1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/pagemap.h> 8 #include <linux/time.h> 9 #include <linux/init.h> 10 #include <linux/string.h> 11 #include <linux/backing-dev.h> 12 #include <linux/falloc.h> 13 #include <linux/writeback.h> 14 #include <linux/compat.h> 15 #include <linux/slab.h> 16 #include <linux/btrfs.h> 17 #include <linux/uio.h> 18 #include <linux/iversion.h> 19 #include <linux/fsverity.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "btrfs_inode.h" 24 #include "print-tree.h" 25 #include "tree-log.h" 26 #include "locking.h" 27 #include "volumes.h" 28 #include "qgroup.h" 29 #include "compression.h" 30 #include "delalloc-space.h" 31 #include "reflink.h" 32 #include "subpage.h" 33 34 static struct kmem_cache *btrfs_inode_defrag_cachep; 35 /* 36 * when auto defrag is enabled we 37 * queue up these defrag structs to remember which 38 * inodes need defragging passes 39 */ 40 struct inode_defrag { 41 struct rb_node rb_node; 42 /* objectid */ 43 u64 ino; 44 /* 45 * transid where the defrag was added, we search for 46 * extents newer than this 47 */ 48 u64 transid; 49 50 /* root objectid */ 51 u64 root; 52 53 /* 54 * The extent size threshold for autodefrag. 55 * 56 * This value is different for compressed/non-compressed extents, 57 * thus needs to be passed from higher layer. 58 * (aka, inode_should_defrag()) 59 */ 60 u32 extent_thresh; 61 }; 62 63 static int __compare_inode_defrag(struct inode_defrag *defrag1, 64 struct inode_defrag *defrag2) 65 { 66 if (defrag1->root > defrag2->root) 67 return 1; 68 else if (defrag1->root < defrag2->root) 69 return -1; 70 else if (defrag1->ino > defrag2->ino) 71 return 1; 72 else if (defrag1->ino < defrag2->ino) 73 return -1; 74 else 75 return 0; 76 } 77 78 /* pop a record for an inode into the defrag tree. The lock 79 * must be held already 80 * 81 * If you're inserting a record for an older transid than an 82 * existing record, the transid already in the tree is lowered 83 * 84 * If an existing record is found the defrag item you 85 * pass in is freed 86 */ 87 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, 88 struct inode_defrag *defrag) 89 { 90 struct btrfs_fs_info *fs_info = inode->root->fs_info; 91 struct inode_defrag *entry; 92 struct rb_node **p; 93 struct rb_node *parent = NULL; 94 int ret; 95 96 p = &fs_info->defrag_inodes.rb_node; 97 while (*p) { 98 parent = *p; 99 entry = rb_entry(parent, struct inode_defrag, rb_node); 100 101 ret = __compare_inode_defrag(defrag, entry); 102 if (ret < 0) 103 p = &parent->rb_left; 104 else if (ret > 0) 105 p = &parent->rb_right; 106 else { 107 /* if we're reinserting an entry for 108 * an old defrag run, make sure to 109 * lower the transid of our existing record 110 */ 111 if (defrag->transid < entry->transid) 112 entry->transid = defrag->transid; 113 entry->extent_thresh = min(defrag->extent_thresh, 114 entry->extent_thresh); 115 return -EEXIST; 116 } 117 } 118 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); 119 rb_link_node(&defrag->rb_node, parent, p); 120 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); 121 return 0; 122 } 123 124 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) 125 { 126 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) 127 return 0; 128 129 if (btrfs_fs_closing(fs_info)) 130 return 0; 131 132 return 1; 133 } 134 135 /* 136 * insert a defrag record for this inode if auto defrag is 137 * enabled 138 */ 139 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 140 struct btrfs_inode *inode, u32 extent_thresh) 141 { 142 struct btrfs_root *root = inode->root; 143 struct btrfs_fs_info *fs_info = root->fs_info; 144 struct inode_defrag *defrag; 145 u64 transid; 146 int ret; 147 148 if (!__need_auto_defrag(fs_info)) 149 return 0; 150 151 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) 152 return 0; 153 154 if (trans) 155 transid = trans->transid; 156 else 157 transid = inode->root->last_trans; 158 159 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); 160 if (!defrag) 161 return -ENOMEM; 162 163 defrag->ino = btrfs_ino(inode); 164 defrag->transid = transid; 165 defrag->root = root->root_key.objectid; 166 defrag->extent_thresh = extent_thresh; 167 168 spin_lock(&fs_info->defrag_inodes_lock); 169 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { 170 /* 171 * If we set IN_DEFRAG flag and evict the inode from memory, 172 * and then re-read this inode, this new inode doesn't have 173 * IN_DEFRAG flag. At the case, we may find the existed defrag. 174 */ 175 ret = __btrfs_add_inode_defrag(inode, defrag); 176 if (ret) 177 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 178 } else { 179 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 180 } 181 spin_unlock(&fs_info->defrag_inodes_lock); 182 return 0; 183 } 184 185 /* 186 * pick the defragable inode that we want, if it doesn't exist, we will get 187 * the next one. 188 */ 189 static struct inode_defrag * 190 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino) 191 { 192 struct inode_defrag *entry = NULL; 193 struct inode_defrag tmp; 194 struct rb_node *p; 195 struct rb_node *parent = NULL; 196 int ret; 197 198 tmp.ino = ino; 199 tmp.root = root; 200 201 spin_lock(&fs_info->defrag_inodes_lock); 202 p = fs_info->defrag_inodes.rb_node; 203 while (p) { 204 parent = p; 205 entry = rb_entry(parent, struct inode_defrag, rb_node); 206 207 ret = __compare_inode_defrag(&tmp, entry); 208 if (ret < 0) 209 p = parent->rb_left; 210 else if (ret > 0) 211 p = parent->rb_right; 212 else 213 goto out; 214 } 215 216 if (parent && __compare_inode_defrag(&tmp, entry) > 0) { 217 parent = rb_next(parent); 218 if (parent) 219 entry = rb_entry(parent, struct inode_defrag, rb_node); 220 else 221 entry = NULL; 222 } 223 out: 224 if (entry) 225 rb_erase(parent, &fs_info->defrag_inodes); 226 spin_unlock(&fs_info->defrag_inodes_lock); 227 return entry; 228 } 229 230 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) 231 { 232 struct inode_defrag *defrag; 233 struct rb_node *node; 234 235 spin_lock(&fs_info->defrag_inodes_lock); 236 node = rb_first(&fs_info->defrag_inodes); 237 while (node) { 238 rb_erase(node, &fs_info->defrag_inodes); 239 defrag = rb_entry(node, struct inode_defrag, rb_node); 240 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 241 242 cond_resched_lock(&fs_info->defrag_inodes_lock); 243 244 node = rb_first(&fs_info->defrag_inodes); 245 } 246 spin_unlock(&fs_info->defrag_inodes_lock); 247 } 248 249 #define BTRFS_DEFRAG_BATCH 1024 250 251 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, 252 struct inode_defrag *defrag) 253 { 254 struct btrfs_root *inode_root; 255 struct inode *inode; 256 struct btrfs_ioctl_defrag_range_args range; 257 int ret = 0; 258 u64 cur = 0; 259 260 again: 261 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) 262 goto cleanup; 263 if (!__need_auto_defrag(fs_info)) 264 goto cleanup; 265 266 /* get the inode */ 267 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); 268 if (IS_ERR(inode_root)) { 269 ret = PTR_ERR(inode_root); 270 goto cleanup; 271 } 272 273 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root); 274 btrfs_put_root(inode_root); 275 if (IS_ERR(inode)) { 276 ret = PTR_ERR(inode); 277 goto cleanup; 278 } 279 280 if (cur >= i_size_read(inode)) { 281 iput(inode); 282 goto cleanup; 283 } 284 285 /* do a chunk of defrag */ 286 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); 287 memset(&range, 0, sizeof(range)); 288 range.len = (u64)-1; 289 range.start = cur; 290 range.extent_thresh = defrag->extent_thresh; 291 292 sb_start_write(fs_info->sb); 293 ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid, 294 BTRFS_DEFRAG_BATCH); 295 sb_end_write(fs_info->sb); 296 iput(inode); 297 298 if (ret < 0) 299 goto cleanup; 300 301 cur = max(cur + fs_info->sectorsize, range.start); 302 goto again; 303 304 cleanup: 305 kmem_cache_free(btrfs_inode_defrag_cachep, defrag); 306 return ret; 307 } 308 309 /* 310 * run through the list of inodes in the FS that need 311 * defragging 312 */ 313 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) 314 { 315 struct inode_defrag *defrag; 316 u64 first_ino = 0; 317 u64 root_objectid = 0; 318 319 atomic_inc(&fs_info->defrag_running); 320 while (1) { 321 /* Pause the auto defragger. */ 322 if (test_bit(BTRFS_FS_STATE_REMOUNTING, 323 &fs_info->fs_state)) 324 break; 325 326 if (!__need_auto_defrag(fs_info)) 327 break; 328 329 /* find an inode to defrag */ 330 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, 331 first_ino); 332 if (!defrag) { 333 if (root_objectid || first_ino) { 334 root_objectid = 0; 335 first_ino = 0; 336 continue; 337 } else { 338 break; 339 } 340 } 341 342 first_ino = defrag->ino + 1; 343 root_objectid = defrag->root; 344 345 __btrfs_run_defrag_inode(fs_info, defrag); 346 } 347 atomic_dec(&fs_info->defrag_running); 348 349 /* 350 * during unmount, we use the transaction_wait queue to 351 * wait for the defragger to stop 352 */ 353 wake_up(&fs_info->transaction_wait); 354 return 0; 355 } 356 357 /* simple helper to fault in pages and copy. This should go away 358 * and be replaced with calls into generic code. 359 */ 360 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes, 361 struct page **prepared_pages, 362 struct iov_iter *i) 363 { 364 size_t copied = 0; 365 size_t total_copied = 0; 366 int pg = 0; 367 int offset = offset_in_page(pos); 368 369 while (write_bytes > 0) { 370 size_t count = min_t(size_t, 371 PAGE_SIZE - offset, write_bytes); 372 struct page *page = prepared_pages[pg]; 373 /* 374 * Copy data from userspace to the current page 375 */ 376 copied = copy_page_from_iter_atomic(page, offset, count, i); 377 378 /* Flush processor's dcache for this page */ 379 flush_dcache_page(page); 380 381 /* 382 * if we get a partial write, we can end up with 383 * partially up to date pages. These add 384 * a lot of complexity, so make sure they don't 385 * happen by forcing this copy to be retried. 386 * 387 * The rest of the btrfs_file_write code will fall 388 * back to page at a time copies after we return 0. 389 */ 390 if (unlikely(copied < count)) { 391 if (!PageUptodate(page)) { 392 iov_iter_revert(i, copied); 393 copied = 0; 394 } 395 if (!copied) 396 break; 397 } 398 399 write_bytes -= copied; 400 total_copied += copied; 401 offset += copied; 402 if (offset == PAGE_SIZE) { 403 pg++; 404 offset = 0; 405 } 406 } 407 return total_copied; 408 } 409 410 /* 411 * unlocks pages after btrfs_file_write is done with them 412 */ 413 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info, 414 struct page **pages, size_t num_pages, 415 u64 pos, u64 copied) 416 { 417 size_t i; 418 u64 block_start = round_down(pos, fs_info->sectorsize); 419 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start; 420 421 ASSERT(block_len <= U32_MAX); 422 for (i = 0; i < num_pages; i++) { 423 /* page checked is some magic around finding pages that 424 * have been modified without going through btrfs_set_page_dirty 425 * clear it here. There should be no need to mark the pages 426 * accessed as prepare_pages should have marked them accessed 427 * in prepare_pages via find_or_create_page() 428 */ 429 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start, 430 block_len); 431 unlock_page(pages[i]); 432 put_page(pages[i]); 433 } 434 } 435 436 /* 437 * After btrfs_copy_from_user(), update the following things for delalloc: 438 * - Mark newly dirtied pages as DELALLOC in the io tree. 439 * Used to advise which range is to be written back. 440 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup 441 * - Update inode size for past EOF write 442 */ 443 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 444 size_t num_pages, loff_t pos, size_t write_bytes, 445 struct extent_state **cached, bool noreserve) 446 { 447 struct btrfs_fs_info *fs_info = inode->root->fs_info; 448 int err = 0; 449 int i; 450 u64 num_bytes; 451 u64 start_pos; 452 u64 end_of_last_block; 453 u64 end_pos = pos + write_bytes; 454 loff_t isize = i_size_read(&inode->vfs_inode); 455 unsigned int extra_bits = 0; 456 457 if (write_bytes == 0) 458 return 0; 459 460 if (noreserve) 461 extra_bits |= EXTENT_NORESERVE; 462 463 start_pos = round_down(pos, fs_info->sectorsize); 464 num_bytes = round_up(write_bytes + pos - start_pos, 465 fs_info->sectorsize); 466 ASSERT(num_bytes <= U32_MAX); 467 468 end_of_last_block = start_pos + num_bytes - 1; 469 470 /* 471 * The pages may have already been dirty, clear out old accounting so 472 * we can set things up properly 473 */ 474 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block, 475 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 476 cached); 477 478 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block, 479 extra_bits, cached); 480 if (err) 481 return err; 482 483 for (i = 0; i < num_pages; i++) { 484 struct page *p = pages[i]; 485 486 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes); 487 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes); 488 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes); 489 } 490 491 /* 492 * we've only changed i_size in ram, and we haven't updated 493 * the disk i_size. There is no need to log the inode 494 * at this time. 495 */ 496 if (end_pos > isize) 497 i_size_write(&inode->vfs_inode, end_pos); 498 return 0; 499 } 500 501 /* 502 * this is very complex, but the basic idea is to drop all extents 503 * in the range start - end. hint_block is filled in with a block number 504 * that would be a good hint to the block allocator for this file. 505 * 506 * If an extent intersects the range but is not entirely inside the range 507 * it is either truncated or split. Anything entirely inside the range 508 * is deleted from the tree. 509 * 510 * Note: the VFS' inode number of bytes is not updated, it's up to the caller 511 * to deal with that. We set the field 'bytes_found' of the arguments structure 512 * with the number of allocated bytes found in the target range, so that the 513 * caller can update the inode's number of bytes in an atomic way when 514 * replacing extents in a range to avoid races with stat(2). 515 */ 516 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 517 struct btrfs_root *root, struct btrfs_inode *inode, 518 struct btrfs_drop_extents_args *args) 519 { 520 struct btrfs_fs_info *fs_info = root->fs_info; 521 struct extent_buffer *leaf; 522 struct btrfs_file_extent_item *fi; 523 struct btrfs_ref ref = { 0 }; 524 struct btrfs_key key; 525 struct btrfs_key new_key; 526 u64 ino = btrfs_ino(inode); 527 u64 search_start = args->start; 528 u64 disk_bytenr = 0; 529 u64 num_bytes = 0; 530 u64 extent_offset = 0; 531 u64 extent_end = 0; 532 u64 last_end = args->start; 533 int del_nr = 0; 534 int del_slot = 0; 535 int extent_type; 536 int recow; 537 int ret; 538 int modify_tree = -1; 539 int update_refs; 540 int found = 0; 541 struct btrfs_path *path = args->path; 542 543 args->bytes_found = 0; 544 args->extent_inserted = false; 545 546 /* Must always have a path if ->replace_extent is true */ 547 ASSERT(!(args->replace_extent && !args->path)); 548 549 if (!path) { 550 path = btrfs_alloc_path(); 551 if (!path) { 552 ret = -ENOMEM; 553 goto out; 554 } 555 } 556 557 if (args->drop_cache) 558 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false); 559 560 if (args->start >= inode->disk_i_size && !args->replace_extent) 561 modify_tree = 0; 562 563 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 564 while (1) { 565 recow = 0; 566 ret = btrfs_lookup_file_extent(trans, root, path, ino, 567 search_start, modify_tree); 568 if (ret < 0) 569 break; 570 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) { 571 leaf = path->nodes[0]; 572 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 573 if (key.objectid == ino && 574 key.type == BTRFS_EXTENT_DATA_KEY) 575 path->slots[0]--; 576 } 577 ret = 0; 578 next_slot: 579 leaf = path->nodes[0]; 580 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 581 BUG_ON(del_nr > 0); 582 ret = btrfs_next_leaf(root, path); 583 if (ret < 0) 584 break; 585 if (ret > 0) { 586 ret = 0; 587 break; 588 } 589 leaf = path->nodes[0]; 590 recow = 1; 591 } 592 593 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 594 595 if (key.objectid > ino) 596 break; 597 if (WARN_ON_ONCE(key.objectid < ino) || 598 key.type < BTRFS_EXTENT_DATA_KEY) { 599 ASSERT(del_nr == 0); 600 path->slots[0]++; 601 goto next_slot; 602 } 603 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end) 604 break; 605 606 fi = btrfs_item_ptr(leaf, path->slots[0], 607 struct btrfs_file_extent_item); 608 extent_type = btrfs_file_extent_type(leaf, fi); 609 610 if (extent_type == BTRFS_FILE_EXTENT_REG || 611 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 612 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 613 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 614 extent_offset = btrfs_file_extent_offset(leaf, fi); 615 extent_end = key.offset + 616 btrfs_file_extent_num_bytes(leaf, fi); 617 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 618 extent_end = key.offset + 619 btrfs_file_extent_ram_bytes(leaf, fi); 620 } else { 621 /* can't happen */ 622 BUG(); 623 } 624 625 /* 626 * Don't skip extent items representing 0 byte lengths. They 627 * used to be created (bug) if while punching holes we hit 628 * -ENOSPC condition. So if we find one here, just ensure we 629 * delete it, otherwise we would insert a new file extent item 630 * with the same key (offset) as that 0 bytes length file 631 * extent item in the call to setup_items_for_insert() later 632 * in this function. 633 */ 634 if (extent_end == key.offset && extent_end >= search_start) { 635 last_end = extent_end; 636 goto delete_extent_item; 637 } 638 639 if (extent_end <= search_start) { 640 path->slots[0]++; 641 goto next_slot; 642 } 643 644 found = 1; 645 search_start = max(key.offset, args->start); 646 if (recow || !modify_tree) { 647 modify_tree = -1; 648 btrfs_release_path(path); 649 continue; 650 } 651 652 /* 653 * | - range to drop - | 654 * | -------- extent -------- | 655 */ 656 if (args->start > key.offset && args->end < extent_end) { 657 BUG_ON(del_nr > 0); 658 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 659 ret = -EOPNOTSUPP; 660 break; 661 } 662 663 memcpy(&new_key, &key, sizeof(new_key)); 664 new_key.offset = args->start; 665 ret = btrfs_duplicate_item(trans, root, path, 666 &new_key); 667 if (ret == -EAGAIN) { 668 btrfs_release_path(path); 669 continue; 670 } 671 if (ret < 0) 672 break; 673 674 leaf = path->nodes[0]; 675 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 676 struct btrfs_file_extent_item); 677 btrfs_set_file_extent_num_bytes(leaf, fi, 678 args->start - key.offset); 679 680 fi = btrfs_item_ptr(leaf, path->slots[0], 681 struct btrfs_file_extent_item); 682 683 extent_offset += args->start - key.offset; 684 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 685 btrfs_set_file_extent_num_bytes(leaf, fi, 686 extent_end - args->start); 687 btrfs_mark_buffer_dirty(leaf); 688 689 if (update_refs && disk_bytenr > 0) { 690 btrfs_init_generic_ref(&ref, 691 BTRFS_ADD_DELAYED_REF, 692 disk_bytenr, num_bytes, 0); 693 btrfs_init_data_ref(&ref, 694 root->root_key.objectid, 695 new_key.objectid, 696 args->start - extent_offset, 697 0, false); 698 ret = btrfs_inc_extent_ref(trans, &ref); 699 BUG_ON(ret); /* -ENOMEM */ 700 } 701 key.offset = args->start; 702 } 703 /* 704 * From here on out we will have actually dropped something, so 705 * last_end can be updated. 706 */ 707 last_end = extent_end; 708 709 /* 710 * | ---- range to drop ----- | 711 * | -------- extent -------- | 712 */ 713 if (args->start <= key.offset && args->end < extent_end) { 714 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 715 ret = -EOPNOTSUPP; 716 break; 717 } 718 719 memcpy(&new_key, &key, sizeof(new_key)); 720 new_key.offset = args->end; 721 btrfs_set_item_key_safe(fs_info, path, &new_key); 722 723 extent_offset += args->end - key.offset; 724 btrfs_set_file_extent_offset(leaf, fi, extent_offset); 725 btrfs_set_file_extent_num_bytes(leaf, fi, 726 extent_end - args->end); 727 btrfs_mark_buffer_dirty(leaf); 728 if (update_refs && disk_bytenr > 0) 729 args->bytes_found += args->end - key.offset; 730 break; 731 } 732 733 search_start = extent_end; 734 /* 735 * | ---- range to drop ----- | 736 * | -------- extent -------- | 737 */ 738 if (args->start > key.offset && args->end >= extent_end) { 739 BUG_ON(del_nr > 0); 740 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 741 ret = -EOPNOTSUPP; 742 break; 743 } 744 745 btrfs_set_file_extent_num_bytes(leaf, fi, 746 args->start - key.offset); 747 btrfs_mark_buffer_dirty(leaf); 748 if (update_refs && disk_bytenr > 0) 749 args->bytes_found += extent_end - args->start; 750 if (args->end == extent_end) 751 break; 752 753 path->slots[0]++; 754 goto next_slot; 755 } 756 757 /* 758 * | ---- range to drop ----- | 759 * | ------ extent ------ | 760 */ 761 if (args->start <= key.offset && args->end >= extent_end) { 762 delete_extent_item: 763 if (del_nr == 0) { 764 del_slot = path->slots[0]; 765 del_nr = 1; 766 } else { 767 BUG_ON(del_slot + del_nr != path->slots[0]); 768 del_nr++; 769 } 770 771 if (update_refs && 772 extent_type == BTRFS_FILE_EXTENT_INLINE) { 773 args->bytes_found += extent_end - key.offset; 774 extent_end = ALIGN(extent_end, 775 fs_info->sectorsize); 776 } else if (update_refs && disk_bytenr > 0) { 777 btrfs_init_generic_ref(&ref, 778 BTRFS_DROP_DELAYED_REF, 779 disk_bytenr, num_bytes, 0); 780 btrfs_init_data_ref(&ref, 781 root->root_key.objectid, 782 key.objectid, 783 key.offset - extent_offset, 0, 784 false); 785 ret = btrfs_free_extent(trans, &ref); 786 BUG_ON(ret); /* -ENOMEM */ 787 args->bytes_found += extent_end - key.offset; 788 } 789 790 if (args->end == extent_end) 791 break; 792 793 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) { 794 path->slots[0]++; 795 goto next_slot; 796 } 797 798 ret = btrfs_del_items(trans, root, path, del_slot, 799 del_nr); 800 if (ret) { 801 btrfs_abort_transaction(trans, ret); 802 break; 803 } 804 805 del_nr = 0; 806 del_slot = 0; 807 808 btrfs_release_path(path); 809 continue; 810 } 811 812 BUG(); 813 } 814 815 if (!ret && del_nr > 0) { 816 /* 817 * Set path->slots[0] to first slot, so that after the delete 818 * if items are move off from our leaf to its immediate left or 819 * right neighbor leafs, we end up with a correct and adjusted 820 * path->slots[0] for our insertion (if args->replace_extent). 821 */ 822 path->slots[0] = del_slot; 823 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 824 if (ret) 825 btrfs_abort_transaction(trans, ret); 826 } 827 828 leaf = path->nodes[0]; 829 /* 830 * If btrfs_del_items() was called, it might have deleted a leaf, in 831 * which case it unlocked our path, so check path->locks[0] matches a 832 * write lock. 833 */ 834 if (!ret && args->replace_extent && 835 path->locks[0] == BTRFS_WRITE_LOCK && 836 btrfs_leaf_free_space(leaf) >= 837 sizeof(struct btrfs_item) + args->extent_item_size) { 838 839 key.objectid = ino; 840 key.type = BTRFS_EXTENT_DATA_KEY; 841 key.offset = args->start; 842 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) { 843 struct btrfs_key slot_key; 844 845 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]); 846 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0) 847 path->slots[0]++; 848 } 849 btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size); 850 args->extent_inserted = true; 851 } 852 853 if (!args->path) 854 btrfs_free_path(path); 855 else if (!args->extent_inserted) 856 btrfs_release_path(path); 857 out: 858 args->drop_end = found ? min(args->end, last_end) : args->end; 859 860 return ret; 861 } 862 863 static int extent_mergeable(struct extent_buffer *leaf, int slot, 864 u64 objectid, u64 bytenr, u64 orig_offset, 865 u64 *start, u64 *end) 866 { 867 struct btrfs_file_extent_item *fi; 868 struct btrfs_key key; 869 u64 extent_end; 870 871 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 872 return 0; 873 874 btrfs_item_key_to_cpu(leaf, &key, slot); 875 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY) 876 return 0; 877 878 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 879 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG || 880 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr || 881 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset || 882 btrfs_file_extent_compression(leaf, fi) || 883 btrfs_file_extent_encryption(leaf, fi) || 884 btrfs_file_extent_other_encoding(leaf, fi)) 885 return 0; 886 887 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 888 if ((*start && *start != key.offset) || (*end && *end != extent_end)) 889 return 0; 890 891 *start = key.offset; 892 *end = extent_end; 893 return 1; 894 } 895 896 /* 897 * Mark extent in the range start - end as written. 898 * 899 * This changes extent type from 'pre-allocated' to 'regular'. If only 900 * part of extent is marked as written, the extent will be split into 901 * two or three. 902 */ 903 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 904 struct btrfs_inode *inode, u64 start, u64 end) 905 { 906 struct btrfs_fs_info *fs_info = trans->fs_info; 907 struct btrfs_root *root = inode->root; 908 struct extent_buffer *leaf; 909 struct btrfs_path *path; 910 struct btrfs_file_extent_item *fi; 911 struct btrfs_ref ref = { 0 }; 912 struct btrfs_key key; 913 struct btrfs_key new_key; 914 u64 bytenr; 915 u64 num_bytes; 916 u64 extent_end; 917 u64 orig_offset; 918 u64 other_start; 919 u64 other_end; 920 u64 split; 921 int del_nr = 0; 922 int del_slot = 0; 923 int recow; 924 int ret = 0; 925 u64 ino = btrfs_ino(inode); 926 927 path = btrfs_alloc_path(); 928 if (!path) 929 return -ENOMEM; 930 again: 931 recow = 0; 932 split = start; 933 key.objectid = ino; 934 key.type = BTRFS_EXTENT_DATA_KEY; 935 key.offset = split; 936 937 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 938 if (ret < 0) 939 goto out; 940 if (ret > 0 && path->slots[0] > 0) 941 path->slots[0]--; 942 943 leaf = path->nodes[0]; 944 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 945 if (key.objectid != ino || 946 key.type != BTRFS_EXTENT_DATA_KEY) { 947 ret = -EINVAL; 948 btrfs_abort_transaction(trans, ret); 949 goto out; 950 } 951 fi = btrfs_item_ptr(leaf, path->slots[0], 952 struct btrfs_file_extent_item); 953 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) { 954 ret = -EINVAL; 955 btrfs_abort_transaction(trans, ret); 956 goto out; 957 } 958 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 959 if (key.offset > start || extent_end < end) { 960 ret = -EINVAL; 961 btrfs_abort_transaction(trans, ret); 962 goto out; 963 } 964 965 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 966 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 967 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi); 968 memcpy(&new_key, &key, sizeof(new_key)); 969 970 if (start == key.offset && end < extent_end) { 971 other_start = 0; 972 other_end = start; 973 if (extent_mergeable(leaf, path->slots[0] - 1, 974 ino, bytenr, orig_offset, 975 &other_start, &other_end)) { 976 new_key.offset = end; 977 btrfs_set_item_key_safe(fs_info, path, &new_key); 978 fi = btrfs_item_ptr(leaf, path->slots[0], 979 struct btrfs_file_extent_item); 980 btrfs_set_file_extent_generation(leaf, fi, 981 trans->transid); 982 btrfs_set_file_extent_num_bytes(leaf, fi, 983 extent_end - end); 984 btrfs_set_file_extent_offset(leaf, fi, 985 end - orig_offset); 986 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 987 struct btrfs_file_extent_item); 988 btrfs_set_file_extent_generation(leaf, fi, 989 trans->transid); 990 btrfs_set_file_extent_num_bytes(leaf, fi, 991 end - other_start); 992 btrfs_mark_buffer_dirty(leaf); 993 goto out; 994 } 995 } 996 997 if (start > key.offset && end == extent_end) { 998 other_start = end; 999 other_end = 0; 1000 if (extent_mergeable(leaf, path->slots[0] + 1, 1001 ino, bytenr, orig_offset, 1002 &other_start, &other_end)) { 1003 fi = btrfs_item_ptr(leaf, path->slots[0], 1004 struct btrfs_file_extent_item); 1005 btrfs_set_file_extent_num_bytes(leaf, fi, 1006 start - key.offset); 1007 btrfs_set_file_extent_generation(leaf, fi, 1008 trans->transid); 1009 path->slots[0]++; 1010 new_key.offset = start; 1011 btrfs_set_item_key_safe(fs_info, path, &new_key); 1012 1013 fi = btrfs_item_ptr(leaf, path->slots[0], 1014 struct btrfs_file_extent_item); 1015 btrfs_set_file_extent_generation(leaf, fi, 1016 trans->transid); 1017 btrfs_set_file_extent_num_bytes(leaf, fi, 1018 other_end - start); 1019 btrfs_set_file_extent_offset(leaf, fi, 1020 start - orig_offset); 1021 btrfs_mark_buffer_dirty(leaf); 1022 goto out; 1023 } 1024 } 1025 1026 while (start > key.offset || end < extent_end) { 1027 if (key.offset == start) 1028 split = end; 1029 1030 new_key.offset = split; 1031 ret = btrfs_duplicate_item(trans, root, path, &new_key); 1032 if (ret == -EAGAIN) { 1033 btrfs_release_path(path); 1034 goto again; 1035 } 1036 if (ret < 0) { 1037 btrfs_abort_transaction(trans, ret); 1038 goto out; 1039 } 1040 1041 leaf = path->nodes[0]; 1042 fi = btrfs_item_ptr(leaf, path->slots[0] - 1, 1043 struct btrfs_file_extent_item); 1044 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1045 btrfs_set_file_extent_num_bytes(leaf, fi, 1046 split - key.offset); 1047 1048 fi = btrfs_item_ptr(leaf, path->slots[0], 1049 struct btrfs_file_extent_item); 1050 1051 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1052 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset); 1053 btrfs_set_file_extent_num_bytes(leaf, fi, 1054 extent_end - split); 1055 btrfs_mark_buffer_dirty(leaf); 1056 1057 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr, 1058 num_bytes, 0); 1059 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, 1060 orig_offset, 0, false); 1061 ret = btrfs_inc_extent_ref(trans, &ref); 1062 if (ret) { 1063 btrfs_abort_transaction(trans, ret); 1064 goto out; 1065 } 1066 1067 if (split == start) { 1068 key.offset = start; 1069 } else { 1070 if (start != key.offset) { 1071 ret = -EINVAL; 1072 btrfs_abort_transaction(trans, ret); 1073 goto out; 1074 } 1075 path->slots[0]--; 1076 extent_end = end; 1077 } 1078 recow = 1; 1079 } 1080 1081 other_start = end; 1082 other_end = 0; 1083 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1084 num_bytes, 0); 1085 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset, 1086 0, false); 1087 if (extent_mergeable(leaf, path->slots[0] + 1, 1088 ino, bytenr, orig_offset, 1089 &other_start, &other_end)) { 1090 if (recow) { 1091 btrfs_release_path(path); 1092 goto again; 1093 } 1094 extent_end = other_end; 1095 del_slot = path->slots[0] + 1; 1096 del_nr++; 1097 ret = btrfs_free_extent(trans, &ref); 1098 if (ret) { 1099 btrfs_abort_transaction(trans, ret); 1100 goto out; 1101 } 1102 } 1103 other_start = 0; 1104 other_end = start; 1105 if (extent_mergeable(leaf, path->slots[0] - 1, 1106 ino, bytenr, orig_offset, 1107 &other_start, &other_end)) { 1108 if (recow) { 1109 btrfs_release_path(path); 1110 goto again; 1111 } 1112 key.offset = other_start; 1113 del_slot = path->slots[0]; 1114 del_nr++; 1115 ret = btrfs_free_extent(trans, &ref); 1116 if (ret) { 1117 btrfs_abort_transaction(trans, ret); 1118 goto out; 1119 } 1120 } 1121 if (del_nr == 0) { 1122 fi = btrfs_item_ptr(leaf, path->slots[0], 1123 struct btrfs_file_extent_item); 1124 btrfs_set_file_extent_type(leaf, fi, 1125 BTRFS_FILE_EXTENT_REG); 1126 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1127 btrfs_mark_buffer_dirty(leaf); 1128 } else { 1129 fi = btrfs_item_ptr(leaf, del_slot - 1, 1130 struct btrfs_file_extent_item); 1131 btrfs_set_file_extent_type(leaf, fi, 1132 BTRFS_FILE_EXTENT_REG); 1133 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1134 btrfs_set_file_extent_num_bytes(leaf, fi, 1135 extent_end - key.offset); 1136 btrfs_mark_buffer_dirty(leaf); 1137 1138 ret = btrfs_del_items(trans, root, path, del_slot, del_nr); 1139 if (ret < 0) { 1140 btrfs_abort_transaction(trans, ret); 1141 goto out; 1142 } 1143 } 1144 out: 1145 btrfs_free_path(path); 1146 return ret; 1147 } 1148 1149 /* 1150 * on error we return an unlocked page and the error value 1151 * on success we return a locked page and 0 1152 */ 1153 static int prepare_uptodate_page(struct inode *inode, 1154 struct page *page, u64 pos, 1155 bool force_uptodate) 1156 { 1157 struct folio *folio = page_folio(page); 1158 int ret = 0; 1159 1160 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) && 1161 !PageUptodate(page)) { 1162 ret = btrfs_read_folio(NULL, folio); 1163 if (ret) 1164 return ret; 1165 lock_page(page); 1166 if (!PageUptodate(page)) { 1167 unlock_page(page); 1168 return -EIO; 1169 } 1170 1171 /* 1172 * Since btrfs_read_folio() will unlock the folio before it 1173 * returns, there is a window where btrfs_release_folio() can be 1174 * called to release the page. Here we check both inode 1175 * mapping and PagePrivate() to make sure the page was not 1176 * released. 1177 * 1178 * The private flag check is essential for subpage as we need 1179 * to store extra bitmap using page->private. 1180 */ 1181 if (page->mapping != inode->i_mapping || !PagePrivate(page)) { 1182 unlock_page(page); 1183 return -EAGAIN; 1184 } 1185 } 1186 return 0; 1187 } 1188 1189 static unsigned int get_prepare_fgp_flags(bool nowait) 1190 { 1191 unsigned int fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT; 1192 1193 if (nowait) 1194 fgp_flags |= FGP_NOWAIT; 1195 1196 return fgp_flags; 1197 } 1198 1199 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait) 1200 { 1201 gfp_t gfp; 1202 1203 gfp = btrfs_alloc_write_mask(inode->i_mapping); 1204 if (nowait) { 1205 gfp &= ~__GFP_DIRECT_RECLAIM; 1206 gfp |= GFP_NOWAIT; 1207 } 1208 1209 return gfp; 1210 } 1211 1212 /* 1213 * this just gets pages into the page cache and locks them down. 1214 */ 1215 static noinline int prepare_pages(struct inode *inode, struct page **pages, 1216 size_t num_pages, loff_t pos, 1217 size_t write_bytes, bool force_uptodate, 1218 bool nowait) 1219 { 1220 int i; 1221 unsigned long index = pos >> PAGE_SHIFT; 1222 gfp_t mask = get_prepare_gfp_flags(inode, nowait); 1223 unsigned int fgp_flags = get_prepare_fgp_flags(nowait); 1224 int err = 0; 1225 int faili; 1226 1227 for (i = 0; i < num_pages; i++) { 1228 again: 1229 pages[i] = pagecache_get_page(inode->i_mapping, index + i, 1230 fgp_flags, mask | __GFP_WRITE); 1231 if (!pages[i]) { 1232 faili = i - 1; 1233 if (nowait) 1234 err = -EAGAIN; 1235 else 1236 err = -ENOMEM; 1237 goto fail; 1238 } 1239 1240 err = set_page_extent_mapped(pages[i]); 1241 if (err < 0) { 1242 faili = i; 1243 goto fail; 1244 } 1245 1246 if (i == 0) 1247 err = prepare_uptodate_page(inode, pages[i], pos, 1248 force_uptodate); 1249 if (!err && i == num_pages - 1) 1250 err = prepare_uptodate_page(inode, pages[i], 1251 pos + write_bytes, false); 1252 if (err) { 1253 put_page(pages[i]); 1254 if (!nowait && err == -EAGAIN) { 1255 err = 0; 1256 goto again; 1257 } 1258 faili = i - 1; 1259 goto fail; 1260 } 1261 wait_on_page_writeback(pages[i]); 1262 } 1263 1264 return 0; 1265 fail: 1266 while (faili >= 0) { 1267 unlock_page(pages[faili]); 1268 put_page(pages[faili]); 1269 faili--; 1270 } 1271 return err; 1272 1273 } 1274 1275 /* 1276 * This function locks the extent and properly waits for data=ordered extents 1277 * to finish before allowing the pages to be modified if need. 1278 * 1279 * The return value: 1280 * 1 - the extent is locked 1281 * 0 - the extent is not locked, and everything is OK 1282 * -EAGAIN - need re-prepare the pages 1283 * the other < 0 number - Something wrong happens 1284 */ 1285 static noinline int 1286 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages, 1287 size_t num_pages, loff_t pos, 1288 size_t write_bytes, 1289 u64 *lockstart, u64 *lockend, bool nowait, 1290 struct extent_state **cached_state) 1291 { 1292 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1293 u64 start_pos; 1294 u64 last_pos; 1295 int i; 1296 int ret = 0; 1297 1298 start_pos = round_down(pos, fs_info->sectorsize); 1299 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1; 1300 1301 if (start_pos < inode->vfs_inode.i_size) { 1302 struct btrfs_ordered_extent *ordered; 1303 1304 if (nowait) { 1305 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos)) { 1306 for (i = 0; i < num_pages; i++) { 1307 unlock_page(pages[i]); 1308 put_page(pages[i]); 1309 pages[i] = NULL; 1310 } 1311 1312 return -EAGAIN; 1313 } 1314 } else { 1315 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state); 1316 } 1317 1318 ordered = btrfs_lookup_ordered_range(inode, start_pos, 1319 last_pos - start_pos + 1); 1320 if (ordered && 1321 ordered->file_offset + ordered->num_bytes > start_pos && 1322 ordered->file_offset <= last_pos) { 1323 unlock_extent(&inode->io_tree, start_pos, last_pos, 1324 cached_state); 1325 for (i = 0; i < num_pages; i++) { 1326 unlock_page(pages[i]); 1327 put_page(pages[i]); 1328 } 1329 btrfs_start_ordered_extent(ordered, 1); 1330 btrfs_put_ordered_extent(ordered); 1331 return -EAGAIN; 1332 } 1333 if (ordered) 1334 btrfs_put_ordered_extent(ordered); 1335 1336 *lockstart = start_pos; 1337 *lockend = last_pos; 1338 ret = 1; 1339 } 1340 1341 /* 1342 * We should be called after prepare_pages() which should have locked 1343 * all pages in the range. 1344 */ 1345 for (i = 0; i < num_pages; i++) 1346 WARN_ON(!PageLocked(pages[i])); 1347 1348 return ret; 1349 } 1350 1351 /* 1352 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes) 1353 * 1354 * @pos: File offset. 1355 * @write_bytes: The length to write, will be updated to the nocow writeable 1356 * range. 1357 * 1358 * This function will flush ordered extents in the range to ensure proper 1359 * nocow checks. 1360 * 1361 * Return: 1362 * > 0 If we can nocow, and updates @write_bytes. 1363 * 0 If we can't do a nocow write. 1364 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's 1365 * root is in progress. 1366 * < 0 If an error happened. 1367 * 1368 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0. 1369 */ 1370 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 1371 size_t *write_bytes, bool nowait) 1372 { 1373 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1374 struct btrfs_root *root = inode->root; 1375 u64 lockstart, lockend; 1376 u64 num_bytes; 1377 int ret; 1378 1379 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1380 return 0; 1381 1382 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) 1383 return -EAGAIN; 1384 1385 lockstart = round_down(pos, fs_info->sectorsize); 1386 lockend = round_up(pos + *write_bytes, 1387 fs_info->sectorsize) - 1; 1388 num_bytes = lockend - lockstart + 1; 1389 1390 if (nowait) { 1391 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend)) { 1392 btrfs_drew_write_unlock(&root->snapshot_lock); 1393 return -EAGAIN; 1394 } 1395 } else { 1396 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, NULL); 1397 } 1398 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes, 1399 NULL, NULL, NULL, nowait, false); 1400 if (ret <= 0) 1401 btrfs_drew_write_unlock(&root->snapshot_lock); 1402 else 1403 *write_bytes = min_t(size_t, *write_bytes , 1404 num_bytes - pos + lockstart); 1405 unlock_extent(&inode->io_tree, lockstart, lockend, NULL); 1406 1407 return ret; 1408 } 1409 1410 void btrfs_check_nocow_unlock(struct btrfs_inode *inode) 1411 { 1412 btrfs_drew_write_unlock(&inode->root->snapshot_lock); 1413 } 1414 1415 static void update_time_for_write(struct inode *inode) 1416 { 1417 struct timespec64 now; 1418 1419 if (IS_NOCMTIME(inode)) 1420 return; 1421 1422 now = current_time(inode); 1423 if (!timespec64_equal(&inode->i_mtime, &now)) 1424 inode->i_mtime = now; 1425 1426 if (!timespec64_equal(&inode->i_ctime, &now)) 1427 inode->i_ctime = now; 1428 1429 if (IS_I_VERSION(inode)) 1430 inode_inc_iversion(inode); 1431 } 1432 1433 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from, 1434 size_t count) 1435 { 1436 struct file *file = iocb->ki_filp; 1437 struct inode *inode = file_inode(file); 1438 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1439 loff_t pos = iocb->ki_pos; 1440 int ret; 1441 loff_t oldsize; 1442 loff_t start_pos; 1443 1444 /* 1445 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or 1446 * prealloc flags, as without those flags we always have to COW. We will 1447 * later check if we can really COW into the target range (using 1448 * can_nocow_extent() at btrfs_get_blocks_direct_write()). 1449 */ 1450 if ((iocb->ki_flags & IOCB_NOWAIT) && 1451 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 1452 return -EAGAIN; 1453 1454 current->backing_dev_info = inode_to_bdi(inode); 1455 ret = file_remove_privs(file); 1456 if (ret) 1457 return ret; 1458 1459 /* 1460 * We reserve space for updating the inode when we reserve space for the 1461 * extent we are going to write, so we will enospc out there. We don't 1462 * need to start yet another transaction to update the inode as we will 1463 * update the inode when we finish writing whatever data we write. 1464 */ 1465 update_time_for_write(inode); 1466 1467 start_pos = round_down(pos, fs_info->sectorsize); 1468 oldsize = i_size_read(inode); 1469 if (start_pos > oldsize) { 1470 /* Expand hole size to cover write data, preventing empty gap */ 1471 loff_t end_pos = round_up(pos + count, fs_info->sectorsize); 1472 1473 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos); 1474 if (ret) { 1475 current->backing_dev_info = NULL; 1476 return ret; 1477 } 1478 } 1479 1480 return 0; 1481 } 1482 1483 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb, 1484 struct iov_iter *i) 1485 { 1486 struct file *file = iocb->ki_filp; 1487 loff_t pos; 1488 struct inode *inode = file_inode(file); 1489 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1490 struct page **pages = NULL; 1491 struct extent_changeset *data_reserved = NULL; 1492 u64 release_bytes = 0; 1493 u64 lockstart; 1494 u64 lockend; 1495 size_t num_written = 0; 1496 int nrptrs; 1497 ssize_t ret; 1498 bool only_release_metadata = false; 1499 bool force_page_uptodate = false; 1500 loff_t old_isize = i_size_read(inode); 1501 unsigned int ilock_flags = 0; 1502 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 1503 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0); 1504 1505 if (nowait) 1506 ilock_flags |= BTRFS_ILOCK_TRY; 1507 1508 ret = btrfs_inode_lock(inode, ilock_flags); 1509 if (ret < 0) 1510 return ret; 1511 1512 ret = generic_write_checks(iocb, i); 1513 if (ret <= 0) 1514 goto out; 1515 1516 ret = btrfs_write_check(iocb, i, ret); 1517 if (ret < 0) 1518 goto out; 1519 1520 pos = iocb->ki_pos; 1521 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE), 1522 PAGE_SIZE / (sizeof(struct page *))); 1523 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied); 1524 nrptrs = max(nrptrs, 8); 1525 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL); 1526 if (!pages) { 1527 ret = -ENOMEM; 1528 goto out; 1529 } 1530 1531 while (iov_iter_count(i) > 0) { 1532 struct extent_state *cached_state = NULL; 1533 size_t offset = offset_in_page(pos); 1534 size_t sector_offset; 1535 size_t write_bytes = min(iov_iter_count(i), 1536 nrptrs * (size_t)PAGE_SIZE - 1537 offset); 1538 size_t num_pages; 1539 size_t reserve_bytes; 1540 size_t dirty_pages; 1541 size_t copied; 1542 size_t dirty_sectors; 1543 size_t num_sectors; 1544 int extents_locked; 1545 1546 /* 1547 * Fault pages before locking them in prepare_pages 1548 * to avoid recursive lock 1549 */ 1550 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) { 1551 ret = -EFAULT; 1552 break; 1553 } 1554 1555 only_release_metadata = false; 1556 sector_offset = pos & (fs_info->sectorsize - 1); 1557 1558 extent_changeset_release(data_reserved); 1559 ret = btrfs_check_data_free_space(BTRFS_I(inode), 1560 &data_reserved, pos, 1561 write_bytes, nowait); 1562 if (ret < 0) { 1563 int can_nocow; 1564 1565 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) { 1566 ret = -EAGAIN; 1567 break; 1568 } 1569 1570 /* 1571 * If we don't have to COW at the offset, reserve 1572 * metadata only. write_bytes may get smaller than 1573 * requested here. 1574 */ 1575 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos, 1576 &write_bytes, nowait); 1577 if (can_nocow < 0) 1578 ret = can_nocow; 1579 if (can_nocow > 0) 1580 ret = 0; 1581 if (ret) 1582 break; 1583 only_release_metadata = true; 1584 } 1585 1586 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE); 1587 WARN_ON(num_pages > nrptrs); 1588 reserve_bytes = round_up(write_bytes + sector_offset, 1589 fs_info->sectorsize); 1590 WARN_ON(reserve_bytes == 0); 1591 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 1592 reserve_bytes, 1593 reserve_bytes, nowait); 1594 if (ret) { 1595 if (!only_release_metadata) 1596 btrfs_free_reserved_data_space(BTRFS_I(inode), 1597 data_reserved, pos, 1598 write_bytes); 1599 else 1600 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1601 break; 1602 } 1603 1604 release_bytes = reserve_bytes; 1605 again: 1606 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags); 1607 if (ret) 1608 break; 1609 1610 /* 1611 * This is going to setup the pages array with the number of 1612 * pages we want, so we don't really need to worry about the 1613 * contents of pages from loop to loop 1614 */ 1615 ret = prepare_pages(inode, pages, num_pages, 1616 pos, write_bytes, force_page_uptodate, false); 1617 if (ret) { 1618 btrfs_delalloc_release_extents(BTRFS_I(inode), 1619 reserve_bytes); 1620 break; 1621 } 1622 1623 extents_locked = lock_and_cleanup_extent_if_need( 1624 BTRFS_I(inode), pages, 1625 num_pages, pos, write_bytes, &lockstart, 1626 &lockend, nowait, &cached_state); 1627 if (extents_locked < 0) { 1628 if (!nowait && extents_locked == -EAGAIN) 1629 goto again; 1630 1631 btrfs_delalloc_release_extents(BTRFS_I(inode), 1632 reserve_bytes); 1633 ret = extents_locked; 1634 break; 1635 } 1636 1637 copied = btrfs_copy_from_user(pos, write_bytes, pages, i); 1638 1639 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes); 1640 dirty_sectors = round_up(copied + sector_offset, 1641 fs_info->sectorsize); 1642 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors); 1643 1644 /* 1645 * if we have trouble faulting in the pages, fall 1646 * back to one page at a time 1647 */ 1648 if (copied < write_bytes) 1649 nrptrs = 1; 1650 1651 if (copied == 0) { 1652 force_page_uptodate = true; 1653 dirty_sectors = 0; 1654 dirty_pages = 0; 1655 } else { 1656 force_page_uptodate = false; 1657 dirty_pages = DIV_ROUND_UP(copied + offset, 1658 PAGE_SIZE); 1659 } 1660 1661 if (num_sectors > dirty_sectors) { 1662 /* release everything except the sectors we dirtied */ 1663 release_bytes -= dirty_sectors << fs_info->sectorsize_bits; 1664 if (only_release_metadata) { 1665 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1666 release_bytes, true); 1667 } else { 1668 u64 __pos; 1669 1670 __pos = round_down(pos, 1671 fs_info->sectorsize) + 1672 (dirty_pages << PAGE_SHIFT); 1673 btrfs_delalloc_release_space(BTRFS_I(inode), 1674 data_reserved, __pos, 1675 release_bytes, true); 1676 } 1677 } 1678 1679 release_bytes = round_up(copied + sector_offset, 1680 fs_info->sectorsize); 1681 1682 ret = btrfs_dirty_pages(BTRFS_I(inode), pages, 1683 dirty_pages, pos, copied, 1684 &cached_state, only_release_metadata); 1685 1686 /* 1687 * If we have not locked the extent range, because the range's 1688 * start offset is >= i_size, we might still have a non-NULL 1689 * cached extent state, acquired while marking the extent range 1690 * as delalloc through btrfs_dirty_pages(). Therefore free any 1691 * possible cached extent state to avoid a memory leak. 1692 */ 1693 if (extents_locked) 1694 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 1695 lockend, &cached_state); 1696 else 1697 free_extent_state(cached_state); 1698 1699 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes); 1700 if (ret) { 1701 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1702 break; 1703 } 1704 1705 release_bytes = 0; 1706 if (only_release_metadata) 1707 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1708 1709 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied); 1710 1711 cond_resched(); 1712 1713 pos += copied; 1714 num_written += copied; 1715 } 1716 1717 kfree(pages); 1718 1719 if (release_bytes) { 1720 if (only_release_metadata) { 1721 btrfs_check_nocow_unlock(BTRFS_I(inode)); 1722 btrfs_delalloc_release_metadata(BTRFS_I(inode), 1723 release_bytes, true); 1724 } else { 1725 btrfs_delalloc_release_space(BTRFS_I(inode), 1726 data_reserved, 1727 round_down(pos, fs_info->sectorsize), 1728 release_bytes, true); 1729 } 1730 } 1731 1732 extent_changeset_free(data_reserved); 1733 if (num_written > 0) { 1734 pagecache_isize_extended(inode, old_isize, iocb->ki_pos); 1735 iocb->ki_pos += num_written; 1736 } 1737 out: 1738 btrfs_inode_unlock(inode, ilock_flags); 1739 return num_written ? num_written : ret; 1740 } 1741 1742 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 1743 const struct iov_iter *iter, loff_t offset) 1744 { 1745 const u32 blocksize_mask = fs_info->sectorsize - 1; 1746 1747 if (offset & blocksize_mask) 1748 return -EINVAL; 1749 1750 if (iov_iter_alignment(iter) & blocksize_mask) 1751 return -EINVAL; 1752 1753 return 0; 1754 } 1755 1756 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from) 1757 { 1758 struct file *file = iocb->ki_filp; 1759 struct inode *inode = file_inode(file); 1760 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1761 loff_t pos; 1762 ssize_t written = 0; 1763 ssize_t written_buffered; 1764 size_t prev_left = 0; 1765 loff_t endbyte; 1766 ssize_t err; 1767 unsigned int ilock_flags = 0; 1768 1769 if (iocb->ki_flags & IOCB_NOWAIT) 1770 ilock_flags |= BTRFS_ILOCK_TRY; 1771 1772 /* If the write DIO is within EOF, use a shared lock */ 1773 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode)) 1774 ilock_flags |= BTRFS_ILOCK_SHARED; 1775 1776 relock: 1777 err = btrfs_inode_lock(inode, ilock_flags); 1778 if (err < 0) 1779 return err; 1780 1781 err = generic_write_checks(iocb, from); 1782 if (err <= 0) { 1783 btrfs_inode_unlock(inode, ilock_flags); 1784 return err; 1785 } 1786 1787 err = btrfs_write_check(iocb, from, err); 1788 if (err < 0) { 1789 btrfs_inode_unlock(inode, ilock_flags); 1790 goto out; 1791 } 1792 1793 pos = iocb->ki_pos; 1794 /* 1795 * Re-check since file size may have changed just before taking the 1796 * lock or pos may have changed because of O_APPEND in generic_write_check() 1797 */ 1798 if ((ilock_flags & BTRFS_ILOCK_SHARED) && 1799 pos + iov_iter_count(from) > i_size_read(inode)) { 1800 btrfs_inode_unlock(inode, ilock_flags); 1801 ilock_flags &= ~BTRFS_ILOCK_SHARED; 1802 goto relock; 1803 } 1804 1805 if (check_direct_IO(fs_info, from, pos)) { 1806 btrfs_inode_unlock(inode, ilock_flags); 1807 goto buffered; 1808 } 1809 1810 /* 1811 * The iov_iter can be mapped to the same file range we are writing to. 1812 * If that's the case, then we will deadlock in the iomap code, because 1813 * it first calls our callback btrfs_dio_iomap_begin(), which will create 1814 * an ordered extent, and after that it will fault in the pages that the 1815 * iov_iter refers to. During the fault in we end up in the readahead 1816 * pages code (starting at btrfs_readahead()), which will lock the range, 1817 * find that ordered extent and then wait for it to complete (at 1818 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since 1819 * obviously the ordered extent can never complete as we didn't submit 1820 * yet the respective bio(s). This always happens when the buffer is 1821 * memory mapped to the same file range, since the iomap DIO code always 1822 * invalidates pages in the target file range (after starting and waiting 1823 * for any writeback). 1824 * 1825 * So here we disable page faults in the iov_iter and then retry if we 1826 * got -EFAULT, faulting in the pages before the retry. 1827 */ 1828 again: 1829 from->nofault = true; 1830 err = btrfs_dio_rw(iocb, from, written); 1831 from->nofault = false; 1832 1833 /* No increment (+=) because iomap returns a cumulative value. */ 1834 if (err > 0) 1835 written = err; 1836 1837 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) { 1838 const size_t left = iov_iter_count(from); 1839 /* 1840 * We have more data left to write. Try to fault in as many as 1841 * possible of the remainder pages and retry. We do this without 1842 * releasing and locking again the inode, to prevent races with 1843 * truncate. 1844 * 1845 * Also, in case the iov refers to pages in the file range of the 1846 * file we want to write to (due to a mmap), we could enter an 1847 * infinite loop if we retry after faulting the pages in, since 1848 * iomap will invalidate any pages in the range early on, before 1849 * it tries to fault in the pages of the iov. So we keep track of 1850 * how much was left of iov in the previous EFAULT and fallback 1851 * to buffered IO in case we haven't made any progress. 1852 */ 1853 if (left == prev_left) { 1854 err = -ENOTBLK; 1855 } else { 1856 fault_in_iov_iter_readable(from, left); 1857 prev_left = left; 1858 goto again; 1859 } 1860 } 1861 1862 btrfs_inode_unlock(inode, ilock_flags); 1863 1864 /* 1865 * If 'err' is -ENOTBLK or we have not written all data, then it means 1866 * we must fallback to buffered IO. 1867 */ 1868 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from)) 1869 goto out; 1870 1871 buffered: 1872 /* 1873 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller 1874 * it must retry the operation in a context where blocking is acceptable, 1875 * since we currently don't have NOWAIT semantics support for buffered IO 1876 * and may block there for many reasons (reserving space for example). 1877 */ 1878 if (iocb->ki_flags & IOCB_NOWAIT) { 1879 err = -EAGAIN; 1880 goto out; 1881 } 1882 1883 pos = iocb->ki_pos; 1884 written_buffered = btrfs_buffered_write(iocb, from); 1885 if (written_buffered < 0) { 1886 err = written_buffered; 1887 goto out; 1888 } 1889 /* 1890 * Ensure all data is persisted. We want the next direct IO read to be 1891 * able to read what was just written. 1892 */ 1893 endbyte = pos + written_buffered - 1; 1894 err = btrfs_fdatawrite_range(inode, pos, endbyte); 1895 if (err) 1896 goto out; 1897 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte); 1898 if (err) 1899 goto out; 1900 written += written_buffered; 1901 iocb->ki_pos = pos + written_buffered; 1902 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT, 1903 endbyte >> PAGE_SHIFT); 1904 out: 1905 return err < 0 ? err : written; 1906 } 1907 1908 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from, 1909 const struct btrfs_ioctl_encoded_io_args *encoded) 1910 { 1911 struct file *file = iocb->ki_filp; 1912 struct inode *inode = file_inode(file); 1913 loff_t count; 1914 ssize_t ret; 1915 1916 btrfs_inode_lock(inode, 0); 1917 count = encoded->len; 1918 ret = generic_write_checks_count(iocb, &count); 1919 if (ret == 0 && count != encoded->len) { 1920 /* 1921 * The write got truncated by generic_write_checks_count(). We 1922 * can't do a partial encoded write. 1923 */ 1924 ret = -EFBIG; 1925 } 1926 if (ret || encoded->len == 0) 1927 goto out; 1928 1929 ret = btrfs_write_check(iocb, from, encoded->len); 1930 if (ret < 0) 1931 goto out; 1932 1933 ret = btrfs_do_encoded_write(iocb, from, encoded); 1934 out: 1935 btrfs_inode_unlock(inode, 0); 1936 return ret; 1937 } 1938 1939 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 1940 const struct btrfs_ioctl_encoded_io_args *encoded) 1941 { 1942 struct file *file = iocb->ki_filp; 1943 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 1944 ssize_t num_written, num_sync; 1945 const bool sync = iocb_is_dsync(iocb); 1946 1947 /* 1948 * If the fs flips readonly due to some impossible error, although we 1949 * have opened a file as writable, we have to stop this write operation 1950 * to ensure consistency. 1951 */ 1952 if (BTRFS_FS_ERROR(inode->root->fs_info)) 1953 return -EROFS; 1954 1955 if (encoded && (iocb->ki_flags & IOCB_NOWAIT)) 1956 return -EOPNOTSUPP; 1957 1958 if (sync) 1959 atomic_inc(&inode->sync_writers); 1960 1961 if (encoded) { 1962 num_written = btrfs_encoded_write(iocb, from, encoded); 1963 num_sync = encoded->len; 1964 } else if (iocb->ki_flags & IOCB_DIRECT) { 1965 num_written = btrfs_direct_write(iocb, from); 1966 num_sync = num_written; 1967 } else { 1968 num_written = btrfs_buffered_write(iocb, from); 1969 num_sync = num_written; 1970 } 1971 1972 btrfs_set_inode_last_sub_trans(inode); 1973 1974 if (num_sync > 0) { 1975 num_sync = generic_write_sync(iocb, num_sync); 1976 if (num_sync < 0) 1977 num_written = num_sync; 1978 } 1979 1980 if (sync) 1981 atomic_dec(&inode->sync_writers); 1982 1983 current->backing_dev_info = NULL; 1984 return num_written; 1985 } 1986 1987 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1988 { 1989 return btrfs_do_write_iter(iocb, from, NULL); 1990 } 1991 1992 int btrfs_release_file(struct inode *inode, struct file *filp) 1993 { 1994 struct btrfs_file_private *private = filp->private_data; 1995 1996 if (private && private->filldir_buf) 1997 kfree(private->filldir_buf); 1998 kfree(private); 1999 filp->private_data = NULL; 2000 2001 /* 2002 * Set by setattr when we are about to truncate a file from a non-zero 2003 * size to a zero size. This tries to flush down new bytes that may 2004 * have been written if the application were using truncate to replace 2005 * a file in place. 2006 */ 2007 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 2008 &BTRFS_I(inode)->runtime_flags)) 2009 filemap_flush(inode->i_mapping); 2010 return 0; 2011 } 2012 2013 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end) 2014 { 2015 int ret; 2016 struct blk_plug plug; 2017 2018 /* 2019 * This is only called in fsync, which would do synchronous writes, so 2020 * a plug can merge adjacent IOs as much as possible. Esp. in case of 2021 * multiple disks using raid profile, a large IO can be split to 2022 * several segments of stripe length (currently 64K). 2023 */ 2024 blk_start_plug(&plug); 2025 atomic_inc(&BTRFS_I(inode)->sync_writers); 2026 ret = btrfs_fdatawrite_range(inode, start, end); 2027 atomic_dec(&BTRFS_I(inode)->sync_writers); 2028 blk_finish_plug(&plug); 2029 2030 return ret; 2031 } 2032 2033 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx) 2034 { 2035 struct btrfs_inode *inode = BTRFS_I(ctx->inode); 2036 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2037 2038 if (btrfs_inode_in_log(inode, fs_info->generation) && 2039 list_empty(&ctx->ordered_extents)) 2040 return true; 2041 2042 /* 2043 * If we are doing a fast fsync we can not bail out if the inode's 2044 * last_trans is <= then the last committed transaction, because we only 2045 * update the last_trans of the inode during ordered extent completion, 2046 * and for a fast fsync we don't wait for that, we only wait for the 2047 * writeback to complete. 2048 */ 2049 if (inode->last_trans <= fs_info->last_trans_committed && 2050 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) || 2051 list_empty(&ctx->ordered_extents))) 2052 return true; 2053 2054 return false; 2055 } 2056 2057 /* 2058 * fsync call for both files and directories. This logs the inode into 2059 * the tree log instead of forcing full commits whenever possible. 2060 * 2061 * It needs to call filemap_fdatawait so that all ordered extent updates are 2062 * in the metadata btree are up to date for copying to the log. 2063 * 2064 * It drops the inode mutex before doing the tree log commit. This is an 2065 * important optimization for directories because holding the mutex prevents 2066 * new operations on the dir while we write to disk. 2067 */ 2068 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 2069 { 2070 struct dentry *dentry = file_dentry(file); 2071 struct inode *inode = d_inode(dentry); 2072 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2073 struct btrfs_root *root = BTRFS_I(inode)->root; 2074 struct btrfs_trans_handle *trans; 2075 struct btrfs_log_ctx ctx; 2076 int ret = 0, err; 2077 u64 len; 2078 bool full_sync; 2079 2080 trace_btrfs_sync_file(file, datasync); 2081 2082 btrfs_init_log_ctx(&ctx, inode); 2083 2084 /* 2085 * Always set the range to a full range, otherwise we can get into 2086 * several problems, from missing file extent items to represent holes 2087 * when not using the NO_HOLES feature, to log tree corruption due to 2088 * races between hole detection during logging and completion of ordered 2089 * extents outside the range, to missing checksums due to ordered extents 2090 * for which we flushed only a subset of their pages. 2091 */ 2092 start = 0; 2093 end = LLONG_MAX; 2094 len = (u64)LLONG_MAX + 1; 2095 2096 /* 2097 * We write the dirty pages in the range and wait until they complete 2098 * out of the ->i_mutex. If so, we can flush the dirty pages by 2099 * multi-task, and make the performance up. See 2100 * btrfs_wait_ordered_range for an explanation of the ASYNC check. 2101 */ 2102 ret = start_ordered_ops(inode, start, end); 2103 if (ret) 2104 goto out; 2105 2106 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 2107 2108 atomic_inc(&root->log_batch); 2109 2110 /* 2111 * Before we acquired the inode's lock and the mmap lock, someone may 2112 * have dirtied more pages in the target range. We need to make sure 2113 * that writeback for any such pages does not start while we are logging 2114 * the inode, because if it does, any of the following might happen when 2115 * we are not doing a full inode sync: 2116 * 2117 * 1) We log an extent after its writeback finishes but before its 2118 * checksums are added to the csum tree, leading to -EIO errors 2119 * when attempting to read the extent after a log replay. 2120 * 2121 * 2) We can end up logging an extent before its writeback finishes. 2122 * Therefore after the log replay we will have a file extent item 2123 * pointing to an unwritten extent (and no data checksums as well). 2124 * 2125 * So trigger writeback for any eventual new dirty pages and then we 2126 * wait for all ordered extents to complete below. 2127 */ 2128 ret = start_ordered_ops(inode, start, end); 2129 if (ret) { 2130 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2131 goto out; 2132 } 2133 2134 /* 2135 * Always check for the full sync flag while holding the inode's lock, 2136 * to avoid races with other tasks. The flag must be either set all the 2137 * time during logging or always off all the time while logging. 2138 * We check the flag here after starting delalloc above, because when 2139 * running delalloc the full sync flag may be set if we need to drop 2140 * extra extent map ranges due to temporary memory allocation failures. 2141 */ 2142 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2143 &BTRFS_I(inode)->runtime_flags); 2144 2145 /* 2146 * We have to do this here to avoid the priority inversion of waiting on 2147 * IO of a lower priority task while holding a transaction open. 2148 * 2149 * For a full fsync we wait for the ordered extents to complete while 2150 * for a fast fsync we wait just for writeback to complete, and then 2151 * attach the ordered extents to the transaction so that a transaction 2152 * commit waits for their completion, to avoid data loss if we fsync, 2153 * the current transaction commits before the ordered extents complete 2154 * and a power failure happens right after that. 2155 * 2156 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the 2157 * logical address recorded in the ordered extent may change. We need 2158 * to wait for the IO to stabilize the logical address. 2159 */ 2160 if (full_sync || btrfs_is_zoned(fs_info)) { 2161 ret = btrfs_wait_ordered_range(inode, start, len); 2162 } else { 2163 /* 2164 * Get our ordered extents as soon as possible to avoid doing 2165 * checksum lookups in the csum tree, and use instead the 2166 * checksums attached to the ordered extents. 2167 */ 2168 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode), 2169 &ctx.ordered_extents); 2170 ret = filemap_fdatawait_range(inode->i_mapping, start, end); 2171 } 2172 2173 if (ret) 2174 goto out_release_extents; 2175 2176 atomic_inc(&root->log_batch); 2177 2178 smp_mb(); 2179 if (skip_inode_logging(&ctx)) { 2180 /* 2181 * We've had everything committed since the last time we were 2182 * modified so clear this flag in case it was set for whatever 2183 * reason, it's no longer relevant. 2184 */ 2185 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2186 &BTRFS_I(inode)->runtime_flags); 2187 /* 2188 * An ordered extent might have started before and completed 2189 * already with io errors, in which case the inode was not 2190 * updated and we end up here. So check the inode's mapping 2191 * for any errors that might have happened since we last 2192 * checked called fsync. 2193 */ 2194 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err); 2195 goto out_release_extents; 2196 } 2197 2198 /* 2199 * We use start here because we will need to wait on the IO to complete 2200 * in btrfs_sync_log, which could require joining a transaction (for 2201 * example checking cross references in the nocow path). If we use join 2202 * here we could get into a situation where we're waiting on IO to 2203 * happen that is blocked on a transaction trying to commit. With start 2204 * we inc the extwriter counter, so we wait for all extwriters to exit 2205 * before we start blocking joiners. This comment is to keep somebody 2206 * from thinking they are super smart and changing this to 2207 * btrfs_join_transaction *cough*Josef*cough*. 2208 */ 2209 trans = btrfs_start_transaction(root, 0); 2210 if (IS_ERR(trans)) { 2211 ret = PTR_ERR(trans); 2212 goto out_release_extents; 2213 } 2214 trans->in_fsync = true; 2215 2216 ret = btrfs_log_dentry_safe(trans, dentry, &ctx); 2217 btrfs_release_log_ctx_extents(&ctx); 2218 if (ret < 0) { 2219 /* Fallthrough and commit/free transaction. */ 2220 ret = BTRFS_LOG_FORCE_COMMIT; 2221 } 2222 2223 /* we've logged all the items and now have a consistent 2224 * version of the file in the log. It is possible that 2225 * someone will come in and modify the file, but that's 2226 * fine because the log is consistent on disk, and we 2227 * have references to all of the file's extents 2228 * 2229 * It is possible that someone will come in and log the 2230 * file again, but that will end up using the synchronization 2231 * inside btrfs_sync_log to keep things safe. 2232 */ 2233 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2234 2235 if (ret == BTRFS_NO_LOG_SYNC) { 2236 ret = btrfs_end_transaction(trans); 2237 goto out; 2238 } 2239 2240 /* We successfully logged the inode, attempt to sync the log. */ 2241 if (!ret) { 2242 ret = btrfs_sync_log(trans, root, &ctx); 2243 if (!ret) { 2244 ret = btrfs_end_transaction(trans); 2245 goto out; 2246 } 2247 } 2248 2249 /* 2250 * At this point we need to commit the transaction because we had 2251 * btrfs_need_log_full_commit() or some other error. 2252 * 2253 * If we didn't do a full sync we have to stop the trans handle, wait on 2254 * the ordered extents, start it again and commit the transaction. If 2255 * we attempt to wait on the ordered extents here we could deadlock with 2256 * something like fallocate() that is holding the extent lock trying to 2257 * start a transaction while some other thread is trying to commit the 2258 * transaction while we (fsync) are currently holding the transaction 2259 * open. 2260 */ 2261 if (!full_sync) { 2262 ret = btrfs_end_transaction(trans); 2263 if (ret) 2264 goto out; 2265 ret = btrfs_wait_ordered_range(inode, start, len); 2266 if (ret) 2267 goto out; 2268 2269 /* 2270 * This is safe to use here because we're only interested in 2271 * making sure the transaction that had the ordered extents is 2272 * committed. We aren't waiting on anything past this point, 2273 * we're purely getting the transaction and committing it. 2274 */ 2275 trans = btrfs_attach_transaction_barrier(root); 2276 if (IS_ERR(trans)) { 2277 ret = PTR_ERR(trans); 2278 2279 /* 2280 * We committed the transaction and there's no currently 2281 * running transaction, this means everything we care 2282 * about made it to disk and we are done. 2283 */ 2284 if (ret == -ENOENT) 2285 ret = 0; 2286 goto out; 2287 } 2288 } 2289 2290 ret = btrfs_commit_transaction(trans); 2291 out: 2292 ASSERT(list_empty(&ctx.list)); 2293 ASSERT(list_empty(&ctx.conflict_inodes)); 2294 err = file_check_and_advance_wb_err(file); 2295 if (!ret) 2296 ret = err; 2297 return ret > 0 ? -EIO : ret; 2298 2299 out_release_extents: 2300 btrfs_release_log_ctx_extents(&ctx); 2301 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2302 goto out; 2303 } 2304 2305 static const struct vm_operations_struct btrfs_file_vm_ops = { 2306 .fault = filemap_fault, 2307 .map_pages = filemap_map_pages, 2308 .page_mkwrite = btrfs_page_mkwrite, 2309 }; 2310 2311 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma) 2312 { 2313 struct address_space *mapping = filp->f_mapping; 2314 2315 if (!mapping->a_ops->read_folio) 2316 return -ENOEXEC; 2317 2318 file_accessed(filp); 2319 vma->vm_ops = &btrfs_file_vm_ops; 2320 2321 return 0; 2322 } 2323 2324 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf, 2325 int slot, u64 start, u64 end) 2326 { 2327 struct btrfs_file_extent_item *fi; 2328 struct btrfs_key key; 2329 2330 if (slot < 0 || slot >= btrfs_header_nritems(leaf)) 2331 return 0; 2332 2333 btrfs_item_key_to_cpu(leaf, &key, slot); 2334 if (key.objectid != btrfs_ino(inode) || 2335 key.type != BTRFS_EXTENT_DATA_KEY) 2336 return 0; 2337 2338 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2339 2340 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2341 return 0; 2342 2343 if (btrfs_file_extent_disk_bytenr(leaf, fi)) 2344 return 0; 2345 2346 if (key.offset == end) 2347 return 1; 2348 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start) 2349 return 1; 2350 return 0; 2351 } 2352 2353 static int fill_holes(struct btrfs_trans_handle *trans, 2354 struct btrfs_inode *inode, 2355 struct btrfs_path *path, u64 offset, u64 end) 2356 { 2357 struct btrfs_fs_info *fs_info = trans->fs_info; 2358 struct btrfs_root *root = inode->root; 2359 struct extent_buffer *leaf; 2360 struct btrfs_file_extent_item *fi; 2361 struct extent_map *hole_em; 2362 struct btrfs_key key; 2363 int ret; 2364 2365 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 2366 goto out; 2367 2368 key.objectid = btrfs_ino(inode); 2369 key.type = BTRFS_EXTENT_DATA_KEY; 2370 key.offset = offset; 2371 2372 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2373 if (ret <= 0) { 2374 /* 2375 * We should have dropped this offset, so if we find it then 2376 * something has gone horribly wrong. 2377 */ 2378 if (ret == 0) 2379 ret = -EINVAL; 2380 return ret; 2381 } 2382 2383 leaf = path->nodes[0]; 2384 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) { 2385 u64 num_bytes; 2386 2387 path->slots[0]--; 2388 fi = btrfs_item_ptr(leaf, path->slots[0], 2389 struct btrfs_file_extent_item); 2390 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + 2391 end - offset; 2392 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2393 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2394 btrfs_set_file_extent_offset(leaf, fi, 0); 2395 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2396 btrfs_mark_buffer_dirty(leaf); 2397 goto out; 2398 } 2399 2400 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) { 2401 u64 num_bytes; 2402 2403 key.offset = offset; 2404 btrfs_set_item_key_safe(fs_info, path, &key); 2405 fi = btrfs_item_ptr(leaf, path->slots[0], 2406 struct btrfs_file_extent_item); 2407 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end - 2408 offset; 2409 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2410 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes); 2411 btrfs_set_file_extent_offset(leaf, fi, 0); 2412 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2413 btrfs_mark_buffer_dirty(leaf); 2414 goto out; 2415 } 2416 btrfs_release_path(path); 2417 2418 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, 2419 end - offset); 2420 if (ret) 2421 return ret; 2422 2423 out: 2424 btrfs_release_path(path); 2425 2426 hole_em = alloc_extent_map(); 2427 if (!hole_em) { 2428 btrfs_drop_extent_map_range(inode, offset, end - 1, false); 2429 btrfs_set_inode_full_sync(inode); 2430 } else { 2431 hole_em->start = offset; 2432 hole_em->len = end - offset; 2433 hole_em->ram_bytes = hole_em->len; 2434 hole_em->orig_start = offset; 2435 2436 hole_em->block_start = EXTENT_MAP_HOLE; 2437 hole_em->block_len = 0; 2438 hole_em->orig_block_len = 0; 2439 hole_em->compress_type = BTRFS_COMPRESS_NONE; 2440 hole_em->generation = trans->transid; 2441 2442 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 2443 free_extent_map(hole_em); 2444 if (ret) 2445 btrfs_set_inode_full_sync(inode); 2446 } 2447 2448 return 0; 2449 } 2450 2451 /* 2452 * Find a hole extent on given inode and change start/len to the end of hole 2453 * extent.(hole/vacuum extent whose em->start <= start && 2454 * em->start + em->len > start) 2455 * When a hole extent is found, return 1 and modify start/len. 2456 */ 2457 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len) 2458 { 2459 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2460 struct extent_map *em; 2461 int ret = 0; 2462 2463 em = btrfs_get_extent(inode, NULL, 0, 2464 round_down(*start, fs_info->sectorsize), 2465 round_up(*len, fs_info->sectorsize)); 2466 if (IS_ERR(em)) 2467 return PTR_ERR(em); 2468 2469 /* Hole or vacuum extent(only exists in no-hole mode) */ 2470 if (em->block_start == EXTENT_MAP_HOLE) { 2471 ret = 1; 2472 *len = em->start + em->len > *start + *len ? 2473 0 : *start + *len - em->start - em->len; 2474 *start = em->start + em->len; 2475 } 2476 free_extent_map(em); 2477 return ret; 2478 } 2479 2480 static void btrfs_punch_hole_lock_range(struct inode *inode, 2481 const u64 lockstart, 2482 const u64 lockend, 2483 struct extent_state **cached_state) 2484 { 2485 /* 2486 * For subpage case, if the range is not at page boundary, we could 2487 * have pages at the leading/tailing part of the range. 2488 * This could lead to dead loop since filemap_range_has_page() 2489 * will always return true. 2490 * So here we need to do extra page alignment for 2491 * filemap_range_has_page(). 2492 */ 2493 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE); 2494 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1; 2495 2496 while (1) { 2497 truncate_pagecache_range(inode, lockstart, lockend); 2498 2499 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2500 cached_state); 2501 /* 2502 * We can't have ordered extents in the range, nor dirty/writeback 2503 * pages, because we have locked the inode's VFS lock in exclusive 2504 * mode, we have locked the inode's i_mmap_lock in exclusive mode, 2505 * we have flushed all delalloc in the range and we have waited 2506 * for any ordered extents in the range to complete. 2507 * We can race with anyone reading pages from this range, so after 2508 * locking the range check if we have pages in the range, and if 2509 * we do, unlock the range and retry. 2510 */ 2511 if (!filemap_range_has_page(inode->i_mapping, page_lockstart, 2512 page_lockend)) 2513 break; 2514 2515 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 2516 cached_state); 2517 } 2518 2519 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend); 2520 } 2521 2522 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans, 2523 struct btrfs_inode *inode, 2524 struct btrfs_path *path, 2525 struct btrfs_replace_extent_info *extent_info, 2526 const u64 replace_len, 2527 const u64 bytes_to_drop) 2528 { 2529 struct btrfs_fs_info *fs_info = trans->fs_info; 2530 struct btrfs_root *root = inode->root; 2531 struct btrfs_file_extent_item *extent; 2532 struct extent_buffer *leaf; 2533 struct btrfs_key key; 2534 int slot; 2535 struct btrfs_ref ref = { 0 }; 2536 int ret; 2537 2538 if (replace_len == 0) 2539 return 0; 2540 2541 if (extent_info->disk_offset == 0 && 2542 btrfs_fs_incompat(fs_info, NO_HOLES)) { 2543 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2544 return 0; 2545 } 2546 2547 key.objectid = btrfs_ino(inode); 2548 key.type = BTRFS_EXTENT_DATA_KEY; 2549 key.offset = extent_info->file_offset; 2550 ret = btrfs_insert_empty_item(trans, root, path, &key, 2551 sizeof(struct btrfs_file_extent_item)); 2552 if (ret) 2553 return ret; 2554 leaf = path->nodes[0]; 2555 slot = path->slots[0]; 2556 write_extent_buffer(leaf, extent_info->extent_buf, 2557 btrfs_item_ptr_offset(leaf, slot), 2558 sizeof(struct btrfs_file_extent_item)); 2559 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 2560 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE); 2561 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset); 2562 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len); 2563 if (extent_info->is_new_extent) 2564 btrfs_set_file_extent_generation(leaf, extent, trans->transid); 2565 btrfs_mark_buffer_dirty(leaf); 2566 btrfs_release_path(path); 2567 2568 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset, 2569 replace_len); 2570 if (ret) 2571 return ret; 2572 2573 /* If it's a hole, nothing more needs to be done. */ 2574 if (extent_info->disk_offset == 0) { 2575 btrfs_update_inode_bytes(inode, 0, bytes_to_drop); 2576 return 0; 2577 } 2578 2579 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop); 2580 2581 if (extent_info->is_new_extent && extent_info->insertions == 0) { 2582 key.objectid = extent_info->disk_offset; 2583 key.type = BTRFS_EXTENT_ITEM_KEY; 2584 key.offset = extent_info->disk_len; 2585 ret = btrfs_alloc_reserved_file_extent(trans, root, 2586 btrfs_ino(inode), 2587 extent_info->file_offset, 2588 extent_info->qgroup_reserved, 2589 &key); 2590 } else { 2591 u64 ref_offset; 2592 2593 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2594 extent_info->disk_offset, 2595 extent_info->disk_len, 0); 2596 ref_offset = extent_info->file_offset - extent_info->data_offset; 2597 btrfs_init_data_ref(&ref, root->root_key.objectid, 2598 btrfs_ino(inode), ref_offset, 0, false); 2599 ret = btrfs_inc_extent_ref(trans, &ref); 2600 } 2601 2602 extent_info->insertions++; 2603 2604 return ret; 2605 } 2606 2607 /* 2608 * The respective range must have been previously locked, as well as the inode. 2609 * The end offset is inclusive (last byte of the range). 2610 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing 2611 * the file range with an extent. 2612 * When not punching a hole, we don't want to end up in a state where we dropped 2613 * extents without inserting a new one, so we must abort the transaction to avoid 2614 * a corruption. 2615 */ 2616 int btrfs_replace_file_extents(struct btrfs_inode *inode, 2617 struct btrfs_path *path, const u64 start, 2618 const u64 end, 2619 struct btrfs_replace_extent_info *extent_info, 2620 struct btrfs_trans_handle **trans_out) 2621 { 2622 struct btrfs_drop_extents_args drop_args = { 0 }; 2623 struct btrfs_root *root = inode->root; 2624 struct btrfs_fs_info *fs_info = root->fs_info; 2625 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1); 2626 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 2627 struct btrfs_trans_handle *trans = NULL; 2628 struct btrfs_block_rsv *rsv; 2629 unsigned int rsv_count; 2630 u64 cur_offset; 2631 u64 len = end - start; 2632 int ret = 0; 2633 2634 if (end <= start) 2635 return -EINVAL; 2636 2637 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 2638 if (!rsv) { 2639 ret = -ENOMEM; 2640 goto out; 2641 } 2642 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1); 2643 rsv->failfast = true; 2644 2645 /* 2646 * 1 - update the inode 2647 * 1 - removing the extents in the range 2648 * 1 - adding the hole extent if no_holes isn't set or if we are 2649 * replacing the range with a new extent 2650 */ 2651 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info) 2652 rsv_count = 3; 2653 else 2654 rsv_count = 2; 2655 2656 trans = btrfs_start_transaction(root, rsv_count); 2657 if (IS_ERR(trans)) { 2658 ret = PTR_ERR(trans); 2659 trans = NULL; 2660 goto out_free; 2661 } 2662 2663 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 2664 min_size, false); 2665 if (WARN_ON(ret)) 2666 goto out_trans; 2667 trans->block_rsv = rsv; 2668 2669 cur_offset = start; 2670 drop_args.path = path; 2671 drop_args.end = end + 1; 2672 drop_args.drop_cache = true; 2673 while (cur_offset < end) { 2674 drop_args.start = cur_offset; 2675 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2676 /* If we are punching a hole decrement the inode's byte count */ 2677 if (!extent_info) 2678 btrfs_update_inode_bytes(inode, 0, 2679 drop_args.bytes_found); 2680 if (ret != -ENOSPC) { 2681 /* 2682 * The only time we don't want to abort is if we are 2683 * attempting to clone a partial inline extent, in which 2684 * case we'll get EOPNOTSUPP. However if we aren't 2685 * clone we need to abort no matter what, because if we 2686 * got EOPNOTSUPP via prealloc then we messed up and 2687 * need to abort. 2688 */ 2689 if (ret && 2690 (ret != -EOPNOTSUPP || 2691 (extent_info && extent_info->is_new_extent))) 2692 btrfs_abort_transaction(trans, ret); 2693 break; 2694 } 2695 2696 trans->block_rsv = &fs_info->trans_block_rsv; 2697 2698 if (!extent_info && cur_offset < drop_args.drop_end && 2699 cur_offset < ino_size) { 2700 ret = fill_holes(trans, inode, path, cur_offset, 2701 drop_args.drop_end); 2702 if (ret) { 2703 /* 2704 * If we failed then we didn't insert our hole 2705 * entries for the area we dropped, so now the 2706 * fs is corrupted, so we must abort the 2707 * transaction. 2708 */ 2709 btrfs_abort_transaction(trans, ret); 2710 break; 2711 } 2712 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2713 /* 2714 * We are past the i_size here, but since we didn't 2715 * insert holes we need to clear the mapped area so we 2716 * know to not set disk_i_size in this area until a new 2717 * file extent is inserted here. 2718 */ 2719 ret = btrfs_inode_clear_file_extent_range(inode, 2720 cur_offset, 2721 drop_args.drop_end - cur_offset); 2722 if (ret) { 2723 /* 2724 * We couldn't clear our area, so we could 2725 * presumably adjust up and corrupt the fs, so 2726 * we need to abort. 2727 */ 2728 btrfs_abort_transaction(trans, ret); 2729 break; 2730 } 2731 } 2732 2733 if (extent_info && 2734 drop_args.drop_end > extent_info->file_offset) { 2735 u64 replace_len = drop_args.drop_end - 2736 extent_info->file_offset; 2737 2738 ret = btrfs_insert_replace_extent(trans, inode, path, 2739 extent_info, replace_len, 2740 drop_args.bytes_found); 2741 if (ret) { 2742 btrfs_abort_transaction(trans, ret); 2743 break; 2744 } 2745 extent_info->data_len -= replace_len; 2746 extent_info->data_offset += replace_len; 2747 extent_info->file_offset += replace_len; 2748 } 2749 2750 /* 2751 * We are releasing our handle on the transaction, balance the 2752 * dirty pages of the btree inode and flush delayed items, and 2753 * then get a new transaction handle, which may now point to a 2754 * new transaction in case someone else may have committed the 2755 * transaction we used to replace/drop file extent items. So 2756 * bump the inode's iversion and update mtime and ctime except 2757 * if we are called from a dedupe context. This is because a 2758 * power failure/crash may happen after the transaction is 2759 * committed and before we finish replacing/dropping all the 2760 * file extent items we need. 2761 */ 2762 inode_inc_iversion(&inode->vfs_inode); 2763 2764 if (!extent_info || extent_info->update_times) { 2765 inode->vfs_inode.i_mtime = current_time(&inode->vfs_inode); 2766 inode->vfs_inode.i_ctime = inode->vfs_inode.i_mtime; 2767 } 2768 2769 ret = btrfs_update_inode(trans, root, inode); 2770 if (ret) 2771 break; 2772 2773 btrfs_end_transaction(trans); 2774 btrfs_btree_balance_dirty(fs_info); 2775 2776 trans = btrfs_start_transaction(root, rsv_count); 2777 if (IS_ERR(trans)) { 2778 ret = PTR_ERR(trans); 2779 trans = NULL; 2780 break; 2781 } 2782 2783 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 2784 rsv, min_size, false); 2785 if (WARN_ON(ret)) 2786 break; 2787 trans->block_rsv = rsv; 2788 2789 cur_offset = drop_args.drop_end; 2790 len = end - cur_offset; 2791 if (!extent_info && len) { 2792 ret = find_first_non_hole(inode, &cur_offset, &len); 2793 if (unlikely(ret < 0)) 2794 break; 2795 if (ret && !len) { 2796 ret = 0; 2797 break; 2798 } 2799 } 2800 } 2801 2802 /* 2803 * If we were cloning, force the next fsync to be a full one since we 2804 * we replaced (or just dropped in the case of cloning holes when 2805 * NO_HOLES is enabled) file extent items and did not setup new extent 2806 * maps for the replacement extents (or holes). 2807 */ 2808 if (extent_info && !extent_info->is_new_extent) 2809 btrfs_set_inode_full_sync(inode); 2810 2811 if (ret) 2812 goto out_trans; 2813 2814 trans->block_rsv = &fs_info->trans_block_rsv; 2815 /* 2816 * If we are using the NO_HOLES feature we might have had already an 2817 * hole that overlaps a part of the region [lockstart, lockend] and 2818 * ends at (or beyond) lockend. Since we have no file extent items to 2819 * represent holes, drop_end can be less than lockend and so we must 2820 * make sure we have an extent map representing the existing hole (the 2821 * call to __btrfs_drop_extents() might have dropped the existing extent 2822 * map representing the existing hole), otherwise the fast fsync path 2823 * will not record the existence of the hole region 2824 * [existing_hole_start, lockend]. 2825 */ 2826 if (drop_args.drop_end <= end) 2827 drop_args.drop_end = end + 1; 2828 /* 2829 * Don't insert file hole extent item if it's for a range beyond eof 2830 * (because it's useless) or if it represents a 0 bytes range (when 2831 * cur_offset == drop_end). 2832 */ 2833 if (!extent_info && cur_offset < ino_size && 2834 cur_offset < drop_args.drop_end) { 2835 ret = fill_holes(trans, inode, path, cur_offset, 2836 drop_args.drop_end); 2837 if (ret) { 2838 /* Same comment as above. */ 2839 btrfs_abort_transaction(trans, ret); 2840 goto out_trans; 2841 } 2842 } else if (!extent_info && cur_offset < drop_args.drop_end) { 2843 /* See the comment in the loop above for the reasoning here. */ 2844 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset, 2845 drop_args.drop_end - cur_offset); 2846 if (ret) { 2847 btrfs_abort_transaction(trans, ret); 2848 goto out_trans; 2849 } 2850 2851 } 2852 if (extent_info) { 2853 ret = btrfs_insert_replace_extent(trans, inode, path, 2854 extent_info, extent_info->data_len, 2855 drop_args.bytes_found); 2856 if (ret) { 2857 btrfs_abort_transaction(trans, ret); 2858 goto out_trans; 2859 } 2860 } 2861 2862 out_trans: 2863 if (!trans) 2864 goto out_free; 2865 2866 trans->block_rsv = &fs_info->trans_block_rsv; 2867 if (ret) 2868 btrfs_end_transaction(trans); 2869 else 2870 *trans_out = trans; 2871 out_free: 2872 btrfs_free_block_rsv(fs_info, rsv); 2873 out: 2874 return ret; 2875 } 2876 2877 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len) 2878 { 2879 struct inode *inode = file_inode(file); 2880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2881 struct btrfs_root *root = BTRFS_I(inode)->root; 2882 struct extent_state *cached_state = NULL; 2883 struct btrfs_path *path; 2884 struct btrfs_trans_handle *trans = NULL; 2885 u64 lockstart; 2886 u64 lockend; 2887 u64 tail_start; 2888 u64 tail_len; 2889 u64 orig_start = offset; 2890 int ret = 0; 2891 bool same_block; 2892 u64 ino_size; 2893 bool truncated_block = false; 2894 bool updated_inode = false; 2895 2896 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 2897 2898 ret = btrfs_wait_ordered_range(inode, offset, len); 2899 if (ret) 2900 goto out_only_mutex; 2901 2902 ino_size = round_up(inode->i_size, fs_info->sectorsize); 2903 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2904 if (ret < 0) 2905 goto out_only_mutex; 2906 if (ret && !len) { 2907 /* Already in a large hole */ 2908 ret = 0; 2909 goto out_only_mutex; 2910 } 2911 2912 ret = file_modified(file); 2913 if (ret) 2914 goto out_only_mutex; 2915 2916 lockstart = round_up(offset, fs_info->sectorsize); 2917 lockend = round_down(offset + len, fs_info->sectorsize) - 1; 2918 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset)) 2919 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)); 2920 /* 2921 * We needn't truncate any block which is beyond the end of the file 2922 * because we are sure there is no data there. 2923 */ 2924 /* 2925 * Only do this if we are in the same block and we aren't doing the 2926 * entire block. 2927 */ 2928 if (same_block && len < fs_info->sectorsize) { 2929 if (offset < ino_size) { 2930 truncated_block = true; 2931 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 2932 0); 2933 } else { 2934 ret = 0; 2935 } 2936 goto out_only_mutex; 2937 } 2938 2939 /* zero back part of the first block */ 2940 if (offset < ino_size) { 2941 truncated_block = true; 2942 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 2943 if (ret) { 2944 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 2945 return ret; 2946 } 2947 } 2948 2949 /* Check the aligned pages after the first unaligned page, 2950 * if offset != orig_start, which means the first unaligned page 2951 * including several following pages are already in holes, 2952 * the extra check can be skipped */ 2953 if (offset == orig_start) { 2954 /* after truncate page, check hole again */ 2955 len = offset + len - lockstart; 2956 offset = lockstart; 2957 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len); 2958 if (ret < 0) 2959 goto out_only_mutex; 2960 if (ret && !len) { 2961 ret = 0; 2962 goto out_only_mutex; 2963 } 2964 lockstart = offset; 2965 } 2966 2967 /* Check the tail unaligned part is in a hole */ 2968 tail_start = lockend + 1; 2969 tail_len = offset + len - tail_start; 2970 if (tail_len) { 2971 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len); 2972 if (unlikely(ret < 0)) 2973 goto out_only_mutex; 2974 if (!ret) { 2975 /* zero the front end of the last page */ 2976 if (tail_start + tail_len < ino_size) { 2977 truncated_block = true; 2978 ret = btrfs_truncate_block(BTRFS_I(inode), 2979 tail_start + tail_len, 2980 0, 1); 2981 if (ret) 2982 goto out_only_mutex; 2983 } 2984 } 2985 } 2986 2987 if (lockend < lockstart) { 2988 ret = 0; 2989 goto out_only_mutex; 2990 } 2991 2992 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state); 2993 2994 path = btrfs_alloc_path(); 2995 if (!path) { 2996 ret = -ENOMEM; 2997 goto out; 2998 } 2999 3000 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart, 3001 lockend, NULL, &trans); 3002 btrfs_free_path(path); 3003 if (ret) 3004 goto out; 3005 3006 ASSERT(trans != NULL); 3007 inode_inc_iversion(inode); 3008 inode->i_mtime = current_time(inode); 3009 inode->i_ctime = inode->i_mtime; 3010 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3011 updated_inode = true; 3012 btrfs_end_transaction(trans); 3013 btrfs_btree_balance_dirty(fs_info); 3014 out: 3015 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3016 &cached_state); 3017 out_only_mutex: 3018 if (!updated_inode && truncated_block && !ret) { 3019 /* 3020 * If we only end up zeroing part of a page, we still need to 3021 * update the inode item, so that all the time fields are 3022 * updated as well as the necessary btrfs inode in memory fields 3023 * for detecting, at fsync time, if the inode isn't yet in the 3024 * log tree or it's there but not up to date. 3025 */ 3026 struct timespec64 now = current_time(inode); 3027 3028 inode_inc_iversion(inode); 3029 inode->i_mtime = now; 3030 inode->i_ctime = now; 3031 trans = btrfs_start_transaction(root, 1); 3032 if (IS_ERR(trans)) { 3033 ret = PTR_ERR(trans); 3034 } else { 3035 int ret2; 3036 3037 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3038 ret2 = btrfs_end_transaction(trans); 3039 if (!ret) 3040 ret = ret2; 3041 } 3042 } 3043 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3044 return ret; 3045 } 3046 3047 /* Helper structure to record which range is already reserved */ 3048 struct falloc_range { 3049 struct list_head list; 3050 u64 start; 3051 u64 len; 3052 }; 3053 3054 /* 3055 * Helper function to add falloc range 3056 * 3057 * Caller should have locked the larger range of extent containing 3058 * [start, len) 3059 */ 3060 static int add_falloc_range(struct list_head *head, u64 start, u64 len) 3061 { 3062 struct falloc_range *range = NULL; 3063 3064 if (!list_empty(head)) { 3065 /* 3066 * As fallocate iterates by bytenr order, we only need to check 3067 * the last range. 3068 */ 3069 range = list_last_entry(head, struct falloc_range, list); 3070 if (range->start + range->len == start) { 3071 range->len += len; 3072 return 0; 3073 } 3074 } 3075 3076 range = kmalloc(sizeof(*range), GFP_KERNEL); 3077 if (!range) 3078 return -ENOMEM; 3079 range->start = start; 3080 range->len = len; 3081 list_add_tail(&range->list, head); 3082 return 0; 3083 } 3084 3085 static int btrfs_fallocate_update_isize(struct inode *inode, 3086 const u64 end, 3087 const int mode) 3088 { 3089 struct btrfs_trans_handle *trans; 3090 struct btrfs_root *root = BTRFS_I(inode)->root; 3091 int ret; 3092 int ret2; 3093 3094 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode)) 3095 return 0; 3096 3097 trans = btrfs_start_transaction(root, 1); 3098 if (IS_ERR(trans)) 3099 return PTR_ERR(trans); 3100 3101 inode->i_ctime = current_time(inode); 3102 i_size_write(inode, end); 3103 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 3104 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 3105 ret2 = btrfs_end_transaction(trans); 3106 3107 return ret ? ret : ret2; 3108 } 3109 3110 enum { 3111 RANGE_BOUNDARY_WRITTEN_EXTENT, 3112 RANGE_BOUNDARY_PREALLOC_EXTENT, 3113 RANGE_BOUNDARY_HOLE, 3114 }; 3115 3116 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode, 3117 u64 offset) 3118 { 3119 const u64 sectorsize = inode->root->fs_info->sectorsize; 3120 struct extent_map *em; 3121 int ret; 3122 3123 offset = round_down(offset, sectorsize); 3124 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize); 3125 if (IS_ERR(em)) 3126 return PTR_ERR(em); 3127 3128 if (em->block_start == EXTENT_MAP_HOLE) 3129 ret = RANGE_BOUNDARY_HOLE; 3130 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3131 ret = RANGE_BOUNDARY_PREALLOC_EXTENT; 3132 else 3133 ret = RANGE_BOUNDARY_WRITTEN_EXTENT; 3134 3135 free_extent_map(em); 3136 return ret; 3137 } 3138 3139 static int btrfs_zero_range(struct inode *inode, 3140 loff_t offset, 3141 loff_t len, 3142 const int mode) 3143 { 3144 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3145 struct extent_map *em; 3146 struct extent_changeset *data_reserved = NULL; 3147 int ret; 3148 u64 alloc_hint = 0; 3149 const u64 sectorsize = fs_info->sectorsize; 3150 u64 alloc_start = round_down(offset, sectorsize); 3151 u64 alloc_end = round_up(offset + len, sectorsize); 3152 u64 bytes_to_reserve = 0; 3153 bool space_reserved = false; 3154 3155 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3156 alloc_end - alloc_start); 3157 if (IS_ERR(em)) { 3158 ret = PTR_ERR(em); 3159 goto out; 3160 } 3161 3162 /* 3163 * Avoid hole punching and extent allocation for some cases. More cases 3164 * could be considered, but these are unlikely common and we keep things 3165 * as simple as possible for now. Also, intentionally, if the target 3166 * range contains one or more prealloc extents together with regular 3167 * extents and holes, we drop all the existing extents and allocate a 3168 * new prealloc extent, so that we get a larger contiguous disk extent. 3169 */ 3170 if (em->start <= alloc_start && 3171 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3172 const u64 em_end = em->start + em->len; 3173 3174 if (em_end >= offset + len) { 3175 /* 3176 * The whole range is already a prealloc extent, 3177 * do nothing except updating the inode's i_size if 3178 * needed. 3179 */ 3180 free_extent_map(em); 3181 ret = btrfs_fallocate_update_isize(inode, offset + len, 3182 mode); 3183 goto out; 3184 } 3185 /* 3186 * Part of the range is already a prealloc extent, so operate 3187 * only on the remaining part of the range. 3188 */ 3189 alloc_start = em_end; 3190 ASSERT(IS_ALIGNED(alloc_start, sectorsize)); 3191 len = offset + len - alloc_start; 3192 offset = alloc_start; 3193 alloc_hint = em->block_start + em->len; 3194 } 3195 free_extent_map(em); 3196 3197 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) == 3198 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) { 3199 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start, 3200 sectorsize); 3201 if (IS_ERR(em)) { 3202 ret = PTR_ERR(em); 3203 goto out; 3204 } 3205 3206 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3207 free_extent_map(em); 3208 ret = btrfs_fallocate_update_isize(inode, offset + len, 3209 mode); 3210 goto out; 3211 } 3212 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) { 3213 free_extent_map(em); 3214 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len, 3215 0); 3216 if (!ret) 3217 ret = btrfs_fallocate_update_isize(inode, 3218 offset + len, 3219 mode); 3220 return ret; 3221 } 3222 free_extent_map(em); 3223 alloc_start = round_down(offset, sectorsize); 3224 alloc_end = alloc_start + sectorsize; 3225 goto reserve_space; 3226 } 3227 3228 alloc_start = round_up(offset, sectorsize); 3229 alloc_end = round_down(offset + len, sectorsize); 3230 3231 /* 3232 * For unaligned ranges, check the pages at the boundaries, they might 3233 * map to an extent, in which case we need to partially zero them, or 3234 * they might map to a hole, in which case we need our allocation range 3235 * to cover them. 3236 */ 3237 if (!IS_ALIGNED(offset, sectorsize)) { 3238 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3239 offset); 3240 if (ret < 0) 3241 goto out; 3242 if (ret == RANGE_BOUNDARY_HOLE) { 3243 alloc_start = round_down(offset, sectorsize); 3244 ret = 0; 3245 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3246 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0); 3247 if (ret) 3248 goto out; 3249 } else { 3250 ret = 0; 3251 } 3252 } 3253 3254 if (!IS_ALIGNED(offset + len, sectorsize)) { 3255 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode), 3256 offset + len); 3257 if (ret < 0) 3258 goto out; 3259 if (ret == RANGE_BOUNDARY_HOLE) { 3260 alloc_end = round_up(offset + len, sectorsize); 3261 ret = 0; 3262 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) { 3263 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len, 3264 0, 1); 3265 if (ret) 3266 goto out; 3267 } else { 3268 ret = 0; 3269 } 3270 } 3271 3272 reserve_space: 3273 if (alloc_start < alloc_end) { 3274 struct extent_state *cached_state = NULL; 3275 const u64 lockstart = alloc_start; 3276 const u64 lockend = alloc_end - 1; 3277 3278 bytes_to_reserve = alloc_end - alloc_start; 3279 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3280 bytes_to_reserve); 3281 if (ret < 0) 3282 goto out; 3283 space_reserved = true; 3284 btrfs_punch_hole_lock_range(inode, lockstart, lockend, 3285 &cached_state); 3286 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved, 3287 alloc_start, bytes_to_reserve); 3288 if (ret) { 3289 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, 3290 lockend, &cached_state); 3291 goto out; 3292 } 3293 ret = btrfs_prealloc_file_range(inode, mode, alloc_start, 3294 alloc_end - alloc_start, 3295 i_blocksize(inode), 3296 offset + len, &alloc_hint); 3297 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 3298 &cached_state); 3299 /* btrfs_prealloc_file_range releases reserved space on error */ 3300 if (ret) { 3301 space_reserved = false; 3302 goto out; 3303 } 3304 } 3305 ret = btrfs_fallocate_update_isize(inode, offset + len, mode); 3306 out: 3307 if (ret && space_reserved) 3308 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved, 3309 alloc_start, bytes_to_reserve); 3310 extent_changeset_free(data_reserved); 3311 3312 return ret; 3313 } 3314 3315 static long btrfs_fallocate(struct file *file, int mode, 3316 loff_t offset, loff_t len) 3317 { 3318 struct inode *inode = file_inode(file); 3319 struct extent_state *cached_state = NULL; 3320 struct extent_changeset *data_reserved = NULL; 3321 struct falloc_range *range; 3322 struct falloc_range *tmp; 3323 struct list_head reserve_list; 3324 u64 cur_offset; 3325 u64 last_byte; 3326 u64 alloc_start; 3327 u64 alloc_end; 3328 u64 alloc_hint = 0; 3329 u64 locked_end; 3330 u64 actual_end = 0; 3331 u64 data_space_needed = 0; 3332 u64 data_space_reserved = 0; 3333 u64 qgroup_reserved = 0; 3334 struct extent_map *em; 3335 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize; 3336 int ret; 3337 3338 /* Do not allow fallocate in ZONED mode */ 3339 if (btrfs_is_zoned(btrfs_sb(inode->i_sb))) 3340 return -EOPNOTSUPP; 3341 3342 alloc_start = round_down(offset, blocksize); 3343 alloc_end = round_up(offset + len, blocksize); 3344 cur_offset = alloc_start; 3345 3346 /* Make sure we aren't being give some crap mode */ 3347 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 3348 FALLOC_FL_ZERO_RANGE)) 3349 return -EOPNOTSUPP; 3350 3351 if (mode & FALLOC_FL_PUNCH_HOLE) 3352 return btrfs_punch_hole(file, offset, len); 3353 3354 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP); 3355 3356 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) { 3357 ret = inode_newsize_ok(inode, offset + len); 3358 if (ret) 3359 goto out; 3360 } 3361 3362 ret = file_modified(file); 3363 if (ret) 3364 goto out; 3365 3366 /* 3367 * TODO: Move these two operations after we have checked 3368 * accurate reserved space, or fallocate can still fail but 3369 * with page truncated or size expanded. 3370 * 3371 * But that's a minor problem and won't do much harm BTW. 3372 */ 3373 if (alloc_start > inode->i_size) { 3374 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode), 3375 alloc_start); 3376 if (ret) 3377 goto out; 3378 } else if (offset + len > inode->i_size) { 3379 /* 3380 * If we are fallocating from the end of the file onward we 3381 * need to zero out the end of the block if i_size lands in the 3382 * middle of a block. 3383 */ 3384 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 3385 if (ret) 3386 goto out; 3387 } 3388 3389 /* 3390 * We have locked the inode at the VFS level (in exclusive mode) and we 3391 * have locked the i_mmap_lock lock (in exclusive mode). Now before 3392 * locking the file range, flush all dealloc in the range and wait for 3393 * all ordered extents in the range to complete. After this we can lock 3394 * the file range and, due to the previous locking we did, we know there 3395 * can't be more delalloc or ordered extents in the range. 3396 */ 3397 ret = btrfs_wait_ordered_range(inode, alloc_start, 3398 alloc_end - alloc_start); 3399 if (ret) 3400 goto out; 3401 3402 if (mode & FALLOC_FL_ZERO_RANGE) { 3403 ret = btrfs_zero_range(inode, offset, len, mode); 3404 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3405 return ret; 3406 } 3407 3408 locked_end = alloc_end - 1; 3409 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3410 &cached_state); 3411 3412 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end); 3413 3414 /* First, check if we exceed the qgroup limit */ 3415 INIT_LIST_HEAD(&reserve_list); 3416 while (cur_offset < alloc_end) { 3417 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 3418 alloc_end - cur_offset); 3419 if (IS_ERR(em)) { 3420 ret = PTR_ERR(em); 3421 break; 3422 } 3423 last_byte = min(extent_map_end(em), alloc_end); 3424 actual_end = min_t(u64, extent_map_end(em), offset + len); 3425 last_byte = ALIGN(last_byte, blocksize); 3426 if (em->block_start == EXTENT_MAP_HOLE || 3427 (cur_offset >= inode->i_size && 3428 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3429 const u64 range_len = last_byte - cur_offset; 3430 3431 ret = add_falloc_range(&reserve_list, cur_offset, range_len); 3432 if (ret < 0) { 3433 free_extent_map(em); 3434 break; 3435 } 3436 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), 3437 &data_reserved, cur_offset, range_len); 3438 if (ret < 0) { 3439 free_extent_map(em); 3440 break; 3441 } 3442 qgroup_reserved += range_len; 3443 data_space_needed += range_len; 3444 } 3445 free_extent_map(em); 3446 cur_offset = last_byte; 3447 } 3448 3449 if (!ret && data_space_needed > 0) { 3450 /* 3451 * We are safe to reserve space here as we can't have delalloc 3452 * in the range, see above. 3453 */ 3454 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), 3455 data_space_needed); 3456 if (!ret) 3457 data_space_reserved = data_space_needed; 3458 } 3459 3460 /* 3461 * If ret is still 0, means we're OK to fallocate. 3462 * Or just cleanup the list and exit. 3463 */ 3464 list_for_each_entry_safe(range, tmp, &reserve_list, list) { 3465 if (!ret) { 3466 ret = btrfs_prealloc_file_range(inode, mode, 3467 range->start, 3468 range->len, i_blocksize(inode), 3469 offset + len, &alloc_hint); 3470 /* 3471 * btrfs_prealloc_file_range() releases space even 3472 * if it returns an error. 3473 */ 3474 data_space_reserved -= range->len; 3475 qgroup_reserved -= range->len; 3476 } else if (data_space_reserved > 0) { 3477 btrfs_free_reserved_data_space(BTRFS_I(inode), 3478 data_reserved, range->start, 3479 range->len); 3480 data_space_reserved -= range->len; 3481 qgroup_reserved -= range->len; 3482 } else if (qgroup_reserved > 0) { 3483 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved, 3484 range->start, range->len); 3485 qgroup_reserved -= range->len; 3486 } 3487 list_del(&range->list); 3488 kfree(range); 3489 } 3490 if (ret < 0) 3491 goto out_unlock; 3492 3493 /* 3494 * We didn't need to allocate any more space, but we still extended the 3495 * size of the file so we need to update i_size and the inode item. 3496 */ 3497 ret = btrfs_fallocate_update_isize(inode, actual_end, mode); 3498 out_unlock: 3499 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 3500 &cached_state); 3501 out: 3502 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP); 3503 extent_changeset_free(data_reserved); 3504 return ret; 3505 } 3506 3507 /* 3508 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range 3509 * that has unflushed and/or flushing delalloc. There might be other adjacent 3510 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps 3511 * looping while it gets adjacent subranges, and merging them together. 3512 */ 3513 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end, 3514 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3515 { 3516 const u64 len = end + 1 - start; 3517 struct extent_map_tree *em_tree = &inode->extent_tree; 3518 struct extent_map *em; 3519 u64 em_end; 3520 u64 delalloc_len; 3521 3522 /* 3523 * Search the io tree first for EXTENT_DELALLOC. If we find any, it 3524 * means we have delalloc (dirty pages) for which writeback has not 3525 * started yet. 3526 */ 3527 *delalloc_start_ret = start; 3528 delalloc_len = count_range_bits(&inode->io_tree, delalloc_start_ret, end, 3529 len, EXTENT_DELALLOC, 1); 3530 /* 3531 * If delalloc was found then *delalloc_start_ret has a sector size 3532 * aligned value (rounded down). 3533 */ 3534 if (delalloc_len > 0) 3535 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1; 3536 3537 /* 3538 * Now also check if there's any extent map in the range that does not 3539 * map to a hole or prealloc extent. We do this because: 3540 * 3541 * 1) When delalloc is flushed, the file range is locked, we clear the 3542 * EXTENT_DELALLOC bit from the io tree and create an extent map for 3543 * an allocated extent. So we might just have been called after 3544 * delalloc is flushed and before the ordered extent completes and 3545 * inserts the new file extent item in the subvolume's btree; 3546 * 3547 * 2) We may have an extent map created by flushing delalloc for a 3548 * subrange that starts before the subrange we found marked with 3549 * EXTENT_DELALLOC in the io tree. 3550 */ 3551 read_lock(&em_tree->lock); 3552 em = lookup_extent_mapping(em_tree, start, len); 3553 read_unlock(&em_tree->lock); 3554 3555 /* extent_map_end() returns a non-inclusive end offset. */ 3556 em_end = em ? extent_map_end(em) : 0; 3557 3558 /* 3559 * If we have a hole/prealloc extent map, check the next one if this one 3560 * ends before our range's end. 3561 */ 3562 if (em && (em->block_start == EXTENT_MAP_HOLE || 3563 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) && em_end < end) { 3564 struct extent_map *next_em; 3565 3566 read_lock(&em_tree->lock); 3567 next_em = lookup_extent_mapping(em_tree, em_end, len - em_end); 3568 read_unlock(&em_tree->lock); 3569 3570 free_extent_map(em); 3571 em_end = next_em ? extent_map_end(next_em) : 0; 3572 em = next_em; 3573 } 3574 3575 if (em && (em->block_start == EXTENT_MAP_HOLE || 3576 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 3577 free_extent_map(em); 3578 em = NULL; 3579 } 3580 3581 /* 3582 * No extent map or one for a hole or prealloc extent. Use the delalloc 3583 * range we found in the io tree if we have one. 3584 */ 3585 if (!em) 3586 return (delalloc_len > 0); 3587 3588 /* 3589 * We don't have any range as EXTENT_DELALLOC in the io tree, so the 3590 * extent map is the only subrange representing delalloc. 3591 */ 3592 if (delalloc_len == 0) { 3593 *delalloc_start_ret = em->start; 3594 *delalloc_end_ret = min(end, em_end - 1); 3595 free_extent_map(em); 3596 return true; 3597 } 3598 3599 /* 3600 * The extent map represents a delalloc range that starts before the 3601 * delalloc range we found in the io tree. 3602 */ 3603 if (em->start < *delalloc_start_ret) { 3604 *delalloc_start_ret = em->start; 3605 /* 3606 * If the ranges are adjacent, return a combined range. 3607 * Otherwise return the extent map's range. 3608 */ 3609 if (em_end < *delalloc_start_ret) 3610 *delalloc_end_ret = min(end, em_end - 1); 3611 3612 free_extent_map(em); 3613 return true; 3614 } 3615 3616 /* 3617 * The extent map starts after the delalloc range we found in the io 3618 * tree. If it's adjacent, return a combined range, otherwise return 3619 * the range found in the io tree. 3620 */ 3621 if (*delalloc_end_ret + 1 == em->start) 3622 *delalloc_end_ret = min(end, em_end - 1); 3623 3624 free_extent_map(em); 3625 return true; 3626 } 3627 3628 /* 3629 * Check if there's delalloc in a given range. 3630 * 3631 * @inode: The inode. 3632 * @start: The start offset of the range. It does not need to be 3633 * sector size aligned. 3634 * @end: The end offset (inclusive value) of the search range. 3635 * It does not need to be sector size aligned. 3636 * @delalloc_start_ret: Output argument, set to the start offset of the 3637 * subrange found with delalloc (may not be sector size 3638 * aligned). 3639 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value) 3640 * of the subrange found with delalloc. 3641 * 3642 * Returns true if a subrange with delalloc is found within the given range, and 3643 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and 3644 * end offsets of the subrange. 3645 */ 3646 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3647 u64 *delalloc_start_ret, u64 *delalloc_end_ret) 3648 { 3649 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize); 3650 u64 prev_delalloc_end = 0; 3651 bool ret = false; 3652 3653 while (cur_offset < end) { 3654 u64 delalloc_start; 3655 u64 delalloc_end; 3656 bool delalloc; 3657 3658 delalloc = find_delalloc_subrange(inode, cur_offset, end, 3659 &delalloc_start, 3660 &delalloc_end); 3661 if (!delalloc) 3662 break; 3663 3664 if (prev_delalloc_end == 0) { 3665 /* First subrange found. */ 3666 *delalloc_start_ret = max(delalloc_start, start); 3667 *delalloc_end_ret = delalloc_end; 3668 ret = true; 3669 } else if (delalloc_start == prev_delalloc_end + 1) { 3670 /* Subrange adjacent to the previous one, merge them. */ 3671 *delalloc_end_ret = delalloc_end; 3672 } else { 3673 /* Subrange not adjacent to the previous one, exit. */ 3674 break; 3675 } 3676 3677 prev_delalloc_end = delalloc_end; 3678 cur_offset = delalloc_end + 1; 3679 cond_resched(); 3680 } 3681 3682 return ret; 3683 } 3684 3685 /* 3686 * Check if there's a hole or delalloc range in a range representing a hole (or 3687 * prealloc extent) found in the inode's subvolume btree. 3688 * 3689 * @inode: The inode. 3690 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE). 3691 * @start: Start offset of the hole region. It does not need to be sector 3692 * size aligned. 3693 * @end: End offset (inclusive value) of the hole region. It does not 3694 * need to be sector size aligned. 3695 * @start_ret: Return parameter, used to set the start of the subrange in the 3696 * hole that matches the search criteria (seek mode), if such 3697 * subrange is found (return value of the function is true). 3698 * The value returned here may not be sector size aligned. 3699 * 3700 * Returns true if a subrange matching the given seek mode is found, and if one 3701 * is found, it updates @start_ret with the start of the subrange. 3702 */ 3703 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence, 3704 u64 start, u64 end, u64 *start_ret) 3705 { 3706 u64 delalloc_start; 3707 u64 delalloc_end; 3708 bool delalloc; 3709 3710 delalloc = btrfs_find_delalloc_in_range(inode, start, end, 3711 &delalloc_start, &delalloc_end); 3712 if (delalloc && whence == SEEK_DATA) { 3713 *start_ret = delalloc_start; 3714 return true; 3715 } 3716 3717 if (delalloc && whence == SEEK_HOLE) { 3718 /* 3719 * We found delalloc but it starts after out start offset. So we 3720 * have a hole between our start offset and the delalloc start. 3721 */ 3722 if (start < delalloc_start) { 3723 *start_ret = start; 3724 return true; 3725 } 3726 /* 3727 * Delalloc range starts at our start offset. 3728 * If the delalloc range's length is smaller than our range, 3729 * then it means we have a hole that starts where the delalloc 3730 * subrange ends. 3731 */ 3732 if (delalloc_end < end) { 3733 *start_ret = delalloc_end + 1; 3734 return true; 3735 } 3736 3737 /* There's delalloc for the whole range. */ 3738 return false; 3739 } 3740 3741 if (!delalloc && whence == SEEK_HOLE) { 3742 *start_ret = start; 3743 return true; 3744 } 3745 3746 /* 3747 * No delalloc in the range and we are seeking for data. The caller has 3748 * to iterate to the next extent item in the subvolume btree. 3749 */ 3750 return false; 3751 } 3752 3753 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset, 3754 int whence) 3755 { 3756 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3757 struct extent_state *cached_state = NULL; 3758 const loff_t i_size = i_size_read(&inode->vfs_inode); 3759 const u64 ino = btrfs_ino(inode); 3760 struct btrfs_root *root = inode->root; 3761 struct btrfs_path *path; 3762 struct btrfs_key key; 3763 u64 last_extent_end; 3764 u64 lockstart; 3765 u64 lockend; 3766 u64 start; 3767 int ret; 3768 bool found = false; 3769 3770 if (i_size == 0 || offset >= i_size) 3771 return -ENXIO; 3772 3773 /* 3774 * Quick path. If the inode has no prealloc extents and its number of 3775 * bytes used matches its i_size, then it can not have holes. 3776 */ 3777 if (whence == SEEK_HOLE && 3778 !(inode->flags & BTRFS_INODE_PREALLOC) && 3779 inode_get_bytes(&inode->vfs_inode) == i_size) 3780 return i_size; 3781 3782 /* 3783 * offset can be negative, in this case we start finding DATA/HOLE from 3784 * the very start of the file. 3785 */ 3786 start = max_t(loff_t, 0, offset); 3787 3788 lockstart = round_down(start, fs_info->sectorsize); 3789 lockend = round_up(i_size, fs_info->sectorsize); 3790 if (lockend <= lockstart) 3791 lockend = lockstart + fs_info->sectorsize; 3792 lockend--; 3793 3794 path = btrfs_alloc_path(); 3795 if (!path) 3796 return -ENOMEM; 3797 path->reada = READA_FORWARD; 3798 3799 key.objectid = ino; 3800 key.type = BTRFS_EXTENT_DATA_KEY; 3801 key.offset = start; 3802 3803 last_extent_end = lockstart; 3804 3805 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3806 3807 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3808 if (ret < 0) { 3809 goto out; 3810 } else if (ret > 0 && path->slots[0] > 0) { 3811 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3812 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3813 path->slots[0]--; 3814 } 3815 3816 while (start < i_size) { 3817 struct extent_buffer *leaf = path->nodes[0]; 3818 struct btrfs_file_extent_item *extent; 3819 u64 extent_end; 3820 3821 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3822 ret = btrfs_next_leaf(root, path); 3823 if (ret < 0) 3824 goto out; 3825 else if (ret > 0) 3826 break; 3827 3828 leaf = path->nodes[0]; 3829 } 3830 3831 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3832 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3833 break; 3834 3835 extent_end = btrfs_file_extent_end(path); 3836 3837 /* 3838 * In the first iteration we may have a slot that points to an 3839 * extent that ends before our start offset, so skip it. 3840 */ 3841 if (extent_end <= start) { 3842 path->slots[0]++; 3843 continue; 3844 } 3845 3846 /* We have an implicit hole, NO_HOLES feature is likely set. */ 3847 if (last_extent_end < key.offset) { 3848 u64 search_start = last_extent_end; 3849 u64 found_start; 3850 3851 /* 3852 * First iteration, @start matches @offset and it's 3853 * within the hole. 3854 */ 3855 if (start == offset) 3856 search_start = offset; 3857 3858 found = find_desired_extent_in_hole(inode, whence, 3859 search_start, 3860 key.offset - 1, 3861 &found_start); 3862 if (found) { 3863 start = found_start; 3864 break; 3865 } 3866 /* 3867 * Didn't find data or a hole (due to delalloc) in the 3868 * implicit hole range, so need to analyze the extent. 3869 */ 3870 } 3871 3872 extent = btrfs_item_ptr(leaf, path->slots[0], 3873 struct btrfs_file_extent_item); 3874 3875 if (btrfs_file_extent_disk_bytenr(leaf, extent) == 0 || 3876 btrfs_file_extent_type(leaf, extent) == 3877 BTRFS_FILE_EXTENT_PREALLOC) { 3878 /* 3879 * Explicit hole or prealloc extent, search for delalloc. 3880 * A prealloc extent is treated like a hole. 3881 */ 3882 u64 search_start = key.offset; 3883 u64 found_start; 3884 3885 /* 3886 * First iteration, @start matches @offset and it's 3887 * within the hole. 3888 */ 3889 if (start == offset) 3890 search_start = offset; 3891 3892 found = find_desired_extent_in_hole(inode, whence, 3893 search_start, 3894 extent_end - 1, 3895 &found_start); 3896 if (found) { 3897 start = found_start; 3898 break; 3899 } 3900 /* 3901 * Didn't find data or a hole (due to delalloc) in the 3902 * implicit hole range, so need to analyze the next 3903 * extent item. 3904 */ 3905 } else { 3906 /* 3907 * Found a regular or inline extent. 3908 * If we are seeking for data, adjust the start offset 3909 * and stop, we're done. 3910 */ 3911 if (whence == SEEK_DATA) { 3912 start = max_t(u64, key.offset, offset); 3913 found = true; 3914 break; 3915 } 3916 /* 3917 * Else, we are seeking for a hole, check the next file 3918 * extent item. 3919 */ 3920 } 3921 3922 start = extent_end; 3923 last_extent_end = extent_end; 3924 path->slots[0]++; 3925 if (fatal_signal_pending(current)) { 3926 ret = -EINTR; 3927 goto out; 3928 } 3929 cond_resched(); 3930 } 3931 3932 /* We have an implicit hole from the last extent found up to i_size. */ 3933 if (!found && start < i_size) { 3934 found = find_desired_extent_in_hole(inode, whence, start, 3935 i_size - 1, &start); 3936 if (!found) 3937 start = i_size; 3938 } 3939 3940 out: 3941 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3942 btrfs_free_path(path); 3943 3944 if (ret < 0) 3945 return ret; 3946 3947 if (whence == SEEK_DATA && start >= i_size) 3948 return -ENXIO; 3949 3950 return min_t(loff_t, start, i_size); 3951 } 3952 3953 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence) 3954 { 3955 struct inode *inode = file->f_mapping->host; 3956 3957 switch (whence) { 3958 default: 3959 return generic_file_llseek(file, offset, whence); 3960 case SEEK_DATA: 3961 case SEEK_HOLE: 3962 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3963 offset = find_desired_extent(BTRFS_I(inode), offset, whence); 3964 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3965 break; 3966 } 3967 3968 if (offset < 0) 3969 return offset; 3970 3971 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 3972 } 3973 3974 static int btrfs_file_open(struct inode *inode, struct file *filp) 3975 { 3976 int ret; 3977 3978 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC; 3979 3980 ret = fsverity_file_open(inode, filp); 3981 if (ret) 3982 return ret; 3983 return generic_file_open(inode, filp); 3984 } 3985 3986 static int check_direct_read(struct btrfs_fs_info *fs_info, 3987 const struct iov_iter *iter, loff_t offset) 3988 { 3989 int ret; 3990 int i, seg; 3991 3992 ret = check_direct_IO(fs_info, iter, offset); 3993 if (ret < 0) 3994 return ret; 3995 3996 if (!iter_is_iovec(iter)) 3997 return 0; 3998 3999 for (seg = 0; seg < iter->nr_segs; seg++) 4000 for (i = seg + 1; i < iter->nr_segs; i++) 4001 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 4002 return -EINVAL; 4003 return 0; 4004 } 4005 4006 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to) 4007 { 4008 struct inode *inode = file_inode(iocb->ki_filp); 4009 size_t prev_left = 0; 4010 ssize_t read = 0; 4011 ssize_t ret; 4012 4013 if (fsverity_active(inode)) 4014 return 0; 4015 4016 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos)) 4017 return 0; 4018 4019 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 4020 again: 4021 /* 4022 * This is similar to what we do for direct IO writes, see the comment 4023 * at btrfs_direct_write(), but we also disable page faults in addition 4024 * to disabling them only at the iov_iter level. This is because when 4025 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(), 4026 * which can still trigger page fault ins despite having set ->nofault 4027 * to true of our 'to' iov_iter. 4028 * 4029 * The difference to direct IO writes is that we deadlock when trying 4030 * to lock the extent range in the inode's tree during he page reads 4031 * triggered by the fault in (while for writes it is due to waiting for 4032 * our own ordered extent). This is because for direct IO reads, 4033 * btrfs_dio_iomap_begin() returns with the extent range locked, which 4034 * is only unlocked in the endio callback (end_bio_extent_readpage()). 4035 */ 4036 pagefault_disable(); 4037 to->nofault = true; 4038 ret = btrfs_dio_rw(iocb, to, read); 4039 to->nofault = false; 4040 pagefault_enable(); 4041 4042 /* No increment (+=) because iomap returns a cumulative value. */ 4043 if (ret > 0) 4044 read = ret; 4045 4046 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) { 4047 const size_t left = iov_iter_count(to); 4048 4049 if (left == prev_left) { 4050 /* 4051 * We didn't make any progress since the last attempt, 4052 * fallback to a buffered read for the remainder of the 4053 * range. This is just to avoid any possibility of looping 4054 * for too long. 4055 */ 4056 ret = read; 4057 } else { 4058 /* 4059 * We made some progress since the last retry or this is 4060 * the first time we are retrying. Fault in as many pages 4061 * as possible and retry. 4062 */ 4063 fault_in_iov_iter_writeable(to, left); 4064 prev_left = left; 4065 goto again; 4066 } 4067 } 4068 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 4069 return ret < 0 ? ret : read; 4070 } 4071 4072 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 4073 { 4074 ssize_t ret = 0; 4075 4076 if (iocb->ki_flags & IOCB_DIRECT) { 4077 ret = btrfs_direct_read(iocb, to); 4078 if (ret < 0 || !iov_iter_count(to) || 4079 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp))) 4080 return ret; 4081 } 4082 4083 return filemap_read(iocb, to, ret); 4084 } 4085 4086 const struct file_operations btrfs_file_operations = { 4087 .llseek = btrfs_file_llseek, 4088 .read_iter = btrfs_file_read_iter, 4089 .splice_read = generic_file_splice_read, 4090 .write_iter = btrfs_file_write_iter, 4091 .splice_write = iter_file_splice_write, 4092 .mmap = btrfs_file_mmap, 4093 .open = btrfs_file_open, 4094 .release = btrfs_release_file, 4095 .get_unmapped_area = thp_get_unmapped_area, 4096 .fsync = btrfs_sync_file, 4097 .fallocate = btrfs_fallocate, 4098 .unlocked_ioctl = btrfs_ioctl, 4099 #ifdef CONFIG_COMPAT 4100 .compat_ioctl = btrfs_compat_ioctl, 4101 #endif 4102 .remap_file_range = btrfs_remap_file_range, 4103 }; 4104 4105 void __cold btrfs_auto_defrag_exit(void) 4106 { 4107 kmem_cache_destroy(btrfs_inode_defrag_cachep); 4108 } 4109 4110 int __init btrfs_auto_defrag_init(void) 4111 { 4112 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", 4113 sizeof(struct inode_defrag), 0, 4114 SLAB_MEM_SPREAD, 4115 NULL); 4116 if (!btrfs_inode_defrag_cachep) 4117 return -ENOMEM; 4118 4119 return 0; 4120 } 4121 4122 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end) 4123 { 4124 int ret; 4125 4126 /* 4127 * So with compression we will find and lock a dirty page and clear the 4128 * first one as dirty, setup an async extent, and immediately return 4129 * with the entire range locked but with nobody actually marked with 4130 * writeback. So we can't just filemap_write_and_wait_range() and 4131 * expect it to work since it will just kick off a thread to do the 4132 * actual work. So we need to call filemap_fdatawrite_range _again_ 4133 * since it will wait on the page lock, which won't be unlocked until 4134 * after the pages have been marked as writeback and so we're good to go 4135 * from there. We have to do this otherwise we'll miss the ordered 4136 * extents and that results in badness. Please Josef, do not think you 4137 * know better and pull this out at some point in the future, it is 4138 * right and you are wrong. 4139 */ 4140 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 4141 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 4142 &BTRFS_I(inode)->runtime_flags)) 4143 ret = filemap_fdatawrite_range(inode->i_mapping, start, end); 4144 4145 return ret; 4146 } 4147