1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/bio.h> 7 #include <linux/slab.h> 8 #include <linux/pagemap.h> 9 #include <linux/highmem.h> 10 #include <linux/sched/mm.h> 11 #include <crypto/hash.h> 12 #include "misc.h" 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "print-tree.h" 18 #include "compression.h" 19 20 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \ 21 sizeof(struct btrfs_item) * 2) / \ 22 size) - 1)) 23 24 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \ 25 PAGE_SIZE)) 26 27 /** 28 * Set inode's size according to filesystem options 29 * 30 * @inode: inode we want to update the disk_i_size for 31 * @new_i_size: i_size we want to set to, 0 if we use i_size 32 * 33 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read() 34 * returns as it is perfectly fine with a file that has holes without hole file 35 * extent items. 36 * 37 * However without NO_HOLES we need to only return the area that is contiguous 38 * from the 0 offset of the file. Otherwise we could end up adjust i_size up 39 * to an extent that has a gap in between. 40 * 41 * Finally new_i_size should only be set in the case of truncate where we're not 42 * ready to use i_size_read() as the limiter yet. 43 */ 44 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size) 45 { 46 struct btrfs_fs_info *fs_info = inode->root->fs_info; 47 u64 start, end, i_size; 48 int ret; 49 50 i_size = new_i_size ?: i_size_read(&inode->vfs_inode); 51 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 52 inode->disk_i_size = i_size; 53 return; 54 } 55 56 spin_lock(&inode->lock); 57 ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start, 58 &end, EXTENT_DIRTY); 59 if (!ret && start == 0) 60 i_size = min(i_size, end + 1); 61 else 62 i_size = 0; 63 inode->disk_i_size = i_size; 64 spin_unlock(&inode->lock); 65 } 66 67 /** 68 * Mark range within a file as having a new extent inserted 69 * 70 * @inode: inode being modified 71 * @start: start file offset of the file extent we've inserted 72 * @len: logical length of the file extent item 73 * 74 * Call when we are inserting a new file extent where there was none before. 75 * Does not need to call this in the case where we're replacing an existing file 76 * extent, however if not sure it's fine to call this multiple times. 77 * 78 * The start and len must match the file extent item, so thus must be sectorsize 79 * aligned. 80 */ 81 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 82 u64 len) 83 { 84 if (len == 0) 85 return 0; 86 87 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize)); 88 89 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 90 return 0; 91 return set_extent_bits(&inode->file_extent_tree, start, start + len - 1, 92 EXTENT_DIRTY); 93 } 94 95 /** 96 * Marks an inode range as not having a backing extent 97 * 98 * @inode: inode being modified 99 * @start: start file offset of the file extent we've inserted 100 * @len: logical length of the file extent item 101 * 102 * Called when we drop a file extent, for example when we truncate. Doesn't 103 * need to be called for cases where we're replacing a file extent, like when 104 * we've COWed a file extent. 105 * 106 * The start and len must match the file extent item, so thus must be sectorsize 107 * aligned. 108 */ 109 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 110 u64 len) 111 { 112 if (len == 0) 113 return 0; 114 115 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) || 116 len == (u64)-1); 117 118 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 119 return 0; 120 return clear_extent_bit(&inode->file_extent_tree, start, 121 start + len - 1, EXTENT_DIRTY, 0, 0, NULL); 122 } 123 124 static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info, 125 u16 csum_size) 126 { 127 u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size; 128 129 return ncsums * fs_info->sectorsize; 130 } 131 132 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 133 struct btrfs_root *root, 134 u64 objectid, u64 pos, 135 u64 disk_offset, u64 disk_num_bytes, 136 u64 num_bytes, u64 offset, u64 ram_bytes, 137 u8 compression, u8 encryption, u16 other_encoding) 138 { 139 int ret = 0; 140 struct btrfs_file_extent_item *item; 141 struct btrfs_key file_key; 142 struct btrfs_path *path; 143 struct extent_buffer *leaf; 144 145 path = btrfs_alloc_path(); 146 if (!path) 147 return -ENOMEM; 148 file_key.objectid = objectid; 149 file_key.offset = pos; 150 file_key.type = BTRFS_EXTENT_DATA_KEY; 151 152 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 153 sizeof(*item)); 154 if (ret < 0) 155 goto out; 156 BUG_ON(ret); /* Can't happen */ 157 leaf = path->nodes[0]; 158 item = btrfs_item_ptr(leaf, path->slots[0], 159 struct btrfs_file_extent_item); 160 btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset); 161 btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes); 162 btrfs_set_file_extent_offset(leaf, item, offset); 163 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes); 164 btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes); 165 btrfs_set_file_extent_generation(leaf, item, trans->transid); 166 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 167 btrfs_set_file_extent_compression(leaf, item, compression); 168 btrfs_set_file_extent_encryption(leaf, item, encryption); 169 btrfs_set_file_extent_other_encoding(leaf, item, other_encoding); 170 171 btrfs_mark_buffer_dirty(leaf); 172 out: 173 btrfs_free_path(path); 174 return ret; 175 } 176 177 static struct btrfs_csum_item * 178 btrfs_lookup_csum(struct btrfs_trans_handle *trans, 179 struct btrfs_root *root, 180 struct btrfs_path *path, 181 u64 bytenr, int cow) 182 { 183 struct btrfs_fs_info *fs_info = root->fs_info; 184 int ret; 185 struct btrfs_key file_key; 186 struct btrfs_key found_key; 187 struct btrfs_csum_item *item; 188 struct extent_buffer *leaf; 189 u64 csum_offset = 0; 190 const u32 csum_size = fs_info->csum_size; 191 int csums_in_item; 192 193 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 194 file_key.offset = bytenr; 195 file_key.type = BTRFS_EXTENT_CSUM_KEY; 196 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow); 197 if (ret < 0) 198 goto fail; 199 leaf = path->nodes[0]; 200 if (ret > 0) { 201 ret = 1; 202 if (path->slots[0] == 0) 203 goto fail; 204 path->slots[0]--; 205 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 206 if (found_key.type != BTRFS_EXTENT_CSUM_KEY) 207 goto fail; 208 209 csum_offset = (bytenr - found_key.offset) >> 210 fs_info->sectorsize_bits; 211 csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]); 212 csums_in_item /= csum_size; 213 214 if (csum_offset == csums_in_item) { 215 ret = -EFBIG; 216 goto fail; 217 } else if (csum_offset > csums_in_item) { 218 goto fail; 219 } 220 } 221 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 222 item = (struct btrfs_csum_item *)((unsigned char *)item + 223 csum_offset * csum_size); 224 return item; 225 fail: 226 if (ret > 0) 227 ret = -ENOENT; 228 return ERR_PTR(ret); 229 } 230 231 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 232 struct btrfs_root *root, 233 struct btrfs_path *path, u64 objectid, 234 u64 offset, int mod) 235 { 236 int ret; 237 struct btrfs_key file_key; 238 int ins_len = mod < 0 ? -1 : 0; 239 int cow = mod != 0; 240 241 file_key.objectid = objectid; 242 file_key.offset = offset; 243 file_key.type = BTRFS_EXTENT_DATA_KEY; 244 ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow); 245 return ret; 246 } 247 248 /* 249 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and 250 * estore the result to @dst. 251 * 252 * Return >0 for the number of sectors we found. 253 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum 254 * for it. Caller may want to try next sector until one range is hit. 255 * Return <0 for fatal error. 256 */ 257 static int search_csum_tree(struct btrfs_fs_info *fs_info, 258 struct btrfs_path *path, u64 disk_bytenr, 259 u64 len, u8 *dst) 260 { 261 struct btrfs_csum_item *item = NULL; 262 struct btrfs_key key; 263 const u32 sectorsize = fs_info->sectorsize; 264 const u32 csum_size = fs_info->csum_size; 265 u32 itemsize; 266 int ret; 267 u64 csum_start; 268 u64 csum_len; 269 270 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) && 271 IS_ALIGNED(len, sectorsize)); 272 273 /* Check if the current csum item covers disk_bytenr */ 274 if (path->nodes[0]) { 275 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 276 struct btrfs_csum_item); 277 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 278 itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 279 280 csum_start = key.offset; 281 csum_len = (itemsize / csum_size) * sectorsize; 282 283 if (in_range(disk_bytenr, csum_start, csum_len)) 284 goto found; 285 } 286 287 /* Current item doesn't contain the desired range, search again */ 288 btrfs_release_path(path); 289 item = btrfs_lookup_csum(NULL, fs_info->csum_root, path, disk_bytenr, 0); 290 if (IS_ERR(item)) { 291 ret = PTR_ERR(item); 292 goto out; 293 } 294 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 295 itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 296 297 csum_start = key.offset; 298 csum_len = (itemsize / csum_size) * sectorsize; 299 ASSERT(in_range(disk_bytenr, csum_start, csum_len)); 300 301 found: 302 ret = (min(csum_start + csum_len, disk_bytenr + len) - 303 disk_bytenr) >> fs_info->sectorsize_bits; 304 read_extent_buffer(path->nodes[0], dst, (unsigned long)item, 305 ret * csum_size); 306 out: 307 if (ret == -ENOENT) 308 ret = 0; 309 return ret; 310 } 311 312 /* 313 * Locate the file_offset of @cur_disk_bytenr of a @bio. 314 * 315 * Bio of btrfs represents read range of 316 * [bi_sector << 9, bi_sector << 9 + bi_size). 317 * Knowing this, we can iterate through each bvec to locate the page belong to 318 * @cur_disk_bytenr and get the file offset. 319 * 320 * @inode is used to determine if the bvec page really belongs to @inode. 321 * 322 * Return 0 if we can't find the file offset 323 * Return >0 if we find the file offset and restore it to @file_offset_ret 324 */ 325 static int search_file_offset_in_bio(struct bio *bio, struct inode *inode, 326 u64 disk_bytenr, u64 *file_offset_ret) 327 { 328 struct bvec_iter iter; 329 struct bio_vec bvec; 330 u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT; 331 int ret = 0; 332 333 bio_for_each_segment(bvec, bio, iter) { 334 struct page *page = bvec.bv_page; 335 336 if (cur > disk_bytenr) 337 break; 338 if (cur + bvec.bv_len <= disk_bytenr) { 339 cur += bvec.bv_len; 340 continue; 341 } 342 ASSERT(in_range(disk_bytenr, cur, bvec.bv_len)); 343 if (page->mapping && page->mapping->host && 344 page->mapping->host == inode) { 345 ret = 1; 346 *file_offset_ret = page_offset(page) + bvec.bv_offset + 347 disk_bytenr - cur; 348 break; 349 } 350 } 351 return ret; 352 } 353 354 /** 355 * Lookup the checksum for the read bio in csum tree. 356 * 357 * @inode: inode that the bio is for. 358 * @bio: bio to look up. 359 * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return 360 * checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If 361 * NULL, the checksum buffer is allocated and returned in 362 * btrfs_io_bio(bio)->csum instead. 363 * 364 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise. 365 */ 366 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst) 367 { 368 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 369 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 370 struct btrfs_path *path; 371 const u32 sectorsize = fs_info->sectorsize; 372 const u32 csum_size = fs_info->csum_size; 373 u32 orig_len = bio->bi_iter.bi_size; 374 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; 375 u64 cur_disk_bytenr; 376 u8 *csum; 377 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits; 378 int count = 0; 379 380 if (!fs_info->csum_root || (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 381 return BLK_STS_OK; 382 383 /* 384 * This function is only called for read bio. 385 * 386 * This means two things: 387 * - All our csums should only be in csum tree 388 * No ordered extents csums, as ordered extents are only for write 389 * path. 390 * - No need to bother any other info from bvec 391 * Since we're looking up csums, the only important info is the 392 * disk_bytenr and the length, which can be extracted from bi_iter 393 * directly. 394 */ 395 ASSERT(bio_op(bio) == REQ_OP_READ); 396 path = btrfs_alloc_path(); 397 if (!path) 398 return BLK_STS_RESOURCE; 399 400 if (!dst) { 401 struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio); 402 403 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) { 404 btrfs_bio->csum = kmalloc_array(nblocks, csum_size, 405 GFP_NOFS); 406 if (!btrfs_bio->csum) { 407 btrfs_free_path(path); 408 return BLK_STS_RESOURCE; 409 } 410 } else { 411 btrfs_bio->csum = btrfs_bio->csum_inline; 412 } 413 csum = btrfs_bio->csum; 414 } else { 415 csum = dst; 416 } 417 418 /* 419 * If requested number of sectors is larger than one leaf can contain, 420 * kick the readahead for csum tree. 421 */ 422 if (nblocks > fs_info->csums_per_leaf) 423 path->reada = READA_FORWARD; 424 425 /* 426 * the free space stuff is only read when it hasn't been 427 * updated in the current transaction. So, we can safely 428 * read from the commit root and sidestep a nasty deadlock 429 * between reading the free space cache and updating the csum tree. 430 */ 431 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 432 path->search_commit_root = 1; 433 path->skip_locking = 1; 434 } 435 436 for (cur_disk_bytenr = orig_disk_bytenr; 437 cur_disk_bytenr < orig_disk_bytenr + orig_len; 438 cur_disk_bytenr += (count * sectorsize)) { 439 u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr; 440 unsigned int sector_offset; 441 u8 *csum_dst; 442 443 /* 444 * Although both cur_disk_bytenr and orig_disk_bytenr is u64, 445 * we're calculating the offset to the bio start. 446 * 447 * Bio size is limited to UINT_MAX, thus unsigned int is large 448 * enough to contain the raw result, not to mention the right 449 * shifted result. 450 */ 451 ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX); 452 sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >> 453 fs_info->sectorsize_bits; 454 csum_dst = csum + sector_offset * csum_size; 455 456 count = search_csum_tree(fs_info, path, cur_disk_bytenr, 457 search_len, csum_dst); 458 if (count <= 0) { 459 /* 460 * Either we hit a critical error or we didn't find 461 * the csum. 462 * Either way, we put zero into the csums dst, and skip 463 * to the next sector. 464 */ 465 memset(csum_dst, 0, csum_size); 466 count = 1; 467 468 /* 469 * For data reloc inode, we need to mark the range 470 * NODATASUM so that balance won't report false csum 471 * error. 472 */ 473 if (BTRFS_I(inode)->root->root_key.objectid == 474 BTRFS_DATA_RELOC_TREE_OBJECTID) { 475 u64 file_offset; 476 int ret; 477 478 ret = search_file_offset_in_bio(bio, inode, 479 cur_disk_bytenr, &file_offset); 480 if (ret) 481 set_extent_bits(io_tree, file_offset, 482 file_offset + sectorsize - 1, 483 EXTENT_NODATASUM); 484 } else { 485 btrfs_warn_rl(fs_info, 486 "csum hole found for disk bytenr range [%llu, %llu)", 487 cur_disk_bytenr, cur_disk_bytenr + sectorsize); 488 } 489 } 490 } 491 492 btrfs_free_path(path); 493 return BLK_STS_OK; 494 } 495 496 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 497 struct list_head *list, int search_commit) 498 { 499 struct btrfs_fs_info *fs_info = root->fs_info; 500 struct btrfs_key key; 501 struct btrfs_path *path; 502 struct extent_buffer *leaf; 503 struct btrfs_ordered_sum *sums; 504 struct btrfs_csum_item *item; 505 LIST_HEAD(tmplist); 506 unsigned long offset; 507 int ret; 508 size_t size; 509 u64 csum_end; 510 const u32 csum_size = fs_info->csum_size; 511 512 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 513 IS_ALIGNED(end + 1, fs_info->sectorsize)); 514 515 path = btrfs_alloc_path(); 516 if (!path) 517 return -ENOMEM; 518 519 if (search_commit) { 520 path->skip_locking = 1; 521 path->reada = READA_FORWARD; 522 path->search_commit_root = 1; 523 } 524 525 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 526 key.offset = start; 527 key.type = BTRFS_EXTENT_CSUM_KEY; 528 529 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 530 if (ret < 0) 531 goto fail; 532 if (ret > 0 && path->slots[0] > 0) { 533 leaf = path->nodes[0]; 534 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 535 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 536 key.type == BTRFS_EXTENT_CSUM_KEY) { 537 offset = (start - key.offset) >> fs_info->sectorsize_bits; 538 if (offset * csum_size < 539 btrfs_item_size_nr(leaf, path->slots[0] - 1)) 540 path->slots[0]--; 541 } 542 } 543 544 while (start <= end) { 545 leaf = path->nodes[0]; 546 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 547 ret = btrfs_next_leaf(root, path); 548 if (ret < 0) 549 goto fail; 550 if (ret > 0) 551 break; 552 leaf = path->nodes[0]; 553 } 554 555 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 556 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 557 key.type != BTRFS_EXTENT_CSUM_KEY || 558 key.offset > end) 559 break; 560 561 if (key.offset > start) 562 start = key.offset; 563 564 size = btrfs_item_size_nr(leaf, path->slots[0]); 565 csum_end = key.offset + (size / csum_size) * fs_info->sectorsize; 566 if (csum_end <= start) { 567 path->slots[0]++; 568 continue; 569 } 570 571 csum_end = min(csum_end, end + 1); 572 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 573 struct btrfs_csum_item); 574 while (start < csum_end) { 575 size = min_t(size_t, csum_end - start, 576 max_ordered_sum_bytes(fs_info, csum_size)); 577 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size), 578 GFP_NOFS); 579 if (!sums) { 580 ret = -ENOMEM; 581 goto fail; 582 } 583 584 sums->bytenr = start; 585 sums->len = (int)size; 586 587 offset = (start - key.offset) >> fs_info->sectorsize_bits; 588 offset *= csum_size; 589 size >>= fs_info->sectorsize_bits; 590 591 read_extent_buffer(path->nodes[0], 592 sums->sums, 593 ((unsigned long)item) + offset, 594 csum_size * size); 595 596 start += fs_info->sectorsize * size; 597 list_add_tail(&sums->list, &tmplist); 598 } 599 path->slots[0]++; 600 } 601 ret = 0; 602 fail: 603 while (ret < 0 && !list_empty(&tmplist)) { 604 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list); 605 list_del(&sums->list); 606 kfree(sums); 607 } 608 list_splice_tail(&tmplist, list); 609 610 btrfs_free_path(path); 611 return ret; 612 } 613 614 /* 615 * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio 616 * @inode: Owner of the data inside the bio 617 * @bio: Contains the data to be checksummed 618 * @file_start: offset in file this bio begins to describe 619 * @contig: Boolean. If true/1 means all bio vecs in this bio are 620 * contiguous and they begin at @file_start in the file. False/0 621 * means this bio can contains potentially discontigous bio vecs 622 * so the logical offset of each should be calculated separately. 623 */ 624 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 625 u64 file_start, int contig) 626 { 627 struct btrfs_fs_info *fs_info = inode->root->fs_info; 628 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 629 struct btrfs_ordered_sum *sums; 630 struct btrfs_ordered_extent *ordered = NULL; 631 char *data; 632 struct bvec_iter iter; 633 struct bio_vec bvec; 634 int index; 635 int nr_sectors; 636 unsigned long total_bytes = 0; 637 unsigned long this_sum_bytes = 0; 638 int i; 639 u64 offset; 640 unsigned nofs_flag; 641 642 nofs_flag = memalloc_nofs_save(); 643 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size), 644 GFP_KERNEL); 645 memalloc_nofs_restore(nofs_flag); 646 647 if (!sums) 648 return BLK_STS_RESOURCE; 649 650 sums->len = bio->bi_iter.bi_size; 651 INIT_LIST_HEAD(&sums->list); 652 653 if (contig) 654 offset = file_start; 655 else 656 offset = 0; /* shut up gcc */ 657 658 sums->bytenr = bio->bi_iter.bi_sector << 9; 659 index = 0; 660 661 shash->tfm = fs_info->csum_shash; 662 663 bio_for_each_segment(bvec, bio, iter) { 664 if (!contig) 665 offset = page_offset(bvec.bv_page) + bvec.bv_offset; 666 667 if (!ordered) { 668 ordered = btrfs_lookup_ordered_extent(inode, offset); 669 BUG_ON(!ordered); /* Logic error */ 670 } 671 672 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, 673 bvec.bv_len + fs_info->sectorsize 674 - 1); 675 676 for (i = 0; i < nr_sectors; i++) { 677 if (offset >= ordered->file_offset + ordered->num_bytes || 678 offset < ordered->file_offset) { 679 unsigned long bytes_left; 680 681 sums->len = this_sum_bytes; 682 this_sum_bytes = 0; 683 btrfs_add_ordered_sum(ordered, sums); 684 btrfs_put_ordered_extent(ordered); 685 686 bytes_left = bio->bi_iter.bi_size - total_bytes; 687 688 nofs_flag = memalloc_nofs_save(); 689 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, 690 bytes_left), GFP_KERNEL); 691 memalloc_nofs_restore(nofs_flag); 692 BUG_ON(!sums); /* -ENOMEM */ 693 sums->len = bytes_left; 694 ordered = btrfs_lookup_ordered_extent(inode, 695 offset); 696 ASSERT(ordered); /* Logic error */ 697 sums->bytenr = (bio->bi_iter.bi_sector << 9) 698 + total_bytes; 699 index = 0; 700 } 701 702 data = kmap_atomic(bvec.bv_page); 703 crypto_shash_digest(shash, data + bvec.bv_offset 704 + (i * fs_info->sectorsize), 705 fs_info->sectorsize, 706 sums->sums + index); 707 kunmap_atomic(data); 708 index += fs_info->csum_size; 709 offset += fs_info->sectorsize; 710 this_sum_bytes += fs_info->sectorsize; 711 total_bytes += fs_info->sectorsize; 712 } 713 714 } 715 this_sum_bytes = 0; 716 btrfs_add_ordered_sum(ordered, sums); 717 btrfs_put_ordered_extent(ordered); 718 return 0; 719 } 720 721 /* 722 * helper function for csum removal, this expects the 723 * key to describe the csum pointed to by the path, and it expects 724 * the csum to overlap the range [bytenr, len] 725 * 726 * The csum should not be entirely contained in the range and the 727 * range should not be entirely contained in the csum. 728 * 729 * This calls btrfs_truncate_item with the correct args based on the 730 * overlap, and fixes up the key as required. 731 */ 732 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info, 733 struct btrfs_path *path, 734 struct btrfs_key *key, 735 u64 bytenr, u64 len) 736 { 737 struct extent_buffer *leaf; 738 const u32 csum_size = fs_info->csum_size; 739 u64 csum_end; 740 u64 end_byte = bytenr + len; 741 u32 blocksize_bits = fs_info->sectorsize_bits; 742 743 leaf = path->nodes[0]; 744 csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size; 745 csum_end <<= blocksize_bits; 746 csum_end += key->offset; 747 748 if (key->offset < bytenr && csum_end <= end_byte) { 749 /* 750 * [ bytenr - len ] 751 * [ ] 752 * [csum ] 753 * A simple truncate off the end of the item 754 */ 755 u32 new_size = (bytenr - key->offset) >> blocksize_bits; 756 new_size *= csum_size; 757 btrfs_truncate_item(path, new_size, 1); 758 } else if (key->offset >= bytenr && csum_end > end_byte && 759 end_byte > key->offset) { 760 /* 761 * [ bytenr - len ] 762 * [ ] 763 * [csum ] 764 * we need to truncate from the beginning of the csum 765 */ 766 u32 new_size = (csum_end - end_byte) >> blocksize_bits; 767 new_size *= csum_size; 768 769 btrfs_truncate_item(path, new_size, 0); 770 771 key->offset = end_byte; 772 btrfs_set_item_key_safe(fs_info, path, key); 773 } else { 774 BUG(); 775 } 776 } 777 778 /* 779 * deletes the csum items from the csum tree for a given 780 * range of bytes. 781 */ 782 int btrfs_del_csums(struct btrfs_trans_handle *trans, 783 struct btrfs_root *root, u64 bytenr, u64 len) 784 { 785 struct btrfs_fs_info *fs_info = trans->fs_info; 786 struct btrfs_path *path; 787 struct btrfs_key key; 788 u64 end_byte = bytenr + len; 789 u64 csum_end; 790 struct extent_buffer *leaf; 791 int ret; 792 const u32 csum_size = fs_info->csum_size; 793 u32 blocksize_bits = fs_info->sectorsize_bits; 794 795 ASSERT(root == fs_info->csum_root || 796 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 797 798 path = btrfs_alloc_path(); 799 if (!path) 800 return -ENOMEM; 801 802 while (1) { 803 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 804 key.offset = end_byte - 1; 805 key.type = BTRFS_EXTENT_CSUM_KEY; 806 807 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 808 if (ret > 0) { 809 if (path->slots[0] == 0) 810 break; 811 path->slots[0]--; 812 } else if (ret < 0) { 813 break; 814 } 815 816 leaf = path->nodes[0]; 817 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 818 819 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 820 key.type != BTRFS_EXTENT_CSUM_KEY) { 821 break; 822 } 823 824 if (key.offset >= end_byte) 825 break; 826 827 csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size; 828 csum_end <<= blocksize_bits; 829 csum_end += key.offset; 830 831 /* this csum ends before we start, we're done */ 832 if (csum_end <= bytenr) 833 break; 834 835 /* delete the entire item, it is inside our range */ 836 if (key.offset >= bytenr && csum_end <= end_byte) { 837 int del_nr = 1; 838 839 /* 840 * Check how many csum items preceding this one in this 841 * leaf correspond to our range and then delete them all 842 * at once. 843 */ 844 if (key.offset > bytenr && path->slots[0] > 0) { 845 int slot = path->slots[0] - 1; 846 847 while (slot >= 0) { 848 struct btrfs_key pk; 849 850 btrfs_item_key_to_cpu(leaf, &pk, slot); 851 if (pk.offset < bytenr || 852 pk.type != BTRFS_EXTENT_CSUM_KEY || 853 pk.objectid != 854 BTRFS_EXTENT_CSUM_OBJECTID) 855 break; 856 path->slots[0] = slot; 857 del_nr++; 858 key.offset = pk.offset; 859 slot--; 860 } 861 } 862 ret = btrfs_del_items(trans, root, path, 863 path->slots[0], del_nr); 864 if (ret) 865 goto out; 866 if (key.offset == bytenr) 867 break; 868 } else if (key.offset < bytenr && csum_end > end_byte) { 869 unsigned long offset; 870 unsigned long shift_len; 871 unsigned long item_offset; 872 /* 873 * [ bytenr - len ] 874 * [csum ] 875 * 876 * Our bytes are in the middle of the csum, 877 * we need to split this item and insert a new one. 878 * 879 * But we can't drop the path because the 880 * csum could change, get removed, extended etc. 881 * 882 * The trick here is the max size of a csum item leaves 883 * enough room in the tree block for a single 884 * item header. So, we split the item in place, 885 * adding a new header pointing to the existing 886 * bytes. Then we loop around again and we have 887 * a nicely formed csum item that we can neatly 888 * truncate. 889 */ 890 offset = (bytenr - key.offset) >> blocksize_bits; 891 offset *= csum_size; 892 893 shift_len = (len >> blocksize_bits) * csum_size; 894 895 item_offset = btrfs_item_ptr_offset(leaf, 896 path->slots[0]); 897 898 memzero_extent_buffer(leaf, item_offset + offset, 899 shift_len); 900 key.offset = bytenr; 901 902 /* 903 * btrfs_split_item returns -EAGAIN when the 904 * item changed size or key 905 */ 906 ret = btrfs_split_item(trans, root, path, &key, offset); 907 if (ret && ret != -EAGAIN) { 908 btrfs_abort_transaction(trans, ret); 909 goto out; 910 } 911 912 key.offset = end_byte - 1; 913 } else { 914 truncate_one_csum(fs_info, path, &key, bytenr, len); 915 if (key.offset < bytenr) 916 break; 917 } 918 btrfs_release_path(path); 919 } 920 ret = 0; 921 out: 922 btrfs_free_path(path); 923 return ret; 924 } 925 926 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 927 struct btrfs_root *root, 928 struct btrfs_ordered_sum *sums) 929 { 930 struct btrfs_fs_info *fs_info = root->fs_info; 931 struct btrfs_key file_key; 932 struct btrfs_key found_key; 933 struct btrfs_path *path; 934 struct btrfs_csum_item *item; 935 struct btrfs_csum_item *item_end; 936 struct extent_buffer *leaf = NULL; 937 u64 next_offset; 938 u64 total_bytes = 0; 939 u64 csum_offset; 940 u64 bytenr; 941 u32 nritems; 942 u32 ins_size; 943 int index = 0; 944 int found_next; 945 int ret; 946 const u32 csum_size = fs_info->csum_size; 947 948 path = btrfs_alloc_path(); 949 if (!path) 950 return -ENOMEM; 951 again: 952 next_offset = (u64)-1; 953 found_next = 0; 954 bytenr = sums->bytenr + total_bytes; 955 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 956 file_key.offset = bytenr; 957 file_key.type = BTRFS_EXTENT_CSUM_KEY; 958 959 item = btrfs_lookup_csum(trans, root, path, bytenr, 1); 960 if (!IS_ERR(item)) { 961 ret = 0; 962 leaf = path->nodes[0]; 963 item_end = btrfs_item_ptr(leaf, path->slots[0], 964 struct btrfs_csum_item); 965 item_end = (struct btrfs_csum_item *)((char *)item_end + 966 btrfs_item_size_nr(leaf, path->slots[0])); 967 goto found; 968 } 969 ret = PTR_ERR(item); 970 if (ret != -EFBIG && ret != -ENOENT) 971 goto out; 972 973 if (ret == -EFBIG) { 974 u32 item_size; 975 /* we found one, but it isn't big enough yet */ 976 leaf = path->nodes[0]; 977 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 978 if ((item_size / csum_size) >= 979 MAX_CSUM_ITEMS(fs_info, csum_size)) { 980 /* already at max size, make a new one */ 981 goto insert; 982 } 983 } else { 984 int slot = path->slots[0] + 1; 985 /* we didn't find a csum item, insert one */ 986 nritems = btrfs_header_nritems(path->nodes[0]); 987 if (!nritems || (path->slots[0] >= nritems - 1)) { 988 ret = btrfs_next_leaf(root, path); 989 if (ret < 0) { 990 goto out; 991 } else if (ret > 0) { 992 found_next = 1; 993 goto insert; 994 } 995 slot = path->slots[0]; 996 } 997 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot); 998 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 999 found_key.type != BTRFS_EXTENT_CSUM_KEY) { 1000 found_next = 1; 1001 goto insert; 1002 } 1003 next_offset = found_key.offset; 1004 found_next = 1; 1005 goto insert; 1006 } 1007 1008 /* 1009 * At this point, we know the tree has a checksum item that ends at an 1010 * offset matching the start of the checksum range we want to insert. 1011 * We try to extend that item as much as possible and then add as many 1012 * checksums to it as they fit. 1013 * 1014 * First check if the leaf has enough free space for at least one 1015 * checksum. If it has go directly to the item extension code, otherwise 1016 * release the path and do a search for insertion before the extension. 1017 */ 1018 if (btrfs_leaf_free_space(leaf) >= csum_size) { 1019 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1020 csum_offset = (bytenr - found_key.offset) >> 1021 fs_info->sectorsize_bits; 1022 goto extend_csum; 1023 } 1024 1025 btrfs_release_path(path); 1026 path->search_for_extension = 1; 1027 ret = btrfs_search_slot(trans, root, &file_key, path, 1028 csum_size, 1); 1029 path->search_for_extension = 0; 1030 if (ret < 0) 1031 goto out; 1032 1033 if (ret > 0) { 1034 if (path->slots[0] == 0) 1035 goto insert; 1036 path->slots[0]--; 1037 } 1038 1039 leaf = path->nodes[0]; 1040 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1041 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits; 1042 1043 if (found_key.type != BTRFS_EXTENT_CSUM_KEY || 1044 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 1045 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) { 1046 goto insert; 1047 } 1048 1049 extend_csum: 1050 if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) / 1051 csum_size) { 1052 int extend_nr; 1053 u64 tmp; 1054 u32 diff; 1055 1056 tmp = sums->len - total_bytes; 1057 tmp >>= fs_info->sectorsize_bits; 1058 WARN_ON(tmp < 1); 1059 1060 extend_nr = max_t(int, 1, (int)tmp); 1061 diff = (csum_offset + extend_nr) * csum_size; 1062 diff = min(diff, 1063 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size); 1064 1065 diff = diff - btrfs_item_size_nr(leaf, path->slots[0]); 1066 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff); 1067 diff /= csum_size; 1068 diff *= csum_size; 1069 1070 btrfs_extend_item(path, diff); 1071 ret = 0; 1072 goto csum; 1073 } 1074 1075 insert: 1076 btrfs_release_path(path); 1077 csum_offset = 0; 1078 if (found_next) { 1079 u64 tmp; 1080 1081 tmp = sums->len - total_bytes; 1082 tmp >>= fs_info->sectorsize_bits; 1083 tmp = min(tmp, (next_offset - file_key.offset) >> 1084 fs_info->sectorsize_bits); 1085 1086 tmp = max_t(u64, 1, tmp); 1087 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size)); 1088 ins_size = csum_size * tmp; 1089 } else { 1090 ins_size = csum_size; 1091 } 1092 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 1093 ins_size); 1094 if (ret < 0) 1095 goto out; 1096 if (WARN_ON(ret != 0)) 1097 goto out; 1098 leaf = path->nodes[0]; 1099 csum: 1100 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 1101 item_end = (struct btrfs_csum_item *)((unsigned char *)item + 1102 btrfs_item_size_nr(leaf, path->slots[0])); 1103 item = (struct btrfs_csum_item *)((unsigned char *)item + 1104 csum_offset * csum_size); 1105 found: 1106 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits; 1107 ins_size *= csum_size; 1108 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item, 1109 ins_size); 1110 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item, 1111 ins_size); 1112 1113 index += ins_size; 1114 ins_size /= csum_size; 1115 total_bytes += ins_size * fs_info->sectorsize; 1116 1117 btrfs_mark_buffer_dirty(path->nodes[0]); 1118 if (total_bytes < sums->len) { 1119 btrfs_release_path(path); 1120 cond_resched(); 1121 goto again; 1122 } 1123 out: 1124 btrfs_free_path(path); 1125 return ret; 1126 } 1127 1128 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 1129 const struct btrfs_path *path, 1130 struct btrfs_file_extent_item *fi, 1131 const bool new_inline, 1132 struct extent_map *em) 1133 { 1134 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1135 struct btrfs_root *root = inode->root; 1136 struct extent_buffer *leaf = path->nodes[0]; 1137 const int slot = path->slots[0]; 1138 struct btrfs_key key; 1139 u64 extent_start, extent_end; 1140 u64 bytenr; 1141 u8 type = btrfs_file_extent_type(leaf, fi); 1142 int compress_type = btrfs_file_extent_compression(leaf, fi); 1143 1144 btrfs_item_key_to_cpu(leaf, &key, slot); 1145 extent_start = key.offset; 1146 extent_end = btrfs_file_extent_end(path); 1147 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1148 if (type == BTRFS_FILE_EXTENT_REG || 1149 type == BTRFS_FILE_EXTENT_PREALLOC) { 1150 em->start = extent_start; 1151 em->len = extent_end - extent_start; 1152 em->orig_start = extent_start - 1153 btrfs_file_extent_offset(leaf, fi); 1154 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 1155 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1156 if (bytenr == 0) { 1157 em->block_start = EXTENT_MAP_HOLE; 1158 return; 1159 } 1160 if (compress_type != BTRFS_COMPRESS_NONE) { 1161 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1162 em->compress_type = compress_type; 1163 em->block_start = bytenr; 1164 em->block_len = em->orig_block_len; 1165 } else { 1166 bytenr += btrfs_file_extent_offset(leaf, fi); 1167 em->block_start = bytenr; 1168 em->block_len = em->len; 1169 if (type == BTRFS_FILE_EXTENT_PREALLOC) 1170 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 1171 } 1172 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 1173 em->block_start = EXTENT_MAP_INLINE; 1174 em->start = extent_start; 1175 em->len = extent_end - extent_start; 1176 /* 1177 * Initialize orig_start and block_len with the same values 1178 * as in inode.c:btrfs_get_extent(). 1179 */ 1180 em->orig_start = EXTENT_MAP_HOLE; 1181 em->block_len = (u64)-1; 1182 if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) { 1183 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1184 em->compress_type = compress_type; 1185 } 1186 } else { 1187 btrfs_err(fs_info, 1188 "unknown file extent item type %d, inode %llu, offset %llu, " 1189 "root %llu", type, btrfs_ino(inode), extent_start, 1190 root->root_key.objectid); 1191 } 1192 } 1193 1194 /* 1195 * Returns the end offset (non inclusive) of the file extent item the given path 1196 * points to. If it points to an inline extent, the returned offset is rounded 1197 * up to the sector size. 1198 */ 1199 u64 btrfs_file_extent_end(const struct btrfs_path *path) 1200 { 1201 const struct extent_buffer *leaf = path->nodes[0]; 1202 const int slot = path->slots[0]; 1203 struct btrfs_file_extent_item *fi; 1204 struct btrfs_key key; 1205 u64 end; 1206 1207 btrfs_item_key_to_cpu(leaf, &key, slot); 1208 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 1209 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1210 1211 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 1212 end = btrfs_file_extent_ram_bytes(leaf, fi); 1213 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize); 1214 } else { 1215 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1216 } 1217 1218 return end; 1219 } 1220