1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/bio.h> 7 #include <linux/slab.h> 8 #include <linux/pagemap.h> 9 #include <linux/highmem.h> 10 #include <linux/sched/mm.h> 11 #include <crypto/hash.h> 12 #include "messages.h" 13 #include "misc.h" 14 #include "ctree.h" 15 #include "disk-io.h" 16 #include "transaction.h" 17 #include "bio.h" 18 #include "print-tree.h" 19 #include "compression.h" 20 #include "fs.h" 21 #include "accessors.h" 22 #include "file-item.h" 23 #include "super.h" 24 25 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \ 26 sizeof(struct btrfs_item) * 2) / \ 27 size) - 1)) 28 29 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \ 30 PAGE_SIZE)) 31 32 /* 33 * Set inode's size according to filesystem options. 34 * 35 * @inode: inode we want to update the disk_i_size for 36 * @new_i_size: i_size we want to set to, 0 if we use i_size 37 * 38 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read() 39 * returns as it is perfectly fine with a file that has holes without hole file 40 * extent items. 41 * 42 * However without NO_HOLES we need to only return the area that is contiguous 43 * from the 0 offset of the file. Otherwise we could end up adjust i_size up 44 * to an extent that has a gap in between. 45 * 46 * Finally new_i_size should only be set in the case of truncate where we're not 47 * ready to use i_size_read() as the limiter yet. 48 */ 49 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size) 50 { 51 struct btrfs_fs_info *fs_info = inode->root->fs_info; 52 u64 start, end, i_size; 53 int ret; 54 55 spin_lock(&inode->lock); 56 i_size = new_i_size ?: i_size_read(&inode->vfs_inode); 57 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 58 inode->disk_i_size = i_size; 59 goto out_unlock; 60 } 61 62 ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start, 63 &end, EXTENT_DIRTY); 64 if (!ret && start == 0) 65 i_size = min(i_size, end + 1); 66 else 67 i_size = 0; 68 inode->disk_i_size = i_size; 69 out_unlock: 70 spin_unlock(&inode->lock); 71 } 72 73 /* 74 * Mark range within a file as having a new extent inserted. 75 * 76 * @inode: inode being modified 77 * @start: start file offset of the file extent we've inserted 78 * @len: logical length of the file extent item 79 * 80 * Call when we are inserting a new file extent where there was none before. 81 * Does not need to call this in the case where we're replacing an existing file 82 * extent, however if not sure it's fine to call this multiple times. 83 * 84 * The start and len must match the file extent item, so thus must be sectorsize 85 * aligned. 86 */ 87 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 88 u64 len) 89 { 90 if (len == 0) 91 return 0; 92 93 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize)); 94 95 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 96 return 0; 97 return set_extent_bit(&inode->file_extent_tree, start, start + len - 1, 98 EXTENT_DIRTY, NULL); 99 } 100 101 /* 102 * Mark an inode range as not having a backing extent. 103 * 104 * @inode: inode being modified 105 * @start: start file offset of the file extent we've inserted 106 * @len: logical length of the file extent item 107 * 108 * Called when we drop a file extent, for example when we truncate. Doesn't 109 * need to be called for cases where we're replacing a file extent, like when 110 * we've COWed a file extent. 111 * 112 * The start and len must match the file extent item, so thus must be sectorsize 113 * aligned. 114 */ 115 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 116 u64 len) 117 { 118 if (len == 0) 119 return 0; 120 121 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) || 122 len == (u64)-1); 123 124 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 125 return 0; 126 return clear_extent_bit(&inode->file_extent_tree, start, 127 start + len - 1, EXTENT_DIRTY, NULL); 128 } 129 130 static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes) 131 { 132 ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize)); 133 134 return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size; 135 } 136 137 static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size) 138 { 139 ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size)); 140 141 return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits; 142 } 143 144 static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info) 145 { 146 u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum), 147 fs_info->csum_size); 148 149 return csum_size_to_bytes(fs_info, max_csum_size); 150 } 151 152 /* 153 * Calculate the total size needed to allocate for an ordered sum structure 154 * spanning @bytes in the file. 155 */ 156 static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes) 157 { 158 return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes); 159 } 160 161 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans, 162 struct btrfs_root *root, 163 u64 objectid, u64 pos, u64 num_bytes) 164 { 165 int ret = 0; 166 struct btrfs_file_extent_item *item; 167 struct btrfs_key file_key; 168 struct btrfs_path *path; 169 struct extent_buffer *leaf; 170 171 path = btrfs_alloc_path(); 172 if (!path) 173 return -ENOMEM; 174 file_key.objectid = objectid; 175 file_key.offset = pos; 176 file_key.type = BTRFS_EXTENT_DATA_KEY; 177 178 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 179 sizeof(*item)); 180 if (ret < 0) 181 goto out; 182 BUG_ON(ret); /* Can't happen */ 183 leaf = path->nodes[0]; 184 item = btrfs_item_ptr(leaf, path->slots[0], 185 struct btrfs_file_extent_item); 186 btrfs_set_file_extent_disk_bytenr(leaf, item, 0); 187 btrfs_set_file_extent_disk_num_bytes(leaf, item, 0); 188 btrfs_set_file_extent_offset(leaf, item, 0); 189 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes); 190 btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes); 191 btrfs_set_file_extent_generation(leaf, item, trans->transid); 192 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 193 btrfs_set_file_extent_compression(leaf, item, 0); 194 btrfs_set_file_extent_encryption(leaf, item, 0); 195 btrfs_set_file_extent_other_encoding(leaf, item, 0); 196 197 btrfs_mark_buffer_dirty(leaf); 198 out: 199 btrfs_free_path(path); 200 return ret; 201 } 202 203 static struct btrfs_csum_item * 204 btrfs_lookup_csum(struct btrfs_trans_handle *trans, 205 struct btrfs_root *root, 206 struct btrfs_path *path, 207 u64 bytenr, int cow) 208 { 209 struct btrfs_fs_info *fs_info = root->fs_info; 210 int ret; 211 struct btrfs_key file_key; 212 struct btrfs_key found_key; 213 struct btrfs_csum_item *item; 214 struct extent_buffer *leaf; 215 u64 csum_offset = 0; 216 const u32 csum_size = fs_info->csum_size; 217 int csums_in_item; 218 219 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 220 file_key.offset = bytenr; 221 file_key.type = BTRFS_EXTENT_CSUM_KEY; 222 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow); 223 if (ret < 0) 224 goto fail; 225 leaf = path->nodes[0]; 226 if (ret > 0) { 227 ret = 1; 228 if (path->slots[0] == 0) 229 goto fail; 230 path->slots[0]--; 231 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 232 if (found_key.type != BTRFS_EXTENT_CSUM_KEY) 233 goto fail; 234 235 csum_offset = (bytenr - found_key.offset) >> 236 fs_info->sectorsize_bits; 237 csums_in_item = btrfs_item_size(leaf, path->slots[0]); 238 csums_in_item /= csum_size; 239 240 if (csum_offset == csums_in_item) { 241 ret = -EFBIG; 242 goto fail; 243 } else if (csum_offset > csums_in_item) { 244 goto fail; 245 } 246 } 247 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 248 item = (struct btrfs_csum_item *)((unsigned char *)item + 249 csum_offset * csum_size); 250 return item; 251 fail: 252 if (ret > 0) 253 ret = -ENOENT; 254 return ERR_PTR(ret); 255 } 256 257 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 258 struct btrfs_root *root, 259 struct btrfs_path *path, u64 objectid, 260 u64 offset, int mod) 261 { 262 struct btrfs_key file_key; 263 int ins_len = mod < 0 ? -1 : 0; 264 int cow = mod != 0; 265 266 file_key.objectid = objectid; 267 file_key.offset = offset; 268 file_key.type = BTRFS_EXTENT_DATA_KEY; 269 270 return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow); 271 } 272 273 /* 274 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and 275 * store the result to @dst. 276 * 277 * Return >0 for the number of sectors we found. 278 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum 279 * for it. Caller may want to try next sector until one range is hit. 280 * Return <0 for fatal error. 281 */ 282 static int search_csum_tree(struct btrfs_fs_info *fs_info, 283 struct btrfs_path *path, u64 disk_bytenr, 284 u64 len, u8 *dst) 285 { 286 struct btrfs_root *csum_root; 287 struct btrfs_csum_item *item = NULL; 288 struct btrfs_key key; 289 const u32 sectorsize = fs_info->sectorsize; 290 const u32 csum_size = fs_info->csum_size; 291 u32 itemsize; 292 int ret; 293 u64 csum_start; 294 u64 csum_len; 295 296 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) && 297 IS_ALIGNED(len, sectorsize)); 298 299 /* Check if the current csum item covers disk_bytenr */ 300 if (path->nodes[0]) { 301 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 302 struct btrfs_csum_item); 303 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 304 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); 305 306 csum_start = key.offset; 307 csum_len = (itemsize / csum_size) * sectorsize; 308 309 if (in_range(disk_bytenr, csum_start, csum_len)) 310 goto found; 311 } 312 313 /* Current item doesn't contain the desired range, search again */ 314 btrfs_release_path(path); 315 csum_root = btrfs_csum_root(fs_info, disk_bytenr); 316 item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0); 317 if (IS_ERR(item)) { 318 ret = PTR_ERR(item); 319 goto out; 320 } 321 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 322 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); 323 324 csum_start = key.offset; 325 csum_len = (itemsize / csum_size) * sectorsize; 326 ASSERT(in_range(disk_bytenr, csum_start, csum_len)); 327 328 found: 329 ret = (min(csum_start + csum_len, disk_bytenr + len) - 330 disk_bytenr) >> fs_info->sectorsize_bits; 331 read_extent_buffer(path->nodes[0], dst, (unsigned long)item, 332 ret * csum_size); 333 out: 334 if (ret == -ENOENT || ret == -EFBIG) 335 ret = 0; 336 return ret; 337 } 338 339 /* 340 * Lookup the checksum for the read bio in csum tree. 341 * 342 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise. 343 */ 344 blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio) 345 { 346 struct btrfs_inode *inode = bbio->inode; 347 struct btrfs_fs_info *fs_info = inode->root->fs_info; 348 struct bio *bio = &bbio->bio; 349 struct btrfs_path *path; 350 const u32 sectorsize = fs_info->sectorsize; 351 const u32 csum_size = fs_info->csum_size; 352 u32 orig_len = bio->bi_iter.bi_size; 353 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; 354 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits; 355 blk_status_t ret = BLK_STS_OK; 356 u32 bio_offset = 0; 357 358 if ((inode->flags & BTRFS_INODE_NODATASUM) || 359 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) 360 return BLK_STS_OK; 361 362 /* 363 * This function is only called for read bio. 364 * 365 * This means two things: 366 * - All our csums should only be in csum tree 367 * No ordered extents csums, as ordered extents are only for write 368 * path. 369 * - No need to bother any other info from bvec 370 * Since we're looking up csums, the only important info is the 371 * disk_bytenr and the length, which can be extracted from bi_iter 372 * directly. 373 */ 374 ASSERT(bio_op(bio) == REQ_OP_READ); 375 path = btrfs_alloc_path(); 376 if (!path) 377 return BLK_STS_RESOURCE; 378 379 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) { 380 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS); 381 if (!bbio->csum) { 382 btrfs_free_path(path); 383 return BLK_STS_RESOURCE; 384 } 385 } else { 386 bbio->csum = bbio->csum_inline; 387 } 388 389 /* 390 * If requested number of sectors is larger than one leaf can contain, 391 * kick the readahead for csum tree. 392 */ 393 if (nblocks > fs_info->csums_per_leaf) 394 path->reada = READA_FORWARD; 395 396 /* 397 * the free space stuff is only read when it hasn't been 398 * updated in the current transaction. So, we can safely 399 * read from the commit root and sidestep a nasty deadlock 400 * between reading the free space cache and updating the csum tree. 401 */ 402 if (btrfs_is_free_space_inode(inode)) { 403 path->search_commit_root = 1; 404 path->skip_locking = 1; 405 } 406 407 while (bio_offset < orig_len) { 408 int count; 409 u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset; 410 u8 *csum_dst = bbio->csum + 411 (bio_offset >> fs_info->sectorsize_bits) * csum_size; 412 413 count = search_csum_tree(fs_info, path, cur_disk_bytenr, 414 orig_len - bio_offset, csum_dst); 415 if (count < 0) { 416 ret = errno_to_blk_status(count); 417 if (bbio->csum != bbio->csum_inline) 418 kfree(bbio->csum); 419 bbio->csum = NULL; 420 break; 421 } 422 423 /* 424 * We didn't find a csum for this range. We need to make sure 425 * we complain loudly about this, because we are not NODATASUM. 426 * 427 * However for the DATA_RELOC inode we could potentially be 428 * relocating data extents for a NODATASUM inode, so the inode 429 * itself won't be marked with NODATASUM, but the extent we're 430 * copying is in fact NODATASUM. If we don't find a csum we 431 * assume this is the case. 432 */ 433 if (count == 0) { 434 memset(csum_dst, 0, csum_size); 435 count = 1; 436 437 if (inode->root->root_key.objectid == 438 BTRFS_DATA_RELOC_TREE_OBJECTID) { 439 u64 file_offset = bbio->file_offset + bio_offset; 440 441 set_extent_bit(&inode->io_tree, file_offset, 442 file_offset + sectorsize - 1, 443 EXTENT_NODATASUM, NULL); 444 } else { 445 btrfs_warn_rl(fs_info, 446 "csum hole found for disk bytenr range [%llu, %llu)", 447 cur_disk_bytenr, cur_disk_bytenr + sectorsize); 448 } 449 } 450 bio_offset += count * sectorsize; 451 } 452 453 btrfs_free_path(path); 454 return ret; 455 } 456 457 int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end, 458 struct list_head *list, int search_commit, 459 bool nowait) 460 { 461 struct btrfs_fs_info *fs_info = root->fs_info; 462 struct btrfs_key key; 463 struct btrfs_path *path; 464 struct extent_buffer *leaf; 465 struct btrfs_ordered_sum *sums; 466 struct btrfs_csum_item *item; 467 LIST_HEAD(tmplist); 468 int ret; 469 470 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 471 IS_ALIGNED(end + 1, fs_info->sectorsize)); 472 473 path = btrfs_alloc_path(); 474 if (!path) 475 return -ENOMEM; 476 477 path->nowait = nowait; 478 if (search_commit) { 479 path->skip_locking = 1; 480 path->reada = READA_FORWARD; 481 path->search_commit_root = 1; 482 } 483 484 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 485 key.offset = start; 486 key.type = BTRFS_EXTENT_CSUM_KEY; 487 488 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 489 if (ret < 0) 490 goto fail; 491 if (ret > 0 && path->slots[0] > 0) { 492 leaf = path->nodes[0]; 493 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 494 495 /* 496 * There are two cases we can hit here for the previous csum 497 * item: 498 * 499 * |<- search range ->| 500 * |<- csum item ->| 501 * 502 * Or 503 * |<- search range ->| 504 * |<- csum item ->| 505 * 506 * Check if the previous csum item covers the leading part of 507 * the search range. If so we have to start from previous csum 508 * item. 509 */ 510 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 511 key.type == BTRFS_EXTENT_CSUM_KEY) { 512 if (bytes_to_csum_size(fs_info, start - key.offset) < 513 btrfs_item_size(leaf, path->slots[0] - 1)) 514 path->slots[0]--; 515 } 516 } 517 518 while (start <= end) { 519 u64 csum_end; 520 521 leaf = path->nodes[0]; 522 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 523 ret = btrfs_next_leaf(root, path); 524 if (ret < 0) 525 goto fail; 526 if (ret > 0) 527 break; 528 leaf = path->nodes[0]; 529 } 530 531 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 532 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 533 key.type != BTRFS_EXTENT_CSUM_KEY || 534 key.offset > end) 535 break; 536 537 if (key.offset > start) 538 start = key.offset; 539 540 csum_end = key.offset + csum_size_to_bytes(fs_info, 541 btrfs_item_size(leaf, path->slots[0])); 542 if (csum_end <= start) { 543 path->slots[0]++; 544 continue; 545 } 546 547 csum_end = min(csum_end, end + 1); 548 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 549 struct btrfs_csum_item); 550 while (start < csum_end) { 551 unsigned long offset; 552 size_t size; 553 554 size = min_t(size_t, csum_end - start, 555 max_ordered_sum_bytes(fs_info)); 556 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size), 557 GFP_NOFS); 558 if (!sums) { 559 ret = -ENOMEM; 560 goto fail; 561 } 562 563 sums->logical = start; 564 sums->len = size; 565 566 offset = bytes_to_csum_size(fs_info, start - key.offset); 567 568 read_extent_buffer(path->nodes[0], 569 sums->sums, 570 ((unsigned long)item) + offset, 571 bytes_to_csum_size(fs_info, size)); 572 573 start += size; 574 list_add_tail(&sums->list, &tmplist); 575 } 576 path->slots[0]++; 577 } 578 ret = 0; 579 fail: 580 while (ret < 0 && !list_empty(&tmplist)) { 581 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list); 582 list_del(&sums->list); 583 kfree(sums); 584 } 585 list_splice_tail(&tmplist, list); 586 587 btrfs_free_path(path); 588 return ret; 589 } 590 591 /* 592 * Do the same work as btrfs_lookup_csums_list(), the difference is in how 593 * we return the result. 594 * 595 * This version will set the corresponding bits in @csum_bitmap to represent 596 * that there is a csum found. 597 * Each bit represents a sector. Thus caller should ensure @csum_buf passed 598 * in is large enough to contain all csums. 599 */ 600 int btrfs_lookup_csums_bitmap(struct btrfs_root *root, u64 start, u64 end, 601 u8 *csum_buf, unsigned long *csum_bitmap, 602 bool search_commit) 603 { 604 struct btrfs_fs_info *fs_info = root->fs_info; 605 struct btrfs_key key; 606 struct btrfs_path *path; 607 struct extent_buffer *leaf; 608 struct btrfs_csum_item *item; 609 const u64 orig_start = start; 610 int ret; 611 612 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 613 IS_ALIGNED(end + 1, fs_info->sectorsize)); 614 615 path = btrfs_alloc_path(); 616 if (!path) 617 return -ENOMEM; 618 619 if (search_commit) { 620 path->skip_locking = 1; 621 path->reada = READA_FORWARD; 622 path->search_commit_root = 1; 623 } 624 625 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 626 key.type = BTRFS_EXTENT_CSUM_KEY; 627 key.offset = start; 628 629 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 630 if (ret < 0) 631 goto fail; 632 if (ret > 0 && path->slots[0] > 0) { 633 leaf = path->nodes[0]; 634 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 635 636 /* 637 * There are two cases we can hit here for the previous csum 638 * item: 639 * 640 * |<- search range ->| 641 * |<- csum item ->| 642 * 643 * Or 644 * |<- search range ->| 645 * |<- csum item ->| 646 * 647 * Check if the previous csum item covers the leading part of 648 * the search range. If so we have to start from previous csum 649 * item. 650 */ 651 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 652 key.type == BTRFS_EXTENT_CSUM_KEY) { 653 if (bytes_to_csum_size(fs_info, start - key.offset) < 654 btrfs_item_size(leaf, path->slots[0] - 1)) 655 path->slots[0]--; 656 } 657 } 658 659 while (start <= end) { 660 u64 csum_end; 661 662 leaf = path->nodes[0]; 663 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 664 ret = btrfs_next_leaf(root, path); 665 if (ret < 0) 666 goto fail; 667 if (ret > 0) 668 break; 669 leaf = path->nodes[0]; 670 } 671 672 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 673 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 674 key.type != BTRFS_EXTENT_CSUM_KEY || 675 key.offset > end) 676 break; 677 678 if (key.offset > start) 679 start = key.offset; 680 681 csum_end = key.offset + csum_size_to_bytes(fs_info, 682 btrfs_item_size(leaf, path->slots[0])); 683 if (csum_end <= start) { 684 path->slots[0]++; 685 continue; 686 } 687 688 csum_end = min(csum_end, end + 1); 689 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 690 struct btrfs_csum_item); 691 while (start < csum_end) { 692 unsigned long offset; 693 size_t size; 694 u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info, 695 start - orig_start); 696 697 size = min_t(size_t, csum_end - start, end + 1 - start); 698 699 offset = bytes_to_csum_size(fs_info, start - key.offset); 700 701 read_extent_buffer(path->nodes[0], csum_dest, 702 ((unsigned long)item) + offset, 703 bytes_to_csum_size(fs_info, size)); 704 705 bitmap_set(csum_bitmap, 706 (start - orig_start) >> fs_info->sectorsize_bits, 707 size >> fs_info->sectorsize_bits); 708 709 start += size; 710 } 711 path->slots[0]++; 712 } 713 ret = 0; 714 fail: 715 btrfs_free_path(path); 716 return ret; 717 } 718 719 /* 720 * Calculate checksums of the data contained inside a bio. 721 */ 722 blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio) 723 { 724 struct btrfs_ordered_extent *ordered = bbio->ordered; 725 struct btrfs_inode *inode = bbio->inode; 726 struct btrfs_fs_info *fs_info = inode->root->fs_info; 727 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 728 struct bio *bio = &bbio->bio; 729 struct btrfs_ordered_sum *sums; 730 char *data; 731 struct bvec_iter iter; 732 struct bio_vec bvec; 733 int index; 734 unsigned int blockcount; 735 int i; 736 unsigned nofs_flag; 737 738 nofs_flag = memalloc_nofs_save(); 739 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size), 740 GFP_KERNEL); 741 memalloc_nofs_restore(nofs_flag); 742 743 if (!sums) 744 return BLK_STS_RESOURCE; 745 746 sums->len = bio->bi_iter.bi_size; 747 INIT_LIST_HEAD(&sums->list); 748 749 sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 750 index = 0; 751 752 shash->tfm = fs_info->csum_shash; 753 754 bio_for_each_segment(bvec, bio, iter) { 755 blockcount = BTRFS_BYTES_TO_BLKS(fs_info, 756 bvec.bv_len + fs_info->sectorsize 757 - 1); 758 759 for (i = 0; i < blockcount; i++) { 760 data = bvec_kmap_local(&bvec); 761 crypto_shash_digest(shash, 762 data + (i * fs_info->sectorsize), 763 fs_info->sectorsize, 764 sums->sums + index); 765 kunmap_local(data); 766 index += fs_info->csum_size; 767 } 768 769 } 770 771 bbio->sums = sums; 772 btrfs_add_ordered_sum(ordered, sums); 773 return 0; 774 } 775 776 /* 777 * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to 778 * record the updated logical address on Zone Append completion. 779 * Allocate just the structure with an empty sums array here for that case. 780 */ 781 blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio) 782 { 783 bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS); 784 if (!bbio->sums) 785 return BLK_STS_RESOURCE; 786 bbio->sums->len = bbio->bio.bi_iter.bi_size; 787 bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 788 btrfs_add_ordered_sum(bbio->ordered, bbio->sums); 789 return 0; 790 } 791 792 /* 793 * Remove one checksum overlapping a range. 794 * 795 * This expects the key to describe the csum pointed to by the path, and it 796 * expects the csum to overlap the range [bytenr, len] 797 * 798 * The csum should not be entirely contained in the range and the range should 799 * not be entirely contained in the csum. 800 * 801 * This calls btrfs_truncate_item with the correct args based on the overlap, 802 * and fixes up the key as required. 803 */ 804 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info, 805 struct btrfs_path *path, 806 struct btrfs_key *key, 807 u64 bytenr, u64 len) 808 { 809 struct extent_buffer *leaf; 810 const u32 csum_size = fs_info->csum_size; 811 u64 csum_end; 812 u64 end_byte = bytenr + len; 813 u32 blocksize_bits = fs_info->sectorsize_bits; 814 815 leaf = path->nodes[0]; 816 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; 817 csum_end <<= blocksize_bits; 818 csum_end += key->offset; 819 820 if (key->offset < bytenr && csum_end <= end_byte) { 821 /* 822 * [ bytenr - len ] 823 * [ ] 824 * [csum ] 825 * A simple truncate off the end of the item 826 */ 827 u32 new_size = (bytenr - key->offset) >> blocksize_bits; 828 new_size *= csum_size; 829 btrfs_truncate_item(path, new_size, 1); 830 } else if (key->offset >= bytenr && csum_end > end_byte && 831 end_byte > key->offset) { 832 /* 833 * [ bytenr - len ] 834 * [ ] 835 * [csum ] 836 * we need to truncate from the beginning of the csum 837 */ 838 u32 new_size = (csum_end - end_byte) >> blocksize_bits; 839 new_size *= csum_size; 840 841 btrfs_truncate_item(path, new_size, 0); 842 843 key->offset = end_byte; 844 btrfs_set_item_key_safe(fs_info, path, key); 845 } else { 846 BUG(); 847 } 848 } 849 850 /* 851 * Delete the csum items from the csum tree for a given range of bytes. 852 */ 853 int btrfs_del_csums(struct btrfs_trans_handle *trans, 854 struct btrfs_root *root, u64 bytenr, u64 len) 855 { 856 struct btrfs_fs_info *fs_info = trans->fs_info; 857 struct btrfs_path *path; 858 struct btrfs_key key; 859 u64 end_byte = bytenr + len; 860 u64 csum_end; 861 struct extent_buffer *leaf; 862 int ret = 0; 863 const u32 csum_size = fs_info->csum_size; 864 u32 blocksize_bits = fs_info->sectorsize_bits; 865 866 ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID || 867 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 868 869 path = btrfs_alloc_path(); 870 if (!path) 871 return -ENOMEM; 872 873 while (1) { 874 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 875 key.offset = end_byte - 1; 876 key.type = BTRFS_EXTENT_CSUM_KEY; 877 878 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 879 if (ret > 0) { 880 ret = 0; 881 if (path->slots[0] == 0) 882 break; 883 path->slots[0]--; 884 } else if (ret < 0) { 885 break; 886 } 887 888 leaf = path->nodes[0]; 889 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 890 891 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 892 key.type != BTRFS_EXTENT_CSUM_KEY) { 893 break; 894 } 895 896 if (key.offset >= end_byte) 897 break; 898 899 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; 900 csum_end <<= blocksize_bits; 901 csum_end += key.offset; 902 903 /* this csum ends before we start, we're done */ 904 if (csum_end <= bytenr) 905 break; 906 907 /* delete the entire item, it is inside our range */ 908 if (key.offset >= bytenr && csum_end <= end_byte) { 909 int del_nr = 1; 910 911 /* 912 * Check how many csum items preceding this one in this 913 * leaf correspond to our range and then delete them all 914 * at once. 915 */ 916 if (key.offset > bytenr && path->slots[0] > 0) { 917 int slot = path->slots[0] - 1; 918 919 while (slot >= 0) { 920 struct btrfs_key pk; 921 922 btrfs_item_key_to_cpu(leaf, &pk, slot); 923 if (pk.offset < bytenr || 924 pk.type != BTRFS_EXTENT_CSUM_KEY || 925 pk.objectid != 926 BTRFS_EXTENT_CSUM_OBJECTID) 927 break; 928 path->slots[0] = slot; 929 del_nr++; 930 key.offset = pk.offset; 931 slot--; 932 } 933 } 934 ret = btrfs_del_items(trans, root, path, 935 path->slots[0], del_nr); 936 if (ret) 937 break; 938 if (key.offset == bytenr) 939 break; 940 } else if (key.offset < bytenr && csum_end > end_byte) { 941 unsigned long offset; 942 unsigned long shift_len; 943 unsigned long item_offset; 944 /* 945 * [ bytenr - len ] 946 * [csum ] 947 * 948 * Our bytes are in the middle of the csum, 949 * we need to split this item and insert a new one. 950 * 951 * But we can't drop the path because the 952 * csum could change, get removed, extended etc. 953 * 954 * The trick here is the max size of a csum item leaves 955 * enough room in the tree block for a single 956 * item header. So, we split the item in place, 957 * adding a new header pointing to the existing 958 * bytes. Then we loop around again and we have 959 * a nicely formed csum item that we can neatly 960 * truncate. 961 */ 962 offset = (bytenr - key.offset) >> blocksize_bits; 963 offset *= csum_size; 964 965 shift_len = (len >> blocksize_bits) * csum_size; 966 967 item_offset = btrfs_item_ptr_offset(leaf, 968 path->slots[0]); 969 970 memzero_extent_buffer(leaf, item_offset + offset, 971 shift_len); 972 key.offset = bytenr; 973 974 /* 975 * btrfs_split_item returns -EAGAIN when the 976 * item changed size or key 977 */ 978 ret = btrfs_split_item(trans, root, path, &key, offset); 979 if (ret && ret != -EAGAIN) { 980 btrfs_abort_transaction(trans, ret); 981 break; 982 } 983 ret = 0; 984 985 key.offset = end_byte - 1; 986 } else { 987 truncate_one_csum(fs_info, path, &key, bytenr, len); 988 if (key.offset < bytenr) 989 break; 990 } 991 btrfs_release_path(path); 992 } 993 btrfs_free_path(path); 994 return ret; 995 } 996 997 static int find_next_csum_offset(struct btrfs_root *root, 998 struct btrfs_path *path, 999 u64 *next_offset) 1000 { 1001 const u32 nritems = btrfs_header_nritems(path->nodes[0]); 1002 struct btrfs_key found_key; 1003 int slot = path->slots[0] + 1; 1004 int ret; 1005 1006 if (nritems == 0 || slot >= nritems) { 1007 ret = btrfs_next_leaf(root, path); 1008 if (ret < 0) { 1009 return ret; 1010 } else if (ret > 0) { 1011 *next_offset = (u64)-1; 1012 return 0; 1013 } 1014 slot = path->slots[0]; 1015 } 1016 1017 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot); 1018 1019 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 1020 found_key.type != BTRFS_EXTENT_CSUM_KEY) 1021 *next_offset = (u64)-1; 1022 else 1023 *next_offset = found_key.offset; 1024 1025 return 0; 1026 } 1027 1028 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 1029 struct btrfs_root *root, 1030 struct btrfs_ordered_sum *sums) 1031 { 1032 struct btrfs_fs_info *fs_info = root->fs_info; 1033 struct btrfs_key file_key; 1034 struct btrfs_key found_key; 1035 struct btrfs_path *path; 1036 struct btrfs_csum_item *item; 1037 struct btrfs_csum_item *item_end; 1038 struct extent_buffer *leaf = NULL; 1039 u64 next_offset; 1040 u64 total_bytes = 0; 1041 u64 csum_offset; 1042 u64 bytenr; 1043 u32 ins_size; 1044 int index = 0; 1045 int found_next; 1046 int ret; 1047 const u32 csum_size = fs_info->csum_size; 1048 1049 path = btrfs_alloc_path(); 1050 if (!path) 1051 return -ENOMEM; 1052 again: 1053 next_offset = (u64)-1; 1054 found_next = 0; 1055 bytenr = sums->logical + total_bytes; 1056 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 1057 file_key.offset = bytenr; 1058 file_key.type = BTRFS_EXTENT_CSUM_KEY; 1059 1060 item = btrfs_lookup_csum(trans, root, path, bytenr, 1); 1061 if (!IS_ERR(item)) { 1062 ret = 0; 1063 leaf = path->nodes[0]; 1064 item_end = btrfs_item_ptr(leaf, path->slots[0], 1065 struct btrfs_csum_item); 1066 item_end = (struct btrfs_csum_item *)((char *)item_end + 1067 btrfs_item_size(leaf, path->slots[0])); 1068 goto found; 1069 } 1070 ret = PTR_ERR(item); 1071 if (ret != -EFBIG && ret != -ENOENT) 1072 goto out; 1073 1074 if (ret == -EFBIG) { 1075 u32 item_size; 1076 /* we found one, but it isn't big enough yet */ 1077 leaf = path->nodes[0]; 1078 item_size = btrfs_item_size(leaf, path->slots[0]); 1079 if ((item_size / csum_size) >= 1080 MAX_CSUM_ITEMS(fs_info, csum_size)) { 1081 /* already at max size, make a new one */ 1082 goto insert; 1083 } 1084 } else { 1085 /* We didn't find a csum item, insert one. */ 1086 ret = find_next_csum_offset(root, path, &next_offset); 1087 if (ret < 0) 1088 goto out; 1089 found_next = 1; 1090 goto insert; 1091 } 1092 1093 /* 1094 * At this point, we know the tree has a checksum item that ends at an 1095 * offset matching the start of the checksum range we want to insert. 1096 * We try to extend that item as much as possible and then add as many 1097 * checksums to it as they fit. 1098 * 1099 * First check if the leaf has enough free space for at least one 1100 * checksum. If it has go directly to the item extension code, otherwise 1101 * release the path and do a search for insertion before the extension. 1102 */ 1103 if (btrfs_leaf_free_space(leaf) >= csum_size) { 1104 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1105 csum_offset = (bytenr - found_key.offset) >> 1106 fs_info->sectorsize_bits; 1107 goto extend_csum; 1108 } 1109 1110 btrfs_release_path(path); 1111 path->search_for_extension = 1; 1112 ret = btrfs_search_slot(trans, root, &file_key, path, 1113 csum_size, 1); 1114 path->search_for_extension = 0; 1115 if (ret < 0) 1116 goto out; 1117 1118 if (ret > 0) { 1119 if (path->slots[0] == 0) 1120 goto insert; 1121 path->slots[0]--; 1122 } 1123 1124 leaf = path->nodes[0]; 1125 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1126 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits; 1127 1128 if (found_key.type != BTRFS_EXTENT_CSUM_KEY || 1129 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 1130 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) { 1131 goto insert; 1132 } 1133 1134 extend_csum: 1135 if (csum_offset == btrfs_item_size(leaf, path->slots[0]) / 1136 csum_size) { 1137 int extend_nr; 1138 u64 tmp; 1139 u32 diff; 1140 1141 tmp = sums->len - total_bytes; 1142 tmp >>= fs_info->sectorsize_bits; 1143 WARN_ON(tmp < 1); 1144 extend_nr = max_t(int, 1, tmp); 1145 1146 /* 1147 * A log tree can already have checksum items with a subset of 1148 * the checksums we are trying to log. This can happen after 1149 * doing a sequence of partial writes into prealloc extents and 1150 * fsyncs in between, with a full fsync logging a larger subrange 1151 * of an extent for which a previous fast fsync logged a smaller 1152 * subrange. And this happens in particular due to merging file 1153 * extent items when we complete an ordered extent for a range 1154 * covered by a prealloc extent - this is done at 1155 * btrfs_mark_extent_written(). 1156 * 1157 * So if we try to extend the previous checksum item, which has 1158 * a range that ends at the start of the range we want to insert, 1159 * make sure we don't extend beyond the start offset of the next 1160 * checksum item. If we are at the last item in the leaf, then 1161 * forget the optimization of extending and add a new checksum 1162 * item - it is not worth the complexity of releasing the path, 1163 * getting the first key for the next leaf, repeat the btree 1164 * search, etc, because log trees are temporary anyway and it 1165 * would only save a few bytes of leaf space. 1166 */ 1167 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 1168 if (path->slots[0] + 1 >= 1169 btrfs_header_nritems(path->nodes[0])) { 1170 ret = find_next_csum_offset(root, path, &next_offset); 1171 if (ret < 0) 1172 goto out; 1173 found_next = 1; 1174 goto insert; 1175 } 1176 1177 ret = find_next_csum_offset(root, path, &next_offset); 1178 if (ret < 0) 1179 goto out; 1180 1181 tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits; 1182 if (tmp <= INT_MAX) 1183 extend_nr = min_t(int, extend_nr, tmp); 1184 } 1185 1186 diff = (csum_offset + extend_nr) * csum_size; 1187 diff = min(diff, 1188 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size); 1189 1190 diff = diff - btrfs_item_size(leaf, path->slots[0]); 1191 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff); 1192 diff /= csum_size; 1193 diff *= csum_size; 1194 1195 btrfs_extend_item(path, diff); 1196 ret = 0; 1197 goto csum; 1198 } 1199 1200 insert: 1201 btrfs_release_path(path); 1202 csum_offset = 0; 1203 if (found_next) { 1204 u64 tmp; 1205 1206 tmp = sums->len - total_bytes; 1207 tmp >>= fs_info->sectorsize_bits; 1208 tmp = min(tmp, (next_offset - file_key.offset) >> 1209 fs_info->sectorsize_bits); 1210 1211 tmp = max_t(u64, 1, tmp); 1212 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size)); 1213 ins_size = csum_size * tmp; 1214 } else { 1215 ins_size = csum_size; 1216 } 1217 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 1218 ins_size); 1219 if (ret < 0) 1220 goto out; 1221 if (WARN_ON(ret != 0)) 1222 goto out; 1223 leaf = path->nodes[0]; 1224 csum: 1225 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 1226 item_end = (struct btrfs_csum_item *)((unsigned char *)item + 1227 btrfs_item_size(leaf, path->slots[0])); 1228 item = (struct btrfs_csum_item *)((unsigned char *)item + 1229 csum_offset * csum_size); 1230 found: 1231 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits; 1232 ins_size *= csum_size; 1233 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item, 1234 ins_size); 1235 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item, 1236 ins_size); 1237 1238 index += ins_size; 1239 ins_size /= csum_size; 1240 total_bytes += ins_size * fs_info->sectorsize; 1241 1242 btrfs_mark_buffer_dirty(path->nodes[0]); 1243 if (total_bytes < sums->len) { 1244 btrfs_release_path(path); 1245 cond_resched(); 1246 goto again; 1247 } 1248 out: 1249 btrfs_free_path(path); 1250 return ret; 1251 } 1252 1253 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 1254 const struct btrfs_path *path, 1255 struct btrfs_file_extent_item *fi, 1256 struct extent_map *em) 1257 { 1258 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1259 struct btrfs_root *root = inode->root; 1260 struct extent_buffer *leaf = path->nodes[0]; 1261 const int slot = path->slots[0]; 1262 struct btrfs_key key; 1263 u64 extent_start, extent_end; 1264 u64 bytenr; 1265 u8 type = btrfs_file_extent_type(leaf, fi); 1266 int compress_type = btrfs_file_extent_compression(leaf, fi); 1267 1268 btrfs_item_key_to_cpu(leaf, &key, slot); 1269 extent_start = key.offset; 1270 extent_end = btrfs_file_extent_end(path); 1271 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1272 em->generation = btrfs_file_extent_generation(leaf, fi); 1273 if (type == BTRFS_FILE_EXTENT_REG || 1274 type == BTRFS_FILE_EXTENT_PREALLOC) { 1275 em->start = extent_start; 1276 em->len = extent_end - extent_start; 1277 em->orig_start = extent_start - 1278 btrfs_file_extent_offset(leaf, fi); 1279 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 1280 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1281 if (bytenr == 0) { 1282 em->block_start = EXTENT_MAP_HOLE; 1283 return; 1284 } 1285 if (compress_type != BTRFS_COMPRESS_NONE) { 1286 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1287 em->compress_type = compress_type; 1288 em->block_start = bytenr; 1289 em->block_len = em->orig_block_len; 1290 } else { 1291 bytenr += btrfs_file_extent_offset(leaf, fi); 1292 em->block_start = bytenr; 1293 em->block_len = em->len; 1294 if (type == BTRFS_FILE_EXTENT_PREALLOC) 1295 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 1296 } 1297 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 1298 em->block_start = EXTENT_MAP_INLINE; 1299 em->start = extent_start; 1300 em->len = extent_end - extent_start; 1301 /* 1302 * Initialize orig_start and block_len with the same values 1303 * as in inode.c:btrfs_get_extent(). 1304 */ 1305 em->orig_start = EXTENT_MAP_HOLE; 1306 em->block_len = (u64)-1; 1307 em->compress_type = compress_type; 1308 if (compress_type != BTRFS_COMPRESS_NONE) 1309 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1310 } else { 1311 btrfs_err(fs_info, 1312 "unknown file extent item type %d, inode %llu, offset %llu, " 1313 "root %llu", type, btrfs_ino(inode), extent_start, 1314 root->root_key.objectid); 1315 } 1316 } 1317 1318 /* 1319 * Returns the end offset (non inclusive) of the file extent item the given path 1320 * points to. If it points to an inline extent, the returned offset is rounded 1321 * up to the sector size. 1322 */ 1323 u64 btrfs_file_extent_end(const struct btrfs_path *path) 1324 { 1325 const struct extent_buffer *leaf = path->nodes[0]; 1326 const int slot = path->slots[0]; 1327 struct btrfs_file_extent_item *fi; 1328 struct btrfs_key key; 1329 u64 end; 1330 1331 btrfs_item_key_to_cpu(leaf, &key, slot); 1332 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 1333 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1334 1335 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 1336 end = btrfs_file_extent_ram_bytes(leaf, fi); 1337 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize); 1338 } else { 1339 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1340 } 1341 1342 return end; 1343 } 1344