)
2179 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
2180 
2181 	btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2182 	btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
2183 	btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
2184 
2185 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
2186 
2187 	unlock_extent(io_tree, page_start, page_end, &cached_state);
2188 	up_read(&BTRFS_I(inode)->i_mmap_lock);
2189 
2190 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2191 	sb_end_pagefault(inode->i_sb);
2192 	extent_changeset_free(data_reserved);
2193 	return VM_FAULT_LOCKED;
2194 
2195 out_unlock:
2196 	unlock_page(page);
2197 	up_read(&BTRFS_I(inode)->i_mmap_lock);
2198 out:
2199 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2200 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
2201 				     reserved_space, (ret != 0));
2202 out_noreserve:
2203 	sb_end_pagefault(inode->i_sb);
2204 	extent_changeset_free(data_reserved);
2205 	return ret;
2206 }
2207 
2208 static const struct vm_operations_struct btrfs_file_vm_ops = {
2209 	.fault		= filemap_fault,
2210 	.map_pages	= filemap_map_pages,
2211 	.page_mkwrite	= btrfs_page_mkwrite,
2212 };
2213 
2214 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2215 {
2216 	struct address_space *mapping = filp->f_mapping;
2217 
2218 	if (!mapping->a_ops->read_folio)
2219 		return -ENOEXEC;
2220 
2221 	file_accessed(filp);
2222 	vma->vm_ops = &btrfs_file_vm_ops;
2223 
2224 	return 0;
2225 }
2226 
2227 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2228 			  int slot, u64 start, u64 end)
2229 {
2230 	struct btrfs_file_extent_item *fi;
2231 	struct btrfs_key key;
2232 
2233 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2234 		return 0;
2235 
2236 	btrfs_item_key_to_cpu(leaf, &key, slot);
2237 	if (key.objectid != btrfs_ino(inode) ||
2238 	    key.type != BTRFS_EXTENT_DATA_KEY)
2239 		return 0;
2240 
2241 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2242 
2243 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2244 		return 0;
2245 
2246 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2247 		return 0;
2248 
2249 	if (key.offset == end)
2250 		return 1;
2251 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2252 		return 1;
2253 	return 0;
2254 }
2255 
2256 static int fill_holes(struct btrfs_trans_handle *trans,
2257 		struct btrfs_inode *inode,
2258 		struct btrfs_path *path, u64 offset, u64 end)
2259 {
2260 	struct btrfs_fs_info *fs_info = trans->fs_info;
2261 	struct btrfs_root *root = inode->root;
2262 	struct extent_buffer *leaf;
2263 	struct btrfs_file_extent_item *fi;
2264 	struct extent_map *hole_em;
2265 	struct btrfs_key key;
2266 	int ret;
2267 
2268 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2269 		goto out;
2270 
2271 	key.objectid = btrfs_ino(inode);
2272 	key.type = BTRFS_EXTENT_DATA_KEY;
2273 	key.offset = offset;
2274 
2275 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2276 	if (ret <= 0) {
2277 		/*
2278 		 * We should have dropped this offset, so if we find it then
2279 		 * something has gone horribly wrong.
2280 		 */
2281 		if (ret == 0)
2282 			ret = -EINVAL;
2283 		return ret;
2284 	}
2285 
2286 	leaf = path->nodes[0];
2287 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2288 		u64 num_bytes;
2289 
2290 		path->slots[0]--;
2291 		fi = btrfs_item_ptr(leaf, path->slots[0],
2292 				    struct btrfs_file_extent_item);
2293 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2294 			end - offset;
2295 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2296 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2297 		btrfs_set_file_extent_offset(leaf, fi, 0);
2298 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2299 		btrfs_mark_buffer_dirty(trans, leaf);
2300 		goto out;
2301 	}
2302 
2303 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2304 		u64 num_bytes;
2305 
2306 		key.offset = offset;
2307 		btrfs_set_item_key_safe(trans, path, &key);
2308 		fi = btrfs_item_ptr(leaf, path->slots[0],
2309 				    struct btrfs_file_extent_item);
2310 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2311 			offset;
2312 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2313 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2314 		btrfs_set_file_extent_offset(leaf, fi, 0);
2315 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2316 		btrfs_mark_buffer_dirty(trans, leaf);
2317 		goto out;
2318 	}
2319 	btrfs_release_path(path);
2320 
2321 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2322 				       end - offset);
2323 	if (ret)
2324 		return ret;
2325 
2326 out:
2327 	btrfs_release_path(path);
2328 
2329 	hole_em = alloc_extent_map();
2330 	if (!hole_em) {
2331 		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2332 		btrfs_set_inode_full_sync(inode);
2333 	} else {
2334 		hole_em->start = offset;
2335 		hole_em->len = end - offset;
2336 		hole_em->ram_bytes = hole_em->len;
2337 		hole_em->orig_start = offset;
2338 
2339 		hole_em->block_start = EXTENT_MAP_HOLE;
2340 		hole_em->block_len = 0;
2341 		hole_em->orig_block_len = 0;
2342 		hole_em->generation = trans->transid;
2343 
2344 		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2345 		free_extent_map(hole_em);
2346 		if (ret)
2347 			btrfs_set_inode_full_sync(inode);
2348 	}
2349 
2350 	return 0;
2351 }
2352 
2353 /*
2354  * Find a hole extent on given inode and change start/len to the end of hole
2355  * extent.(hole/vacuum extent whose em->start <= start &&
2356  *	   em->start + em->len > start)
2357  * When a hole extent is found, return 1 and modify start/len.
2358  */
2359 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2360 {
2361 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2362 	struct extent_map *em;
2363 	int ret = 0;
2364 
2365 	em = btrfs_get_extent(inode, NULL,
2366 			      round_down(*start, fs_info->sectorsize),
2367 			      round_up(*len, fs_info->sectorsize));
2368 	if (IS_ERR(em))
2369 		return PTR_ERR(em);
2370 
2371 	/* Hole or vacuum extent(only exists in no-hole mode) */
2372 	if (em->block_start == EXTENT_MAP_HOLE) {
2373 		ret = 1;
2374 		*len = em->start + em->len > *start + *len ?
2375 		       0 : *start + *len - em->start - em->len;
2376 		*start = em->start + em->len;
2377 	}
2378 	free_extent_map(em);
2379 	return ret;
2380 }
2381 
2382 static void btrfs_punch_hole_lock_range(struct inode *inode,
2383 					const u64 lockstart,
2384 					const u64 lockend,
2385 					struct extent_state **cached_state)
2386 {
2387 	/*
2388 	 * For subpage case, if the range is not at page boundary, we could
2389 	 * have pages at the leading/tailing part of the range.
2390 	 * This could lead to dead loop since filemap_range_has_page()
2391 	 * will always return true.
2392 	 * So here we need to do extra page alignment for
2393 	 * filemap_range_has_page().
2394 	 */
2395 	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2396 	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2397 
2398 	while (1) {
2399 		truncate_pagecache_range(inode, lockstart, lockend);
2400 
2401 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2402 			    cached_state);
2403 		/*
2404 		 * We can't have ordered extents in the range, nor dirty/writeback
2405 		 * pages, because we have locked the inode's VFS lock in exclusive
2406 		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2407 		 * we have flushed all delalloc in the range and we have waited
2408 		 * for any ordered extents in the range to complete.
2409 		 * We can race with anyone reading pages from this range, so after
2410 		 * locking the range check if we have pages in the range, and if
2411 		 * we do, unlock the range and retry.
2412 		 */
2413 		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2414 					    page_lockend))
2415 			break;
2416 
2417 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2418 			      cached_state);
2419 	}
2420 
2421 	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2422 }
2423 
2424 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2425 				     struct btrfs_inode *inode,
2426 				     struct btrfs_path *path,
2427 				     struct btrfs_replace_extent_info *extent_info,
2428 				     const u64 replace_len,
2429 				     const u64 bytes_to_drop)
2430 {
2431 	struct btrfs_fs_info *fs_info = trans->fs_info;
2432 	struct btrfs_root *root = inode->root;
2433 	struct btrfs_file_extent_item *extent;
2434 	struct extent_buffer *leaf;
2435 	struct btrfs_key key;
2436 	int slot;
2437 	int ret;
2438 
2439 	if (replace_len == 0)
2440 		return 0;
2441 
2442 	if (extent_info->disk_offset == 0 &&
2443 	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2444 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2445 		return 0;
2446 	}
2447 
2448 	key.objectid = btrfs_ino(inode);
2449 	key.type = BTRFS_EXTENT_DATA_KEY;
2450 	key.offset = extent_info->file_offset;
2451 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2452 				      sizeof(struct btrfs_file_extent_item));
2453 	if (ret)
2454 		return ret;
2455 	leaf = path->nodes[0];
2456 	slot = path->slots[0];
2457 	write_extent_buffer(leaf, extent_info->extent_buf,
2458 			    btrfs_item_ptr_offset(leaf, slot),
2459 			    sizeof(struct btrfs_file_extent_item));
2460 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2461 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2462 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2463 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2464 	if (extent_info->is_new_extent)
2465 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2466 	btrfs_mark_buffer_dirty(trans, leaf);
2467 	btrfs_release_path(path);
2468 
2469 	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2470 						replace_len);
2471 	if (ret)
2472 		return ret;
2473 
2474 	/* If it's a hole, nothing more needs to be done. */
2475 	if (extent_info->disk_offset == 0) {
2476 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2477 		return 0;
2478 	}
2479 
2480 	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2481 
2482 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2483 		key.objectid = extent_info->disk_offset;
2484 		key.type = BTRFS_EXTENT_ITEM_KEY;
2485 		key.offset = extent_info->disk_len;
2486 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2487 						       btrfs_ino(inode),
2488 						       extent_info->file_offset,
2489 						       extent_info->qgroup_reserved,
2490 						       &key);
2491 	} else {
2492 		struct btrfs_ref ref = {
2493 			.action = BTRFS_ADD_DELAYED_REF,
2494 			.bytenr = extent_info->disk_offset,
2495 			.num_bytes = extent_info->disk_len,
2496 			.owning_root = btrfs_root_id(root),
2497 			.ref_root = btrfs_root_id(root),
2498 		};
2499 		u64 ref_offset;
2500 
2501 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2502 		btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false);
2503 		ret = btrfs_inc_extent_ref(trans, &ref);
2504 	}
2505 
2506 	extent_info->insertions++;
2507 
2508 	return ret;
2509 }
2510 
2511 /*
2512  * The respective range must have been previously locked, as well as the inode.
2513  * The end offset is inclusive (last byte of the range).
2514  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2515  * the file range with an extent.
2516  * When not punching a hole, we don't want to end up in a state where we dropped
2517  * extents without inserting a new one, so we must abort the transaction to avoid
2518  * a corruption.
2519  */
2520 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2521 			       struct btrfs_path *path, const u64 start,
2522 			       const u64 end,
2523 			       struct btrfs_replace_extent_info *extent_info,
2524 			       struct btrfs_trans_handle **trans_out)
2525 {
2526 	struct btrfs_drop_extents_args drop_args = { 0 };
2527 	struct btrfs_root *root = inode->root;
2528 	struct btrfs_fs_info *fs_info = root->fs_info;
2529 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2530 	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2531 	struct btrfs_trans_handle *trans = NULL;
2532 	struct btrfs_block_rsv *rsv;
2533 	unsigned int rsv_count;
2534 	u64 cur_offset;
2535 	u64 len = end - start;
2536 	int ret = 0;
2537 
2538 	if (end <= start)
2539 		return -EINVAL;
2540 
2541 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2542 	if (!rsv) {
2543 		ret = -ENOMEM;
2544 		goto out;
2545 	}
2546 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2547 	rsv->failfast = true;
2548 
2549 	/*
2550 	 * 1 - update the inode
2551 	 * 1 - removing the extents in the range
2552 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2553 	 *     replacing the range with a new extent
2554 	 */
2555 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2556 		rsv_count = 3;
2557 	else
2558 		rsv_count = 2;
2559 
2560 	trans = btrfs_start_transaction(root, rsv_count);
2561 	if (IS_ERR(trans)) {
2562 		ret = PTR_ERR(trans);
2563 		trans = NULL;
2564 		goto out_free;
2565 	}
2566 
2567 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2568 				      min_size, false);
2569 	if (WARN_ON(ret))
2570 		goto out_trans;
2571 	trans->block_rsv = rsv;
2572 
2573 	cur_offset = start;
2574 	drop_args.path = path;
2575 	drop_args.end = end + 1;
2576 	drop_args.drop_cache = true;
2577 	while (cur_offset < end) {
2578 		drop_args.start = cur_offset;
2579 		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2580 		/* If we are punching a hole decrement the inode's byte count */
2581 		if (!extent_info)
2582 			btrfs_update_inode_bytes(inode, 0,
2583 						 drop_args.bytes_found);
2584 		if (ret != -ENOSPC) {
2585 			/*
2586 			 * The only time we don't want to abort is if we are
2587 			 * attempting to clone a partial inline extent, in which
2588 			 * case we'll get EOPNOTSUPP.  However if we aren't
2589 			 * clone we need to abort no matter what, because if we
2590 			 * got EOPNOTSUPP via prealloc then we messed up and
2591 			 * need to abort.
2592 			 */
2593 			if (ret &&
2594 			    (ret != -EOPNOTSUPP ||
2595 			     (extent_info && extent_info->is_new_extent)))
2596 				btrfs_abort_transaction(trans, ret);
2597 			break;
2598 		}
2599 
2600 		trans->block_rsv = &fs_info->trans_block_rsv;
2601 
2602 		if (!extent_info && cur_offset < drop_args.drop_end &&
2603 		    cur_offset < ino_size) {
2604 			ret = fill_holes(trans, inode, path, cur_offset,
2605 					 drop_args.drop_end);
2606 			if (ret) {
2607 				/*
2608 				 * If we failed then we didn't insert our hole
2609 				 * entries for the area we dropped, so now the
2610 				 * fs is corrupted, so we must abort the
2611 				 * transaction.
2612 				 */
2613 				btrfs_abort_transaction(trans, ret);
2614 				break;
2615 			}
2616 		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2617 			/*
2618 			 * We are past the i_size here, but since we didn't
2619 			 * insert holes we need to clear the mapped area so we
2620 			 * know to not set disk_i_size in this area until a new
2621 			 * file extent is inserted here.
2622 			 */
2623 			ret = btrfs_inode_clear_file_extent_range(inode,
2624 					cur_offset,
2625 					drop_args.drop_end - cur_offset);
2626 			if (ret) {
2627 				/*
2628 				 * We couldn't clear our area, so we could
2629 				 * presumably adjust up and corrupt the fs, so
2630 				 * we need to abort.
2631 				 */
2632 				btrfs_abort_transaction(trans, ret);
2633 				break;
2634 			}
2635 		}
2636 
2637 		if (extent_info &&
2638 		    drop_args.drop_end > extent_info->file_offset) {
2639 			u64 replace_len = drop_args.drop_end -
2640 					  extent_info->file_offset;
2641 
2642 			ret = btrfs_insert_replace_extent(trans, inode,	path,
2643 					extent_info, replace_len,
2644 					drop_args.bytes_found);
2645 			if (ret) {
2646 				btrfs_abort_transaction(trans, ret);
2647 				break;
2648 			}
2649 			extent_info->data_len -= replace_len;
2650 			extent_info->data_offset += replace_len;
2651 			extent_info->file_offset += replace_len;
2652 		}
2653 
2654 		/*
2655 		 * We are releasing our handle on the transaction, balance the
2656 		 * dirty pages of the btree inode and flush delayed items, and
2657 		 * then get a new transaction handle, which may now point to a
2658 		 * new transaction in case someone else may have committed the
2659 		 * transaction we used to replace/drop file extent items. So
2660 		 * bump the inode's iversion and update mtime and ctime except
2661 		 * if we are called from a dedupe context. This is because a
2662 		 * power failure/crash may happen after the transaction is
2663 		 * committed and before we finish replacing/dropping all the
2664 		 * file extent items we need.
2665 		 */
2666 		inode_inc_iversion(&inode->vfs_inode);
2667 
2668 		if (!extent_info || extent_info->update_times)
2669 			inode_set_mtime_to_ts(&inode->vfs_inode,
2670 					      inode_set_ctime_current(&inode->vfs_inode));
2671 
2672 		ret = btrfs_update_inode(trans, inode);
2673 		if (ret)
2674 			break;
2675 
2676 		btrfs_end_transaction(trans);
2677 		btrfs_btree_balance_dirty(fs_info);
2678 
2679 		trans = btrfs_start_transaction(root, rsv_count);
2680 		if (IS_ERR(trans)) {
2681 			ret = PTR_ERR(trans);
2682 			trans = NULL;
2683 			break;
2684 		}
2685 
2686 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2687 					      rsv, min_size, false);
2688 		if (WARN_ON(ret))
2689 			break;
2690 		trans->block_rsv = rsv;
2691 
2692 		cur_offset = drop_args.drop_end;
2693 		len = end - cur_offset;
2694 		if (!extent_info && len) {
2695 			ret = find_first_non_hole(inode, &cur_offset, &len);
2696 			if (unlikely(ret < 0))
2697 				break;
2698 			if (ret && !len) {
2699 				ret = 0;
2700 				break;
2701 			}
2702 		}
2703 	}
2704 
2705 	/*
2706 	 * If we were cloning, force the next fsync to be a full one since we
2707 	 * we replaced (or just dropped in the case of cloning holes when
2708 	 * NO_HOLES is enabled) file extent items and did not setup new extent
2709 	 * maps for the replacement extents (or holes).
2710 	 */
2711 	if (extent_info && !extent_info->is_new_extent)
2712 		btrfs_set_inode_full_sync(inode);
2713 
2714 	if (ret)
2715 		goto out_trans;
2716 
2717 	trans->block_rsv = &fs_info->trans_block_rsv;
2718 	/*
2719 	 * If we are using the NO_HOLES feature we might have had already an
2720 	 * hole that overlaps a part of the region [lockstart, lockend] and
2721 	 * ends at (or beyond) lockend. Since we have no file extent items to
2722 	 * represent holes, drop_end can be less than lockend and so we must
2723 	 * make sure we have an extent map representing the existing hole (the
2724 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2725 	 * map representing the existing hole), otherwise the fast fsync path
2726 	 * will not record the existence of the hole region
2727 	 * [existing_hole_start, lockend].
2728 	 */
2729 	if (drop_args.drop_end <= end)
2730 		drop_args.drop_end = end + 1;
2731 	/*
2732 	 * Don't insert file hole extent item if it's for a range beyond eof
2733 	 * (because it's useless) or if it represents a 0 bytes range (when
2734 	 * cur_offset == drop_end).
2735 	 */
2736 	if (!extent_info && cur_offset < ino_size &&
2737 	    cur_offset < drop_args.drop_end) {
2738 		ret = fill_holes(trans, inode, path, cur_offset,
2739 				 drop_args.drop_end);
2740 		if (ret) {
2741 			/* Same comment as above. */
2742 			btrfs_abort_transaction(trans, ret);
2743 			goto out_trans;
2744 		}
2745 	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2746 		/* See the comment in the loop above for the reasoning here. */
2747 		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2748 					drop_args.drop_end - cur_offset);
2749 		if (ret) {
2750 			btrfs_abort_transaction(trans, ret);
2751 			goto out_trans;
2752 		}
2753 
2754 	}
2755 	if (extent_info) {
2756 		ret = btrfs_insert_replace_extent(trans, inode, path,
2757 				extent_info, extent_info->data_len,
2758 				drop_args.bytes_found);
2759 		if (ret) {
2760 			btrfs_abort_transaction(trans, ret);
2761 			goto out_trans;
2762 		}
2763 	}
2764 
2765 out_trans:
2766 	if (!trans)
2767 		goto out_free;
2768 
2769 	trans->block_rsv = &fs_info->trans_block_rsv;
2770 	if (ret)
2771 		btrfs_end_transaction(trans);
2772 	else
2773 		*trans_out = trans;
2774 out_free:
2775 	btrfs_free_block_rsv(fs_info, rsv);
2776 out:
2777 	return ret;
2778 }
2779 
2780 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2781 {
2782 	struct inode *inode = file_inode(file);
2783 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2784 	struct btrfs_root *root = BTRFS_I(inode)->root;
2785 	struct extent_state *cached_state = NULL;
2786 	struct btrfs_path *path;
2787 	struct btrfs_trans_handle *trans = NULL;
2788 	u64 lockstart;
2789 	u64 lockend;
2790 	u64 tail_start;
2791 	u64 tail_len;
2792 	u64 orig_start = offset;
2793 	int ret = 0;
2794 	bool same_block;
2795 	u64 ino_size;
2796 	bool truncated_block = false;
2797 	bool updated_inode = false;
2798 
2799 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2800 
2801 	ret = btrfs_wait_ordered_range(inode, offset, len);
2802 	if (ret)
2803 		goto out_only_mutex;
2804 
2805 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2806 	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2807 	if (ret < 0)
2808 		goto out_only_mutex;
2809 	if (ret && !len) {
2810 		/* Already in a large hole */
2811 		ret = 0;
2812 		goto out_only_mutex;
2813 	}
2814 
2815 	ret = file_modified(file);
2816 	if (ret)
2817 		goto out_only_mutex;
2818 
2819 	lockstart = round_up(offset, fs_info->sectorsize);
2820 	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2821 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2822 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2823 	/*
2824 	 * We needn't truncate any block which is beyond the end of the file
2825 	 * because we are sure there is no data there.
2826 	 */
2827 	/*
2828 	 * Only do this if we are in the same block and we aren't doing the
2829 	 * entire block.
2830 	 */
2831 	if (same_block && len < fs_info->sectorsize) {
2832 		if (offset < ino_size) {
2833 			truncated_block = true;
2834 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2835 						   0);
2836 		} else {
2837 			ret = 0;
2838 		}
2839 		goto out_only_mutex;
2840 	}
2841 
2842 	/* zero back part of the first block */
2843 	if (offset < ino_size) {
2844 		truncated_block = true;
2845 		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2846 		if (ret) {
2847 			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2848 			return ret;
2849 		}
2850 	}
2851 
2852 	/* Check the aligned pages after the first unaligned page,
2853 	 * if offset != orig_start, which means the first unaligned page
2854 	 * including several following pages are already in holes,
2855 	 * the extra check can be skipped */
2856 	if (offset == orig_start) {
2857 		/* after truncate page, check hole again */
2858 		len = offset + len - lockstart;
2859 		offset = lockstart;
2860 		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2861 		if (ret < 0)
2862 			goto out_only_mutex;
2863 		if (ret && !len) {
2864 			ret = 0;
2865 			goto out_only_mutex;
2866 		}
2867 		lockstart = offset;
2868 	}
2869 
2870 	/* Check the tail unaligned part is in a hole */
2871 	tail_start = lockend + 1;
2872 	tail_len = offset + len - tail_start;
2873 	if (tail_len) {
2874 		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2875 		if (unlikely(ret < 0))
2876 			goto out_only_mutex;
2877 		if (!ret) {
2878 			/* zero the front end of the last page */
2879 			if (tail_start + tail_len < ino_size) {
2880 				truncated_block = true;
2881 				ret = btrfs_truncate_block(BTRFS_I(inode),
2882 							tail_start + tail_len,
2883 							0, 1);
2884 				if (ret)
2885 					goto out_only_mutex;
2886 			}
2887 		}
2888 	}
2889 
2890 	if (lockend < lockstart) {
2891 		ret = 0;
2892 		goto out_only_mutex;
2893 	}
2894 
2895 	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2896 
2897 	path = btrfs_alloc_path();
2898 	if (!path) {
2899 		ret = -ENOMEM;
2900 		goto out;
2901 	}
2902 
2903 	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2904 					 lockend, NULL, &trans);
2905 	btrfs_free_path(path);
2906 	if (ret)
2907 		goto out;
2908 
2909 	ASSERT(trans != NULL);
2910 	inode_inc_iversion(inode);
2911 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2912 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
2913 	updated_inode = true;
2914 	btrfs_end_transaction(trans);
2915 	btrfs_btree_balance_dirty(fs_info);
2916 out:
2917 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2918 		      &cached_state);
2919 out_only_mutex:
2920 	if (!updated_inode && truncated_block && !ret) {
2921 		/*
2922 		 * If we only end up zeroing part of a page, we still need to
2923 		 * update the inode item, so that all the time fields are
2924 		 * updated as well as the necessary btrfs inode in memory fields
2925 		 * for detecting, at fsync time, if the inode isn't yet in the
2926 		 * log tree or it's there but not up to date.
2927 		 */
2928 		struct timespec64 now = inode_set_ctime_current(inode);
2929 
2930 		inode_inc_iversion(inode);
2931 		inode_set_mtime_to_ts(inode, now);
2932 		trans = btrfs_start_transaction(root, 1);
2933 		if (IS_ERR(trans)) {
2934 			ret = PTR_ERR(trans);
2935 		} else {
2936 			int ret2;
2937 
2938 			ret = btrfs_update_inode(trans, BTRFS_I(inode));
2939 			ret2 = btrfs_end_transaction(trans);
2940 			if (!ret)
2941 				ret = ret2;
2942 		}
2943 	}
2944 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2945 	return ret;
2946 }
2947 
2948 /* Helper structure to record which range is already reserved */
2949 struct falloc_range {
2950 	struct list_head list;
2951 	u64 start;
2952 	u64 len;
2953 };
2954 
2955 /*
2956  * Helper function to add falloc range
2957  *
2958  * Caller should have locked the larger range of extent containing
2959  * [start, len)
2960  */
2961 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2962 {
2963 	struct falloc_range *range = NULL;
2964 
2965 	if (!list_empty(head)) {
2966 		/*
2967 		 * As fallocate iterates by bytenr order, we only need to check
2968 		 * the last range.
2969 		 */
2970 		range = list_last_entry(head, struct falloc_range, list);
2971 		if (range->start + range->len == start) {
2972 			range->len += len;
2973 			return 0;
2974 		}
2975 	}
2976 
2977 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2978 	if (!range)
2979 		return -ENOMEM;
2980 	range->start = start;
2981 	range->len = len;
2982 	list_add_tail(&range->list, head);
2983 	return 0;
2984 }
2985 
2986 static int btrfs_fallocate_update_isize(struct inode *inode,
2987 					const u64 end,
2988 					const int mode)
2989 {
2990 	struct btrfs_trans_handle *trans;
2991 	struct btrfs_root *root = BTRFS_I(inode)->root;
2992 	int ret;
2993 	int ret2;
2994 
2995 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2996 		return 0;
2997 
2998 	trans = btrfs_start_transaction(root, 1);
2999 	if (IS_ERR(trans))
3000 		return PTR_ERR(trans);
3001 
3002 	inode_set_ctime_current(inode);
3003 	i_size_write(inode, end);
3004 	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3005 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
3006 	ret2 = btrfs_end_transaction(trans);
3007 
3008 	return ret ? ret : ret2;
3009 }
3010 
3011 enum {
3012 	RANGE_BOUNDARY_WRITTEN_EXTENT,
3013 	RANGE_BOUNDARY_PREALLOC_EXTENT,
3014 	RANGE_BOUNDARY_HOLE,
3015 };
3016 
3017 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3018 						 u64 offset)
3019 {
3020 	const u64 sectorsize = inode->root->fs_info->sectorsize;
3021 	struct extent_map *em;
3022 	int ret;
3023 
3024 	offset = round_down(offset, sectorsize);
3025 	em = btrfs_get_extent(inode, NULL, offset, sectorsize);
3026 	if (IS_ERR(em))
3027 		return PTR_ERR(em);
3028 
3029 	if (em->block_start == EXTENT_MAP_HOLE)
3030 		ret = RANGE_BOUNDARY_HOLE;
3031 	else if (em->flags & EXTENT_FLAG_PREALLOC)
3032 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3033 	else
3034 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3035 
3036 	free_extent_map(em);
3037 	return ret;
3038 }
3039 
3040 static int btrfs_zero_range(struct inode *inode,
3041 			    loff_t offset,
3042 			    loff_t len,
3043 			    const int mode)
3044 {
3045 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3046 	struct extent_map *em;
3047 	struct extent_changeset *data_reserved = NULL;
3048 	int ret;
3049 	u64 alloc_hint = 0;
3050 	const u64 sectorsize = fs_info->sectorsize;
3051 	u64 alloc_start = round_down(offset, sectorsize);
3052 	u64 alloc_end = round_up(offset + len, sectorsize);
3053 	u64 bytes_to_reserve = 0;
3054 	bool space_reserved = false;
3055 
3056 	em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
3057 			      alloc_end - alloc_start);
3058 	if (IS_ERR(em)) {
3059 		ret = PTR_ERR(em);
3060 		goto out;
3061 	}
3062 
3063 	/*
3064 	 * Avoid hole punching and extent allocation for some cases. More cases
3065 	 * could be considered, but these are unlikely common and we keep things
3066 	 * as simple as possible for now. Also, intentionally, if the target
3067 	 * range contains one or more prealloc extents together with regular
3068 	 * extents and holes, we drop all the existing extents and allocate a
3069 	 * new prealloc extent, so that we get a larger contiguous disk extent.
3070 	 */
3071 	if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
3072 		const u64 em_end = em->start + em->len;
3073 
3074 		if (em_end >= offset + len) {
3075 			/*
3076 			 * The whole range is already a prealloc extent,
3077 			 * do nothing except updating the inode's i_size if
3078 			 * needed.
3079 			 */
3080 			free_extent_map(em);
3081 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3082 							   mode);
3083 			goto out;
3084 		}
3085 		/*
3086 		 * Part of the range is already a prealloc extent, so operate
3087 		 * only on the remaining part of the range.
3088 		 */
3089 		alloc_start = em_end;
3090 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3091 		len = offset + len - alloc_start;
3092 		offset = alloc_start;
3093 		alloc_hint = em->block_start + em->len;
3094 	}
3095 	free_extent_map(em);
3096 
3097 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3098 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3099 		em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
3100 		if (IS_ERR(em)) {
3101 			ret = PTR_ERR(em);
3102 			goto out;
3103 		}
3104 
3105 		if (em->flags & EXTENT_FLAG_PREALLOC) {
3106 			free_extent_map(em);
3107 			ret = btrfs_fallocate_update_isize(inode, offset + len,
3108 							   mode);
3109 			goto out;
3110 		}
3111 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3112 			free_extent_map(em);
3113 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3114 						   0);
3115 			if (!ret)
3116 				ret = btrfs_fallocate_update_isize(inode,
3117 								   offset + len,
3118 								   mode);
3119 			return ret;
3120 		}
3121 		free_extent_map(em);
3122 		alloc_start = round_down(offset, sectorsize);
3123 		alloc_end = alloc_start + sectorsize;
3124 		goto reserve_space;
3125 	}
3126 
3127 	alloc_start = round_up(offset, sectorsize);
3128 	alloc_end = round_down(offset + len, sectorsize);
3129 
3130 	/*
3131 	 * For unaligned ranges, check the pages at the boundaries, they might
3132 	 * map to an extent, in which case we need to partially zero them, or
3133 	 * they might map to a hole, in which case we need our allocation range
3134 	 * to cover them.
3135 	 */
3136 	if (!IS_ALIGNED(offset, sectorsize)) {
3137 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3138 							    offset);
3139 		if (ret < 0)
3140 			goto out;
3141 		if (ret == RANGE_BOUNDARY_HOLE) {
3142 			alloc_start = round_down(offset, sectorsize);
3143 			ret = 0;
3144 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3145 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3146 			if (ret)
3147 				goto out;
3148 		} else {
3149 			ret = 0;
3150 		}
3151 	}
3152 
3153 	if (!IS_ALIGNED(offset + len, sectorsize)) {
3154 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3155 							    offset + len);
3156 		if (ret < 0)
3157 			goto out;
3158 		if (ret == RANGE_BOUNDARY_HOLE) {
3159 			alloc_end = round_up(offset + len, sectorsize);
3160 			ret = 0;
3161 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3162 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3163 						   0, 1);
3164 			if (ret)
3165 				goto out;
3166 		} else {
3167 			ret = 0;
3168 		}
3169 	}
3170 
3171 reserve_space:
3172 	if (alloc_start < alloc_end) {
3173 		struct extent_state *cached_state = NULL;
3174 		const u64 lockstart = alloc_start;
3175 		const u64 lockend = alloc_end - 1;
3176 
3177 		bytes_to_reserve = alloc_end - alloc_start;
3178 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3179 						      bytes_to_reserve);
3180 		if (ret < 0)
3181 			goto out;
3182 		space_reserved = true;
3183 		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3184 					    &cached_state);
3185 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3186 						alloc_start, bytes_to_reserve);
3187 		if (ret) {
3188 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3189 				      lockend, &cached_state);
3190 			goto out;
3191 		}
3192 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3193 						alloc_end - alloc_start,
3194 						fs_info->sectorsize,
3195 						offset + len, &alloc_hint);
3196 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3197 			      &cached_state);
3198 		/* btrfs_prealloc_file_range releases reserved space on error */
3199 		if (ret) {
3200 			space_reserved = false;
3201 			goto out;
3202 		}
3203 	}
3204 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3205  out:
3206 	if (ret && space_reserved)
3207 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3208 					       alloc_start, bytes_to_reserve);
3209 	extent_changeset_free(data_reserved);
3210 
3211 	return ret;
3212 }
3213 
3214 static long btrfs_fallocate(struct file *file, int mode,
3215 			    loff_t offset, loff_t len)
3216 {
3217 	struct inode *inode = file_inode(file);
3218 	struct extent_state *cached_state = NULL;
3219 	struct extent_changeset *data_reserved = NULL;
3220 	struct falloc_range *range;
3221 	struct falloc_range *tmp;
3222 	LIST_HEAD(reserve_list);
3223 	u64 cur_offset;
3224 	u64 last_byte;
3225 	u64 alloc_start;
3226 	u64 alloc_end;
3227 	u64 alloc_hint = 0;
3228 	u64 locked_end;
3229 	u64 actual_end = 0;
3230 	u64 data_space_needed = 0;
3231 	u64 data_space_reserved = 0;
3232 	u64 qgroup_reserved = 0;
3233 	struct extent_map *em;
3234 	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3235 	int ret;
3236 
3237 	/* Do not allow fallocate in ZONED mode */
3238 	if (btrfs_is_zoned(inode_to_fs_info(inode)))
3239 		return -EOPNOTSUPP;
3240 
3241 	alloc_start = round_down(offset, blocksize);
3242 	alloc_end = round_up(offset + len, blocksize);
3243 	cur_offset = alloc_start;
3244 
3245 	/* Make sure we aren't being give some crap mode */
3246 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3247 		     FALLOC_FL_ZERO_RANGE))
3248 		return -EOPNOTSUPP;
3249 
3250 	if (mode & FALLOC_FL_PUNCH_HOLE)
3251 		return btrfs_punch_hole(file, offset, len);
3252 
3253 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3254 
3255 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3256 		ret = inode_newsize_ok(inode, offset + len);
3257 		if (ret)
3258 			goto out;
3259 	}
3260 
3261 	ret = file_modified(file);
3262 	if (ret)
3263 		goto out;
3264 
3265 	/*
3266 	 * TODO: Move these two operations after we have checked
3267 	 * accurate reserved space, or fallocate can still fail but
3268 	 * with page truncated or size expanded.
3269 	 *
3270 	 * But that's a minor problem and won't do much harm BTW.
3271 	 */
3272 	if (alloc_start > inode->i_size) {
3273 		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3274 					alloc_start);
3275 		if (ret)
3276 			goto out;
3277 	} else if (offset + len > inode->i_size) {
3278 		/*
3279 		 * If we are fallocating from the end of the file onward we
3280 		 * need to zero out the end of the block if i_size lands in the
3281 		 * middle of a block.
3282 		 */
3283 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3284 		if (ret)
3285 			goto out;
3286 	}
3287 
3288 	/*
3289 	 * We have locked the inode at the VFS level (in exclusive mode) and we
3290 	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3291 	 * locking the file range, flush all dealloc in the range and wait for
3292 	 * all ordered extents in the range to complete. After this we can lock
3293 	 * the file range and, due to the previous locking we did, we know there
3294 	 * can't be more delalloc or ordered extents in the range.
3295 	 */
3296 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3297 				       alloc_end - alloc_start);
3298 	if (ret)
3299 		goto out;
3300 
3301 	if (mode & FALLOC_FL_ZERO_RANGE) {
3302 		ret = btrfs_zero_range(inode, offset, len, mode);
3303 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3304 		return ret;
3305 	}
3306 
3307 	locked_end = alloc_end - 1;
3308 	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3309 		    &cached_state);
3310 
3311 	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3312 
3313 	/* First, check if we exceed the qgroup limit */
3314 	while (cur_offset < alloc_end) {
3315 		em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
3316 				      alloc_end - cur_offset);
3317 		if (IS_ERR(em)) {
3318 			ret = PTR_ERR(em);
3319 			break;
3320 		}
3321 		last_byte = min(extent_map_end(em), alloc_end);
3322 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3323 		last_byte = ALIGN(last_byte, blocksize);
3324 		if (em->block_start == EXTENT_MAP_HOLE ||
3325 		    (cur_offset >= inode->i_size &&
3326 		     !(em->flags & EXTENT_FLAG_PREALLOC))) {
3327 			const u64 range_len = last_byte - cur_offset;
3328 
3329 			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3330 			if (ret < 0) {
3331 				free_extent_map(em);
3332 				break;
3333 			}
3334 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3335 					&data_reserved, cur_offset, range_len);
3336 			if (ret < 0) {
3337 				free_extent_map(em);
3338 				break;
3339 			}
3340 			qgroup_reserved += range_len;
3341 			data_space_needed += range_len;
3342 		}
3343 		free_extent_map(em);
3344 		cur_offset = last_byte;
3345 	}
3346 
3347 	if (!ret && data_space_needed > 0) {
3348 		/*
3349 		 * We are safe to reserve space here as we can't have delalloc
3350 		 * in the range, see above.
3351 		 */
3352 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3353 						      data_space_needed);
3354 		if (!ret)
3355 			data_space_reserved = data_space_needed;
3356 	}
3357 
3358 	/*
3359 	 * If ret is still 0, means we're OK to fallocate.
3360 	 * Or just cleanup the list and exit.
3361 	 */
3362 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3363 		if (!ret) {
3364 			ret = btrfs_prealloc_file_range(inode, mode,
3365 					range->start,
3366 					range->len, blocksize,
3367 					offset + len, &alloc_hint);
3368 			/*
3369 			 * btrfs_prealloc_file_range() releases space even
3370 			 * if it returns an error.
3371 			 */
3372 			data_space_reserved -= range->len;
3373 			qgroup_reserved -= range->len;
3374 		} else if (data_space_reserved > 0) {
3375 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3376 					       data_reserved, range->start,
3377 					       range->len);
3378 			data_space_reserved -= range->len;
3379 			qgroup_reserved -= range->len;
3380 		} else if (qgroup_reserved > 0) {
3381 			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3382 					       range->start, range->len, NULL);
3383 			qgroup_reserved -= range->len;
3384 		}
3385 		list_del(&range->list);
3386 		kfree(range);
3387 	}
3388 	if (ret < 0)
3389 		goto out_unlock;
3390 
3391 	/*
3392 	 * We didn't need to allocate any more space, but we still extended the
3393 	 * size of the file so we need to update i_size and the inode item.
3394 	 */
3395 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3396 out_unlock:
3397 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3398 		      &cached_state);
3399 out:
3400 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3401 	extent_changeset_free(data_reserved);
3402 	return ret;
3403 }
3404 
3405 /*
3406  * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3407  * that has unflushed and/or flushing delalloc. There might be other adjacent
3408  * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3409  * looping while it gets adjacent subranges, and merging them together.
3410  */
3411 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3412 				   struct extent_state **cached_state,
3413 				   bool *search_io_tree,
3414 				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3415 {
3416 	u64 len = end + 1 - start;
3417 	u64 delalloc_len = 0;
3418 	struct btrfs_ordered_extent *oe;
3419 	u64 oe_start;
3420 	u64 oe_end;
3421 
3422 	/*
3423 	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3424 	 * means we have delalloc (dirty pages) for which writeback has not
3425 	 * started yet.
3426 	 */
3427 	if (*search_io_tree) {
3428 		spin_lock(&inode->lock);
3429 		if (inode->delalloc_bytes > 0) {
3430 			spin_unlock(&inode->lock);
3431 			*delalloc_start_ret = start;
3432 			delalloc_len = count_range_bits(&inode->io_tree,
3433 							delalloc_start_ret, end,
3434 							len, EXTENT_DELALLOC, 1,
3435 							cached_state);
3436 		} else {
3437 			spin_unlock(&inode->lock);
3438 		}
3439 	}
3440 
3441 	if (delalloc_len > 0) {
3442 		/*
3443 		 * If delalloc was found then *delalloc_start_ret has a sector size
3444 		 * aligned value (rounded down).
3445 		 */
3446 		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3447 
3448 		if (*delalloc_start_ret == start) {
3449 			/* Delalloc for the whole range, nothing more to do. */
3450 			if (*delalloc_end_ret == end)
3451 				return true;
3452 			/* Else trim our search range for ordered extents. */
3453 			start = *delalloc_end_ret + 1;
3454 			len = end + 1 - start;
3455 		}
3456 	} else {
3457 		/* No delalloc, future calls don't need to search again. */
3458 		*search_io_tree = false;
3459 	}
3460 
3461 	/*
3462 	 * Now also check if there's any ordered extent in the range.
3463 	 * We do this because:
3464 	 *
3465 	 * 1) When delalloc is flushed, the file range is locked, we clear the
3466 	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3467 	 *    an ordered extent for the write. So we might just have been called
3468 	 *    after delalloc is flushed and before the ordered extent completes
3469 	 *    and inserts the new file extent item in the subvolume's btree;
3470 	 *
3471 	 * 2) We may have an ordered extent created by flushing delalloc for a
3472 	 *    subrange that starts before the subrange we found marked with
3473 	 *    EXTENT_DELALLOC in the io tree.
3474 	 *
3475 	 * We could also use the extent map tree to find such delalloc that is
3476 	 * being flushed, but using the ordered extents tree is more efficient
3477 	 * because it's usually much smaller as ordered extents are removed from
3478 	 * the tree once they complete. With the extent maps, we mau have them
3479 	 * in the extent map tree for a very long time, and they were either
3480 	 * created by previous writes or loaded by read operations.
3481 	 */
3482 	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3483 	if (!oe)
3484 		return (delalloc_len > 0);
3485 
3486 	/* The ordered extent may span beyond our search range. */
3487 	oe_start = max(oe->file_offset, start);
3488 	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3489 
3490 	btrfs_put_ordered_extent(oe);
3491 
3492 	/* Don't have unflushed delalloc, return the ordered extent range. */
3493 	if (delalloc_len == 0) {
3494 		*delalloc_start_ret = oe_start;
3495 		*delalloc_end_ret = oe_end;
3496 		return true;
3497 	}
3498 
3499 	/*
3500 	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3501 	 * If the ranges are adjacent returned a combined range, otherwise
3502 	 * return the leftmost range.
3503 	 */
3504 	if (oe_start < *delalloc_start_ret) {
3505 		if (oe_end < *delalloc_start_ret)
3506 			*delalloc_end_ret = oe_end;
3507 		*delalloc_start_ret = oe_start;
3508 	} else if (*delalloc_end_ret + 1 == oe_start) {
3509 		*delalloc_end_ret = oe_end;
3510 	}
3511 
3512 	return true;
3513 }
3514 
3515 /*
3516  * Check if there's delalloc in a given range.
3517  *
3518  * @inode:               The inode.
3519  * @start:               The start offset of the range. It does not need to be
3520  *                       sector size aligned.
3521  * @end:                 The end offset (inclusive value) of the search range.
3522  *                       It does not need to be sector size aligned.
3523  * @cached_state:        Extent state record used for speeding up delalloc
3524  *                       searches in the inode's io_tree. Can be NULL.
3525  * @delalloc_start_ret:  Output argument, set to the start offset of the
3526  *                       subrange found with delalloc (may not be sector size
3527  *                       aligned).
3528  * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3529  *                       of the subrange found with delalloc.
3530  *
3531  * Returns true if a subrange with delalloc is found within the given range, and
3532  * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3533  * end offsets of the subrange.
3534  */
3535 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3536 				  struct extent_state **cached_state,
3537 				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3538 {
3539 	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3540 	u64 prev_delalloc_end = 0;
3541 	bool search_io_tree = true;
3542 	bool ret = false;
3543 
3544 	while (cur_offset <= end) {
3545 		u64 delalloc_start;
3546 		u64 delalloc_end;
3547 		bool delalloc;
3548 
3549 		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3550 						  cached_state, &search_io_tree,
3551 						  &delalloc_start,
3552 						  &delalloc_end);
3553 		if (!delalloc)
3554 			break;
3555 
3556 		if (prev_delalloc_end == 0) {
3557 			/* First subrange found. */
3558 			*delalloc_start_ret = max(delalloc_start, start);
3559 			*delalloc_end_ret = delalloc_end;
3560 			ret = true;
3561 		} else if (delalloc_start == prev_delalloc_end + 1) {
3562 			/* Subrange adjacent to the previous one, merge them. */
3563 			*delalloc_end_ret = delalloc_end;
3564 		} else {
3565 			/* Subrange not adjacent to the previous one, exit. */
3566 			break;
3567 		}
3568 
3569 		prev_delalloc_end = delalloc_end;
3570 		cur_offset = delalloc_end + 1;
3571 		cond_resched();
3572 	}
3573 
3574 	return ret;
3575 }
3576 
3577 /*
3578  * Check if there's a hole or delalloc range in a range representing a hole (or
3579  * prealloc extent) found in the inode's subvolume btree.
3580  *
3581  * @inode:      The inode.
3582  * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3583  * @start:      Start offset of the hole region. It does not need to be sector
3584  *              size aligned.
3585  * @end:        End offset (inclusive value) of the hole region. It does not
3586  *              need to be sector size aligned.
3587  * @start_ret:  Return parameter, used to set the start of the subrange in the
3588  *              hole that matches the search criteria (seek mode), if such
3589  *              subrange is found (return value of the function is true).
3590  *              The value returned here may not be sector size aligned.
3591  *
3592  * Returns true if a subrange matching the given seek mode is found, and if one
3593  * is found, it updates @start_ret with the start of the subrange.
3594  */
3595 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3596 					struct extent_state **cached_state,
3597 					u64 start, u64 end, u64 *start_ret)
3598 {
3599 	u64 delalloc_start;
3600 	u64 delalloc_end;
3601 	bool delalloc;
3602 
3603 	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3604 						&delalloc_start, &delalloc_end);
3605 	if (delalloc && whence == SEEK_DATA) {
3606 		*start_ret = delalloc_start;
3607 		return true;
3608 	}
3609 
3610 	if (delalloc && whence == SEEK_HOLE) {
3611 		/*
3612 		 * We found delalloc but it starts after out start offset. So we
3613 		 * have a hole between our start offset and the delalloc start.
3614 		 */
3615 		if (start < delalloc_start) {
3616 			*start_ret = start;
3617 			return true;
3618 		}
3619 		/*
3620 		 * Delalloc range starts at our start offset.
3621 		 * If the delalloc range's length is smaller than our range,
3622 		 * then it means we have a hole that starts where the delalloc
3623 		 * subrange ends.
3624 		 */
3625 		if (delalloc_end < end) {
3626 			*start_ret = delalloc_end + 1;
3627 			return true;
3628 		}
3629 
3630 		/* There's delalloc for the whole range. */
3631 		return false;
3632 	}
3633 
3634 	if (!delalloc && whence == SEEK_HOLE) {
3635 		*start_ret = start;
3636 		return true;
3637 	}
3638 
3639 	/*
3640 	 * No delalloc in the range and we are seeking for data. The caller has
3641 	 * to iterate to the next extent item in the subvolume btree.
3642 	 */
3643 	return false;
3644 }
3645 
3646 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3647 {
3648 	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3649 	struct btrfs_file_private *private = file->private_data;
3650 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3651 	struct extent_state *cached_state = NULL;
3652 	struct extent_state **delalloc_cached_state;
3653 	const loff_t i_size = i_size_read(&inode->vfs_inode);
3654 	const u64 ino = btrfs_ino(inode);
3655 	struct btrfs_root *root = inode->root;
3656 	struct btrfs_path *path;
3657 	struct btrfs_key key;
3658 	u64 last_extent_end;
3659 	u64 lockstart;
3660 	u64 lockend;
3661 	u64 start;
3662 	int ret;
3663 	bool found = false;
3664 
3665 	if (i_size == 0 || offset >= i_size)
3666 		return -ENXIO;
3667 
3668 	/*
3669 	 * Quick path. If the inode has no prealloc extents and its number of
3670 	 * bytes used matches its i_size, then it can not have holes.
3671 	 */
3672 	if (whence == SEEK_HOLE &&
3673 	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3674 	    inode_get_bytes(&inode->vfs_inode) == i_size)
3675 		return i_size;
3676 
3677 	if (!private) {
3678 		private = kzalloc(sizeof(*private), GFP_KERNEL);
3679 		/*
3680 		 * No worries if memory allocation failed.
3681 		 * The private structure is used only for speeding up multiple
3682 		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3683 		 * so everything will still be correct.
3684 		 */
3685 		file->private_data = private;
3686 	}
3687 
3688 	if (private)
3689 		delalloc_cached_state = &private->llseek_cached_state;
3690 	else
3691 		delalloc_cached_state = NULL;
3692 
3693 	/*
3694 	 * offset can be negative, in this case we start finding DATA/HOLE from
3695 	 * the very start of the file.
3696 	 */
3697 	start = max_t(loff_t, 0, offset);
3698 
3699 	lockstart = round_down(start, fs_info->sectorsize);
3700 	lockend = round_up(i_size, fs_info->sectorsize);
3701 	if (lockend <= lockstart)
3702 		lockend = lockstart + fs_info->sectorsize;
3703 	lockend--;
3704 
3705 	path = btrfs_alloc_path();
3706 	if (!path)
3707 		return -ENOMEM;
3708 	path->reada = READA_FORWARD;
3709 
3710 	key.objectid = ino;
3711 	key.type = BTRFS_EXTENT_DATA_KEY;
3712 	key.offset = start;
3713 
3714 	last_extent_end = lockstart;
3715 
3716 	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3717 
3718 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3719 	if (ret < 0) {
3720 		goto out;
3721 	} else if (ret > 0 && path->slots[0] > 0) {
3722 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3723 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3724 			path->slots[0]--;
3725 	}
3726 
3727 	while (start < i_size) {
3728 		struct extent_buffer *leaf = path->nodes[0];
3729 		struct btrfs_file_extent_item *extent;
3730 		u64 extent_end;
3731 		u8 type;
3732 
3733 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3734 			ret = btrfs_next_leaf(root, path);
3735 			if (ret < 0)
3736 				goto out;
3737 			else if (ret > 0)
3738 				break;
3739 
3740 			leaf = path->nodes[0];
3741 		}
3742 
3743 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3744 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3745 			break;
3746 
3747 		extent_end = btrfs_file_extent_end(path);
3748 
3749 		/*
3750 		 * In the first iteration we may have a slot that points to an
3751 		 * extent that ends before our start offset, so skip it.
3752 		 */
3753 		if (extent_end <= start) {
3754 			path->slots[0]++;
3755 			continue;
3756 		}
3757 
3758 		/* We have an implicit hole, NO_HOLES feature is likely set. */
3759 		if (last_extent_end < key.offset) {
3760 			u64 search_start = last_extent_end;
3761 			u64 found_start;
3762 
3763 			/*
3764 			 * First iteration, @start matches @offset and it's
3765 			 * within the hole.
3766 			 */
3767 			if (start == offset)
3768 				search_start = offset;
3769 
3770 			found = find_desired_extent_in_hole(inode, whence,
3771 							    delalloc_cached_state,
3772 							    search_start,
3773 							    key.offset - 1,
3774 							    &found_start);
3775 			if (found) {
3776 				start = found_start;
3777 				break;
3778 			}
3779 			/*
3780 			 * Didn't find data or a hole (due to delalloc) in the
3781 			 * implicit hole range, so need to analyze the extent.
3782 			 */
3783 		}
3784 
3785 		extent = btrfs_item_ptr(leaf, path->slots[0],
3786 					struct btrfs_file_extent_item);
3787 		type = btrfs_file_extent_type(leaf, extent);
3788 
3789 		/*
3790 		 * Can't access the extent's disk_bytenr field if this is an
3791 		 * inline extent, since at that offset, it's where the extent
3792 		 * data starts.
3793 		 */
3794 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3795 		    (type == BTRFS_FILE_EXTENT_REG &&
3796 		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3797 			/*
3798 			 * Explicit hole or prealloc extent, search for delalloc.
3799 			 * A prealloc extent is treated like a hole.
3800 			 */
3801 			u64 search_start = key.offset;
3802 			u64 found_start;
3803 
3804 			/*
3805 			 * First iteration, @start matches @offset and it's
3806 			 * within the hole.
3807 			 */
3808 			if (start == offset)
3809 				search_start = offset;
3810 
3811 			found = find_desired_extent_in_hole(inode, whence,
3812 							    delalloc_cached_state,
3813 							    search_start,
3814 							    extent_end - 1,
3815 							    &found_start);
3816 			if (found) {
3817 				start = found_start;
3818 				break;
3819 			}
3820 			/*
3821 			 * Didn't find data or a hole (due to delalloc) in the
3822 			 * implicit hole range, so need to analyze the next
3823 			 * extent item.
3824 			 */
3825 		} else {
3826 			/*
3827 			 * Found a regular or inline extent.
3828 			 * If we are seeking for data, adjust the start offset
3829 			 * and stop, we're done.
3830 			 */
3831 			if (whence == SEEK_DATA) {
3832 				start = max_t(u64, key.offset, offset);
3833 				found = true;
3834 				break;
3835 			}
3836 			/*
3837 			 * Else, we are seeking for a hole, check the next file
3838 			 * extent item.
3839 			 */
3840 		}
3841 
3842 		start = extent_end;
3843 		last_extent_end = extent_end;
3844 		path->slots[0]++;
3845 		if (fatal_signal_pending(current)) {
3846 			ret = -EINTR;
3847 			goto out;
3848 		}
3849 		cond_resched();
3850 	}
3851 
3852 	/* We have an implicit hole from the last extent found up to i_size. */
3853 	if (!found && start < i_size) {
3854 		found = find_desired_extent_in_hole(inode, whence,
3855 						    delalloc_cached_state, start,
3856 						    i_size - 1, &start);
3857 		if (!found)
3858 			start = i_size;
3859 	}
3860 
3861 out:
3862 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3863 	btrfs_free_path(path);
3864 
3865 	if (ret < 0)
3866 		return ret;
3867 
3868 	if (whence == SEEK_DATA && start >= i_size)
3869 		return -ENXIO;
3870 
3871 	return min_t(loff_t, start, i_size);
3872 }
3873 
3874 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3875 {
3876 	struct inode *inode = file->f_mapping->host;
3877 
3878 	switch (whence) {
3879 	default:
3880 		return generic_file_llseek(file, offset, whence);
3881 	case SEEK_DATA:
3882 	case SEEK_HOLE:
3883 		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3884 		offset = find_desired_extent(file, offset, whence);
3885 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3886 		break;
3887 	}
3888 
3889 	if (offset < 0)
3890 		return offset;
3891 
3892 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3893 }
3894 
3895 static int btrfs_file_open(struct inode *inode, struct file *filp)
3896 {
3897 	int ret;
3898 
3899 	filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
3900 
3901 	ret = fsverity_file_open(inode, filp);
3902 	if (ret)
3903 		return ret;
3904 	return generic_file_open(inode, filp);
3905 }
3906 
3907 static int check_direct_read(struct btrfs_fs_info *fs_info,
3908 			     const struct iov_iter *iter, loff_t offset)
3909 {
3910 	int ret;
3911 	int i, seg;
3912 
3913 	ret = check_direct_IO(fs_info, iter, offset);
3914 	if (ret < 0)
3915 		return ret;
3916 
3917 	if (!iter_is_iovec(iter))
3918 		return 0;
3919 
3920 	for (seg = 0; seg < iter->nr_segs; seg++) {
3921 		for (i = seg + 1; i < iter->nr_segs; i++) {
3922 			const struct iovec *iov1 = iter_iov(iter) + seg;
3923 			const struct iovec *iov2 = iter_iov(iter) + i;
3924 
3925 			if (iov1->iov_base == iov2->iov_base)
3926 				return -EINVAL;
3927 		}
3928 	}
3929 	return 0;
3930 }
3931 
3932 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3933 {
3934 	struct inode *inode = file_inode(iocb->ki_filp);
3935 	size_t prev_left = 0;
3936 	ssize_t read = 0;
3937 	ssize_t ret;
3938 
3939 	if (fsverity_active(inode))
3940 		return 0;
3941 
3942 	if (check_direct_read(inode_to_fs_info(inode), to, iocb->ki_pos))
3943 		return 0;
3944 
3945 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3946 again:
3947 	/*
3948 	 * This is similar to what we do for direct IO writes, see the comment
3949 	 * at btrfs_direct_write(), but we also disable page faults in addition
3950 	 * to disabling them only at the iov_iter level. This is because when
3951 	 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3952 	 * which can still trigger page fault ins despite having set ->nofault
3953 	 * to true of our 'to' iov_iter.
3954 	 *
3955 	 * The difference to direct IO writes is that we deadlock when trying
3956 	 * to lock the extent range in the inode's tree during he page reads
3957 	 * triggered by the fault in (while for writes it is due to waiting for
3958 	 * our own ordered extent). This is because for direct IO reads,
3959 	 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3960 	 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3961 	 */
3962 	pagefault_disable();
3963 	to->nofault = true;
3964 	ret = btrfs_dio_read(iocb, to, read);
3965 	to->nofault = false;
3966 	pagefault_enable();
3967 
3968 	/* No increment (+=) because iomap returns a cumulative value. */
3969 	if (ret > 0)
3970 		read = ret;
3971 
3972 	if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3973 		const size_t left = iov_iter_count(to);
3974 
3975 		if (left == prev_left) {
3976 			/*
3977 			 * We didn't make any progress since the last attempt,
3978 			 * fallback to a buffered read for the remainder of the
3979 			 * range. This is just to avoid any possibility of looping
3980 			 * for too long.
3981 			 */
3982 			ret = read;
3983 		} else {
3984 			/*
3985 			 * We made some progress since the last retry or this is
3986 			 * the first time we are retrying. Fault in as many pages
3987 			 * as possible and retry.
3988 			 */
3989 			fault_in_iov_iter_writeable(to, left);
3990 			prev_left = left;
3991 			goto again;
3992 		}
3993 	}
3994 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3995 	return ret < 0 ? ret : read;
3996 }
3997 
3998 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3999 {
4000 	ssize_t ret = 0;
4001 
4002 	if (iocb->ki_flags & IOCB_DIRECT) {
4003 		ret = btrfs_direct_read(iocb, to);
4004 		if (ret < 0 || !iov_iter_count(to) ||
4005 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
4006 			return ret;
4007 	}
4008 
4009 	return filemap_read(iocb, to, ret);
4010 }
4011 
4012 const struct file_operations btrfs_file_operations = {
4013 	.llseek		= btrfs_file_llseek,
4014 	.read_iter      = btrfs_file_read_iter,
4015 	.splice_read	= filemap_splice_read,
4016 	.write_iter	= btrfs_file_write_iter,
4017 	.splice_write	= iter_file_splice_write,
4018 	.mmap		= btrfs_file_mmap,
4019 	.open		= btrfs_file_open,
4020 	.release	= btrfs_release_file,
4021 	.get_unmapped_area = thp_get_unmapped_area,
4022 	.fsync		= btrfs_sync_file,
4023 	.fallocate	= btrfs_fallocate,
4024 	.unlocked_ioctl	= btrfs_ioctl,
4025 #ifdef CONFIG_COMPAT
4026 	.compat_ioctl	= btrfs_compat_ioctl,
4027 #endif
4028 	.remap_file_range = btrfs_remap_file_range,
4029 	.fop_flags	= FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC,
4030 };
4031 
4032 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
4033 {
4034 	int ret;
4035 
4036 	/*
4037 	 * So with compression we will find and lock a dirty page and clear the
4038 	 * first one as dirty, setup an async extent, and immediately return
4039 	 * with the entire range locked but with nobody actually marked with
4040 	 * writeback.  So we can't just filemap_write_and_wait_range() and
4041 	 * expect it to work since it will just kick off a thread to do the
4042 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
4043 	 * since it will wait on the page lock, which won't be unlocked until
4044 	 * after the pages have been marked as writeback and so we're good to go
4045 	 * from there.  We have to do this otherwise we'll miss the ordered
4046 	 * extents and that results in badness.  Please Josef, do not think you
4047 	 * know better and pull this out at some point in the future, it is
4048 	 * right and you are wrong.
4049 	 */
4050 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
4051 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
4052 			     &BTRFS_I(inode)->runtime_flags))
4053 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
4054 
4055 	return ret;
4056 }
4057