xref: /linux/fs/btrfs/file.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/compat.h>
31 #include <linux/slab.h>
32 #include <linux/btrfs.h>
33 #include <linux/uio.h>
34 #include <linux/iversion.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 #include "qgroup.h"
44 #include "compression.h"
45 
46 static struct kmem_cache *btrfs_inode_defrag_cachep;
47 /*
48  * when auto defrag is enabled we
49  * queue up these defrag structs to remember which
50  * inodes need defragging passes
51  */
52 struct inode_defrag {
53 	struct rb_node rb_node;
54 	/* objectid */
55 	u64 ino;
56 	/*
57 	 * transid where the defrag was added, we search for
58 	 * extents newer than this
59 	 */
60 	u64 transid;
61 
62 	/* root objectid */
63 	u64 root;
64 
65 	/* last offset we were able to defrag */
66 	u64 last_offset;
67 
68 	/* if we've wrapped around back to zero once already */
69 	int cycled;
70 };
71 
72 static int __compare_inode_defrag(struct inode_defrag *defrag1,
73 				  struct inode_defrag *defrag2)
74 {
75 	if (defrag1->root > defrag2->root)
76 		return 1;
77 	else if (defrag1->root < defrag2->root)
78 		return -1;
79 	else if (defrag1->ino > defrag2->ino)
80 		return 1;
81 	else if (defrag1->ino < defrag2->ino)
82 		return -1;
83 	else
84 		return 0;
85 }
86 
87 /* pop a record for an inode into the defrag tree.  The lock
88  * must be held already
89  *
90  * If you're inserting a record for an older transid than an
91  * existing record, the transid already in the tree is lowered
92  *
93  * If an existing record is found the defrag item you
94  * pass in is freed
95  */
96 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
97 				    struct inode_defrag *defrag)
98 {
99 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
100 	struct inode_defrag *entry;
101 	struct rb_node **p;
102 	struct rb_node *parent = NULL;
103 	int ret;
104 
105 	p = &fs_info->defrag_inodes.rb_node;
106 	while (*p) {
107 		parent = *p;
108 		entry = rb_entry(parent, struct inode_defrag, rb_node);
109 
110 		ret = __compare_inode_defrag(defrag, entry);
111 		if (ret < 0)
112 			p = &parent->rb_left;
113 		else if (ret > 0)
114 			p = &parent->rb_right;
115 		else {
116 			/* if we're reinserting an entry for
117 			 * an old defrag run, make sure to
118 			 * lower the transid of our existing record
119 			 */
120 			if (defrag->transid < entry->transid)
121 				entry->transid = defrag->transid;
122 			if (defrag->last_offset > entry->last_offset)
123 				entry->last_offset = defrag->last_offset;
124 			return -EEXIST;
125 		}
126 	}
127 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
128 	rb_link_node(&defrag->rb_node, parent, p);
129 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
130 	return 0;
131 }
132 
133 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
134 {
135 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
136 		return 0;
137 
138 	if (btrfs_fs_closing(fs_info))
139 		return 0;
140 
141 	return 1;
142 }
143 
144 /*
145  * insert a defrag record for this inode if auto defrag is
146  * enabled
147  */
148 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
149 			   struct btrfs_inode *inode)
150 {
151 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
152 	struct btrfs_root *root = inode->root;
153 	struct inode_defrag *defrag;
154 	u64 transid;
155 	int ret;
156 
157 	if (!__need_auto_defrag(fs_info))
158 		return 0;
159 
160 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
161 		return 0;
162 
163 	if (trans)
164 		transid = trans->transid;
165 	else
166 		transid = inode->root->last_trans;
167 
168 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
169 	if (!defrag)
170 		return -ENOMEM;
171 
172 	defrag->ino = btrfs_ino(inode);
173 	defrag->transid = transid;
174 	defrag->root = root->root_key.objectid;
175 
176 	spin_lock(&fs_info->defrag_inodes_lock);
177 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
178 		/*
179 		 * If we set IN_DEFRAG flag and evict the inode from memory,
180 		 * and then re-read this inode, this new inode doesn't have
181 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
182 		 */
183 		ret = __btrfs_add_inode_defrag(inode, defrag);
184 		if (ret)
185 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
186 	} else {
187 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
188 	}
189 	spin_unlock(&fs_info->defrag_inodes_lock);
190 	return 0;
191 }
192 
193 /*
194  * Requeue the defrag object. If there is a defrag object that points to
195  * the same inode in the tree, we will merge them together (by
196  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
197  */
198 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
199 				       struct inode_defrag *defrag)
200 {
201 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
202 	int ret;
203 
204 	if (!__need_auto_defrag(fs_info))
205 		goto out;
206 
207 	/*
208 	 * Here we don't check the IN_DEFRAG flag, because we need merge
209 	 * them together.
210 	 */
211 	spin_lock(&fs_info->defrag_inodes_lock);
212 	ret = __btrfs_add_inode_defrag(inode, defrag);
213 	spin_unlock(&fs_info->defrag_inodes_lock);
214 	if (ret)
215 		goto out;
216 	return;
217 out:
218 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
219 }
220 
221 /*
222  * pick the defragable inode that we want, if it doesn't exist, we will get
223  * the next one.
224  */
225 static struct inode_defrag *
226 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
227 {
228 	struct inode_defrag *entry = NULL;
229 	struct inode_defrag tmp;
230 	struct rb_node *p;
231 	struct rb_node *parent = NULL;
232 	int ret;
233 
234 	tmp.ino = ino;
235 	tmp.root = root;
236 
237 	spin_lock(&fs_info->defrag_inodes_lock);
238 	p = fs_info->defrag_inodes.rb_node;
239 	while (p) {
240 		parent = p;
241 		entry = rb_entry(parent, struct inode_defrag, rb_node);
242 
243 		ret = __compare_inode_defrag(&tmp, entry);
244 		if (ret < 0)
245 			p = parent->rb_left;
246 		else if (ret > 0)
247 			p = parent->rb_right;
248 		else
249 			goto out;
250 	}
251 
252 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
253 		parent = rb_next(parent);
254 		if (parent)
255 			entry = rb_entry(parent, struct inode_defrag, rb_node);
256 		else
257 			entry = NULL;
258 	}
259 out:
260 	if (entry)
261 		rb_erase(parent, &fs_info->defrag_inodes);
262 	spin_unlock(&fs_info->defrag_inodes_lock);
263 	return entry;
264 }
265 
266 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
267 {
268 	struct inode_defrag *defrag;
269 	struct rb_node *node;
270 
271 	spin_lock(&fs_info->defrag_inodes_lock);
272 	node = rb_first(&fs_info->defrag_inodes);
273 	while (node) {
274 		rb_erase(node, &fs_info->defrag_inodes);
275 		defrag = rb_entry(node, struct inode_defrag, rb_node);
276 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
277 
278 		cond_resched_lock(&fs_info->defrag_inodes_lock);
279 
280 		node = rb_first(&fs_info->defrag_inodes);
281 	}
282 	spin_unlock(&fs_info->defrag_inodes_lock);
283 }
284 
285 #define BTRFS_DEFRAG_BATCH	1024
286 
287 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
288 				    struct inode_defrag *defrag)
289 {
290 	struct btrfs_root *inode_root;
291 	struct inode *inode;
292 	struct btrfs_key key;
293 	struct btrfs_ioctl_defrag_range_args range;
294 	int num_defrag;
295 	int index;
296 	int ret;
297 
298 	/* get the inode */
299 	key.objectid = defrag->root;
300 	key.type = BTRFS_ROOT_ITEM_KEY;
301 	key.offset = (u64)-1;
302 
303 	index = srcu_read_lock(&fs_info->subvol_srcu);
304 
305 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
306 	if (IS_ERR(inode_root)) {
307 		ret = PTR_ERR(inode_root);
308 		goto cleanup;
309 	}
310 
311 	key.objectid = defrag->ino;
312 	key.type = BTRFS_INODE_ITEM_KEY;
313 	key.offset = 0;
314 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
315 	if (IS_ERR(inode)) {
316 		ret = PTR_ERR(inode);
317 		goto cleanup;
318 	}
319 	srcu_read_unlock(&fs_info->subvol_srcu, index);
320 
321 	/* do a chunk of defrag */
322 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
323 	memset(&range, 0, sizeof(range));
324 	range.len = (u64)-1;
325 	range.start = defrag->last_offset;
326 
327 	sb_start_write(fs_info->sb);
328 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
329 				       BTRFS_DEFRAG_BATCH);
330 	sb_end_write(fs_info->sb);
331 	/*
332 	 * if we filled the whole defrag batch, there
333 	 * must be more work to do.  Queue this defrag
334 	 * again
335 	 */
336 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
337 		defrag->last_offset = range.start;
338 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
339 	} else if (defrag->last_offset && !defrag->cycled) {
340 		/*
341 		 * we didn't fill our defrag batch, but
342 		 * we didn't start at zero.  Make sure we loop
343 		 * around to the start of the file.
344 		 */
345 		defrag->last_offset = 0;
346 		defrag->cycled = 1;
347 		btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
348 	} else {
349 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
350 	}
351 
352 	iput(inode);
353 	return 0;
354 cleanup:
355 	srcu_read_unlock(&fs_info->subvol_srcu, index);
356 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
357 	return ret;
358 }
359 
360 /*
361  * run through the list of inodes in the FS that need
362  * defragging
363  */
364 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
365 {
366 	struct inode_defrag *defrag;
367 	u64 first_ino = 0;
368 	u64 root_objectid = 0;
369 
370 	atomic_inc(&fs_info->defrag_running);
371 	while (1) {
372 		/* Pause the auto defragger. */
373 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
374 			     &fs_info->fs_state))
375 			break;
376 
377 		if (!__need_auto_defrag(fs_info))
378 			break;
379 
380 		/* find an inode to defrag */
381 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
382 						 first_ino);
383 		if (!defrag) {
384 			if (root_objectid || first_ino) {
385 				root_objectid = 0;
386 				first_ino = 0;
387 				continue;
388 			} else {
389 				break;
390 			}
391 		}
392 
393 		first_ino = defrag->ino + 1;
394 		root_objectid = defrag->root;
395 
396 		__btrfs_run_defrag_inode(fs_info, defrag);
397 	}
398 	atomic_dec(&fs_info->defrag_running);
399 
400 	/*
401 	 * during unmount, we use the transaction_wait queue to
402 	 * wait for the defragger to stop
403 	 */
404 	wake_up(&fs_info->transaction_wait);
405 	return 0;
406 }
407 
408 /* simple helper to fault in pages and copy.  This should go away
409  * and be replaced with calls into generic code.
410  */
411 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
412 					 struct page **prepared_pages,
413 					 struct iov_iter *i)
414 {
415 	size_t copied = 0;
416 	size_t total_copied = 0;
417 	int pg = 0;
418 	int offset = pos & (PAGE_SIZE - 1);
419 
420 	while (write_bytes > 0) {
421 		size_t count = min_t(size_t,
422 				     PAGE_SIZE - offset, write_bytes);
423 		struct page *page = prepared_pages[pg];
424 		/*
425 		 * Copy data from userspace to the current page
426 		 */
427 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
428 
429 		/* Flush processor's dcache for this page */
430 		flush_dcache_page(page);
431 
432 		/*
433 		 * if we get a partial write, we can end up with
434 		 * partially up to date pages.  These add
435 		 * a lot of complexity, so make sure they don't
436 		 * happen by forcing this copy to be retried.
437 		 *
438 		 * The rest of the btrfs_file_write code will fall
439 		 * back to page at a time copies after we return 0.
440 		 */
441 		if (!PageUptodate(page) && copied < count)
442 			copied = 0;
443 
444 		iov_iter_advance(i, copied);
445 		write_bytes -= copied;
446 		total_copied += copied;
447 
448 		/* Return to btrfs_file_write_iter to fault page */
449 		if (unlikely(copied == 0))
450 			break;
451 
452 		if (copied < PAGE_SIZE - offset) {
453 			offset += copied;
454 		} else {
455 			pg++;
456 			offset = 0;
457 		}
458 	}
459 	return total_copied;
460 }
461 
462 /*
463  * unlocks pages after btrfs_file_write is done with them
464  */
465 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
466 {
467 	size_t i;
468 	for (i = 0; i < num_pages; i++) {
469 		/* page checked is some magic around finding pages that
470 		 * have been modified without going through btrfs_set_page_dirty
471 		 * clear it here. There should be no need to mark the pages
472 		 * accessed as prepare_pages should have marked them accessed
473 		 * in prepare_pages via find_or_create_page()
474 		 */
475 		ClearPageChecked(pages[i]);
476 		unlock_page(pages[i]);
477 		put_page(pages[i]);
478 	}
479 }
480 
481 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
482 					 const u64 start,
483 					 const u64 len,
484 					 struct extent_state **cached_state)
485 {
486 	u64 search_start = start;
487 	const u64 end = start + len - 1;
488 
489 	while (search_start < end) {
490 		const u64 search_len = end - search_start + 1;
491 		struct extent_map *em;
492 		u64 em_len;
493 		int ret = 0;
494 
495 		em = btrfs_get_extent(inode, NULL, 0, search_start,
496 				      search_len, 0);
497 		if (IS_ERR(em))
498 			return PTR_ERR(em);
499 
500 		if (em->block_start != EXTENT_MAP_HOLE)
501 			goto next;
502 
503 		em_len = em->len;
504 		if (em->start < search_start)
505 			em_len -= search_start - em->start;
506 		if (em_len > search_len)
507 			em_len = search_len;
508 
509 		ret = set_extent_bit(&inode->io_tree, search_start,
510 				     search_start + em_len - 1,
511 				     EXTENT_DELALLOC_NEW,
512 				     NULL, cached_state, GFP_NOFS);
513 next:
514 		search_start = extent_map_end(em);
515 		free_extent_map(em);
516 		if (ret)
517 			return ret;
518 	}
519 	return 0;
520 }
521 
522 /*
523  * after copy_from_user, pages need to be dirtied and we need to make
524  * sure holes are created between the current EOF and the start of
525  * any next extents (if required).
526  *
527  * this also makes the decision about creating an inline extent vs
528  * doing real data extents, marking pages dirty and delalloc as required.
529  */
530 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
531 		      size_t num_pages, loff_t pos, size_t write_bytes,
532 		      struct extent_state **cached)
533 {
534 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
535 	int err = 0;
536 	int i;
537 	u64 num_bytes;
538 	u64 start_pos;
539 	u64 end_of_last_block;
540 	u64 end_pos = pos + write_bytes;
541 	loff_t isize = i_size_read(inode);
542 	unsigned int extra_bits = 0;
543 
544 	start_pos = pos & ~((u64) fs_info->sectorsize - 1);
545 	num_bytes = round_up(write_bytes + pos - start_pos,
546 			     fs_info->sectorsize);
547 
548 	end_of_last_block = start_pos + num_bytes - 1;
549 
550 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
551 		if (start_pos >= isize &&
552 		    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
553 			/*
554 			 * There can't be any extents following eof in this case
555 			 * so just set the delalloc new bit for the range
556 			 * directly.
557 			 */
558 			extra_bits |= EXTENT_DELALLOC_NEW;
559 		} else {
560 			err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
561 							    start_pos,
562 							    num_bytes, cached);
563 			if (err)
564 				return err;
565 		}
566 	}
567 
568 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
569 					extra_bits, cached, 0);
570 	if (err)
571 		return err;
572 
573 	for (i = 0; i < num_pages; i++) {
574 		struct page *p = pages[i];
575 		SetPageUptodate(p);
576 		ClearPageChecked(p);
577 		set_page_dirty(p);
578 	}
579 
580 	/*
581 	 * we've only changed i_size in ram, and we haven't updated
582 	 * the disk i_size.  There is no need to log the inode
583 	 * at this time.
584 	 */
585 	if (end_pos > isize)
586 		i_size_write(inode, end_pos);
587 	return 0;
588 }
589 
590 /*
591  * this drops all the extents in the cache that intersect the range
592  * [start, end].  Existing extents are split as required.
593  */
594 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
595 			     int skip_pinned)
596 {
597 	struct extent_map *em;
598 	struct extent_map *split = NULL;
599 	struct extent_map *split2 = NULL;
600 	struct extent_map_tree *em_tree = &inode->extent_tree;
601 	u64 len = end - start + 1;
602 	u64 gen;
603 	int ret;
604 	int testend = 1;
605 	unsigned long flags;
606 	int compressed = 0;
607 	bool modified;
608 
609 	WARN_ON(end < start);
610 	if (end == (u64)-1) {
611 		len = (u64)-1;
612 		testend = 0;
613 	}
614 	while (1) {
615 		int no_splits = 0;
616 
617 		modified = false;
618 		if (!split)
619 			split = alloc_extent_map();
620 		if (!split2)
621 			split2 = alloc_extent_map();
622 		if (!split || !split2)
623 			no_splits = 1;
624 
625 		write_lock(&em_tree->lock);
626 		em = lookup_extent_mapping(em_tree, start, len);
627 		if (!em) {
628 			write_unlock(&em_tree->lock);
629 			break;
630 		}
631 		flags = em->flags;
632 		gen = em->generation;
633 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
634 			if (testend && em->start + em->len >= start + len) {
635 				free_extent_map(em);
636 				write_unlock(&em_tree->lock);
637 				break;
638 			}
639 			start = em->start + em->len;
640 			if (testend)
641 				len = start + len - (em->start + em->len);
642 			free_extent_map(em);
643 			write_unlock(&em_tree->lock);
644 			continue;
645 		}
646 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
647 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
648 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
649 		modified = !list_empty(&em->list);
650 		if (no_splits)
651 			goto next;
652 
653 		if (em->start < start) {
654 			split->start = em->start;
655 			split->len = start - em->start;
656 
657 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
658 				split->orig_start = em->orig_start;
659 				split->block_start = em->block_start;
660 
661 				if (compressed)
662 					split->block_len = em->block_len;
663 				else
664 					split->block_len = split->len;
665 				split->orig_block_len = max(split->block_len,
666 						em->orig_block_len);
667 				split->ram_bytes = em->ram_bytes;
668 			} else {
669 				split->orig_start = split->start;
670 				split->block_len = 0;
671 				split->block_start = em->block_start;
672 				split->orig_block_len = 0;
673 				split->ram_bytes = split->len;
674 			}
675 
676 			split->generation = gen;
677 			split->bdev = em->bdev;
678 			split->flags = flags;
679 			split->compress_type = em->compress_type;
680 			replace_extent_mapping(em_tree, em, split, modified);
681 			free_extent_map(split);
682 			split = split2;
683 			split2 = NULL;
684 		}
685 		if (testend && em->start + em->len > start + len) {
686 			u64 diff = start + len - em->start;
687 
688 			split->start = start + len;
689 			split->len = em->start + em->len - (start + len);
690 			split->bdev = em->bdev;
691 			split->flags = flags;
692 			split->compress_type = em->compress_type;
693 			split->generation = gen;
694 
695 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
696 				split->orig_block_len = max(em->block_len,
697 						    em->orig_block_len);
698 
699 				split->ram_bytes = em->ram_bytes;
700 				if (compressed) {
701 					split->block_len = em->block_len;
702 					split->block_start = em->block_start;
703 					split->orig_start = em->orig_start;
704 				} else {
705 					split->block_len = split->len;
706 					split->block_start = em->block_start
707 						+ diff;
708 					split->orig_start = em->orig_start;
709 				}
710 			} else {
711 				split->ram_bytes = split->len;
712 				split->orig_start = split->start;
713 				split->block_len = 0;
714 				split->block_start = em->block_start;
715 				split->orig_block_len = 0;
716 			}
717 
718 			if (extent_map_in_tree(em)) {
719 				replace_extent_mapping(em_tree, em, split,
720 						       modified);
721 			} else {
722 				ret = add_extent_mapping(em_tree, split,
723 							 modified);
724 				ASSERT(ret == 0); /* Logic error */
725 			}
726 			free_extent_map(split);
727 			split = NULL;
728 		}
729 next:
730 		if (extent_map_in_tree(em))
731 			remove_extent_mapping(em_tree, em);
732 		write_unlock(&em_tree->lock);
733 
734 		/* once for us */
735 		free_extent_map(em);
736 		/* once for the tree*/
737 		free_extent_map(em);
738 	}
739 	if (split)
740 		free_extent_map(split);
741 	if (split2)
742 		free_extent_map(split2);
743 }
744 
745 /*
746  * this is very complex, but the basic idea is to drop all extents
747  * in the range start - end.  hint_block is filled in with a block number
748  * that would be a good hint to the block allocator for this file.
749  *
750  * If an extent intersects the range but is not entirely inside the range
751  * it is either truncated or split.  Anything entirely inside the range
752  * is deleted from the tree.
753  */
754 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
755 			 struct btrfs_root *root, struct inode *inode,
756 			 struct btrfs_path *path, u64 start, u64 end,
757 			 u64 *drop_end, int drop_cache,
758 			 int replace_extent,
759 			 u32 extent_item_size,
760 			 int *key_inserted)
761 {
762 	struct btrfs_fs_info *fs_info = root->fs_info;
763 	struct extent_buffer *leaf;
764 	struct btrfs_file_extent_item *fi;
765 	struct btrfs_key key;
766 	struct btrfs_key new_key;
767 	u64 ino = btrfs_ino(BTRFS_I(inode));
768 	u64 search_start = start;
769 	u64 disk_bytenr = 0;
770 	u64 num_bytes = 0;
771 	u64 extent_offset = 0;
772 	u64 extent_end = 0;
773 	u64 last_end = start;
774 	int del_nr = 0;
775 	int del_slot = 0;
776 	int extent_type;
777 	int recow;
778 	int ret;
779 	int modify_tree = -1;
780 	int update_refs;
781 	int found = 0;
782 	int leafs_visited = 0;
783 
784 	if (drop_cache)
785 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
786 
787 	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
788 		modify_tree = 0;
789 
790 	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
791 		       root == fs_info->tree_root);
792 	while (1) {
793 		recow = 0;
794 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
795 					       search_start, modify_tree);
796 		if (ret < 0)
797 			break;
798 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
799 			leaf = path->nodes[0];
800 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
801 			if (key.objectid == ino &&
802 			    key.type == BTRFS_EXTENT_DATA_KEY)
803 				path->slots[0]--;
804 		}
805 		ret = 0;
806 		leafs_visited++;
807 next_slot:
808 		leaf = path->nodes[0];
809 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
810 			BUG_ON(del_nr > 0);
811 			ret = btrfs_next_leaf(root, path);
812 			if (ret < 0)
813 				break;
814 			if (ret > 0) {
815 				ret = 0;
816 				break;
817 			}
818 			leafs_visited++;
819 			leaf = path->nodes[0];
820 			recow = 1;
821 		}
822 
823 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
824 
825 		if (key.objectid > ino)
826 			break;
827 		if (WARN_ON_ONCE(key.objectid < ino) ||
828 		    key.type < BTRFS_EXTENT_DATA_KEY) {
829 			ASSERT(del_nr == 0);
830 			path->slots[0]++;
831 			goto next_slot;
832 		}
833 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
834 			break;
835 
836 		fi = btrfs_item_ptr(leaf, path->slots[0],
837 				    struct btrfs_file_extent_item);
838 		extent_type = btrfs_file_extent_type(leaf, fi);
839 
840 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
841 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
842 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
843 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
844 			extent_offset = btrfs_file_extent_offset(leaf, fi);
845 			extent_end = key.offset +
846 				btrfs_file_extent_num_bytes(leaf, fi);
847 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
848 			extent_end = key.offset +
849 				btrfs_file_extent_inline_len(leaf,
850 						     path->slots[0], fi);
851 		} else {
852 			/* can't happen */
853 			BUG();
854 		}
855 
856 		/*
857 		 * Don't skip extent items representing 0 byte lengths. They
858 		 * used to be created (bug) if while punching holes we hit
859 		 * -ENOSPC condition. So if we find one here, just ensure we
860 		 * delete it, otherwise we would insert a new file extent item
861 		 * with the same key (offset) as that 0 bytes length file
862 		 * extent item in the call to setup_items_for_insert() later
863 		 * in this function.
864 		 */
865 		if (extent_end == key.offset && extent_end >= search_start) {
866 			last_end = extent_end;
867 			goto delete_extent_item;
868 		}
869 
870 		if (extent_end <= search_start) {
871 			path->slots[0]++;
872 			goto next_slot;
873 		}
874 
875 		found = 1;
876 		search_start = max(key.offset, start);
877 		if (recow || !modify_tree) {
878 			modify_tree = -1;
879 			btrfs_release_path(path);
880 			continue;
881 		}
882 
883 		/*
884 		 *     | - range to drop - |
885 		 *  | -------- extent -------- |
886 		 */
887 		if (start > key.offset && end < extent_end) {
888 			BUG_ON(del_nr > 0);
889 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
890 				ret = -EOPNOTSUPP;
891 				break;
892 			}
893 
894 			memcpy(&new_key, &key, sizeof(new_key));
895 			new_key.offset = start;
896 			ret = btrfs_duplicate_item(trans, root, path,
897 						   &new_key);
898 			if (ret == -EAGAIN) {
899 				btrfs_release_path(path);
900 				continue;
901 			}
902 			if (ret < 0)
903 				break;
904 
905 			leaf = path->nodes[0];
906 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
907 					    struct btrfs_file_extent_item);
908 			btrfs_set_file_extent_num_bytes(leaf, fi,
909 							start - key.offset);
910 
911 			fi = btrfs_item_ptr(leaf, path->slots[0],
912 					    struct btrfs_file_extent_item);
913 
914 			extent_offset += start - key.offset;
915 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
916 			btrfs_set_file_extent_num_bytes(leaf, fi,
917 							extent_end - start);
918 			btrfs_mark_buffer_dirty(leaf);
919 
920 			if (update_refs && disk_bytenr > 0) {
921 				ret = btrfs_inc_extent_ref(trans, root,
922 						disk_bytenr, num_bytes, 0,
923 						root->root_key.objectid,
924 						new_key.objectid,
925 						start - extent_offset);
926 				BUG_ON(ret); /* -ENOMEM */
927 			}
928 			key.offset = start;
929 		}
930 		/*
931 		 * From here on out we will have actually dropped something, so
932 		 * last_end can be updated.
933 		 */
934 		last_end = extent_end;
935 
936 		/*
937 		 *  | ---- range to drop ----- |
938 		 *      | -------- extent -------- |
939 		 */
940 		if (start <= key.offset && end < extent_end) {
941 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
942 				ret = -EOPNOTSUPP;
943 				break;
944 			}
945 
946 			memcpy(&new_key, &key, sizeof(new_key));
947 			new_key.offset = end;
948 			btrfs_set_item_key_safe(fs_info, path, &new_key);
949 
950 			extent_offset += end - key.offset;
951 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
952 			btrfs_set_file_extent_num_bytes(leaf, fi,
953 							extent_end - end);
954 			btrfs_mark_buffer_dirty(leaf);
955 			if (update_refs && disk_bytenr > 0)
956 				inode_sub_bytes(inode, end - key.offset);
957 			break;
958 		}
959 
960 		search_start = extent_end;
961 		/*
962 		 *       | ---- range to drop ----- |
963 		 *  | -------- extent -------- |
964 		 */
965 		if (start > key.offset && end >= extent_end) {
966 			BUG_ON(del_nr > 0);
967 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
968 				ret = -EOPNOTSUPP;
969 				break;
970 			}
971 
972 			btrfs_set_file_extent_num_bytes(leaf, fi,
973 							start - key.offset);
974 			btrfs_mark_buffer_dirty(leaf);
975 			if (update_refs && disk_bytenr > 0)
976 				inode_sub_bytes(inode, extent_end - start);
977 			if (end == extent_end)
978 				break;
979 
980 			path->slots[0]++;
981 			goto next_slot;
982 		}
983 
984 		/*
985 		 *  | ---- range to drop ----- |
986 		 *    | ------ extent ------ |
987 		 */
988 		if (start <= key.offset && end >= extent_end) {
989 delete_extent_item:
990 			if (del_nr == 0) {
991 				del_slot = path->slots[0];
992 				del_nr = 1;
993 			} else {
994 				BUG_ON(del_slot + del_nr != path->slots[0]);
995 				del_nr++;
996 			}
997 
998 			if (update_refs &&
999 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
1000 				inode_sub_bytes(inode,
1001 						extent_end - key.offset);
1002 				extent_end = ALIGN(extent_end,
1003 						   fs_info->sectorsize);
1004 			} else if (update_refs && disk_bytenr > 0) {
1005 				ret = btrfs_free_extent(trans, root,
1006 						disk_bytenr, num_bytes, 0,
1007 						root->root_key.objectid,
1008 						key.objectid, key.offset -
1009 						extent_offset);
1010 				BUG_ON(ret); /* -ENOMEM */
1011 				inode_sub_bytes(inode,
1012 						extent_end - key.offset);
1013 			}
1014 
1015 			if (end == extent_end)
1016 				break;
1017 
1018 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1019 				path->slots[0]++;
1020 				goto next_slot;
1021 			}
1022 
1023 			ret = btrfs_del_items(trans, root, path, del_slot,
1024 					      del_nr);
1025 			if (ret) {
1026 				btrfs_abort_transaction(trans, ret);
1027 				break;
1028 			}
1029 
1030 			del_nr = 0;
1031 			del_slot = 0;
1032 
1033 			btrfs_release_path(path);
1034 			continue;
1035 		}
1036 
1037 		BUG_ON(1);
1038 	}
1039 
1040 	if (!ret && del_nr > 0) {
1041 		/*
1042 		 * Set path->slots[0] to first slot, so that after the delete
1043 		 * if items are move off from our leaf to its immediate left or
1044 		 * right neighbor leafs, we end up with a correct and adjusted
1045 		 * path->slots[0] for our insertion (if replace_extent != 0).
1046 		 */
1047 		path->slots[0] = del_slot;
1048 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1049 		if (ret)
1050 			btrfs_abort_transaction(trans, ret);
1051 	}
1052 
1053 	leaf = path->nodes[0];
1054 	/*
1055 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
1056 	 * which case it unlocked our path, so check path->locks[0] matches a
1057 	 * write lock.
1058 	 */
1059 	if (!ret && replace_extent && leafs_visited == 1 &&
1060 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1061 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
1062 	    btrfs_leaf_free_space(fs_info, leaf) >=
1063 	    sizeof(struct btrfs_item) + extent_item_size) {
1064 
1065 		key.objectid = ino;
1066 		key.type = BTRFS_EXTENT_DATA_KEY;
1067 		key.offset = start;
1068 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1069 			struct btrfs_key slot_key;
1070 
1071 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1072 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1073 				path->slots[0]++;
1074 		}
1075 		setup_items_for_insert(root, path, &key,
1076 				       &extent_item_size,
1077 				       extent_item_size,
1078 				       sizeof(struct btrfs_item) +
1079 				       extent_item_size, 1);
1080 		*key_inserted = 1;
1081 	}
1082 
1083 	if (!replace_extent || !(*key_inserted))
1084 		btrfs_release_path(path);
1085 	if (drop_end)
1086 		*drop_end = found ? min(end, last_end) : end;
1087 	return ret;
1088 }
1089 
1090 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1091 		       struct btrfs_root *root, struct inode *inode, u64 start,
1092 		       u64 end, int drop_cache)
1093 {
1094 	struct btrfs_path *path;
1095 	int ret;
1096 
1097 	path = btrfs_alloc_path();
1098 	if (!path)
1099 		return -ENOMEM;
1100 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1101 				   drop_cache, 0, 0, NULL);
1102 	btrfs_free_path(path);
1103 	return ret;
1104 }
1105 
1106 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1107 			    u64 objectid, u64 bytenr, u64 orig_offset,
1108 			    u64 *start, u64 *end)
1109 {
1110 	struct btrfs_file_extent_item *fi;
1111 	struct btrfs_key key;
1112 	u64 extent_end;
1113 
1114 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1115 		return 0;
1116 
1117 	btrfs_item_key_to_cpu(leaf, &key, slot);
1118 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1119 		return 0;
1120 
1121 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1122 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1123 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1124 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1125 	    btrfs_file_extent_compression(leaf, fi) ||
1126 	    btrfs_file_extent_encryption(leaf, fi) ||
1127 	    btrfs_file_extent_other_encoding(leaf, fi))
1128 		return 0;
1129 
1130 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1131 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1132 		return 0;
1133 
1134 	*start = key.offset;
1135 	*end = extent_end;
1136 	return 1;
1137 }
1138 
1139 /*
1140  * Mark extent in the range start - end as written.
1141  *
1142  * This changes extent type from 'pre-allocated' to 'regular'. If only
1143  * part of extent is marked as written, the extent will be split into
1144  * two or three.
1145  */
1146 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1147 			      struct btrfs_inode *inode, u64 start, u64 end)
1148 {
1149 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1150 	struct btrfs_root *root = inode->root;
1151 	struct extent_buffer *leaf;
1152 	struct btrfs_path *path;
1153 	struct btrfs_file_extent_item *fi;
1154 	struct btrfs_key key;
1155 	struct btrfs_key new_key;
1156 	u64 bytenr;
1157 	u64 num_bytes;
1158 	u64 extent_end;
1159 	u64 orig_offset;
1160 	u64 other_start;
1161 	u64 other_end;
1162 	u64 split;
1163 	int del_nr = 0;
1164 	int del_slot = 0;
1165 	int recow;
1166 	int ret;
1167 	u64 ino = btrfs_ino(inode);
1168 
1169 	path = btrfs_alloc_path();
1170 	if (!path)
1171 		return -ENOMEM;
1172 again:
1173 	recow = 0;
1174 	split = start;
1175 	key.objectid = ino;
1176 	key.type = BTRFS_EXTENT_DATA_KEY;
1177 	key.offset = split;
1178 
1179 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1180 	if (ret < 0)
1181 		goto out;
1182 	if (ret > 0 && path->slots[0] > 0)
1183 		path->slots[0]--;
1184 
1185 	leaf = path->nodes[0];
1186 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1187 	if (key.objectid != ino ||
1188 	    key.type != BTRFS_EXTENT_DATA_KEY) {
1189 		ret = -EINVAL;
1190 		btrfs_abort_transaction(trans, ret);
1191 		goto out;
1192 	}
1193 	fi = btrfs_item_ptr(leaf, path->slots[0],
1194 			    struct btrfs_file_extent_item);
1195 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1196 		ret = -EINVAL;
1197 		btrfs_abort_transaction(trans, ret);
1198 		goto out;
1199 	}
1200 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1201 	if (key.offset > start || extent_end < end) {
1202 		ret = -EINVAL;
1203 		btrfs_abort_transaction(trans, ret);
1204 		goto out;
1205 	}
1206 
1207 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1208 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1209 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1210 	memcpy(&new_key, &key, sizeof(new_key));
1211 
1212 	if (start == key.offset && end < extent_end) {
1213 		other_start = 0;
1214 		other_end = start;
1215 		if (extent_mergeable(leaf, path->slots[0] - 1,
1216 				     ino, bytenr, orig_offset,
1217 				     &other_start, &other_end)) {
1218 			new_key.offset = end;
1219 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1220 			fi = btrfs_item_ptr(leaf, path->slots[0],
1221 					    struct btrfs_file_extent_item);
1222 			btrfs_set_file_extent_generation(leaf, fi,
1223 							 trans->transid);
1224 			btrfs_set_file_extent_num_bytes(leaf, fi,
1225 							extent_end - end);
1226 			btrfs_set_file_extent_offset(leaf, fi,
1227 						     end - orig_offset);
1228 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1229 					    struct btrfs_file_extent_item);
1230 			btrfs_set_file_extent_generation(leaf, fi,
1231 							 trans->transid);
1232 			btrfs_set_file_extent_num_bytes(leaf, fi,
1233 							end - other_start);
1234 			btrfs_mark_buffer_dirty(leaf);
1235 			goto out;
1236 		}
1237 	}
1238 
1239 	if (start > key.offset && end == extent_end) {
1240 		other_start = end;
1241 		other_end = 0;
1242 		if (extent_mergeable(leaf, path->slots[0] + 1,
1243 				     ino, bytenr, orig_offset,
1244 				     &other_start, &other_end)) {
1245 			fi = btrfs_item_ptr(leaf, path->slots[0],
1246 					    struct btrfs_file_extent_item);
1247 			btrfs_set_file_extent_num_bytes(leaf, fi,
1248 							start - key.offset);
1249 			btrfs_set_file_extent_generation(leaf, fi,
1250 							 trans->transid);
1251 			path->slots[0]++;
1252 			new_key.offset = start;
1253 			btrfs_set_item_key_safe(fs_info, path, &new_key);
1254 
1255 			fi = btrfs_item_ptr(leaf, path->slots[0],
1256 					    struct btrfs_file_extent_item);
1257 			btrfs_set_file_extent_generation(leaf, fi,
1258 							 trans->transid);
1259 			btrfs_set_file_extent_num_bytes(leaf, fi,
1260 							other_end - start);
1261 			btrfs_set_file_extent_offset(leaf, fi,
1262 						     start - orig_offset);
1263 			btrfs_mark_buffer_dirty(leaf);
1264 			goto out;
1265 		}
1266 	}
1267 
1268 	while (start > key.offset || end < extent_end) {
1269 		if (key.offset == start)
1270 			split = end;
1271 
1272 		new_key.offset = split;
1273 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1274 		if (ret == -EAGAIN) {
1275 			btrfs_release_path(path);
1276 			goto again;
1277 		}
1278 		if (ret < 0) {
1279 			btrfs_abort_transaction(trans, ret);
1280 			goto out;
1281 		}
1282 
1283 		leaf = path->nodes[0];
1284 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1285 				    struct btrfs_file_extent_item);
1286 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1287 		btrfs_set_file_extent_num_bytes(leaf, fi,
1288 						split - key.offset);
1289 
1290 		fi = btrfs_item_ptr(leaf, path->slots[0],
1291 				    struct btrfs_file_extent_item);
1292 
1293 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1294 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1295 		btrfs_set_file_extent_num_bytes(leaf, fi,
1296 						extent_end - split);
1297 		btrfs_mark_buffer_dirty(leaf);
1298 
1299 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
1300 					   0, root->root_key.objectid,
1301 					   ino, orig_offset);
1302 		if (ret) {
1303 			btrfs_abort_transaction(trans, ret);
1304 			goto out;
1305 		}
1306 
1307 		if (split == start) {
1308 			key.offset = start;
1309 		} else {
1310 			if (start != key.offset) {
1311 				ret = -EINVAL;
1312 				btrfs_abort_transaction(trans, ret);
1313 				goto out;
1314 			}
1315 			path->slots[0]--;
1316 			extent_end = end;
1317 		}
1318 		recow = 1;
1319 	}
1320 
1321 	other_start = end;
1322 	other_end = 0;
1323 	if (extent_mergeable(leaf, path->slots[0] + 1,
1324 			     ino, bytenr, orig_offset,
1325 			     &other_start, &other_end)) {
1326 		if (recow) {
1327 			btrfs_release_path(path);
1328 			goto again;
1329 		}
1330 		extent_end = other_end;
1331 		del_slot = path->slots[0] + 1;
1332 		del_nr++;
1333 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1334 					0, root->root_key.objectid,
1335 					ino, orig_offset);
1336 		if (ret) {
1337 			btrfs_abort_transaction(trans, ret);
1338 			goto out;
1339 		}
1340 	}
1341 	other_start = 0;
1342 	other_end = start;
1343 	if (extent_mergeable(leaf, path->slots[0] - 1,
1344 			     ino, bytenr, orig_offset,
1345 			     &other_start, &other_end)) {
1346 		if (recow) {
1347 			btrfs_release_path(path);
1348 			goto again;
1349 		}
1350 		key.offset = other_start;
1351 		del_slot = path->slots[0];
1352 		del_nr++;
1353 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1354 					0, root->root_key.objectid,
1355 					ino, orig_offset);
1356 		if (ret) {
1357 			btrfs_abort_transaction(trans, ret);
1358 			goto out;
1359 		}
1360 	}
1361 	if (del_nr == 0) {
1362 		fi = btrfs_item_ptr(leaf, path->slots[0],
1363 			   struct btrfs_file_extent_item);
1364 		btrfs_set_file_extent_type(leaf, fi,
1365 					   BTRFS_FILE_EXTENT_REG);
1366 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1367 		btrfs_mark_buffer_dirty(leaf);
1368 	} else {
1369 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1370 			   struct btrfs_file_extent_item);
1371 		btrfs_set_file_extent_type(leaf, fi,
1372 					   BTRFS_FILE_EXTENT_REG);
1373 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1374 		btrfs_set_file_extent_num_bytes(leaf, fi,
1375 						extent_end - key.offset);
1376 		btrfs_mark_buffer_dirty(leaf);
1377 
1378 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1379 		if (ret < 0) {
1380 			btrfs_abort_transaction(trans, ret);
1381 			goto out;
1382 		}
1383 	}
1384 out:
1385 	btrfs_free_path(path);
1386 	return 0;
1387 }
1388 
1389 /*
1390  * on error we return an unlocked page and the error value
1391  * on success we return a locked page and 0
1392  */
1393 static int prepare_uptodate_page(struct inode *inode,
1394 				 struct page *page, u64 pos,
1395 				 bool force_uptodate)
1396 {
1397 	int ret = 0;
1398 
1399 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1400 	    !PageUptodate(page)) {
1401 		ret = btrfs_readpage(NULL, page);
1402 		if (ret)
1403 			return ret;
1404 		lock_page(page);
1405 		if (!PageUptodate(page)) {
1406 			unlock_page(page);
1407 			return -EIO;
1408 		}
1409 		if (page->mapping != inode->i_mapping) {
1410 			unlock_page(page);
1411 			return -EAGAIN;
1412 		}
1413 	}
1414 	return 0;
1415 }
1416 
1417 /*
1418  * this just gets pages into the page cache and locks them down.
1419  */
1420 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1421 				  size_t num_pages, loff_t pos,
1422 				  size_t write_bytes, bool force_uptodate)
1423 {
1424 	int i;
1425 	unsigned long index = pos >> PAGE_SHIFT;
1426 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1427 	int err = 0;
1428 	int faili;
1429 
1430 	for (i = 0; i < num_pages; i++) {
1431 again:
1432 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1433 					       mask | __GFP_WRITE);
1434 		if (!pages[i]) {
1435 			faili = i - 1;
1436 			err = -ENOMEM;
1437 			goto fail;
1438 		}
1439 
1440 		if (i == 0)
1441 			err = prepare_uptodate_page(inode, pages[i], pos,
1442 						    force_uptodate);
1443 		if (!err && i == num_pages - 1)
1444 			err = prepare_uptodate_page(inode, pages[i],
1445 						    pos + write_bytes, false);
1446 		if (err) {
1447 			put_page(pages[i]);
1448 			if (err == -EAGAIN) {
1449 				err = 0;
1450 				goto again;
1451 			}
1452 			faili = i - 1;
1453 			goto fail;
1454 		}
1455 		wait_on_page_writeback(pages[i]);
1456 	}
1457 
1458 	return 0;
1459 fail:
1460 	while (faili >= 0) {
1461 		unlock_page(pages[faili]);
1462 		put_page(pages[faili]);
1463 		faili--;
1464 	}
1465 	return err;
1466 
1467 }
1468 
1469 /*
1470  * This function locks the extent and properly waits for data=ordered extents
1471  * to finish before allowing the pages to be modified if need.
1472  *
1473  * The return value:
1474  * 1 - the extent is locked
1475  * 0 - the extent is not locked, and everything is OK
1476  * -EAGAIN - need re-prepare the pages
1477  * the other < 0 number - Something wrong happens
1478  */
1479 static noinline int
1480 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1481 				size_t num_pages, loff_t pos,
1482 				size_t write_bytes,
1483 				u64 *lockstart, u64 *lockend,
1484 				struct extent_state **cached_state)
1485 {
1486 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1487 	u64 start_pos;
1488 	u64 last_pos;
1489 	int i;
1490 	int ret = 0;
1491 
1492 	start_pos = round_down(pos, fs_info->sectorsize);
1493 	last_pos = start_pos
1494 		+ round_up(pos + write_bytes - start_pos,
1495 			   fs_info->sectorsize) - 1;
1496 
1497 	if (start_pos < inode->vfs_inode.i_size) {
1498 		struct btrfs_ordered_extent *ordered;
1499 
1500 		lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1501 				cached_state);
1502 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1503 						     last_pos - start_pos + 1);
1504 		if (ordered &&
1505 		    ordered->file_offset + ordered->len > start_pos &&
1506 		    ordered->file_offset <= last_pos) {
1507 			unlock_extent_cached(&inode->io_tree, start_pos,
1508 					last_pos, cached_state);
1509 			for (i = 0; i < num_pages; i++) {
1510 				unlock_page(pages[i]);
1511 				put_page(pages[i]);
1512 			}
1513 			btrfs_start_ordered_extent(&inode->vfs_inode,
1514 					ordered, 1);
1515 			btrfs_put_ordered_extent(ordered);
1516 			return -EAGAIN;
1517 		}
1518 		if (ordered)
1519 			btrfs_put_ordered_extent(ordered);
1520 		clear_extent_bit(&inode->io_tree, start_pos, last_pos,
1521 				 EXTENT_DIRTY | EXTENT_DELALLOC |
1522 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1523 				 0, 0, cached_state);
1524 		*lockstart = start_pos;
1525 		*lockend = last_pos;
1526 		ret = 1;
1527 	}
1528 
1529 	for (i = 0; i < num_pages; i++) {
1530 		if (clear_page_dirty_for_io(pages[i]))
1531 			account_page_redirty(pages[i]);
1532 		set_page_extent_mapped(pages[i]);
1533 		WARN_ON(!PageLocked(pages[i]));
1534 	}
1535 
1536 	return ret;
1537 }
1538 
1539 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1540 				    size_t *write_bytes)
1541 {
1542 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1543 	struct btrfs_root *root = inode->root;
1544 	struct btrfs_ordered_extent *ordered;
1545 	u64 lockstart, lockend;
1546 	u64 num_bytes;
1547 	int ret;
1548 
1549 	ret = btrfs_start_write_no_snapshotting(root);
1550 	if (!ret)
1551 		return -ENOSPC;
1552 
1553 	lockstart = round_down(pos, fs_info->sectorsize);
1554 	lockend = round_up(pos + *write_bytes,
1555 			   fs_info->sectorsize) - 1;
1556 
1557 	while (1) {
1558 		lock_extent(&inode->io_tree, lockstart, lockend);
1559 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1560 						     lockend - lockstart + 1);
1561 		if (!ordered) {
1562 			break;
1563 		}
1564 		unlock_extent(&inode->io_tree, lockstart, lockend);
1565 		btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1566 		btrfs_put_ordered_extent(ordered);
1567 	}
1568 
1569 	num_bytes = lockend - lockstart + 1;
1570 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1571 			NULL, NULL, NULL);
1572 	if (ret <= 0) {
1573 		ret = 0;
1574 		btrfs_end_write_no_snapshotting(root);
1575 	} else {
1576 		*write_bytes = min_t(size_t, *write_bytes ,
1577 				     num_bytes - pos + lockstart);
1578 	}
1579 
1580 	unlock_extent(&inode->io_tree, lockstart, lockend);
1581 
1582 	return ret;
1583 }
1584 
1585 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1586 					       struct iov_iter *i,
1587 					       loff_t pos)
1588 {
1589 	struct inode *inode = file_inode(file);
1590 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1591 	struct btrfs_root *root = BTRFS_I(inode)->root;
1592 	struct page **pages = NULL;
1593 	struct extent_state *cached_state = NULL;
1594 	struct extent_changeset *data_reserved = NULL;
1595 	u64 release_bytes = 0;
1596 	u64 lockstart;
1597 	u64 lockend;
1598 	size_t num_written = 0;
1599 	int nrptrs;
1600 	int ret = 0;
1601 	bool only_release_metadata = false;
1602 	bool force_page_uptodate = false;
1603 
1604 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1605 			PAGE_SIZE / (sizeof(struct page *)));
1606 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1607 	nrptrs = max(nrptrs, 8);
1608 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1609 	if (!pages)
1610 		return -ENOMEM;
1611 
1612 	while (iov_iter_count(i) > 0) {
1613 		size_t offset = pos & (PAGE_SIZE - 1);
1614 		size_t sector_offset;
1615 		size_t write_bytes = min(iov_iter_count(i),
1616 					 nrptrs * (size_t)PAGE_SIZE -
1617 					 offset);
1618 		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1619 						PAGE_SIZE);
1620 		size_t reserve_bytes;
1621 		size_t dirty_pages;
1622 		size_t copied;
1623 		size_t dirty_sectors;
1624 		size_t num_sectors;
1625 		int extents_locked;
1626 
1627 		WARN_ON(num_pages > nrptrs);
1628 
1629 		/*
1630 		 * Fault pages before locking them in prepare_pages
1631 		 * to avoid recursive lock
1632 		 */
1633 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1634 			ret = -EFAULT;
1635 			break;
1636 		}
1637 
1638 		sector_offset = pos & (fs_info->sectorsize - 1);
1639 		reserve_bytes = round_up(write_bytes + sector_offset,
1640 				fs_info->sectorsize);
1641 
1642 		extent_changeset_release(data_reserved);
1643 		ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1644 						  write_bytes);
1645 		if (ret < 0) {
1646 			if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1647 						      BTRFS_INODE_PREALLOC)) &&
1648 			    check_can_nocow(BTRFS_I(inode), pos,
1649 					&write_bytes) > 0) {
1650 				/*
1651 				 * For nodata cow case, no need to reserve
1652 				 * data space.
1653 				 */
1654 				only_release_metadata = true;
1655 				/*
1656 				 * our prealloc extent may be smaller than
1657 				 * write_bytes, so scale down.
1658 				 */
1659 				num_pages = DIV_ROUND_UP(write_bytes + offset,
1660 							 PAGE_SIZE);
1661 				reserve_bytes = round_up(write_bytes +
1662 							 sector_offset,
1663 							 fs_info->sectorsize);
1664 			} else {
1665 				break;
1666 			}
1667 		}
1668 
1669 		WARN_ON(reserve_bytes == 0);
1670 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1671 				reserve_bytes);
1672 		if (ret) {
1673 			if (!only_release_metadata)
1674 				btrfs_free_reserved_data_space(inode,
1675 						data_reserved, pos,
1676 						write_bytes);
1677 			else
1678 				btrfs_end_write_no_snapshotting(root);
1679 			break;
1680 		}
1681 
1682 		release_bytes = reserve_bytes;
1683 again:
1684 		/*
1685 		 * This is going to setup the pages array with the number of
1686 		 * pages we want, so we don't really need to worry about the
1687 		 * contents of pages from loop to loop
1688 		 */
1689 		ret = prepare_pages(inode, pages, num_pages,
1690 				    pos, write_bytes,
1691 				    force_page_uptodate);
1692 		if (ret) {
1693 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1694 						       reserve_bytes);
1695 			break;
1696 		}
1697 
1698 		extents_locked = lock_and_cleanup_extent_if_need(
1699 				BTRFS_I(inode), pages,
1700 				num_pages, pos, write_bytes, &lockstart,
1701 				&lockend, &cached_state);
1702 		if (extents_locked < 0) {
1703 			if (extents_locked == -EAGAIN)
1704 				goto again;
1705 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1706 						       reserve_bytes);
1707 			ret = extents_locked;
1708 			break;
1709 		}
1710 
1711 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1712 
1713 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1714 		dirty_sectors = round_up(copied + sector_offset,
1715 					fs_info->sectorsize);
1716 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1717 
1718 		/*
1719 		 * if we have trouble faulting in the pages, fall
1720 		 * back to one page at a time
1721 		 */
1722 		if (copied < write_bytes)
1723 			nrptrs = 1;
1724 
1725 		if (copied == 0) {
1726 			force_page_uptodate = true;
1727 			dirty_sectors = 0;
1728 			dirty_pages = 0;
1729 		} else {
1730 			force_page_uptodate = false;
1731 			dirty_pages = DIV_ROUND_UP(copied + offset,
1732 						   PAGE_SIZE);
1733 		}
1734 
1735 		if (num_sectors > dirty_sectors) {
1736 			/* release everything except the sectors we dirtied */
1737 			release_bytes -= dirty_sectors <<
1738 						fs_info->sb->s_blocksize_bits;
1739 			if (only_release_metadata) {
1740 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1741 								release_bytes);
1742 			} else {
1743 				u64 __pos;
1744 
1745 				__pos = round_down(pos,
1746 						   fs_info->sectorsize) +
1747 					(dirty_pages << PAGE_SHIFT);
1748 				btrfs_delalloc_release_space(inode,
1749 						data_reserved, __pos,
1750 						release_bytes);
1751 			}
1752 		}
1753 
1754 		release_bytes = round_up(copied + sector_offset,
1755 					fs_info->sectorsize);
1756 
1757 		if (copied > 0)
1758 			ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1759 						pos, copied, &cached_state);
1760 		if (extents_locked)
1761 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1762 					     lockstart, lockend, &cached_state);
1763 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1764 		if (ret) {
1765 			btrfs_drop_pages(pages, num_pages);
1766 			break;
1767 		}
1768 
1769 		release_bytes = 0;
1770 		if (only_release_metadata)
1771 			btrfs_end_write_no_snapshotting(root);
1772 
1773 		if (only_release_metadata && copied > 0) {
1774 			lockstart = round_down(pos,
1775 					       fs_info->sectorsize);
1776 			lockend = round_up(pos + copied,
1777 					   fs_info->sectorsize) - 1;
1778 
1779 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1780 				       lockend, EXTENT_NORESERVE, NULL,
1781 				       NULL, GFP_NOFS);
1782 			only_release_metadata = false;
1783 		}
1784 
1785 		btrfs_drop_pages(pages, num_pages);
1786 
1787 		cond_resched();
1788 
1789 		balance_dirty_pages_ratelimited(inode->i_mapping);
1790 		if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1791 			btrfs_btree_balance_dirty(fs_info);
1792 
1793 		pos += copied;
1794 		num_written += copied;
1795 	}
1796 
1797 	kfree(pages);
1798 
1799 	if (release_bytes) {
1800 		if (only_release_metadata) {
1801 			btrfs_end_write_no_snapshotting(root);
1802 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1803 					release_bytes);
1804 		} else {
1805 			btrfs_delalloc_release_space(inode, data_reserved,
1806 					round_down(pos, fs_info->sectorsize),
1807 					release_bytes);
1808 		}
1809 	}
1810 
1811 	extent_changeset_free(data_reserved);
1812 	return num_written ? num_written : ret;
1813 }
1814 
1815 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1816 {
1817 	struct file *file = iocb->ki_filp;
1818 	struct inode *inode = file_inode(file);
1819 	loff_t pos = iocb->ki_pos;
1820 	ssize_t written;
1821 	ssize_t written_buffered;
1822 	loff_t endbyte;
1823 	int err;
1824 
1825 	written = generic_file_direct_write(iocb, from);
1826 
1827 	if (written < 0 || !iov_iter_count(from))
1828 		return written;
1829 
1830 	pos += written;
1831 	written_buffered = __btrfs_buffered_write(file, from, pos);
1832 	if (written_buffered < 0) {
1833 		err = written_buffered;
1834 		goto out;
1835 	}
1836 	/*
1837 	 * Ensure all data is persisted. We want the next direct IO read to be
1838 	 * able to read what was just written.
1839 	 */
1840 	endbyte = pos + written_buffered - 1;
1841 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1842 	if (err)
1843 		goto out;
1844 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1845 	if (err)
1846 		goto out;
1847 	written += written_buffered;
1848 	iocb->ki_pos = pos + written_buffered;
1849 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1850 				 endbyte >> PAGE_SHIFT);
1851 out:
1852 	return written ? written : err;
1853 }
1854 
1855 static void update_time_for_write(struct inode *inode)
1856 {
1857 	struct timespec now;
1858 
1859 	if (IS_NOCMTIME(inode))
1860 		return;
1861 
1862 	now = current_time(inode);
1863 	if (!timespec_equal(&inode->i_mtime, &now))
1864 		inode->i_mtime = now;
1865 
1866 	if (!timespec_equal(&inode->i_ctime, &now))
1867 		inode->i_ctime = now;
1868 
1869 	if (IS_I_VERSION(inode))
1870 		inode_inc_iversion(inode);
1871 }
1872 
1873 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1874 				    struct iov_iter *from)
1875 {
1876 	struct file *file = iocb->ki_filp;
1877 	struct inode *inode = file_inode(file);
1878 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1879 	struct btrfs_root *root = BTRFS_I(inode)->root;
1880 	u64 start_pos;
1881 	u64 end_pos;
1882 	ssize_t num_written = 0;
1883 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1884 	ssize_t err;
1885 	loff_t pos;
1886 	size_t count = iov_iter_count(from);
1887 	loff_t oldsize;
1888 	int clean_page = 0;
1889 
1890 	if (!(iocb->ki_flags & IOCB_DIRECT) &&
1891 	    (iocb->ki_flags & IOCB_NOWAIT))
1892 		return -EOPNOTSUPP;
1893 
1894 	if (!inode_trylock(inode)) {
1895 		if (iocb->ki_flags & IOCB_NOWAIT)
1896 			return -EAGAIN;
1897 		inode_lock(inode);
1898 	}
1899 
1900 	err = generic_write_checks(iocb, from);
1901 	if (err <= 0) {
1902 		inode_unlock(inode);
1903 		return err;
1904 	}
1905 
1906 	pos = iocb->ki_pos;
1907 	if (iocb->ki_flags & IOCB_NOWAIT) {
1908 		/*
1909 		 * We will allocate space in case nodatacow is not set,
1910 		 * so bail
1911 		 */
1912 		if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1913 					      BTRFS_INODE_PREALLOC)) ||
1914 		    check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1915 			inode_unlock(inode);
1916 			return -EAGAIN;
1917 		}
1918 	}
1919 
1920 	current->backing_dev_info = inode_to_bdi(inode);
1921 	err = file_remove_privs(file);
1922 	if (err) {
1923 		inode_unlock(inode);
1924 		goto out;
1925 	}
1926 
1927 	/*
1928 	 * If BTRFS flips readonly due to some impossible error
1929 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1930 	 * although we have opened a file as writable, we have
1931 	 * to stop this write operation to ensure FS consistency.
1932 	 */
1933 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1934 		inode_unlock(inode);
1935 		err = -EROFS;
1936 		goto out;
1937 	}
1938 
1939 	/*
1940 	 * We reserve space for updating the inode when we reserve space for the
1941 	 * extent we are going to write, so we will enospc out there.  We don't
1942 	 * need to start yet another transaction to update the inode as we will
1943 	 * update the inode when we finish writing whatever data we write.
1944 	 */
1945 	update_time_for_write(inode);
1946 
1947 	start_pos = round_down(pos, fs_info->sectorsize);
1948 	oldsize = i_size_read(inode);
1949 	if (start_pos > oldsize) {
1950 		/* Expand hole size to cover write data, preventing empty gap */
1951 		end_pos = round_up(pos + count,
1952 				   fs_info->sectorsize);
1953 		err = btrfs_cont_expand(inode, oldsize, end_pos);
1954 		if (err) {
1955 			inode_unlock(inode);
1956 			goto out;
1957 		}
1958 		if (start_pos > round_up(oldsize, fs_info->sectorsize))
1959 			clean_page = 1;
1960 	}
1961 
1962 	if (sync)
1963 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1964 
1965 	if (iocb->ki_flags & IOCB_DIRECT) {
1966 		num_written = __btrfs_direct_write(iocb, from);
1967 	} else {
1968 		num_written = __btrfs_buffered_write(file, from, pos);
1969 		if (num_written > 0)
1970 			iocb->ki_pos = pos + num_written;
1971 		if (clean_page)
1972 			pagecache_isize_extended(inode, oldsize,
1973 						i_size_read(inode));
1974 	}
1975 
1976 	inode_unlock(inode);
1977 
1978 	/*
1979 	 * We also have to set last_sub_trans to the current log transid,
1980 	 * otherwise subsequent syncs to a file that's been synced in this
1981 	 * transaction will appear to have already occurred.
1982 	 */
1983 	spin_lock(&BTRFS_I(inode)->lock);
1984 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1985 	spin_unlock(&BTRFS_I(inode)->lock);
1986 	if (num_written > 0)
1987 		num_written = generic_write_sync(iocb, num_written);
1988 
1989 	if (sync)
1990 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1991 out:
1992 	current->backing_dev_info = NULL;
1993 	return num_written ? num_written : err;
1994 }
1995 
1996 int btrfs_release_file(struct inode *inode, struct file *filp)
1997 {
1998 	struct btrfs_file_private *private = filp->private_data;
1999 
2000 	if (private && private->trans)
2001 		btrfs_ioctl_trans_end(filp);
2002 	if (private && private->filldir_buf)
2003 		kfree(private->filldir_buf);
2004 	kfree(private);
2005 	filp->private_data = NULL;
2006 
2007 	/*
2008 	 * ordered_data_close is set by settattr when we are about to truncate
2009 	 * a file from a non-zero size to a zero size.  This tries to
2010 	 * flush down new bytes that may have been written if the
2011 	 * application were using truncate to replace a file in place.
2012 	 */
2013 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2014 			       &BTRFS_I(inode)->runtime_flags))
2015 			filemap_flush(inode->i_mapping);
2016 	return 0;
2017 }
2018 
2019 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2020 {
2021 	int ret;
2022 	struct blk_plug plug;
2023 
2024 	/*
2025 	 * This is only called in fsync, which would do synchronous writes, so
2026 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2027 	 * multiple disks using raid profile, a large IO can be split to
2028 	 * several segments of stripe length (currently 64K).
2029 	 */
2030 	blk_start_plug(&plug);
2031 	atomic_inc(&BTRFS_I(inode)->sync_writers);
2032 	ret = btrfs_fdatawrite_range(inode, start, end);
2033 	atomic_dec(&BTRFS_I(inode)->sync_writers);
2034 	blk_finish_plug(&plug);
2035 
2036 	return ret;
2037 }
2038 
2039 /*
2040  * fsync call for both files and directories.  This logs the inode into
2041  * the tree log instead of forcing full commits whenever possible.
2042  *
2043  * It needs to call filemap_fdatawait so that all ordered extent updates are
2044  * in the metadata btree are up to date for copying to the log.
2045  *
2046  * It drops the inode mutex before doing the tree log commit.  This is an
2047  * important optimization for directories because holding the mutex prevents
2048  * new operations on the dir while we write to disk.
2049  */
2050 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2051 {
2052 	struct dentry *dentry = file_dentry(file);
2053 	struct inode *inode = d_inode(dentry);
2054 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2055 	struct btrfs_root *root = BTRFS_I(inode)->root;
2056 	struct btrfs_trans_handle *trans;
2057 	struct btrfs_log_ctx ctx;
2058 	int ret = 0, err;
2059 	bool full_sync = false;
2060 	u64 len;
2061 
2062 	/*
2063 	 * The range length can be represented by u64, we have to do the typecasts
2064 	 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2065 	 */
2066 	len = (u64)end - (u64)start + 1;
2067 	trace_btrfs_sync_file(file, datasync);
2068 
2069 	btrfs_init_log_ctx(&ctx, inode);
2070 
2071 	/*
2072 	 * We write the dirty pages in the range and wait until they complete
2073 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
2074 	 * multi-task, and make the performance up.  See
2075 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2076 	 */
2077 	ret = start_ordered_ops(inode, start, end);
2078 	if (ret)
2079 		goto out;
2080 
2081 	inode_lock(inode);
2082 	atomic_inc(&root->log_batch);
2083 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2084 			     &BTRFS_I(inode)->runtime_flags);
2085 	/*
2086 	 * We might have have had more pages made dirty after calling
2087 	 * start_ordered_ops and before acquiring the inode's i_mutex.
2088 	 */
2089 	if (full_sync) {
2090 		/*
2091 		 * For a full sync, we need to make sure any ordered operations
2092 		 * start and finish before we start logging the inode, so that
2093 		 * all extents are persisted and the respective file extent
2094 		 * items are in the fs/subvol btree.
2095 		 */
2096 		ret = btrfs_wait_ordered_range(inode, start, len);
2097 	} else {
2098 		/*
2099 		 * Start any new ordered operations before starting to log the
2100 		 * inode. We will wait for them to finish in btrfs_sync_log().
2101 		 *
2102 		 * Right before acquiring the inode's mutex, we might have new
2103 		 * writes dirtying pages, which won't immediately start the
2104 		 * respective ordered operations - that is done through the
2105 		 * fill_delalloc callbacks invoked from the writepage and
2106 		 * writepages address space operations. So make sure we start
2107 		 * all ordered operations before starting to log our inode. Not
2108 		 * doing this means that while logging the inode, writeback
2109 		 * could start and invoke writepage/writepages, which would call
2110 		 * the fill_delalloc callbacks (cow_file_range,
2111 		 * submit_compressed_extents). These callbacks add first an
2112 		 * extent map to the modified list of extents and then create
2113 		 * the respective ordered operation, which means in
2114 		 * tree-log.c:btrfs_log_inode() we might capture all existing
2115 		 * ordered operations (with btrfs_get_logged_extents()) before
2116 		 * the fill_delalloc callback adds its ordered operation, and by
2117 		 * the time we visit the modified list of extent maps (with
2118 		 * btrfs_log_changed_extents()), we see and process the extent
2119 		 * map they created. We then use the extent map to construct a
2120 		 * file extent item for logging without waiting for the
2121 		 * respective ordered operation to finish - this file extent
2122 		 * item points to a disk location that might not have yet been
2123 		 * written to, containing random data - so after a crash a log
2124 		 * replay will make our inode have file extent items that point
2125 		 * to disk locations containing invalid data, as we returned
2126 		 * success to userspace without waiting for the respective
2127 		 * ordered operation to finish, because it wasn't captured by
2128 		 * btrfs_get_logged_extents().
2129 		 */
2130 		ret = start_ordered_ops(inode, start, end);
2131 	}
2132 	if (ret) {
2133 		inode_unlock(inode);
2134 		goto out;
2135 	}
2136 	atomic_inc(&root->log_batch);
2137 
2138 	/*
2139 	 * If the last transaction that changed this file was before the current
2140 	 * transaction and we have the full sync flag set in our inode, we can
2141 	 * bail out now without any syncing.
2142 	 *
2143 	 * Note that we can't bail out if the full sync flag isn't set. This is
2144 	 * because when the full sync flag is set we start all ordered extents
2145 	 * and wait for them to fully complete - when they complete they update
2146 	 * the inode's last_trans field through:
2147 	 *
2148 	 *     btrfs_finish_ordered_io() ->
2149 	 *         btrfs_update_inode_fallback() ->
2150 	 *             btrfs_update_inode() ->
2151 	 *                 btrfs_set_inode_last_trans()
2152 	 *
2153 	 * So we are sure that last_trans is up to date and can do this check to
2154 	 * bail out safely. For the fast path, when the full sync flag is not
2155 	 * set in our inode, we can not do it because we start only our ordered
2156 	 * extents and don't wait for them to complete (that is when
2157 	 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2158 	 * value might be less than or equals to fs_info->last_trans_committed,
2159 	 * and setting a speculative last_trans for an inode when a buffered
2160 	 * write is made (such as fs_info->generation + 1 for example) would not
2161 	 * be reliable since after setting the value and before fsync is called
2162 	 * any number of transactions can start and commit (transaction kthread
2163 	 * commits the current transaction periodically), and a transaction
2164 	 * commit does not start nor waits for ordered extents to complete.
2165 	 */
2166 	smp_mb();
2167 	if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2168 	    (full_sync && BTRFS_I(inode)->last_trans <=
2169 	     fs_info->last_trans_committed) ||
2170 	    (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2171 	     BTRFS_I(inode)->last_trans
2172 	     <= fs_info->last_trans_committed)) {
2173 		/*
2174 		 * We've had everything committed since the last time we were
2175 		 * modified so clear this flag in case it was set for whatever
2176 		 * reason, it's no longer relevant.
2177 		 */
2178 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2179 			  &BTRFS_I(inode)->runtime_flags);
2180 		/*
2181 		 * An ordered extent might have started before and completed
2182 		 * already with io errors, in which case the inode was not
2183 		 * updated and we end up here. So check the inode's mapping
2184 		 * for any errors that might have happened since we last
2185 		 * checked called fsync.
2186 		 */
2187 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2188 		inode_unlock(inode);
2189 		goto out;
2190 	}
2191 
2192 	/*
2193 	 * ok we haven't committed the transaction yet, lets do a commit
2194 	 */
2195 	if (file->private_data)
2196 		btrfs_ioctl_trans_end(file);
2197 
2198 	/*
2199 	 * We use start here because we will need to wait on the IO to complete
2200 	 * in btrfs_sync_log, which could require joining a transaction (for
2201 	 * example checking cross references in the nocow path).  If we use join
2202 	 * here we could get into a situation where we're waiting on IO to
2203 	 * happen that is blocked on a transaction trying to commit.  With start
2204 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2205 	 * before we start blocking join'ers.  This comment is to keep somebody
2206 	 * from thinking they are super smart and changing this to
2207 	 * btrfs_join_transaction *cough*Josef*cough*.
2208 	 */
2209 	trans = btrfs_start_transaction(root, 0);
2210 	if (IS_ERR(trans)) {
2211 		ret = PTR_ERR(trans);
2212 		inode_unlock(inode);
2213 		goto out;
2214 	}
2215 	trans->sync = true;
2216 
2217 	ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2218 	if (ret < 0) {
2219 		/* Fallthrough and commit/free transaction. */
2220 		ret = 1;
2221 	}
2222 
2223 	/* we've logged all the items and now have a consistent
2224 	 * version of the file in the log.  It is possible that
2225 	 * someone will come in and modify the file, but that's
2226 	 * fine because the log is consistent on disk, and we
2227 	 * have references to all of the file's extents
2228 	 *
2229 	 * It is possible that someone will come in and log the
2230 	 * file again, but that will end up using the synchronization
2231 	 * inside btrfs_sync_log to keep things safe.
2232 	 */
2233 	inode_unlock(inode);
2234 
2235 	/*
2236 	 * If any of the ordered extents had an error, just return it to user
2237 	 * space, so that the application knows some writes didn't succeed and
2238 	 * can take proper action (retry for e.g.). Blindly committing the
2239 	 * transaction in this case, would fool userspace that everything was
2240 	 * successful. And we also want to make sure our log doesn't contain
2241 	 * file extent items pointing to extents that weren't fully written to -
2242 	 * just like in the non fast fsync path, where we check for the ordered
2243 	 * operation's error flag before writing to the log tree and return -EIO
2244 	 * if any of them had this flag set (btrfs_wait_ordered_range) -
2245 	 * therefore we need to check for errors in the ordered operations,
2246 	 * which are indicated by ctx.io_err.
2247 	 */
2248 	if (ctx.io_err) {
2249 		btrfs_end_transaction(trans);
2250 		ret = ctx.io_err;
2251 		goto out;
2252 	}
2253 
2254 	if (ret != BTRFS_NO_LOG_SYNC) {
2255 		if (!ret) {
2256 			ret = btrfs_sync_log(trans, root, &ctx);
2257 			if (!ret) {
2258 				ret = btrfs_end_transaction(trans);
2259 				goto out;
2260 			}
2261 		}
2262 		if (!full_sync) {
2263 			ret = btrfs_wait_ordered_range(inode, start, len);
2264 			if (ret) {
2265 				btrfs_end_transaction(trans);
2266 				goto out;
2267 			}
2268 		}
2269 		ret = btrfs_commit_transaction(trans);
2270 	} else {
2271 		ret = btrfs_end_transaction(trans);
2272 	}
2273 out:
2274 	ASSERT(list_empty(&ctx.list));
2275 	err = file_check_and_advance_wb_err(file);
2276 	if (!ret)
2277 		ret = err;
2278 	return ret > 0 ? -EIO : ret;
2279 }
2280 
2281 static const struct vm_operations_struct btrfs_file_vm_ops = {
2282 	.fault		= filemap_fault,
2283 	.map_pages	= filemap_map_pages,
2284 	.page_mkwrite	= btrfs_page_mkwrite,
2285 };
2286 
2287 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2288 {
2289 	struct address_space *mapping = filp->f_mapping;
2290 
2291 	if (!mapping->a_ops->readpage)
2292 		return -ENOEXEC;
2293 
2294 	file_accessed(filp);
2295 	vma->vm_ops = &btrfs_file_vm_ops;
2296 
2297 	return 0;
2298 }
2299 
2300 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2301 			  int slot, u64 start, u64 end)
2302 {
2303 	struct btrfs_file_extent_item *fi;
2304 	struct btrfs_key key;
2305 
2306 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2307 		return 0;
2308 
2309 	btrfs_item_key_to_cpu(leaf, &key, slot);
2310 	if (key.objectid != btrfs_ino(inode) ||
2311 	    key.type != BTRFS_EXTENT_DATA_KEY)
2312 		return 0;
2313 
2314 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2315 
2316 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2317 		return 0;
2318 
2319 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2320 		return 0;
2321 
2322 	if (key.offset == end)
2323 		return 1;
2324 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2325 		return 1;
2326 	return 0;
2327 }
2328 
2329 static int fill_holes(struct btrfs_trans_handle *trans,
2330 		struct btrfs_inode *inode,
2331 		struct btrfs_path *path, u64 offset, u64 end)
2332 {
2333 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
2334 	struct btrfs_root *root = inode->root;
2335 	struct extent_buffer *leaf;
2336 	struct btrfs_file_extent_item *fi;
2337 	struct extent_map *hole_em;
2338 	struct extent_map_tree *em_tree = &inode->extent_tree;
2339 	struct btrfs_key key;
2340 	int ret;
2341 
2342 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2343 		goto out;
2344 
2345 	key.objectid = btrfs_ino(inode);
2346 	key.type = BTRFS_EXTENT_DATA_KEY;
2347 	key.offset = offset;
2348 
2349 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2350 	if (ret <= 0) {
2351 		/*
2352 		 * We should have dropped this offset, so if we find it then
2353 		 * something has gone horribly wrong.
2354 		 */
2355 		if (ret == 0)
2356 			ret = -EINVAL;
2357 		return ret;
2358 	}
2359 
2360 	leaf = path->nodes[0];
2361 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2362 		u64 num_bytes;
2363 
2364 		path->slots[0]--;
2365 		fi = btrfs_item_ptr(leaf, path->slots[0],
2366 				    struct btrfs_file_extent_item);
2367 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2368 			end - offset;
2369 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2370 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2371 		btrfs_set_file_extent_offset(leaf, fi, 0);
2372 		btrfs_mark_buffer_dirty(leaf);
2373 		goto out;
2374 	}
2375 
2376 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2377 		u64 num_bytes;
2378 
2379 		key.offset = offset;
2380 		btrfs_set_item_key_safe(fs_info, path, &key);
2381 		fi = btrfs_item_ptr(leaf, path->slots[0],
2382 				    struct btrfs_file_extent_item);
2383 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2384 			offset;
2385 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2386 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2387 		btrfs_set_file_extent_offset(leaf, fi, 0);
2388 		btrfs_mark_buffer_dirty(leaf);
2389 		goto out;
2390 	}
2391 	btrfs_release_path(path);
2392 
2393 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2394 			offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2395 	if (ret)
2396 		return ret;
2397 
2398 out:
2399 	btrfs_release_path(path);
2400 
2401 	hole_em = alloc_extent_map();
2402 	if (!hole_em) {
2403 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2404 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2405 	} else {
2406 		hole_em->start = offset;
2407 		hole_em->len = end - offset;
2408 		hole_em->ram_bytes = hole_em->len;
2409 		hole_em->orig_start = offset;
2410 
2411 		hole_em->block_start = EXTENT_MAP_HOLE;
2412 		hole_em->block_len = 0;
2413 		hole_em->orig_block_len = 0;
2414 		hole_em->bdev = fs_info->fs_devices->latest_bdev;
2415 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2416 		hole_em->generation = trans->transid;
2417 
2418 		do {
2419 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2420 			write_lock(&em_tree->lock);
2421 			ret = add_extent_mapping(em_tree, hole_em, 1);
2422 			write_unlock(&em_tree->lock);
2423 		} while (ret == -EEXIST);
2424 		free_extent_map(hole_em);
2425 		if (ret)
2426 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2427 					&inode->runtime_flags);
2428 	}
2429 
2430 	return 0;
2431 }
2432 
2433 /*
2434  * Find a hole extent on given inode and change start/len to the end of hole
2435  * extent.(hole/vacuum extent whose em->start <= start &&
2436  *	   em->start + em->len > start)
2437  * When a hole extent is found, return 1 and modify start/len.
2438  */
2439 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2440 {
2441 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2442 	struct extent_map *em;
2443 	int ret = 0;
2444 
2445 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2446 			      round_down(*start, fs_info->sectorsize),
2447 			      round_up(*len, fs_info->sectorsize), 0);
2448 	if (IS_ERR(em))
2449 		return PTR_ERR(em);
2450 
2451 	/* Hole or vacuum extent(only exists in no-hole mode) */
2452 	if (em->block_start == EXTENT_MAP_HOLE) {
2453 		ret = 1;
2454 		*len = em->start + em->len > *start + *len ?
2455 		       0 : *start + *len - em->start - em->len;
2456 		*start = em->start + em->len;
2457 	}
2458 	free_extent_map(em);
2459 	return ret;
2460 }
2461 
2462 static int btrfs_punch_hole_lock_range(struct inode *inode,
2463 				       const u64 lockstart,
2464 				       const u64 lockend,
2465 				       struct extent_state **cached_state)
2466 {
2467 	while (1) {
2468 		struct btrfs_ordered_extent *ordered;
2469 		int ret;
2470 
2471 		truncate_pagecache_range(inode, lockstart, lockend);
2472 
2473 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2474 				 cached_state);
2475 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2476 
2477 		/*
2478 		 * We need to make sure we have no ordered extents in this range
2479 		 * and nobody raced in and read a page in this range, if we did
2480 		 * we need to try again.
2481 		 */
2482 		if ((!ordered ||
2483 		    (ordered->file_offset + ordered->len <= lockstart ||
2484 		     ordered->file_offset > lockend)) &&
2485 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2486 			if (ordered)
2487 				btrfs_put_ordered_extent(ordered);
2488 			break;
2489 		}
2490 		if (ordered)
2491 			btrfs_put_ordered_extent(ordered);
2492 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2493 				     lockend, cached_state);
2494 		ret = btrfs_wait_ordered_range(inode, lockstart,
2495 					       lockend - lockstart + 1);
2496 		if (ret)
2497 			return ret;
2498 	}
2499 	return 0;
2500 }
2501 
2502 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2503 {
2504 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2505 	struct btrfs_root *root = BTRFS_I(inode)->root;
2506 	struct extent_state *cached_state = NULL;
2507 	struct btrfs_path *path;
2508 	struct btrfs_block_rsv *rsv;
2509 	struct btrfs_trans_handle *trans;
2510 	u64 lockstart;
2511 	u64 lockend;
2512 	u64 tail_start;
2513 	u64 tail_len;
2514 	u64 orig_start = offset;
2515 	u64 cur_offset;
2516 	u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2517 	u64 drop_end;
2518 	int ret = 0;
2519 	int err = 0;
2520 	unsigned int rsv_count;
2521 	bool same_block;
2522 	bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2523 	u64 ino_size;
2524 	bool truncated_block = false;
2525 	bool updated_inode = false;
2526 
2527 	ret = btrfs_wait_ordered_range(inode, offset, len);
2528 	if (ret)
2529 		return ret;
2530 
2531 	inode_lock(inode);
2532 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2533 	ret = find_first_non_hole(inode, &offset, &len);
2534 	if (ret < 0)
2535 		goto out_only_mutex;
2536 	if (ret && !len) {
2537 		/* Already in a large hole */
2538 		ret = 0;
2539 		goto out_only_mutex;
2540 	}
2541 
2542 	lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2543 	lockend = round_down(offset + len,
2544 			     btrfs_inode_sectorsize(inode)) - 1;
2545 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2546 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2547 	/*
2548 	 * We needn't truncate any block which is beyond the end of the file
2549 	 * because we are sure there is no data there.
2550 	 */
2551 	/*
2552 	 * Only do this if we are in the same block and we aren't doing the
2553 	 * entire block.
2554 	 */
2555 	if (same_block && len < fs_info->sectorsize) {
2556 		if (offset < ino_size) {
2557 			truncated_block = true;
2558 			ret = btrfs_truncate_block(inode, offset, len, 0);
2559 		} else {
2560 			ret = 0;
2561 		}
2562 		goto out_only_mutex;
2563 	}
2564 
2565 	/* zero back part of the first block */
2566 	if (offset < ino_size) {
2567 		truncated_block = true;
2568 		ret = btrfs_truncate_block(inode, offset, 0, 0);
2569 		if (ret) {
2570 			inode_unlock(inode);
2571 			return ret;
2572 		}
2573 	}
2574 
2575 	/* Check the aligned pages after the first unaligned page,
2576 	 * if offset != orig_start, which means the first unaligned page
2577 	 * including several following pages are already in holes,
2578 	 * the extra check can be skipped */
2579 	if (offset == orig_start) {
2580 		/* after truncate page, check hole again */
2581 		len = offset + len - lockstart;
2582 		offset = lockstart;
2583 		ret = find_first_non_hole(inode, &offset, &len);
2584 		if (ret < 0)
2585 			goto out_only_mutex;
2586 		if (ret && !len) {
2587 			ret = 0;
2588 			goto out_only_mutex;
2589 		}
2590 		lockstart = offset;
2591 	}
2592 
2593 	/* Check the tail unaligned part is in a hole */
2594 	tail_start = lockend + 1;
2595 	tail_len = offset + len - tail_start;
2596 	if (tail_len) {
2597 		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2598 		if (unlikely(ret < 0))
2599 			goto out_only_mutex;
2600 		if (!ret) {
2601 			/* zero the front end of the last page */
2602 			if (tail_start + tail_len < ino_size) {
2603 				truncated_block = true;
2604 				ret = btrfs_truncate_block(inode,
2605 							tail_start + tail_len,
2606 							0, 1);
2607 				if (ret)
2608 					goto out_only_mutex;
2609 			}
2610 		}
2611 	}
2612 
2613 	if (lockend < lockstart) {
2614 		ret = 0;
2615 		goto out_only_mutex;
2616 	}
2617 
2618 	ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2619 					  &cached_state);
2620 	if (ret) {
2621 		inode_unlock(inode);
2622 		goto out_only_mutex;
2623 	}
2624 
2625 	path = btrfs_alloc_path();
2626 	if (!path) {
2627 		ret = -ENOMEM;
2628 		goto out;
2629 	}
2630 
2631 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2632 	if (!rsv) {
2633 		ret = -ENOMEM;
2634 		goto out_free;
2635 	}
2636 	rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2637 	rsv->failfast = 1;
2638 
2639 	/*
2640 	 * 1 - update the inode
2641 	 * 1 - removing the extents in the range
2642 	 * 1 - adding the hole extent if no_holes isn't set
2643 	 */
2644 	rsv_count = no_holes ? 2 : 3;
2645 	trans = btrfs_start_transaction(root, rsv_count);
2646 	if (IS_ERR(trans)) {
2647 		err = PTR_ERR(trans);
2648 		goto out_free;
2649 	}
2650 
2651 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2652 				      min_size, 0);
2653 	BUG_ON(ret);
2654 	trans->block_rsv = rsv;
2655 
2656 	cur_offset = lockstart;
2657 	len = lockend - cur_offset;
2658 	while (cur_offset < lockend) {
2659 		ret = __btrfs_drop_extents(trans, root, inode, path,
2660 					   cur_offset, lockend + 1,
2661 					   &drop_end, 1, 0, 0, NULL);
2662 		if (ret != -ENOSPC)
2663 			break;
2664 
2665 		trans->block_rsv = &fs_info->trans_block_rsv;
2666 
2667 		if (cur_offset < drop_end && cur_offset < ino_size) {
2668 			ret = fill_holes(trans, BTRFS_I(inode), path,
2669 					cur_offset, drop_end);
2670 			if (ret) {
2671 				/*
2672 				 * If we failed then we didn't insert our hole
2673 				 * entries for the area we dropped, so now the
2674 				 * fs is corrupted, so we must abort the
2675 				 * transaction.
2676 				 */
2677 				btrfs_abort_transaction(trans, ret);
2678 				err = ret;
2679 				break;
2680 			}
2681 		}
2682 
2683 		cur_offset = drop_end;
2684 
2685 		ret = btrfs_update_inode(trans, root, inode);
2686 		if (ret) {
2687 			err = ret;
2688 			break;
2689 		}
2690 
2691 		btrfs_end_transaction(trans);
2692 		btrfs_btree_balance_dirty(fs_info);
2693 
2694 		trans = btrfs_start_transaction(root, rsv_count);
2695 		if (IS_ERR(trans)) {
2696 			ret = PTR_ERR(trans);
2697 			trans = NULL;
2698 			break;
2699 		}
2700 
2701 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2702 					      rsv, min_size, 0);
2703 		BUG_ON(ret);	/* shouldn't happen */
2704 		trans->block_rsv = rsv;
2705 
2706 		ret = find_first_non_hole(inode, &cur_offset, &len);
2707 		if (unlikely(ret < 0))
2708 			break;
2709 		if (ret && !len) {
2710 			ret = 0;
2711 			break;
2712 		}
2713 	}
2714 
2715 	if (ret) {
2716 		err = ret;
2717 		goto out_trans;
2718 	}
2719 
2720 	trans->block_rsv = &fs_info->trans_block_rsv;
2721 	/*
2722 	 * If we are using the NO_HOLES feature we might have had already an
2723 	 * hole that overlaps a part of the region [lockstart, lockend] and
2724 	 * ends at (or beyond) lockend. Since we have no file extent items to
2725 	 * represent holes, drop_end can be less than lockend and so we must
2726 	 * make sure we have an extent map representing the existing hole (the
2727 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2728 	 * map representing the existing hole), otherwise the fast fsync path
2729 	 * will not record the existence of the hole region
2730 	 * [existing_hole_start, lockend].
2731 	 */
2732 	if (drop_end <= lockend)
2733 		drop_end = lockend + 1;
2734 	/*
2735 	 * Don't insert file hole extent item if it's for a range beyond eof
2736 	 * (because it's useless) or if it represents a 0 bytes range (when
2737 	 * cur_offset == drop_end).
2738 	 */
2739 	if (cur_offset < ino_size && cur_offset < drop_end) {
2740 		ret = fill_holes(trans, BTRFS_I(inode), path,
2741 				cur_offset, drop_end);
2742 		if (ret) {
2743 			/* Same comment as above. */
2744 			btrfs_abort_transaction(trans, ret);
2745 			err = ret;
2746 			goto out_trans;
2747 		}
2748 	}
2749 
2750 out_trans:
2751 	if (!trans)
2752 		goto out_free;
2753 
2754 	inode_inc_iversion(inode);
2755 	inode->i_mtime = inode->i_ctime = current_time(inode);
2756 
2757 	trans->block_rsv = &fs_info->trans_block_rsv;
2758 	ret = btrfs_update_inode(trans, root, inode);
2759 	updated_inode = true;
2760 	btrfs_end_transaction(trans);
2761 	btrfs_btree_balance_dirty(fs_info);
2762 out_free:
2763 	btrfs_free_path(path);
2764 	btrfs_free_block_rsv(fs_info, rsv);
2765 out:
2766 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2767 			     &cached_state);
2768 out_only_mutex:
2769 	if (!updated_inode && truncated_block && !ret && !err) {
2770 		/*
2771 		 * If we only end up zeroing part of a page, we still need to
2772 		 * update the inode item, so that all the time fields are
2773 		 * updated as well as the necessary btrfs inode in memory fields
2774 		 * for detecting, at fsync time, if the inode isn't yet in the
2775 		 * log tree or it's there but not up to date.
2776 		 */
2777 		trans = btrfs_start_transaction(root, 1);
2778 		if (IS_ERR(trans)) {
2779 			err = PTR_ERR(trans);
2780 		} else {
2781 			err = btrfs_update_inode(trans, root, inode);
2782 			ret = btrfs_end_transaction(trans);
2783 		}
2784 	}
2785 	inode_unlock(inode);
2786 	if (ret && !err)
2787 		err = ret;
2788 	return err;
2789 }
2790 
2791 /* Helper structure to record which range is already reserved */
2792 struct falloc_range {
2793 	struct list_head list;
2794 	u64 start;
2795 	u64 len;
2796 };
2797 
2798 /*
2799  * Helper function to add falloc range
2800  *
2801  * Caller should have locked the larger range of extent containing
2802  * [start, len)
2803  */
2804 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2805 {
2806 	struct falloc_range *prev = NULL;
2807 	struct falloc_range *range = NULL;
2808 
2809 	if (list_empty(head))
2810 		goto insert;
2811 
2812 	/*
2813 	 * As fallocate iterate by bytenr order, we only need to check
2814 	 * the last range.
2815 	 */
2816 	prev = list_entry(head->prev, struct falloc_range, list);
2817 	if (prev->start + prev->len == start) {
2818 		prev->len += len;
2819 		return 0;
2820 	}
2821 insert:
2822 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2823 	if (!range)
2824 		return -ENOMEM;
2825 	range->start = start;
2826 	range->len = len;
2827 	list_add_tail(&range->list, head);
2828 	return 0;
2829 }
2830 
2831 static int btrfs_fallocate_update_isize(struct inode *inode,
2832 					const u64 end,
2833 					const int mode)
2834 {
2835 	struct btrfs_trans_handle *trans;
2836 	struct btrfs_root *root = BTRFS_I(inode)->root;
2837 	int ret;
2838 	int ret2;
2839 
2840 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2841 		return 0;
2842 
2843 	trans = btrfs_start_transaction(root, 1);
2844 	if (IS_ERR(trans))
2845 		return PTR_ERR(trans);
2846 
2847 	inode->i_ctime = current_time(inode);
2848 	i_size_write(inode, end);
2849 	btrfs_ordered_update_i_size(inode, end, NULL);
2850 	ret = btrfs_update_inode(trans, root, inode);
2851 	ret2 = btrfs_end_transaction(trans);
2852 
2853 	return ret ? ret : ret2;
2854 }
2855 
2856 enum {
2857 	RANGE_BOUNDARY_WRITTEN_EXTENT = 0,
2858 	RANGE_BOUNDARY_PREALLOC_EXTENT = 1,
2859 	RANGE_BOUNDARY_HOLE = 2,
2860 };
2861 
2862 static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2863 						 u64 offset)
2864 {
2865 	const u64 sectorsize = btrfs_inode_sectorsize(inode);
2866 	struct extent_map *em;
2867 	int ret;
2868 
2869 	offset = round_down(offset, sectorsize);
2870 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
2871 	if (IS_ERR(em))
2872 		return PTR_ERR(em);
2873 
2874 	if (em->block_start == EXTENT_MAP_HOLE)
2875 		ret = RANGE_BOUNDARY_HOLE;
2876 	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2877 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2878 	else
2879 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2880 
2881 	free_extent_map(em);
2882 	return ret;
2883 }
2884 
2885 static int btrfs_zero_range(struct inode *inode,
2886 			    loff_t offset,
2887 			    loff_t len,
2888 			    const int mode)
2889 {
2890 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2891 	struct extent_map *em;
2892 	struct extent_changeset *data_reserved = NULL;
2893 	int ret;
2894 	u64 alloc_hint = 0;
2895 	const u64 sectorsize = btrfs_inode_sectorsize(inode);
2896 	u64 alloc_start = round_down(offset, sectorsize);
2897 	u64 alloc_end = round_up(offset + len, sectorsize);
2898 	u64 bytes_to_reserve = 0;
2899 	bool space_reserved = false;
2900 
2901 	inode_dio_wait(inode);
2902 
2903 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2904 			      alloc_start, alloc_end - alloc_start, 0);
2905 	if (IS_ERR(em)) {
2906 		ret = PTR_ERR(em);
2907 		goto out;
2908 	}
2909 
2910 	/*
2911 	 * Avoid hole punching and extent allocation for some cases. More cases
2912 	 * could be considered, but these are unlikely common and we keep things
2913 	 * as simple as possible for now. Also, intentionally, if the target
2914 	 * range contains one or more prealloc extents together with regular
2915 	 * extents and holes, we drop all the existing extents and allocate a
2916 	 * new prealloc extent, so that we get a larger contiguous disk extent.
2917 	 */
2918 	if (em->start <= alloc_start &&
2919 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2920 		const u64 em_end = em->start + em->len;
2921 
2922 		if (em_end >= offset + len) {
2923 			/*
2924 			 * The whole range is already a prealloc extent,
2925 			 * do nothing except updating the inode's i_size if
2926 			 * needed.
2927 			 */
2928 			free_extent_map(em);
2929 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2930 							   mode);
2931 			goto out;
2932 		}
2933 		/*
2934 		 * Part of the range is already a prealloc extent, so operate
2935 		 * only on the remaining part of the range.
2936 		 */
2937 		alloc_start = em_end;
2938 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2939 		len = offset + len - alloc_start;
2940 		offset = alloc_start;
2941 		alloc_hint = em->block_start + em->len;
2942 	}
2943 	free_extent_map(em);
2944 
2945 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2946 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2947 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2948 				      alloc_start, sectorsize, 0);
2949 		if (IS_ERR(em)) {
2950 			ret = PTR_ERR(em);
2951 			goto out;
2952 		}
2953 
2954 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2955 			free_extent_map(em);
2956 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2957 							   mode);
2958 			goto out;
2959 		}
2960 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2961 			free_extent_map(em);
2962 			ret = btrfs_truncate_block(inode, offset, len, 0);
2963 			if (!ret)
2964 				ret = btrfs_fallocate_update_isize(inode,
2965 								   offset + len,
2966 								   mode);
2967 			return ret;
2968 		}
2969 		free_extent_map(em);
2970 		alloc_start = round_down(offset, sectorsize);
2971 		alloc_end = alloc_start + sectorsize;
2972 		goto reserve_space;
2973 	}
2974 
2975 	alloc_start = round_up(offset, sectorsize);
2976 	alloc_end = round_down(offset + len, sectorsize);
2977 
2978 	/*
2979 	 * For unaligned ranges, check the pages at the boundaries, they might
2980 	 * map to an extent, in which case we need to partially zero them, or
2981 	 * they might map to a hole, in which case we need our allocation range
2982 	 * to cover them.
2983 	 */
2984 	if (!IS_ALIGNED(offset, sectorsize)) {
2985 		ret = btrfs_zero_range_check_range_boundary(inode, offset);
2986 		if (ret < 0)
2987 			goto out;
2988 		if (ret == RANGE_BOUNDARY_HOLE) {
2989 			alloc_start = round_down(offset, sectorsize);
2990 			ret = 0;
2991 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2992 			ret = btrfs_truncate_block(inode, offset, 0, 0);
2993 			if (ret)
2994 				goto out;
2995 		} else {
2996 			ret = 0;
2997 		}
2998 	}
2999 
3000 	if (!IS_ALIGNED(offset + len, sectorsize)) {
3001 		ret = btrfs_zero_range_check_range_boundary(inode,
3002 							    offset + len);
3003 		if (ret < 0)
3004 			goto out;
3005 		if (ret == RANGE_BOUNDARY_HOLE) {
3006 			alloc_end = round_up(offset + len, sectorsize);
3007 			ret = 0;
3008 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3009 			ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3010 			if (ret)
3011 				goto out;
3012 		} else {
3013 			ret = 0;
3014 		}
3015 	}
3016 
3017 reserve_space:
3018 	if (alloc_start < alloc_end) {
3019 		struct extent_state *cached_state = NULL;
3020 		const u64 lockstart = alloc_start;
3021 		const u64 lockend = alloc_end - 1;
3022 
3023 		bytes_to_reserve = alloc_end - alloc_start;
3024 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3025 						      bytes_to_reserve);
3026 		if (ret < 0)
3027 			goto out;
3028 		space_reserved = true;
3029 		ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3030 						alloc_start, bytes_to_reserve);
3031 		if (ret)
3032 			goto out;
3033 		ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3034 						  &cached_state);
3035 		if (ret)
3036 			goto out;
3037 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3038 						alloc_end - alloc_start,
3039 						i_blocksize(inode),
3040 						offset + len, &alloc_hint);
3041 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3042 				     lockend, &cached_state);
3043 		/* btrfs_prealloc_file_range releases reserved space on error */
3044 		if (ret) {
3045 			space_reserved = false;
3046 			goto out;
3047 		}
3048 	}
3049 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3050  out:
3051 	if (ret && space_reserved)
3052 		btrfs_free_reserved_data_space(inode, data_reserved,
3053 					       alloc_start, bytes_to_reserve);
3054 	extent_changeset_free(data_reserved);
3055 
3056 	return ret;
3057 }
3058 
3059 static long btrfs_fallocate(struct file *file, int mode,
3060 			    loff_t offset, loff_t len)
3061 {
3062 	struct inode *inode = file_inode(file);
3063 	struct extent_state *cached_state = NULL;
3064 	struct extent_changeset *data_reserved = NULL;
3065 	struct falloc_range *range;
3066 	struct falloc_range *tmp;
3067 	struct list_head reserve_list;
3068 	u64 cur_offset;
3069 	u64 last_byte;
3070 	u64 alloc_start;
3071 	u64 alloc_end;
3072 	u64 alloc_hint = 0;
3073 	u64 locked_end;
3074 	u64 actual_end = 0;
3075 	struct extent_map *em;
3076 	int blocksize = btrfs_inode_sectorsize(inode);
3077 	int ret;
3078 
3079 	alloc_start = round_down(offset, blocksize);
3080 	alloc_end = round_up(offset + len, blocksize);
3081 	cur_offset = alloc_start;
3082 
3083 	/* Make sure we aren't being give some crap mode */
3084 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3085 		     FALLOC_FL_ZERO_RANGE))
3086 		return -EOPNOTSUPP;
3087 
3088 	if (mode & FALLOC_FL_PUNCH_HOLE)
3089 		return btrfs_punch_hole(inode, offset, len);
3090 
3091 	/*
3092 	 * Only trigger disk allocation, don't trigger qgroup reserve
3093 	 *
3094 	 * For qgroup space, it will be checked later.
3095 	 */
3096 	if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3097 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3098 						      alloc_end - alloc_start);
3099 		if (ret < 0)
3100 			return ret;
3101 	}
3102 
3103 	inode_lock(inode);
3104 
3105 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3106 		ret = inode_newsize_ok(inode, offset + len);
3107 		if (ret)
3108 			goto out;
3109 	}
3110 
3111 	/*
3112 	 * TODO: Move these two operations after we have checked
3113 	 * accurate reserved space, or fallocate can still fail but
3114 	 * with page truncated or size expanded.
3115 	 *
3116 	 * But that's a minor problem and won't do much harm BTW.
3117 	 */
3118 	if (alloc_start > inode->i_size) {
3119 		ret = btrfs_cont_expand(inode, i_size_read(inode),
3120 					alloc_start);
3121 		if (ret)
3122 			goto out;
3123 	} else if (offset + len > inode->i_size) {
3124 		/*
3125 		 * If we are fallocating from the end of the file onward we
3126 		 * need to zero out the end of the block if i_size lands in the
3127 		 * middle of a block.
3128 		 */
3129 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3130 		if (ret)
3131 			goto out;
3132 	}
3133 
3134 	/*
3135 	 * wait for ordered IO before we have any locks.  We'll loop again
3136 	 * below with the locks held.
3137 	 */
3138 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3139 				       alloc_end - alloc_start);
3140 	if (ret)
3141 		goto out;
3142 
3143 	if (mode & FALLOC_FL_ZERO_RANGE) {
3144 		ret = btrfs_zero_range(inode, offset, len, mode);
3145 		inode_unlock(inode);
3146 		return ret;
3147 	}
3148 
3149 	locked_end = alloc_end - 1;
3150 	while (1) {
3151 		struct btrfs_ordered_extent *ordered;
3152 
3153 		/* the extent lock is ordered inside the running
3154 		 * transaction
3155 		 */
3156 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3157 				 locked_end, &cached_state);
3158 		ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3159 
3160 		if (ordered &&
3161 		    ordered->file_offset + ordered->len > alloc_start &&
3162 		    ordered->file_offset < alloc_end) {
3163 			btrfs_put_ordered_extent(ordered);
3164 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3165 					     alloc_start, locked_end,
3166 					     &cached_state);
3167 			/*
3168 			 * we can't wait on the range with the transaction
3169 			 * running or with the extent lock held
3170 			 */
3171 			ret = btrfs_wait_ordered_range(inode, alloc_start,
3172 						       alloc_end - alloc_start);
3173 			if (ret)
3174 				goto out;
3175 		} else {
3176 			if (ordered)
3177 				btrfs_put_ordered_extent(ordered);
3178 			break;
3179 		}
3180 	}
3181 
3182 	/* First, check if we exceed the qgroup limit */
3183 	INIT_LIST_HEAD(&reserve_list);
3184 	while (cur_offset < alloc_end) {
3185 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3186 				      alloc_end - cur_offset, 0);
3187 		if (IS_ERR(em)) {
3188 			ret = PTR_ERR(em);
3189 			break;
3190 		}
3191 		last_byte = min(extent_map_end(em), alloc_end);
3192 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3193 		last_byte = ALIGN(last_byte, blocksize);
3194 		if (em->block_start == EXTENT_MAP_HOLE ||
3195 		    (cur_offset >= inode->i_size &&
3196 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3197 			ret = add_falloc_range(&reserve_list, cur_offset,
3198 					       last_byte - cur_offset);
3199 			if (ret < 0) {
3200 				free_extent_map(em);
3201 				break;
3202 			}
3203 			ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3204 					cur_offset, last_byte - cur_offset);
3205 			if (ret < 0) {
3206 				free_extent_map(em);
3207 				break;
3208 			}
3209 		} else {
3210 			/*
3211 			 * Do not need to reserve unwritten extent for this
3212 			 * range, free reserved data space first, otherwise
3213 			 * it'll result in false ENOSPC error.
3214 			 */
3215 			btrfs_free_reserved_data_space(inode, data_reserved,
3216 					cur_offset, last_byte - cur_offset);
3217 		}
3218 		free_extent_map(em);
3219 		cur_offset = last_byte;
3220 	}
3221 
3222 	/*
3223 	 * If ret is still 0, means we're OK to fallocate.
3224 	 * Or just cleanup the list and exit.
3225 	 */
3226 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3227 		if (!ret)
3228 			ret = btrfs_prealloc_file_range(inode, mode,
3229 					range->start,
3230 					range->len, i_blocksize(inode),
3231 					offset + len, &alloc_hint);
3232 		else
3233 			btrfs_free_reserved_data_space(inode,
3234 					data_reserved, range->start,
3235 					range->len);
3236 		list_del(&range->list);
3237 		kfree(range);
3238 	}
3239 	if (ret < 0)
3240 		goto out_unlock;
3241 
3242 	/*
3243 	 * We didn't need to allocate any more space, but we still extended the
3244 	 * size of the file so we need to update i_size and the inode item.
3245 	 */
3246 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3247 out_unlock:
3248 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3249 			     &cached_state);
3250 out:
3251 	inode_unlock(inode);
3252 	/* Let go of our reservation. */
3253 	if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3254 		btrfs_free_reserved_data_space(inode, data_reserved,
3255 				alloc_start, alloc_end - cur_offset);
3256 	extent_changeset_free(data_reserved);
3257 	return ret;
3258 }
3259 
3260 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3261 {
3262 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3263 	struct extent_map *em = NULL;
3264 	struct extent_state *cached_state = NULL;
3265 	u64 lockstart;
3266 	u64 lockend;
3267 	u64 start;
3268 	u64 len;
3269 	int ret = 0;
3270 
3271 	if (inode->i_size == 0)
3272 		return -ENXIO;
3273 
3274 	/*
3275 	 * *offset can be negative, in this case we start finding DATA/HOLE from
3276 	 * the very start of the file.
3277 	 */
3278 	start = max_t(loff_t, 0, *offset);
3279 
3280 	lockstart = round_down(start, fs_info->sectorsize);
3281 	lockend = round_up(i_size_read(inode),
3282 			   fs_info->sectorsize);
3283 	if (lockend <= lockstart)
3284 		lockend = lockstart + fs_info->sectorsize;
3285 	lockend--;
3286 	len = lockend - lockstart + 1;
3287 
3288 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3289 			 &cached_state);
3290 
3291 	while (start < inode->i_size) {
3292 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3293 				start, len, 0);
3294 		if (IS_ERR(em)) {
3295 			ret = PTR_ERR(em);
3296 			em = NULL;
3297 			break;
3298 		}
3299 
3300 		if (whence == SEEK_HOLE &&
3301 		    (em->block_start == EXTENT_MAP_HOLE ||
3302 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3303 			break;
3304 		else if (whence == SEEK_DATA &&
3305 			   (em->block_start != EXTENT_MAP_HOLE &&
3306 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3307 			break;
3308 
3309 		start = em->start + em->len;
3310 		free_extent_map(em);
3311 		em = NULL;
3312 		cond_resched();
3313 	}
3314 	free_extent_map(em);
3315 	if (!ret) {
3316 		if (whence == SEEK_DATA && start >= inode->i_size)
3317 			ret = -ENXIO;
3318 		else
3319 			*offset = min_t(loff_t, start, inode->i_size);
3320 	}
3321 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3322 			     &cached_state);
3323 	return ret;
3324 }
3325 
3326 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3327 {
3328 	struct inode *inode = file->f_mapping->host;
3329 	int ret;
3330 
3331 	inode_lock(inode);
3332 	switch (whence) {
3333 	case SEEK_END:
3334 	case SEEK_CUR:
3335 		offset = generic_file_llseek(file, offset, whence);
3336 		goto out;
3337 	case SEEK_DATA:
3338 	case SEEK_HOLE:
3339 		if (offset >= i_size_read(inode)) {
3340 			inode_unlock(inode);
3341 			return -ENXIO;
3342 		}
3343 
3344 		ret = find_desired_extent(inode, &offset, whence);
3345 		if (ret) {
3346 			inode_unlock(inode);
3347 			return ret;
3348 		}
3349 	}
3350 
3351 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3352 out:
3353 	inode_unlock(inode);
3354 	return offset;
3355 }
3356 
3357 static int btrfs_file_open(struct inode *inode, struct file *filp)
3358 {
3359 	filp->f_mode |= FMODE_NOWAIT;
3360 	return generic_file_open(inode, filp);
3361 }
3362 
3363 const struct file_operations btrfs_file_operations = {
3364 	.llseek		= btrfs_file_llseek,
3365 	.read_iter      = generic_file_read_iter,
3366 	.splice_read	= generic_file_splice_read,
3367 	.write_iter	= btrfs_file_write_iter,
3368 	.mmap		= btrfs_file_mmap,
3369 	.open		= btrfs_file_open,
3370 	.release	= btrfs_release_file,
3371 	.fsync		= btrfs_sync_file,
3372 	.fallocate	= btrfs_fallocate,
3373 	.unlocked_ioctl	= btrfs_ioctl,
3374 #ifdef CONFIG_COMPAT
3375 	.compat_ioctl	= btrfs_compat_ioctl,
3376 #endif
3377 	.clone_file_range = btrfs_clone_file_range,
3378 	.dedupe_file_range = btrfs_dedupe_file_range,
3379 };
3380 
3381 void btrfs_auto_defrag_exit(void)
3382 {
3383 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3384 }
3385 
3386 int __init btrfs_auto_defrag_init(void)
3387 {
3388 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3389 					sizeof(struct inode_defrag), 0,
3390 					SLAB_MEM_SPREAD,
3391 					NULL);
3392 	if (!btrfs_inode_defrag_cachep)
3393 		return -ENOMEM;
3394 
3395 	return 0;
3396 }
3397 
3398 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3399 {
3400 	int ret;
3401 
3402 	/*
3403 	 * So with compression we will find and lock a dirty page and clear the
3404 	 * first one as dirty, setup an async extent, and immediately return
3405 	 * with the entire range locked but with nobody actually marked with
3406 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3407 	 * expect it to work since it will just kick off a thread to do the
3408 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3409 	 * since it will wait on the page lock, which won't be unlocked until
3410 	 * after the pages have been marked as writeback and so we're good to go
3411 	 * from there.  We have to do this otherwise we'll miss the ordered
3412 	 * extents and that results in badness.  Please Josef, do not think you
3413 	 * know better and pull this out at some point in the future, it is
3414 	 * right and you are wrong.
3415 	 */
3416 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3417 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3418 			     &BTRFS_I(inode)->runtime_flags))
3419 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3420 
3421 	return ret;
3422 }
3423