xref: /linux/fs/btrfs/file.c (revision 02091cbe9cc4f18167208eec1d6de636cc731817)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "print-tree.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "volumes.h"
28 #include "qgroup.h"
29 #include "compression.h"
30 #include "delalloc-space.h"
31 #include "reflink.h"
32 #include "subpage.h"
33 #include "fs.h"
34 #include "accessors.h"
35 #include "extent-tree.h"
36 #include "file-item.h"
37 #include "ioctl.h"
38 #include "file.h"
39 #include "super.h"
40 
41 /* simple helper to fault in pages and copy.  This should go away
42  * and be replaced with calls into generic code.
43  */
44 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
45 					 struct page **prepared_pages,
46 					 struct iov_iter *i)
47 {
48 	size_t copied = 0;
49 	size_t total_copied = 0;
50 	int pg = 0;
51 	int offset = offset_in_page(pos);
52 
53 	while (write_bytes > 0) {
54 		size_t count = min_t(size_t,
55 				     PAGE_SIZE - offset, write_bytes);
56 		struct page *page = prepared_pages[pg];
57 		/*
58 		 * Copy data from userspace to the current page
59 		 */
60 		copied = copy_page_from_iter_atomic(page, offset, count, i);
61 
62 		/* Flush processor's dcache for this page */
63 		flush_dcache_page(page);
64 
65 		/*
66 		 * if we get a partial write, we can end up with
67 		 * partially up to date pages.  These add
68 		 * a lot of complexity, so make sure they don't
69 		 * happen by forcing this copy to be retried.
70 		 *
71 		 * The rest of the btrfs_file_write code will fall
72 		 * back to page at a time copies after we return 0.
73 		 */
74 		if (unlikely(copied < count)) {
75 			if (!PageUptodate(page)) {
76 				iov_iter_revert(i, copied);
77 				copied = 0;
78 			}
79 			if (!copied)
80 				break;
81 		}
82 
83 		write_bytes -= copied;
84 		total_copied += copied;
85 		offset += copied;
86 		if (offset == PAGE_SIZE) {
87 			pg++;
88 			offset = 0;
89 		}
90 	}
91 	return total_copied;
92 }
93 
94 /*
95  * unlocks pages after btrfs_file_write is done with them
96  */
97 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
98 			     struct page **pages, size_t num_pages,
99 			     u64 pos, u64 copied)
100 {
101 	size_t i;
102 	u64 block_start = round_down(pos, fs_info->sectorsize);
103 	u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
104 
105 	ASSERT(block_len <= U32_MAX);
106 	for (i = 0; i < num_pages; i++) {
107 		/* page checked is some magic around finding pages that
108 		 * have been modified without going through btrfs_set_page_dirty
109 		 * clear it here. There should be no need to mark the pages
110 		 * accessed as prepare_pages should have marked them accessed
111 		 * in prepare_pages via find_or_create_page()
112 		 */
113 		btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
114 					       block_len);
115 		unlock_page(pages[i]);
116 		put_page(pages[i]);
117 	}
118 }
119 
120 /*
121  * After btrfs_copy_from_user(), update the following things for delalloc:
122  * - Mark newly dirtied pages as DELALLOC in the io tree.
123  *   Used to advise which range is to be written back.
124  * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
125  * - Update inode size for past EOF write
126  */
127 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
128 		      size_t num_pages, loff_t pos, size_t write_bytes,
129 		      struct extent_state **cached, bool noreserve)
130 {
131 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
132 	int err = 0;
133 	int i;
134 	u64 num_bytes;
135 	u64 start_pos;
136 	u64 end_of_last_block;
137 	u64 end_pos = pos + write_bytes;
138 	loff_t isize = i_size_read(&inode->vfs_inode);
139 	unsigned int extra_bits = 0;
140 
141 	if (write_bytes == 0)
142 		return 0;
143 
144 	if (noreserve)
145 		extra_bits |= EXTENT_NORESERVE;
146 
147 	start_pos = round_down(pos, fs_info->sectorsize);
148 	num_bytes = round_up(write_bytes + pos - start_pos,
149 			     fs_info->sectorsize);
150 	ASSERT(num_bytes <= U32_MAX);
151 
152 	end_of_last_block = start_pos + num_bytes - 1;
153 
154 	/*
155 	 * The pages may have already been dirty, clear out old accounting so
156 	 * we can set things up properly
157 	 */
158 	clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
159 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
160 			 cached);
161 
162 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
163 					extra_bits, cached);
164 	if (err)
165 		return err;
166 
167 	for (i = 0; i < num_pages; i++) {
168 		struct page *p = pages[i];
169 
170 		btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
171 		btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
172 		btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
173 	}
174 
175 	/*
176 	 * we've only changed i_size in ram, and we haven't updated
177 	 * the disk i_size.  There is no need to log the inode
178 	 * at this time.
179 	 */
180 	if (end_pos > isize)
181 		i_size_write(&inode->vfs_inode, end_pos);
182 	return 0;
183 }
184 
185 /*
186  * this is very complex, but the basic idea is to drop all extents
187  * in the range start - end.  hint_block is filled in with a block number
188  * that would be a good hint to the block allocator for this file.
189  *
190  * If an extent intersects the range but is not entirely inside the range
191  * it is either truncated or split.  Anything entirely inside the range
192  * is deleted from the tree.
193  *
194  * Note: the VFS' inode number of bytes is not updated, it's up to the caller
195  * to deal with that. We set the field 'bytes_found' of the arguments structure
196  * with the number of allocated bytes found in the target range, so that the
197  * caller can update the inode's number of bytes in an atomic way when
198  * replacing extents in a range to avoid races with stat(2).
199  */
200 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
201 		       struct btrfs_root *root, struct btrfs_inode *inode,
202 		       struct btrfs_drop_extents_args *args)
203 {
204 	struct btrfs_fs_info *fs_info = root->fs_info;
205 	struct extent_buffer *leaf;
206 	struct btrfs_file_extent_item *fi;
207 	struct btrfs_ref ref = { 0 };
208 	struct btrfs_key key;
209 	struct btrfs_key new_key;
210 	u64 ino = btrfs_ino(inode);
211 	u64 search_start = args->start;
212 	u64 disk_bytenr = 0;
213 	u64 num_bytes = 0;
214 	u64 extent_offset = 0;
215 	u64 extent_end = 0;
216 	u64 last_end = args->start;
217 	int del_nr = 0;
218 	int del_slot = 0;
219 	int extent_type;
220 	int recow;
221 	int ret;
222 	int modify_tree = -1;
223 	int update_refs;
224 	int found = 0;
225 	struct btrfs_path *path = args->path;
226 
227 	args->bytes_found = 0;
228 	args->extent_inserted = false;
229 
230 	/* Must always have a path if ->replace_extent is true */
231 	ASSERT(!(args->replace_extent && !args->path));
232 
233 	if (!path) {
234 		path = btrfs_alloc_path();
235 		if (!path) {
236 			ret = -ENOMEM;
237 			goto out;
238 		}
239 	}
240 
241 	if (args->drop_cache)
242 		btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
243 
244 	if (args->start >= inode->disk_i_size && !args->replace_extent)
245 		modify_tree = 0;
246 
247 	update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
248 	while (1) {
249 		recow = 0;
250 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
251 					       search_start, modify_tree);
252 		if (ret < 0)
253 			break;
254 		if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
255 			leaf = path->nodes[0];
256 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
257 			if (key.objectid == ino &&
258 			    key.type == BTRFS_EXTENT_DATA_KEY)
259 				path->slots[0]--;
260 		}
261 		ret = 0;
262 next_slot:
263 		leaf = path->nodes[0];
264 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
265 			BUG_ON(del_nr > 0);
266 			ret = btrfs_next_leaf(root, path);
267 			if (ret < 0)
268 				break;
269 			if (ret > 0) {
270 				ret = 0;
271 				break;
272 			}
273 			leaf = path->nodes[0];
274 			recow = 1;
275 		}
276 
277 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
278 
279 		if (key.objectid > ino)
280 			break;
281 		if (WARN_ON_ONCE(key.objectid < ino) ||
282 		    key.type < BTRFS_EXTENT_DATA_KEY) {
283 			ASSERT(del_nr == 0);
284 			path->slots[0]++;
285 			goto next_slot;
286 		}
287 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
288 			break;
289 
290 		fi = btrfs_item_ptr(leaf, path->slots[0],
291 				    struct btrfs_file_extent_item);
292 		extent_type = btrfs_file_extent_type(leaf, fi);
293 
294 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
295 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
296 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
297 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
298 			extent_offset = btrfs_file_extent_offset(leaf, fi);
299 			extent_end = key.offset +
300 				btrfs_file_extent_num_bytes(leaf, fi);
301 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
302 			extent_end = key.offset +
303 				btrfs_file_extent_ram_bytes(leaf, fi);
304 		} else {
305 			/* can't happen */
306 			BUG();
307 		}
308 
309 		/*
310 		 * Don't skip extent items representing 0 byte lengths. They
311 		 * used to be created (bug) if while punching holes we hit
312 		 * -ENOSPC condition. So if we find one here, just ensure we
313 		 * delete it, otherwise we would insert a new file extent item
314 		 * with the same key (offset) as that 0 bytes length file
315 		 * extent item in the call to setup_items_for_insert() later
316 		 * in this function.
317 		 */
318 		if (extent_end == key.offset && extent_end >= search_start) {
319 			last_end = extent_end;
320 			goto delete_extent_item;
321 		}
322 
323 		if (extent_end <= search_start) {
324 			path->slots[0]++;
325 			goto next_slot;
326 		}
327 
328 		found = 1;
329 		search_start = max(key.offset, args->start);
330 		if (recow || !modify_tree) {
331 			modify_tree = -1;
332 			btrfs_release_path(path);
333 			continue;
334 		}
335 
336 		/*
337 		 *     | - range to drop - |
338 		 *  | -------- extent -------- |
339 		 */
340 		if (args->start > key.offset && args->end < extent_end) {
341 			BUG_ON(del_nr > 0);
342 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
343 				ret = -EOPNOTSUPP;
344 				break;
345 			}
346 
347 			memcpy(&new_key, &key, sizeof(new_key));
348 			new_key.offset = args->start;
349 			ret = btrfs_duplicate_item(trans, root, path,
350 						   &new_key);
351 			if (ret == -EAGAIN) {
352 				btrfs_release_path(path);
353 				continue;
354 			}
355 			if (ret < 0)
356 				break;
357 
358 			leaf = path->nodes[0];
359 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
360 					    struct btrfs_file_extent_item);
361 			btrfs_set_file_extent_num_bytes(leaf, fi,
362 							args->start - key.offset);
363 
364 			fi = btrfs_item_ptr(leaf, path->slots[0],
365 					    struct btrfs_file_extent_item);
366 
367 			extent_offset += args->start - key.offset;
368 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
369 			btrfs_set_file_extent_num_bytes(leaf, fi,
370 							extent_end - args->start);
371 			btrfs_mark_buffer_dirty(leaf);
372 
373 			if (update_refs && disk_bytenr > 0) {
374 				btrfs_init_generic_ref(&ref,
375 						BTRFS_ADD_DELAYED_REF,
376 						disk_bytenr, num_bytes, 0);
377 				btrfs_init_data_ref(&ref,
378 						root->root_key.objectid,
379 						new_key.objectid,
380 						args->start - extent_offset,
381 						0, false);
382 				ret = btrfs_inc_extent_ref(trans, &ref);
383 				if (ret) {
384 					btrfs_abort_transaction(trans, ret);
385 					break;
386 				}
387 			}
388 			key.offset = args->start;
389 		}
390 		/*
391 		 * From here on out we will have actually dropped something, so
392 		 * last_end can be updated.
393 		 */
394 		last_end = extent_end;
395 
396 		/*
397 		 *  | ---- range to drop ----- |
398 		 *      | -------- extent -------- |
399 		 */
400 		if (args->start <= key.offset && args->end < extent_end) {
401 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
402 				ret = -EOPNOTSUPP;
403 				break;
404 			}
405 
406 			memcpy(&new_key, &key, sizeof(new_key));
407 			new_key.offset = args->end;
408 			btrfs_set_item_key_safe(fs_info, path, &new_key);
409 
410 			extent_offset += args->end - key.offset;
411 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
412 			btrfs_set_file_extent_num_bytes(leaf, fi,
413 							extent_end - args->end);
414 			btrfs_mark_buffer_dirty(leaf);
415 			if (update_refs && disk_bytenr > 0)
416 				args->bytes_found += args->end - key.offset;
417 			break;
418 		}
419 
420 		search_start = extent_end;
421 		/*
422 		 *       | ---- range to drop ----- |
423 		 *  | -------- extent -------- |
424 		 */
425 		if (args->start > key.offset && args->end >= extent_end) {
426 			BUG_ON(del_nr > 0);
427 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
428 				ret = -EOPNOTSUPP;
429 				break;
430 			}
431 
432 			btrfs_set_file_extent_num_bytes(leaf, fi,
433 							args->start - key.offset);
434 			btrfs_mark_buffer_dirty(leaf);
435 			if (update_refs && disk_bytenr > 0)
436 				args->bytes_found += extent_end - args->start;
437 			if (args->end == extent_end)
438 				break;
439 
440 			path->slots[0]++;
441 			goto next_slot;
442 		}
443 
444 		/*
445 		 *  | ---- range to drop ----- |
446 		 *    | ------ extent ------ |
447 		 */
448 		if (args->start <= key.offset && args->end >= extent_end) {
449 delete_extent_item:
450 			if (del_nr == 0) {
451 				del_slot = path->slots[0];
452 				del_nr = 1;
453 			} else {
454 				BUG_ON(del_slot + del_nr != path->slots[0]);
455 				del_nr++;
456 			}
457 
458 			if (update_refs &&
459 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
460 				args->bytes_found += extent_end - key.offset;
461 				extent_end = ALIGN(extent_end,
462 						   fs_info->sectorsize);
463 			} else if (update_refs && disk_bytenr > 0) {
464 				btrfs_init_generic_ref(&ref,
465 						BTRFS_DROP_DELAYED_REF,
466 						disk_bytenr, num_bytes, 0);
467 				btrfs_init_data_ref(&ref,
468 						root->root_key.objectid,
469 						key.objectid,
470 						key.offset - extent_offset, 0,
471 						false);
472 				ret = btrfs_free_extent(trans, &ref);
473 				if (ret) {
474 					btrfs_abort_transaction(trans, ret);
475 					break;
476 				}
477 				args->bytes_found += extent_end - key.offset;
478 			}
479 
480 			if (args->end == extent_end)
481 				break;
482 
483 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
484 				path->slots[0]++;
485 				goto next_slot;
486 			}
487 
488 			ret = btrfs_del_items(trans, root, path, del_slot,
489 					      del_nr);
490 			if (ret) {
491 				btrfs_abort_transaction(trans, ret);
492 				break;
493 			}
494 
495 			del_nr = 0;
496 			del_slot = 0;
497 
498 			btrfs_release_path(path);
499 			continue;
500 		}
501 
502 		BUG();
503 	}
504 
505 	if (!ret && del_nr > 0) {
506 		/*
507 		 * Set path->slots[0] to first slot, so that after the delete
508 		 * if items are move off from our leaf to its immediate left or
509 		 * right neighbor leafs, we end up with a correct and adjusted
510 		 * path->slots[0] for our insertion (if args->replace_extent).
511 		 */
512 		path->slots[0] = del_slot;
513 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
514 		if (ret)
515 			btrfs_abort_transaction(trans, ret);
516 	}
517 
518 	leaf = path->nodes[0];
519 	/*
520 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
521 	 * which case it unlocked our path, so check path->locks[0] matches a
522 	 * write lock.
523 	 */
524 	if (!ret && args->replace_extent &&
525 	    path->locks[0] == BTRFS_WRITE_LOCK &&
526 	    btrfs_leaf_free_space(leaf) >=
527 	    sizeof(struct btrfs_item) + args->extent_item_size) {
528 
529 		key.objectid = ino;
530 		key.type = BTRFS_EXTENT_DATA_KEY;
531 		key.offset = args->start;
532 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
533 			struct btrfs_key slot_key;
534 
535 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
536 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
537 				path->slots[0]++;
538 		}
539 		btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size);
540 		args->extent_inserted = true;
541 	}
542 
543 	if (!args->path)
544 		btrfs_free_path(path);
545 	else if (!args->extent_inserted)
546 		btrfs_release_path(path);
547 out:
548 	args->drop_end = found ? min(args->end, last_end) : args->end;
549 
550 	return ret;
551 }
552 
553 static int extent_mergeable(struct extent_buffer *leaf, int slot,
554 			    u64 objectid, u64 bytenr, u64 orig_offset,
555 			    u64 *start, u64 *end)
556 {
557 	struct btrfs_file_extent_item *fi;
558 	struct btrfs_key key;
559 	u64 extent_end;
560 
561 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
562 		return 0;
563 
564 	btrfs_item_key_to_cpu(leaf, &key, slot);
565 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
566 		return 0;
567 
568 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
569 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
570 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
571 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
572 	    btrfs_file_extent_compression(leaf, fi) ||
573 	    btrfs_file_extent_encryption(leaf, fi) ||
574 	    btrfs_file_extent_other_encoding(leaf, fi))
575 		return 0;
576 
577 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
578 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
579 		return 0;
580 
581 	*start = key.offset;
582 	*end = extent_end;
583 	return 1;
584 }
585 
586 /*
587  * Mark extent in the range start - end as written.
588  *
589  * This changes extent type from 'pre-allocated' to 'regular'. If only
590  * part of extent is marked as written, the extent will be split into
591  * two or three.
592  */
593 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
594 			      struct btrfs_inode *inode, u64 start, u64 end)
595 {
596 	struct btrfs_fs_info *fs_info = trans->fs_info;
597 	struct btrfs_root *root = inode->root;
598 	struct extent_buffer *leaf;
599 	struct btrfs_path *path;
600 	struct btrfs_file_extent_item *fi;
601 	struct btrfs_ref ref = { 0 };
602 	struct btrfs_key key;
603 	struct btrfs_key new_key;
604 	u64 bytenr;
605 	u64 num_bytes;
606 	u64 extent_end;
607 	u64 orig_offset;
608 	u64 other_start;
609 	u64 other_end;
610 	u64 split;
611 	int del_nr = 0;
612 	int del_slot = 0;
613 	int recow;
614 	int ret = 0;
615 	u64 ino = btrfs_ino(inode);
616 
617 	path = btrfs_alloc_path();
618 	if (!path)
619 		return -ENOMEM;
620 again:
621 	recow = 0;
622 	split = start;
623 	key.objectid = ino;
624 	key.type = BTRFS_EXTENT_DATA_KEY;
625 	key.offset = split;
626 
627 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
628 	if (ret < 0)
629 		goto out;
630 	if (ret > 0 && path->slots[0] > 0)
631 		path->slots[0]--;
632 
633 	leaf = path->nodes[0];
634 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
635 	if (key.objectid != ino ||
636 	    key.type != BTRFS_EXTENT_DATA_KEY) {
637 		ret = -EINVAL;
638 		btrfs_abort_transaction(trans, ret);
639 		goto out;
640 	}
641 	fi = btrfs_item_ptr(leaf, path->slots[0],
642 			    struct btrfs_file_extent_item);
643 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
644 		ret = -EINVAL;
645 		btrfs_abort_transaction(trans, ret);
646 		goto out;
647 	}
648 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
649 	if (key.offset > start || extent_end < end) {
650 		ret = -EINVAL;
651 		btrfs_abort_transaction(trans, ret);
652 		goto out;
653 	}
654 
655 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
656 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
657 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
658 	memcpy(&new_key, &key, sizeof(new_key));
659 
660 	if (start == key.offset && end < extent_end) {
661 		other_start = 0;
662 		other_end = start;
663 		if (extent_mergeable(leaf, path->slots[0] - 1,
664 				     ino, bytenr, orig_offset,
665 				     &other_start, &other_end)) {
666 			new_key.offset = end;
667 			btrfs_set_item_key_safe(fs_info, path, &new_key);
668 			fi = btrfs_item_ptr(leaf, path->slots[0],
669 					    struct btrfs_file_extent_item);
670 			btrfs_set_file_extent_generation(leaf, fi,
671 							 trans->transid);
672 			btrfs_set_file_extent_num_bytes(leaf, fi,
673 							extent_end - end);
674 			btrfs_set_file_extent_offset(leaf, fi,
675 						     end - orig_offset);
676 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
677 					    struct btrfs_file_extent_item);
678 			btrfs_set_file_extent_generation(leaf, fi,
679 							 trans->transid);
680 			btrfs_set_file_extent_num_bytes(leaf, fi,
681 							end - other_start);
682 			btrfs_mark_buffer_dirty(leaf);
683 			goto out;
684 		}
685 	}
686 
687 	if (start > key.offset && end == extent_end) {
688 		other_start = end;
689 		other_end = 0;
690 		if (extent_mergeable(leaf, path->slots[0] + 1,
691 				     ino, bytenr, orig_offset,
692 				     &other_start, &other_end)) {
693 			fi = btrfs_item_ptr(leaf, path->slots[0],
694 					    struct btrfs_file_extent_item);
695 			btrfs_set_file_extent_num_bytes(leaf, fi,
696 							start - key.offset);
697 			btrfs_set_file_extent_generation(leaf, fi,
698 							 trans->transid);
699 			path->slots[0]++;
700 			new_key.offset = start;
701 			btrfs_set_item_key_safe(fs_info, path, &new_key);
702 
703 			fi = btrfs_item_ptr(leaf, path->slots[0],
704 					    struct btrfs_file_extent_item);
705 			btrfs_set_file_extent_generation(leaf, fi,
706 							 trans->transid);
707 			btrfs_set_file_extent_num_bytes(leaf, fi,
708 							other_end - start);
709 			btrfs_set_file_extent_offset(leaf, fi,
710 						     start - orig_offset);
711 			btrfs_mark_buffer_dirty(leaf);
712 			goto out;
713 		}
714 	}
715 
716 	while (start > key.offset || end < extent_end) {
717 		if (key.offset == start)
718 			split = end;
719 
720 		new_key.offset = split;
721 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
722 		if (ret == -EAGAIN) {
723 			btrfs_release_path(path);
724 			goto again;
725 		}
726 		if (ret < 0) {
727 			btrfs_abort_transaction(trans, ret);
728 			goto out;
729 		}
730 
731 		leaf = path->nodes[0];
732 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
733 				    struct btrfs_file_extent_item);
734 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
735 		btrfs_set_file_extent_num_bytes(leaf, fi,
736 						split - key.offset);
737 
738 		fi = btrfs_item_ptr(leaf, path->slots[0],
739 				    struct btrfs_file_extent_item);
740 
741 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
742 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
743 		btrfs_set_file_extent_num_bytes(leaf, fi,
744 						extent_end - split);
745 		btrfs_mark_buffer_dirty(leaf);
746 
747 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
748 				       num_bytes, 0);
749 		btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
750 				    orig_offset, 0, false);
751 		ret = btrfs_inc_extent_ref(trans, &ref);
752 		if (ret) {
753 			btrfs_abort_transaction(trans, ret);
754 			goto out;
755 		}
756 
757 		if (split == start) {
758 			key.offset = start;
759 		} else {
760 			if (start != key.offset) {
761 				ret = -EINVAL;
762 				btrfs_abort_transaction(trans, ret);
763 				goto out;
764 			}
765 			path->slots[0]--;
766 			extent_end = end;
767 		}
768 		recow = 1;
769 	}
770 
771 	other_start = end;
772 	other_end = 0;
773 	btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
774 			       num_bytes, 0);
775 	btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
776 			    0, false);
777 	if (extent_mergeable(leaf, path->slots[0] + 1,
778 			     ino, bytenr, orig_offset,
779 			     &other_start, &other_end)) {
780 		if (recow) {
781 			btrfs_release_path(path);
782 			goto again;
783 		}
784 		extent_end = other_end;
785 		del_slot = path->slots[0] + 1;
786 		del_nr++;
787 		ret = btrfs_free_extent(trans, &ref);
788 		if (ret) {
789 			btrfs_abort_transaction(trans, ret);
790 			goto out;
791 		}
792 	}
793 	other_start = 0;
794 	other_end = start;
795 	if (extent_mergeable(leaf, path->slots[0] - 1,
796 			     ino, bytenr, orig_offset,
797 			     &other_start, &other_end)) {
798 		if (recow) {
799 			btrfs_release_path(path);
800 			goto again;
801 		}
802 		key.offset = other_start;
803 		del_slot = path->slots[0];
804 		del_nr++;
805 		ret = btrfs_free_extent(trans, &ref);
806 		if (ret) {
807 			btrfs_abort_transaction(trans, ret);
808 			goto out;
809 		}
810 	}
811 	if (del_nr == 0) {
812 		fi = btrfs_item_ptr(leaf, path->slots[0],
813 			   struct btrfs_file_extent_item);
814 		btrfs_set_file_extent_type(leaf, fi,
815 					   BTRFS_FILE_EXTENT_REG);
816 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
817 		btrfs_mark_buffer_dirty(leaf);
818 	} else {
819 		fi = btrfs_item_ptr(leaf, del_slot - 1,
820 			   struct btrfs_file_extent_item);
821 		btrfs_set_file_extent_type(leaf, fi,
822 					   BTRFS_FILE_EXTENT_REG);
823 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
824 		btrfs_set_file_extent_num_bytes(leaf, fi,
825 						extent_end - key.offset);
826 		btrfs_mark_buffer_dirty(leaf);
827 
828 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
829 		if (ret < 0) {
830 			btrfs_abort_transaction(trans, ret);
831 			goto out;
832 		}
833 	}
834 out:
835 	btrfs_free_path(path);
836 	return ret;
837 }
838 
839 /*
840  * on error we return an unlocked page and the error value
841  * on success we return a locked page and 0
842  */
843 static int prepare_uptodate_page(struct inode *inode,
844 				 struct page *page, u64 pos,
845 				 bool force_uptodate)
846 {
847 	struct folio *folio = page_folio(page);
848 	int ret = 0;
849 
850 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
851 	    !PageUptodate(page)) {
852 		ret = btrfs_read_folio(NULL, folio);
853 		if (ret)
854 			return ret;
855 		lock_page(page);
856 		if (!PageUptodate(page)) {
857 			unlock_page(page);
858 			return -EIO;
859 		}
860 
861 		/*
862 		 * Since btrfs_read_folio() will unlock the folio before it
863 		 * returns, there is a window where btrfs_release_folio() can be
864 		 * called to release the page.  Here we check both inode
865 		 * mapping and PagePrivate() to make sure the page was not
866 		 * released.
867 		 *
868 		 * The private flag check is essential for subpage as we need
869 		 * to store extra bitmap using page->private.
870 		 */
871 		if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
872 			unlock_page(page);
873 			return -EAGAIN;
874 		}
875 	}
876 	return 0;
877 }
878 
879 static fgf_t get_prepare_fgp_flags(bool nowait)
880 {
881 	fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
882 
883 	if (nowait)
884 		fgp_flags |= FGP_NOWAIT;
885 
886 	return fgp_flags;
887 }
888 
889 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
890 {
891 	gfp_t gfp;
892 
893 	gfp = btrfs_alloc_write_mask(inode->i_mapping);
894 	if (nowait) {
895 		gfp &= ~__GFP_DIRECT_RECLAIM;
896 		gfp |= GFP_NOWAIT;
897 	}
898 
899 	return gfp;
900 }
901 
902 /*
903  * this just gets pages into the page cache and locks them down.
904  */
905 static noinline int prepare_pages(struct inode *inode, struct page **pages,
906 				  size_t num_pages, loff_t pos,
907 				  size_t write_bytes, bool force_uptodate,
908 				  bool nowait)
909 {
910 	int i;
911 	unsigned long index = pos >> PAGE_SHIFT;
912 	gfp_t mask = get_prepare_gfp_flags(inode, nowait);
913 	fgf_t fgp_flags = get_prepare_fgp_flags(nowait);
914 	int err = 0;
915 	int faili;
916 
917 	for (i = 0; i < num_pages; i++) {
918 again:
919 		pages[i] = pagecache_get_page(inode->i_mapping, index + i,
920 					      fgp_flags, mask | __GFP_WRITE);
921 		if (!pages[i]) {
922 			faili = i - 1;
923 			if (nowait)
924 				err = -EAGAIN;
925 			else
926 				err = -ENOMEM;
927 			goto fail;
928 		}
929 
930 		err = set_page_extent_mapped(pages[i]);
931 		if (err < 0) {
932 			faili = i;
933 			goto fail;
934 		}
935 
936 		if (i == 0)
937 			err = prepare_uptodate_page(inode, pages[i], pos,
938 						    force_uptodate);
939 		if (!err && i == num_pages - 1)
940 			err = prepare_uptodate_page(inode, pages[i],
941 						    pos + write_bytes, false);
942 		if (err) {
943 			put_page(pages[i]);
944 			if (!nowait && err == -EAGAIN) {
945 				err = 0;
946 				goto again;
947 			}
948 			faili = i - 1;
949 			goto fail;
950 		}
951 		wait_on_page_writeback(pages[i]);
952 	}
953 
954 	return 0;
955 fail:
956 	while (faili >= 0) {
957 		unlock_page(pages[faili]);
958 		put_page(pages[faili]);
959 		faili--;
960 	}
961 	return err;
962 
963 }
964 
965 /*
966  * This function locks the extent and properly waits for data=ordered extents
967  * to finish before allowing the pages to be modified if need.
968  *
969  * The return value:
970  * 1 - the extent is locked
971  * 0 - the extent is not locked, and everything is OK
972  * -EAGAIN - need re-prepare the pages
973  * the other < 0 number - Something wrong happens
974  */
975 static noinline int
976 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
977 				size_t num_pages, loff_t pos,
978 				size_t write_bytes,
979 				u64 *lockstart, u64 *lockend, bool nowait,
980 				struct extent_state **cached_state)
981 {
982 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
983 	u64 start_pos;
984 	u64 last_pos;
985 	int i;
986 	int ret = 0;
987 
988 	start_pos = round_down(pos, fs_info->sectorsize);
989 	last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
990 
991 	if (start_pos < inode->vfs_inode.i_size) {
992 		struct btrfs_ordered_extent *ordered;
993 
994 		if (nowait) {
995 			if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
996 					     cached_state)) {
997 				for (i = 0; i < num_pages; i++) {
998 					unlock_page(pages[i]);
999 					put_page(pages[i]);
1000 					pages[i] = NULL;
1001 				}
1002 
1003 				return -EAGAIN;
1004 			}
1005 		} else {
1006 			lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1007 		}
1008 
1009 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1010 						     last_pos - start_pos + 1);
1011 		if (ordered &&
1012 		    ordered->file_offset + ordered->num_bytes > start_pos &&
1013 		    ordered->file_offset <= last_pos) {
1014 			unlock_extent(&inode->io_tree, start_pos, last_pos,
1015 				      cached_state);
1016 			for (i = 0; i < num_pages; i++) {
1017 				unlock_page(pages[i]);
1018 				put_page(pages[i]);
1019 			}
1020 			btrfs_start_ordered_extent(ordered);
1021 			btrfs_put_ordered_extent(ordered);
1022 			return -EAGAIN;
1023 		}
1024 		if (ordered)
1025 			btrfs_put_ordered_extent(ordered);
1026 
1027 		*lockstart = start_pos;
1028 		*lockend = last_pos;
1029 		ret = 1;
1030 	}
1031 
1032 	/*
1033 	 * We should be called after prepare_pages() which should have locked
1034 	 * all pages in the range.
1035 	 */
1036 	for (i = 0; i < num_pages; i++)
1037 		WARN_ON(!PageLocked(pages[i]));
1038 
1039 	return ret;
1040 }
1041 
1042 /*
1043  * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1044  *
1045  * @pos:         File offset.
1046  * @write_bytes: The length to write, will be updated to the nocow writeable
1047  *               range.
1048  *
1049  * This function will flush ordered extents in the range to ensure proper
1050  * nocow checks.
1051  *
1052  * Return:
1053  * > 0          If we can nocow, and updates @write_bytes.
1054  *  0           If we can't do a nocow write.
1055  * -EAGAIN      If we can't do a nocow write because snapshoting of the inode's
1056  *              root is in progress.
1057  * < 0          If an error happened.
1058  *
1059  * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1060  */
1061 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1062 			   size_t *write_bytes, bool nowait)
1063 {
1064 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1065 	struct btrfs_root *root = inode->root;
1066 	struct extent_state *cached_state = NULL;
1067 	u64 lockstart, lockend;
1068 	u64 num_bytes;
1069 	int ret;
1070 
1071 	if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1072 		return 0;
1073 
1074 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1075 		return -EAGAIN;
1076 
1077 	lockstart = round_down(pos, fs_info->sectorsize);
1078 	lockend = round_up(pos + *write_bytes,
1079 			   fs_info->sectorsize) - 1;
1080 	num_bytes = lockend - lockstart + 1;
1081 
1082 	if (nowait) {
1083 		if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1084 						  &cached_state)) {
1085 			btrfs_drew_write_unlock(&root->snapshot_lock);
1086 			return -EAGAIN;
1087 		}
1088 	} else {
1089 		btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1090 						   &cached_state);
1091 	}
1092 	ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1093 			NULL, NULL, NULL, nowait, false);
1094 	if (ret <= 0)
1095 		btrfs_drew_write_unlock(&root->snapshot_lock);
1096 	else
1097 		*write_bytes = min_t(size_t, *write_bytes ,
1098 				     num_bytes - pos + lockstart);
1099 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1100 
1101 	return ret;
1102 }
1103 
1104 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1105 {
1106 	btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1107 }
1108 
1109 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1110 			     size_t count)
1111 {
1112 	struct file *file = iocb->ki_filp;
1113 	struct inode *inode = file_inode(file);
1114 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1115 	loff_t pos = iocb->ki_pos;
1116 	int ret;
1117 	loff_t oldsize;
1118 	loff_t start_pos;
1119 
1120 	/*
1121 	 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1122 	 * prealloc flags, as without those flags we always have to COW. We will
1123 	 * later check if we can really COW into the target range (using
1124 	 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1125 	 */
1126 	if ((iocb->ki_flags & IOCB_NOWAIT) &&
1127 	    !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1128 		return -EAGAIN;
1129 
1130 	ret = file_remove_privs(file);
1131 	if (ret)
1132 		return ret;
1133 
1134 	/*
1135 	 * We reserve space for updating the inode when we reserve space for the
1136 	 * extent we are going to write, so we will enospc out there.  We don't
1137 	 * need to start yet another transaction to update the inode as we will
1138 	 * update the inode when we finish writing whatever data we write.
1139 	 */
1140 	if (!IS_NOCMTIME(inode)) {
1141 		inode->i_mtime = inode_set_ctime_current(inode);
1142 		inode_inc_iversion(inode);
1143 	}
1144 
1145 	start_pos = round_down(pos, fs_info->sectorsize);
1146 	oldsize = i_size_read(inode);
1147 	if (start_pos > oldsize) {
1148 		/* Expand hole size to cover write data, preventing empty gap */
1149 		loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1150 
1151 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1152 		if (ret)
1153 			return ret;
1154 	}
1155 
1156 	return 0;
1157 }
1158 
1159 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1160 					       struct iov_iter *i)
1161 {
1162 	struct file *file = iocb->ki_filp;
1163 	loff_t pos;
1164 	struct inode *inode = file_inode(file);
1165 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1166 	struct page **pages = NULL;
1167 	struct extent_changeset *data_reserved = NULL;
1168 	u64 release_bytes = 0;
1169 	u64 lockstart;
1170 	u64 lockend;
1171 	size_t num_written = 0;
1172 	int nrptrs;
1173 	ssize_t ret;
1174 	bool only_release_metadata = false;
1175 	bool force_page_uptodate = false;
1176 	loff_t old_isize = i_size_read(inode);
1177 	unsigned int ilock_flags = 0;
1178 	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1179 	unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1180 
1181 	if (nowait)
1182 		ilock_flags |= BTRFS_ILOCK_TRY;
1183 
1184 	ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1185 	if (ret < 0)
1186 		return ret;
1187 
1188 	ret = generic_write_checks(iocb, i);
1189 	if (ret <= 0)
1190 		goto out;
1191 
1192 	ret = btrfs_write_check(iocb, i, ret);
1193 	if (ret < 0)
1194 		goto out;
1195 
1196 	pos = iocb->ki_pos;
1197 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1198 			PAGE_SIZE / (sizeof(struct page *)));
1199 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1200 	nrptrs = max(nrptrs, 8);
1201 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1202 	if (!pages) {
1203 		ret = -ENOMEM;
1204 		goto out;
1205 	}
1206 
1207 	while (iov_iter_count(i) > 0) {
1208 		struct extent_state *cached_state = NULL;
1209 		size_t offset = offset_in_page(pos);
1210 		size_t sector_offset;
1211 		size_t write_bytes = min(iov_iter_count(i),
1212 					 nrptrs * (size_t)PAGE_SIZE -
1213 					 offset);
1214 		size_t num_pages;
1215 		size_t reserve_bytes;
1216 		size_t dirty_pages;
1217 		size_t copied;
1218 		size_t dirty_sectors;
1219 		size_t num_sectors;
1220 		int extents_locked;
1221 
1222 		/*
1223 		 * Fault pages before locking them in prepare_pages
1224 		 * to avoid recursive lock
1225 		 */
1226 		if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1227 			ret = -EFAULT;
1228 			break;
1229 		}
1230 
1231 		only_release_metadata = false;
1232 		sector_offset = pos & (fs_info->sectorsize - 1);
1233 
1234 		extent_changeset_release(data_reserved);
1235 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
1236 						  &data_reserved, pos,
1237 						  write_bytes, nowait);
1238 		if (ret < 0) {
1239 			int can_nocow;
1240 
1241 			if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1242 				ret = -EAGAIN;
1243 				break;
1244 			}
1245 
1246 			/*
1247 			 * If we don't have to COW at the offset, reserve
1248 			 * metadata only. write_bytes may get smaller than
1249 			 * requested here.
1250 			 */
1251 			can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1252 							   &write_bytes, nowait);
1253 			if (can_nocow < 0)
1254 				ret = can_nocow;
1255 			if (can_nocow > 0)
1256 				ret = 0;
1257 			if (ret)
1258 				break;
1259 			only_release_metadata = true;
1260 		}
1261 
1262 		num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1263 		WARN_ON(num_pages > nrptrs);
1264 		reserve_bytes = round_up(write_bytes + sector_offset,
1265 					 fs_info->sectorsize);
1266 		WARN_ON(reserve_bytes == 0);
1267 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1268 						      reserve_bytes,
1269 						      reserve_bytes, nowait);
1270 		if (ret) {
1271 			if (!only_release_metadata)
1272 				btrfs_free_reserved_data_space(BTRFS_I(inode),
1273 						data_reserved, pos,
1274 						write_bytes);
1275 			else
1276 				btrfs_check_nocow_unlock(BTRFS_I(inode));
1277 
1278 			if (nowait && ret == -ENOSPC)
1279 				ret = -EAGAIN;
1280 			break;
1281 		}
1282 
1283 		release_bytes = reserve_bytes;
1284 again:
1285 		ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1286 		if (ret) {
1287 			btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1288 			break;
1289 		}
1290 
1291 		/*
1292 		 * This is going to setup the pages array with the number of
1293 		 * pages we want, so we don't really need to worry about the
1294 		 * contents of pages from loop to loop
1295 		 */
1296 		ret = prepare_pages(inode, pages, num_pages,
1297 				    pos, write_bytes, force_page_uptodate, false);
1298 		if (ret) {
1299 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1300 						       reserve_bytes);
1301 			break;
1302 		}
1303 
1304 		extents_locked = lock_and_cleanup_extent_if_need(
1305 				BTRFS_I(inode), pages,
1306 				num_pages, pos, write_bytes, &lockstart,
1307 				&lockend, nowait, &cached_state);
1308 		if (extents_locked < 0) {
1309 			if (!nowait && extents_locked == -EAGAIN)
1310 				goto again;
1311 
1312 			btrfs_delalloc_release_extents(BTRFS_I(inode),
1313 						       reserve_bytes);
1314 			ret = extents_locked;
1315 			break;
1316 		}
1317 
1318 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1319 
1320 		num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1321 		dirty_sectors = round_up(copied + sector_offset,
1322 					fs_info->sectorsize);
1323 		dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1324 
1325 		/*
1326 		 * if we have trouble faulting in the pages, fall
1327 		 * back to one page at a time
1328 		 */
1329 		if (copied < write_bytes)
1330 			nrptrs = 1;
1331 
1332 		if (copied == 0) {
1333 			force_page_uptodate = true;
1334 			dirty_sectors = 0;
1335 			dirty_pages = 0;
1336 		} else {
1337 			force_page_uptodate = false;
1338 			dirty_pages = DIV_ROUND_UP(copied + offset,
1339 						   PAGE_SIZE);
1340 		}
1341 
1342 		if (num_sectors > dirty_sectors) {
1343 			/* release everything except the sectors we dirtied */
1344 			release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1345 			if (only_release_metadata) {
1346 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
1347 							release_bytes, true);
1348 			} else {
1349 				u64 __pos;
1350 
1351 				__pos = round_down(pos,
1352 						   fs_info->sectorsize) +
1353 					(dirty_pages << PAGE_SHIFT);
1354 				btrfs_delalloc_release_space(BTRFS_I(inode),
1355 						data_reserved, __pos,
1356 						release_bytes, true);
1357 			}
1358 		}
1359 
1360 		release_bytes = round_up(copied + sector_offset,
1361 					fs_info->sectorsize);
1362 
1363 		ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1364 					dirty_pages, pos, copied,
1365 					&cached_state, only_release_metadata);
1366 
1367 		/*
1368 		 * If we have not locked the extent range, because the range's
1369 		 * start offset is >= i_size, we might still have a non-NULL
1370 		 * cached extent state, acquired while marking the extent range
1371 		 * as delalloc through btrfs_dirty_pages(). Therefore free any
1372 		 * possible cached extent state to avoid a memory leak.
1373 		 */
1374 		if (extents_locked)
1375 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1376 				      lockend, &cached_state);
1377 		else
1378 			free_extent_state(cached_state);
1379 
1380 		btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1381 		if (ret) {
1382 			btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1383 			break;
1384 		}
1385 
1386 		release_bytes = 0;
1387 		if (only_release_metadata)
1388 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1389 
1390 		btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1391 
1392 		cond_resched();
1393 
1394 		pos += copied;
1395 		num_written += copied;
1396 	}
1397 
1398 	kfree(pages);
1399 
1400 	if (release_bytes) {
1401 		if (only_release_metadata) {
1402 			btrfs_check_nocow_unlock(BTRFS_I(inode));
1403 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
1404 					release_bytes, true);
1405 		} else {
1406 			btrfs_delalloc_release_space(BTRFS_I(inode),
1407 					data_reserved,
1408 					round_down(pos, fs_info->sectorsize),
1409 					release_bytes, true);
1410 		}
1411 	}
1412 
1413 	extent_changeset_free(data_reserved);
1414 	if (num_written > 0) {
1415 		pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1416 		iocb->ki_pos += num_written;
1417 	}
1418 out:
1419 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1420 	return num_written ? num_written : ret;
1421 }
1422 
1423 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1424 			       const struct iov_iter *iter, loff_t offset)
1425 {
1426 	const u32 blocksize_mask = fs_info->sectorsize - 1;
1427 
1428 	if (offset & blocksize_mask)
1429 		return -EINVAL;
1430 
1431 	if (iov_iter_alignment(iter) & blocksize_mask)
1432 		return -EINVAL;
1433 
1434 	return 0;
1435 }
1436 
1437 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1438 {
1439 	struct file *file = iocb->ki_filp;
1440 	struct inode *inode = file_inode(file);
1441 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1442 	loff_t pos;
1443 	ssize_t written = 0;
1444 	ssize_t written_buffered;
1445 	size_t prev_left = 0;
1446 	loff_t endbyte;
1447 	ssize_t err;
1448 	unsigned int ilock_flags = 0;
1449 	struct iomap_dio *dio;
1450 
1451 	if (iocb->ki_flags & IOCB_NOWAIT)
1452 		ilock_flags |= BTRFS_ILOCK_TRY;
1453 
1454 	/* If the write DIO is within EOF, use a shared lock */
1455 	if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1456 		ilock_flags |= BTRFS_ILOCK_SHARED;
1457 
1458 relock:
1459 	err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1460 	if (err < 0)
1461 		return err;
1462 
1463 	err = generic_write_checks(iocb, from);
1464 	if (err <= 0) {
1465 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1466 		return err;
1467 	}
1468 
1469 	err = btrfs_write_check(iocb, from, err);
1470 	if (err < 0) {
1471 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1472 		goto out;
1473 	}
1474 
1475 	pos = iocb->ki_pos;
1476 	/*
1477 	 * Re-check since file size may have changed just before taking the
1478 	 * lock or pos may have changed because of O_APPEND in generic_write_check()
1479 	 */
1480 	if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1481 	    pos + iov_iter_count(from) > i_size_read(inode)) {
1482 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1483 		ilock_flags &= ~BTRFS_ILOCK_SHARED;
1484 		goto relock;
1485 	}
1486 
1487 	if (check_direct_IO(fs_info, from, pos)) {
1488 		btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1489 		goto buffered;
1490 	}
1491 
1492 	/*
1493 	 * The iov_iter can be mapped to the same file range we are writing to.
1494 	 * If that's the case, then we will deadlock in the iomap code, because
1495 	 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1496 	 * an ordered extent, and after that it will fault in the pages that the
1497 	 * iov_iter refers to. During the fault in we end up in the readahead
1498 	 * pages code (starting at btrfs_readahead()), which will lock the range,
1499 	 * find that ordered extent and then wait for it to complete (at
1500 	 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1501 	 * obviously the ordered extent can never complete as we didn't submit
1502 	 * yet the respective bio(s). This always happens when the buffer is
1503 	 * memory mapped to the same file range, since the iomap DIO code always
1504 	 * invalidates pages in the target file range (after starting and waiting
1505 	 * for any writeback).
1506 	 *
1507 	 * So here we disable page faults in the iov_iter and then retry if we
1508 	 * got -EFAULT, faulting in the pages before the retry.
1509 	 */
1510 	from->nofault = true;
1511 	dio = btrfs_dio_write(iocb, from, written);
1512 	from->nofault = false;
1513 
1514 	/*
1515 	 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1516 	 * iocb, and that needs to lock the inode. So unlock it before calling
1517 	 * iomap_dio_complete() to avoid a deadlock.
1518 	 */
1519 	btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1520 
1521 	if (IS_ERR_OR_NULL(dio))
1522 		err = PTR_ERR_OR_ZERO(dio);
1523 	else
1524 		err = iomap_dio_complete(dio);
1525 
1526 	/* No increment (+=) because iomap returns a cumulative value. */
1527 	if (err > 0)
1528 		written = err;
1529 
1530 	if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1531 		const size_t left = iov_iter_count(from);
1532 		/*
1533 		 * We have more data left to write. Try to fault in as many as
1534 		 * possible of the remainder pages and retry. We do this without
1535 		 * releasing and locking again the inode, to prevent races with
1536 		 * truncate.
1537 		 *
1538 		 * Also, in case the iov refers to pages in the file range of the
1539 		 * file we want to write to (due to a mmap), we could enter an
1540 		 * infinite loop if we retry after faulting the pages in, since
1541 		 * iomap will invalidate any pages in the range early on, before
1542 		 * it tries to fault in the pages of the iov. So we keep track of
1543 		 * how much was left of iov in the previous EFAULT and fallback
1544 		 * to buffered IO in case we haven't made any progress.
1545 		 */
1546 		if (left == prev_left) {
1547 			err = -ENOTBLK;
1548 		} else {
1549 			fault_in_iov_iter_readable(from, left);
1550 			prev_left = left;
1551 			goto relock;
1552 		}
1553 	}
1554 
1555 	/*
1556 	 * If 'err' is -ENOTBLK or we have not written all data, then it means
1557 	 * we must fallback to buffered IO.
1558 	 */
1559 	if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
1560 		goto out;
1561 
1562 buffered:
1563 	/*
1564 	 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1565 	 * it must retry the operation in a context where blocking is acceptable,
1566 	 * because even if we end up not blocking during the buffered IO attempt
1567 	 * below, we will block when flushing and waiting for the IO.
1568 	 */
1569 	if (iocb->ki_flags & IOCB_NOWAIT) {
1570 		err = -EAGAIN;
1571 		goto out;
1572 	}
1573 
1574 	pos = iocb->ki_pos;
1575 	written_buffered = btrfs_buffered_write(iocb, from);
1576 	if (written_buffered < 0) {
1577 		err = written_buffered;
1578 		goto out;
1579 	}
1580 	/*
1581 	 * Ensure all data is persisted. We want the next direct IO read to be
1582 	 * able to read what was just written.
1583 	 */
1584 	endbyte = pos + written_buffered - 1;
1585 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1586 	if (err)
1587 		goto out;
1588 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1589 	if (err)
1590 		goto out;
1591 	written += written_buffered;
1592 	iocb->ki_pos = pos + written_buffered;
1593 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1594 				 endbyte >> PAGE_SHIFT);
1595 out:
1596 	return err < 0 ? err : written;
1597 }
1598 
1599 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1600 			const struct btrfs_ioctl_encoded_io_args *encoded)
1601 {
1602 	struct file *file = iocb->ki_filp;
1603 	struct inode *inode = file_inode(file);
1604 	loff_t count;
1605 	ssize_t ret;
1606 
1607 	btrfs_inode_lock(BTRFS_I(inode), 0);
1608 	count = encoded->len;
1609 	ret = generic_write_checks_count(iocb, &count);
1610 	if (ret == 0 && count != encoded->len) {
1611 		/*
1612 		 * The write got truncated by generic_write_checks_count(). We
1613 		 * can't do a partial encoded write.
1614 		 */
1615 		ret = -EFBIG;
1616 	}
1617 	if (ret || encoded->len == 0)
1618 		goto out;
1619 
1620 	ret = btrfs_write_check(iocb, from, encoded->len);
1621 	if (ret < 0)
1622 		goto out;
1623 
1624 	ret = btrfs_do_encoded_write(iocb, from, encoded);
1625 out:
1626 	btrfs_inode_unlock(BTRFS_I(inode), 0);
1627 	return ret;
1628 }
1629 
1630 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1631 			    const struct btrfs_ioctl_encoded_io_args *encoded)
1632 {
1633 	struct file *file = iocb->ki_filp;
1634 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1635 	ssize_t num_written, num_sync;
1636 
1637 	/*
1638 	 * If the fs flips readonly due to some impossible error, although we
1639 	 * have opened a file as writable, we have to stop this write operation
1640 	 * to ensure consistency.
1641 	 */
1642 	if (BTRFS_FS_ERROR(inode->root->fs_info))
1643 		return -EROFS;
1644 
1645 	if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1646 		return -EOPNOTSUPP;
1647 
1648 	if (encoded) {
1649 		num_written = btrfs_encoded_write(iocb, from, encoded);
1650 		num_sync = encoded->len;
1651 	} else if (iocb->ki_flags & IOCB_DIRECT) {
1652 		num_written = btrfs_direct_write(iocb, from);
1653 		num_sync = num_written;
1654 	} else {
1655 		num_written = btrfs_buffered_write(iocb, from);
1656 		num_sync = num_written;
1657 	}
1658 
1659 	btrfs_set_inode_last_sub_trans(inode);
1660 
1661 	if (num_sync > 0) {
1662 		num_sync = generic_write_sync(iocb, num_sync);
1663 		if (num_sync < 0)
1664 			num_written = num_sync;
1665 	}
1666 
1667 	return num_written;
1668 }
1669 
1670 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1671 {
1672 	return btrfs_do_write_iter(iocb, from, NULL);
1673 }
1674 
1675 int btrfs_release_file(struct inode *inode, struct file *filp)
1676 {
1677 	struct btrfs_file_private *private = filp->private_data;
1678 
1679 	if (private) {
1680 		kfree(private->filldir_buf);
1681 		free_extent_state(private->llseek_cached_state);
1682 		kfree(private);
1683 		filp->private_data = NULL;
1684 	}
1685 
1686 	/*
1687 	 * Set by setattr when we are about to truncate a file from a non-zero
1688 	 * size to a zero size.  This tries to flush down new bytes that may
1689 	 * have been written if the application were using truncate to replace
1690 	 * a file in place.
1691 	 */
1692 	if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1693 			       &BTRFS_I(inode)->runtime_flags))
1694 			filemap_flush(inode->i_mapping);
1695 	return 0;
1696 }
1697 
1698 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1699 {
1700 	int ret;
1701 	struct blk_plug plug;
1702 
1703 	/*
1704 	 * This is only called in fsync, which would do synchronous writes, so
1705 	 * a plug can merge adjacent IOs as much as possible.  Esp. in case of
1706 	 * multiple disks using raid profile, a large IO can be split to
1707 	 * several segments of stripe length (currently 64K).
1708 	 */
1709 	blk_start_plug(&plug);
1710 	ret = btrfs_fdatawrite_range(inode, start, end);
1711 	blk_finish_plug(&plug);
1712 
1713 	return ret;
1714 }
1715 
1716 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1717 {
1718 	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1719 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1720 
1721 	if (btrfs_inode_in_log(inode, fs_info->generation) &&
1722 	    list_empty(&ctx->ordered_extents))
1723 		return true;
1724 
1725 	/*
1726 	 * If we are doing a fast fsync we can not bail out if the inode's
1727 	 * last_trans is <= then the last committed transaction, because we only
1728 	 * update the last_trans of the inode during ordered extent completion,
1729 	 * and for a fast fsync we don't wait for that, we only wait for the
1730 	 * writeback to complete.
1731 	 */
1732 	if (inode->last_trans <= fs_info->last_trans_committed &&
1733 	    (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1734 	     list_empty(&ctx->ordered_extents)))
1735 		return true;
1736 
1737 	return false;
1738 }
1739 
1740 /*
1741  * fsync call for both files and directories.  This logs the inode into
1742  * the tree log instead of forcing full commits whenever possible.
1743  *
1744  * It needs to call filemap_fdatawait so that all ordered extent updates are
1745  * in the metadata btree are up to date for copying to the log.
1746  *
1747  * It drops the inode mutex before doing the tree log commit.  This is an
1748  * important optimization for directories because holding the mutex prevents
1749  * new operations on the dir while we write to disk.
1750  */
1751 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1752 {
1753 	struct dentry *dentry = file_dentry(file);
1754 	struct inode *inode = d_inode(dentry);
1755 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1756 	struct btrfs_root *root = BTRFS_I(inode)->root;
1757 	struct btrfs_trans_handle *trans;
1758 	struct btrfs_log_ctx ctx;
1759 	int ret = 0, err;
1760 	u64 len;
1761 	bool full_sync;
1762 
1763 	trace_btrfs_sync_file(file, datasync);
1764 
1765 	btrfs_init_log_ctx(&ctx, inode);
1766 
1767 	/*
1768 	 * Always set the range to a full range, otherwise we can get into
1769 	 * several problems, from missing file extent items to represent holes
1770 	 * when not using the NO_HOLES feature, to log tree corruption due to
1771 	 * races between hole detection during logging and completion of ordered
1772 	 * extents outside the range, to missing checksums due to ordered extents
1773 	 * for which we flushed only a subset of their pages.
1774 	 */
1775 	start = 0;
1776 	end = LLONG_MAX;
1777 	len = (u64)LLONG_MAX + 1;
1778 
1779 	/*
1780 	 * We write the dirty pages in the range and wait until they complete
1781 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1782 	 * multi-task, and make the performance up.  See
1783 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1784 	 */
1785 	ret = start_ordered_ops(inode, start, end);
1786 	if (ret)
1787 		goto out;
1788 
1789 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1790 
1791 	atomic_inc(&root->log_batch);
1792 
1793 	/*
1794 	 * Before we acquired the inode's lock and the mmap lock, someone may
1795 	 * have dirtied more pages in the target range. We need to make sure
1796 	 * that writeback for any such pages does not start while we are logging
1797 	 * the inode, because if it does, any of the following might happen when
1798 	 * we are not doing a full inode sync:
1799 	 *
1800 	 * 1) We log an extent after its writeback finishes but before its
1801 	 *    checksums are added to the csum tree, leading to -EIO errors
1802 	 *    when attempting to read the extent after a log replay.
1803 	 *
1804 	 * 2) We can end up logging an extent before its writeback finishes.
1805 	 *    Therefore after the log replay we will have a file extent item
1806 	 *    pointing to an unwritten extent (and no data checksums as well).
1807 	 *
1808 	 * So trigger writeback for any eventual new dirty pages and then we
1809 	 * wait for all ordered extents to complete below.
1810 	 */
1811 	ret = start_ordered_ops(inode, start, end);
1812 	if (ret) {
1813 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1814 		goto out;
1815 	}
1816 
1817 	/*
1818 	 * Always check for the full sync flag while holding the inode's lock,
1819 	 * to avoid races with other tasks. The flag must be either set all the
1820 	 * time during logging or always off all the time while logging.
1821 	 * We check the flag here after starting delalloc above, because when
1822 	 * running delalloc the full sync flag may be set if we need to drop
1823 	 * extra extent map ranges due to temporary memory allocation failures.
1824 	 */
1825 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1826 			     &BTRFS_I(inode)->runtime_flags);
1827 
1828 	/*
1829 	 * We have to do this here to avoid the priority inversion of waiting on
1830 	 * IO of a lower priority task while holding a transaction open.
1831 	 *
1832 	 * For a full fsync we wait for the ordered extents to complete while
1833 	 * for a fast fsync we wait just for writeback to complete, and then
1834 	 * attach the ordered extents to the transaction so that a transaction
1835 	 * commit waits for their completion, to avoid data loss if we fsync,
1836 	 * the current transaction commits before the ordered extents complete
1837 	 * and a power failure happens right after that.
1838 	 *
1839 	 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1840 	 * logical address recorded in the ordered extent may change. We need
1841 	 * to wait for the IO to stabilize the logical address.
1842 	 */
1843 	if (full_sync || btrfs_is_zoned(fs_info)) {
1844 		ret = btrfs_wait_ordered_range(inode, start, len);
1845 	} else {
1846 		/*
1847 		 * Get our ordered extents as soon as possible to avoid doing
1848 		 * checksum lookups in the csum tree, and use instead the
1849 		 * checksums attached to the ordered extents.
1850 		 */
1851 		btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1852 						      &ctx.ordered_extents);
1853 		ret = filemap_fdatawait_range(inode->i_mapping, start, end);
1854 	}
1855 
1856 	if (ret)
1857 		goto out_release_extents;
1858 
1859 	atomic_inc(&root->log_batch);
1860 
1861 	smp_mb();
1862 	if (skip_inode_logging(&ctx)) {
1863 		/*
1864 		 * We've had everything committed since the last time we were
1865 		 * modified so clear this flag in case it was set for whatever
1866 		 * reason, it's no longer relevant.
1867 		 */
1868 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1869 			  &BTRFS_I(inode)->runtime_flags);
1870 		/*
1871 		 * An ordered extent might have started before and completed
1872 		 * already with io errors, in which case the inode was not
1873 		 * updated and we end up here. So check the inode's mapping
1874 		 * for any errors that might have happened since we last
1875 		 * checked called fsync.
1876 		 */
1877 		ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
1878 		goto out_release_extents;
1879 	}
1880 
1881 	/*
1882 	 * We use start here because we will need to wait on the IO to complete
1883 	 * in btrfs_sync_log, which could require joining a transaction (for
1884 	 * example checking cross references in the nocow path).  If we use join
1885 	 * here we could get into a situation where we're waiting on IO to
1886 	 * happen that is blocked on a transaction trying to commit.  With start
1887 	 * we inc the extwriter counter, so we wait for all extwriters to exit
1888 	 * before we start blocking joiners.  This comment is to keep somebody
1889 	 * from thinking they are super smart and changing this to
1890 	 * btrfs_join_transaction *cough*Josef*cough*.
1891 	 */
1892 	trans = btrfs_start_transaction(root, 0);
1893 	if (IS_ERR(trans)) {
1894 		ret = PTR_ERR(trans);
1895 		goto out_release_extents;
1896 	}
1897 	trans->in_fsync = true;
1898 
1899 	ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1900 	btrfs_release_log_ctx_extents(&ctx);
1901 	if (ret < 0) {
1902 		/* Fallthrough and commit/free transaction. */
1903 		ret = BTRFS_LOG_FORCE_COMMIT;
1904 	}
1905 
1906 	/* we've logged all the items and now have a consistent
1907 	 * version of the file in the log.  It is possible that
1908 	 * someone will come in and modify the file, but that's
1909 	 * fine because the log is consistent on disk, and we
1910 	 * have references to all of the file's extents
1911 	 *
1912 	 * It is possible that someone will come in and log the
1913 	 * file again, but that will end up using the synchronization
1914 	 * inside btrfs_sync_log to keep things safe.
1915 	 */
1916 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1917 
1918 	if (ret == BTRFS_NO_LOG_SYNC) {
1919 		ret = btrfs_end_transaction(trans);
1920 		goto out;
1921 	}
1922 
1923 	/* We successfully logged the inode, attempt to sync the log. */
1924 	if (!ret) {
1925 		ret = btrfs_sync_log(trans, root, &ctx);
1926 		if (!ret) {
1927 			ret = btrfs_end_transaction(trans);
1928 			goto out;
1929 		}
1930 	}
1931 
1932 	/*
1933 	 * At this point we need to commit the transaction because we had
1934 	 * btrfs_need_log_full_commit() or some other error.
1935 	 *
1936 	 * If we didn't do a full sync we have to stop the trans handle, wait on
1937 	 * the ordered extents, start it again and commit the transaction.  If
1938 	 * we attempt to wait on the ordered extents here we could deadlock with
1939 	 * something like fallocate() that is holding the extent lock trying to
1940 	 * start a transaction while some other thread is trying to commit the
1941 	 * transaction while we (fsync) are currently holding the transaction
1942 	 * open.
1943 	 */
1944 	if (!full_sync) {
1945 		ret = btrfs_end_transaction(trans);
1946 		if (ret)
1947 			goto out;
1948 		ret = btrfs_wait_ordered_range(inode, start, len);
1949 		if (ret)
1950 			goto out;
1951 
1952 		/*
1953 		 * This is safe to use here because we're only interested in
1954 		 * making sure the transaction that had the ordered extents is
1955 		 * committed.  We aren't waiting on anything past this point,
1956 		 * we're purely getting the transaction and committing it.
1957 		 */
1958 		trans = btrfs_attach_transaction_barrier(root);
1959 		if (IS_ERR(trans)) {
1960 			ret = PTR_ERR(trans);
1961 
1962 			/*
1963 			 * We committed the transaction and there's no currently
1964 			 * running transaction, this means everything we care
1965 			 * about made it to disk and we are done.
1966 			 */
1967 			if (ret == -ENOENT)
1968 				ret = 0;
1969 			goto out;
1970 		}
1971 	}
1972 
1973 	ret = btrfs_commit_transaction(trans);
1974 out:
1975 	ASSERT(list_empty(&ctx.list));
1976 	ASSERT(list_empty(&ctx.conflict_inodes));
1977 	err = file_check_and_advance_wb_err(file);
1978 	if (!ret)
1979 		ret = err;
1980 	return ret > 0 ? -EIO : ret;
1981 
1982 out_release_extents:
1983 	btrfs_release_log_ctx_extents(&ctx);
1984 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1985 	goto out;
1986 }
1987 
1988 static const struct vm_operations_struct btrfs_file_vm_ops = {
1989 	.fault		= filemap_fault,
1990 	.map_pages	= filemap_map_pages,
1991 	.page_mkwrite	= btrfs_page_mkwrite,
1992 };
1993 
1994 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1995 {
1996 	struct address_space *mapping = filp->f_mapping;
1997 
1998 	if (!mapping->a_ops->read_folio)
1999 		return -ENOEXEC;
2000 
2001 	file_accessed(filp);
2002 	vma->vm_ops = &btrfs_file_vm_ops;
2003 
2004 	return 0;
2005 }
2006 
2007 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2008 			  int slot, u64 start, u64 end)
2009 {
2010 	struct btrfs_file_extent_item *fi;
2011 	struct btrfs_key key;
2012 
2013 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2014 		return 0;
2015 
2016 	btrfs_item_key_to_cpu(leaf, &key, slot);
2017 	if (key.objectid != btrfs_ino(inode) ||
2018 	    key.type != BTRFS_EXTENT_DATA_KEY)
2019 		return 0;
2020 
2021 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2022 
2023 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2024 		return 0;
2025 
2026 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2027 		return 0;
2028 
2029 	if (key.offset == end)
2030 		return 1;
2031 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2032 		return 1;
2033 	return 0;
2034 }
2035 
2036 static int fill_holes(struct btrfs_trans_handle *trans,
2037 		struct btrfs_inode *inode,
2038 		struct btrfs_path *path, u64 offset, u64 end)
2039 {
2040 	struct btrfs_fs_info *fs_info = trans->fs_info;
2041 	struct btrfs_root *root = inode->root;
2042 	struct extent_buffer *leaf;
2043 	struct btrfs_file_extent_item *fi;
2044 	struct extent_map *hole_em;
2045 	struct btrfs_key key;
2046 	int ret;
2047 
2048 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
2049 		goto out;
2050 
2051 	key.objectid = btrfs_ino(inode);
2052 	key.type = BTRFS_EXTENT_DATA_KEY;
2053 	key.offset = offset;
2054 
2055 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2056 	if (ret <= 0) {
2057 		/*
2058 		 * We should have dropped this offset, so if we find it then
2059 		 * something has gone horribly wrong.
2060 		 */
2061 		if (ret == 0)
2062 			ret = -EINVAL;
2063 		return ret;
2064 	}
2065 
2066 	leaf = path->nodes[0];
2067 	if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2068 		u64 num_bytes;
2069 
2070 		path->slots[0]--;
2071 		fi = btrfs_item_ptr(leaf, path->slots[0],
2072 				    struct btrfs_file_extent_item);
2073 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2074 			end - offset;
2075 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2076 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2077 		btrfs_set_file_extent_offset(leaf, fi, 0);
2078 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2079 		btrfs_mark_buffer_dirty(leaf);
2080 		goto out;
2081 	}
2082 
2083 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2084 		u64 num_bytes;
2085 
2086 		key.offset = offset;
2087 		btrfs_set_item_key_safe(fs_info, path, &key);
2088 		fi = btrfs_item_ptr(leaf, path->slots[0],
2089 				    struct btrfs_file_extent_item);
2090 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2091 			offset;
2092 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2093 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2094 		btrfs_set_file_extent_offset(leaf, fi, 0);
2095 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2096 		btrfs_mark_buffer_dirty(leaf);
2097 		goto out;
2098 	}
2099 	btrfs_release_path(path);
2100 
2101 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2102 				       end - offset);
2103 	if (ret)
2104 		return ret;
2105 
2106 out:
2107 	btrfs_release_path(path);
2108 
2109 	hole_em = alloc_extent_map();
2110 	if (!hole_em) {
2111 		btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2112 		btrfs_set_inode_full_sync(inode);
2113 	} else {
2114 		hole_em->start = offset;
2115 		hole_em->len = end - offset;
2116 		hole_em->ram_bytes = hole_em->len;
2117 		hole_em->orig_start = offset;
2118 
2119 		hole_em->block_start = EXTENT_MAP_HOLE;
2120 		hole_em->block_len = 0;
2121 		hole_em->orig_block_len = 0;
2122 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2123 		hole_em->generation = trans->transid;
2124 
2125 		ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2126 		free_extent_map(hole_em);
2127 		if (ret)
2128 			btrfs_set_inode_full_sync(inode);
2129 	}
2130 
2131 	return 0;
2132 }
2133 
2134 /*
2135  * Find a hole extent on given inode and change start/len to the end of hole
2136  * extent.(hole/vacuum extent whose em->start <= start &&
2137  *	   em->start + em->len > start)
2138  * When a hole extent is found, return 1 and modify start/len.
2139  */
2140 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2141 {
2142 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2143 	struct extent_map *em;
2144 	int ret = 0;
2145 
2146 	em = btrfs_get_extent(inode, NULL, 0,
2147 			      round_down(*start, fs_info->sectorsize),
2148 			      round_up(*len, fs_info->sectorsize));
2149 	if (IS_ERR(em))
2150 		return PTR_ERR(em);
2151 
2152 	/* Hole or vacuum extent(only exists in no-hole mode) */
2153 	if (em->block_start == EXTENT_MAP_HOLE) {
2154 		ret = 1;
2155 		*len = em->start + em->len > *start + *len ?
2156 		       0 : *start + *len - em->start - em->len;
2157 		*start = em->start + em->len;
2158 	}
2159 	free_extent_map(em);
2160 	return ret;
2161 }
2162 
2163 static void btrfs_punch_hole_lock_range(struct inode *inode,
2164 					const u64 lockstart,
2165 					const u64 lockend,
2166 					struct extent_state **cached_state)
2167 {
2168 	/*
2169 	 * For subpage case, if the range is not at page boundary, we could
2170 	 * have pages at the leading/tailing part of the range.
2171 	 * This could lead to dead loop since filemap_range_has_page()
2172 	 * will always return true.
2173 	 * So here we need to do extra page alignment for
2174 	 * filemap_range_has_page().
2175 	 */
2176 	const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2177 	const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2178 
2179 	while (1) {
2180 		truncate_pagecache_range(inode, lockstart, lockend);
2181 
2182 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2183 			    cached_state);
2184 		/*
2185 		 * We can't have ordered extents in the range, nor dirty/writeback
2186 		 * pages, because we have locked the inode's VFS lock in exclusive
2187 		 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2188 		 * we have flushed all delalloc in the range and we have waited
2189 		 * for any ordered extents in the range to complete.
2190 		 * We can race with anyone reading pages from this range, so after
2191 		 * locking the range check if we have pages in the range, and if
2192 		 * we do, unlock the range and retry.
2193 		 */
2194 		if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2195 					    page_lockend))
2196 			break;
2197 
2198 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2199 			      cached_state);
2200 	}
2201 
2202 	btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2203 }
2204 
2205 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2206 				     struct btrfs_inode *inode,
2207 				     struct btrfs_path *path,
2208 				     struct btrfs_replace_extent_info *extent_info,
2209 				     const u64 replace_len,
2210 				     const u64 bytes_to_drop)
2211 {
2212 	struct btrfs_fs_info *fs_info = trans->fs_info;
2213 	struct btrfs_root *root = inode->root;
2214 	struct btrfs_file_extent_item *extent;
2215 	struct extent_buffer *leaf;
2216 	struct btrfs_key key;
2217 	int slot;
2218 	struct btrfs_ref ref = { 0 };
2219 	int ret;
2220 
2221 	if (replace_len == 0)
2222 		return 0;
2223 
2224 	if (extent_info->disk_offset == 0 &&
2225 	    btrfs_fs_incompat(fs_info, NO_HOLES)) {
2226 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2227 		return 0;
2228 	}
2229 
2230 	key.objectid = btrfs_ino(inode);
2231 	key.type = BTRFS_EXTENT_DATA_KEY;
2232 	key.offset = extent_info->file_offset;
2233 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2234 				      sizeof(struct btrfs_file_extent_item));
2235 	if (ret)
2236 		return ret;
2237 	leaf = path->nodes[0];
2238 	slot = path->slots[0];
2239 	write_extent_buffer(leaf, extent_info->extent_buf,
2240 			    btrfs_item_ptr_offset(leaf, slot),
2241 			    sizeof(struct btrfs_file_extent_item));
2242 	extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2243 	ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2244 	btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2245 	btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2246 	if (extent_info->is_new_extent)
2247 		btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2248 	btrfs_mark_buffer_dirty(leaf);
2249 	btrfs_release_path(path);
2250 
2251 	ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2252 						replace_len);
2253 	if (ret)
2254 		return ret;
2255 
2256 	/* If it's a hole, nothing more needs to be done. */
2257 	if (extent_info->disk_offset == 0) {
2258 		btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2259 		return 0;
2260 	}
2261 
2262 	btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2263 
2264 	if (extent_info->is_new_extent && extent_info->insertions == 0) {
2265 		key.objectid = extent_info->disk_offset;
2266 		key.type = BTRFS_EXTENT_ITEM_KEY;
2267 		key.offset = extent_info->disk_len;
2268 		ret = btrfs_alloc_reserved_file_extent(trans, root,
2269 						       btrfs_ino(inode),
2270 						       extent_info->file_offset,
2271 						       extent_info->qgroup_reserved,
2272 						       &key);
2273 	} else {
2274 		u64 ref_offset;
2275 
2276 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2277 				       extent_info->disk_offset,
2278 				       extent_info->disk_len, 0);
2279 		ref_offset = extent_info->file_offset - extent_info->data_offset;
2280 		btrfs_init_data_ref(&ref, root->root_key.objectid,
2281 				    btrfs_ino(inode), ref_offset, 0, false);
2282 		ret = btrfs_inc_extent_ref(trans, &ref);
2283 	}
2284 
2285 	extent_info->insertions++;
2286 
2287 	return ret;
2288 }
2289 
2290 /*
2291  * The respective range must have been previously locked, as well as the inode.
2292  * The end offset is inclusive (last byte of the range).
2293  * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2294  * the file range with an extent.
2295  * When not punching a hole, we don't want to end up in a state where we dropped
2296  * extents without inserting a new one, so we must abort the transaction to avoid
2297  * a corruption.
2298  */
2299 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2300 			       struct btrfs_path *path, const u64 start,
2301 			       const u64 end,
2302 			       struct btrfs_replace_extent_info *extent_info,
2303 			       struct btrfs_trans_handle **trans_out)
2304 {
2305 	struct btrfs_drop_extents_args drop_args = { 0 };
2306 	struct btrfs_root *root = inode->root;
2307 	struct btrfs_fs_info *fs_info = root->fs_info;
2308 	u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2309 	u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2310 	struct btrfs_trans_handle *trans = NULL;
2311 	struct btrfs_block_rsv *rsv;
2312 	unsigned int rsv_count;
2313 	u64 cur_offset;
2314 	u64 len = end - start;
2315 	int ret = 0;
2316 
2317 	if (end <= start)
2318 		return -EINVAL;
2319 
2320 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2321 	if (!rsv) {
2322 		ret = -ENOMEM;
2323 		goto out;
2324 	}
2325 	rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2326 	rsv->failfast = true;
2327 
2328 	/*
2329 	 * 1 - update the inode
2330 	 * 1 - removing the extents in the range
2331 	 * 1 - adding the hole extent if no_holes isn't set or if we are
2332 	 *     replacing the range with a new extent
2333 	 */
2334 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2335 		rsv_count = 3;
2336 	else
2337 		rsv_count = 2;
2338 
2339 	trans = btrfs_start_transaction(root, rsv_count);
2340 	if (IS_ERR(trans)) {
2341 		ret = PTR_ERR(trans);
2342 		trans = NULL;
2343 		goto out_free;
2344 	}
2345 
2346 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2347 				      min_size, false);
2348 	if (WARN_ON(ret))
2349 		goto out_trans;
2350 	trans->block_rsv = rsv;
2351 
2352 	cur_offset = start;
2353 	drop_args.path = path;
2354 	drop_args.end = end + 1;
2355 	drop_args.drop_cache = true;
2356 	while (cur_offset < end) {
2357 		drop_args.start = cur_offset;
2358 		ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2359 		/* If we are punching a hole decrement the inode's byte count */
2360 		if (!extent_info)
2361 			btrfs_update_inode_bytes(inode, 0,
2362 						 drop_args.bytes_found);
2363 		if (ret != -ENOSPC) {
2364 			/*
2365 			 * The only time we don't want to abort is if we are
2366 			 * attempting to clone a partial inline extent, in which
2367 			 * case we'll get EOPNOTSUPP.  However if we aren't
2368 			 * clone we need to abort no matter what, because if we
2369 			 * got EOPNOTSUPP via prealloc then we messed up and
2370 			 * need to abort.
2371 			 */
2372 			if (ret &&
2373 			    (ret != -EOPNOTSUPP ||
2374 			     (extent_info && extent_info->is_new_extent)))
2375 				btrfs_abort_transaction(trans, ret);
2376 			break;
2377 		}
2378 
2379 		trans->block_rsv = &fs_info->trans_block_rsv;
2380 
2381 		if (!extent_info && cur_offset < drop_args.drop_end &&
2382 		    cur_offset < ino_size) {
2383 			ret = fill_holes(trans, inode, path, cur_offset,
2384 					 drop_args.drop_end);
2385 			if (ret) {
2386 				/*
2387 				 * If we failed then we didn't insert our hole
2388 				 * entries for the area we dropped, so now the
2389 				 * fs is corrupted, so we must abort the
2390 				 * transaction.
2391 				 */
2392 				btrfs_abort_transaction(trans, ret);
2393 				break;
2394 			}
2395 		} else if (!extent_info && cur_offset < drop_args.drop_end) {
2396 			/*
2397 			 * We are past the i_size here, but since we didn't
2398 			 * insert holes we need to clear the mapped area so we
2399 			 * know to not set disk_i_size in this area until a new
2400 			 * file extent is inserted here.
2401 			 */
2402 			ret = btrfs_inode_clear_file_extent_range(inode,
2403 					cur_offset,
2404 					drop_args.drop_end - cur_offset);
2405 			if (ret) {
2406 				/*
2407 				 * We couldn't clear our area, so we could
2408 				 * presumably adjust up and corrupt the fs, so
2409 				 * we need to abort.
2410 				 */
2411 				btrfs_abort_transaction(trans, ret);
2412 				break;
2413 			}
2414 		}
2415 
2416 		if (extent_info &&
2417 		    drop_args.drop_end > extent_info->file_offset) {
2418 			u64 replace_len = drop_args.drop_end -
2419 					  extent_info->file_offset;
2420 
2421 			ret = btrfs_insert_replace_extent(trans, inode,	path,
2422 					extent_info, replace_len,
2423 					drop_args.bytes_found);
2424 			if (ret) {
2425 				btrfs_abort_transaction(trans, ret);
2426 				break;
2427 			}
2428 			extent_info->data_len -= replace_len;
2429 			extent_info->data_offset += replace_len;
2430 			extent_info->file_offset += replace_len;
2431 		}
2432 
2433 		/*
2434 		 * We are releasing our handle on the transaction, balance the
2435 		 * dirty pages of the btree inode and flush delayed items, and
2436 		 * then get a new transaction handle, which may now point to a
2437 		 * new transaction in case someone else may have committed the
2438 		 * transaction we used to replace/drop file extent items. So
2439 		 * bump the inode's iversion and update mtime and ctime except
2440 		 * if we are called from a dedupe context. This is because a
2441 		 * power failure/crash may happen after the transaction is
2442 		 * committed and before we finish replacing/dropping all the
2443 		 * file extent items we need.
2444 		 */
2445 		inode_inc_iversion(&inode->vfs_inode);
2446 
2447 		if (!extent_info || extent_info->update_times)
2448 			inode->vfs_inode.i_mtime = inode_set_ctime_current(&inode->vfs_inode);
2449 
2450 		ret = btrfs_update_inode(trans, root, inode);
2451 		if (ret)
2452 			break;
2453 
2454 		btrfs_end_transaction(trans);
2455 		btrfs_btree_balance_dirty(fs_info);
2456 
2457 		trans = btrfs_start_transaction(root, rsv_count);
2458 		if (IS_ERR(trans)) {
2459 			ret = PTR_ERR(trans);
2460 			trans = NULL;
2461 			break;
2462 		}
2463 
2464 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2465 					      rsv, min_size, false);
2466 		if (WARN_ON(ret))
2467 			break;
2468 		trans->block_rsv = rsv;
2469 
2470 		cur_offset = drop_args.drop_end;
2471 		len = end - cur_offset;
2472 		if (!extent_info && len) {
2473 			ret = find_first_non_hole(inode, &cur_offset, &len);
2474 			if (unlikely(ret < 0))
2475 				break;
2476 			if (ret && !len) {
2477 				ret = 0;
2478 				break;
2479 			}
2480 		}
2481 	}
2482 
2483 	/*
2484 	 * If we were cloning, force the next fsync to be a full one since we
2485 	 * we replaced (or just dropped in the case of cloning holes when
2486 	 * NO_HOLES is enabled) file extent items and did not setup new extent
2487 	 * maps for the replacement extents (or holes).
2488 	 */
2489 	if (extent_info && !extent_info->is_new_extent)
2490 		btrfs_set_inode_full_sync(inode);
2491 
2492 	if (ret)
2493 		goto out_trans;
2494 
2495 	trans->block_rsv = &fs_info->trans_block_rsv;
2496 	/*
2497 	 * If we are using the NO_HOLES feature we might have had already an
2498 	 * hole that overlaps a part of the region [lockstart, lockend] and
2499 	 * ends at (or beyond) lockend. Since we have no file extent items to
2500 	 * represent holes, drop_end can be less than lockend and so we must
2501 	 * make sure we have an extent map representing the existing hole (the
2502 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2503 	 * map representing the existing hole), otherwise the fast fsync path
2504 	 * will not record the existence of the hole region
2505 	 * [existing_hole_start, lockend].
2506 	 */
2507 	if (drop_args.drop_end <= end)
2508 		drop_args.drop_end = end + 1;
2509 	/*
2510 	 * Don't insert file hole extent item if it's for a range beyond eof
2511 	 * (because it's useless) or if it represents a 0 bytes range (when
2512 	 * cur_offset == drop_end).
2513 	 */
2514 	if (!extent_info && cur_offset < ino_size &&
2515 	    cur_offset < drop_args.drop_end) {
2516 		ret = fill_holes(trans, inode, path, cur_offset,
2517 				 drop_args.drop_end);
2518 		if (ret) {
2519 			/* Same comment as above. */
2520 			btrfs_abort_transaction(trans, ret);
2521 			goto out_trans;
2522 		}
2523 	} else if (!extent_info && cur_offset < drop_args.drop_end) {
2524 		/* See the comment in the loop above for the reasoning here. */
2525 		ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2526 					drop_args.drop_end - cur_offset);
2527 		if (ret) {
2528 			btrfs_abort_transaction(trans, ret);
2529 			goto out_trans;
2530 		}
2531 
2532 	}
2533 	if (extent_info) {
2534 		ret = btrfs_insert_replace_extent(trans, inode, path,
2535 				extent_info, extent_info->data_len,
2536 				drop_args.bytes_found);
2537 		if (ret) {
2538 			btrfs_abort_transaction(trans, ret);
2539 			goto out_trans;
2540 		}
2541 	}
2542 
2543 out_trans:
2544 	if (!trans)
2545 		goto out_free;
2546 
2547 	trans->block_rsv = &fs_info->trans_block_rsv;
2548 	if (ret)
2549 		btrfs_end_transaction(trans);
2550 	else
2551 		*trans_out = trans;
2552 out_free:
2553 	btrfs_free_block_rsv(fs_info, rsv);
2554 out:
2555 	return ret;
2556 }
2557 
2558 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2559 {
2560 	struct inode *inode = file_inode(file);
2561 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2562 	struct btrfs_root *root = BTRFS_I(inode)->root;
2563 	struct extent_state *cached_state = NULL;
2564 	struct btrfs_path *path;
2565 	struct btrfs_trans_handle *trans = NULL;
2566 	u64 lockstart;
2567 	u64 lockend;
2568 	u64 tail_start;
2569 	u64 tail_len;
2570 	u64 orig_start = offset;
2571 	int ret = 0;
2572 	bool same_block;
2573 	u64 ino_size;
2574 	bool truncated_block = false;
2575 	bool updated_inode = false;
2576 
2577 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2578 
2579 	ret = btrfs_wait_ordered_range(inode, offset, len);
2580 	if (ret)
2581 		goto out_only_mutex;
2582 
2583 	ino_size = round_up(inode->i_size, fs_info->sectorsize);
2584 	ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2585 	if (ret < 0)
2586 		goto out_only_mutex;
2587 	if (ret && !len) {
2588 		/* Already in a large hole */
2589 		ret = 0;
2590 		goto out_only_mutex;
2591 	}
2592 
2593 	ret = file_modified(file);
2594 	if (ret)
2595 		goto out_only_mutex;
2596 
2597 	lockstart = round_up(offset, fs_info->sectorsize);
2598 	lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2599 	same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2600 		== (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2601 	/*
2602 	 * We needn't truncate any block which is beyond the end of the file
2603 	 * because we are sure there is no data there.
2604 	 */
2605 	/*
2606 	 * Only do this if we are in the same block and we aren't doing the
2607 	 * entire block.
2608 	 */
2609 	if (same_block && len < fs_info->sectorsize) {
2610 		if (offset < ino_size) {
2611 			truncated_block = true;
2612 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2613 						   0);
2614 		} else {
2615 			ret = 0;
2616 		}
2617 		goto out_only_mutex;
2618 	}
2619 
2620 	/* zero back part of the first block */
2621 	if (offset < ino_size) {
2622 		truncated_block = true;
2623 		ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2624 		if (ret) {
2625 			btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2626 			return ret;
2627 		}
2628 	}
2629 
2630 	/* Check the aligned pages after the first unaligned page,
2631 	 * if offset != orig_start, which means the first unaligned page
2632 	 * including several following pages are already in holes,
2633 	 * the extra check can be skipped */
2634 	if (offset == orig_start) {
2635 		/* after truncate page, check hole again */
2636 		len = offset + len - lockstart;
2637 		offset = lockstart;
2638 		ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2639 		if (ret < 0)
2640 			goto out_only_mutex;
2641 		if (ret && !len) {
2642 			ret = 0;
2643 			goto out_only_mutex;
2644 		}
2645 		lockstart = offset;
2646 	}
2647 
2648 	/* Check the tail unaligned part is in a hole */
2649 	tail_start = lockend + 1;
2650 	tail_len = offset + len - tail_start;
2651 	if (tail_len) {
2652 		ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2653 		if (unlikely(ret < 0))
2654 			goto out_only_mutex;
2655 		if (!ret) {
2656 			/* zero the front end of the last page */
2657 			if (tail_start + tail_len < ino_size) {
2658 				truncated_block = true;
2659 				ret = btrfs_truncate_block(BTRFS_I(inode),
2660 							tail_start + tail_len,
2661 							0, 1);
2662 				if (ret)
2663 					goto out_only_mutex;
2664 			}
2665 		}
2666 	}
2667 
2668 	if (lockend < lockstart) {
2669 		ret = 0;
2670 		goto out_only_mutex;
2671 	}
2672 
2673 	btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2674 
2675 	path = btrfs_alloc_path();
2676 	if (!path) {
2677 		ret = -ENOMEM;
2678 		goto out;
2679 	}
2680 
2681 	ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2682 					 lockend, NULL, &trans);
2683 	btrfs_free_path(path);
2684 	if (ret)
2685 		goto out;
2686 
2687 	ASSERT(trans != NULL);
2688 	inode_inc_iversion(inode);
2689 	inode->i_mtime = inode_set_ctime_current(inode);
2690 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2691 	updated_inode = true;
2692 	btrfs_end_transaction(trans);
2693 	btrfs_btree_balance_dirty(fs_info);
2694 out:
2695 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2696 		      &cached_state);
2697 out_only_mutex:
2698 	if (!updated_inode && truncated_block && !ret) {
2699 		/*
2700 		 * If we only end up zeroing part of a page, we still need to
2701 		 * update the inode item, so that all the time fields are
2702 		 * updated as well as the necessary btrfs inode in memory fields
2703 		 * for detecting, at fsync time, if the inode isn't yet in the
2704 		 * log tree or it's there but not up to date.
2705 		 */
2706 		struct timespec64 now = inode_set_ctime_current(inode);
2707 
2708 		inode_inc_iversion(inode);
2709 		inode->i_mtime = now;
2710 		trans = btrfs_start_transaction(root, 1);
2711 		if (IS_ERR(trans)) {
2712 			ret = PTR_ERR(trans);
2713 		} else {
2714 			int ret2;
2715 
2716 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2717 			ret2 = btrfs_end_transaction(trans);
2718 			if (!ret)
2719 				ret = ret2;
2720 		}
2721 	}
2722 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2723 	return ret;
2724 }
2725 
2726 /* Helper structure to record which range is already reserved */
2727 struct falloc_range {
2728 	struct list_head list;
2729 	u64 start;
2730 	u64 len;
2731 };
2732 
2733 /*
2734  * Helper function to add falloc range
2735  *
2736  * Caller should have locked the larger range of extent containing
2737  * [start, len)
2738  */
2739 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2740 {
2741 	struct falloc_range *range = NULL;
2742 
2743 	if (!list_empty(head)) {
2744 		/*
2745 		 * As fallocate iterates by bytenr order, we only need to check
2746 		 * the last range.
2747 		 */
2748 		range = list_last_entry(head, struct falloc_range, list);
2749 		if (range->start + range->len == start) {
2750 			range->len += len;
2751 			return 0;
2752 		}
2753 	}
2754 
2755 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2756 	if (!range)
2757 		return -ENOMEM;
2758 	range->start = start;
2759 	range->len = len;
2760 	list_add_tail(&range->list, head);
2761 	return 0;
2762 }
2763 
2764 static int btrfs_fallocate_update_isize(struct inode *inode,
2765 					const u64 end,
2766 					const int mode)
2767 {
2768 	struct btrfs_trans_handle *trans;
2769 	struct btrfs_root *root = BTRFS_I(inode)->root;
2770 	int ret;
2771 	int ret2;
2772 
2773 	if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2774 		return 0;
2775 
2776 	trans = btrfs_start_transaction(root, 1);
2777 	if (IS_ERR(trans))
2778 		return PTR_ERR(trans);
2779 
2780 	inode_set_ctime_current(inode);
2781 	i_size_write(inode, end);
2782 	btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2783 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2784 	ret2 = btrfs_end_transaction(trans);
2785 
2786 	return ret ? ret : ret2;
2787 }
2788 
2789 enum {
2790 	RANGE_BOUNDARY_WRITTEN_EXTENT,
2791 	RANGE_BOUNDARY_PREALLOC_EXTENT,
2792 	RANGE_BOUNDARY_HOLE,
2793 };
2794 
2795 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2796 						 u64 offset)
2797 {
2798 	const u64 sectorsize = inode->root->fs_info->sectorsize;
2799 	struct extent_map *em;
2800 	int ret;
2801 
2802 	offset = round_down(offset, sectorsize);
2803 	em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
2804 	if (IS_ERR(em))
2805 		return PTR_ERR(em);
2806 
2807 	if (em->block_start == EXTENT_MAP_HOLE)
2808 		ret = RANGE_BOUNDARY_HOLE;
2809 	else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2810 		ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2811 	else
2812 		ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2813 
2814 	free_extent_map(em);
2815 	return ret;
2816 }
2817 
2818 static int btrfs_zero_range(struct inode *inode,
2819 			    loff_t offset,
2820 			    loff_t len,
2821 			    const int mode)
2822 {
2823 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2824 	struct extent_map *em;
2825 	struct extent_changeset *data_reserved = NULL;
2826 	int ret;
2827 	u64 alloc_hint = 0;
2828 	const u64 sectorsize = fs_info->sectorsize;
2829 	u64 alloc_start = round_down(offset, sectorsize);
2830 	u64 alloc_end = round_up(offset + len, sectorsize);
2831 	u64 bytes_to_reserve = 0;
2832 	bool space_reserved = false;
2833 
2834 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2835 			      alloc_end - alloc_start);
2836 	if (IS_ERR(em)) {
2837 		ret = PTR_ERR(em);
2838 		goto out;
2839 	}
2840 
2841 	/*
2842 	 * Avoid hole punching and extent allocation for some cases. More cases
2843 	 * could be considered, but these are unlikely common and we keep things
2844 	 * as simple as possible for now. Also, intentionally, if the target
2845 	 * range contains one or more prealloc extents together with regular
2846 	 * extents and holes, we drop all the existing extents and allocate a
2847 	 * new prealloc extent, so that we get a larger contiguous disk extent.
2848 	 */
2849 	if (em->start <= alloc_start &&
2850 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2851 		const u64 em_end = em->start + em->len;
2852 
2853 		if (em_end >= offset + len) {
2854 			/*
2855 			 * The whole range is already a prealloc extent,
2856 			 * do nothing except updating the inode's i_size if
2857 			 * needed.
2858 			 */
2859 			free_extent_map(em);
2860 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2861 							   mode);
2862 			goto out;
2863 		}
2864 		/*
2865 		 * Part of the range is already a prealloc extent, so operate
2866 		 * only on the remaining part of the range.
2867 		 */
2868 		alloc_start = em_end;
2869 		ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2870 		len = offset + len - alloc_start;
2871 		offset = alloc_start;
2872 		alloc_hint = em->block_start + em->len;
2873 	}
2874 	free_extent_map(em);
2875 
2876 	if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2877 	    BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2878 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2879 				      sectorsize);
2880 		if (IS_ERR(em)) {
2881 			ret = PTR_ERR(em);
2882 			goto out;
2883 		}
2884 
2885 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2886 			free_extent_map(em);
2887 			ret = btrfs_fallocate_update_isize(inode, offset + len,
2888 							   mode);
2889 			goto out;
2890 		}
2891 		if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2892 			free_extent_map(em);
2893 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2894 						   0);
2895 			if (!ret)
2896 				ret = btrfs_fallocate_update_isize(inode,
2897 								   offset + len,
2898 								   mode);
2899 			return ret;
2900 		}
2901 		free_extent_map(em);
2902 		alloc_start = round_down(offset, sectorsize);
2903 		alloc_end = alloc_start + sectorsize;
2904 		goto reserve_space;
2905 	}
2906 
2907 	alloc_start = round_up(offset, sectorsize);
2908 	alloc_end = round_down(offset + len, sectorsize);
2909 
2910 	/*
2911 	 * For unaligned ranges, check the pages at the boundaries, they might
2912 	 * map to an extent, in which case we need to partially zero them, or
2913 	 * they might map to a hole, in which case we need our allocation range
2914 	 * to cover them.
2915 	 */
2916 	if (!IS_ALIGNED(offset, sectorsize)) {
2917 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2918 							    offset);
2919 		if (ret < 0)
2920 			goto out;
2921 		if (ret == RANGE_BOUNDARY_HOLE) {
2922 			alloc_start = round_down(offset, sectorsize);
2923 			ret = 0;
2924 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2925 			ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2926 			if (ret)
2927 				goto out;
2928 		} else {
2929 			ret = 0;
2930 		}
2931 	}
2932 
2933 	if (!IS_ALIGNED(offset + len, sectorsize)) {
2934 		ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2935 							    offset + len);
2936 		if (ret < 0)
2937 			goto out;
2938 		if (ret == RANGE_BOUNDARY_HOLE) {
2939 			alloc_end = round_up(offset + len, sectorsize);
2940 			ret = 0;
2941 		} else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2942 			ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2943 						   0, 1);
2944 			if (ret)
2945 				goto out;
2946 		} else {
2947 			ret = 0;
2948 		}
2949 	}
2950 
2951 reserve_space:
2952 	if (alloc_start < alloc_end) {
2953 		struct extent_state *cached_state = NULL;
2954 		const u64 lockstart = alloc_start;
2955 		const u64 lockend = alloc_end - 1;
2956 
2957 		bytes_to_reserve = alloc_end - alloc_start;
2958 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2959 						      bytes_to_reserve);
2960 		if (ret < 0)
2961 			goto out;
2962 		space_reserved = true;
2963 		btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2964 					    &cached_state);
2965 		ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
2966 						alloc_start, bytes_to_reserve);
2967 		if (ret) {
2968 			unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
2969 				      lockend, &cached_state);
2970 			goto out;
2971 		}
2972 		ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2973 						alloc_end - alloc_start,
2974 						i_blocksize(inode),
2975 						offset + len, &alloc_hint);
2976 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2977 			      &cached_state);
2978 		/* btrfs_prealloc_file_range releases reserved space on error */
2979 		if (ret) {
2980 			space_reserved = false;
2981 			goto out;
2982 		}
2983 	}
2984 	ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
2985  out:
2986 	if (ret && space_reserved)
2987 		btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
2988 					       alloc_start, bytes_to_reserve);
2989 	extent_changeset_free(data_reserved);
2990 
2991 	return ret;
2992 }
2993 
2994 static long btrfs_fallocate(struct file *file, int mode,
2995 			    loff_t offset, loff_t len)
2996 {
2997 	struct inode *inode = file_inode(file);
2998 	struct extent_state *cached_state = NULL;
2999 	struct extent_changeset *data_reserved = NULL;
3000 	struct falloc_range *range;
3001 	struct falloc_range *tmp;
3002 	LIST_HEAD(reserve_list);
3003 	u64 cur_offset;
3004 	u64 last_byte;
3005 	u64 alloc_start;
3006 	u64 alloc_end;
3007 	u64 alloc_hint = 0;
3008 	u64 locked_end;
3009 	u64 actual_end = 0;
3010 	u64 data_space_needed = 0;
3011 	u64 data_space_reserved = 0;
3012 	u64 qgroup_reserved = 0;
3013 	struct extent_map *em;
3014 	int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3015 	int ret;
3016 
3017 	/* Do not allow fallocate in ZONED mode */
3018 	if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3019 		return -EOPNOTSUPP;
3020 
3021 	alloc_start = round_down(offset, blocksize);
3022 	alloc_end = round_up(offset + len, blocksize);
3023 	cur_offset = alloc_start;
3024 
3025 	/* Make sure we aren't being give some crap mode */
3026 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3027 		     FALLOC_FL_ZERO_RANGE))
3028 		return -EOPNOTSUPP;
3029 
3030 	if (mode & FALLOC_FL_PUNCH_HOLE)
3031 		return btrfs_punch_hole(file, offset, len);
3032 
3033 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3034 
3035 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3036 		ret = inode_newsize_ok(inode, offset + len);
3037 		if (ret)
3038 			goto out;
3039 	}
3040 
3041 	ret = file_modified(file);
3042 	if (ret)
3043 		goto out;
3044 
3045 	/*
3046 	 * TODO: Move these two operations after we have checked
3047 	 * accurate reserved space, or fallocate can still fail but
3048 	 * with page truncated or size expanded.
3049 	 *
3050 	 * But that's a minor problem and won't do much harm BTW.
3051 	 */
3052 	if (alloc_start > inode->i_size) {
3053 		ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3054 					alloc_start);
3055 		if (ret)
3056 			goto out;
3057 	} else if (offset + len > inode->i_size) {
3058 		/*
3059 		 * If we are fallocating from the end of the file onward we
3060 		 * need to zero out the end of the block if i_size lands in the
3061 		 * middle of a block.
3062 		 */
3063 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3064 		if (ret)
3065 			goto out;
3066 	}
3067 
3068 	/*
3069 	 * We have locked the inode at the VFS level (in exclusive mode) and we
3070 	 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3071 	 * locking the file range, flush all dealloc in the range and wait for
3072 	 * all ordered extents in the range to complete. After this we can lock
3073 	 * the file range and, due to the previous locking we did, we know there
3074 	 * can't be more delalloc or ordered extents in the range.
3075 	 */
3076 	ret = btrfs_wait_ordered_range(inode, alloc_start,
3077 				       alloc_end - alloc_start);
3078 	if (ret)
3079 		goto out;
3080 
3081 	if (mode & FALLOC_FL_ZERO_RANGE) {
3082 		ret = btrfs_zero_range(inode, offset, len, mode);
3083 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3084 		return ret;
3085 	}
3086 
3087 	locked_end = alloc_end - 1;
3088 	lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3089 		    &cached_state);
3090 
3091 	btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3092 
3093 	/* First, check if we exceed the qgroup limit */
3094 	while (cur_offset < alloc_end) {
3095 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3096 				      alloc_end - cur_offset);
3097 		if (IS_ERR(em)) {
3098 			ret = PTR_ERR(em);
3099 			break;
3100 		}
3101 		last_byte = min(extent_map_end(em), alloc_end);
3102 		actual_end = min_t(u64, extent_map_end(em), offset + len);
3103 		last_byte = ALIGN(last_byte, blocksize);
3104 		if (em->block_start == EXTENT_MAP_HOLE ||
3105 		    (cur_offset >= inode->i_size &&
3106 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3107 			const u64 range_len = last_byte - cur_offset;
3108 
3109 			ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3110 			if (ret < 0) {
3111 				free_extent_map(em);
3112 				break;
3113 			}
3114 			ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3115 					&data_reserved, cur_offset, range_len);
3116 			if (ret < 0) {
3117 				free_extent_map(em);
3118 				break;
3119 			}
3120 			qgroup_reserved += range_len;
3121 			data_space_needed += range_len;
3122 		}
3123 		free_extent_map(em);
3124 		cur_offset = last_byte;
3125 	}
3126 
3127 	if (!ret && data_space_needed > 0) {
3128 		/*
3129 		 * We are safe to reserve space here as we can't have delalloc
3130 		 * in the range, see above.
3131 		 */
3132 		ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3133 						      data_space_needed);
3134 		if (!ret)
3135 			data_space_reserved = data_space_needed;
3136 	}
3137 
3138 	/*
3139 	 * If ret is still 0, means we're OK to fallocate.
3140 	 * Or just cleanup the list and exit.
3141 	 */
3142 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3143 		if (!ret) {
3144 			ret = btrfs_prealloc_file_range(inode, mode,
3145 					range->start,
3146 					range->len, i_blocksize(inode),
3147 					offset + len, &alloc_hint);
3148 			/*
3149 			 * btrfs_prealloc_file_range() releases space even
3150 			 * if it returns an error.
3151 			 */
3152 			data_space_reserved -= range->len;
3153 			qgroup_reserved -= range->len;
3154 		} else if (data_space_reserved > 0) {
3155 			btrfs_free_reserved_data_space(BTRFS_I(inode),
3156 					       data_reserved, range->start,
3157 					       range->len);
3158 			data_space_reserved -= range->len;
3159 			qgroup_reserved -= range->len;
3160 		} else if (qgroup_reserved > 0) {
3161 			btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3162 					       range->start, range->len);
3163 			qgroup_reserved -= range->len;
3164 		}
3165 		list_del(&range->list);
3166 		kfree(range);
3167 	}
3168 	if (ret < 0)
3169 		goto out_unlock;
3170 
3171 	/*
3172 	 * We didn't need to allocate any more space, but we still extended the
3173 	 * size of the file so we need to update i_size and the inode item.
3174 	 */
3175 	ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3176 out_unlock:
3177 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3178 		      &cached_state);
3179 out:
3180 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3181 	extent_changeset_free(data_reserved);
3182 	return ret;
3183 }
3184 
3185 /*
3186  * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3187  * that has unflushed and/or flushing delalloc. There might be other adjacent
3188  * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3189  * looping while it gets adjacent subranges, and merging them together.
3190  */
3191 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3192 				   struct extent_state **cached_state,
3193 				   bool *search_io_tree,
3194 				   u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3195 {
3196 	u64 len = end + 1 - start;
3197 	u64 delalloc_len = 0;
3198 	struct btrfs_ordered_extent *oe;
3199 	u64 oe_start;
3200 	u64 oe_end;
3201 
3202 	/*
3203 	 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3204 	 * means we have delalloc (dirty pages) for which writeback has not
3205 	 * started yet.
3206 	 */
3207 	if (*search_io_tree) {
3208 		spin_lock(&inode->lock);
3209 		if (inode->delalloc_bytes > 0) {
3210 			spin_unlock(&inode->lock);
3211 			*delalloc_start_ret = start;
3212 			delalloc_len = count_range_bits(&inode->io_tree,
3213 							delalloc_start_ret, end,
3214 							len, EXTENT_DELALLOC, 1,
3215 							cached_state);
3216 		} else {
3217 			spin_unlock(&inode->lock);
3218 		}
3219 	}
3220 
3221 	if (delalloc_len > 0) {
3222 		/*
3223 		 * If delalloc was found then *delalloc_start_ret has a sector size
3224 		 * aligned value (rounded down).
3225 		 */
3226 		*delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3227 
3228 		if (*delalloc_start_ret == start) {
3229 			/* Delalloc for the whole range, nothing more to do. */
3230 			if (*delalloc_end_ret == end)
3231 				return true;
3232 			/* Else trim our search range for ordered extents. */
3233 			start = *delalloc_end_ret + 1;
3234 			len = end + 1 - start;
3235 		}
3236 	} else {
3237 		/* No delalloc, future calls don't need to search again. */
3238 		*search_io_tree = false;
3239 	}
3240 
3241 	/*
3242 	 * Now also check if there's any ordered extent in the range.
3243 	 * We do this because:
3244 	 *
3245 	 * 1) When delalloc is flushed, the file range is locked, we clear the
3246 	 *    EXTENT_DELALLOC bit from the io tree and create an extent map and
3247 	 *    an ordered extent for the write. So we might just have been called
3248 	 *    after delalloc is flushed and before the ordered extent completes
3249 	 *    and inserts the new file extent item in the subvolume's btree;
3250 	 *
3251 	 * 2) We may have an ordered extent created by flushing delalloc for a
3252 	 *    subrange that starts before the subrange we found marked with
3253 	 *    EXTENT_DELALLOC in the io tree.
3254 	 *
3255 	 * We could also use the extent map tree to find such delalloc that is
3256 	 * being flushed, but using the ordered extents tree is more efficient
3257 	 * because it's usually much smaller as ordered extents are removed from
3258 	 * the tree once they complete. With the extent maps, we mau have them
3259 	 * in the extent map tree for a very long time, and they were either
3260 	 * created by previous writes or loaded by read operations.
3261 	 */
3262 	oe = btrfs_lookup_first_ordered_range(inode, start, len);
3263 	if (!oe)
3264 		return (delalloc_len > 0);
3265 
3266 	/* The ordered extent may span beyond our search range. */
3267 	oe_start = max(oe->file_offset, start);
3268 	oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3269 
3270 	btrfs_put_ordered_extent(oe);
3271 
3272 	/* Don't have unflushed delalloc, return the ordered extent range. */
3273 	if (delalloc_len == 0) {
3274 		*delalloc_start_ret = oe_start;
3275 		*delalloc_end_ret = oe_end;
3276 		return true;
3277 	}
3278 
3279 	/*
3280 	 * We have both unflushed delalloc (io_tree) and an ordered extent.
3281 	 * If the ranges are adjacent returned a combined range, otherwise
3282 	 * return the leftmost range.
3283 	 */
3284 	if (oe_start < *delalloc_start_ret) {
3285 		if (oe_end < *delalloc_start_ret)
3286 			*delalloc_end_ret = oe_end;
3287 		*delalloc_start_ret = oe_start;
3288 	} else if (*delalloc_end_ret + 1 == oe_start) {
3289 		*delalloc_end_ret = oe_end;
3290 	}
3291 
3292 	return true;
3293 }
3294 
3295 /*
3296  * Check if there's delalloc in a given range.
3297  *
3298  * @inode:               The inode.
3299  * @start:               The start offset of the range. It does not need to be
3300  *                       sector size aligned.
3301  * @end:                 The end offset (inclusive value) of the search range.
3302  *                       It does not need to be sector size aligned.
3303  * @cached_state:        Extent state record used for speeding up delalloc
3304  *                       searches in the inode's io_tree. Can be NULL.
3305  * @delalloc_start_ret:  Output argument, set to the start offset of the
3306  *                       subrange found with delalloc (may not be sector size
3307  *                       aligned).
3308  * @delalloc_end_ret:    Output argument, set to he end offset (inclusive value)
3309  *                       of the subrange found with delalloc.
3310  *
3311  * Returns true if a subrange with delalloc is found within the given range, and
3312  * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3313  * end offsets of the subrange.
3314  */
3315 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3316 				  struct extent_state **cached_state,
3317 				  u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3318 {
3319 	u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3320 	u64 prev_delalloc_end = 0;
3321 	bool search_io_tree = true;
3322 	bool ret = false;
3323 
3324 	while (cur_offset <= end) {
3325 		u64 delalloc_start;
3326 		u64 delalloc_end;
3327 		bool delalloc;
3328 
3329 		delalloc = find_delalloc_subrange(inode, cur_offset, end,
3330 						  cached_state, &search_io_tree,
3331 						  &delalloc_start,
3332 						  &delalloc_end);
3333 		if (!delalloc)
3334 			break;
3335 
3336 		if (prev_delalloc_end == 0) {
3337 			/* First subrange found. */
3338 			*delalloc_start_ret = max(delalloc_start, start);
3339 			*delalloc_end_ret = delalloc_end;
3340 			ret = true;
3341 		} else if (delalloc_start == prev_delalloc_end + 1) {
3342 			/* Subrange adjacent to the previous one, merge them. */
3343 			*delalloc_end_ret = delalloc_end;
3344 		} else {
3345 			/* Subrange not adjacent to the previous one, exit. */
3346 			break;
3347 		}
3348 
3349 		prev_delalloc_end = delalloc_end;
3350 		cur_offset = delalloc_end + 1;
3351 		cond_resched();
3352 	}
3353 
3354 	return ret;
3355 }
3356 
3357 /*
3358  * Check if there's a hole or delalloc range in a range representing a hole (or
3359  * prealloc extent) found in the inode's subvolume btree.
3360  *
3361  * @inode:      The inode.
3362  * @whence:     Seek mode (SEEK_DATA or SEEK_HOLE).
3363  * @start:      Start offset of the hole region. It does not need to be sector
3364  *              size aligned.
3365  * @end:        End offset (inclusive value) of the hole region. It does not
3366  *              need to be sector size aligned.
3367  * @start_ret:  Return parameter, used to set the start of the subrange in the
3368  *              hole that matches the search criteria (seek mode), if such
3369  *              subrange is found (return value of the function is true).
3370  *              The value returned here may not be sector size aligned.
3371  *
3372  * Returns true if a subrange matching the given seek mode is found, and if one
3373  * is found, it updates @start_ret with the start of the subrange.
3374  */
3375 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3376 					struct extent_state **cached_state,
3377 					u64 start, u64 end, u64 *start_ret)
3378 {
3379 	u64 delalloc_start;
3380 	u64 delalloc_end;
3381 	bool delalloc;
3382 
3383 	delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3384 						&delalloc_start, &delalloc_end);
3385 	if (delalloc && whence == SEEK_DATA) {
3386 		*start_ret = delalloc_start;
3387 		return true;
3388 	}
3389 
3390 	if (delalloc && whence == SEEK_HOLE) {
3391 		/*
3392 		 * We found delalloc but it starts after out start offset. So we
3393 		 * have a hole between our start offset and the delalloc start.
3394 		 */
3395 		if (start < delalloc_start) {
3396 			*start_ret = start;
3397 			return true;
3398 		}
3399 		/*
3400 		 * Delalloc range starts at our start offset.
3401 		 * If the delalloc range's length is smaller than our range,
3402 		 * then it means we have a hole that starts where the delalloc
3403 		 * subrange ends.
3404 		 */
3405 		if (delalloc_end < end) {
3406 			*start_ret = delalloc_end + 1;
3407 			return true;
3408 		}
3409 
3410 		/* There's delalloc for the whole range. */
3411 		return false;
3412 	}
3413 
3414 	if (!delalloc && whence == SEEK_HOLE) {
3415 		*start_ret = start;
3416 		return true;
3417 	}
3418 
3419 	/*
3420 	 * No delalloc in the range and we are seeking for data. The caller has
3421 	 * to iterate to the next extent item in the subvolume btree.
3422 	 */
3423 	return false;
3424 }
3425 
3426 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3427 {
3428 	struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3429 	struct btrfs_file_private *private = file->private_data;
3430 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3431 	struct extent_state *cached_state = NULL;
3432 	struct extent_state **delalloc_cached_state;
3433 	const loff_t i_size = i_size_read(&inode->vfs_inode);
3434 	const u64 ino = btrfs_ino(inode);
3435 	struct btrfs_root *root = inode->root;
3436 	struct btrfs_path *path;
3437 	struct btrfs_key key;
3438 	u64 last_extent_end;
3439 	u64 lockstart;
3440 	u64 lockend;
3441 	u64 start;
3442 	int ret;
3443 	bool found = false;
3444 
3445 	if (i_size == 0 || offset >= i_size)
3446 		return -ENXIO;
3447 
3448 	/*
3449 	 * Quick path. If the inode has no prealloc extents and its number of
3450 	 * bytes used matches its i_size, then it can not have holes.
3451 	 */
3452 	if (whence == SEEK_HOLE &&
3453 	    !(inode->flags & BTRFS_INODE_PREALLOC) &&
3454 	    inode_get_bytes(&inode->vfs_inode) == i_size)
3455 		return i_size;
3456 
3457 	if (!private) {
3458 		private = kzalloc(sizeof(*private), GFP_KERNEL);
3459 		/*
3460 		 * No worries if memory allocation failed.
3461 		 * The private structure is used only for speeding up multiple
3462 		 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3463 		 * so everything will still be correct.
3464 		 */
3465 		file->private_data = private;
3466 	}
3467 
3468 	if (private)
3469 		delalloc_cached_state = &private->llseek_cached_state;
3470 	else
3471 		delalloc_cached_state = NULL;
3472 
3473 	/*
3474 	 * offset can be negative, in this case we start finding DATA/HOLE from
3475 	 * the very start of the file.
3476 	 */
3477 	start = max_t(loff_t, 0, offset);
3478 
3479 	lockstart = round_down(start, fs_info->sectorsize);
3480 	lockend = round_up(i_size, fs_info->sectorsize);
3481 	if (lockend <= lockstart)
3482 		lockend = lockstart + fs_info->sectorsize;
3483 	lockend--;
3484 
3485 	path = btrfs_alloc_path();
3486 	if (!path)
3487 		return -ENOMEM;
3488 	path->reada = READA_FORWARD;
3489 
3490 	key.objectid = ino;
3491 	key.type = BTRFS_EXTENT_DATA_KEY;
3492 	key.offset = start;
3493 
3494 	last_extent_end = lockstart;
3495 
3496 	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3497 
3498 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3499 	if (ret < 0) {
3500 		goto out;
3501 	} else if (ret > 0 && path->slots[0] > 0) {
3502 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3503 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3504 			path->slots[0]--;
3505 	}
3506 
3507 	while (start < i_size) {
3508 		struct extent_buffer *leaf = path->nodes[0];
3509 		struct btrfs_file_extent_item *extent;
3510 		u64 extent_end;
3511 		u8 type;
3512 
3513 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3514 			ret = btrfs_next_leaf(root, path);
3515 			if (ret < 0)
3516 				goto out;
3517 			else if (ret > 0)
3518 				break;
3519 
3520 			leaf = path->nodes[0];
3521 		}
3522 
3523 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3524 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3525 			break;
3526 
3527 		extent_end = btrfs_file_extent_end(path);
3528 
3529 		/*
3530 		 * In the first iteration we may have a slot that points to an
3531 		 * extent that ends before our start offset, so skip it.
3532 		 */
3533 		if (extent_end <= start) {
3534 			path->slots[0]++;
3535 			continue;
3536 		}
3537 
3538 		/* We have an implicit hole, NO_HOLES feature is likely set. */
3539 		if (last_extent_end < key.offset) {
3540 			u64 search_start = last_extent_end;
3541 			u64 found_start;
3542 
3543 			/*
3544 			 * First iteration, @start matches @offset and it's
3545 			 * within the hole.
3546 			 */
3547 			if (start == offset)
3548 				search_start = offset;
3549 
3550 			found = find_desired_extent_in_hole(inode, whence,
3551 							    delalloc_cached_state,
3552 							    search_start,
3553 							    key.offset - 1,
3554 							    &found_start);
3555 			if (found) {
3556 				start = found_start;
3557 				break;
3558 			}
3559 			/*
3560 			 * Didn't find data or a hole (due to delalloc) in the
3561 			 * implicit hole range, so need to analyze the extent.
3562 			 */
3563 		}
3564 
3565 		extent = btrfs_item_ptr(leaf, path->slots[0],
3566 					struct btrfs_file_extent_item);
3567 		type = btrfs_file_extent_type(leaf, extent);
3568 
3569 		/*
3570 		 * Can't access the extent's disk_bytenr field if this is an
3571 		 * inline extent, since at that offset, it's where the extent
3572 		 * data starts.
3573 		 */
3574 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3575 		    (type == BTRFS_FILE_EXTENT_REG &&
3576 		     btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3577 			/*
3578 			 * Explicit hole or prealloc extent, search for delalloc.
3579 			 * A prealloc extent is treated like a hole.
3580 			 */
3581 			u64 search_start = key.offset;
3582 			u64 found_start;
3583 
3584 			/*
3585 			 * First iteration, @start matches @offset and it's
3586 			 * within the hole.
3587 			 */
3588 			if (start == offset)
3589 				search_start = offset;
3590 
3591 			found = find_desired_extent_in_hole(inode, whence,
3592 							    delalloc_cached_state,
3593 							    search_start,
3594 							    extent_end - 1,
3595 							    &found_start);
3596 			if (found) {
3597 				start = found_start;
3598 				break;
3599 			}
3600 			/*
3601 			 * Didn't find data or a hole (due to delalloc) in the
3602 			 * implicit hole range, so need to analyze the next
3603 			 * extent item.
3604 			 */
3605 		} else {
3606 			/*
3607 			 * Found a regular or inline extent.
3608 			 * If we are seeking for data, adjust the start offset
3609 			 * and stop, we're done.
3610 			 */
3611 			if (whence == SEEK_DATA) {
3612 				start = max_t(u64, key.offset, offset);
3613 				found = true;
3614 				break;
3615 			}
3616 			/*
3617 			 * Else, we are seeking for a hole, check the next file
3618 			 * extent item.
3619 			 */
3620 		}
3621 
3622 		start = extent_end;
3623 		last_extent_end = extent_end;
3624 		path->slots[0]++;
3625 		if (fatal_signal_pending(current)) {
3626 			ret = -EINTR;
3627 			goto out;
3628 		}
3629 		cond_resched();
3630 	}
3631 
3632 	/* We have an implicit hole from the last extent found up to i_size. */
3633 	if (!found && start < i_size) {
3634 		found = find_desired_extent_in_hole(inode, whence,
3635 						    delalloc_cached_state, start,
3636 						    i_size - 1, &start);
3637 		if (!found)
3638 			start = i_size;
3639 	}
3640 
3641 out:
3642 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3643 	btrfs_free_path(path);
3644 
3645 	if (ret < 0)
3646 		return ret;
3647 
3648 	if (whence == SEEK_DATA && start >= i_size)
3649 		return -ENXIO;
3650 
3651 	return min_t(loff_t, start, i_size);
3652 }
3653 
3654 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3655 {
3656 	struct inode *inode = file->f_mapping->host;
3657 
3658 	switch (whence) {
3659 	default:
3660 		return generic_file_llseek(file, offset, whence);
3661 	case SEEK_DATA:
3662 	case SEEK_HOLE:
3663 		btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3664 		offset = find_desired_extent(file, offset, whence);
3665 		btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3666 		break;
3667 	}
3668 
3669 	if (offset < 0)
3670 		return offset;
3671 
3672 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3673 }
3674 
3675 static int btrfs_file_open(struct inode *inode, struct file *filp)
3676 {
3677 	int ret;
3678 
3679 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
3680 		        FMODE_CAN_ODIRECT;
3681 
3682 	ret = fsverity_file_open(inode, filp);
3683 	if (ret)
3684 		return ret;
3685 	return generic_file_open(inode, filp);
3686 }
3687 
3688 static int check_direct_read(struct btrfs_fs_info *fs_info,
3689 			     const struct iov_iter *iter, loff_t offset)
3690 {
3691 	int ret;
3692 	int i, seg;
3693 
3694 	ret = check_direct_IO(fs_info, iter, offset);
3695 	if (ret < 0)
3696 		return ret;
3697 
3698 	if (!iter_is_iovec(iter))
3699 		return 0;
3700 
3701 	for (seg = 0; seg < iter->nr_segs; seg++) {
3702 		for (i = seg + 1; i < iter->nr_segs; i++) {
3703 			const struct iovec *iov1 = iter_iov(iter) + seg;
3704 			const struct iovec *iov2 = iter_iov(iter) + i;
3705 
3706 			if (iov1->iov_base == iov2->iov_base)
3707 				return -EINVAL;
3708 		}
3709 	}
3710 	return 0;
3711 }
3712 
3713 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3714 {
3715 	struct inode *inode = file_inode(iocb->ki_filp);
3716 	size_t prev_left = 0;
3717 	ssize_t read = 0;
3718 	ssize_t ret;
3719 
3720 	if (fsverity_active(inode))
3721 		return 0;
3722 
3723 	if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3724 		return 0;
3725 
3726 	btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3727 again:
3728 	/*
3729 	 * This is similar to what we do for direct IO writes, see the comment
3730 	 * at btrfs_direct_write(), but we also disable page faults in addition
3731 	 * to disabling them only at the iov_iter level. This is because when
3732 	 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3733 	 * which can still trigger page fault ins despite having set ->nofault
3734 	 * to true of our 'to' iov_iter.
3735 	 *
3736 	 * The difference to direct IO writes is that we deadlock when trying
3737 	 * to lock the extent range in the inode's tree during he page reads
3738 	 * triggered by the fault in (while for writes it is due to waiting for
3739 	 * our own ordered extent). This is because for direct IO reads,
3740 	 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3741 	 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3742 	 */
3743 	pagefault_disable();
3744 	to->nofault = true;
3745 	ret = btrfs_dio_read(iocb, to, read);
3746 	to->nofault = false;
3747 	pagefault_enable();
3748 
3749 	/* No increment (+=) because iomap returns a cumulative value. */
3750 	if (ret > 0)
3751 		read = ret;
3752 
3753 	if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3754 		const size_t left = iov_iter_count(to);
3755 
3756 		if (left == prev_left) {
3757 			/*
3758 			 * We didn't make any progress since the last attempt,
3759 			 * fallback to a buffered read for the remainder of the
3760 			 * range. This is just to avoid any possibility of looping
3761 			 * for too long.
3762 			 */
3763 			ret = read;
3764 		} else {
3765 			/*
3766 			 * We made some progress since the last retry or this is
3767 			 * the first time we are retrying. Fault in as many pages
3768 			 * as possible and retry.
3769 			 */
3770 			fault_in_iov_iter_writeable(to, left);
3771 			prev_left = left;
3772 			goto again;
3773 		}
3774 	}
3775 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3776 	return ret < 0 ? ret : read;
3777 }
3778 
3779 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3780 {
3781 	ssize_t ret = 0;
3782 
3783 	if (iocb->ki_flags & IOCB_DIRECT) {
3784 		ret = btrfs_direct_read(iocb, to);
3785 		if (ret < 0 || !iov_iter_count(to) ||
3786 		    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3787 			return ret;
3788 	}
3789 
3790 	return filemap_read(iocb, to, ret);
3791 }
3792 
3793 const struct file_operations btrfs_file_operations = {
3794 	.llseek		= btrfs_file_llseek,
3795 	.read_iter      = btrfs_file_read_iter,
3796 	.splice_read	= filemap_splice_read,
3797 	.write_iter	= btrfs_file_write_iter,
3798 	.splice_write	= iter_file_splice_write,
3799 	.mmap		= btrfs_file_mmap,
3800 	.open		= btrfs_file_open,
3801 	.release	= btrfs_release_file,
3802 	.get_unmapped_area = thp_get_unmapped_area,
3803 	.fsync		= btrfs_sync_file,
3804 	.fallocate	= btrfs_fallocate,
3805 	.unlocked_ioctl	= btrfs_ioctl,
3806 #ifdef CONFIG_COMPAT
3807 	.compat_ioctl	= btrfs_compat_ioctl,
3808 #endif
3809 	.remap_file_range = btrfs_remap_file_range,
3810 };
3811 
3812 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3813 {
3814 	int ret;
3815 
3816 	/*
3817 	 * So with compression we will find and lock a dirty page and clear the
3818 	 * first one as dirty, setup an async extent, and immediately return
3819 	 * with the entire range locked but with nobody actually marked with
3820 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3821 	 * expect it to work since it will just kick off a thread to do the
3822 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3823 	 * since it will wait on the page lock, which won't be unlocked until
3824 	 * after the pages have been marked as writeback and so we're good to go
3825 	 * from there.  We have to do this otherwise we'll miss the ordered
3826 	 * extents and that results in badness.  Please Josef, do not think you
3827 	 * know better and pull this out at some point in the future, it is
3828 	 * right and you are wrong.
3829 	 */
3830 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3831 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3832 			     &BTRFS_I(inode)->runtime_flags))
3833 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3834 
3835 	return ret;
3836 }
3837