1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/bio.h> 7 #include <linux/slab.h> 8 #include <linux/pagemap.h> 9 #include <linux/highmem.h> 10 #include <linux/sched/mm.h> 11 #include <crypto/hash.h> 12 #include "ctree.h" 13 #include "disk-io.h" 14 #include "transaction.h" 15 #include "volumes.h" 16 #include "print-tree.h" 17 #include "compression.h" 18 19 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \ 20 sizeof(struct btrfs_item) * 2) / \ 21 size) - 1)) 22 23 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \ 24 PAGE_SIZE)) 25 26 /** 27 * Set inode's size according to filesystem options 28 * 29 * @inode: inode we want to update the disk_i_size for 30 * @new_i_size: i_size we want to set to, 0 if we use i_size 31 * 32 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read() 33 * returns as it is perfectly fine with a file that has holes without hole file 34 * extent items. 35 * 36 * However without NO_HOLES we need to only return the area that is contiguous 37 * from the 0 offset of the file. Otherwise we could end up adjust i_size up 38 * to an extent that has a gap in between. 39 * 40 * Finally new_i_size should only be set in the case of truncate where we're not 41 * ready to use i_size_read() as the limiter yet. 42 */ 43 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size) 44 { 45 struct btrfs_fs_info *fs_info = inode->root->fs_info; 46 u64 start, end, i_size; 47 int ret; 48 49 i_size = new_i_size ?: i_size_read(&inode->vfs_inode); 50 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 51 inode->disk_i_size = i_size; 52 return; 53 } 54 55 spin_lock(&inode->lock); 56 ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start, 57 &end, EXTENT_DIRTY); 58 if (!ret && start == 0) 59 i_size = min(i_size, end + 1); 60 else 61 i_size = 0; 62 inode->disk_i_size = i_size; 63 spin_unlock(&inode->lock); 64 } 65 66 /** 67 * Mark range within a file as having a new extent inserted 68 * 69 * @inode: inode being modified 70 * @start: start file offset of the file extent we've inserted 71 * @len: logical length of the file extent item 72 * 73 * Call when we are inserting a new file extent where there was none before. 74 * Does not need to call this in the case where we're replacing an existing file 75 * extent, however if not sure it's fine to call this multiple times. 76 * 77 * The start and len must match the file extent item, so thus must be sectorsize 78 * aligned. 79 */ 80 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 81 u64 len) 82 { 83 if (len == 0) 84 return 0; 85 86 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize)); 87 88 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 89 return 0; 90 return set_extent_bits(&inode->file_extent_tree, start, start + len - 1, 91 EXTENT_DIRTY); 92 } 93 94 /** 95 * Marks an inode range as not having a backing extent 96 * 97 * @inode: inode being modified 98 * @start: start file offset of the file extent we've inserted 99 * @len: logical length of the file extent item 100 * 101 * Called when we drop a file extent, for example when we truncate. Doesn't 102 * need to be called for cases where we're replacing a file extent, like when 103 * we've COWed a file extent. 104 * 105 * The start and len must match the file extent item, so thus must be sectorsize 106 * aligned. 107 */ 108 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 109 u64 len) 110 { 111 if (len == 0) 112 return 0; 113 114 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) || 115 len == (u64)-1); 116 117 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 118 return 0; 119 return clear_extent_bit(&inode->file_extent_tree, start, 120 start + len - 1, EXTENT_DIRTY, 0, 0, NULL); 121 } 122 123 static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info, 124 u16 csum_size) 125 { 126 u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size; 127 128 return ncsums * fs_info->sectorsize; 129 } 130 131 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 132 struct btrfs_root *root, 133 u64 objectid, u64 pos, 134 u64 disk_offset, u64 disk_num_bytes, 135 u64 num_bytes, u64 offset, u64 ram_bytes, 136 u8 compression, u8 encryption, u16 other_encoding) 137 { 138 int ret = 0; 139 struct btrfs_file_extent_item *item; 140 struct btrfs_key file_key; 141 struct btrfs_path *path; 142 struct extent_buffer *leaf; 143 144 path = btrfs_alloc_path(); 145 if (!path) 146 return -ENOMEM; 147 file_key.objectid = objectid; 148 file_key.offset = pos; 149 file_key.type = BTRFS_EXTENT_DATA_KEY; 150 151 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 152 sizeof(*item)); 153 if (ret < 0) 154 goto out; 155 BUG_ON(ret); /* Can't happen */ 156 leaf = path->nodes[0]; 157 item = btrfs_item_ptr(leaf, path->slots[0], 158 struct btrfs_file_extent_item); 159 btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset); 160 btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes); 161 btrfs_set_file_extent_offset(leaf, item, offset); 162 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes); 163 btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes); 164 btrfs_set_file_extent_generation(leaf, item, trans->transid); 165 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 166 btrfs_set_file_extent_compression(leaf, item, compression); 167 btrfs_set_file_extent_encryption(leaf, item, encryption); 168 btrfs_set_file_extent_other_encoding(leaf, item, other_encoding); 169 170 btrfs_mark_buffer_dirty(leaf); 171 out: 172 btrfs_free_path(path); 173 return ret; 174 } 175 176 static struct btrfs_csum_item * 177 btrfs_lookup_csum(struct btrfs_trans_handle *trans, 178 struct btrfs_root *root, 179 struct btrfs_path *path, 180 u64 bytenr, int cow) 181 { 182 struct btrfs_fs_info *fs_info = root->fs_info; 183 int ret; 184 struct btrfs_key file_key; 185 struct btrfs_key found_key; 186 struct btrfs_csum_item *item; 187 struct extent_buffer *leaf; 188 u64 csum_offset = 0; 189 const u32 csum_size = fs_info->csum_size; 190 int csums_in_item; 191 192 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 193 file_key.offset = bytenr; 194 file_key.type = BTRFS_EXTENT_CSUM_KEY; 195 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow); 196 if (ret < 0) 197 goto fail; 198 leaf = path->nodes[0]; 199 if (ret > 0) { 200 ret = 1; 201 if (path->slots[0] == 0) 202 goto fail; 203 path->slots[0]--; 204 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 205 if (found_key.type != BTRFS_EXTENT_CSUM_KEY) 206 goto fail; 207 208 csum_offset = (bytenr - found_key.offset) >> 209 fs_info->sectorsize_bits; 210 csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]); 211 csums_in_item /= csum_size; 212 213 if (csum_offset == csums_in_item) { 214 ret = -EFBIG; 215 goto fail; 216 } else if (csum_offset > csums_in_item) { 217 goto fail; 218 } 219 } 220 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 221 item = (struct btrfs_csum_item *)((unsigned char *)item + 222 csum_offset * csum_size); 223 return item; 224 fail: 225 if (ret > 0) 226 ret = -ENOENT; 227 return ERR_PTR(ret); 228 } 229 230 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 231 struct btrfs_root *root, 232 struct btrfs_path *path, u64 objectid, 233 u64 offset, int mod) 234 { 235 int ret; 236 struct btrfs_key file_key; 237 int ins_len = mod < 0 ? -1 : 0; 238 int cow = mod != 0; 239 240 file_key.objectid = objectid; 241 file_key.offset = offset; 242 file_key.type = BTRFS_EXTENT_DATA_KEY; 243 ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow); 244 return ret; 245 } 246 247 /* 248 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and 249 * estore the result to @dst. 250 * 251 * Return >0 for the number of sectors we found. 252 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum 253 * for it. Caller may want to try next sector until one range is hit. 254 * Return <0 for fatal error. 255 */ 256 static int search_csum_tree(struct btrfs_fs_info *fs_info, 257 struct btrfs_path *path, u64 disk_bytenr, 258 u64 len, u8 *dst) 259 { 260 struct btrfs_csum_item *item = NULL; 261 struct btrfs_key key; 262 const u32 sectorsize = fs_info->sectorsize; 263 const u32 csum_size = fs_info->csum_size; 264 u32 itemsize; 265 int ret; 266 u64 csum_start; 267 u64 csum_len; 268 269 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) && 270 IS_ALIGNED(len, sectorsize)); 271 272 /* Check if the current csum item covers disk_bytenr */ 273 if (path->nodes[0]) { 274 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 275 struct btrfs_csum_item); 276 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 277 itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 278 279 csum_start = key.offset; 280 csum_len = (itemsize / csum_size) * sectorsize; 281 282 if (in_range(disk_bytenr, csum_start, csum_len)) 283 goto found; 284 } 285 286 /* Current item doesn't contain the desired range, search again */ 287 btrfs_release_path(path); 288 item = btrfs_lookup_csum(NULL, fs_info->csum_root, path, disk_bytenr, 0); 289 if (IS_ERR(item)) { 290 ret = PTR_ERR(item); 291 goto out; 292 } 293 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 294 itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 295 296 csum_start = key.offset; 297 csum_len = (itemsize / csum_size) * sectorsize; 298 ASSERT(in_range(disk_bytenr, csum_start, csum_len)); 299 300 found: 301 ret = (min(csum_start + csum_len, disk_bytenr + len) - 302 disk_bytenr) >> fs_info->sectorsize_bits; 303 read_extent_buffer(path->nodes[0], dst, (unsigned long)item, 304 ret * csum_size); 305 out: 306 if (ret == -ENOENT) 307 ret = 0; 308 return ret; 309 } 310 311 /* 312 * Locate the file_offset of @cur_disk_bytenr of a @bio. 313 * 314 * Bio of btrfs represents read range of 315 * [bi_sector << 9, bi_sector << 9 + bi_size). 316 * Knowing this, we can iterate through each bvec to locate the page belong to 317 * @cur_disk_bytenr and get the file offset. 318 * 319 * @inode is used to determine if the bvec page really belongs to @inode. 320 * 321 * Return 0 if we can't find the file offset 322 * Return >0 if we find the file offset and restore it to @file_offset_ret 323 */ 324 static int search_file_offset_in_bio(struct bio *bio, struct inode *inode, 325 u64 disk_bytenr, u64 *file_offset_ret) 326 { 327 struct bvec_iter iter; 328 struct bio_vec bvec; 329 u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT; 330 int ret = 0; 331 332 bio_for_each_segment(bvec, bio, iter) { 333 struct page *page = bvec.bv_page; 334 335 if (cur > disk_bytenr) 336 break; 337 if (cur + bvec.bv_len <= disk_bytenr) { 338 cur += bvec.bv_len; 339 continue; 340 } 341 ASSERT(in_range(disk_bytenr, cur, bvec.bv_len)); 342 if (page->mapping && page->mapping->host && 343 page->mapping->host == inode) { 344 ret = 1; 345 *file_offset_ret = page_offset(page) + bvec.bv_offset + 346 disk_bytenr - cur; 347 break; 348 } 349 } 350 return ret; 351 } 352 353 /** 354 * Lookup the checksum for the read bio in csum tree. 355 * 356 * @inode: inode that the bio is for. 357 * @bio: bio to look up. 358 * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return 359 * checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If 360 * NULL, the checksum buffer is allocated and returned in 361 * btrfs_io_bio(bio)->csum instead. 362 * 363 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise. 364 */ 365 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst) 366 { 367 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 368 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 369 struct btrfs_path *path; 370 const u32 sectorsize = fs_info->sectorsize; 371 const u32 csum_size = fs_info->csum_size; 372 u32 orig_len = bio->bi_iter.bi_size; 373 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; 374 u64 cur_disk_bytenr; 375 u8 *csum; 376 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits; 377 int count = 0; 378 379 if (!fs_info->csum_root || (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 380 return BLK_STS_OK; 381 382 /* 383 * This function is only called for read bio. 384 * 385 * This means two things: 386 * - All our csums should only be in csum tree 387 * No ordered extents csums, as ordered extents are only for write 388 * path. 389 * - No need to bother any other info from bvec 390 * Since we're looking up csums, the only important info is the 391 * disk_bytenr and the length, which can be extracted from bi_iter 392 * directly. 393 */ 394 ASSERT(bio_op(bio) == REQ_OP_READ); 395 path = btrfs_alloc_path(); 396 if (!path) 397 return BLK_STS_RESOURCE; 398 399 if (!dst) { 400 struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio); 401 402 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) { 403 btrfs_bio->csum = kmalloc_array(nblocks, csum_size, 404 GFP_NOFS); 405 if (!btrfs_bio->csum) { 406 btrfs_free_path(path); 407 return BLK_STS_RESOURCE; 408 } 409 } else { 410 btrfs_bio->csum = btrfs_bio->csum_inline; 411 } 412 csum = btrfs_bio->csum; 413 } else { 414 csum = dst; 415 } 416 417 /* 418 * If requested number of sectors is larger than one leaf can contain, 419 * kick the readahead for csum tree. 420 */ 421 if (nblocks > fs_info->csums_per_leaf) 422 path->reada = READA_FORWARD; 423 424 /* 425 * the free space stuff is only read when it hasn't been 426 * updated in the current transaction. So, we can safely 427 * read from the commit root and sidestep a nasty deadlock 428 * between reading the free space cache and updating the csum tree. 429 */ 430 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 431 path->search_commit_root = 1; 432 path->skip_locking = 1; 433 } 434 435 for (cur_disk_bytenr = orig_disk_bytenr; 436 cur_disk_bytenr < orig_disk_bytenr + orig_len; 437 cur_disk_bytenr += (count * sectorsize)) { 438 u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr; 439 unsigned int sector_offset; 440 u8 *csum_dst; 441 442 /* 443 * Although both cur_disk_bytenr and orig_disk_bytenr is u64, 444 * we're calculating the offset to the bio start. 445 * 446 * Bio size is limited to UINT_MAX, thus unsigned int is large 447 * enough to contain the raw result, not to mention the right 448 * shifted result. 449 */ 450 ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX); 451 sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >> 452 fs_info->sectorsize_bits; 453 csum_dst = csum + sector_offset * csum_size; 454 455 count = search_csum_tree(fs_info, path, cur_disk_bytenr, 456 search_len, csum_dst); 457 if (count <= 0) { 458 /* 459 * Either we hit a critical error or we didn't find 460 * the csum. 461 * Either way, we put zero into the csums dst, and skip 462 * to the next sector. 463 */ 464 memset(csum_dst, 0, csum_size); 465 count = 1; 466 467 /* 468 * For data reloc inode, we need to mark the range 469 * NODATASUM so that balance won't report false csum 470 * error. 471 */ 472 if (BTRFS_I(inode)->root->root_key.objectid == 473 BTRFS_DATA_RELOC_TREE_OBJECTID) { 474 u64 file_offset; 475 int ret; 476 477 ret = search_file_offset_in_bio(bio, inode, 478 cur_disk_bytenr, &file_offset); 479 if (ret) 480 set_extent_bits(io_tree, file_offset, 481 file_offset + sectorsize - 1, 482 EXTENT_NODATASUM); 483 } else { 484 btrfs_warn_rl(fs_info, 485 "csum hole found for disk bytenr range [%llu, %llu)", 486 cur_disk_bytenr, cur_disk_bytenr + sectorsize); 487 } 488 } 489 } 490 491 btrfs_free_path(path); 492 return BLK_STS_OK; 493 } 494 495 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 496 struct list_head *list, int search_commit) 497 { 498 struct btrfs_fs_info *fs_info = root->fs_info; 499 struct btrfs_key key; 500 struct btrfs_path *path; 501 struct extent_buffer *leaf; 502 struct btrfs_ordered_sum *sums; 503 struct btrfs_csum_item *item; 504 LIST_HEAD(tmplist); 505 unsigned long offset; 506 int ret; 507 size_t size; 508 u64 csum_end; 509 const u32 csum_size = fs_info->csum_size; 510 511 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 512 IS_ALIGNED(end + 1, fs_info->sectorsize)); 513 514 path = btrfs_alloc_path(); 515 if (!path) 516 return -ENOMEM; 517 518 if (search_commit) { 519 path->skip_locking = 1; 520 path->reada = READA_FORWARD; 521 path->search_commit_root = 1; 522 } 523 524 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 525 key.offset = start; 526 key.type = BTRFS_EXTENT_CSUM_KEY; 527 528 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 529 if (ret < 0) 530 goto fail; 531 if (ret > 0 && path->slots[0] > 0) { 532 leaf = path->nodes[0]; 533 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 534 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 535 key.type == BTRFS_EXTENT_CSUM_KEY) { 536 offset = (start - key.offset) >> fs_info->sectorsize_bits; 537 if (offset * csum_size < 538 btrfs_item_size_nr(leaf, path->slots[0] - 1)) 539 path->slots[0]--; 540 } 541 } 542 543 while (start <= end) { 544 leaf = path->nodes[0]; 545 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 546 ret = btrfs_next_leaf(root, path); 547 if (ret < 0) 548 goto fail; 549 if (ret > 0) 550 break; 551 leaf = path->nodes[0]; 552 } 553 554 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 555 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 556 key.type != BTRFS_EXTENT_CSUM_KEY || 557 key.offset > end) 558 break; 559 560 if (key.offset > start) 561 start = key.offset; 562 563 size = btrfs_item_size_nr(leaf, path->slots[0]); 564 csum_end = key.offset + (size / csum_size) * fs_info->sectorsize; 565 if (csum_end <= start) { 566 path->slots[0]++; 567 continue; 568 } 569 570 csum_end = min(csum_end, end + 1); 571 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 572 struct btrfs_csum_item); 573 while (start < csum_end) { 574 size = min_t(size_t, csum_end - start, 575 max_ordered_sum_bytes(fs_info, csum_size)); 576 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size), 577 GFP_NOFS); 578 if (!sums) { 579 ret = -ENOMEM; 580 goto fail; 581 } 582 583 sums->bytenr = start; 584 sums->len = (int)size; 585 586 offset = (start - key.offset) >> fs_info->sectorsize_bits; 587 offset *= csum_size; 588 size >>= fs_info->sectorsize_bits; 589 590 read_extent_buffer(path->nodes[0], 591 sums->sums, 592 ((unsigned long)item) + offset, 593 csum_size * size); 594 595 start += fs_info->sectorsize * size; 596 list_add_tail(&sums->list, &tmplist); 597 } 598 path->slots[0]++; 599 } 600 ret = 0; 601 fail: 602 while (ret < 0 && !list_empty(&tmplist)) { 603 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list); 604 list_del(&sums->list); 605 kfree(sums); 606 } 607 list_splice_tail(&tmplist, list); 608 609 btrfs_free_path(path); 610 return ret; 611 } 612 613 /* 614 * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio 615 * @inode: Owner of the data inside the bio 616 * @bio: Contains the data to be checksummed 617 * @file_start: offset in file this bio begins to describe 618 * @contig: Boolean. If true/1 means all bio vecs in this bio are 619 * contiguous and they begin at @file_start in the file. False/0 620 * means this bio can contains potentially discontigous bio vecs 621 * so the logical offset of each should be calculated separately. 622 */ 623 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 624 u64 file_start, int contig) 625 { 626 struct btrfs_fs_info *fs_info = inode->root->fs_info; 627 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 628 struct btrfs_ordered_sum *sums; 629 struct btrfs_ordered_extent *ordered = NULL; 630 char *data; 631 struct bvec_iter iter; 632 struct bio_vec bvec; 633 int index; 634 int nr_sectors; 635 unsigned long total_bytes = 0; 636 unsigned long this_sum_bytes = 0; 637 int i; 638 u64 offset; 639 unsigned nofs_flag; 640 641 nofs_flag = memalloc_nofs_save(); 642 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size), 643 GFP_KERNEL); 644 memalloc_nofs_restore(nofs_flag); 645 646 if (!sums) 647 return BLK_STS_RESOURCE; 648 649 sums->len = bio->bi_iter.bi_size; 650 INIT_LIST_HEAD(&sums->list); 651 652 if (contig) 653 offset = file_start; 654 else 655 offset = 0; /* shut up gcc */ 656 657 sums->bytenr = bio->bi_iter.bi_sector << 9; 658 index = 0; 659 660 shash->tfm = fs_info->csum_shash; 661 662 bio_for_each_segment(bvec, bio, iter) { 663 if (!contig) 664 offset = page_offset(bvec.bv_page) + bvec.bv_offset; 665 666 if (!ordered) { 667 ordered = btrfs_lookup_ordered_extent(inode, offset); 668 BUG_ON(!ordered); /* Logic error */ 669 } 670 671 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, 672 bvec.bv_len + fs_info->sectorsize 673 - 1); 674 675 for (i = 0; i < nr_sectors; i++) { 676 if (offset >= ordered->file_offset + ordered->num_bytes || 677 offset < ordered->file_offset) { 678 unsigned long bytes_left; 679 680 sums->len = this_sum_bytes; 681 this_sum_bytes = 0; 682 btrfs_add_ordered_sum(ordered, sums); 683 btrfs_put_ordered_extent(ordered); 684 685 bytes_left = bio->bi_iter.bi_size - total_bytes; 686 687 nofs_flag = memalloc_nofs_save(); 688 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, 689 bytes_left), GFP_KERNEL); 690 memalloc_nofs_restore(nofs_flag); 691 BUG_ON(!sums); /* -ENOMEM */ 692 sums->len = bytes_left; 693 ordered = btrfs_lookup_ordered_extent(inode, 694 offset); 695 ASSERT(ordered); /* Logic error */ 696 sums->bytenr = (bio->bi_iter.bi_sector << 9) 697 + total_bytes; 698 index = 0; 699 } 700 701 data = kmap_atomic(bvec.bv_page); 702 crypto_shash_digest(shash, data + bvec.bv_offset 703 + (i * fs_info->sectorsize), 704 fs_info->sectorsize, 705 sums->sums + index); 706 kunmap_atomic(data); 707 index += fs_info->csum_size; 708 offset += fs_info->sectorsize; 709 this_sum_bytes += fs_info->sectorsize; 710 total_bytes += fs_info->sectorsize; 711 } 712 713 } 714 this_sum_bytes = 0; 715 btrfs_add_ordered_sum(ordered, sums); 716 btrfs_put_ordered_extent(ordered); 717 return 0; 718 } 719 720 /* 721 * helper function for csum removal, this expects the 722 * key to describe the csum pointed to by the path, and it expects 723 * the csum to overlap the range [bytenr, len] 724 * 725 * The csum should not be entirely contained in the range and the 726 * range should not be entirely contained in the csum. 727 * 728 * This calls btrfs_truncate_item with the correct args based on the 729 * overlap, and fixes up the key as required. 730 */ 731 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info, 732 struct btrfs_path *path, 733 struct btrfs_key *key, 734 u64 bytenr, u64 len) 735 { 736 struct extent_buffer *leaf; 737 const u32 csum_size = fs_info->csum_size; 738 u64 csum_end; 739 u64 end_byte = bytenr + len; 740 u32 blocksize_bits = fs_info->sectorsize_bits; 741 742 leaf = path->nodes[0]; 743 csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size; 744 csum_end <<= blocksize_bits; 745 csum_end += key->offset; 746 747 if (key->offset < bytenr && csum_end <= end_byte) { 748 /* 749 * [ bytenr - len ] 750 * [ ] 751 * [csum ] 752 * A simple truncate off the end of the item 753 */ 754 u32 new_size = (bytenr - key->offset) >> blocksize_bits; 755 new_size *= csum_size; 756 btrfs_truncate_item(path, new_size, 1); 757 } else if (key->offset >= bytenr && csum_end > end_byte && 758 end_byte > key->offset) { 759 /* 760 * [ bytenr - len ] 761 * [ ] 762 * [csum ] 763 * we need to truncate from the beginning of the csum 764 */ 765 u32 new_size = (csum_end - end_byte) >> blocksize_bits; 766 new_size *= csum_size; 767 768 btrfs_truncate_item(path, new_size, 0); 769 770 key->offset = end_byte; 771 btrfs_set_item_key_safe(fs_info, path, key); 772 } else { 773 BUG(); 774 } 775 } 776 777 /* 778 * deletes the csum items from the csum tree for a given 779 * range of bytes. 780 */ 781 int btrfs_del_csums(struct btrfs_trans_handle *trans, 782 struct btrfs_root *root, u64 bytenr, u64 len) 783 { 784 struct btrfs_fs_info *fs_info = trans->fs_info; 785 struct btrfs_path *path; 786 struct btrfs_key key; 787 u64 end_byte = bytenr + len; 788 u64 csum_end; 789 struct extent_buffer *leaf; 790 int ret; 791 const u32 csum_size = fs_info->csum_size; 792 u32 blocksize_bits = fs_info->sectorsize_bits; 793 794 ASSERT(root == fs_info->csum_root || 795 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 796 797 path = btrfs_alloc_path(); 798 if (!path) 799 return -ENOMEM; 800 801 while (1) { 802 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 803 key.offset = end_byte - 1; 804 key.type = BTRFS_EXTENT_CSUM_KEY; 805 806 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 807 if (ret > 0) { 808 if (path->slots[0] == 0) 809 break; 810 path->slots[0]--; 811 } else if (ret < 0) { 812 break; 813 } 814 815 leaf = path->nodes[0]; 816 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 817 818 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 819 key.type != BTRFS_EXTENT_CSUM_KEY) { 820 break; 821 } 822 823 if (key.offset >= end_byte) 824 break; 825 826 csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size; 827 csum_end <<= blocksize_bits; 828 csum_end += key.offset; 829 830 /* this csum ends before we start, we're done */ 831 if (csum_end <= bytenr) 832 break; 833 834 /* delete the entire item, it is inside our range */ 835 if (key.offset >= bytenr && csum_end <= end_byte) { 836 int del_nr = 1; 837 838 /* 839 * Check how many csum items preceding this one in this 840 * leaf correspond to our range and then delete them all 841 * at once. 842 */ 843 if (key.offset > bytenr && path->slots[0] > 0) { 844 int slot = path->slots[0] - 1; 845 846 while (slot >= 0) { 847 struct btrfs_key pk; 848 849 btrfs_item_key_to_cpu(leaf, &pk, slot); 850 if (pk.offset < bytenr || 851 pk.type != BTRFS_EXTENT_CSUM_KEY || 852 pk.objectid != 853 BTRFS_EXTENT_CSUM_OBJECTID) 854 break; 855 path->slots[0] = slot; 856 del_nr++; 857 key.offset = pk.offset; 858 slot--; 859 } 860 } 861 ret = btrfs_del_items(trans, root, path, 862 path->slots[0], del_nr); 863 if (ret) 864 goto out; 865 if (key.offset == bytenr) 866 break; 867 } else if (key.offset < bytenr && csum_end > end_byte) { 868 unsigned long offset; 869 unsigned long shift_len; 870 unsigned long item_offset; 871 /* 872 * [ bytenr - len ] 873 * [csum ] 874 * 875 * Our bytes are in the middle of the csum, 876 * we need to split this item and insert a new one. 877 * 878 * But we can't drop the path because the 879 * csum could change, get removed, extended etc. 880 * 881 * The trick here is the max size of a csum item leaves 882 * enough room in the tree block for a single 883 * item header. So, we split the item in place, 884 * adding a new header pointing to the existing 885 * bytes. Then we loop around again and we have 886 * a nicely formed csum item that we can neatly 887 * truncate. 888 */ 889 offset = (bytenr - key.offset) >> blocksize_bits; 890 offset *= csum_size; 891 892 shift_len = (len >> blocksize_bits) * csum_size; 893 894 item_offset = btrfs_item_ptr_offset(leaf, 895 path->slots[0]); 896 897 memzero_extent_buffer(leaf, item_offset + offset, 898 shift_len); 899 key.offset = bytenr; 900 901 /* 902 * btrfs_split_item returns -EAGAIN when the 903 * item changed size or key 904 */ 905 ret = btrfs_split_item(trans, root, path, &key, offset); 906 if (ret && ret != -EAGAIN) { 907 btrfs_abort_transaction(trans, ret); 908 goto out; 909 } 910 911 key.offset = end_byte - 1; 912 } else { 913 truncate_one_csum(fs_info, path, &key, bytenr, len); 914 if (key.offset < bytenr) 915 break; 916 } 917 btrfs_release_path(path); 918 } 919 ret = 0; 920 out: 921 btrfs_free_path(path); 922 return ret; 923 } 924 925 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 926 struct btrfs_root *root, 927 struct btrfs_ordered_sum *sums) 928 { 929 struct btrfs_fs_info *fs_info = root->fs_info; 930 struct btrfs_key file_key; 931 struct btrfs_key found_key; 932 struct btrfs_path *path; 933 struct btrfs_csum_item *item; 934 struct btrfs_csum_item *item_end; 935 struct extent_buffer *leaf = NULL; 936 u64 next_offset; 937 u64 total_bytes = 0; 938 u64 csum_offset; 939 u64 bytenr; 940 u32 nritems; 941 u32 ins_size; 942 int index = 0; 943 int found_next; 944 int ret; 945 const u32 csum_size = fs_info->csum_size; 946 947 path = btrfs_alloc_path(); 948 if (!path) 949 return -ENOMEM; 950 again: 951 next_offset = (u64)-1; 952 found_next = 0; 953 bytenr = sums->bytenr + total_bytes; 954 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 955 file_key.offset = bytenr; 956 file_key.type = BTRFS_EXTENT_CSUM_KEY; 957 958 item = btrfs_lookup_csum(trans, root, path, bytenr, 1); 959 if (!IS_ERR(item)) { 960 ret = 0; 961 leaf = path->nodes[0]; 962 item_end = btrfs_item_ptr(leaf, path->slots[0], 963 struct btrfs_csum_item); 964 item_end = (struct btrfs_csum_item *)((char *)item_end + 965 btrfs_item_size_nr(leaf, path->slots[0])); 966 goto found; 967 } 968 ret = PTR_ERR(item); 969 if (ret != -EFBIG && ret != -ENOENT) 970 goto out; 971 972 if (ret == -EFBIG) { 973 u32 item_size; 974 /* we found one, but it isn't big enough yet */ 975 leaf = path->nodes[0]; 976 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 977 if ((item_size / csum_size) >= 978 MAX_CSUM_ITEMS(fs_info, csum_size)) { 979 /* already at max size, make a new one */ 980 goto insert; 981 } 982 } else { 983 int slot = path->slots[0] + 1; 984 /* we didn't find a csum item, insert one */ 985 nritems = btrfs_header_nritems(path->nodes[0]); 986 if (!nritems || (path->slots[0] >= nritems - 1)) { 987 ret = btrfs_next_leaf(root, path); 988 if (ret < 0) { 989 goto out; 990 } else if (ret > 0) { 991 found_next = 1; 992 goto insert; 993 } 994 slot = path->slots[0]; 995 } 996 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot); 997 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 998 found_key.type != BTRFS_EXTENT_CSUM_KEY) { 999 found_next = 1; 1000 goto insert; 1001 } 1002 next_offset = found_key.offset; 1003 found_next = 1; 1004 goto insert; 1005 } 1006 1007 /* 1008 * At this point, we know the tree has a checksum item that ends at an 1009 * offset matching the start of the checksum range we want to insert. 1010 * We try to extend that item as much as possible and then add as many 1011 * checksums to it as they fit. 1012 * 1013 * First check if the leaf has enough free space for at least one 1014 * checksum. If it has go directly to the item extension code, otherwise 1015 * release the path and do a search for insertion before the extension. 1016 */ 1017 if (btrfs_leaf_free_space(leaf) >= csum_size) { 1018 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1019 csum_offset = (bytenr - found_key.offset) >> 1020 fs_info->sectorsize_bits; 1021 goto extend_csum; 1022 } 1023 1024 btrfs_release_path(path); 1025 path->search_for_extension = 1; 1026 ret = btrfs_search_slot(trans, root, &file_key, path, 1027 csum_size, 1); 1028 path->search_for_extension = 0; 1029 if (ret < 0) 1030 goto out; 1031 1032 if (ret > 0) { 1033 if (path->slots[0] == 0) 1034 goto insert; 1035 path->slots[0]--; 1036 } 1037 1038 leaf = path->nodes[0]; 1039 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1040 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits; 1041 1042 if (found_key.type != BTRFS_EXTENT_CSUM_KEY || 1043 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 1044 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) { 1045 goto insert; 1046 } 1047 1048 extend_csum: 1049 if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) / 1050 csum_size) { 1051 int extend_nr; 1052 u64 tmp; 1053 u32 diff; 1054 1055 tmp = sums->len - total_bytes; 1056 tmp >>= fs_info->sectorsize_bits; 1057 WARN_ON(tmp < 1); 1058 1059 extend_nr = max_t(int, 1, (int)tmp); 1060 diff = (csum_offset + extend_nr) * csum_size; 1061 diff = min(diff, 1062 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size); 1063 1064 diff = diff - btrfs_item_size_nr(leaf, path->slots[0]); 1065 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff); 1066 diff /= csum_size; 1067 diff *= csum_size; 1068 1069 btrfs_extend_item(path, diff); 1070 ret = 0; 1071 goto csum; 1072 } 1073 1074 insert: 1075 btrfs_release_path(path); 1076 csum_offset = 0; 1077 if (found_next) { 1078 u64 tmp; 1079 1080 tmp = sums->len - total_bytes; 1081 tmp >>= fs_info->sectorsize_bits; 1082 tmp = min(tmp, (next_offset - file_key.offset) >> 1083 fs_info->sectorsize_bits); 1084 1085 tmp = max_t(u64, 1, tmp); 1086 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size)); 1087 ins_size = csum_size * tmp; 1088 } else { 1089 ins_size = csum_size; 1090 } 1091 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 1092 ins_size); 1093 if (ret < 0) 1094 goto out; 1095 if (WARN_ON(ret != 0)) 1096 goto out; 1097 leaf = path->nodes[0]; 1098 csum: 1099 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 1100 item_end = (struct btrfs_csum_item *)((unsigned char *)item + 1101 btrfs_item_size_nr(leaf, path->slots[0])); 1102 item = (struct btrfs_csum_item *)((unsigned char *)item + 1103 csum_offset * csum_size); 1104 found: 1105 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits; 1106 ins_size *= csum_size; 1107 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item, 1108 ins_size); 1109 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item, 1110 ins_size); 1111 1112 index += ins_size; 1113 ins_size /= csum_size; 1114 total_bytes += ins_size * fs_info->sectorsize; 1115 1116 btrfs_mark_buffer_dirty(path->nodes[0]); 1117 if (total_bytes < sums->len) { 1118 btrfs_release_path(path); 1119 cond_resched(); 1120 goto again; 1121 } 1122 out: 1123 btrfs_free_path(path); 1124 return ret; 1125 } 1126 1127 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 1128 const struct btrfs_path *path, 1129 struct btrfs_file_extent_item *fi, 1130 const bool new_inline, 1131 struct extent_map *em) 1132 { 1133 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1134 struct btrfs_root *root = inode->root; 1135 struct extent_buffer *leaf = path->nodes[0]; 1136 const int slot = path->slots[0]; 1137 struct btrfs_key key; 1138 u64 extent_start, extent_end; 1139 u64 bytenr; 1140 u8 type = btrfs_file_extent_type(leaf, fi); 1141 int compress_type = btrfs_file_extent_compression(leaf, fi); 1142 1143 btrfs_item_key_to_cpu(leaf, &key, slot); 1144 extent_start = key.offset; 1145 extent_end = btrfs_file_extent_end(path); 1146 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1147 if (type == BTRFS_FILE_EXTENT_REG || 1148 type == BTRFS_FILE_EXTENT_PREALLOC) { 1149 em->start = extent_start; 1150 em->len = extent_end - extent_start; 1151 em->orig_start = extent_start - 1152 btrfs_file_extent_offset(leaf, fi); 1153 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 1154 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1155 if (bytenr == 0) { 1156 em->block_start = EXTENT_MAP_HOLE; 1157 return; 1158 } 1159 if (compress_type != BTRFS_COMPRESS_NONE) { 1160 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1161 em->compress_type = compress_type; 1162 em->block_start = bytenr; 1163 em->block_len = em->orig_block_len; 1164 } else { 1165 bytenr += btrfs_file_extent_offset(leaf, fi); 1166 em->block_start = bytenr; 1167 em->block_len = em->len; 1168 if (type == BTRFS_FILE_EXTENT_PREALLOC) 1169 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 1170 } 1171 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 1172 em->block_start = EXTENT_MAP_INLINE; 1173 em->start = extent_start; 1174 em->len = extent_end - extent_start; 1175 /* 1176 * Initialize orig_start and block_len with the same values 1177 * as in inode.c:btrfs_get_extent(). 1178 */ 1179 em->orig_start = EXTENT_MAP_HOLE; 1180 em->block_len = (u64)-1; 1181 if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) { 1182 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1183 em->compress_type = compress_type; 1184 } 1185 } else { 1186 btrfs_err(fs_info, 1187 "unknown file extent item type %d, inode %llu, offset %llu, " 1188 "root %llu", type, btrfs_ino(inode), extent_start, 1189 root->root_key.objectid); 1190 } 1191 } 1192 1193 /* 1194 * Returns the end offset (non inclusive) of the file extent item the given path 1195 * points to. If it points to an inline extent, the returned offset is rounded 1196 * up to the sector size. 1197 */ 1198 u64 btrfs_file_extent_end(const struct btrfs_path *path) 1199 { 1200 const struct extent_buffer *leaf = path->nodes[0]; 1201 const int slot = path->slots[0]; 1202 struct btrfs_file_extent_item *fi; 1203 struct btrfs_key key; 1204 u64 end; 1205 1206 btrfs_item_key_to_cpu(leaf, &key, slot); 1207 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 1208 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1209 1210 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 1211 end = btrfs_file_extent_ram_bytes(leaf, fi); 1212 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize); 1213 } else { 1214 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1215 } 1216 1217 return end; 1218 } 1219