1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/bio.h> 7 #include <linux/slab.h> 8 #include <linux/pagemap.h> 9 #include <linux/highmem.h> 10 #include <linux/sched/mm.h> 11 #include <crypto/hash.h> 12 #include "misc.h" 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "print-tree.h" 18 #include "compression.h" 19 20 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \ 21 sizeof(struct btrfs_item) * 2) / \ 22 size) - 1)) 23 24 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \ 25 PAGE_SIZE)) 26 27 /** 28 * Set inode's size according to filesystem options 29 * 30 * @inode: inode we want to update the disk_i_size for 31 * @new_i_size: i_size we want to set to, 0 if we use i_size 32 * 33 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read() 34 * returns as it is perfectly fine with a file that has holes without hole file 35 * extent items. 36 * 37 * However without NO_HOLES we need to only return the area that is contiguous 38 * from the 0 offset of the file. Otherwise we could end up adjust i_size up 39 * to an extent that has a gap in between. 40 * 41 * Finally new_i_size should only be set in the case of truncate where we're not 42 * ready to use i_size_read() as the limiter yet. 43 */ 44 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size) 45 { 46 struct btrfs_fs_info *fs_info = inode->root->fs_info; 47 u64 start, end, i_size; 48 int ret; 49 50 i_size = new_i_size ?: i_size_read(&inode->vfs_inode); 51 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 52 inode->disk_i_size = i_size; 53 return; 54 } 55 56 spin_lock(&inode->lock); 57 ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start, 58 &end, EXTENT_DIRTY); 59 if (!ret && start == 0) 60 i_size = min(i_size, end + 1); 61 else 62 i_size = 0; 63 inode->disk_i_size = i_size; 64 spin_unlock(&inode->lock); 65 } 66 67 /** 68 * Mark range within a file as having a new extent inserted 69 * 70 * @inode: inode being modified 71 * @start: start file offset of the file extent we've inserted 72 * @len: logical length of the file extent item 73 * 74 * Call when we are inserting a new file extent where there was none before. 75 * Does not need to call this in the case where we're replacing an existing file 76 * extent, however if not sure it's fine to call this multiple times. 77 * 78 * The start and len must match the file extent item, so thus must be sectorsize 79 * aligned. 80 */ 81 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 82 u64 len) 83 { 84 if (len == 0) 85 return 0; 86 87 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize)); 88 89 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 90 return 0; 91 return set_extent_bits(&inode->file_extent_tree, start, start + len - 1, 92 EXTENT_DIRTY); 93 } 94 95 /** 96 * Marks an inode range as not having a backing extent 97 * 98 * @inode: inode being modified 99 * @start: start file offset of the file extent we've inserted 100 * @len: logical length of the file extent item 101 * 102 * Called when we drop a file extent, for example when we truncate. Doesn't 103 * need to be called for cases where we're replacing a file extent, like when 104 * we've COWed a file extent. 105 * 106 * The start and len must match the file extent item, so thus must be sectorsize 107 * aligned. 108 */ 109 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 110 u64 len) 111 { 112 if (len == 0) 113 return 0; 114 115 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) || 116 len == (u64)-1); 117 118 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 119 return 0; 120 return clear_extent_bit(&inode->file_extent_tree, start, 121 start + len - 1, EXTENT_DIRTY, NULL); 122 } 123 124 static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info, 125 u16 csum_size) 126 { 127 u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size; 128 129 return ncsums * fs_info->sectorsize; 130 } 131 132 /* 133 * Calculate the total size needed to allocate for an ordered sum structure 134 * spanning @bytes in the file. 135 */ 136 static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes) 137 { 138 int num_sectors = (int)DIV_ROUND_UP(bytes, fs_info->sectorsize); 139 140 return sizeof(struct btrfs_ordered_sum) + num_sectors * fs_info->csum_size; 141 } 142 143 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans, 144 struct btrfs_root *root, 145 u64 objectid, u64 pos, u64 num_bytes) 146 { 147 int ret = 0; 148 struct btrfs_file_extent_item *item; 149 struct btrfs_key file_key; 150 struct btrfs_path *path; 151 struct extent_buffer *leaf; 152 153 path = btrfs_alloc_path(); 154 if (!path) 155 return -ENOMEM; 156 file_key.objectid = objectid; 157 file_key.offset = pos; 158 file_key.type = BTRFS_EXTENT_DATA_KEY; 159 160 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 161 sizeof(*item)); 162 if (ret < 0) 163 goto out; 164 BUG_ON(ret); /* Can't happen */ 165 leaf = path->nodes[0]; 166 item = btrfs_item_ptr(leaf, path->slots[0], 167 struct btrfs_file_extent_item); 168 btrfs_set_file_extent_disk_bytenr(leaf, item, 0); 169 btrfs_set_file_extent_disk_num_bytes(leaf, item, 0); 170 btrfs_set_file_extent_offset(leaf, item, 0); 171 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes); 172 btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes); 173 btrfs_set_file_extent_generation(leaf, item, trans->transid); 174 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 175 btrfs_set_file_extent_compression(leaf, item, 0); 176 btrfs_set_file_extent_encryption(leaf, item, 0); 177 btrfs_set_file_extent_other_encoding(leaf, item, 0); 178 179 btrfs_mark_buffer_dirty(leaf); 180 out: 181 btrfs_free_path(path); 182 return ret; 183 } 184 185 static struct btrfs_csum_item * 186 btrfs_lookup_csum(struct btrfs_trans_handle *trans, 187 struct btrfs_root *root, 188 struct btrfs_path *path, 189 u64 bytenr, int cow) 190 { 191 struct btrfs_fs_info *fs_info = root->fs_info; 192 int ret; 193 struct btrfs_key file_key; 194 struct btrfs_key found_key; 195 struct btrfs_csum_item *item; 196 struct extent_buffer *leaf; 197 u64 csum_offset = 0; 198 const u32 csum_size = fs_info->csum_size; 199 int csums_in_item; 200 201 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 202 file_key.offset = bytenr; 203 file_key.type = BTRFS_EXTENT_CSUM_KEY; 204 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow); 205 if (ret < 0) 206 goto fail; 207 leaf = path->nodes[0]; 208 if (ret > 0) { 209 ret = 1; 210 if (path->slots[0] == 0) 211 goto fail; 212 path->slots[0]--; 213 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 214 if (found_key.type != BTRFS_EXTENT_CSUM_KEY) 215 goto fail; 216 217 csum_offset = (bytenr - found_key.offset) >> 218 fs_info->sectorsize_bits; 219 csums_in_item = btrfs_item_size(leaf, path->slots[0]); 220 csums_in_item /= csum_size; 221 222 if (csum_offset == csums_in_item) { 223 ret = -EFBIG; 224 goto fail; 225 } else if (csum_offset > csums_in_item) { 226 goto fail; 227 } 228 } 229 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 230 item = (struct btrfs_csum_item *)((unsigned char *)item + 231 csum_offset * csum_size); 232 return item; 233 fail: 234 if (ret > 0) 235 ret = -ENOENT; 236 return ERR_PTR(ret); 237 } 238 239 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 240 struct btrfs_root *root, 241 struct btrfs_path *path, u64 objectid, 242 u64 offset, int mod) 243 { 244 struct btrfs_key file_key; 245 int ins_len = mod < 0 ? -1 : 0; 246 int cow = mod != 0; 247 248 file_key.objectid = objectid; 249 file_key.offset = offset; 250 file_key.type = BTRFS_EXTENT_DATA_KEY; 251 252 return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow); 253 } 254 255 /* 256 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and 257 * estore the result to @dst. 258 * 259 * Return >0 for the number of sectors we found. 260 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum 261 * for it. Caller may want to try next sector until one range is hit. 262 * Return <0 for fatal error. 263 */ 264 static int search_csum_tree(struct btrfs_fs_info *fs_info, 265 struct btrfs_path *path, u64 disk_bytenr, 266 u64 len, u8 *dst) 267 { 268 struct btrfs_root *csum_root; 269 struct btrfs_csum_item *item = NULL; 270 struct btrfs_key key; 271 const u32 sectorsize = fs_info->sectorsize; 272 const u32 csum_size = fs_info->csum_size; 273 u32 itemsize; 274 int ret; 275 u64 csum_start; 276 u64 csum_len; 277 278 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) && 279 IS_ALIGNED(len, sectorsize)); 280 281 /* Check if the current csum item covers disk_bytenr */ 282 if (path->nodes[0]) { 283 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 284 struct btrfs_csum_item); 285 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 286 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); 287 288 csum_start = key.offset; 289 csum_len = (itemsize / csum_size) * sectorsize; 290 291 if (in_range(disk_bytenr, csum_start, csum_len)) 292 goto found; 293 } 294 295 /* Current item doesn't contain the desired range, search again */ 296 btrfs_release_path(path); 297 csum_root = btrfs_csum_root(fs_info, disk_bytenr); 298 item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0); 299 if (IS_ERR(item)) { 300 ret = PTR_ERR(item); 301 goto out; 302 } 303 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 304 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); 305 306 csum_start = key.offset; 307 csum_len = (itemsize / csum_size) * sectorsize; 308 ASSERT(in_range(disk_bytenr, csum_start, csum_len)); 309 310 found: 311 ret = (min(csum_start + csum_len, disk_bytenr + len) - 312 disk_bytenr) >> fs_info->sectorsize_bits; 313 read_extent_buffer(path->nodes[0], dst, (unsigned long)item, 314 ret * csum_size); 315 out: 316 if (ret == -ENOENT || ret == -EFBIG) 317 ret = 0; 318 return ret; 319 } 320 321 /* 322 * Locate the file_offset of @cur_disk_bytenr of a @bio. 323 * 324 * Bio of btrfs represents read range of 325 * [bi_sector << 9, bi_sector << 9 + bi_size). 326 * Knowing this, we can iterate through each bvec to locate the page belong to 327 * @cur_disk_bytenr and get the file offset. 328 * 329 * @inode is used to determine if the bvec page really belongs to @inode. 330 * 331 * Return 0 if we can't find the file offset 332 * Return >0 if we find the file offset and restore it to @file_offset_ret 333 */ 334 static int search_file_offset_in_bio(struct bio *bio, struct inode *inode, 335 u64 disk_bytenr, u64 *file_offset_ret) 336 { 337 struct bvec_iter iter; 338 struct bio_vec bvec; 339 u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT; 340 int ret = 0; 341 342 bio_for_each_segment(bvec, bio, iter) { 343 struct page *page = bvec.bv_page; 344 345 if (cur > disk_bytenr) 346 break; 347 if (cur + bvec.bv_len <= disk_bytenr) { 348 cur += bvec.bv_len; 349 continue; 350 } 351 ASSERT(in_range(disk_bytenr, cur, bvec.bv_len)); 352 if (page->mapping && page->mapping->host && 353 page->mapping->host == inode) { 354 ret = 1; 355 *file_offset_ret = page_offset(page) + bvec.bv_offset + 356 disk_bytenr - cur; 357 break; 358 } 359 } 360 return ret; 361 } 362 363 /** 364 * Lookup the checksum for the read bio in csum tree. 365 * 366 * @inode: inode that the bio is for. 367 * @bio: bio to look up. 368 * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return 369 * checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If 370 * NULL, the checksum buffer is allocated and returned in 371 * btrfs_bio(bio)->csum instead. 372 * 373 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise. 374 */ 375 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst) 376 { 377 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 378 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 379 struct btrfs_bio *bbio = NULL; 380 struct btrfs_path *path; 381 const u32 sectorsize = fs_info->sectorsize; 382 const u32 csum_size = fs_info->csum_size; 383 u32 orig_len = bio->bi_iter.bi_size; 384 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; 385 u64 cur_disk_bytenr; 386 u8 *csum; 387 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits; 388 int count = 0; 389 blk_status_t ret = BLK_STS_OK; 390 391 if ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) || 392 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) 393 return BLK_STS_OK; 394 395 /* 396 * This function is only called for read bio. 397 * 398 * This means two things: 399 * - All our csums should only be in csum tree 400 * No ordered extents csums, as ordered extents are only for write 401 * path. 402 * - No need to bother any other info from bvec 403 * Since we're looking up csums, the only important info is the 404 * disk_bytenr and the length, which can be extracted from bi_iter 405 * directly. 406 */ 407 ASSERT(bio_op(bio) == REQ_OP_READ); 408 path = btrfs_alloc_path(); 409 if (!path) 410 return BLK_STS_RESOURCE; 411 412 if (!dst) { 413 bbio = btrfs_bio(bio); 414 415 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) { 416 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS); 417 if (!bbio->csum) { 418 btrfs_free_path(path); 419 return BLK_STS_RESOURCE; 420 } 421 } else { 422 bbio->csum = bbio->csum_inline; 423 } 424 csum = bbio->csum; 425 } else { 426 csum = dst; 427 } 428 429 /* 430 * If requested number of sectors is larger than one leaf can contain, 431 * kick the readahead for csum tree. 432 */ 433 if (nblocks > fs_info->csums_per_leaf) 434 path->reada = READA_FORWARD; 435 436 /* 437 * the free space stuff is only read when it hasn't been 438 * updated in the current transaction. So, we can safely 439 * read from the commit root and sidestep a nasty deadlock 440 * between reading the free space cache and updating the csum tree. 441 */ 442 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 443 path->search_commit_root = 1; 444 path->skip_locking = 1; 445 } 446 447 for (cur_disk_bytenr = orig_disk_bytenr; 448 cur_disk_bytenr < orig_disk_bytenr + orig_len; 449 cur_disk_bytenr += (count * sectorsize)) { 450 u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr; 451 unsigned int sector_offset; 452 u8 *csum_dst; 453 454 /* 455 * Although both cur_disk_bytenr and orig_disk_bytenr is u64, 456 * we're calculating the offset to the bio start. 457 * 458 * Bio size is limited to UINT_MAX, thus unsigned int is large 459 * enough to contain the raw result, not to mention the right 460 * shifted result. 461 */ 462 ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX); 463 sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >> 464 fs_info->sectorsize_bits; 465 csum_dst = csum + sector_offset * csum_size; 466 467 count = search_csum_tree(fs_info, path, cur_disk_bytenr, 468 search_len, csum_dst); 469 if (count < 0) { 470 ret = errno_to_blk_status(count); 471 if (bbio) 472 btrfs_bio_free_csum(bbio); 473 break; 474 } 475 476 /* 477 * We didn't find a csum for this range. We need to make sure 478 * we complain loudly about this, because we are not NODATASUM. 479 * 480 * However for the DATA_RELOC inode we could potentially be 481 * relocating data extents for a NODATASUM inode, so the inode 482 * itself won't be marked with NODATASUM, but the extent we're 483 * copying is in fact NODATASUM. If we don't find a csum we 484 * assume this is the case. 485 */ 486 if (count == 0) { 487 memset(csum_dst, 0, csum_size); 488 count = 1; 489 490 if (BTRFS_I(inode)->root->root_key.objectid == 491 BTRFS_DATA_RELOC_TREE_OBJECTID) { 492 u64 file_offset; 493 int ret; 494 495 ret = search_file_offset_in_bio(bio, inode, 496 cur_disk_bytenr, &file_offset); 497 if (ret) 498 set_extent_bits(io_tree, file_offset, 499 file_offset + sectorsize - 1, 500 EXTENT_NODATASUM); 501 } else { 502 btrfs_warn_rl(fs_info, 503 "csum hole found for disk bytenr range [%llu, %llu)", 504 cur_disk_bytenr, cur_disk_bytenr + sectorsize); 505 } 506 } 507 } 508 509 btrfs_free_path(path); 510 return ret; 511 } 512 513 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 514 struct list_head *list, int search_commit, 515 bool nowait) 516 { 517 struct btrfs_fs_info *fs_info = root->fs_info; 518 struct btrfs_key key; 519 struct btrfs_path *path; 520 struct extent_buffer *leaf; 521 struct btrfs_ordered_sum *sums; 522 struct btrfs_csum_item *item; 523 LIST_HEAD(tmplist); 524 unsigned long offset; 525 int ret; 526 size_t size; 527 u64 csum_end; 528 const u32 csum_size = fs_info->csum_size; 529 530 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 531 IS_ALIGNED(end + 1, fs_info->sectorsize)); 532 533 path = btrfs_alloc_path(); 534 if (!path) 535 return -ENOMEM; 536 537 path->nowait = nowait; 538 if (search_commit) { 539 path->skip_locking = 1; 540 path->reada = READA_FORWARD; 541 path->search_commit_root = 1; 542 } 543 544 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 545 key.offset = start; 546 key.type = BTRFS_EXTENT_CSUM_KEY; 547 548 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 549 if (ret < 0) 550 goto fail; 551 if (ret > 0 && path->slots[0] > 0) { 552 leaf = path->nodes[0]; 553 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 554 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 555 key.type == BTRFS_EXTENT_CSUM_KEY) { 556 offset = (start - key.offset) >> fs_info->sectorsize_bits; 557 if (offset * csum_size < 558 btrfs_item_size(leaf, path->slots[0] - 1)) 559 path->slots[0]--; 560 } 561 } 562 563 while (start <= end) { 564 leaf = path->nodes[0]; 565 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 566 ret = btrfs_next_leaf(root, path); 567 if (ret < 0) 568 goto fail; 569 if (ret > 0) 570 break; 571 leaf = path->nodes[0]; 572 } 573 574 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 575 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 576 key.type != BTRFS_EXTENT_CSUM_KEY || 577 key.offset > end) 578 break; 579 580 if (key.offset > start) 581 start = key.offset; 582 583 size = btrfs_item_size(leaf, path->slots[0]); 584 csum_end = key.offset + (size / csum_size) * fs_info->sectorsize; 585 if (csum_end <= start) { 586 path->slots[0]++; 587 continue; 588 } 589 590 csum_end = min(csum_end, end + 1); 591 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 592 struct btrfs_csum_item); 593 while (start < csum_end) { 594 size = min_t(size_t, csum_end - start, 595 max_ordered_sum_bytes(fs_info, csum_size)); 596 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size), 597 GFP_NOFS); 598 if (!sums) { 599 ret = -ENOMEM; 600 goto fail; 601 } 602 603 sums->bytenr = start; 604 sums->len = (int)size; 605 606 offset = (start - key.offset) >> fs_info->sectorsize_bits; 607 offset *= csum_size; 608 size >>= fs_info->sectorsize_bits; 609 610 read_extent_buffer(path->nodes[0], 611 sums->sums, 612 ((unsigned long)item) + offset, 613 csum_size * size); 614 615 start += fs_info->sectorsize * size; 616 list_add_tail(&sums->list, &tmplist); 617 } 618 path->slots[0]++; 619 } 620 ret = 0; 621 fail: 622 while (ret < 0 && !list_empty(&tmplist)) { 623 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list); 624 list_del(&sums->list); 625 kfree(sums); 626 } 627 list_splice_tail(&tmplist, list); 628 629 btrfs_free_path(path); 630 return ret; 631 } 632 633 /** 634 * Calculate checksums of the data contained inside a bio 635 * 636 * @inode: Owner of the data inside the bio 637 * @bio: Contains the data to be checksummed 638 * @offset: If (u64)-1, @bio may contain discontiguous bio vecs, so the 639 * file offsets are determined from the page offsets in the bio. 640 * Otherwise, this is the starting file offset of the bio vecs in 641 * @bio, which must be contiguous. 642 * @one_ordered: If true, @bio only refers to one ordered extent. 643 */ 644 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 645 u64 offset, bool one_ordered) 646 { 647 struct btrfs_fs_info *fs_info = inode->root->fs_info; 648 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 649 struct btrfs_ordered_sum *sums; 650 struct btrfs_ordered_extent *ordered = NULL; 651 const bool use_page_offsets = (offset == (u64)-1); 652 char *data; 653 struct bvec_iter iter; 654 struct bio_vec bvec; 655 int index; 656 unsigned int blockcount; 657 unsigned long total_bytes = 0; 658 unsigned long this_sum_bytes = 0; 659 int i; 660 unsigned nofs_flag; 661 662 nofs_flag = memalloc_nofs_save(); 663 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size), 664 GFP_KERNEL); 665 memalloc_nofs_restore(nofs_flag); 666 667 if (!sums) 668 return BLK_STS_RESOURCE; 669 670 sums->len = bio->bi_iter.bi_size; 671 INIT_LIST_HEAD(&sums->list); 672 673 sums->bytenr = bio->bi_iter.bi_sector << 9; 674 index = 0; 675 676 shash->tfm = fs_info->csum_shash; 677 678 bio_for_each_segment(bvec, bio, iter) { 679 if (use_page_offsets) 680 offset = page_offset(bvec.bv_page) + bvec.bv_offset; 681 682 if (!ordered) { 683 ordered = btrfs_lookup_ordered_extent(inode, offset); 684 /* 685 * The bio range is not covered by any ordered extent, 686 * must be a code logic error. 687 */ 688 if (unlikely(!ordered)) { 689 WARN(1, KERN_WARNING 690 "no ordered extent for root %llu ino %llu offset %llu\n", 691 inode->root->root_key.objectid, 692 btrfs_ino(inode), offset); 693 kvfree(sums); 694 return BLK_STS_IOERR; 695 } 696 } 697 698 blockcount = BTRFS_BYTES_TO_BLKS(fs_info, 699 bvec.bv_len + fs_info->sectorsize 700 - 1); 701 702 for (i = 0; i < blockcount; i++) { 703 if (!one_ordered && 704 !in_range(offset, ordered->file_offset, 705 ordered->num_bytes)) { 706 unsigned long bytes_left; 707 708 sums->len = this_sum_bytes; 709 this_sum_bytes = 0; 710 btrfs_add_ordered_sum(ordered, sums); 711 btrfs_put_ordered_extent(ordered); 712 713 bytes_left = bio->bi_iter.bi_size - total_bytes; 714 715 nofs_flag = memalloc_nofs_save(); 716 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, 717 bytes_left), GFP_KERNEL); 718 memalloc_nofs_restore(nofs_flag); 719 BUG_ON(!sums); /* -ENOMEM */ 720 sums->len = bytes_left; 721 ordered = btrfs_lookup_ordered_extent(inode, 722 offset); 723 ASSERT(ordered); /* Logic error */ 724 sums->bytenr = (bio->bi_iter.bi_sector << 9) 725 + total_bytes; 726 index = 0; 727 } 728 729 data = bvec_kmap_local(&bvec); 730 crypto_shash_digest(shash, 731 data + (i * fs_info->sectorsize), 732 fs_info->sectorsize, 733 sums->sums + index); 734 kunmap_local(data); 735 index += fs_info->csum_size; 736 offset += fs_info->sectorsize; 737 this_sum_bytes += fs_info->sectorsize; 738 total_bytes += fs_info->sectorsize; 739 } 740 741 } 742 this_sum_bytes = 0; 743 btrfs_add_ordered_sum(ordered, sums); 744 btrfs_put_ordered_extent(ordered); 745 return 0; 746 } 747 748 /* 749 * helper function for csum removal, this expects the 750 * key to describe the csum pointed to by the path, and it expects 751 * the csum to overlap the range [bytenr, len] 752 * 753 * The csum should not be entirely contained in the range and the 754 * range should not be entirely contained in the csum. 755 * 756 * This calls btrfs_truncate_item with the correct args based on the 757 * overlap, and fixes up the key as required. 758 */ 759 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info, 760 struct btrfs_path *path, 761 struct btrfs_key *key, 762 u64 bytenr, u64 len) 763 { 764 struct extent_buffer *leaf; 765 const u32 csum_size = fs_info->csum_size; 766 u64 csum_end; 767 u64 end_byte = bytenr + len; 768 u32 blocksize_bits = fs_info->sectorsize_bits; 769 770 leaf = path->nodes[0]; 771 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; 772 csum_end <<= blocksize_bits; 773 csum_end += key->offset; 774 775 if (key->offset < bytenr && csum_end <= end_byte) { 776 /* 777 * [ bytenr - len ] 778 * [ ] 779 * [csum ] 780 * A simple truncate off the end of the item 781 */ 782 u32 new_size = (bytenr - key->offset) >> blocksize_bits; 783 new_size *= csum_size; 784 btrfs_truncate_item(path, new_size, 1); 785 } else if (key->offset >= bytenr && csum_end > end_byte && 786 end_byte > key->offset) { 787 /* 788 * [ bytenr - len ] 789 * [ ] 790 * [csum ] 791 * we need to truncate from the beginning of the csum 792 */ 793 u32 new_size = (csum_end - end_byte) >> blocksize_bits; 794 new_size *= csum_size; 795 796 btrfs_truncate_item(path, new_size, 0); 797 798 key->offset = end_byte; 799 btrfs_set_item_key_safe(fs_info, path, key); 800 } else { 801 BUG(); 802 } 803 } 804 805 /* 806 * deletes the csum items from the csum tree for a given 807 * range of bytes. 808 */ 809 int btrfs_del_csums(struct btrfs_trans_handle *trans, 810 struct btrfs_root *root, u64 bytenr, u64 len) 811 { 812 struct btrfs_fs_info *fs_info = trans->fs_info; 813 struct btrfs_path *path; 814 struct btrfs_key key; 815 u64 end_byte = bytenr + len; 816 u64 csum_end; 817 struct extent_buffer *leaf; 818 int ret = 0; 819 const u32 csum_size = fs_info->csum_size; 820 u32 blocksize_bits = fs_info->sectorsize_bits; 821 822 ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID || 823 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 824 825 path = btrfs_alloc_path(); 826 if (!path) 827 return -ENOMEM; 828 829 while (1) { 830 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 831 key.offset = end_byte - 1; 832 key.type = BTRFS_EXTENT_CSUM_KEY; 833 834 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 835 if (ret > 0) { 836 ret = 0; 837 if (path->slots[0] == 0) 838 break; 839 path->slots[0]--; 840 } else if (ret < 0) { 841 break; 842 } 843 844 leaf = path->nodes[0]; 845 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 846 847 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 848 key.type != BTRFS_EXTENT_CSUM_KEY) { 849 break; 850 } 851 852 if (key.offset >= end_byte) 853 break; 854 855 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; 856 csum_end <<= blocksize_bits; 857 csum_end += key.offset; 858 859 /* this csum ends before we start, we're done */ 860 if (csum_end <= bytenr) 861 break; 862 863 /* delete the entire item, it is inside our range */ 864 if (key.offset >= bytenr && csum_end <= end_byte) { 865 int del_nr = 1; 866 867 /* 868 * Check how many csum items preceding this one in this 869 * leaf correspond to our range and then delete them all 870 * at once. 871 */ 872 if (key.offset > bytenr && path->slots[0] > 0) { 873 int slot = path->slots[0] - 1; 874 875 while (slot >= 0) { 876 struct btrfs_key pk; 877 878 btrfs_item_key_to_cpu(leaf, &pk, slot); 879 if (pk.offset < bytenr || 880 pk.type != BTRFS_EXTENT_CSUM_KEY || 881 pk.objectid != 882 BTRFS_EXTENT_CSUM_OBJECTID) 883 break; 884 path->slots[0] = slot; 885 del_nr++; 886 key.offset = pk.offset; 887 slot--; 888 } 889 } 890 ret = btrfs_del_items(trans, root, path, 891 path->slots[0], del_nr); 892 if (ret) 893 break; 894 if (key.offset == bytenr) 895 break; 896 } else if (key.offset < bytenr && csum_end > end_byte) { 897 unsigned long offset; 898 unsigned long shift_len; 899 unsigned long item_offset; 900 /* 901 * [ bytenr - len ] 902 * [csum ] 903 * 904 * Our bytes are in the middle of the csum, 905 * we need to split this item and insert a new one. 906 * 907 * But we can't drop the path because the 908 * csum could change, get removed, extended etc. 909 * 910 * The trick here is the max size of a csum item leaves 911 * enough room in the tree block for a single 912 * item header. So, we split the item in place, 913 * adding a new header pointing to the existing 914 * bytes. Then we loop around again and we have 915 * a nicely formed csum item that we can neatly 916 * truncate. 917 */ 918 offset = (bytenr - key.offset) >> blocksize_bits; 919 offset *= csum_size; 920 921 shift_len = (len >> blocksize_bits) * csum_size; 922 923 item_offset = btrfs_item_ptr_offset(leaf, 924 path->slots[0]); 925 926 memzero_extent_buffer(leaf, item_offset + offset, 927 shift_len); 928 key.offset = bytenr; 929 930 /* 931 * btrfs_split_item returns -EAGAIN when the 932 * item changed size or key 933 */ 934 ret = btrfs_split_item(trans, root, path, &key, offset); 935 if (ret && ret != -EAGAIN) { 936 btrfs_abort_transaction(trans, ret); 937 break; 938 } 939 ret = 0; 940 941 key.offset = end_byte - 1; 942 } else { 943 truncate_one_csum(fs_info, path, &key, bytenr, len); 944 if (key.offset < bytenr) 945 break; 946 } 947 btrfs_release_path(path); 948 } 949 btrfs_free_path(path); 950 return ret; 951 } 952 953 static int find_next_csum_offset(struct btrfs_root *root, 954 struct btrfs_path *path, 955 u64 *next_offset) 956 { 957 const u32 nritems = btrfs_header_nritems(path->nodes[0]); 958 struct btrfs_key found_key; 959 int slot = path->slots[0] + 1; 960 int ret; 961 962 if (nritems == 0 || slot >= nritems) { 963 ret = btrfs_next_leaf(root, path); 964 if (ret < 0) { 965 return ret; 966 } else if (ret > 0) { 967 *next_offset = (u64)-1; 968 return 0; 969 } 970 slot = path->slots[0]; 971 } 972 973 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot); 974 975 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 976 found_key.type != BTRFS_EXTENT_CSUM_KEY) 977 *next_offset = (u64)-1; 978 else 979 *next_offset = found_key.offset; 980 981 return 0; 982 } 983 984 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 985 struct btrfs_root *root, 986 struct btrfs_ordered_sum *sums) 987 { 988 struct btrfs_fs_info *fs_info = root->fs_info; 989 struct btrfs_key file_key; 990 struct btrfs_key found_key; 991 struct btrfs_path *path; 992 struct btrfs_csum_item *item; 993 struct btrfs_csum_item *item_end; 994 struct extent_buffer *leaf = NULL; 995 u64 next_offset; 996 u64 total_bytes = 0; 997 u64 csum_offset; 998 u64 bytenr; 999 u32 ins_size; 1000 int index = 0; 1001 int found_next; 1002 int ret; 1003 const u32 csum_size = fs_info->csum_size; 1004 1005 path = btrfs_alloc_path(); 1006 if (!path) 1007 return -ENOMEM; 1008 again: 1009 next_offset = (u64)-1; 1010 found_next = 0; 1011 bytenr = sums->bytenr + total_bytes; 1012 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 1013 file_key.offset = bytenr; 1014 file_key.type = BTRFS_EXTENT_CSUM_KEY; 1015 1016 item = btrfs_lookup_csum(trans, root, path, bytenr, 1); 1017 if (!IS_ERR(item)) { 1018 ret = 0; 1019 leaf = path->nodes[0]; 1020 item_end = btrfs_item_ptr(leaf, path->slots[0], 1021 struct btrfs_csum_item); 1022 item_end = (struct btrfs_csum_item *)((char *)item_end + 1023 btrfs_item_size(leaf, path->slots[0])); 1024 goto found; 1025 } 1026 ret = PTR_ERR(item); 1027 if (ret != -EFBIG && ret != -ENOENT) 1028 goto out; 1029 1030 if (ret == -EFBIG) { 1031 u32 item_size; 1032 /* we found one, but it isn't big enough yet */ 1033 leaf = path->nodes[0]; 1034 item_size = btrfs_item_size(leaf, path->slots[0]); 1035 if ((item_size / csum_size) >= 1036 MAX_CSUM_ITEMS(fs_info, csum_size)) { 1037 /* already at max size, make a new one */ 1038 goto insert; 1039 } 1040 } else { 1041 /* We didn't find a csum item, insert one. */ 1042 ret = find_next_csum_offset(root, path, &next_offset); 1043 if (ret < 0) 1044 goto out; 1045 found_next = 1; 1046 goto insert; 1047 } 1048 1049 /* 1050 * At this point, we know the tree has a checksum item that ends at an 1051 * offset matching the start of the checksum range we want to insert. 1052 * We try to extend that item as much as possible and then add as many 1053 * checksums to it as they fit. 1054 * 1055 * First check if the leaf has enough free space for at least one 1056 * checksum. If it has go directly to the item extension code, otherwise 1057 * release the path and do a search for insertion before the extension. 1058 */ 1059 if (btrfs_leaf_free_space(leaf) >= csum_size) { 1060 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1061 csum_offset = (bytenr - found_key.offset) >> 1062 fs_info->sectorsize_bits; 1063 goto extend_csum; 1064 } 1065 1066 btrfs_release_path(path); 1067 path->search_for_extension = 1; 1068 ret = btrfs_search_slot(trans, root, &file_key, path, 1069 csum_size, 1); 1070 path->search_for_extension = 0; 1071 if (ret < 0) 1072 goto out; 1073 1074 if (ret > 0) { 1075 if (path->slots[0] == 0) 1076 goto insert; 1077 path->slots[0]--; 1078 } 1079 1080 leaf = path->nodes[0]; 1081 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1082 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits; 1083 1084 if (found_key.type != BTRFS_EXTENT_CSUM_KEY || 1085 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 1086 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) { 1087 goto insert; 1088 } 1089 1090 extend_csum: 1091 if (csum_offset == btrfs_item_size(leaf, path->slots[0]) / 1092 csum_size) { 1093 int extend_nr; 1094 u64 tmp; 1095 u32 diff; 1096 1097 tmp = sums->len - total_bytes; 1098 tmp >>= fs_info->sectorsize_bits; 1099 WARN_ON(tmp < 1); 1100 extend_nr = max_t(int, 1, tmp); 1101 1102 /* 1103 * A log tree can already have checksum items with a subset of 1104 * the checksums we are trying to log. This can happen after 1105 * doing a sequence of partial writes into prealloc extents and 1106 * fsyncs in between, with a full fsync logging a larger subrange 1107 * of an extent for which a previous fast fsync logged a smaller 1108 * subrange. And this happens in particular due to merging file 1109 * extent items when we complete an ordered extent for a range 1110 * covered by a prealloc extent - this is done at 1111 * btrfs_mark_extent_written(). 1112 * 1113 * So if we try to extend the previous checksum item, which has 1114 * a range that ends at the start of the range we want to insert, 1115 * make sure we don't extend beyond the start offset of the next 1116 * checksum item. If we are at the last item in the leaf, then 1117 * forget the optimization of extending and add a new checksum 1118 * item - it is not worth the complexity of releasing the path, 1119 * getting the first key for the next leaf, repeat the btree 1120 * search, etc, because log trees are temporary anyway and it 1121 * would only save a few bytes of leaf space. 1122 */ 1123 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 1124 if (path->slots[0] + 1 >= 1125 btrfs_header_nritems(path->nodes[0])) { 1126 ret = find_next_csum_offset(root, path, &next_offset); 1127 if (ret < 0) 1128 goto out; 1129 found_next = 1; 1130 goto insert; 1131 } 1132 1133 ret = find_next_csum_offset(root, path, &next_offset); 1134 if (ret < 0) 1135 goto out; 1136 1137 tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits; 1138 if (tmp <= INT_MAX) 1139 extend_nr = min_t(int, extend_nr, tmp); 1140 } 1141 1142 diff = (csum_offset + extend_nr) * csum_size; 1143 diff = min(diff, 1144 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size); 1145 1146 diff = diff - btrfs_item_size(leaf, path->slots[0]); 1147 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff); 1148 diff /= csum_size; 1149 diff *= csum_size; 1150 1151 btrfs_extend_item(path, diff); 1152 ret = 0; 1153 goto csum; 1154 } 1155 1156 insert: 1157 btrfs_release_path(path); 1158 csum_offset = 0; 1159 if (found_next) { 1160 u64 tmp; 1161 1162 tmp = sums->len - total_bytes; 1163 tmp >>= fs_info->sectorsize_bits; 1164 tmp = min(tmp, (next_offset - file_key.offset) >> 1165 fs_info->sectorsize_bits); 1166 1167 tmp = max_t(u64, 1, tmp); 1168 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size)); 1169 ins_size = csum_size * tmp; 1170 } else { 1171 ins_size = csum_size; 1172 } 1173 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 1174 ins_size); 1175 if (ret < 0) 1176 goto out; 1177 if (WARN_ON(ret != 0)) 1178 goto out; 1179 leaf = path->nodes[0]; 1180 csum: 1181 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 1182 item_end = (struct btrfs_csum_item *)((unsigned char *)item + 1183 btrfs_item_size(leaf, path->slots[0])); 1184 item = (struct btrfs_csum_item *)((unsigned char *)item + 1185 csum_offset * csum_size); 1186 found: 1187 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits; 1188 ins_size *= csum_size; 1189 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item, 1190 ins_size); 1191 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item, 1192 ins_size); 1193 1194 index += ins_size; 1195 ins_size /= csum_size; 1196 total_bytes += ins_size * fs_info->sectorsize; 1197 1198 btrfs_mark_buffer_dirty(path->nodes[0]); 1199 if (total_bytes < sums->len) { 1200 btrfs_release_path(path); 1201 cond_resched(); 1202 goto again; 1203 } 1204 out: 1205 btrfs_free_path(path); 1206 return ret; 1207 } 1208 1209 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 1210 const struct btrfs_path *path, 1211 struct btrfs_file_extent_item *fi, 1212 const bool new_inline, 1213 struct extent_map *em) 1214 { 1215 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1216 struct btrfs_root *root = inode->root; 1217 struct extent_buffer *leaf = path->nodes[0]; 1218 const int slot = path->slots[0]; 1219 struct btrfs_key key; 1220 u64 extent_start, extent_end; 1221 u64 bytenr; 1222 u8 type = btrfs_file_extent_type(leaf, fi); 1223 int compress_type = btrfs_file_extent_compression(leaf, fi); 1224 1225 btrfs_item_key_to_cpu(leaf, &key, slot); 1226 extent_start = key.offset; 1227 extent_end = btrfs_file_extent_end(path); 1228 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1229 em->generation = btrfs_file_extent_generation(leaf, fi); 1230 if (type == BTRFS_FILE_EXTENT_REG || 1231 type == BTRFS_FILE_EXTENT_PREALLOC) { 1232 em->start = extent_start; 1233 em->len = extent_end - extent_start; 1234 em->orig_start = extent_start - 1235 btrfs_file_extent_offset(leaf, fi); 1236 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 1237 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1238 if (bytenr == 0) { 1239 em->block_start = EXTENT_MAP_HOLE; 1240 return; 1241 } 1242 if (compress_type != BTRFS_COMPRESS_NONE) { 1243 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1244 em->compress_type = compress_type; 1245 em->block_start = bytenr; 1246 em->block_len = em->orig_block_len; 1247 } else { 1248 bytenr += btrfs_file_extent_offset(leaf, fi); 1249 em->block_start = bytenr; 1250 em->block_len = em->len; 1251 if (type == BTRFS_FILE_EXTENT_PREALLOC) 1252 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 1253 } 1254 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 1255 em->block_start = EXTENT_MAP_INLINE; 1256 em->start = extent_start; 1257 em->len = extent_end - extent_start; 1258 /* 1259 * Initialize orig_start and block_len with the same values 1260 * as in inode.c:btrfs_get_extent(). 1261 */ 1262 em->orig_start = EXTENT_MAP_HOLE; 1263 em->block_len = (u64)-1; 1264 if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) { 1265 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1266 em->compress_type = compress_type; 1267 } 1268 } else { 1269 btrfs_err(fs_info, 1270 "unknown file extent item type %d, inode %llu, offset %llu, " 1271 "root %llu", type, btrfs_ino(inode), extent_start, 1272 root->root_key.objectid); 1273 } 1274 } 1275 1276 /* 1277 * Returns the end offset (non inclusive) of the file extent item the given path 1278 * points to. If it points to an inline extent, the returned offset is rounded 1279 * up to the sector size. 1280 */ 1281 u64 btrfs_file_extent_end(const struct btrfs_path *path) 1282 { 1283 const struct extent_buffer *leaf = path->nodes[0]; 1284 const int slot = path->slots[0]; 1285 struct btrfs_file_extent_item *fi; 1286 struct btrfs_key key; 1287 u64 end; 1288 1289 btrfs_item_key_to_cpu(leaf, &key, slot); 1290 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 1291 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1292 1293 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 1294 end = btrfs_file_extent_ram_bytes(leaf, fi); 1295 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize); 1296 } else { 1297 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1298 } 1299 1300 return end; 1301 } 1302