1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/time.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/backing-dev.h> 26 #include <linux/mpage.h> 27 #include <linux/falloc.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/statfs.h> 31 #include <linux/compat.h> 32 #include <linux/slab.h> 33 #include <linux/btrfs.h> 34 #include <linux/uio.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "print-tree.h" 40 #include "tree-log.h" 41 #include "locking.h" 42 #include "volumes.h" 43 #include "qgroup.h" 44 #include "compression.h" 45 46 static struct kmem_cache *btrfs_inode_defrag_cachep; 47 /* 48 * when auto defrag is enabled we 49 * queue up these defrag structs to remember which 50 * inodes need defragging passes 51 */ 52 struct inode_defrag { 53 struct rb_node rb_node; 54 /* objectid */ 55 u64 ino; 56 /* 57 * transid where the defrag was added, we search for 58 * extents newer than this 59 */ 60 u64 transid; 61 62 /* root objectid */ 63 u64 root; 64 65 /* last offset we were able to defrag */ 66 u64 last_offset; 67 68 /* if we've wrapped around back to zero once already */ 69 int cycled; 70 }; 71 72 static int __compare_inode_defrag(struct inode_defrag *defrag1, 73 struct inode_defrag *defrag2) 74 { 75 if (defrag1->root > defrag2->root) 76 return 1; 77 else if (defrag1->root < defrag2->root) 78 return -1; 79 else if (defrag1->ino > defrag2->ino) 80 return 1; 81 else if (defrag1->ino < defrag2->ino) 82 return -1; 83 else 84 return 0; 85 } 86 87 /* pop a record for an inode into the defrag tree. The lock 88 * must be held already 89 * 90 * If you're inserting a record for an older transid than an 91 * existing record, the transid already in the tree is lowered 92 * 93 * If an existing record is found the defrag item you 94 * pass in is freed 95 */ 96 static int __btrfs_add_inode_defrag(struct inode *inode, 97 struct inode_defrag *defrag) 98 { 99 struct btrfs_root *root = BTRFS_I(inode)->root; 100 struct inode_defrag *entry; 101 struct rb_node **p; 102 struct rb_node *parent = NULL; 103 int ret; 104 105 p = &root->fs_info->defrag_inodes.rb_node; 106 while (*p) { 107 parent = *p; 108 entry = rb_entry(parent, struct inode_defrag, rb_node); 109 110 ret = __compare_inode_defrag(defrag, entry); 111 if (ret < 0) 112 p = &parent->rb_left; 113 else if (ret > 0) 114 p = &parent->rb_right; 115 else { 116 /* if we're reinserting an entry for 117 * an old defrag run, make sure to 118 * lower the transid of our existing record 119 */ 120 if (defrag->transid < entry->transid) 121 entry->transid = defrag->transid; 122 if (defrag->last_offset > entry->last_offset) 123 entry->last_offset = defrag->last_offset; 124 return -EEXIST; 125 } 126 } 127 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 128 rb_link_node(&defrag->rb_node, parent, p); 129 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes); 130 return 0; 131 } 132 133 static inline int __need_auto_defrag(struct btrfs_root *root) 134 { 135 if (!btrfs_test_opt(root, AUTO_DEFRAG)) 136 return 0; 137 138 if (btrfs_fs_closing(root->fs_info)) 139 return 0; 140 141 return 1; 142 } 143 144 /* 145 * insert a defrag record for this inode if auto defrag is 146 * enabled 147 */ 148 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 149 struct inode *inode) 150 { 151 struct btrfs_root *root = BTRFS_I(inode)->root; 152 struct inode_defrag *defrag; 153 u64 transid; 154 int ret; 155 156 if (!__need_auto_defrag(root)) 157 return 0; 158 159 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) 160 return 0; 161 162 if (trans) 163 transid = trans->transid; 164 else 165 transid = BTRFS_I(inode)->root->last_trans; 166 167 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 168 if (!defrag) 169 return -ENOMEM; 170 171 defrag->ino = btrfs_ino(inode); 172 defrag->transid = transid; 173 defrag->root = root->root_key.objectid; 174 175 spin_lock(&root->fs_info->defrag_inodes_lock); 176 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) { 177 /* 178 * If we set IN_DEFRAG flag and evict the inode from memory, 179 * and then re-read this inode, this new inode doesn't have 180 * IN_DEFRAG flag. At the case, we may find the existed defrag. 181 */ 182 ret = __btrfs_add_inode_defrag(inode, defrag); 183 if (ret) 184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 185 } else { 186 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 187 } 188 spin_unlock(&root->fs_info->defrag_inodes_lock); 189 return 0; 190 } 191 192 /* 193 * Requeue the defrag object. If there is a defrag object that points to 194 * the same inode in the tree, we will merge them together (by 195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue. 196 */ 197 static void btrfs_requeue_inode_defrag(struct inode *inode, 198 struct inode_defrag *defrag) 199 { 200 struct btrfs_root *root = BTRFS_I(inode)->root; 201 int ret; 202 203 if (!__need_auto_defrag(root)) 204 goto out; 205 206 /* 207 * Here we don't check the IN_DEFRAG flag, because we need merge 208 * them together. 209 */ 210 spin_lock(&root->fs_info->defrag_inodes_lock); 211 ret = __btrfs_add_inode_defrag(inode, defrag); 212 spin_unlock(&root->fs_info->defrag_inodes_lock); 213 if (ret) 214 goto out; 215 return; 216 out: 217 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 218 } 219 220 /* 221 * pick the defragable inode that we want, if it doesn't exist, we will get 222 * the next one. 223 */ 224 static struct inode_defrag * 225 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 226 { 227 struct inode_defrag *entry = NULL; 228 struct inode_defrag tmp; 229 struct rb_node *p; 230 struct rb_node *parent = NULL; 231 int ret; 232 233 tmp.ino = ino; 234 tmp.root = root; 235 236 spin_lock(&fs_info->defrag_inodes_lock); 237 p = fs_info->defrag_inodes.rb_node; 238 while (p) { 239 parent = p; 240 entry = rb_entry(parent, struct inode_defrag, rb_node); 241 242 ret = __compare_inode_defrag(&tmp, entry); 243 if (ret < 0) 244 p = parent->rb_left; 245 else if (ret > 0) 246 p = parent->rb_right; 247 else 248 goto out; 249 } 250 251 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 252 parent = rb_next(parent); 253 if (parent) 254 entry = rb_entry(parent, struct inode_defrag, rb_node); 255 else 256 entry = NULL; 257 } 258 out: 259 if (entry) 260 rb_erase(parent, &fs_info->defrag_inodes); 261 spin_unlock(&fs_info->defrag_inodes_lock); 262 return entry; 263 } 264 265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 266 { 267 struct inode_defrag *defrag; 268 struct rb_node *node; 269 270 spin_lock(&fs_info->defrag_inodes_lock); 271 node = rb_first(&fs_info->defrag_inodes); 272 while (node) { 273 rb_erase(node, &fs_info->defrag_inodes); 274 defrag = rb_entry(node, struct inode_defrag, rb_node); 275 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 276 277 cond_resched_lock(&fs_info->defrag_inodes_lock); 278 279 node = rb_first(&fs_info->defrag_inodes); 280 } 281 spin_unlock(&fs_info->defrag_inodes_lock); 282 } 283 284 #define BTRFS_DEFRAG_BATCH 1024 285 286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 287 struct inode_defrag *defrag) 288 { 289 struct btrfs_root *inode_root; 290 struct inode *inode; 291 struct btrfs_key key; 292 struct btrfs_ioctl_defrag_range_args range; 293 int num_defrag; 294 int index; 295 int ret; 296 297 /* get the inode */ 298 key.objectid = defrag->root; 299 key.type = BTRFS_ROOT_ITEM_KEY; 300 key.offset = (u64)-1; 301 302 index = srcu_read_lock(&fs_info->subvol_srcu); 303 304 inode_root = btrfs_read_fs_root_no_name(fs_info, &key); 305 if (IS_ERR(inode_root)) { 306 ret = PTR_ERR(inode_root); 307 goto cleanup; 308 } 309 310 key.objectid = defrag->ino; 311 key.type = BTRFS_INODE_ITEM_KEY; 312 key.offset = 0; 313 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL); 314 if (IS_ERR(inode)) { 315 ret = PTR_ERR(inode); 316 goto cleanup; 317 } 318 srcu_read_unlock(&fs_info->subvol_srcu, index); 319 320 /* do a chunk of defrag */ 321 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 322 memset(&range, 0, sizeof(range)); 323 range.len = (u64)-1; 324 range.start = defrag->last_offset; 325 326 sb_start_write(fs_info->sb); 327 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 328 BTRFS_DEFRAG_BATCH); 329 sb_end_write(fs_info->sb); 330 /* 331 * if we filled the whole defrag batch, there 332 * must be more work to do. Queue this defrag 333 * again 334 */ 335 if (num_defrag == BTRFS_DEFRAG_BATCH) { 336 defrag->last_offset = range.start; 337 btrfs_requeue_inode_defrag(inode, defrag); 338 } else if (defrag->last_offset && !defrag->cycled) { 339 /* 340 * we didn't fill our defrag batch, but 341 * we didn't start at zero. Make sure we loop 342 * around to the start of the file. 343 */ 344 defrag->last_offset = 0; 345 defrag->cycled = 1; 346 btrfs_requeue_inode_defrag(inode, defrag); 347 } else { 348 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 349 } 350 351 iput(inode); 352 return 0; 353 cleanup: 354 srcu_read_unlock(&fs_info->subvol_srcu, index); 355 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 356 return ret; 357 } 358 359 /* 360 * run through the list of inodes in the FS that need 361 * defragging 362 */ 363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 364 { 365 struct inode_defrag *defrag; 366 u64 first_ino = 0; 367 u64 root_objectid = 0; 368 369 atomic_inc(&fs_info->defrag_running); 370 while (1) { 371 /* Pause the auto defragger. */ 372 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 373 &fs_info->fs_state)) 374 break; 375 376 if (!__need_auto_defrag(fs_info->tree_root)) 377 break; 378 379 /* find an inode to defrag */ 380 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 381 first_ino); 382 if (!defrag) { 383 if (root_objectid || first_ino) { 384 root_objectid = 0; 385 first_ino = 0; 386 continue; 387 } else { 388 break; 389 } 390 } 391 392 first_ino = defrag->ino + 1; 393 root_objectid = defrag->root; 394 395 __btrfs_run_defrag_inode(fs_info, defrag); 396 } 397 atomic_dec(&fs_info->defrag_running); 398 399 /* 400 * during unmount, we use the transaction_wait queue to 401 * wait for the defragger to stop 402 */ 403 wake_up(&fs_info->transaction_wait); 404 return 0; 405 } 406 407 /* simple helper to fault in pages and copy. This should go away 408 * and be replaced with calls into generic code. 409 */ 410 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 411 struct page **prepared_pages, 412 struct iov_iter *i) 413 { 414 size_t copied = 0; 415 size_t total_copied = 0; 416 int pg = 0; 417 int offset = pos & (PAGE_SIZE - 1); 418 419 while (write_bytes > 0) { 420 size_t count = min_t(size_t, 421 PAGE_SIZE - offset, write_bytes); 422 struct page *page = prepared_pages[pg]; 423 /* 424 * Copy data from userspace to the current page 425 */ 426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count); 427 428 /* Flush processor's dcache for this page */ 429 flush_dcache_page(page); 430 431 /* 432 * if we get a partial write, we can end up with 433 * partially up to date pages. These add 434 * a lot of complexity, so make sure they don't 435 * happen by forcing this copy to be retried. 436 * 437 * The rest of the btrfs_file_write code will fall 438 * back to page at a time copies after we return 0. 439 */ 440 if (!PageUptodate(page) && copied < count) 441 copied = 0; 442 443 iov_iter_advance(i, copied); 444 write_bytes -= copied; 445 total_copied += copied; 446 447 /* Return to btrfs_file_write_iter to fault page */ 448 if (unlikely(copied == 0)) 449 break; 450 451 if (copied < PAGE_SIZE - offset) { 452 offset += copied; 453 } else { 454 pg++; 455 offset = 0; 456 } 457 } 458 return total_copied; 459 } 460 461 /* 462 * unlocks pages after btrfs_file_write is done with them 463 */ 464 static void btrfs_drop_pages(struct page **pages, size_t num_pages) 465 { 466 size_t i; 467 for (i = 0; i < num_pages; i++) { 468 /* page checked is some magic around finding pages that 469 * have been modified without going through btrfs_set_page_dirty 470 * clear it here. There should be no need to mark the pages 471 * accessed as prepare_pages should have marked them accessed 472 * in prepare_pages via find_or_create_page() 473 */ 474 ClearPageChecked(pages[i]); 475 unlock_page(pages[i]); 476 put_page(pages[i]); 477 } 478 } 479 480 /* 481 * after copy_from_user, pages need to be dirtied and we need to make 482 * sure holes are created between the current EOF and the start of 483 * any next extents (if required). 484 * 485 * this also makes the decision about creating an inline extent vs 486 * doing real data extents, marking pages dirty and delalloc as required. 487 */ 488 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, 489 struct page **pages, size_t num_pages, 490 loff_t pos, size_t write_bytes, 491 struct extent_state **cached) 492 { 493 int err = 0; 494 int i; 495 u64 num_bytes; 496 u64 start_pos; 497 u64 end_of_last_block; 498 u64 end_pos = pos + write_bytes; 499 loff_t isize = i_size_read(inode); 500 501 start_pos = pos & ~((u64)root->sectorsize - 1); 502 num_bytes = round_up(write_bytes + pos - start_pos, root->sectorsize); 503 504 end_of_last_block = start_pos + num_bytes - 1; 505 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 506 cached); 507 if (err) 508 return err; 509 510 for (i = 0; i < num_pages; i++) { 511 struct page *p = pages[i]; 512 SetPageUptodate(p); 513 ClearPageChecked(p); 514 set_page_dirty(p); 515 } 516 517 /* 518 * we've only changed i_size in ram, and we haven't updated 519 * the disk i_size. There is no need to log the inode 520 * at this time. 521 */ 522 if (end_pos > isize) 523 i_size_write(inode, end_pos); 524 return 0; 525 } 526 527 /* 528 * this drops all the extents in the cache that intersect the range 529 * [start, end]. Existing extents are split as required. 530 */ 531 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, 532 int skip_pinned) 533 { 534 struct extent_map *em; 535 struct extent_map *split = NULL; 536 struct extent_map *split2 = NULL; 537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 538 u64 len = end - start + 1; 539 u64 gen; 540 int ret; 541 int testend = 1; 542 unsigned long flags; 543 int compressed = 0; 544 bool modified; 545 546 WARN_ON(end < start); 547 if (end == (u64)-1) { 548 len = (u64)-1; 549 testend = 0; 550 } 551 while (1) { 552 int no_splits = 0; 553 554 modified = false; 555 if (!split) 556 split = alloc_extent_map(); 557 if (!split2) 558 split2 = alloc_extent_map(); 559 if (!split || !split2) 560 no_splits = 1; 561 562 write_lock(&em_tree->lock); 563 em = lookup_extent_mapping(em_tree, start, len); 564 if (!em) { 565 write_unlock(&em_tree->lock); 566 break; 567 } 568 flags = em->flags; 569 gen = em->generation; 570 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) { 571 if (testend && em->start + em->len >= start + len) { 572 free_extent_map(em); 573 write_unlock(&em_tree->lock); 574 break; 575 } 576 start = em->start + em->len; 577 if (testend) 578 len = start + len - (em->start + em->len); 579 free_extent_map(em); 580 write_unlock(&em_tree->lock); 581 continue; 582 } 583 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 584 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 585 clear_bit(EXTENT_FLAG_LOGGING, &flags); 586 modified = !list_empty(&em->list); 587 if (no_splits) 588 goto next; 589 590 if (em->start < start) { 591 split->start = em->start; 592 split->len = start - em->start; 593 594 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 595 split->orig_start = em->orig_start; 596 split->block_start = em->block_start; 597 598 if (compressed) 599 split->block_len = em->block_len; 600 else 601 split->block_len = split->len; 602 split->orig_block_len = max(split->block_len, 603 em->orig_block_len); 604 split->ram_bytes = em->ram_bytes; 605 } else { 606 split->orig_start = split->start; 607 split->block_len = 0; 608 split->block_start = em->block_start; 609 split->orig_block_len = 0; 610 split->ram_bytes = split->len; 611 } 612 613 split->generation = gen; 614 split->bdev = em->bdev; 615 split->flags = flags; 616 split->compress_type = em->compress_type; 617 replace_extent_mapping(em_tree, em, split, modified); 618 free_extent_map(split); 619 split = split2; 620 split2 = NULL; 621 } 622 if (testend && em->start + em->len > start + len) { 623 u64 diff = start + len - em->start; 624 625 split->start = start + len; 626 split->len = em->start + em->len - (start + len); 627 split->bdev = em->bdev; 628 split->flags = flags; 629 split->compress_type = em->compress_type; 630 split->generation = gen; 631 632 if (em->block_start < EXTENT_MAP_LAST_BYTE) { 633 split->orig_block_len = max(em->block_len, 634 em->orig_block_len); 635 636 split->ram_bytes = em->ram_bytes; 637 if (compressed) { 638 split->block_len = em->block_len; 639 split->block_start = em->block_start; 640 split->orig_start = em->orig_start; 641 } else { 642 split->block_len = split->len; 643 split->block_start = em->block_start 644 + diff; 645 split->orig_start = em->orig_start; 646 } 647 } else { 648 split->ram_bytes = split->len; 649 split->orig_start = split->start; 650 split->block_len = 0; 651 split->block_start = em->block_start; 652 split->orig_block_len = 0; 653 } 654 655 if (extent_map_in_tree(em)) { 656 replace_extent_mapping(em_tree, em, split, 657 modified); 658 } else { 659 ret = add_extent_mapping(em_tree, split, 660 modified); 661 ASSERT(ret == 0); /* Logic error */ 662 } 663 free_extent_map(split); 664 split = NULL; 665 } 666 next: 667 if (extent_map_in_tree(em)) 668 remove_extent_mapping(em_tree, em); 669 write_unlock(&em_tree->lock); 670 671 /* once for us */ 672 free_extent_map(em); 673 /* once for the tree*/ 674 free_extent_map(em); 675 } 676 if (split) 677 free_extent_map(split); 678 if (split2) 679 free_extent_map(split2); 680 } 681 682 /* 683 * this is very complex, but the basic idea is to drop all extents 684 * in the range start - end. hint_block is filled in with a block number 685 * that would be a good hint to the block allocator for this file. 686 * 687 * If an extent intersects the range but is not entirely inside the range 688 * it is either truncated or split. Anything entirely inside the range 689 * is deleted from the tree. 690 */ 691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 692 struct btrfs_root *root, struct inode *inode, 693 struct btrfs_path *path, u64 start, u64 end, 694 u64 *drop_end, int drop_cache, 695 int replace_extent, 696 u32 extent_item_size, 697 int *key_inserted) 698 { 699 struct extent_buffer *leaf; 700 struct btrfs_file_extent_item *fi; 701 struct btrfs_key key; 702 struct btrfs_key new_key; 703 u64 ino = btrfs_ino(inode); 704 u64 search_start = start; 705 u64 disk_bytenr = 0; 706 u64 num_bytes = 0; 707 u64 extent_offset = 0; 708 u64 extent_end = 0; 709 int del_nr = 0; 710 int del_slot = 0; 711 int extent_type; 712 int recow; 713 int ret; 714 int modify_tree = -1; 715 int update_refs; 716 int found = 0; 717 int leafs_visited = 0; 718 719 if (drop_cache) 720 btrfs_drop_extent_cache(inode, start, end - 1, 0); 721 722 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent) 723 modify_tree = 0; 724 725 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 726 root == root->fs_info->tree_root); 727 while (1) { 728 recow = 0; 729 ret = btrfs_lookup_file_extent(trans, root, path, ino, 730 search_start, modify_tree); 731 if (ret < 0) 732 break; 733 if (ret > 0 && path->slots[0] > 0 && search_start == start) { 734 leaf = path->nodes[0]; 735 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 736 if (key.objectid == ino && 737 key.type == BTRFS_EXTENT_DATA_KEY) 738 path->slots[0]--; 739 } 740 ret = 0; 741 leafs_visited++; 742 next_slot: 743 leaf = path->nodes[0]; 744 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 745 BUG_ON(del_nr > 0); 746 ret = btrfs_next_leaf(root, path); 747 if (ret < 0) 748 break; 749 if (ret > 0) { 750 ret = 0; 751 break; 752 } 753 leafs_visited++; 754 leaf = path->nodes[0]; 755 recow = 1; 756 } 757 758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 759 760 if (key.objectid > ino) 761 break; 762 if (WARN_ON_ONCE(key.objectid < ino) || 763 key.type < BTRFS_EXTENT_DATA_KEY) { 764 ASSERT(del_nr == 0); 765 path->slots[0]++; 766 goto next_slot; 767 } 768 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 769 break; 770 771 fi = btrfs_item_ptr(leaf, path->slots[0], 772 struct btrfs_file_extent_item); 773 extent_type = btrfs_file_extent_type(leaf, fi); 774 775 if (extent_type == BTRFS_FILE_EXTENT_REG || 776 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 777 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 778 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 779 extent_offset = btrfs_file_extent_offset(leaf, fi); 780 extent_end = key.offset + 781 btrfs_file_extent_num_bytes(leaf, fi); 782 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 783 extent_end = key.offset + 784 btrfs_file_extent_inline_len(leaf, 785 path->slots[0], fi); 786 } else { 787 /* can't happen */ 788 BUG(); 789 } 790 791 /* 792 * Don't skip extent items representing 0 byte lengths. They 793 * used to be created (bug) if while punching holes we hit 794 * -ENOSPC condition. So if we find one here, just ensure we 795 * delete it, otherwise we would insert a new file extent item 796 * with the same key (offset) as that 0 bytes length file 797 * extent item in the call to setup_items_for_insert() later 798 * in this function. 799 */ 800 if (extent_end == key.offset && extent_end >= search_start) 801 goto delete_extent_item; 802 803 if (extent_end <= search_start) { 804 path->slots[0]++; 805 goto next_slot; 806 } 807 808 found = 1; 809 search_start = max(key.offset, start); 810 if (recow || !modify_tree) { 811 modify_tree = -1; 812 btrfs_release_path(path); 813 continue; 814 } 815 816 /* 817 * | - range to drop - | 818 * | -------- extent -------- | 819 */ 820 if (start > key.offset && end < extent_end) { 821 BUG_ON(del_nr > 0); 822 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 823 ret = -EOPNOTSUPP; 824 break; 825 } 826 827 memcpy(&new_key, &key, sizeof(new_key)); 828 new_key.offset = start; 829 ret = btrfs_duplicate_item(trans, root, path, 830 &new_key); 831 if (ret == -EAGAIN) { 832 btrfs_release_path(path); 833 continue; 834 } 835 if (ret < 0) 836 break; 837 838 leaf = path->nodes[0]; 839 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 840 struct btrfs_file_extent_item); 841 btrfs_set_file_extent_num_bytes(leaf, fi, 842 start - key.offset); 843 844 fi = btrfs_item_ptr(leaf, path->slots[0], 845 struct btrfs_file_extent_item); 846 847 extent_offset += start - key.offset; 848 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 849 btrfs_set_file_extent_num_bytes(leaf, fi, 850 extent_end - start); 851 btrfs_mark_buffer_dirty(leaf); 852 853 if (update_refs && disk_bytenr > 0) { 854 ret = btrfs_inc_extent_ref(trans, root, 855 disk_bytenr, num_bytes, 0, 856 root->root_key.objectid, 857 new_key.objectid, 858 start - extent_offset); 859 BUG_ON(ret); /* -ENOMEM */ 860 } 861 key.offset = start; 862 } 863 /* 864 * | ---- range to drop ----- | 865 * | -------- extent -------- | 866 */ 867 if (start <= key.offset && end < extent_end) { 868 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 869 ret = -EOPNOTSUPP; 870 break; 871 } 872 873 memcpy(&new_key, &key, sizeof(new_key)); 874 new_key.offset = end; 875 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 876 877 extent_offset += end - key.offset; 878 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 879 btrfs_set_file_extent_num_bytes(leaf, fi, 880 extent_end - end); 881 btrfs_mark_buffer_dirty(leaf); 882 if (update_refs && disk_bytenr > 0) 883 inode_sub_bytes(inode, end - key.offset); 884 break; 885 } 886 887 search_start = extent_end; 888 /* 889 * | ---- range to drop ----- | 890 * | -------- extent -------- | 891 */ 892 if (start > key.offset && end >= extent_end) { 893 BUG_ON(del_nr > 0); 894 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 895 ret = -EOPNOTSUPP; 896 break; 897 } 898 899 btrfs_set_file_extent_num_bytes(leaf, fi, 900 start - key.offset); 901 btrfs_mark_buffer_dirty(leaf); 902 if (update_refs && disk_bytenr > 0) 903 inode_sub_bytes(inode, extent_end - start); 904 if (end == extent_end) 905 break; 906 907 path->slots[0]++; 908 goto next_slot; 909 } 910 911 /* 912 * | ---- range to drop ----- | 913 * | ------ extent ------ | 914 */ 915 if (start <= key.offset && end >= extent_end) { 916 delete_extent_item: 917 if (del_nr == 0) { 918 del_slot = path->slots[0]; 919 del_nr = 1; 920 } else { 921 BUG_ON(del_slot + del_nr != path->slots[0]); 922 del_nr++; 923 } 924 925 if (update_refs && 926 extent_type == BTRFS_FILE_EXTENT_INLINE) { 927 inode_sub_bytes(inode, 928 extent_end - key.offset); 929 extent_end = ALIGN(extent_end, 930 root->sectorsize); 931 } else if (update_refs && disk_bytenr > 0) { 932 ret = btrfs_free_extent(trans, root, 933 disk_bytenr, num_bytes, 0, 934 root->root_key.objectid, 935 key.objectid, key.offset - 936 extent_offset); 937 BUG_ON(ret); /* -ENOMEM */ 938 inode_sub_bytes(inode, 939 extent_end - key.offset); 940 } 941 942 if (end == extent_end) 943 break; 944 945 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 946 path->slots[0]++; 947 goto next_slot; 948 } 949 950 ret = btrfs_del_items(trans, root, path, del_slot, 951 del_nr); 952 if (ret) { 953 btrfs_abort_transaction(trans, root, ret); 954 break; 955 } 956 957 del_nr = 0; 958 del_slot = 0; 959 960 btrfs_release_path(path); 961 continue; 962 } 963 964 BUG_ON(1); 965 } 966 967 if (!ret && del_nr > 0) { 968 /* 969 * Set path->slots[0] to first slot, so that after the delete 970 * if items are move off from our leaf to its immediate left or 971 * right neighbor leafs, we end up with a correct and adjusted 972 * path->slots[0] for our insertion (if replace_extent != 0). 973 */ 974 path->slots[0] = del_slot; 975 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 976 if (ret) 977 btrfs_abort_transaction(trans, root, ret); 978 } 979 980 leaf = path->nodes[0]; 981 /* 982 * If btrfs_del_items() was called, it might have deleted a leaf, in 983 * which case it unlocked our path, so check path->locks[0] matches a 984 * write lock. 985 */ 986 if (!ret && replace_extent && leafs_visited == 1 && 987 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING || 988 path->locks[0] == BTRFS_WRITE_LOCK) && 989 btrfs_leaf_free_space(root, leaf) >= 990 sizeof(struct btrfs_item) + extent_item_size) { 991 992 key.objectid = ino; 993 key.type = BTRFS_EXTENT_DATA_KEY; 994 key.offset = start; 995 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 996 struct btrfs_key slot_key; 997 998 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 999 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 1000 path->slots[0]++; 1001 } 1002 setup_items_for_insert(root, path, &key, 1003 &extent_item_size, 1004 extent_item_size, 1005 sizeof(struct btrfs_item) + 1006 extent_item_size, 1); 1007 *key_inserted = 1; 1008 } 1009 1010 if (!replace_extent || !(*key_inserted)) 1011 btrfs_release_path(path); 1012 if (drop_end) 1013 *drop_end = found ? min(end, extent_end) : end; 1014 return ret; 1015 } 1016 1017 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 1018 struct btrfs_root *root, struct inode *inode, u64 start, 1019 u64 end, int drop_cache) 1020 { 1021 struct btrfs_path *path; 1022 int ret; 1023 1024 path = btrfs_alloc_path(); 1025 if (!path) 1026 return -ENOMEM; 1027 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL, 1028 drop_cache, 0, 0, NULL); 1029 btrfs_free_path(path); 1030 return ret; 1031 } 1032 1033 static int extent_mergeable(struct extent_buffer *leaf, int slot, 1034 u64 objectid, u64 bytenr, u64 orig_offset, 1035 u64 *start, u64 *end) 1036 { 1037 struct btrfs_file_extent_item *fi; 1038 struct btrfs_key key; 1039 u64 extent_end; 1040 1041 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 1042 return 0; 1043 1044 btrfs_item_key_to_cpu(leaf, &key, slot); 1045 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 1046 return 0; 1047 1048 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1049 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 1050 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 1051 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 1052 btrfs_file_extent_compression(leaf, fi) || 1053 btrfs_file_extent_encryption(leaf, fi) || 1054 btrfs_file_extent_other_encoding(leaf, fi)) 1055 return 0; 1056 1057 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1058 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 1059 return 0; 1060 1061 *start = key.offset; 1062 *end = extent_end; 1063 return 1; 1064 } 1065 1066 /* 1067 * Mark extent in the range start - end as written. 1068 * 1069 * This changes extent type from 'pre-allocated' to 'regular'. If only 1070 * part of extent is marked as written, the extent will be split into 1071 * two or three. 1072 */ 1073 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 1074 struct inode *inode, u64 start, u64 end) 1075 { 1076 struct btrfs_root *root = BTRFS_I(inode)->root; 1077 struct extent_buffer *leaf; 1078 struct btrfs_path *path; 1079 struct btrfs_file_extent_item *fi; 1080 struct btrfs_key key; 1081 struct btrfs_key new_key; 1082 u64 bytenr; 1083 u64 num_bytes; 1084 u64 extent_end; 1085 u64 orig_offset; 1086 u64 other_start; 1087 u64 other_end; 1088 u64 split; 1089 int del_nr = 0; 1090 int del_slot = 0; 1091 int recow; 1092 int ret; 1093 u64 ino = btrfs_ino(inode); 1094 1095 path = btrfs_alloc_path(); 1096 if (!path) 1097 return -ENOMEM; 1098 again: 1099 recow = 0; 1100 split = start; 1101 key.objectid = ino; 1102 key.type = BTRFS_EXTENT_DATA_KEY; 1103 key.offset = split; 1104 1105 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1106 if (ret < 0) 1107 goto out; 1108 if (ret > 0 && path->slots[0] > 0) 1109 path->slots[0]--; 1110 1111 leaf = path->nodes[0]; 1112 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1113 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY); 1114 fi = btrfs_item_ptr(leaf, path->slots[0], 1115 struct btrfs_file_extent_item); 1116 BUG_ON(btrfs_file_extent_type(leaf, fi) != 1117 BTRFS_FILE_EXTENT_PREALLOC); 1118 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1119 BUG_ON(key.offset > start || extent_end < end); 1120 1121 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1122 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1123 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 1124 memcpy(&new_key, &key, sizeof(new_key)); 1125 1126 if (start == key.offset && end < extent_end) { 1127 other_start = 0; 1128 other_end = start; 1129 if (extent_mergeable(leaf, path->slots[0] - 1, 1130 ino, bytenr, orig_offset, 1131 &other_start, &other_end)) { 1132 new_key.offset = end; 1133 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 1134 fi = btrfs_item_ptr(leaf, path->slots[0], 1135 struct btrfs_file_extent_item); 1136 btrfs_set_file_extent_generation(leaf, fi, 1137 trans->transid); 1138 btrfs_set_file_extent_num_bytes(leaf, fi, 1139 extent_end - end); 1140 btrfs_set_file_extent_offset(leaf, fi, 1141 end - orig_offset); 1142 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1143 struct btrfs_file_extent_item); 1144 btrfs_set_file_extent_generation(leaf, fi, 1145 trans->transid); 1146 btrfs_set_file_extent_num_bytes(leaf, fi, 1147 end - other_start); 1148 btrfs_mark_buffer_dirty(leaf); 1149 goto out; 1150 } 1151 } 1152 1153 if (start > key.offset && end == extent_end) { 1154 other_start = end; 1155 other_end = 0; 1156 if (extent_mergeable(leaf, path->slots[0] + 1, 1157 ino, bytenr, orig_offset, 1158 &other_start, &other_end)) { 1159 fi = btrfs_item_ptr(leaf, path->slots[0], 1160 struct btrfs_file_extent_item); 1161 btrfs_set_file_extent_num_bytes(leaf, fi, 1162 start - key.offset); 1163 btrfs_set_file_extent_generation(leaf, fi, 1164 trans->transid); 1165 path->slots[0]++; 1166 new_key.offset = start; 1167 btrfs_set_item_key_safe(root->fs_info, path, &new_key); 1168 1169 fi = btrfs_item_ptr(leaf, path->slots[0], 1170 struct btrfs_file_extent_item); 1171 btrfs_set_file_extent_generation(leaf, fi, 1172 trans->transid); 1173 btrfs_set_file_extent_num_bytes(leaf, fi, 1174 other_end - start); 1175 btrfs_set_file_extent_offset(leaf, fi, 1176 start - orig_offset); 1177 btrfs_mark_buffer_dirty(leaf); 1178 goto out; 1179 } 1180 } 1181 1182 while (start > key.offset || end < extent_end) { 1183 if (key.offset == start) 1184 split = end; 1185 1186 new_key.offset = split; 1187 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1188 if (ret == -EAGAIN) { 1189 btrfs_release_path(path); 1190 goto again; 1191 } 1192 if (ret < 0) { 1193 btrfs_abort_transaction(trans, root, ret); 1194 goto out; 1195 } 1196 1197 leaf = path->nodes[0]; 1198 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1199 struct btrfs_file_extent_item); 1200 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1201 btrfs_set_file_extent_num_bytes(leaf, fi, 1202 split - key.offset); 1203 1204 fi = btrfs_item_ptr(leaf, path->slots[0], 1205 struct btrfs_file_extent_item); 1206 1207 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1208 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1209 btrfs_set_file_extent_num_bytes(leaf, fi, 1210 extent_end - split); 1211 btrfs_mark_buffer_dirty(leaf); 1212 1213 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, 1214 root->root_key.objectid, 1215 ino, orig_offset); 1216 BUG_ON(ret); /* -ENOMEM */ 1217 1218 if (split == start) { 1219 key.offset = start; 1220 } else { 1221 BUG_ON(start != key.offset); 1222 path->slots[0]--; 1223 extent_end = end; 1224 } 1225 recow = 1; 1226 } 1227 1228 other_start = end; 1229 other_end = 0; 1230 if (extent_mergeable(leaf, path->slots[0] + 1, 1231 ino, bytenr, orig_offset, 1232 &other_start, &other_end)) { 1233 if (recow) { 1234 btrfs_release_path(path); 1235 goto again; 1236 } 1237 extent_end = other_end; 1238 del_slot = path->slots[0] + 1; 1239 del_nr++; 1240 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1241 0, root->root_key.objectid, 1242 ino, orig_offset); 1243 BUG_ON(ret); /* -ENOMEM */ 1244 } 1245 other_start = 0; 1246 other_end = start; 1247 if (extent_mergeable(leaf, path->slots[0] - 1, 1248 ino, bytenr, orig_offset, 1249 &other_start, &other_end)) { 1250 if (recow) { 1251 btrfs_release_path(path); 1252 goto again; 1253 } 1254 key.offset = other_start; 1255 del_slot = path->slots[0]; 1256 del_nr++; 1257 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1258 0, root->root_key.objectid, 1259 ino, orig_offset); 1260 BUG_ON(ret); /* -ENOMEM */ 1261 } 1262 if (del_nr == 0) { 1263 fi = btrfs_item_ptr(leaf, path->slots[0], 1264 struct btrfs_file_extent_item); 1265 btrfs_set_file_extent_type(leaf, fi, 1266 BTRFS_FILE_EXTENT_REG); 1267 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1268 btrfs_mark_buffer_dirty(leaf); 1269 } else { 1270 fi = btrfs_item_ptr(leaf, del_slot - 1, 1271 struct btrfs_file_extent_item); 1272 btrfs_set_file_extent_type(leaf, fi, 1273 BTRFS_FILE_EXTENT_REG); 1274 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1275 btrfs_set_file_extent_num_bytes(leaf, fi, 1276 extent_end - key.offset); 1277 btrfs_mark_buffer_dirty(leaf); 1278 1279 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1280 if (ret < 0) { 1281 btrfs_abort_transaction(trans, root, ret); 1282 goto out; 1283 } 1284 } 1285 out: 1286 btrfs_free_path(path); 1287 return 0; 1288 } 1289 1290 /* 1291 * on error we return an unlocked page and the error value 1292 * on success we return a locked page and 0 1293 */ 1294 static int prepare_uptodate_page(struct inode *inode, 1295 struct page *page, u64 pos, 1296 bool force_uptodate) 1297 { 1298 int ret = 0; 1299 1300 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1301 !PageUptodate(page)) { 1302 ret = btrfs_readpage(NULL, page); 1303 if (ret) 1304 return ret; 1305 lock_page(page); 1306 if (!PageUptodate(page)) { 1307 unlock_page(page); 1308 return -EIO; 1309 } 1310 if (page->mapping != inode->i_mapping) { 1311 unlock_page(page); 1312 return -EAGAIN; 1313 } 1314 } 1315 return 0; 1316 } 1317 1318 /* 1319 * this just gets pages into the page cache and locks them down. 1320 */ 1321 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1322 size_t num_pages, loff_t pos, 1323 size_t write_bytes, bool force_uptodate) 1324 { 1325 int i; 1326 unsigned long index = pos >> PAGE_SHIFT; 1327 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1328 int err = 0; 1329 int faili; 1330 1331 for (i = 0; i < num_pages; i++) { 1332 again: 1333 pages[i] = find_or_create_page(inode->i_mapping, index + i, 1334 mask | __GFP_WRITE); 1335 if (!pages[i]) { 1336 faili = i - 1; 1337 err = -ENOMEM; 1338 goto fail; 1339 } 1340 1341 if (i == 0) 1342 err = prepare_uptodate_page(inode, pages[i], pos, 1343 force_uptodate); 1344 if (!err && i == num_pages - 1) 1345 err = prepare_uptodate_page(inode, pages[i], 1346 pos + write_bytes, false); 1347 if (err) { 1348 put_page(pages[i]); 1349 if (err == -EAGAIN) { 1350 err = 0; 1351 goto again; 1352 } 1353 faili = i - 1; 1354 goto fail; 1355 } 1356 wait_on_page_writeback(pages[i]); 1357 } 1358 1359 return 0; 1360 fail: 1361 while (faili >= 0) { 1362 unlock_page(pages[faili]); 1363 put_page(pages[faili]); 1364 faili--; 1365 } 1366 return err; 1367 1368 } 1369 1370 /* 1371 * This function locks the extent and properly waits for data=ordered extents 1372 * to finish before allowing the pages to be modified if need. 1373 * 1374 * The return value: 1375 * 1 - the extent is locked 1376 * 0 - the extent is not locked, and everything is OK 1377 * -EAGAIN - need re-prepare the pages 1378 * the other < 0 number - Something wrong happens 1379 */ 1380 static noinline int 1381 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages, 1382 size_t num_pages, loff_t pos, 1383 size_t write_bytes, 1384 u64 *lockstart, u64 *lockend, 1385 struct extent_state **cached_state) 1386 { 1387 struct btrfs_root *root = BTRFS_I(inode)->root; 1388 u64 start_pos; 1389 u64 last_pos; 1390 int i; 1391 int ret = 0; 1392 1393 start_pos = round_down(pos, root->sectorsize); 1394 last_pos = start_pos 1395 + round_up(pos + write_bytes - start_pos, root->sectorsize) - 1; 1396 1397 if (start_pos < inode->i_size) { 1398 struct btrfs_ordered_extent *ordered; 1399 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1400 start_pos, last_pos, cached_state); 1401 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1402 last_pos - start_pos + 1); 1403 if (ordered && 1404 ordered->file_offset + ordered->len > start_pos && 1405 ordered->file_offset <= last_pos) { 1406 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1407 start_pos, last_pos, 1408 cached_state, GFP_NOFS); 1409 for (i = 0; i < num_pages; i++) { 1410 unlock_page(pages[i]); 1411 put_page(pages[i]); 1412 } 1413 btrfs_start_ordered_extent(inode, ordered, 1); 1414 btrfs_put_ordered_extent(ordered); 1415 return -EAGAIN; 1416 } 1417 if (ordered) 1418 btrfs_put_ordered_extent(ordered); 1419 1420 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, 1421 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC | 1422 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1423 0, 0, cached_state, GFP_NOFS); 1424 *lockstart = start_pos; 1425 *lockend = last_pos; 1426 ret = 1; 1427 } 1428 1429 for (i = 0; i < num_pages; i++) { 1430 if (clear_page_dirty_for_io(pages[i])) 1431 account_page_redirty(pages[i]); 1432 set_page_extent_mapped(pages[i]); 1433 WARN_ON(!PageLocked(pages[i])); 1434 } 1435 1436 return ret; 1437 } 1438 1439 static noinline int check_can_nocow(struct inode *inode, loff_t pos, 1440 size_t *write_bytes) 1441 { 1442 struct btrfs_root *root = BTRFS_I(inode)->root; 1443 struct btrfs_ordered_extent *ordered; 1444 u64 lockstart, lockend; 1445 u64 num_bytes; 1446 int ret; 1447 1448 ret = btrfs_start_write_no_snapshoting(root); 1449 if (!ret) 1450 return -ENOSPC; 1451 1452 lockstart = round_down(pos, root->sectorsize); 1453 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1; 1454 1455 while (1) { 1456 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1457 ordered = btrfs_lookup_ordered_range(inode, lockstart, 1458 lockend - lockstart + 1); 1459 if (!ordered) { 1460 break; 1461 } 1462 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1463 btrfs_start_ordered_extent(inode, ordered, 1); 1464 btrfs_put_ordered_extent(ordered); 1465 } 1466 1467 num_bytes = lockend - lockstart + 1; 1468 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL); 1469 if (ret <= 0) { 1470 ret = 0; 1471 btrfs_end_write_no_snapshoting(root); 1472 } else { 1473 *write_bytes = min_t(size_t, *write_bytes , 1474 num_bytes - pos + lockstart); 1475 } 1476 1477 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend); 1478 1479 return ret; 1480 } 1481 1482 static noinline ssize_t __btrfs_buffered_write(struct file *file, 1483 struct iov_iter *i, 1484 loff_t pos) 1485 { 1486 struct inode *inode = file_inode(file); 1487 struct btrfs_root *root = BTRFS_I(inode)->root; 1488 struct page **pages = NULL; 1489 struct extent_state *cached_state = NULL; 1490 u64 release_bytes = 0; 1491 u64 lockstart; 1492 u64 lockend; 1493 size_t num_written = 0; 1494 int nrptrs; 1495 int ret = 0; 1496 bool only_release_metadata = false; 1497 bool force_page_uptodate = false; 1498 bool need_unlock; 1499 1500 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1501 PAGE_SIZE / (sizeof(struct page *))); 1502 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1503 nrptrs = max(nrptrs, 8); 1504 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1505 if (!pages) 1506 return -ENOMEM; 1507 1508 while (iov_iter_count(i) > 0) { 1509 size_t offset = pos & (PAGE_SIZE - 1); 1510 size_t sector_offset; 1511 size_t write_bytes = min(iov_iter_count(i), 1512 nrptrs * (size_t)PAGE_SIZE - 1513 offset); 1514 size_t num_pages = DIV_ROUND_UP(write_bytes + offset, 1515 PAGE_SIZE); 1516 size_t reserve_bytes; 1517 size_t dirty_pages; 1518 size_t copied; 1519 size_t dirty_sectors; 1520 size_t num_sectors; 1521 1522 WARN_ON(num_pages > nrptrs); 1523 1524 /* 1525 * Fault pages before locking them in prepare_pages 1526 * to avoid recursive lock 1527 */ 1528 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) { 1529 ret = -EFAULT; 1530 break; 1531 } 1532 1533 sector_offset = pos & (root->sectorsize - 1); 1534 reserve_bytes = round_up(write_bytes + sector_offset, 1535 root->sectorsize); 1536 1537 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | 1538 BTRFS_INODE_PREALLOC)) && 1539 check_can_nocow(inode, pos, &write_bytes) > 0) { 1540 /* 1541 * For nodata cow case, no need to reserve 1542 * data space. 1543 */ 1544 only_release_metadata = true; 1545 /* 1546 * our prealloc extent may be smaller than 1547 * write_bytes, so scale down. 1548 */ 1549 num_pages = DIV_ROUND_UP(write_bytes + offset, 1550 PAGE_SIZE); 1551 reserve_bytes = round_up(write_bytes + sector_offset, 1552 root->sectorsize); 1553 goto reserve_metadata; 1554 } 1555 1556 ret = btrfs_check_data_free_space(inode, pos, write_bytes); 1557 if (ret < 0) 1558 break; 1559 1560 reserve_metadata: 1561 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes); 1562 if (ret) { 1563 if (!only_release_metadata) 1564 btrfs_free_reserved_data_space(inode, pos, 1565 write_bytes); 1566 else 1567 btrfs_end_write_no_snapshoting(root); 1568 break; 1569 } 1570 1571 release_bytes = reserve_bytes; 1572 need_unlock = false; 1573 again: 1574 /* 1575 * This is going to setup the pages array with the number of 1576 * pages we want, so we don't really need to worry about the 1577 * contents of pages from loop to loop 1578 */ 1579 ret = prepare_pages(inode, pages, num_pages, 1580 pos, write_bytes, 1581 force_page_uptodate); 1582 if (ret) 1583 break; 1584 1585 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages, 1586 pos, write_bytes, &lockstart, 1587 &lockend, &cached_state); 1588 if (ret < 0) { 1589 if (ret == -EAGAIN) 1590 goto again; 1591 break; 1592 } else if (ret > 0) { 1593 need_unlock = true; 1594 ret = 0; 1595 } 1596 1597 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1598 1599 /* 1600 * if we have trouble faulting in the pages, fall 1601 * back to one page at a time 1602 */ 1603 if (copied < write_bytes) 1604 nrptrs = 1; 1605 1606 if (copied == 0) { 1607 force_page_uptodate = true; 1608 dirty_pages = 0; 1609 } else { 1610 force_page_uptodate = false; 1611 dirty_pages = DIV_ROUND_UP(copied + offset, 1612 PAGE_SIZE); 1613 } 1614 1615 /* 1616 * If we had a short copy we need to release the excess delaloc 1617 * bytes we reserved. We need to increment outstanding_extents 1618 * because btrfs_delalloc_release_space will decrement it, but 1619 * we still have an outstanding extent for the chunk we actually 1620 * managed to copy. 1621 */ 1622 num_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, 1623 reserve_bytes); 1624 dirty_sectors = round_up(copied + sector_offset, 1625 root->sectorsize); 1626 dirty_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, 1627 dirty_sectors); 1628 1629 if (num_sectors > dirty_sectors) { 1630 release_bytes = (write_bytes - copied) 1631 & ~((u64)root->sectorsize - 1); 1632 if (copied > 0) { 1633 spin_lock(&BTRFS_I(inode)->lock); 1634 BTRFS_I(inode)->outstanding_extents++; 1635 spin_unlock(&BTRFS_I(inode)->lock); 1636 } 1637 if (only_release_metadata) { 1638 btrfs_delalloc_release_metadata(inode, 1639 release_bytes); 1640 } else { 1641 u64 __pos; 1642 1643 __pos = round_down(pos, root->sectorsize) + 1644 (dirty_pages << PAGE_SHIFT); 1645 btrfs_delalloc_release_space(inode, __pos, 1646 release_bytes); 1647 } 1648 } 1649 1650 release_bytes = round_up(copied + sector_offset, 1651 root->sectorsize); 1652 1653 if (copied > 0) 1654 ret = btrfs_dirty_pages(root, inode, pages, 1655 dirty_pages, pos, copied, 1656 NULL); 1657 if (need_unlock) 1658 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1659 lockstart, lockend, &cached_state, 1660 GFP_NOFS); 1661 if (ret) { 1662 btrfs_drop_pages(pages, num_pages); 1663 break; 1664 } 1665 1666 release_bytes = 0; 1667 if (only_release_metadata) 1668 btrfs_end_write_no_snapshoting(root); 1669 1670 if (only_release_metadata && copied > 0) { 1671 lockstart = round_down(pos, root->sectorsize); 1672 lockend = round_up(pos + copied, root->sectorsize) - 1; 1673 1674 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 1675 lockend, EXTENT_NORESERVE, NULL, 1676 NULL, GFP_NOFS); 1677 only_release_metadata = false; 1678 } 1679 1680 btrfs_drop_pages(pages, num_pages); 1681 1682 cond_resched(); 1683 1684 balance_dirty_pages_ratelimited(inode->i_mapping); 1685 if (dirty_pages < (root->nodesize >> PAGE_SHIFT) + 1) 1686 btrfs_btree_balance_dirty(root); 1687 1688 pos += copied; 1689 num_written += copied; 1690 } 1691 1692 kfree(pages); 1693 1694 if (release_bytes) { 1695 if (only_release_metadata) { 1696 btrfs_end_write_no_snapshoting(root); 1697 btrfs_delalloc_release_metadata(inode, release_bytes); 1698 } else { 1699 btrfs_delalloc_release_space(inode, pos, release_bytes); 1700 } 1701 } 1702 1703 return num_written ? num_written : ret; 1704 } 1705 1706 static ssize_t __btrfs_direct_write(struct kiocb *iocb, 1707 struct iov_iter *from, 1708 loff_t pos) 1709 { 1710 struct file *file = iocb->ki_filp; 1711 struct inode *inode = file_inode(file); 1712 ssize_t written; 1713 ssize_t written_buffered; 1714 loff_t endbyte; 1715 int err; 1716 1717 written = generic_file_direct_write(iocb, from, pos); 1718 1719 if (written < 0 || !iov_iter_count(from)) 1720 return written; 1721 1722 pos += written; 1723 written_buffered = __btrfs_buffered_write(file, from, pos); 1724 if (written_buffered < 0) { 1725 err = written_buffered; 1726 goto out; 1727 } 1728 /* 1729 * Ensure all data is persisted. We want the next direct IO read to be 1730 * able to read what was just written. 1731 */ 1732 endbyte = pos + written_buffered - 1; 1733 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1734 if (err) 1735 goto out; 1736 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1737 if (err) 1738 goto out; 1739 written += written_buffered; 1740 iocb->ki_pos = pos + written_buffered; 1741 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1742 endbyte >> PAGE_SHIFT); 1743 out: 1744 return written ? written : err; 1745 } 1746 1747 static void update_time_for_write(struct inode *inode) 1748 { 1749 struct timespec now; 1750 1751 if (IS_NOCMTIME(inode)) 1752 return; 1753 1754 now = current_fs_time(inode->i_sb); 1755 if (!timespec_equal(&inode->i_mtime, &now)) 1756 inode->i_mtime = now; 1757 1758 if (!timespec_equal(&inode->i_ctime, &now)) 1759 inode->i_ctime = now; 1760 1761 if (IS_I_VERSION(inode)) 1762 inode_inc_iversion(inode); 1763 } 1764 1765 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, 1766 struct iov_iter *from) 1767 { 1768 struct file *file = iocb->ki_filp; 1769 struct inode *inode = file_inode(file); 1770 struct btrfs_root *root = BTRFS_I(inode)->root; 1771 u64 start_pos; 1772 u64 end_pos; 1773 ssize_t num_written = 0; 1774 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host); 1775 ssize_t err; 1776 loff_t pos; 1777 size_t count; 1778 loff_t oldsize; 1779 int clean_page = 0; 1780 1781 inode_lock(inode); 1782 err = generic_write_checks(iocb, from); 1783 if (err <= 0) { 1784 inode_unlock(inode); 1785 return err; 1786 } 1787 1788 current->backing_dev_info = inode_to_bdi(inode); 1789 err = file_remove_privs(file); 1790 if (err) { 1791 inode_unlock(inode); 1792 goto out; 1793 } 1794 1795 /* 1796 * If BTRFS flips readonly due to some impossible error 1797 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR), 1798 * although we have opened a file as writable, we have 1799 * to stop this write operation to ensure FS consistency. 1800 */ 1801 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 1802 inode_unlock(inode); 1803 err = -EROFS; 1804 goto out; 1805 } 1806 1807 /* 1808 * We reserve space for updating the inode when we reserve space for the 1809 * extent we are going to write, so we will enospc out there. We don't 1810 * need to start yet another transaction to update the inode as we will 1811 * update the inode when we finish writing whatever data we write. 1812 */ 1813 update_time_for_write(inode); 1814 1815 pos = iocb->ki_pos; 1816 count = iov_iter_count(from); 1817 start_pos = round_down(pos, root->sectorsize); 1818 oldsize = i_size_read(inode); 1819 if (start_pos > oldsize) { 1820 /* Expand hole size to cover write data, preventing empty gap */ 1821 end_pos = round_up(pos + count, root->sectorsize); 1822 err = btrfs_cont_expand(inode, oldsize, end_pos); 1823 if (err) { 1824 inode_unlock(inode); 1825 goto out; 1826 } 1827 if (start_pos > round_up(oldsize, root->sectorsize)) 1828 clean_page = 1; 1829 } 1830 1831 if (sync) 1832 atomic_inc(&BTRFS_I(inode)->sync_writers); 1833 1834 if (iocb->ki_flags & IOCB_DIRECT) { 1835 num_written = __btrfs_direct_write(iocb, from, pos); 1836 } else { 1837 num_written = __btrfs_buffered_write(file, from, pos); 1838 if (num_written > 0) 1839 iocb->ki_pos = pos + num_written; 1840 if (clean_page) 1841 pagecache_isize_extended(inode, oldsize, 1842 i_size_read(inode)); 1843 } 1844 1845 inode_unlock(inode); 1846 1847 /* 1848 * We also have to set last_sub_trans to the current log transid, 1849 * otherwise subsequent syncs to a file that's been synced in this 1850 * transaction will appear to have already occurred. 1851 */ 1852 spin_lock(&BTRFS_I(inode)->lock); 1853 BTRFS_I(inode)->last_sub_trans = root->log_transid; 1854 spin_unlock(&BTRFS_I(inode)->lock); 1855 if (num_written > 0) { 1856 err = generic_write_sync(file, pos, num_written); 1857 if (err < 0) 1858 num_written = err; 1859 } 1860 1861 if (sync) 1862 atomic_dec(&BTRFS_I(inode)->sync_writers); 1863 out: 1864 current->backing_dev_info = NULL; 1865 return num_written ? num_written : err; 1866 } 1867 1868 int btrfs_release_file(struct inode *inode, struct file *filp) 1869 { 1870 if (filp->private_data) 1871 btrfs_ioctl_trans_end(filp); 1872 /* 1873 * ordered_data_close is set by settattr when we are about to truncate 1874 * a file from a non-zero size to a zero size. This tries to 1875 * flush down new bytes that may have been written if the 1876 * application were using truncate to replace a file in place. 1877 */ 1878 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 1879 &BTRFS_I(inode)->runtime_flags)) 1880 filemap_flush(inode->i_mapping); 1881 return 0; 1882 } 1883 1884 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 1885 { 1886 int ret; 1887 1888 atomic_inc(&BTRFS_I(inode)->sync_writers); 1889 ret = btrfs_fdatawrite_range(inode, start, end); 1890 atomic_dec(&BTRFS_I(inode)->sync_writers); 1891 1892 return ret; 1893 } 1894 1895 /* 1896 * fsync call for both files and directories. This logs the inode into 1897 * the tree log instead of forcing full commits whenever possible. 1898 * 1899 * It needs to call filemap_fdatawait so that all ordered extent updates are 1900 * in the metadata btree are up to date for copying to the log. 1901 * 1902 * It drops the inode mutex before doing the tree log commit. This is an 1903 * important optimization for directories because holding the mutex prevents 1904 * new operations on the dir while we write to disk. 1905 */ 1906 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 1907 { 1908 struct dentry *dentry = file_dentry(file); 1909 struct inode *inode = d_inode(dentry); 1910 struct btrfs_root *root = BTRFS_I(inode)->root; 1911 struct btrfs_trans_handle *trans; 1912 struct btrfs_log_ctx ctx; 1913 int ret = 0; 1914 bool full_sync = 0; 1915 u64 len; 1916 1917 /* 1918 * The range length can be represented by u64, we have to do the typecasts 1919 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync() 1920 */ 1921 len = (u64)end - (u64)start + 1; 1922 trace_btrfs_sync_file(file, datasync); 1923 1924 /* 1925 * We write the dirty pages in the range and wait until they complete 1926 * out of the ->i_mutex. If so, we can flush the dirty pages by 1927 * multi-task, and make the performance up. See 1928 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 1929 */ 1930 ret = start_ordered_ops(inode, start, end); 1931 if (ret) 1932 return ret; 1933 1934 inode_lock(inode); 1935 atomic_inc(&root->log_batch); 1936 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 1937 &BTRFS_I(inode)->runtime_flags); 1938 /* 1939 * We might have have had more pages made dirty after calling 1940 * start_ordered_ops and before acquiring the inode's i_mutex. 1941 */ 1942 if (full_sync) { 1943 /* 1944 * For a full sync, we need to make sure any ordered operations 1945 * start and finish before we start logging the inode, so that 1946 * all extents are persisted and the respective file extent 1947 * items are in the fs/subvol btree. 1948 */ 1949 ret = btrfs_wait_ordered_range(inode, start, len); 1950 } else { 1951 /* 1952 * Start any new ordered operations before starting to log the 1953 * inode. We will wait for them to finish in btrfs_sync_log(). 1954 * 1955 * Right before acquiring the inode's mutex, we might have new 1956 * writes dirtying pages, which won't immediately start the 1957 * respective ordered operations - that is done through the 1958 * fill_delalloc callbacks invoked from the writepage and 1959 * writepages address space operations. So make sure we start 1960 * all ordered operations before starting to log our inode. Not 1961 * doing this means that while logging the inode, writeback 1962 * could start and invoke writepage/writepages, which would call 1963 * the fill_delalloc callbacks (cow_file_range, 1964 * submit_compressed_extents). These callbacks add first an 1965 * extent map to the modified list of extents and then create 1966 * the respective ordered operation, which means in 1967 * tree-log.c:btrfs_log_inode() we might capture all existing 1968 * ordered operations (with btrfs_get_logged_extents()) before 1969 * the fill_delalloc callback adds its ordered operation, and by 1970 * the time we visit the modified list of extent maps (with 1971 * btrfs_log_changed_extents()), we see and process the extent 1972 * map they created. We then use the extent map to construct a 1973 * file extent item for logging without waiting for the 1974 * respective ordered operation to finish - this file extent 1975 * item points to a disk location that might not have yet been 1976 * written to, containing random data - so after a crash a log 1977 * replay will make our inode have file extent items that point 1978 * to disk locations containing invalid data, as we returned 1979 * success to userspace without waiting for the respective 1980 * ordered operation to finish, because it wasn't captured by 1981 * btrfs_get_logged_extents(). 1982 */ 1983 ret = start_ordered_ops(inode, start, end); 1984 } 1985 if (ret) { 1986 inode_unlock(inode); 1987 goto out; 1988 } 1989 atomic_inc(&root->log_batch); 1990 1991 /* 1992 * If the last transaction that changed this file was before the current 1993 * transaction and we have the full sync flag set in our inode, we can 1994 * bail out now without any syncing. 1995 * 1996 * Note that we can't bail out if the full sync flag isn't set. This is 1997 * because when the full sync flag is set we start all ordered extents 1998 * and wait for them to fully complete - when they complete they update 1999 * the inode's last_trans field through: 2000 * 2001 * btrfs_finish_ordered_io() -> 2002 * btrfs_update_inode_fallback() -> 2003 * btrfs_update_inode() -> 2004 * btrfs_set_inode_last_trans() 2005 * 2006 * So we are sure that last_trans is up to date and can do this check to 2007 * bail out safely. For the fast path, when the full sync flag is not 2008 * set in our inode, we can not do it because we start only our ordered 2009 * extents and don't wait for them to complete (that is when 2010 * btrfs_finish_ordered_io runs), so here at this point their last_trans 2011 * value might be less than or equals to fs_info->last_trans_committed, 2012 * and setting a speculative last_trans for an inode when a buffered 2013 * write is made (such as fs_info->generation + 1 for example) would not 2014 * be reliable since after setting the value and before fsync is called 2015 * any number of transactions can start and commit (transaction kthread 2016 * commits the current transaction periodically), and a transaction 2017 * commit does not start nor waits for ordered extents to complete. 2018 */ 2019 smp_mb(); 2020 if (btrfs_inode_in_log(inode, root->fs_info->generation) || 2021 (full_sync && BTRFS_I(inode)->last_trans <= 2022 root->fs_info->last_trans_committed) || 2023 (!btrfs_have_ordered_extents_in_range(inode, start, len) && 2024 BTRFS_I(inode)->last_trans 2025 <= root->fs_info->last_trans_committed)) { 2026 /* 2027 * We'v had everything committed since the last time we were 2028 * modified so clear this flag in case it was set for whatever 2029 * reason, it's no longer relevant. 2030 */ 2031 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2032 &BTRFS_I(inode)->runtime_flags); 2033 inode_unlock(inode); 2034 goto out; 2035 } 2036 2037 /* 2038 * ok we haven't committed the transaction yet, lets do a commit 2039 */ 2040 if (file->private_data) 2041 btrfs_ioctl_trans_end(file); 2042 2043 /* 2044 * We use start here because we will need to wait on the IO to complete 2045 * in btrfs_sync_log, which could require joining a transaction (for 2046 * example checking cross references in the nocow path). If we use join 2047 * here we could get into a situation where we're waiting on IO to 2048 * happen that is blocked on a transaction trying to commit. With start 2049 * we inc the extwriter counter, so we wait for all extwriters to exit 2050 * before we start blocking join'ers. This comment is to keep somebody 2051 * from thinking they are super smart and changing this to 2052 * btrfs_join_transaction *cough*Josef*cough*. 2053 */ 2054 trans = btrfs_start_transaction(root, 0); 2055 if (IS_ERR(trans)) { 2056 ret = PTR_ERR(trans); 2057 inode_unlock(inode); 2058 goto out; 2059 } 2060 trans->sync = true; 2061 2062 btrfs_init_log_ctx(&ctx); 2063 2064 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx); 2065 if (ret < 0) { 2066 /* Fallthrough and commit/free transaction. */ 2067 ret = 1; 2068 } 2069 2070 /* we've logged all the items and now have a consistent 2071 * version of the file in the log. It is possible that 2072 * someone will come in and modify the file, but that's 2073 * fine because the log is consistent on disk, and we 2074 * have references to all of the file's extents 2075 * 2076 * It is possible that someone will come in and log the 2077 * file again, but that will end up using the synchronization 2078 * inside btrfs_sync_log to keep things safe. 2079 */ 2080 inode_unlock(inode); 2081 2082 /* 2083 * If any of the ordered extents had an error, just return it to user 2084 * space, so that the application knows some writes didn't succeed and 2085 * can take proper action (retry for e.g.). Blindly committing the 2086 * transaction in this case, would fool userspace that everything was 2087 * successful. And we also want to make sure our log doesn't contain 2088 * file extent items pointing to extents that weren't fully written to - 2089 * just like in the non fast fsync path, where we check for the ordered 2090 * operation's error flag before writing to the log tree and return -EIO 2091 * if any of them had this flag set (btrfs_wait_ordered_range) - 2092 * therefore we need to check for errors in the ordered operations, 2093 * which are indicated by ctx.io_err. 2094 */ 2095 if (ctx.io_err) { 2096 btrfs_end_transaction(trans, root); 2097 ret = ctx.io_err; 2098 goto out; 2099 } 2100 2101 if (ret != BTRFS_NO_LOG_SYNC) { 2102 if (!ret) { 2103 ret = btrfs_sync_log(trans, root, &ctx); 2104 if (!ret) { 2105 ret = btrfs_end_transaction(trans, root); 2106 goto out; 2107 } 2108 } 2109 if (!full_sync) { 2110 ret = btrfs_wait_ordered_range(inode, start, len); 2111 if (ret) { 2112 btrfs_end_transaction(trans, root); 2113 goto out; 2114 } 2115 } 2116 ret = btrfs_commit_transaction(trans, root); 2117 } else { 2118 ret = btrfs_end_transaction(trans, root); 2119 } 2120 out: 2121 return ret > 0 ? -EIO : ret; 2122 } 2123 2124 static const struct vm_operations_struct btrfs_file_vm_ops = { 2125 .fault = filemap_fault, 2126 .map_pages = filemap_map_pages, 2127 .page_mkwrite = btrfs_page_mkwrite, 2128 }; 2129 2130 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2131 { 2132 struct address_space *mapping = filp->f_mapping; 2133 2134 if (!mapping->a_ops->readpage) 2135 return -ENOEXEC; 2136 2137 file_accessed(filp); 2138 vma->vm_ops = &btrfs_file_vm_ops; 2139 2140 return 0; 2141 } 2142 2143 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf, 2144 int slot, u64 start, u64 end) 2145 { 2146 struct btrfs_file_extent_item *fi; 2147 struct btrfs_key key; 2148 2149 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2150 return 0; 2151 2152 btrfs_item_key_to_cpu(leaf, &key, slot); 2153 if (key.objectid != btrfs_ino(inode) || 2154 key.type != BTRFS_EXTENT_DATA_KEY) 2155 return 0; 2156 2157 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2158 2159 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2160 return 0; 2161 2162 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2163 return 0; 2164 2165 if (key.offset == end) 2166 return 1; 2167 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2168 return 1; 2169 return 0; 2170 } 2171 2172 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode, 2173 struct btrfs_path *path, u64 offset, u64 end) 2174 { 2175 struct btrfs_root *root = BTRFS_I(inode)->root; 2176 struct extent_buffer *leaf; 2177 struct btrfs_file_extent_item *fi; 2178 struct extent_map *hole_em; 2179 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2180 struct btrfs_key key; 2181 int ret; 2182 2183 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) 2184 goto out; 2185 2186 key.objectid = btrfs_ino(inode); 2187 key.type = BTRFS_EXTENT_DATA_KEY; 2188 key.offset = offset; 2189 2190 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2191 if (ret < 0) 2192 return ret; 2193 BUG_ON(!ret); 2194 2195 leaf = path->nodes[0]; 2196 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) { 2197 u64 num_bytes; 2198 2199 path->slots[0]--; 2200 fi = btrfs_item_ptr(leaf, path->slots[0], 2201 struct btrfs_file_extent_item); 2202 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2203 end - offset; 2204 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2205 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2206 btrfs_set_file_extent_offset(leaf, fi, 0); 2207 btrfs_mark_buffer_dirty(leaf); 2208 goto out; 2209 } 2210 2211 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2212 u64 num_bytes; 2213 2214 key.offset = offset; 2215 btrfs_set_item_key_safe(root->fs_info, path, &key); 2216 fi = btrfs_item_ptr(leaf, path->slots[0], 2217 struct btrfs_file_extent_item); 2218 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2219 offset; 2220 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2221 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2222 btrfs_set_file_extent_offset(leaf, fi, 0); 2223 btrfs_mark_buffer_dirty(leaf); 2224 goto out; 2225 } 2226 btrfs_release_path(path); 2227 2228 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 2229 0, 0, end - offset, 0, end - offset, 2230 0, 0, 0); 2231 if (ret) 2232 return ret; 2233 2234 out: 2235 btrfs_release_path(path); 2236 2237 hole_em = alloc_extent_map(); 2238 if (!hole_em) { 2239 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2240 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2241 &BTRFS_I(inode)->runtime_flags); 2242 } else { 2243 hole_em->start = offset; 2244 hole_em->len = end - offset; 2245 hole_em->ram_bytes = hole_em->len; 2246 hole_em->orig_start = offset; 2247 2248 hole_em->block_start = EXTENT_MAP_HOLE; 2249 hole_em->block_len = 0; 2250 hole_em->orig_block_len = 0; 2251 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 2252 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2253 hole_em->generation = trans->transid; 2254 2255 do { 2256 btrfs_drop_extent_cache(inode, offset, end - 1, 0); 2257 write_lock(&em_tree->lock); 2258 ret = add_extent_mapping(em_tree, hole_em, 1); 2259 write_unlock(&em_tree->lock); 2260 } while (ret == -EEXIST); 2261 free_extent_map(hole_em); 2262 if (ret) 2263 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2264 &BTRFS_I(inode)->runtime_flags); 2265 } 2266 2267 return 0; 2268 } 2269 2270 /* 2271 * Find a hole extent on given inode and change start/len to the end of hole 2272 * extent.(hole/vacuum extent whose em->start <= start && 2273 * em->start + em->len > start) 2274 * When a hole extent is found, return 1 and modify start/len. 2275 */ 2276 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len) 2277 { 2278 struct extent_map *em; 2279 int ret = 0; 2280 2281 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0); 2282 if (IS_ERR_OR_NULL(em)) { 2283 if (!em) 2284 ret = -ENOMEM; 2285 else 2286 ret = PTR_ERR(em); 2287 return ret; 2288 } 2289 2290 /* Hole or vacuum extent(only exists in no-hole mode) */ 2291 if (em->block_start == EXTENT_MAP_HOLE) { 2292 ret = 1; 2293 *len = em->start + em->len > *start + *len ? 2294 0 : *start + *len - em->start - em->len; 2295 *start = em->start + em->len; 2296 } 2297 free_extent_map(em); 2298 return ret; 2299 } 2300 2301 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 2302 { 2303 struct btrfs_root *root = BTRFS_I(inode)->root; 2304 struct extent_state *cached_state = NULL; 2305 struct btrfs_path *path; 2306 struct btrfs_block_rsv *rsv; 2307 struct btrfs_trans_handle *trans; 2308 u64 lockstart; 2309 u64 lockend; 2310 u64 tail_start; 2311 u64 tail_len; 2312 u64 orig_start = offset; 2313 u64 cur_offset; 2314 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 2315 u64 drop_end; 2316 int ret = 0; 2317 int err = 0; 2318 unsigned int rsv_count; 2319 bool same_block; 2320 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES); 2321 u64 ino_size; 2322 bool truncated_block = false; 2323 bool updated_inode = false; 2324 2325 ret = btrfs_wait_ordered_range(inode, offset, len); 2326 if (ret) 2327 return ret; 2328 2329 inode_lock(inode); 2330 ino_size = round_up(inode->i_size, root->sectorsize); 2331 ret = find_first_non_hole(inode, &offset, &len); 2332 if (ret < 0) 2333 goto out_only_mutex; 2334 if (ret && !len) { 2335 /* Already in a large hole */ 2336 ret = 0; 2337 goto out_only_mutex; 2338 } 2339 2340 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize); 2341 lockend = round_down(offset + len, 2342 BTRFS_I(inode)->root->sectorsize) - 1; 2343 same_block = (BTRFS_BYTES_TO_BLKS(root->fs_info, offset)) 2344 == (BTRFS_BYTES_TO_BLKS(root->fs_info, offset + len - 1)); 2345 /* 2346 * We needn't truncate any block which is beyond the end of the file 2347 * because we are sure there is no data there. 2348 */ 2349 /* 2350 * Only do this if we are in the same block and we aren't doing the 2351 * entire block. 2352 */ 2353 if (same_block && len < root->sectorsize) { 2354 if (offset < ino_size) { 2355 truncated_block = true; 2356 ret = btrfs_truncate_block(inode, offset, len, 0); 2357 } else { 2358 ret = 0; 2359 } 2360 goto out_only_mutex; 2361 } 2362 2363 /* zero back part of the first block */ 2364 if (offset < ino_size) { 2365 truncated_block = true; 2366 ret = btrfs_truncate_block(inode, offset, 0, 0); 2367 if (ret) { 2368 inode_unlock(inode); 2369 return ret; 2370 } 2371 } 2372 2373 /* Check the aligned pages after the first unaligned page, 2374 * if offset != orig_start, which means the first unaligned page 2375 * including serveral following pages are already in holes, 2376 * the extra check can be skipped */ 2377 if (offset == orig_start) { 2378 /* after truncate page, check hole again */ 2379 len = offset + len - lockstart; 2380 offset = lockstart; 2381 ret = find_first_non_hole(inode, &offset, &len); 2382 if (ret < 0) 2383 goto out_only_mutex; 2384 if (ret && !len) { 2385 ret = 0; 2386 goto out_only_mutex; 2387 } 2388 lockstart = offset; 2389 } 2390 2391 /* Check the tail unaligned part is in a hole */ 2392 tail_start = lockend + 1; 2393 tail_len = offset + len - tail_start; 2394 if (tail_len) { 2395 ret = find_first_non_hole(inode, &tail_start, &tail_len); 2396 if (unlikely(ret < 0)) 2397 goto out_only_mutex; 2398 if (!ret) { 2399 /* zero the front end of the last page */ 2400 if (tail_start + tail_len < ino_size) { 2401 truncated_block = true; 2402 ret = btrfs_truncate_block(inode, 2403 tail_start + tail_len, 2404 0, 1); 2405 if (ret) 2406 goto out_only_mutex; 2407 } 2408 } 2409 } 2410 2411 if (lockend < lockstart) { 2412 ret = 0; 2413 goto out_only_mutex; 2414 } 2415 2416 while (1) { 2417 struct btrfs_ordered_extent *ordered; 2418 2419 truncate_pagecache_range(inode, lockstart, lockend); 2420 2421 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2422 &cached_state); 2423 ordered = btrfs_lookup_first_ordered_extent(inode, lockend); 2424 2425 /* 2426 * We need to make sure we have no ordered extents in this range 2427 * and nobody raced in and read a page in this range, if we did 2428 * we need to try again. 2429 */ 2430 if ((!ordered || 2431 (ordered->file_offset + ordered->len <= lockstart || 2432 ordered->file_offset > lockend)) && 2433 !btrfs_page_exists_in_range(inode, lockstart, lockend)) { 2434 if (ordered) 2435 btrfs_put_ordered_extent(ordered); 2436 break; 2437 } 2438 if (ordered) 2439 btrfs_put_ordered_extent(ordered); 2440 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 2441 lockend, &cached_state, GFP_NOFS); 2442 ret = btrfs_wait_ordered_range(inode, lockstart, 2443 lockend - lockstart + 1); 2444 if (ret) { 2445 inode_unlock(inode); 2446 return ret; 2447 } 2448 } 2449 2450 path = btrfs_alloc_path(); 2451 if (!path) { 2452 ret = -ENOMEM; 2453 goto out; 2454 } 2455 2456 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2457 if (!rsv) { 2458 ret = -ENOMEM; 2459 goto out_free; 2460 } 2461 rsv->size = btrfs_calc_trunc_metadata_size(root, 1); 2462 rsv->failfast = 1; 2463 2464 /* 2465 * 1 - update the inode 2466 * 1 - removing the extents in the range 2467 * 1 - adding the hole extent if no_holes isn't set 2468 */ 2469 rsv_count = no_holes ? 2 : 3; 2470 trans = btrfs_start_transaction(root, rsv_count); 2471 if (IS_ERR(trans)) { 2472 err = PTR_ERR(trans); 2473 goto out_free; 2474 } 2475 2476 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 2477 min_size); 2478 BUG_ON(ret); 2479 trans->block_rsv = rsv; 2480 2481 cur_offset = lockstart; 2482 len = lockend - cur_offset; 2483 while (cur_offset < lockend) { 2484 ret = __btrfs_drop_extents(trans, root, inode, path, 2485 cur_offset, lockend + 1, 2486 &drop_end, 1, 0, 0, NULL); 2487 if (ret != -ENOSPC) 2488 break; 2489 2490 trans->block_rsv = &root->fs_info->trans_block_rsv; 2491 2492 if (cur_offset < ino_size) { 2493 ret = fill_holes(trans, inode, path, cur_offset, 2494 drop_end); 2495 if (ret) { 2496 err = ret; 2497 break; 2498 } 2499 } 2500 2501 cur_offset = drop_end; 2502 2503 ret = btrfs_update_inode(trans, root, inode); 2504 if (ret) { 2505 err = ret; 2506 break; 2507 } 2508 2509 btrfs_end_transaction(trans, root); 2510 btrfs_btree_balance_dirty(root); 2511 2512 trans = btrfs_start_transaction(root, rsv_count); 2513 if (IS_ERR(trans)) { 2514 ret = PTR_ERR(trans); 2515 trans = NULL; 2516 break; 2517 } 2518 2519 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 2520 rsv, min_size); 2521 BUG_ON(ret); /* shouldn't happen */ 2522 trans->block_rsv = rsv; 2523 2524 ret = find_first_non_hole(inode, &cur_offset, &len); 2525 if (unlikely(ret < 0)) 2526 break; 2527 if (ret && !len) { 2528 ret = 0; 2529 break; 2530 } 2531 } 2532 2533 if (ret) { 2534 err = ret; 2535 goto out_trans; 2536 } 2537 2538 trans->block_rsv = &root->fs_info->trans_block_rsv; 2539 /* 2540 * If we are using the NO_HOLES feature we might have had already an 2541 * hole that overlaps a part of the region [lockstart, lockend] and 2542 * ends at (or beyond) lockend. Since we have no file extent items to 2543 * represent holes, drop_end can be less than lockend and so we must 2544 * make sure we have an extent map representing the existing hole (the 2545 * call to __btrfs_drop_extents() might have dropped the existing extent 2546 * map representing the existing hole), otherwise the fast fsync path 2547 * will not record the existence of the hole region 2548 * [existing_hole_start, lockend]. 2549 */ 2550 if (drop_end <= lockend) 2551 drop_end = lockend + 1; 2552 /* 2553 * Don't insert file hole extent item if it's for a range beyond eof 2554 * (because it's useless) or if it represents a 0 bytes range (when 2555 * cur_offset == drop_end). 2556 */ 2557 if (cur_offset < ino_size && cur_offset < drop_end) { 2558 ret = fill_holes(trans, inode, path, cur_offset, drop_end); 2559 if (ret) { 2560 err = ret; 2561 goto out_trans; 2562 } 2563 } 2564 2565 out_trans: 2566 if (!trans) 2567 goto out_free; 2568 2569 inode_inc_iversion(inode); 2570 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 2571 2572 trans->block_rsv = &root->fs_info->trans_block_rsv; 2573 ret = btrfs_update_inode(trans, root, inode); 2574 updated_inode = true; 2575 btrfs_end_transaction(trans, root); 2576 btrfs_btree_balance_dirty(root); 2577 out_free: 2578 btrfs_free_path(path); 2579 btrfs_free_block_rsv(root, rsv); 2580 out: 2581 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2582 &cached_state, GFP_NOFS); 2583 out_only_mutex: 2584 if (!updated_inode && truncated_block && !ret && !err) { 2585 /* 2586 * If we only end up zeroing part of a page, we still need to 2587 * update the inode item, so that all the time fields are 2588 * updated as well as the necessary btrfs inode in memory fields 2589 * for detecting, at fsync time, if the inode isn't yet in the 2590 * log tree or it's there but not up to date. 2591 */ 2592 trans = btrfs_start_transaction(root, 1); 2593 if (IS_ERR(trans)) { 2594 err = PTR_ERR(trans); 2595 } else { 2596 err = btrfs_update_inode(trans, root, inode); 2597 ret = btrfs_end_transaction(trans, root); 2598 } 2599 } 2600 inode_unlock(inode); 2601 if (ret && !err) 2602 err = ret; 2603 return err; 2604 } 2605 2606 /* Helper structure to record which range is already reserved */ 2607 struct falloc_range { 2608 struct list_head list; 2609 u64 start; 2610 u64 len; 2611 }; 2612 2613 /* 2614 * Helper function to add falloc range 2615 * 2616 * Caller should have locked the larger range of extent containing 2617 * [start, len) 2618 */ 2619 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 2620 { 2621 struct falloc_range *prev = NULL; 2622 struct falloc_range *range = NULL; 2623 2624 if (list_empty(head)) 2625 goto insert; 2626 2627 /* 2628 * As fallocate iterate by bytenr order, we only need to check 2629 * the last range. 2630 */ 2631 prev = list_entry(head->prev, struct falloc_range, list); 2632 if (prev->start + prev->len == start) { 2633 prev->len += len; 2634 return 0; 2635 } 2636 insert: 2637 range = kmalloc(sizeof(*range), GFP_KERNEL); 2638 if (!range) 2639 return -ENOMEM; 2640 range->start = start; 2641 range->len = len; 2642 list_add_tail(&range->list, head); 2643 return 0; 2644 } 2645 2646 static long btrfs_fallocate(struct file *file, int mode, 2647 loff_t offset, loff_t len) 2648 { 2649 struct inode *inode = file_inode(file); 2650 struct extent_state *cached_state = NULL; 2651 struct falloc_range *range; 2652 struct falloc_range *tmp; 2653 struct list_head reserve_list; 2654 u64 cur_offset; 2655 u64 last_byte; 2656 u64 alloc_start; 2657 u64 alloc_end; 2658 u64 alloc_hint = 0; 2659 u64 locked_end; 2660 u64 actual_end = 0; 2661 struct extent_map *em; 2662 int blocksize = BTRFS_I(inode)->root->sectorsize; 2663 int ret; 2664 2665 alloc_start = round_down(offset, blocksize); 2666 alloc_end = round_up(offset + len, blocksize); 2667 2668 /* Make sure we aren't being give some crap mode */ 2669 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2670 return -EOPNOTSUPP; 2671 2672 if (mode & FALLOC_FL_PUNCH_HOLE) 2673 return btrfs_punch_hole(inode, offset, len); 2674 2675 /* 2676 * Only trigger disk allocation, don't trigger qgroup reserve 2677 * 2678 * For qgroup space, it will be checked later. 2679 */ 2680 ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start); 2681 if (ret < 0) 2682 return ret; 2683 2684 inode_lock(inode); 2685 2686 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 2687 ret = inode_newsize_ok(inode, offset + len); 2688 if (ret) 2689 goto out; 2690 } 2691 2692 /* 2693 * TODO: Move these two operations after we have checked 2694 * accurate reserved space, or fallocate can still fail but 2695 * with page truncated or size expanded. 2696 * 2697 * But that's a minor problem and won't do much harm BTW. 2698 */ 2699 if (alloc_start > inode->i_size) { 2700 ret = btrfs_cont_expand(inode, i_size_read(inode), 2701 alloc_start); 2702 if (ret) 2703 goto out; 2704 } else if (offset + len > inode->i_size) { 2705 /* 2706 * If we are fallocating from the end of the file onward we 2707 * need to zero out the end of the block if i_size lands in the 2708 * middle of a block. 2709 */ 2710 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 2711 if (ret) 2712 goto out; 2713 } 2714 2715 /* 2716 * wait for ordered IO before we have any locks. We'll loop again 2717 * below with the locks held. 2718 */ 2719 ret = btrfs_wait_ordered_range(inode, alloc_start, 2720 alloc_end - alloc_start); 2721 if (ret) 2722 goto out; 2723 2724 locked_end = alloc_end - 1; 2725 while (1) { 2726 struct btrfs_ordered_extent *ordered; 2727 2728 /* the extent lock is ordered inside the running 2729 * transaction 2730 */ 2731 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 2732 locked_end, &cached_state); 2733 ordered = btrfs_lookup_first_ordered_extent(inode, 2734 alloc_end - 1); 2735 if (ordered && 2736 ordered->file_offset + ordered->len > alloc_start && 2737 ordered->file_offset < alloc_end) { 2738 btrfs_put_ordered_extent(ordered); 2739 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 2740 alloc_start, locked_end, 2741 &cached_state, GFP_KERNEL); 2742 /* 2743 * we can't wait on the range with the transaction 2744 * running or with the extent lock held 2745 */ 2746 ret = btrfs_wait_ordered_range(inode, alloc_start, 2747 alloc_end - alloc_start); 2748 if (ret) 2749 goto out; 2750 } else { 2751 if (ordered) 2752 btrfs_put_ordered_extent(ordered); 2753 break; 2754 } 2755 } 2756 2757 /* First, check if we exceed the qgroup limit */ 2758 INIT_LIST_HEAD(&reserve_list); 2759 cur_offset = alloc_start; 2760 while (1) { 2761 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2762 alloc_end - cur_offset, 0); 2763 if (IS_ERR_OR_NULL(em)) { 2764 if (!em) 2765 ret = -ENOMEM; 2766 else 2767 ret = PTR_ERR(em); 2768 break; 2769 } 2770 last_byte = min(extent_map_end(em), alloc_end); 2771 actual_end = min_t(u64, extent_map_end(em), offset + len); 2772 last_byte = ALIGN(last_byte, blocksize); 2773 if (em->block_start == EXTENT_MAP_HOLE || 2774 (cur_offset >= inode->i_size && 2775 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 2776 ret = add_falloc_range(&reserve_list, cur_offset, 2777 last_byte - cur_offset); 2778 if (ret < 0) { 2779 free_extent_map(em); 2780 break; 2781 } 2782 ret = btrfs_qgroup_reserve_data(inode, cur_offset, 2783 last_byte - cur_offset); 2784 if (ret < 0) 2785 break; 2786 } 2787 free_extent_map(em); 2788 cur_offset = last_byte; 2789 if (cur_offset >= alloc_end) 2790 break; 2791 } 2792 2793 /* 2794 * If ret is still 0, means we're OK to fallocate. 2795 * Or just cleanup the list and exit. 2796 */ 2797 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 2798 if (!ret) 2799 ret = btrfs_prealloc_file_range(inode, mode, 2800 range->start, 2801 range->len, 1 << inode->i_blkbits, 2802 offset + len, &alloc_hint); 2803 list_del(&range->list); 2804 kfree(range); 2805 } 2806 if (ret < 0) 2807 goto out_unlock; 2808 2809 if (actual_end > inode->i_size && 2810 !(mode & FALLOC_FL_KEEP_SIZE)) { 2811 struct btrfs_trans_handle *trans; 2812 struct btrfs_root *root = BTRFS_I(inode)->root; 2813 2814 /* 2815 * We didn't need to allocate any more space, but we 2816 * still extended the size of the file so we need to 2817 * update i_size and the inode item. 2818 */ 2819 trans = btrfs_start_transaction(root, 1); 2820 if (IS_ERR(trans)) { 2821 ret = PTR_ERR(trans); 2822 } else { 2823 inode->i_ctime = current_fs_time(inode->i_sb); 2824 i_size_write(inode, actual_end); 2825 btrfs_ordered_update_i_size(inode, actual_end, NULL); 2826 ret = btrfs_update_inode(trans, root, inode); 2827 if (ret) 2828 btrfs_end_transaction(trans, root); 2829 else 2830 ret = btrfs_end_transaction(trans, root); 2831 } 2832 } 2833 out_unlock: 2834 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 2835 &cached_state, GFP_KERNEL); 2836 out: 2837 /* 2838 * As we waited the extent range, the data_rsv_map must be empty 2839 * in the range, as written data range will be released from it. 2840 * And for prealloacted extent, it will also be released when 2841 * its metadata is written. 2842 * So this is completely used as cleanup. 2843 */ 2844 btrfs_qgroup_free_data(inode, alloc_start, alloc_end - alloc_start); 2845 inode_unlock(inode); 2846 /* Let go of our reservation. */ 2847 btrfs_free_reserved_data_space(inode, alloc_start, 2848 alloc_end - alloc_start); 2849 return ret; 2850 } 2851 2852 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence) 2853 { 2854 struct btrfs_root *root = BTRFS_I(inode)->root; 2855 struct extent_map *em = NULL; 2856 struct extent_state *cached_state = NULL; 2857 u64 lockstart; 2858 u64 lockend; 2859 u64 start; 2860 u64 len; 2861 int ret = 0; 2862 2863 if (inode->i_size == 0) 2864 return -ENXIO; 2865 2866 /* 2867 * *offset can be negative, in this case we start finding DATA/HOLE from 2868 * the very start of the file. 2869 */ 2870 start = max_t(loff_t, 0, *offset); 2871 2872 lockstart = round_down(start, root->sectorsize); 2873 lockend = round_up(i_size_read(inode), root->sectorsize); 2874 if (lockend <= lockstart) 2875 lockend = lockstart + root->sectorsize; 2876 lockend--; 2877 len = lockend - lockstart + 1; 2878 2879 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2880 &cached_state); 2881 2882 while (start < inode->i_size) { 2883 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0); 2884 if (IS_ERR(em)) { 2885 ret = PTR_ERR(em); 2886 em = NULL; 2887 break; 2888 } 2889 2890 if (whence == SEEK_HOLE && 2891 (em->block_start == EXTENT_MAP_HOLE || 2892 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2893 break; 2894 else if (whence == SEEK_DATA && 2895 (em->block_start != EXTENT_MAP_HOLE && 2896 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) 2897 break; 2898 2899 start = em->start + em->len; 2900 free_extent_map(em); 2901 em = NULL; 2902 cond_resched(); 2903 } 2904 free_extent_map(em); 2905 if (!ret) { 2906 if (whence == SEEK_DATA && start >= inode->i_size) 2907 ret = -ENXIO; 2908 else 2909 *offset = min_t(loff_t, start, inode->i_size); 2910 } 2911 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2912 &cached_state, GFP_NOFS); 2913 return ret; 2914 } 2915 2916 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 2917 { 2918 struct inode *inode = file->f_mapping->host; 2919 int ret; 2920 2921 inode_lock(inode); 2922 switch (whence) { 2923 case SEEK_END: 2924 case SEEK_CUR: 2925 offset = generic_file_llseek(file, offset, whence); 2926 goto out; 2927 case SEEK_DATA: 2928 case SEEK_HOLE: 2929 if (offset >= i_size_read(inode)) { 2930 inode_unlock(inode); 2931 return -ENXIO; 2932 } 2933 2934 ret = find_desired_extent(inode, &offset, whence); 2935 if (ret) { 2936 inode_unlock(inode); 2937 return ret; 2938 } 2939 } 2940 2941 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2942 out: 2943 inode_unlock(inode); 2944 return offset; 2945 } 2946 2947 const struct file_operations btrfs_file_operations = { 2948 .llseek = btrfs_file_llseek, 2949 .read_iter = generic_file_read_iter, 2950 .splice_read = generic_file_splice_read, 2951 .write_iter = btrfs_file_write_iter, 2952 .mmap = btrfs_file_mmap, 2953 .open = generic_file_open, 2954 .release = btrfs_release_file, 2955 .fsync = btrfs_sync_file, 2956 .fallocate = btrfs_fallocate, 2957 .unlocked_ioctl = btrfs_ioctl, 2958 #ifdef CONFIG_COMPAT 2959 .compat_ioctl = btrfs_ioctl, 2960 #endif 2961 .copy_file_range = btrfs_copy_file_range, 2962 .clone_file_range = btrfs_clone_file_range, 2963 .dedupe_file_range = btrfs_dedupe_file_range, 2964 }; 2965 2966 void btrfs_auto_defrag_exit(void) 2967 { 2968 kmem_cache_destroy(btrfs_inode_defrag_cachep); 2969 } 2970 2971 int btrfs_auto_defrag_init(void) 2972 { 2973 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 2974 sizeof(struct inode_defrag), 0, 2975 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 2976 NULL); 2977 if (!btrfs_inode_defrag_cachep) 2978 return -ENOMEM; 2979 2980 return 0; 2981 } 2982 2983 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 2984 { 2985 int ret; 2986 2987 /* 2988 * So with compression we will find and lock a dirty page and clear the 2989 * first one as dirty, setup an async extent, and immediately return 2990 * with the entire range locked but with nobody actually marked with 2991 * writeback. So we can't just filemap_write_and_wait_range() and 2992 * expect it to work since it will just kick off a thread to do the 2993 * actual work. So we need to call filemap_fdatawrite_range _again_ 2994 * since it will wait on the page lock, which won't be unlocked until 2995 * after the pages have been marked as writeback and so we're good to go 2996 * from there. We have to do this otherwise we'll miss the ordered 2997 * extents and that results in badness. Please Josef, do not think you 2998 * know better and pull this out at some point in the future, it is 2999 * right and you are wrong. 3000 */ 3001 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3002 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 3003 &BTRFS_I(inode)->runtime_flags)) 3004 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 3005 3006 return ret; 3007 } 3008