1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/bio.h> 7 #include <linux/slab.h> 8 #include <linux/pagemap.h> 9 #include <linux/highmem.h> 10 #include <linux/sched/mm.h> 11 #include <crypto/hash.h> 12 #include "messages.h" 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "bio.h" 17 #include "compression.h" 18 #include "fs.h" 19 #include "accessors.h" 20 #include "file-item.h" 21 22 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \ 23 sizeof(struct btrfs_item) * 2) / \ 24 size) - 1)) 25 26 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \ 27 PAGE_SIZE)) 28 29 /* 30 * Set inode's size according to filesystem options. 31 * 32 * @inode: inode we want to update the disk_i_size for 33 * @new_i_size: i_size we want to set to, 0 if we use i_size 34 * 35 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read() 36 * returns as it is perfectly fine with a file that has holes without hole file 37 * extent items. 38 * 39 * However without NO_HOLES we need to only return the area that is contiguous 40 * from the 0 offset of the file. Otherwise we could end up adjust i_size up 41 * to an extent that has a gap in between. 42 * 43 * Finally new_i_size should only be set in the case of truncate where we're not 44 * ready to use i_size_read() as the limiter yet. 45 */ 46 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size) 47 { 48 struct btrfs_fs_info *fs_info = inode->root->fs_info; 49 u64 start, end, i_size; 50 int ret; 51 52 spin_lock(&inode->lock); 53 i_size = new_i_size ?: i_size_read(&inode->vfs_inode); 54 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 55 inode->disk_i_size = i_size; 56 goto out_unlock; 57 } 58 59 ret = find_contiguous_extent_bit(inode->file_extent_tree, 0, &start, 60 &end, EXTENT_DIRTY); 61 if (!ret && start == 0) 62 i_size = min(i_size, end + 1); 63 else 64 i_size = 0; 65 inode->disk_i_size = i_size; 66 out_unlock: 67 spin_unlock(&inode->lock); 68 } 69 70 /* 71 * Mark range within a file as having a new extent inserted. 72 * 73 * @inode: inode being modified 74 * @start: start file offset of the file extent we've inserted 75 * @len: logical length of the file extent item 76 * 77 * Call when we are inserting a new file extent where there was none before. 78 * Does not need to call this in the case where we're replacing an existing file 79 * extent, however if not sure it's fine to call this multiple times. 80 * 81 * The start and len must match the file extent item, so thus must be sectorsize 82 * aligned. 83 */ 84 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 85 u64 len) 86 { 87 if (len == 0) 88 return 0; 89 90 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize)); 91 92 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 93 return 0; 94 return set_extent_bit(inode->file_extent_tree, start, start + len - 1, 95 EXTENT_DIRTY, NULL); 96 } 97 98 /* 99 * Mark an inode range as not having a backing extent. 100 * 101 * @inode: inode being modified 102 * @start: start file offset of the file extent we've inserted 103 * @len: logical length of the file extent item 104 * 105 * Called when we drop a file extent, for example when we truncate. Doesn't 106 * need to be called for cases where we're replacing a file extent, like when 107 * we've COWed a file extent. 108 * 109 * The start and len must match the file extent item, so thus must be sectorsize 110 * aligned. 111 */ 112 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 113 u64 len) 114 { 115 if (len == 0) 116 return 0; 117 118 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) || 119 len == (u64)-1); 120 121 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 122 return 0; 123 return clear_extent_bit(inode->file_extent_tree, start, 124 start + len - 1, EXTENT_DIRTY, NULL); 125 } 126 127 static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes) 128 { 129 ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize)); 130 131 return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size; 132 } 133 134 static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size) 135 { 136 ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size)); 137 138 return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits; 139 } 140 141 static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info) 142 { 143 u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum), 144 fs_info->csum_size); 145 146 return csum_size_to_bytes(fs_info, max_csum_size); 147 } 148 149 /* 150 * Calculate the total size needed to allocate for an ordered sum structure 151 * spanning @bytes in the file. 152 */ 153 static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes) 154 { 155 return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes); 156 } 157 158 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans, 159 struct btrfs_root *root, 160 u64 objectid, u64 pos, u64 num_bytes) 161 { 162 int ret = 0; 163 struct btrfs_file_extent_item *item; 164 struct btrfs_key file_key; 165 struct btrfs_path *path; 166 struct extent_buffer *leaf; 167 168 path = btrfs_alloc_path(); 169 if (!path) 170 return -ENOMEM; 171 file_key.objectid = objectid; 172 file_key.offset = pos; 173 file_key.type = BTRFS_EXTENT_DATA_KEY; 174 175 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 176 sizeof(*item)); 177 if (ret < 0) 178 goto out; 179 leaf = path->nodes[0]; 180 item = btrfs_item_ptr(leaf, path->slots[0], 181 struct btrfs_file_extent_item); 182 btrfs_set_file_extent_disk_bytenr(leaf, item, 0); 183 btrfs_set_file_extent_disk_num_bytes(leaf, item, 0); 184 btrfs_set_file_extent_offset(leaf, item, 0); 185 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes); 186 btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes); 187 btrfs_set_file_extent_generation(leaf, item, trans->transid); 188 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 189 btrfs_set_file_extent_compression(leaf, item, 0); 190 btrfs_set_file_extent_encryption(leaf, item, 0); 191 btrfs_set_file_extent_other_encoding(leaf, item, 0); 192 193 btrfs_mark_buffer_dirty(trans, leaf); 194 out: 195 btrfs_free_path(path); 196 return ret; 197 } 198 199 static struct btrfs_csum_item * 200 btrfs_lookup_csum(struct btrfs_trans_handle *trans, 201 struct btrfs_root *root, 202 struct btrfs_path *path, 203 u64 bytenr, int cow) 204 { 205 struct btrfs_fs_info *fs_info = root->fs_info; 206 int ret; 207 struct btrfs_key file_key; 208 struct btrfs_key found_key; 209 struct btrfs_csum_item *item; 210 struct extent_buffer *leaf; 211 u64 csum_offset = 0; 212 const u32 csum_size = fs_info->csum_size; 213 int csums_in_item; 214 215 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 216 file_key.offset = bytenr; 217 file_key.type = BTRFS_EXTENT_CSUM_KEY; 218 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow); 219 if (ret < 0) 220 goto fail; 221 leaf = path->nodes[0]; 222 if (ret > 0) { 223 ret = 1; 224 if (path->slots[0] == 0) 225 goto fail; 226 path->slots[0]--; 227 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 228 if (found_key.type != BTRFS_EXTENT_CSUM_KEY) 229 goto fail; 230 231 csum_offset = (bytenr - found_key.offset) >> 232 fs_info->sectorsize_bits; 233 csums_in_item = btrfs_item_size(leaf, path->slots[0]); 234 csums_in_item /= csum_size; 235 236 if (csum_offset == csums_in_item) { 237 ret = -EFBIG; 238 goto fail; 239 } else if (csum_offset > csums_in_item) { 240 goto fail; 241 } 242 } 243 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 244 item = (struct btrfs_csum_item *)((unsigned char *)item + 245 csum_offset * csum_size); 246 return item; 247 fail: 248 if (ret > 0) 249 ret = -ENOENT; 250 return ERR_PTR(ret); 251 } 252 253 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 254 struct btrfs_root *root, 255 struct btrfs_path *path, u64 objectid, 256 u64 offset, int mod) 257 { 258 struct btrfs_key file_key; 259 int ins_len = mod < 0 ? -1 : 0; 260 int cow = mod != 0; 261 262 file_key.objectid = objectid; 263 file_key.offset = offset; 264 file_key.type = BTRFS_EXTENT_DATA_KEY; 265 266 return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow); 267 } 268 269 /* 270 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and 271 * store the result to @dst. 272 * 273 * Return >0 for the number of sectors we found. 274 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum 275 * for it. Caller may want to try next sector until one range is hit. 276 * Return <0 for fatal error. 277 */ 278 static int search_csum_tree(struct btrfs_fs_info *fs_info, 279 struct btrfs_path *path, u64 disk_bytenr, 280 u64 len, u8 *dst) 281 { 282 struct btrfs_root *csum_root; 283 struct btrfs_csum_item *item = NULL; 284 struct btrfs_key key; 285 const u32 sectorsize = fs_info->sectorsize; 286 const u32 csum_size = fs_info->csum_size; 287 u32 itemsize; 288 int ret; 289 u64 csum_start; 290 u64 csum_len; 291 292 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) && 293 IS_ALIGNED(len, sectorsize)); 294 295 /* Check if the current csum item covers disk_bytenr */ 296 if (path->nodes[0]) { 297 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 298 struct btrfs_csum_item); 299 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 300 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); 301 302 csum_start = key.offset; 303 csum_len = (itemsize / csum_size) * sectorsize; 304 305 if (in_range(disk_bytenr, csum_start, csum_len)) 306 goto found; 307 } 308 309 /* Current item doesn't contain the desired range, search again */ 310 btrfs_release_path(path); 311 csum_root = btrfs_csum_root(fs_info, disk_bytenr); 312 item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0); 313 if (IS_ERR(item)) { 314 ret = PTR_ERR(item); 315 goto out; 316 } 317 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 318 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); 319 320 csum_start = key.offset; 321 csum_len = (itemsize / csum_size) * sectorsize; 322 ASSERT(in_range(disk_bytenr, csum_start, csum_len)); 323 324 found: 325 ret = (min(csum_start + csum_len, disk_bytenr + len) - 326 disk_bytenr) >> fs_info->sectorsize_bits; 327 read_extent_buffer(path->nodes[0], dst, (unsigned long)item, 328 ret * csum_size); 329 out: 330 if (ret == -ENOENT || ret == -EFBIG) 331 ret = 0; 332 return ret; 333 } 334 335 /* 336 * Lookup the checksum for the read bio in csum tree. 337 * 338 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise. 339 */ 340 blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio) 341 { 342 struct btrfs_inode *inode = bbio->inode; 343 struct btrfs_fs_info *fs_info = inode->root->fs_info; 344 struct bio *bio = &bbio->bio; 345 struct btrfs_path *path; 346 const u32 sectorsize = fs_info->sectorsize; 347 const u32 csum_size = fs_info->csum_size; 348 u32 orig_len = bio->bi_iter.bi_size; 349 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; 350 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits; 351 blk_status_t ret = BLK_STS_OK; 352 u32 bio_offset = 0; 353 354 if ((inode->flags & BTRFS_INODE_NODATASUM) || 355 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) 356 return BLK_STS_OK; 357 358 /* 359 * This function is only called for read bio. 360 * 361 * This means two things: 362 * - All our csums should only be in csum tree 363 * No ordered extents csums, as ordered extents are only for write 364 * path. 365 * - No need to bother any other info from bvec 366 * Since we're looking up csums, the only important info is the 367 * disk_bytenr and the length, which can be extracted from bi_iter 368 * directly. 369 */ 370 ASSERT(bio_op(bio) == REQ_OP_READ); 371 path = btrfs_alloc_path(); 372 if (!path) 373 return BLK_STS_RESOURCE; 374 375 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) { 376 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS); 377 if (!bbio->csum) { 378 btrfs_free_path(path); 379 return BLK_STS_RESOURCE; 380 } 381 } else { 382 bbio->csum = bbio->csum_inline; 383 } 384 385 /* 386 * If requested number of sectors is larger than one leaf can contain, 387 * kick the readahead for csum tree. 388 */ 389 if (nblocks > fs_info->csums_per_leaf) 390 path->reada = READA_FORWARD; 391 392 /* 393 * the free space stuff is only read when it hasn't been 394 * updated in the current transaction. So, we can safely 395 * read from the commit root and sidestep a nasty deadlock 396 * between reading the free space cache and updating the csum tree. 397 */ 398 if (btrfs_is_free_space_inode(inode)) { 399 path->search_commit_root = 1; 400 path->skip_locking = 1; 401 } 402 403 while (bio_offset < orig_len) { 404 int count; 405 u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset; 406 u8 *csum_dst = bbio->csum + 407 (bio_offset >> fs_info->sectorsize_bits) * csum_size; 408 409 count = search_csum_tree(fs_info, path, cur_disk_bytenr, 410 orig_len - bio_offset, csum_dst); 411 if (count < 0) { 412 ret = errno_to_blk_status(count); 413 if (bbio->csum != bbio->csum_inline) 414 kfree(bbio->csum); 415 bbio->csum = NULL; 416 break; 417 } 418 419 /* 420 * We didn't find a csum for this range. We need to make sure 421 * we complain loudly about this, because we are not NODATASUM. 422 * 423 * However for the DATA_RELOC inode we could potentially be 424 * relocating data extents for a NODATASUM inode, so the inode 425 * itself won't be marked with NODATASUM, but the extent we're 426 * copying is in fact NODATASUM. If we don't find a csum we 427 * assume this is the case. 428 */ 429 if (count == 0) { 430 memset(csum_dst, 0, csum_size); 431 count = 1; 432 433 if (inode->root->root_key.objectid == 434 BTRFS_DATA_RELOC_TREE_OBJECTID) { 435 u64 file_offset = bbio->file_offset + bio_offset; 436 437 set_extent_bit(&inode->io_tree, file_offset, 438 file_offset + sectorsize - 1, 439 EXTENT_NODATASUM, NULL); 440 } else { 441 btrfs_warn_rl(fs_info, 442 "csum hole found for disk bytenr range [%llu, %llu)", 443 cur_disk_bytenr, cur_disk_bytenr + sectorsize); 444 } 445 } 446 bio_offset += count * sectorsize; 447 } 448 449 btrfs_free_path(path); 450 return ret; 451 } 452 453 int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end, 454 struct list_head *list, int search_commit, 455 bool nowait) 456 { 457 struct btrfs_fs_info *fs_info = root->fs_info; 458 struct btrfs_key key; 459 struct btrfs_path *path; 460 struct extent_buffer *leaf; 461 struct btrfs_ordered_sum *sums; 462 struct btrfs_csum_item *item; 463 LIST_HEAD(tmplist); 464 int ret; 465 466 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 467 IS_ALIGNED(end + 1, fs_info->sectorsize)); 468 469 path = btrfs_alloc_path(); 470 if (!path) 471 return -ENOMEM; 472 473 path->nowait = nowait; 474 if (search_commit) { 475 path->skip_locking = 1; 476 path->reada = READA_FORWARD; 477 path->search_commit_root = 1; 478 } 479 480 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 481 key.offset = start; 482 key.type = BTRFS_EXTENT_CSUM_KEY; 483 484 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 485 if (ret < 0) 486 goto fail; 487 if (ret > 0 && path->slots[0] > 0) { 488 leaf = path->nodes[0]; 489 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 490 491 /* 492 * There are two cases we can hit here for the previous csum 493 * item: 494 * 495 * |<- search range ->| 496 * |<- csum item ->| 497 * 498 * Or 499 * |<- search range ->| 500 * |<- csum item ->| 501 * 502 * Check if the previous csum item covers the leading part of 503 * the search range. If so we have to start from previous csum 504 * item. 505 */ 506 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 507 key.type == BTRFS_EXTENT_CSUM_KEY) { 508 if (bytes_to_csum_size(fs_info, start - key.offset) < 509 btrfs_item_size(leaf, path->slots[0] - 1)) 510 path->slots[0]--; 511 } 512 } 513 514 while (start <= end) { 515 u64 csum_end; 516 517 leaf = path->nodes[0]; 518 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 519 ret = btrfs_next_leaf(root, path); 520 if (ret < 0) 521 goto fail; 522 if (ret > 0) 523 break; 524 leaf = path->nodes[0]; 525 } 526 527 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 528 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 529 key.type != BTRFS_EXTENT_CSUM_KEY || 530 key.offset > end) 531 break; 532 533 if (key.offset > start) 534 start = key.offset; 535 536 csum_end = key.offset + csum_size_to_bytes(fs_info, 537 btrfs_item_size(leaf, path->slots[0])); 538 if (csum_end <= start) { 539 path->slots[0]++; 540 continue; 541 } 542 543 csum_end = min(csum_end, end + 1); 544 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 545 struct btrfs_csum_item); 546 while (start < csum_end) { 547 unsigned long offset; 548 size_t size; 549 550 size = min_t(size_t, csum_end - start, 551 max_ordered_sum_bytes(fs_info)); 552 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size), 553 GFP_NOFS); 554 if (!sums) { 555 ret = -ENOMEM; 556 goto fail; 557 } 558 559 sums->logical = start; 560 sums->len = size; 561 562 offset = bytes_to_csum_size(fs_info, start - key.offset); 563 564 read_extent_buffer(path->nodes[0], 565 sums->sums, 566 ((unsigned long)item) + offset, 567 bytes_to_csum_size(fs_info, size)); 568 569 start += size; 570 list_add_tail(&sums->list, &tmplist); 571 } 572 path->slots[0]++; 573 } 574 ret = 0; 575 fail: 576 while (ret < 0 && !list_empty(&tmplist)) { 577 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list); 578 list_del(&sums->list); 579 kfree(sums); 580 } 581 list_splice_tail(&tmplist, list); 582 583 btrfs_free_path(path); 584 return ret; 585 } 586 587 /* 588 * Do the same work as btrfs_lookup_csums_list(), the difference is in how 589 * we return the result. 590 * 591 * This version will set the corresponding bits in @csum_bitmap to represent 592 * that there is a csum found. 593 * Each bit represents a sector. Thus caller should ensure @csum_buf passed 594 * in is large enough to contain all csums. 595 */ 596 int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path, 597 u64 start, u64 end, u8 *csum_buf, 598 unsigned long *csum_bitmap) 599 { 600 struct btrfs_fs_info *fs_info = root->fs_info; 601 struct btrfs_key key; 602 struct extent_buffer *leaf; 603 struct btrfs_csum_item *item; 604 const u64 orig_start = start; 605 bool free_path = false; 606 int ret; 607 608 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 609 IS_ALIGNED(end + 1, fs_info->sectorsize)); 610 611 if (!path) { 612 path = btrfs_alloc_path(); 613 if (!path) 614 return -ENOMEM; 615 free_path = true; 616 } 617 618 /* Check if we can reuse the previous path. */ 619 if (path->nodes[0]) { 620 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 621 622 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 623 key.type == BTRFS_EXTENT_CSUM_KEY && 624 key.offset <= start) 625 goto search_forward; 626 btrfs_release_path(path); 627 } 628 629 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 630 key.type = BTRFS_EXTENT_CSUM_KEY; 631 key.offset = start; 632 633 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 634 if (ret < 0) 635 goto fail; 636 if (ret > 0 && path->slots[0] > 0) { 637 leaf = path->nodes[0]; 638 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 639 640 /* 641 * There are two cases we can hit here for the previous csum 642 * item: 643 * 644 * |<- search range ->| 645 * |<- csum item ->| 646 * 647 * Or 648 * |<- search range ->| 649 * |<- csum item ->| 650 * 651 * Check if the previous csum item covers the leading part of 652 * the search range. If so we have to start from previous csum 653 * item. 654 */ 655 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 656 key.type == BTRFS_EXTENT_CSUM_KEY) { 657 if (bytes_to_csum_size(fs_info, start - key.offset) < 658 btrfs_item_size(leaf, path->slots[0] - 1)) 659 path->slots[0]--; 660 } 661 } 662 663 search_forward: 664 while (start <= end) { 665 u64 csum_end; 666 667 leaf = path->nodes[0]; 668 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 669 ret = btrfs_next_leaf(root, path); 670 if (ret < 0) 671 goto fail; 672 if (ret > 0) 673 break; 674 leaf = path->nodes[0]; 675 } 676 677 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 678 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 679 key.type != BTRFS_EXTENT_CSUM_KEY || 680 key.offset > end) 681 break; 682 683 if (key.offset > start) 684 start = key.offset; 685 686 csum_end = key.offset + csum_size_to_bytes(fs_info, 687 btrfs_item_size(leaf, path->slots[0])); 688 if (csum_end <= start) { 689 path->slots[0]++; 690 continue; 691 } 692 693 csum_end = min(csum_end, end + 1); 694 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 695 struct btrfs_csum_item); 696 while (start < csum_end) { 697 unsigned long offset; 698 size_t size; 699 u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info, 700 start - orig_start); 701 702 size = min_t(size_t, csum_end - start, end + 1 - start); 703 704 offset = bytes_to_csum_size(fs_info, start - key.offset); 705 706 read_extent_buffer(path->nodes[0], csum_dest, 707 ((unsigned long)item) + offset, 708 bytes_to_csum_size(fs_info, size)); 709 710 bitmap_set(csum_bitmap, 711 (start - orig_start) >> fs_info->sectorsize_bits, 712 size >> fs_info->sectorsize_bits); 713 714 start += size; 715 } 716 path->slots[0]++; 717 } 718 ret = 0; 719 fail: 720 if (free_path) 721 btrfs_free_path(path); 722 return ret; 723 } 724 725 /* 726 * Calculate checksums of the data contained inside a bio. 727 */ 728 blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio) 729 { 730 struct btrfs_ordered_extent *ordered = bbio->ordered; 731 struct btrfs_inode *inode = bbio->inode; 732 struct btrfs_fs_info *fs_info = inode->root->fs_info; 733 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 734 struct bio *bio = &bbio->bio; 735 struct btrfs_ordered_sum *sums; 736 char *data; 737 struct bvec_iter iter; 738 struct bio_vec bvec; 739 int index; 740 unsigned int blockcount; 741 int i; 742 unsigned nofs_flag; 743 744 nofs_flag = memalloc_nofs_save(); 745 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size), 746 GFP_KERNEL); 747 memalloc_nofs_restore(nofs_flag); 748 749 if (!sums) 750 return BLK_STS_RESOURCE; 751 752 sums->len = bio->bi_iter.bi_size; 753 INIT_LIST_HEAD(&sums->list); 754 755 sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 756 index = 0; 757 758 shash->tfm = fs_info->csum_shash; 759 760 bio_for_each_segment(bvec, bio, iter) { 761 blockcount = BTRFS_BYTES_TO_BLKS(fs_info, 762 bvec.bv_len + fs_info->sectorsize 763 - 1); 764 765 for (i = 0; i < blockcount; i++) { 766 data = bvec_kmap_local(&bvec); 767 crypto_shash_digest(shash, 768 data + (i * fs_info->sectorsize), 769 fs_info->sectorsize, 770 sums->sums + index); 771 kunmap_local(data); 772 index += fs_info->csum_size; 773 } 774 775 } 776 777 bbio->sums = sums; 778 btrfs_add_ordered_sum(ordered, sums); 779 return 0; 780 } 781 782 /* 783 * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to 784 * record the updated logical address on Zone Append completion. 785 * Allocate just the structure with an empty sums array here for that case. 786 */ 787 blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio) 788 { 789 bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS); 790 if (!bbio->sums) 791 return BLK_STS_RESOURCE; 792 bbio->sums->len = bbio->bio.bi_iter.bi_size; 793 bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 794 btrfs_add_ordered_sum(bbio->ordered, bbio->sums); 795 return 0; 796 } 797 798 /* 799 * Remove one checksum overlapping a range. 800 * 801 * This expects the key to describe the csum pointed to by the path, and it 802 * expects the csum to overlap the range [bytenr, len] 803 * 804 * The csum should not be entirely contained in the range and the range should 805 * not be entirely contained in the csum. 806 * 807 * This calls btrfs_truncate_item with the correct args based on the overlap, 808 * and fixes up the key as required. 809 */ 810 static noinline void truncate_one_csum(struct btrfs_trans_handle *trans, 811 struct btrfs_path *path, 812 struct btrfs_key *key, 813 u64 bytenr, u64 len) 814 { 815 struct btrfs_fs_info *fs_info = trans->fs_info; 816 struct extent_buffer *leaf; 817 const u32 csum_size = fs_info->csum_size; 818 u64 csum_end; 819 u64 end_byte = bytenr + len; 820 u32 blocksize_bits = fs_info->sectorsize_bits; 821 822 leaf = path->nodes[0]; 823 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; 824 csum_end <<= blocksize_bits; 825 csum_end += key->offset; 826 827 if (key->offset < bytenr && csum_end <= end_byte) { 828 /* 829 * [ bytenr - len ] 830 * [ ] 831 * [csum ] 832 * A simple truncate off the end of the item 833 */ 834 u32 new_size = (bytenr - key->offset) >> blocksize_bits; 835 new_size *= csum_size; 836 btrfs_truncate_item(trans, path, new_size, 1); 837 } else if (key->offset >= bytenr && csum_end > end_byte && 838 end_byte > key->offset) { 839 /* 840 * [ bytenr - len ] 841 * [ ] 842 * [csum ] 843 * we need to truncate from the beginning of the csum 844 */ 845 u32 new_size = (csum_end - end_byte) >> blocksize_bits; 846 new_size *= csum_size; 847 848 btrfs_truncate_item(trans, path, new_size, 0); 849 850 key->offset = end_byte; 851 btrfs_set_item_key_safe(trans, path, key); 852 } else { 853 BUG(); 854 } 855 } 856 857 /* 858 * Delete the csum items from the csum tree for a given range of bytes. 859 */ 860 int btrfs_del_csums(struct btrfs_trans_handle *trans, 861 struct btrfs_root *root, u64 bytenr, u64 len) 862 { 863 struct btrfs_fs_info *fs_info = trans->fs_info; 864 struct btrfs_path *path; 865 struct btrfs_key key; 866 u64 end_byte = bytenr + len; 867 u64 csum_end; 868 struct extent_buffer *leaf; 869 int ret = 0; 870 const u32 csum_size = fs_info->csum_size; 871 u32 blocksize_bits = fs_info->sectorsize_bits; 872 873 ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID || 874 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 875 876 path = btrfs_alloc_path(); 877 if (!path) 878 return -ENOMEM; 879 880 while (1) { 881 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 882 key.offset = end_byte - 1; 883 key.type = BTRFS_EXTENT_CSUM_KEY; 884 885 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 886 if (ret > 0) { 887 ret = 0; 888 if (path->slots[0] == 0) 889 break; 890 path->slots[0]--; 891 } else if (ret < 0) { 892 break; 893 } 894 895 leaf = path->nodes[0]; 896 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 897 898 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 899 key.type != BTRFS_EXTENT_CSUM_KEY) { 900 break; 901 } 902 903 if (key.offset >= end_byte) 904 break; 905 906 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; 907 csum_end <<= blocksize_bits; 908 csum_end += key.offset; 909 910 /* this csum ends before we start, we're done */ 911 if (csum_end <= bytenr) 912 break; 913 914 /* delete the entire item, it is inside our range */ 915 if (key.offset >= bytenr && csum_end <= end_byte) { 916 int del_nr = 1; 917 918 /* 919 * Check how many csum items preceding this one in this 920 * leaf correspond to our range and then delete them all 921 * at once. 922 */ 923 if (key.offset > bytenr && path->slots[0] > 0) { 924 int slot = path->slots[0] - 1; 925 926 while (slot >= 0) { 927 struct btrfs_key pk; 928 929 btrfs_item_key_to_cpu(leaf, &pk, slot); 930 if (pk.offset < bytenr || 931 pk.type != BTRFS_EXTENT_CSUM_KEY || 932 pk.objectid != 933 BTRFS_EXTENT_CSUM_OBJECTID) 934 break; 935 path->slots[0] = slot; 936 del_nr++; 937 key.offset = pk.offset; 938 slot--; 939 } 940 } 941 ret = btrfs_del_items(trans, root, path, 942 path->slots[0], del_nr); 943 if (ret) 944 break; 945 if (key.offset == bytenr) 946 break; 947 } else if (key.offset < bytenr && csum_end > end_byte) { 948 unsigned long offset; 949 unsigned long shift_len; 950 unsigned long item_offset; 951 /* 952 * [ bytenr - len ] 953 * [csum ] 954 * 955 * Our bytes are in the middle of the csum, 956 * we need to split this item and insert a new one. 957 * 958 * But we can't drop the path because the 959 * csum could change, get removed, extended etc. 960 * 961 * The trick here is the max size of a csum item leaves 962 * enough room in the tree block for a single 963 * item header. So, we split the item in place, 964 * adding a new header pointing to the existing 965 * bytes. Then we loop around again and we have 966 * a nicely formed csum item that we can neatly 967 * truncate. 968 */ 969 offset = (bytenr - key.offset) >> blocksize_bits; 970 offset *= csum_size; 971 972 shift_len = (len >> blocksize_bits) * csum_size; 973 974 item_offset = btrfs_item_ptr_offset(leaf, 975 path->slots[0]); 976 977 memzero_extent_buffer(leaf, item_offset + offset, 978 shift_len); 979 key.offset = bytenr; 980 981 /* 982 * btrfs_split_item returns -EAGAIN when the 983 * item changed size or key 984 */ 985 ret = btrfs_split_item(trans, root, path, &key, offset); 986 if (ret && ret != -EAGAIN) { 987 btrfs_abort_transaction(trans, ret); 988 break; 989 } 990 ret = 0; 991 992 key.offset = end_byte - 1; 993 } else { 994 truncate_one_csum(trans, path, &key, bytenr, len); 995 if (key.offset < bytenr) 996 break; 997 } 998 btrfs_release_path(path); 999 } 1000 btrfs_free_path(path); 1001 return ret; 1002 } 1003 1004 static int find_next_csum_offset(struct btrfs_root *root, 1005 struct btrfs_path *path, 1006 u64 *next_offset) 1007 { 1008 const u32 nritems = btrfs_header_nritems(path->nodes[0]); 1009 struct btrfs_key found_key; 1010 int slot = path->slots[0] + 1; 1011 int ret; 1012 1013 if (nritems == 0 || slot >= nritems) { 1014 ret = btrfs_next_leaf(root, path); 1015 if (ret < 0) { 1016 return ret; 1017 } else if (ret > 0) { 1018 *next_offset = (u64)-1; 1019 return 0; 1020 } 1021 slot = path->slots[0]; 1022 } 1023 1024 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot); 1025 1026 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 1027 found_key.type != BTRFS_EXTENT_CSUM_KEY) 1028 *next_offset = (u64)-1; 1029 else 1030 *next_offset = found_key.offset; 1031 1032 return 0; 1033 } 1034 1035 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 1036 struct btrfs_root *root, 1037 struct btrfs_ordered_sum *sums) 1038 { 1039 struct btrfs_fs_info *fs_info = root->fs_info; 1040 struct btrfs_key file_key; 1041 struct btrfs_key found_key; 1042 struct btrfs_path *path; 1043 struct btrfs_csum_item *item; 1044 struct btrfs_csum_item *item_end; 1045 struct extent_buffer *leaf = NULL; 1046 u64 next_offset; 1047 u64 total_bytes = 0; 1048 u64 csum_offset; 1049 u64 bytenr; 1050 u32 ins_size; 1051 int index = 0; 1052 int found_next; 1053 int ret; 1054 const u32 csum_size = fs_info->csum_size; 1055 1056 path = btrfs_alloc_path(); 1057 if (!path) 1058 return -ENOMEM; 1059 again: 1060 next_offset = (u64)-1; 1061 found_next = 0; 1062 bytenr = sums->logical + total_bytes; 1063 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 1064 file_key.offset = bytenr; 1065 file_key.type = BTRFS_EXTENT_CSUM_KEY; 1066 1067 item = btrfs_lookup_csum(trans, root, path, bytenr, 1); 1068 if (!IS_ERR(item)) { 1069 ret = 0; 1070 leaf = path->nodes[0]; 1071 item_end = btrfs_item_ptr(leaf, path->slots[0], 1072 struct btrfs_csum_item); 1073 item_end = (struct btrfs_csum_item *)((char *)item_end + 1074 btrfs_item_size(leaf, path->slots[0])); 1075 goto found; 1076 } 1077 ret = PTR_ERR(item); 1078 if (ret != -EFBIG && ret != -ENOENT) 1079 goto out; 1080 1081 if (ret == -EFBIG) { 1082 u32 item_size; 1083 /* we found one, but it isn't big enough yet */ 1084 leaf = path->nodes[0]; 1085 item_size = btrfs_item_size(leaf, path->slots[0]); 1086 if ((item_size / csum_size) >= 1087 MAX_CSUM_ITEMS(fs_info, csum_size)) { 1088 /* already at max size, make a new one */ 1089 goto insert; 1090 } 1091 } else { 1092 /* We didn't find a csum item, insert one. */ 1093 ret = find_next_csum_offset(root, path, &next_offset); 1094 if (ret < 0) 1095 goto out; 1096 found_next = 1; 1097 goto insert; 1098 } 1099 1100 /* 1101 * At this point, we know the tree has a checksum item that ends at an 1102 * offset matching the start of the checksum range we want to insert. 1103 * We try to extend that item as much as possible and then add as many 1104 * checksums to it as they fit. 1105 * 1106 * First check if the leaf has enough free space for at least one 1107 * checksum. If it has go directly to the item extension code, otherwise 1108 * release the path and do a search for insertion before the extension. 1109 */ 1110 if (btrfs_leaf_free_space(leaf) >= csum_size) { 1111 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1112 csum_offset = (bytenr - found_key.offset) >> 1113 fs_info->sectorsize_bits; 1114 goto extend_csum; 1115 } 1116 1117 btrfs_release_path(path); 1118 path->search_for_extension = 1; 1119 ret = btrfs_search_slot(trans, root, &file_key, path, 1120 csum_size, 1); 1121 path->search_for_extension = 0; 1122 if (ret < 0) 1123 goto out; 1124 1125 if (ret > 0) { 1126 if (path->slots[0] == 0) 1127 goto insert; 1128 path->slots[0]--; 1129 } 1130 1131 leaf = path->nodes[0]; 1132 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1133 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits; 1134 1135 if (found_key.type != BTRFS_EXTENT_CSUM_KEY || 1136 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 1137 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) { 1138 goto insert; 1139 } 1140 1141 extend_csum: 1142 if (csum_offset == btrfs_item_size(leaf, path->slots[0]) / 1143 csum_size) { 1144 int extend_nr; 1145 u64 tmp; 1146 u32 diff; 1147 1148 tmp = sums->len - total_bytes; 1149 tmp >>= fs_info->sectorsize_bits; 1150 WARN_ON(tmp < 1); 1151 extend_nr = max_t(int, 1, tmp); 1152 1153 /* 1154 * A log tree can already have checksum items with a subset of 1155 * the checksums we are trying to log. This can happen after 1156 * doing a sequence of partial writes into prealloc extents and 1157 * fsyncs in between, with a full fsync logging a larger subrange 1158 * of an extent for which a previous fast fsync logged a smaller 1159 * subrange. And this happens in particular due to merging file 1160 * extent items when we complete an ordered extent for a range 1161 * covered by a prealloc extent - this is done at 1162 * btrfs_mark_extent_written(). 1163 * 1164 * So if we try to extend the previous checksum item, which has 1165 * a range that ends at the start of the range we want to insert, 1166 * make sure we don't extend beyond the start offset of the next 1167 * checksum item. If we are at the last item in the leaf, then 1168 * forget the optimization of extending and add a new checksum 1169 * item - it is not worth the complexity of releasing the path, 1170 * getting the first key for the next leaf, repeat the btree 1171 * search, etc, because log trees are temporary anyway and it 1172 * would only save a few bytes of leaf space. 1173 */ 1174 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 1175 if (path->slots[0] + 1 >= 1176 btrfs_header_nritems(path->nodes[0])) { 1177 ret = find_next_csum_offset(root, path, &next_offset); 1178 if (ret < 0) 1179 goto out; 1180 found_next = 1; 1181 goto insert; 1182 } 1183 1184 ret = find_next_csum_offset(root, path, &next_offset); 1185 if (ret < 0) 1186 goto out; 1187 1188 tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits; 1189 if (tmp <= INT_MAX) 1190 extend_nr = min_t(int, extend_nr, tmp); 1191 } 1192 1193 diff = (csum_offset + extend_nr) * csum_size; 1194 diff = min(diff, 1195 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size); 1196 1197 diff = diff - btrfs_item_size(leaf, path->slots[0]); 1198 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff); 1199 diff /= csum_size; 1200 diff *= csum_size; 1201 1202 btrfs_extend_item(trans, path, diff); 1203 ret = 0; 1204 goto csum; 1205 } 1206 1207 insert: 1208 btrfs_release_path(path); 1209 csum_offset = 0; 1210 if (found_next) { 1211 u64 tmp; 1212 1213 tmp = sums->len - total_bytes; 1214 tmp >>= fs_info->sectorsize_bits; 1215 tmp = min(tmp, (next_offset - file_key.offset) >> 1216 fs_info->sectorsize_bits); 1217 1218 tmp = max_t(u64, 1, tmp); 1219 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size)); 1220 ins_size = csum_size * tmp; 1221 } else { 1222 ins_size = csum_size; 1223 } 1224 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 1225 ins_size); 1226 if (ret < 0) 1227 goto out; 1228 leaf = path->nodes[0]; 1229 csum: 1230 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 1231 item_end = (struct btrfs_csum_item *)((unsigned char *)item + 1232 btrfs_item_size(leaf, path->slots[0])); 1233 item = (struct btrfs_csum_item *)((unsigned char *)item + 1234 csum_offset * csum_size); 1235 found: 1236 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits; 1237 ins_size *= csum_size; 1238 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item, 1239 ins_size); 1240 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item, 1241 ins_size); 1242 1243 index += ins_size; 1244 ins_size /= csum_size; 1245 total_bytes += ins_size * fs_info->sectorsize; 1246 1247 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 1248 if (total_bytes < sums->len) { 1249 btrfs_release_path(path); 1250 cond_resched(); 1251 goto again; 1252 } 1253 out: 1254 btrfs_free_path(path); 1255 return ret; 1256 } 1257 1258 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 1259 const struct btrfs_path *path, 1260 struct btrfs_file_extent_item *fi, 1261 struct extent_map *em) 1262 { 1263 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1264 struct btrfs_root *root = inode->root; 1265 struct extent_buffer *leaf = path->nodes[0]; 1266 const int slot = path->slots[0]; 1267 struct btrfs_key key; 1268 u64 extent_start, extent_end; 1269 u64 bytenr; 1270 u8 type = btrfs_file_extent_type(leaf, fi); 1271 int compress_type = btrfs_file_extent_compression(leaf, fi); 1272 1273 btrfs_item_key_to_cpu(leaf, &key, slot); 1274 extent_start = key.offset; 1275 extent_end = btrfs_file_extent_end(path); 1276 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1277 em->generation = btrfs_file_extent_generation(leaf, fi); 1278 if (type == BTRFS_FILE_EXTENT_REG || 1279 type == BTRFS_FILE_EXTENT_PREALLOC) { 1280 em->start = extent_start; 1281 em->len = extent_end - extent_start; 1282 em->orig_start = extent_start - 1283 btrfs_file_extent_offset(leaf, fi); 1284 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 1285 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1286 if (bytenr == 0) { 1287 em->block_start = EXTENT_MAP_HOLE; 1288 return; 1289 } 1290 if (compress_type != BTRFS_COMPRESS_NONE) { 1291 extent_map_set_compression(em, compress_type); 1292 em->block_start = bytenr; 1293 em->block_len = em->orig_block_len; 1294 } else { 1295 bytenr += btrfs_file_extent_offset(leaf, fi); 1296 em->block_start = bytenr; 1297 em->block_len = em->len; 1298 if (type == BTRFS_FILE_EXTENT_PREALLOC) 1299 em->flags |= EXTENT_FLAG_PREALLOC; 1300 } 1301 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 1302 em->block_start = EXTENT_MAP_INLINE; 1303 em->start = extent_start; 1304 em->len = extent_end - extent_start; 1305 /* 1306 * Initialize orig_start and block_len with the same values 1307 * as in inode.c:btrfs_get_extent(). 1308 */ 1309 em->orig_start = EXTENT_MAP_HOLE; 1310 em->block_len = (u64)-1; 1311 extent_map_set_compression(em, compress_type); 1312 } else { 1313 btrfs_err(fs_info, 1314 "unknown file extent item type %d, inode %llu, offset %llu, " 1315 "root %llu", type, btrfs_ino(inode), extent_start, 1316 root->root_key.objectid); 1317 } 1318 } 1319 1320 /* 1321 * Returns the end offset (non inclusive) of the file extent item the given path 1322 * points to. If it points to an inline extent, the returned offset is rounded 1323 * up to the sector size. 1324 */ 1325 u64 btrfs_file_extent_end(const struct btrfs_path *path) 1326 { 1327 const struct extent_buffer *leaf = path->nodes[0]; 1328 const int slot = path->slots[0]; 1329 struct btrfs_file_extent_item *fi; 1330 struct btrfs_key key; 1331 u64 end; 1332 1333 btrfs_item_key_to_cpu(leaf, &key, slot); 1334 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 1335 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1336 1337 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 1338 end = btrfs_file_extent_ram_bytes(leaf, fi); 1339 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize); 1340 } else { 1341 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1342 } 1343 1344 return end; 1345 } 1346