xref: /linux/fs/btrfs/file-item.c (revision 9e4d52a00a0217857fa40dc998971a375f861a61)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "misc.h"
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "print-tree.h"
18 #include "compression.h"
19 
20 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
21 				   sizeof(struct btrfs_item) * 2) / \
22 				  size) - 1))
23 
24 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
25 				       PAGE_SIZE))
26 
27 /**
28  * Set inode's size according to filesystem options
29  *
30  * @inode:      inode we want to update the disk_i_size for
31  * @new_i_size: i_size we want to set to, 0 if we use i_size
32  *
33  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
34  * returns as it is perfectly fine with a file that has holes without hole file
35  * extent items.
36  *
37  * However without NO_HOLES we need to only return the area that is contiguous
38  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
39  * to an extent that has a gap in between.
40  *
41  * Finally new_i_size should only be set in the case of truncate where we're not
42  * ready to use i_size_read() as the limiter yet.
43  */
44 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
45 {
46 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
47 	u64 start, end, i_size;
48 	int ret;
49 
50 	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
51 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
52 		inode->disk_i_size = i_size;
53 		return;
54 	}
55 
56 	spin_lock(&inode->lock);
57 	ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
58 					 &end, EXTENT_DIRTY);
59 	if (!ret && start == 0)
60 		i_size = min(i_size, end + 1);
61 	else
62 		i_size = 0;
63 	inode->disk_i_size = i_size;
64 	spin_unlock(&inode->lock);
65 }
66 
67 /**
68  * Mark range within a file as having a new extent inserted
69  *
70  * @inode: inode being modified
71  * @start: start file offset of the file extent we've inserted
72  * @len:   logical length of the file extent item
73  *
74  * Call when we are inserting a new file extent where there was none before.
75  * Does not need to call this in the case where we're replacing an existing file
76  * extent, however if not sure it's fine to call this multiple times.
77  *
78  * The start and len must match the file extent item, so thus must be sectorsize
79  * aligned.
80  */
81 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
82 				      u64 len)
83 {
84 	if (len == 0)
85 		return 0;
86 
87 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
88 
89 	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
90 		return 0;
91 	return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
92 			       EXTENT_DIRTY);
93 }
94 
95 /**
96  * Marks an inode range as not having a backing extent
97  *
98  * @inode: inode being modified
99  * @start: start file offset of the file extent we've inserted
100  * @len:   logical length of the file extent item
101  *
102  * Called when we drop a file extent, for example when we truncate.  Doesn't
103  * need to be called for cases where we're replacing a file extent, like when
104  * we've COWed a file extent.
105  *
106  * The start and len must match the file extent item, so thus must be sectorsize
107  * aligned.
108  */
109 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
110 					u64 len)
111 {
112 	if (len == 0)
113 		return 0;
114 
115 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
116 	       len == (u64)-1);
117 
118 	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
119 		return 0;
120 	return clear_extent_bit(&inode->file_extent_tree, start,
121 				start + len - 1, EXTENT_DIRTY, 0, 0, NULL);
122 }
123 
124 static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
125 					u16 csum_size)
126 {
127 	u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
128 
129 	return ncsums * fs_info->sectorsize;
130 }
131 
132 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
133 			     struct btrfs_root *root,
134 			     u64 objectid, u64 pos,
135 			     u64 disk_offset, u64 disk_num_bytes,
136 			     u64 num_bytes, u64 offset, u64 ram_bytes,
137 			     u8 compression, u8 encryption, u16 other_encoding)
138 {
139 	int ret = 0;
140 	struct btrfs_file_extent_item *item;
141 	struct btrfs_key file_key;
142 	struct btrfs_path *path;
143 	struct extent_buffer *leaf;
144 
145 	path = btrfs_alloc_path();
146 	if (!path)
147 		return -ENOMEM;
148 	file_key.objectid = objectid;
149 	file_key.offset = pos;
150 	file_key.type = BTRFS_EXTENT_DATA_KEY;
151 
152 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
153 				      sizeof(*item));
154 	if (ret < 0)
155 		goto out;
156 	BUG_ON(ret); /* Can't happen */
157 	leaf = path->nodes[0];
158 	item = btrfs_item_ptr(leaf, path->slots[0],
159 			      struct btrfs_file_extent_item);
160 	btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
161 	btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
162 	btrfs_set_file_extent_offset(leaf, item, offset);
163 	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
164 	btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
165 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
166 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
167 	btrfs_set_file_extent_compression(leaf, item, compression);
168 	btrfs_set_file_extent_encryption(leaf, item, encryption);
169 	btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
170 
171 	btrfs_mark_buffer_dirty(leaf);
172 out:
173 	btrfs_free_path(path);
174 	return ret;
175 }
176 
177 static struct btrfs_csum_item *
178 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
179 		  struct btrfs_root *root,
180 		  struct btrfs_path *path,
181 		  u64 bytenr, int cow)
182 {
183 	struct btrfs_fs_info *fs_info = root->fs_info;
184 	int ret;
185 	struct btrfs_key file_key;
186 	struct btrfs_key found_key;
187 	struct btrfs_csum_item *item;
188 	struct extent_buffer *leaf;
189 	u64 csum_offset = 0;
190 	const u32 csum_size = fs_info->csum_size;
191 	int csums_in_item;
192 
193 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
194 	file_key.offset = bytenr;
195 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
196 	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
197 	if (ret < 0)
198 		goto fail;
199 	leaf = path->nodes[0];
200 	if (ret > 0) {
201 		ret = 1;
202 		if (path->slots[0] == 0)
203 			goto fail;
204 		path->slots[0]--;
205 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
206 		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
207 			goto fail;
208 
209 		csum_offset = (bytenr - found_key.offset) >>
210 				fs_info->sectorsize_bits;
211 		csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
212 		csums_in_item /= csum_size;
213 
214 		if (csum_offset == csums_in_item) {
215 			ret = -EFBIG;
216 			goto fail;
217 		} else if (csum_offset > csums_in_item) {
218 			goto fail;
219 		}
220 	}
221 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
222 	item = (struct btrfs_csum_item *)((unsigned char *)item +
223 					  csum_offset * csum_size);
224 	return item;
225 fail:
226 	if (ret > 0)
227 		ret = -ENOENT;
228 	return ERR_PTR(ret);
229 }
230 
231 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
232 			     struct btrfs_root *root,
233 			     struct btrfs_path *path, u64 objectid,
234 			     u64 offset, int mod)
235 {
236 	struct btrfs_key file_key;
237 	int ins_len = mod < 0 ? -1 : 0;
238 	int cow = mod != 0;
239 
240 	file_key.objectid = objectid;
241 	file_key.offset = offset;
242 	file_key.type = BTRFS_EXTENT_DATA_KEY;
243 
244 	return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
245 }
246 
247 /*
248  * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
249  * estore the result to @dst.
250  *
251  * Return >0 for the number of sectors we found.
252  * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
253  * for it. Caller may want to try next sector until one range is hit.
254  * Return <0 for fatal error.
255  */
256 static int search_csum_tree(struct btrfs_fs_info *fs_info,
257 			    struct btrfs_path *path, u64 disk_bytenr,
258 			    u64 len, u8 *dst)
259 {
260 	struct btrfs_csum_item *item = NULL;
261 	struct btrfs_key key;
262 	const u32 sectorsize = fs_info->sectorsize;
263 	const u32 csum_size = fs_info->csum_size;
264 	u32 itemsize;
265 	int ret;
266 	u64 csum_start;
267 	u64 csum_len;
268 
269 	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
270 	       IS_ALIGNED(len, sectorsize));
271 
272 	/* Check if the current csum item covers disk_bytenr */
273 	if (path->nodes[0]) {
274 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
275 				      struct btrfs_csum_item);
276 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
277 		itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
278 
279 		csum_start = key.offset;
280 		csum_len = (itemsize / csum_size) * sectorsize;
281 
282 		if (in_range(disk_bytenr, csum_start, csum_len))
283 			goto found;
284 	}
285 
286 	/* Current item doesn't contain the desired range, search again */
287 	btrfs_release_path(path);
288 	item = btrfs_lookup_csum(NULL, fs_info->csum_root, path, disk_bytenr, 0);
289 	if (IS_ERR(item)) {
290 		ret = PTR_ERR(item);
291 		goto out;
292 	}
293 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
294 	itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
295 
296 	csum_start = key.offset;
297 	csum_len = (itemsize / csum_size) * sectorsize;
298 	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
299 
300 found:
301 	ret = (min(csum_start + csum_len, disk_bytenr + len) -
302 		   disk_bytenr) >> fs_info->sectorsize_bits;
303 	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
304 			ret * csum_size);
305 out:
306 	if (ret == -ENOENT)
307 		ret = 0;
308 	return ret;
309 }
310 
311 /*
312  * Locate the file_offset of @cur_disk_bytenr of a @bio.
313  *
314  * Bio of btrfs represents read range of
315  * [bi_sector << 9, bi_sector << 9 + bi_size).
316  * Knowing this, we can iterate through each bvec to locate the page belong to
317  * @cur_disk_bytenr and get the file offset.
318  *
319  * @inode is used to determine if the bvec page really belongs to @inode.
320  *
321  * Return 0 if we can't find the file offset
322  * Return >0 if we find the file offset and restore it to @file_offset_ret
323  */
324 static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
325 				     u64 disk_bytenr, u64 *file_offset_ret)
326 {
327 	struct bvec_iter iter;
328 	struct bio_vec bvec;
329 	u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
330 	int ret = 0;
331 
332 	bio_for_each_segment(bvec, bio, iter) {
333 		struct page *page = bvec.bv_page;
334 
335 		if (cur > disk_bytenr)
336 			break;
337 		if (cur + bvec.bv_len <= disk_bytenr) {
338 			cur += bvec.bv_len;
339 			continue;
340 		}
341 		ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
342 		if (page->mapping && page->mapping->host &&
343 		    page->mapping->host == inode) {
344 			ret = 1;
345 			*file_offset_ret = page_offset(page) + bvec.bv_offset +
346 					   disk_bytenr - cur;
347 			break;
348 		}
349 	}
350 	return ret;
351 }
352 
353 /**
354  * Lookup the checksum for the read bio in csum tree.
355  *
356  * @inode: inode that the bio is for.
357  * @bio: bio to look up.
358  * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
359  *       checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
360  *       NULL, the checksum buffer is allocated and returned in
361  *       btrfs_bio(bio)->csum instead.
362  *
363  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
364  */
365 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst)
366 {
367 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
368 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
369 	struct btrfs_path *path;
370 	const u32 sectorsize = fs_info->sectorsize;
371 	const u32 csum_size = fs_info->csum_size;
372 	u32 orig_len = bio->bi_iter.bi_size;
373 	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
374 	u64 cur_disk_bytenr;
375 	u8 *csum;
376 	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
377 	int count = 0;
378 
379 	if (!fs_info->csum_root || (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
380 		return BLK_STS_OK;
381 
382 	/*
383 	 * This function is only called for read bio.
384 	 *
385 	 * This means two things:
386 	 * - All our csums should only be in csum tree
387 	 *   No ordered extents csums, as ordered extents are only for write
388 	 *   path.
389 	 * - No need to bother any other info from bvec
390 	 *   Since we're looking up csums, the only important info is the
391 	 *   disk_bytenr and the length, which can be extracted from bi_iter
392 	 *   directly.
393 	 */
394 	ASSERT(bio_op(bio) == REQ_OP_READ);
395 	path = btrfs_alloc_path();
396 	if (!path)
397 		return BLK_STS_RESOURCE;
398 
399 	if (!dst) {
400 		struct btrfs_bio *bbio = btrfs_bio(bio);
401 
402 		if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
403 			bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
404 			if (!bbio->csum) {
405 				btrfs_free_path(path);
406 				return BLK_STS_RESOURCE;
407 			}
408 		} else {
409 			bbio->csum = bbio->csum_inline;
410 		}
411 		csum = bbio->csum;
412 	} else {
413 		csum = dst;
414 	}
415 
416 	/*
417 	 * If requested number of sectors is larger than one leaf can contain,
418 	 * kick the readahead for csum tree.
419 	 */
420 	if (nblocks > fs_info->csums_per_leaf)
421 		path->reada = READA_FORWARD;
422 
423 	/*
424 	 * the free space stuff is only read when it hasn't been
425 	 * updated in the current transaction.  So, we can safely
426 	 * read from the commit root and sidestep a nasty deadlock
427 	 * between reading the free space cache and updating the csum tree.
428 	 */
429 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
430 		path->search_commit_root = 1;
431 		path->skip_locking = 1;
432 	}
433 
434 	for (cur_disk_bytenr = orig_disk_bytenr;
435 	     cur_disk_bytenr < orig_disk_bytenr + orig_len;
436 	     cur_disk_bytenr += (count * sectorsize)) {
437 		u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
438 		unsigned int sector_offset;
439 		u8 *csum_dst;
440 
441 		/*
442 		 * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
443 		 * we're calculating the offset to the bio start.
444 		 *
445 		 * Bio size is limited to UINT_MAX, thus unsigned int is large
446 		 * enough to contain the raw result, not to mention the right
447 		 * shifted result.
448 		 */
449 		ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
450 		sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
451 				fs_info->sectorsize_bits;
452 		csum_dst = csum + sector_offset * csum_size;
453 
454 		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
455 					 search_len, csum_dst);
456 		if (count <= 0) {
457 			/*
458 			 * Either we hit a critical error or we didn't find
459 			 * the csum.
460 			 * Either way, we put zero into the csums dst, and skip
461 			 * to the next sector.
462 			 */
463 			memset(csum_dst, 0, csum_size);
464 			count = 1;
465 
466 			/*
467 			 * For data reloc inode, we need to mark the range
468 			 * NODATASUM so that balance won't report false csum
469 			 * error.
470 			 */
471 			if (BTRFS_I(inode)->root->root_key.objectid ==
472 			    BTRFS_DATA_RELOC_TREE_OBJECTID) {
473 				u64 file_offset;
474 				int ret;
475 
476 				ret = search_file_offset_in_bio(bio, inode,
477 						cur_disk_bytenr, &file_offset);
478 				if (ret)
479 					set_extent_bits(io_tree, file_offset,
480 						file_offset + sectorsize - 1,
481 						EXTENT_NODATASUM);
482 			} else {
483 				btrfs_warn_rl(fs_info,
484 			"csum hole found for disk bytenr range [%llu, %llu)",
485 				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
486 			}
487 		}
488 	}
489 
490 	btrfs_free_path(path);
491 	return BLK_STS_OK;
492 }
493 
494 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
495 			     struct list_head *list, int search_commit)
496 {
497 	struct btrfs_fs_info *fs_info = root->fs_info;
498 	struct btrfs_key key;
499 	struct btrfs_path *path;
500 	struct extent_buffer *leaf;
501 	struct btrfs_ordered_sum *sums;
502 	struct btrfs_csum_item *item;
503 	LIST_HEAD(tmplist);
504 	unsigned long offset;
505 	int ret;
506 	size_t size;
507 	u64 csum_end;
508 	const u32 csum_size = fs_info->csum_size;
509 
510 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
511 	       IS_ALIGNED(end + 1, fs_info->sectorsize));
512 
513 	path = btrfs_alloc_path();
514 	if (!path)
515 		return -ENOMEM;
516 
517 	if (search_commit) {
518 		path->skip_locking = 1;
519 		path->reada = READA_FORWARD;
520 		path->search_commit_root = 1;
521 	}
522 
523 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
524 	key.offset = start;
525 	key.type = BTRFS_EXTENT_CSUM_KEY;
526 
527 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
528 	if (ret < 0)
529 		goto fail;
530 	if (ret > 0 && path->slots[0] > 0) {
531 		leaf = path->nodes[0];
532 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
533 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
534 		    key.type == BTRFS_EXTENT_CSUM_KEY) {
535 			offset = (start - key.offset) >> fs_info->sectorsize_bits;
536 			if (offset * csum_size <
537 			    btrfs_item_size_nr(leaf, path->slots[0] - 1))
538 				path->slots[0]--;
539 		}
540 	}
541 
542 	while (start <= end) {
543 		leaf = path->nodes[0];
544 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
545 			ret = btrfs_next_leaf(root, path);
546 			if (ret < 0)
547 				goto fail;
548 			if (ret > 0)
549 				break;
550 			leaf = path->nodes[0];
551 		}
552 
553 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
554 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
555 		    key.type != BTRFS_EXTENT_CSUM_KEY ||
556 		    key.offset > end)
557 			break;
558 
559 		if (key.offset > start)
560 			start = key.offset;
561 
562 		size = btrfs_item_size_nr(leaf, path->slots[0]);
563 		csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
564 		if (csum_end <= start) {
565 			path->slots[0]++;
566 			continue;
567 		}
568 
569 		csum_end = min(csum_end, end + 1);
570 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
571 				      struct btrfs_csum_item);
572 		while (start < csum_end) {
573 			size = min_t(size_t, csum_end - start,
574 				     max_ordered_sum_bytes(fs_info, csum_size));
575 			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
576 				       GFP_NOFS);
577 			if (!sums) {
578 				ret = -ENOMEM;
579 				goto fail;
580 			}
581 
582 			sums->bytenr = start;
583 			sums->len = (int)size;
584 
585 			offset = (start - key.offset) >> fs_info->sectorsize_bits;
586 			offset *= csum_size;
587 			size >>= fs_info->sectorsize_bits;
588 
589 			read_extent_buffer(path->nodes[0],
590 					   sums->sums,
591 					   ((unsigned long)item) + offset,
592 					   csum_size * size);
593 
594 			start += fs_info->sectorsize * size;
595 			list_add_tail(&sums->list, &tmplist);
596 		}
597 		path->slots[0]++;
598 	}
599 	ret = 0;
600 fail:
601 	while (ret < 0 && !list_empty(&tmplist)) {
602 		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
603 		list_del(&sums->list);
604 		kfree(sums);
605 	}
606 	list_splice_tail(&tmplist, list);
607 
608 	btrfs_free_path(path);
609 	return ret;
610 }
611 
612 /*
613  * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
614  * @inode:	 Owner of the data inside the bio
615  * @bio:	 Contains the data to be checksummed
616  * @file_start:  offset in file this bio begins to describe
617  * @contig:	 Boolean. If true/1 means all bio vecs in this bio are
618  *		 contiguous and they begin at @file_start in the file. False/0
619  *		 means this bio can contain potentially discontiguous bio vecs
620  *		 so the logical offset of each should be calculated separately.
621  */
622 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
623 		       u64 file_start, int contig)
624 {
625 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
626 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
627 	struct btrfs_ordered_sum *sums;
628 	struct btrfs_ordered_extent *ordered = NULL;
629 	char *data;
630 	struct bvec_iter iter;
631 	struct bio_vec bvec;
632 	int index;
633 	int nr_sectors;
634 	unsigned long total_bytes = 0;
635 	unsigned long this_sum_bytes = 0;
636 	int i;
637 	u64 offset;
638 	unsigned nofs_flag;
639 
640 	nofs_flag = memalloc_nofs_save();
641 	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
642 		       GFP_KERNEL);
643 	memalloc_nofs_restore(nofs_flag);
644 
645 	if (!sums)
646 		return BLK_STS_RESOURCE;
647 
648 	sums->len = bio->bi_iter.bi_size;
649 	INIT_LIST_HEAD(&sums->list);
650 
651 	if (contig)
652 		offset = file_start;
653 	else
654 		offset = 0; /* shut up gcc */
655 
656 	sums->bytenr = bio->bi_iter.bi_sector << 9;
657 	index = 0;
658 
659 	shash->tfm = fs_info->csum_shash;
660 
661 	bio_for_each_segment(bvec, bio, iter) {
662 		if (!contig)
663 			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
664 
665 		if (!ordered) {
666 			ordered = btrfs_lookup_ordered_extent(inode, offset);
667 			/*
668 			 * The bio range is not covered by any ordered extent,
669 			 * must be a code logic error.
670 			 */
671 			if (unlikely(!ordered)) {
672 				WARN(1, KERN_WARNING
673 			"no ordered extent for root %llu ino %llu offset %llu\n",
674 				     inode->root->root_key.objectid,
675 				     btrfs_ino(inode), offset);
676 				kvfree(sums);
677 				return BLK_STS_IOERR;
678 			}
679 		}
680 
681 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
682 						 bvec.bv_len + fs_info->sectorsize
683 						 - 1);
684 
685 		for (i = 0; i < nr_sectors; i++) {
686 			if (offset >= ordered->file_offset + ordered->num_bytes ||
687 			    offset < ordered->file_offset) {
688 				unsigned long bytes_left;
689 
690 				sums->len = this_sum_bytes;
691 				this_sum_bytes = 0;
692 				btrfs_add_ordered_sum(ordered, sums);
693 				btrfs_put_ordered_extent(ordered);
694 
695 				bytes_left = bio->bi_iter.bi_size - total_bytes;
696 
697 				nofs_flag = memalloc_nofs_save();
698 				sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
699 						      bytes_left), GFP_KERNEL);
700 				memalloc_nofs_restore(nofs_flag);
701 				BUG_ON(!sums); /* -ENOMEM */
702 				sums->len = bytes_left;
703 				ordered = btrfs_lookup_ordered_extent(inode,
704 								offset);
705 				ASSERT(ordered); /* Logic error */
706 				sums->bytenr = (bio->bi_iter.bi_sector << 9)
707 					+ total_bytes;
708 				index = 0;
709 			}
710 
711 			data = bvec_kmap_local(&bvec);
712 			crypto_shash_digest(shash,
713 					    data + (i * fs_info->sectorsize),
714 					    fs_info->sectorsize,
715 					    sums->sums + index);
716 			kunmap_local(data);
717 			index += fs_info->csum_size;
718 			offset += fs_info->sectorsize;
719 			this_sum_bytes += fs_info->sectorsize;
720 			total_bytes += fs_info->sectorsize;
721 		}
722 
723 	}
724 	this_sum_bytes = 0;
725 	btrfs_add_ordered_sum(ordered, sums);
726 	btrfs_put_ordered_extent(ordered);
727 	return 0;
728 }
729 
730 /*
731  * helper function for csum removal, this expects the
732  * key to describe the csum pointed to by the path, and it expects
733  * the csum to overlap the range [bytenr, len]
734  *
735  * The csum should not be entirely contained in the range and the
736  * range should not be entirely contained in the csum.
737  *
738  * This calls btrfs_truncate_item with the correct args based on the
739  * overlap, and fixes up the key as required.
740  */
741 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
742 				       struct btrfs_path *path,
743 				       struct btrfs_key *key,
744 				       u64 bytenr, u64 len)
745 {
746 	struct extent_buffer *leaf;
747 	const u32 csum_size = fs_info->csum_size;
748 	u64 csum_end;
749 	u64 end_byte = bytenr + len;
750 	u32 blocksize_bits = fs_info->sectorsize_bits;
751 
752 	leaf = path->nodes[0];
753 	csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
754 	csum_end <<= blocksize_bits;
755 	csum_end += key->offset;
756 
757 	if (key->offset < bytenr && csum_end <= end_byte) {
758 		/*
759 		 *         [ bytenr - len ]
760 		 *         [   ]
761 		 *   [csum     ]
762 		 *   A simple truncate off the end of the item
763 		 */
764 		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
765 		new_size *= csum_size;
766 		btrfs_truncate_item(path, new_size, 1);
767 	} else if (key->offset >= bytenr && csum_end > end_byte &&
768 		   end_byte > key->offset) {
769 		/*
770 		 *         [ bytenr - len ]
771 		 *                 [ ]
772 		 *                 [csum     ]
773 		 * we need to truncate from the beginning of the csum
774 		 */
775 		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
776 		new_size *= csum_size;
777 
778 		btrfs_truncate_item(path, new_size, 0);
779 
780 		key->offset = end_byte;
781 		btrfs_set_item_key_safe(fs_info, path, key);
782 	} else {
783 		BUG();
784 	}
785 }
786 
787 /*
788  * deletes the csum items from the csum tree for a given
789  * range of bytes.
790  */
791 int btrfs_del_csums(struct btrfs_trans_handle *trans,
792 		    struct btrfs_root *root, u64 bytenr, u64 len)
793 {
794 	struct btrfs_fs_info *fs_info = trans->fs_info;
795 	struct btrfs_path *path;
796 	struct btrfs_key key;
797 	u64 end_byte = bytenr + len;
798 	u64 csum_end;
799 	struct extent_buffer *leaf;
800 	int ret = 0;
801 	const u32 csum_size = fs_info->csum_size;
802 	u32 blocksize_bits = fs_info->sectorsize_bits;
803 
804 	ASSERT(root == fs_info->csum_root ||
805 	       root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
806 
807 	path = btrfs_alloc_path();
808 	if (!path)
809 		return -ENOMEM;
810 
811 	while (1) {
812 		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
813 		key.offset = end_byte - 1;
814 		key.type = BTRFS_EXTENT_CSUM_KEY;
815 
816 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
817 		if (ret > 0) {
818 			ret = 0;
819 			if (path->slots[0] == 0)
820 				break;
821 			path->slots[0]--;
822 		} else if (ret < 0) {
823 			break;
824 		}
825 
826 		leaf = path->nodes[0];
827 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
828 
829 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
830 		    key.type != BTRFS_EXTENT_CSUM_KEY) {
831 			break;
832 		}
833 
834 		if (key.offset >= end_byte)
835 			break;
836 
837 		csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
838 		csum_end <<= blocksize_bits;
839 		csum_end += key.offset;
840 
841 		/* this csum ends before we start, we're done */
842 		if (csum_end <= bytenr)
843 			break;
844 
845 		/* delete the entire item, it is inside our range */
846 		if (key.offset >= bytenr && csum_end <= end_byte) {
847 			int del_nr = 1;
848 
849 			/*
850 			 * Check how many csum items preceding this one in this
851 			 * leaf correspond to our range and then delete them all
852 			 * at once.
853 			 */
854 			if (key.offset > bytenr && path->slots[0] > 0) {
855 				int slot = path->slots[0] - 1;
856 
857 				while (slot >= 0) {
858 					struct btrfs_key pk;
859 
860 					btrfs_item_key_to_cpu(leaf, &pk, slot);
861 					if (pk.offset < bytenr ||
862 					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
863 					    pk.objectid !=
864 					    BTRFS_EXTENT_CSUM_OBJECTID)
865 						break;
866 					path->slots[0] = slot;
867 					del_nr++;
868 					key.offset = pk.offset;
869 					slot--;
870 				}
871 			}
872 			ret = btrfs_del_items(trans, root, path,
873 					      path->slots[0], del_nr);
874 			if (ret)
875 				break;
876 			if (key.offset == bytenr)
877 				break;
878 		} else if (key.offset < bytenr && csum_end > end_byte) {
879 			unsigned long offset;
880 			unsigned long shift_len;
881 			unsigned long item_offset;
882 			/*
883 			 *        [ bytenr - len ]
884 			 *     [csum                ]
885 			 *
886 			 * Our bytes are in the middle of the csum,
887 			 * we need to split this item and insert a new one.
888 			 *
889 			 * But we can't drop the path because the
890 			 * csum could change, get removed, extended etc.
891 			 *
892 			 * The trick here is the max size of a csum item leaves
893 			 * enough room in the tree block for a single
894 			 * item header.  So, we split the item in place,
895 			 * adding a new header pointing to the existing
896 			 * bytes.  Then we loop around again and we have
897 			 * a nicely formed csum item that we can neatly
898 			 * truncate.
899 			 */
900 			offset = (bytenr - key.offset) >> blocksize_bits;
901 			offset *= csum_size;
902 
903 			shift_len = (len >> blocksize_bits) * csum_size;
904 
905 			item_offset = btrfs_item_ptr_offset(leaf,
906 							    path->slots[0]);
907 
908 			memzero_extent_buffer(leaf, item_offset + offset,
909 					     shift_len);
910 			key.offset = bytenr;
911 
912 			/*
913 			 * btrfs_split_item returns -EAGAIN when the
914 			 * item changed size or key
915 			 */
916 			ret = btrfs_split_item(trans, root, path, &key, offset);
917 			if (ret && ret != -EAGAIN) {
918 				btrfs_abort_transaction(trans, ret);
919 				break;
920 			}
921 			ret = 0;
922 
923 			key.offset = end_byte - 1;
924 		} else {
925 			truncate_one_csum(fs_info, path, &key, bytenr, len);
926 			if (key.offset < bytenr)
927 				break;
928 		}
929 		btrfs_release_path(path);
930 	}
931 	btrfs_free_path(path);
932 	return ret;
933 }
934 
935 static int find_next_csum_offset(struct btrfs_root *root,
936 				 struct btrfs_path *path,
937 				 u64 *next_offset)
938 {
939 	const u32 nritems = btrfs_header_nritems(path->nodes[0]);
940 	struct btrfs_key found_key;
941 	int slot = path->slots[0] + 1;
942 	int ret;
943 
944 	if (nritems == 0 || slot >= nritems) {
945 		ret = btrfs_next_leaf(root, path);
946 		if (ret < 0) {
947 			return ret;
948 		} else if (ret > 0) {
949 			*next_offset = (u64)-1;
950 			return 0;
951 		}
952 		slot = path->slots[0];
953 	}
954 
955 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
956 
957 	if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
958 	    found_key.type != BTRFS_EXTENT_CSUM_KEY)
959 		*next_offset = (u64)-1;
960 	else
961 		*next_offset = found_key.offset;
962 
963 	return 0;
964 }
965 
966 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
967 			   struct btrfs_root *root,
968 			   struct btrfs_ordered_sum *sums)
969 {
970 	struct btrfs_fs_info *fs_info = root->fs_info;
971 	struct btrfs_key file_key;
972 	struct btrfs_key found_key;
973 	struct btrfs_path *path;
974 	struct btrfs_csum_item *item;
975 	struct btrfs_csum_item *item_end;
976 	struct extent_buffer *leaf = NULL;
977 	u64 next_offset;
978 	u64 total_bytes = 0;
979 	u64 csum_offset;
980 	u64 bytenr;
981 	u32 ins_size;
982 	int index = 0;
983 	int found_next;
984 	int ret;
985 	const u32 csum_size = fs_info->csum_size;
986 
987 	path = btrfs_alloc_path();
988 	if (!path)
989 		return -ENOMEM;
990 again:
991 	next_offset = (u64)-1;
992 	found_next = 0;
993 	bytenr = sums->bytenr + total_bytes;
994 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
995 	file_key.offset = bytenr;
996 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
997 
998 	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
999 	if (!IS_ERR(item)) {
1000 		ret = 0;
1001 		leaf = path->nodes[0];
1002 		item_end = btrfs_item_ptr(leaf, path->slots[0],
1003 					  struct btrfs_csum_item);
1004 		item_end = (struct btrfs_csum_item *)((char *)item_end +
1005 			   btrfs_item_size_nr(leaf, path->slots[0]));
1006 		goto found;
1007 	}
1008 	ret = PTR_ERR(item);
1009 	if (ret != -EFBIG && ret != -ENOENT)
1010 		goto out;
1011 
1012 	if (ret == -EFBIG) {
1013 		u32 item_size;
1014 		/* we found one, but it isn't big enough yet */
1015 		leaf = path->nodes[0];
1016 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1017 		if ((item_size / csum_size) >=
1018 		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
1019 			/* already at max size, make a new one */
1020 			goto insert;
1021 		}
1022 	} else {
1023 		/* We didn't find a csum item, insert one. */
1024 		ret = find_next_csum_offset(root, path, &next_offset);
1025 		if (ret < 0)
1026 			goto out;
1027 		found_next = 1;
1028 		goto insert;
1029 	}
1030 
1031 	/*
1032 	 * At this point, we know the tree has a checksum item that ends at an
1033 	 * offset matching the start of the checksum range we want to insert.
1034 	 * We try to extend that item as much as possible and then add as many
1035 	 * checksums to it as they fit.
1036 	 *
1037 	 * First check if the leaf has enough free space for at least one
1038 	 * checksum. If it has go directly to the item extension code, otherwise
1039 	 * release the path and do a search for insertion before the extension.
1040 	 */
1041 	if (btrfs_leaf_free_space(leaf) >= csum_size) {
1042 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1043 		csum_offset = (bytenr - found_key.offset) >>
1044 			fs_info->sectorsize_bits;
1045 		goto extend_csum;
1046 	}
1047 
1048 	btrfs_release_path(path);
1049 	path->search_for_extension = 1;
1050 	ret = btrfs_search_slot(trans, root, &file_key, path,
1051 				csum_size, 1);
1052 	path->search_for_extension = 0;
1053 	if (ret < 0)
1054 		goto out;
1055 
1056 	if (ret > 0) {
1057 		if (path->slots[0] == 0)
1058 			goto insert;
1059 		path->slots[0]--;
1060 	}
1061 
1062 	leaf = path->nodes[0];
1063 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1064 	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1065 
1066 	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1067 	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1068 	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1069 		goto insert;
1070 	}
1071 
1072 extend_csum:
1073 	if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) /
1074 	    csum_size) {
1075 		int extend_nr;
1076 		u64 tmp;
1077 		u32 diff;
1078 
1079 		tmp = sums->len - total_bytes;
1080 		tmp >>= fs_info->sectorsize_bits;
1081 		WARN_ON(tmp < 1);
1082 		extend_nr = max_t(int, 1, tmp);
1083 
1084 		/*
1085 		 * A log tree can already have checksum items with a subset of
1086 		 * the checksums we are trying to log. This can happen after
1087 		 * doing a sequence of partial writes into prealloc extents and
1088 		 * fsyncs in between, with a full fsync logging a larger subrange
1089 		 * of an extent for which a previous fast fsync logged a smaller
1090 		 * subrange. And this happens in particular due to merging file
1091 		 * extent items when we complete an ordered extent for a range
1092 		 * covered by a prealloc extent - this is done at
1093 		 * btrfs_mark_extent_written().
1094 		 *
1095 		 * So if we try to extend the previous checksum item, which has
1096 		 * a range that ends at the start of the range we want to insert,
1097 		 * make sure we don't extend beyond the start offset of the next
1098 		 * checksum item. If we are at the last item in the leaf, then
1099 		 * forget the optimization of extending and add a new checksum
1100 		 * item - it is not worth the complexity of releasing the path,
1101 		 * getting the first key for the next leaf, repeat the btree
1102 		 * search, etc, because log trees are temporary anyway and it
1103 		 * would only save a few bytes of leaf space.
1104 		 */
1105 		if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1106 			if (path->slots[0] + 1 >=
1107 			    btrfs_header_nritems(path->nodes[0])) {
1108 				ret = find_next_csum_offset(root, path, &next_offset);
1109 				if (ret < 0)
1110 					goto out;
1111 				found_next = 1;
1112 				goto insert;
1113 			}
1114 
1115 			ret = find_next_csum_offset(root, path, &next_offset);
1116 			if (ret < 0)
1117 				goto out;
1118 
1119 			tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1120 			if (tmp <= INT_MAX)
1121 				extend_nr = min_t(int, extend_nr, tmp);
1122 		}
1123 
1124 		diff = (csum_offset + extend_nr) * csum_size;
1125 		diff = min(diff,
1126 			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1127 
1128 		diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
1129 		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1130 		diff /= csum_size;
1131 		diff *= csum_size;
1132 
1133 		btrfs_extend_item(path, diff);
1134 		ret = 0;
1135 		goto csum;
1136 	}
1137 
1138 insert:
1139 	btrfs_release_path(path);
1140 	csum_offset = 0;
1141 	if (found_next) {
1142 		u64 tmp;
1143 
1144 		tmp = sums->len - total_bytes;
1145 		tmp >>= fs_info->sectorsize_bits;
1146 		tmp = min(tmp, (next_offset - file_key.offset) >>
1147 					 fs_info->sectorsize_bits);
1148 
1149 		tmp = max_t(u64, 1, tmp);
1150 		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1151 		ins_size = csum_size * tmp;
1152 	} else {
1153 		ins_size = csum_size;
1154 	}
1155 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1156 				      ins_size);
1157 	if (ret < 0)
1158 		goto out;
1159 	if (WARN_ON(ret != 0))
1160 		goto out;
1161 	leaf = path->nodes[0];
1162 csum:
1163 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1164 	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1165 				      btrfs_item_size_nr(leaf, path->slots[0]));
1166 	item = (struct btrfs_csum_item *)((unsigned char *)item +
1167 					  csum_offset * csum_size);
1168 found:
1169 	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1170 	ins_size *= csum_size;
1171 	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1172 			      ins_size);
1173 	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1174 			    ins_size);
1175 
1176 	index += ins_size;
1177 	ins_size /= csum_size;
1178 	total_bytes += ins_size * fs_info->sectorsize;
1179 
1180 	btrfs_mark_buffer_dirty(path->nodes[0]);
1181 	if (total_bytes < sums->len) {
1182 		btrfs_release_path(path);
1183 		cond_resched();
1184 		goto again;
1185 	}
1186 out:
1187 	btrfs_free_path(path);
1188 	return ret;
1189 }
1190 
1191 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1192 				     const struct btrfs_path *path,
1193 				     struct btrfs_file_extent_item *fi,
1194 				     const bool new_inline,
1195 				     struct extent_map *em)
1196 {
1197 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1198 	struct btrfs_root *root = inode->root;
1199 	struct extent_buffer *leaf = path->nodes[0];
1200 	const int slot = path->slots[0];
1201 	struct btrfs_key key;
1202 	u64 extent_start, extent_end;
1203 	u64 bytenr;
1204 	u8 type = btrfs_file_extent_type(leaf, fi);
1205 	int compress_type = btrfs_file_extent_compression(leaf, fi);
1206 
1207 	btrfs_item_key_to_cpu(leaf, &key, slot);
1208 	extent_start = key.offset;
1209 	extent_end = btrfs_file_extent_end(path);
1210 	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1211 	if (type == BTRFS_FILE_EXTENT_REG ||
1212 	    type == BTRFS_FILE_EXTENT_PREALLOC) {
1213 		em->start = extent_start;
1214 		em->len = extent_end - extent_start;
1215 		em->orig_start = extent_start -
1216 			btrfs_file_extent_offset(leaf, fi);
1217 		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1218 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1219 		if (bytenr == 0) {
1220 			em->block_start = EXTENT_MAP_HOLE;
1221 			return;
1222 		}
1223 		if (compress_type != BTRFS_COMPRESS_NONE) {
1224 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1225 			em->compress_type = compress_type;
1226 			em->block_start = bytenr;
1227 			em->block_len = em->orig_block_len;
1228 		} else {
1229 			bytenr += btrfs_file_extent_offset(leaf, fi);
1230 			em->block_start = bytenr;
1231 			em->block_len = em->len;
1232 			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1233 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1234 		}
1235 	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1236 		em->block_start = EXTENT_MAP_INLINE;
1237 		em->start = extent_start;
1238 		em->len = extent_end - extent_start;
1239 		/*
1240 		 * Initialize orig_start and block_len with the same values
1241 		 * as in inode.c:btrfs_get_extent().
1242 		 */
1243 		em->orig_start = EXTENT_MAP_HOLE;
1244 		em->block_len = (u64)-1;
1245 		if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
1246 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1247 			em->compress_type = compress_type;
1248 		}
1249 	} else {
1250 		btrfs_err(fs_info,
1251 			  "unknown file extent item type %d, inode %llu, offset %llu, "
1252 			  "root %llu", type, btrfs_ino(inode), extent_start,
1253 			  root->root_key.objectid);
1254 	}
1255 }
1256 
1257 /*
1258  * Returns the end offset (non inclusive) of the file extent item the given path
1259  * points to. If it points to an inline extent, the returned offset is rounded
1260  * up to the sector size.
1261  */
1262 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1263 {
1264 	const struct extent_buffer *leaf = path->nodes[0];
1265 	const int slot = path->slots[0];
1266 	struct btrfs_file_extent_item *fi;
1267 	struct btrfs_key key;
1268 	u64 end;
1269 
1270 	btrfs_item_key_to_cpu(leaf, &key, slot);
1271 	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1272 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1273 
1274 	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1275 		end = btrfs_file_extent_ram_bytes(leaf, fi);
1276 		end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1277 	} else {
1278 		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1279 	}
1280 
1281 	return end;
1282 }
1283