xref: /linux/fs/btrfs/file-item.c (revision 662fa3d6099374c4615bf64d06895e3573b935b2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "misc.h"
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "print-tree.h"
18 #include "compression.h"
19 
20 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
21 				   sizeof(struct btrfs_item) * 2) / \
22 				  size) - 1))
23 
24 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
25 				       PAGE_SIZE))
26 
27 /**
28  * Set inode's size according to filesystem options
29  *
30  * @inode:      inode we want to update the disk_i_size for
31  * @new_i_size: i_size we want to set to, 0 if we use i_size
32  *
33  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
34  * returns as it is perfectly fine with a file that has holes without hole file
35  * extent items.
36  *
37  * However without NO_HOLES we need to only return the area that is contiguous
38  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
39  * to an extent that has a gap in between.
40  *
41  * Finally new_i_size should only be set in the case of truncate where we're not
42  * ready to use i_size_read() as the limiter yet.
43  */
44 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
45 {
46 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
47 	u64 start, end, i_size;
48 	int ret;
49 
50 	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
51 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
52 		inode->disk_i_size = i_size;
53 		return;
54 	}
55 
56 	spin_lock(&inode->lock);
57 	ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
58 					 &end, EXTENT_DIRTY);
59 	if (!ret && start == 0)
60 		i_size = min(i_size, end + 1);
61 	else
62 		i_size = 0;
63 	inode->disk_i_size = i_size;
64 	spin_unlock(&inode->lock);
65 }
66 
67 /**
68  * Mark range within a file as having a new extent inserted
69  *
70  * @inode: inode being modified
71  * @start: start file offset of the file extent we've inserted
72  * @len:   logical length of the file extent item
73  *
74  * Call when we are inserting a new file extent where there was none before.
75  * Does not need to call this in the case where we're replacing an existing file
76  * extent, however if not sure it's fine to call this multiple times.
77  *
78  * The start and len must match the file extent item, so thus must be sectorsize
79  * aligned.
80  */
81 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
82 				      u64 len)
83 {
84 	if (len == 0)
85 		return 0;
86 
87 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
88 
89 	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
90 		return 0;
91 	return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
92 			       EXTENT_DIRTY);
93 }
94 
95 /**
96  * Marks an inode range as not having a backing extent
97  *
98  * @inode: inode being modified
99  * @start: start file offset of the file extent we've inserted
100  * @len:   logical length of the file extent item
101  *
102  * Called when we drop a file extent, for example when we truncate.  Doesn't
103  * need to be called for cases where we're replacing a file extent, like when
104  * we've COWed a file extent.
105  *
106  * The start and len must match the file extent item, so thus must be sectorsize
107  * aligned.
108  */
109 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
110 					u64 len)
111 {
112 	if (len == 0)
113 		return 0;
114 
115 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
116 	       len == (u64)-1);
117 
118 	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
119 		return 0;
120 	return clear_extent_bit(&inode->file_extent_tree, start,
121 				start + len - 1, EXTENT_DIRTY, 0, 0, NULL);
122 }
123 
124 static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
125 					u16 csum_size)
126 {
127 	u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
128 
129 	return ncsums * fs_info->sectorsize;
130 }
131 
132 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
133 			     struct btrfs_root *root,
134 			     u64 objectid, u64 pos,
135 			     u64 disk_offset, u64 disk_num_bytes,
136 			     u64 num_bytes, u64 offset, u64 ram_bytes,
137 			     u8 compression, u8 encryption, u16 other_encoding)
138 {
139 	int ret = 0;
140 	struct btrfs_file_extent_item *item;
141 	struct btrfs_key file_key;
142 	struct btrfs_path *path;
143 	struct extent_buffer *leaf;
144 
145 	path = btrfs_alloc_path();
146 	if (!path)
147 		return -ENOMEM;
148 	file_key.objectid = objectid;
149 	file_key.offset = pos;
150 	file_key.type = BTRFS_EXTENT_DATA_KEY;
151 
152 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
153 				      sizeof(*item));
154 	if (ret < 0)
155 		goto out;
156 	BUG_ON(ret); /* Can't happen */
157 	leaf = path->nodes[0];
158 	item = btrfs_item_ptr(leaf, path->slots[0],
159 			      struct btrfs_file_extent_item);
160 	btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
161 	btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
162 	btrfs_set_file_extent_offset(leaf, item, offset);
163 	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
164 	btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
165 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
166 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
167 	btrfs_set_file_extent_compression(leaf, item, compression);
168 	btrfs_set_file_extent_encryption(leaf, item, encryption);
169 	btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
170 
171 	btrfs_mark_buffer_dirty(leaf);
172 out:
173 	btrfs_free_path(path);
174 	return ret;
175 }
176 
177 static struct btrfs_csum_item *
178 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
179 		  struct btrfs_root *root,
180 		  struct btrfs_path *path,
181 		  u64 bytenr, int cow)
182 {
183 	struct btrfs_fs_info *fs_info = root->fs_info;
184 	int ret;
185 	struct btrfs_key file_key;
186 	struct btrfs_key found_key;
187 	struct btrfs_csum_item *item;
188 	struct extent_buffer *leaf;
189 	u64 csum_offset = 0;
190 	const u32 csum_size = fs_info->csum_size;
191 	int csums_in_item;
192 
193 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
194 	file_key.offset = bytenr;
195 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
196 	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
197 	if (ret < 0)
198 		goto fail;
199 	leaf = path->nodes[0];
200 	if (ret > 0) {
201 		ret = 1;
202 		if (path->slots[0] == 0)
203 			goto fail;
204 		path->slots[0]--;
205 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
206 		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
207 			goto fail;
208 
209 		csum_offset = (bytenr - found_key.offset) >>
210 				fs_info->sectorsize_bits;
211 		csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
212 		csums_in_item /= csum_size;
213 
214 		if (csum_offset == csums_in_item) {
215 			ret = -EFBIG;
216 			goto fail;
217 		} else if (csum_offset > csums_in_item) {
218 			goto fail;
219 		}
220 	}
221 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
222 	item = (struct btrfs_csum_item *)((unsigned char *)item +
223 					  csum_offset * csum_size);
224 	return item;
225 fail:
226 	if (ret > 0)
227 		ret = -ENOENT;
228 	return ERR_PTR(ret);
229 }
230 
231 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
232 			     struct btrfs_root *root,
233 			     struct btrfs_path *path, u64 objectid,
234 			     u64 offset, int mod)
235 {
236 	int ret;
237 	struct btrfs_key file_key;
238 	int ins_len = mod < 0 ? -1 : 0;
239 	int cow = mod != 0;
240 
241 	file_key.objectid = objectid;
242 	file_key.offset = offset;
243 	file_key.type = BTRFS_EXTENT_DATA_KEY;
244 	ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
245 	return ret;
246 }
247 
248 /*
249  * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
250  * estore the result to @dst.
251  *
252  * Return >0 for the number of sectors we found.
253  * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
254  * for it. Caller may want to try next sector until one range is hit.
255  * Return <0 for fatal error.
256  */
257 static int search_csum_tree(struct btrfs_fs_info *fs_info,
258 			    struct btrfs_path *path, u64 disk_bytenr,
259 			    u64 len, u8 *dst)
260 {
261 	struct btrfs_csum_item *item = NULL;
262 	struct btrfs_key key;
263 	const u32 sectorsize = fs_info->sectorsize;
264 	const u32 csum_size = fs_info->csum_size;
265 	u32 itemsize;
266 	int ret;
267 	u64 csum_start;
268 	u64 csum_len;
269 
270 	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
271 	       IS_ALIGNED(len, sectorsize));
272 
273 	/* Check if the current csum item covers disk_bytenr */
274 	if (path->nodes[0]) {
275 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
276 				      struct btrfs_csum_item);
277 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
278 		itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
279 
280 		csum_start = key.offset;
281 		csum_len = (itemsize / csum_size) * sectorsize;
282 
283 		if (in_range(disk_bytenr, csum_start, csum_len))
284 			goto found;
285 	}
286 
287 	/* Current item doesn't contain the desired range, search again */
288 	btrfs_release_path(path);
289 	item = btrfs_lookup_csum(NULL, fs_info->csum_root, path, disk_bytenr, 0);
290 	if (IS_ERR(item)) {
291 		ret = PTR_ERR(item);
292 		goto out;
293 	}
294 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
295 	itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
296 
297 	csum_start = key.offset;
298 	csum_len = (itemsize / csum_size) * sectorsize;
299 	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
300 
301 found:
302 	ret = (min(csum_start + csum_len, disk_bytenr + len) -
303 		   disk_bytenr) >> fs_info->sectorsize_bits;
304 	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
305 			ret * csum_size);
306 out:
307 	if (ret == -ENOENT)
308 		ret = 0;
309 	return ret;
310 }
311 
312 /*
313  * Locate the file_offset of @cur_disk_bytenr of a @bio.
314  *
315  * Bio of btrfs represents read range of
316  * [bi_sector << 9, bi_sector << 9 + bi_size).
317  * Knowing this, we can iterate through each bvec to locate the page belong to
318  * @cur_disk_bytenr and get the file offset.
319  *
320  * @inode is used to determine if the bvec page really belongs to @inode.
321  *
322  * Return 0 if we can't find the file offset
323  * Return >0 if we find the file offset and restore it to @file_offset_ret
324  */
325 static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
326 				     u64 disk_bytenr, u64 *file_offset_ret)
327 {
328 	struct bvec_iter iter;
329 	struct bio_vec bvec;
330 	u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
331 	int ret = 0;
332 
333 	bio_for_each_segment(bvec, bio, iter) {
334 		struct page *page = bvec.bv_page;
335 
336 		if (cur > disk_bytenr)
337 			break;
338 		if (cur + bvec.bv_len <= disk_bytenr) {
339 			cur += bvec.bv_len;
340 			continue;
341 		}
342 		ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
343 		if (page->mapping && page->mapping->host &&
344 		    page->mapping->host == inode) {
345 			ret = 1;
346 			*file_offset_ret = page_offset(page) + bvec.bv_offset +
347 					   disk_bytenr - cur;
348 			break;
349 		}
350 	}
351 	return ret;
352 }
353 
354 /**
355  * Lookup the checksum for the read bio in csum tree.
356  *
357  * @inode: inode that the bio is for.
358  * @bio: bio to look up.
359  * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
360  *       checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
361  *       NULL, the checksum buffer is allocated and returned in
362  *       btrfs_io_bio(bio)->csum instead.
363  *
364  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
365  */
366 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst)
367 {
368 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
369 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
370 	struct btrfs_path *path;
371 	const u32 sectorsize = fs_info->sectorsize;
372 	const u32 csum_size = fs_info->csum_size;
373 	u32 orig_len = bio->bi_iter.bi_size;
374 	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
375 	u64 cur_disk_bytenr;
376 	u8 *csum;
377 	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
378 	int count = 0;
379 
380 	if (!fs_info->csum_root || (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
381 		return BLK_STS_OK;
382 
383 	/*
384 	 * This function is only called for read bio.
385 	 *
386 	 * This means two things:
387 	 * - All our csums should only be in csum tree
388 	 *   No ordered extents csums, as ordered extents are only for write
389 	 *   path.
390 	 * - No need to bother any other info from bvec
391 	 *   Since we're looking up csums, the only important info is the
392 	 *   disk_bytenr and the length, which can be extracted from bi_iter
393 	 *   directly.
394 	 */
395 	ASSERT(bio_op(bio) == REQ_OP_READ);
396 	path = btrfs_alloc_path();
397 	if (!path)
398 		return BLK_STS_RESOURCE;
399 
400 	if (!dst) {
401 		struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio);
402 
403 		if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
404 			btrfs_bio->csum = kmalloc_array(nblocks, csum_size,
405 							GFP_NOFS);
406 			if (!btrfs_bio->csum) {
407 				btrfs_free_path(path);
408 				return BLK_STS_RESOURCE;
409 			}
410 		} else {
411 			btrfs_bio->csum = btrfs_bio->csum_inline;
412 		}
413 		csum = btrfs_bio->csum;
414 	} else {
415 		csum = dst;
416 	}
417 
418 	/*
419 	 * If requested number of sectors is larger than one leaf can contain,
420 	 * kick the readahead for csum tree.
421 	 */
422 	if (nblocks > fs_info->csums_per_leaf)
423 		path->reada = READA_FORWARD;
424 
425 	/*
426 	 * the free space stuff is only read when it hasn't been
427 	 * updated in the current transaction.  So, we can safely
428 	 * read from the commit root and sidestep a nasty deadlock
429 	 * between reading the free space cache and updating the csum tree.
430 	 */
431 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
432 		path->search_commit_root = 1;
433 		path->skip_locking = 1;
434 	}
435 
436 	for (cur_disk_bytenr = orig_disk_bytenr;
437 	     cur_disk_bytenr < orig_disk_bytenr + orig_len;
438 	     cur_disk_bytenr += (count * sectorsize)) {
439 		u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
440 		unsigned int sector_offset;
441 		u8 *csum_dst;
442 
443 		/*
444 		 * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
445 		 * we're calculating the offset to the bio start.
446 		 *
447 		 * Bio size is limited to UINT_MAX, thus unsigned int is large
448 		 * enough to contain the raw result, not to mention the right
449 		 * shifted result.
450 		 */
451 		ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
452 		sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
453 				fs_info->sectorsize_bits;
454 		csum_dst = csum + sector_offset * csum_size;
455 
456 		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
457 					 search_len, csum_dst);
458 		if (count <= 0) {
459 			/*
460 			 * Either we hit a critical error or we didn't find
461 			 * the csum.
462 			 * Either way, we put zero into the csums dst, and skip
463 			 * to the next sector.
464 			 */
465 			memset(csum_dst, 0, csum_size);
466 			count = 1;
467 
468 			/*
469 			 * For data reloc inode, we need to mark the range
470 			 * NODATASUM so that balance won't report false csum
471 			 * error.
472 			 */
473 			if (BTRFS_I(inode)->root->root_key.objectid ==
474 			    BTRFS_DATA_RELOC_TREE_OBJECTID) {
475 				u64 file_offset;
476 				int ret;
477 
478 				ret = search_file_offset_in_bio(bio, inode,
479 						cur_disk_bytenr, &file_offset);
480 				if (ret)
481 					set_extent_bits(io_tree, file_offset,
482 						file_offset + sectorsize - 1,
483 						EXTENT_NODATASUM);
484 			} else {
485 				btrfs_warn_rl(fs_info,
486 			"csum hole found for disk bytenr range [%llu, %llu)",
487 				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
488 			}
489 		}
490 	}
491 
492 	btrfs_free_path(path);
493 	return BLK_STS_OK;
494 }
495 
496 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
497 			     struct list_head *list, int search_commit)
498 {
499 	struct btrfs_fs_info *fs_info = root->fs_info;
500 	struct btrfs_key key;
501 	struct btrfs_path *path;
502 	struct extent_buffer *leaf;
503 	struct btrfs_ordered_sum *sums;
504 	struct btrfs_csum_item *item;
505 	LIST_HEAD(tmplist);
506 	unsigned long offset;
507 	int ret;
508 	size_t size;
509 	u64 csum_end;
510 	const u32 csum_size = fs_info->csum_size;
511 
512 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
513 	       IS_ALIGNED(end + 1, fs_info->sectorsize));
514 
515 	path = btrfs_alloc_path();
516 	if (!path)
517 		return -ENOMEM;
518 
519 	if (search_commit) {
520 		path->skip_locking = 1;
521 		path->reada = READA_FORWARD;
522 		path->search_commit_root = 1;
523 	}
524 
525 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
526 	key.offset = start;
527 	key.type = BTRFS_EXTENT_CSUM_KEY;
528 
529 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
530 	if (ret < 0)
531 		goto fail;
532 	if (ret > 0 && path->slots[0] > 0) {
533 		leaf = path->nodes[0];
534 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
535 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
536 		    key.type == BTRFS_EXTENT_CSUM_KEY) {
537 			offset = (start - key.offset) >> fs_info->sectorsize_bits;
538 			if (offset * csum_size <
539 			    btrfs_item_size_nr(leaf, path->slots[0] - 1))
540 				path->slots[0]--;
541 		}
542 	}
543 
544 	while (start <= end) {
545 		leaf = path->nodes[0];
546 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
547 			ret = btrfs_next_leaf(root, path);
548 			if (ret < 0)
549 				goto fail;
550 			if (ret > 0)
551 				break;
552 			leaf = path->nodes[0];
553 		}
554 
555 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
556 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
557 		    key.type != BTRFS_EXTENT_CSUM_KEY ||
558 		    key.offset > end)
559 			break;
560 
561 		if (key.offset > start)
562 			start = key.offset;
563 
564 		size = btrfs_item_size_nr(leaf, path->slots[0]);
565 		csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
566 		if (csum_end <= start) {
567 			path->slots[0]++;
568 			continue;
569 		}
570 
571 		csum_end = min(csum_end, end + 1);
572 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
573 				      struct btrfs_csum_item);
574 		while (start < csum_end) {
575 			size = min_t(size_t, csum_end - start,
576 				     max_ordered_sum_bytes(fs_info, csum_size));
577 			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
578 				       GFP_NOFS);
579 			if (!sums) {
580 				ret = -ENOMEM;
581 				goto fail;
582 			}
583 
584 			sums->bytenr = start;
585 			sums->len = (int)size;
586 
587 			offset = (start - key.offset) >> fs_info->sectorsize_bits;
588 			offset *= csum_size;
589 			size >>= fs_info->sectorsize_bits;
590 
591 			read_extent_buffer(path->nodes[0],
592 					   sums->sums,
593 					   ((unsigned long)item) + offset,
594 					   csum_size * size);
595 
596 			start += fs_info->sectorsize * size;
597 			list_add_tail(&sums->list, &tmplist);
598 		}
599 		path->slots[0]++;
600 	}
601 	ret = 0;
602 fail:
603 	while (ret < 0 && !list_empty(&tmplist)) {
604 		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
605 		list_del(&sums->list);
606 		kfree(sums);
607 	}
608 	list_splice_tail(&tmplist, list);
609 
610 	btrfs_free_path(path);
611 	return ret;
612 }
613 
614 /*
615  * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
616  * @inode:	 Owner of the data inside the bio
617  * @bio:	 Contains the data to be checksummed
618  * @file_start:  offset in file this bio begins to describe
619  * @contig:	 Boolean. If true/1 means all bio vecs in this bio are
620  *		 contiguous and they begin at @file_start in the file. False/0
621  *		 means this bio can contain potentially discontiguous bio vecs
622  *		 so the logical offset of each should be calculated separately.
623  */
624 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
625 		       u64 file_start, int contig)
626 {
627 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
628 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
629 	struct btrfs_ordered_sum *sums;
630 	struct btrfs_ordered_extent *ordered = NULL;
631 	char *data;
632 	struct bvec_iter iter;
633 	struct bio_vec bvec;
634 	int index;
635 	int nr_sectors;
636 	unsigned long total_bytes = 0;
637 	unsigned long this_sum_bytes = 0;
638 	int i;
639 	u64 offset;
640 	unsigned nofs_flag;
641 
642 	nofs_flag = memalloc_nofs_save();
643 	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
644 		       GFP_KERNEL);
645 	memalloc_nofs_restore(nofs_flag);
646 
647 	if (!sums)
648 		return BLK_STS_RESOURCE;
649 
650 	sums->len = bio->bi_iter.bi_size;
651 	INIT_LIST_HEAD(&sums->list);
652 
653 	if (contig)
654 		offset = file_start;
655 	else
656 		offset = 0; /* shut up gcc */
657 
658 	sums->bytenr = bio->bi_iter.bi_sector << 9;
659 	index = 0;
660 
661 	shash->tfm = fs_info->csum_shash;
662 
663 	bio_for_each_segment(bvec, bio, iter) {
664 		if (!contig)
665 			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
666 
667 		if (!ordered) {
668 			ordered = btrfs_lookup_ordered_extent(inode, offset);
669 			BUG_ON(!ordered); /* Logic error */
670 		}
671 
672 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
673 						 bvec.bv_len + fs_info->sectorsize
674 						 - 1);
675 
676 		for (i = 0; i < nr_sectors; i++) {
677 			if (offset >= ordered->file_offset + ordered->num_bytes ||
678 			    offset < ordered->file_offset) {
679 				unsigned long bytes_left;
680 
681 				sums->len = this_sum_bytes;
682 				this_sum_bytes = 0;
683 				btrfs_add_ordered_sum(ordered, sums);
684 				btrfs_put_ordered_extent(ordered);
685 
686 				bytes_left = bio->bi_iter.bi_size - total_bytes;
687 
688 				nofs_flag = memalloc_nofs_save();
689 				sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
690 						      bytes_left), GFP_KERNEL);
691 				memalloc_nofs_restore(nofs_flag);
692 				BUG_ON(!sums); /* -ENOMEM */
693 				sums->len = bytes_left;
694 				ordered = btrfs_lookup_ordered_extent(inode,
695 								offset);
696 				ASSERT(ordered); /* Logic error */
697 				sums->bytenr = (bio->bi_iter.bi_sector << 9)
698 					+ total_bytes;
699 				index = 0;
700 			}
701 
702 			data = kmap_atomic(bvec.bv_page);
703 			crypto_shash_digest(shash, data + bvec.bv_offset
704 					    + (i * fs_info->sectorsize),
705 					    fs_info->sectorsize,
706 					    sums->sums + index);
707 			kunmap_atomic(data);
708 			index += fs_info->csum_size;
709 			offset += fs_info->sectorsize;
710 			this_sum_bytes += fs_info->sectorsize;
711 			total_bytes += fs_info->sectorsize;
712 		}
713 
714 	}
715 	this_sum_bytes = 0;
716 	btrfs_add_ordered_sum(ordered, sums);
717 	btrfs_put_ordered_extent(ordered);
718 	return 0;
719 }
720 
721 /*
722  * helper function for csum removal, this expects the
723  * key to describe the csum pointed to by the path, and it expects
724  * the csum to overlap the range [bytenr, len]
725  *
726  * The csum should not be entirely contained in the range and the
727  * range should not be entirely contained in the csum.
728  *
729  * This calls btrfs_truncate_item with the correct args based on the
730  * overlap, and fixes up the key as required.
731  */
732 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
733 				       struct btrfs_path *path,
734 				       struct btrfs_key *key,
735 				       u64 bytenr, u64 len)
736 {
737 	struct extent_buffer *leaf;
738 	const u32 csum_size = fs_info->csum_size;
739 	u64 csum_end;
740 	u64 end_byte = bytenr + len;
741 	u32 blocksize_bits = fs_info->sectorsize_bits;
742 
743 	leaf = path->nodes[0];
744 	csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
745 	csum_end <<= blocksize_bits;
746 	csum_end += key->offset;
747 
748 	if (key->offset < bytenr && csum_end <= end_byte) {
749 		/*
750 		 *         [ bytenr - len ]
751 		 *         [   ]
752 		 *   [csum     ]
753 		 *   A simple truncate off the end of the item
754 		 */
755 		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
756 		new_size *= csum_size;
757 		btrfs_truncate_item(path, new_size, 1);
758 	} else if (key->offset >= bytenr && csum_end > end_byte &&
759 		   end_byte > key->offset) {
760 		/*
761 		 *         [ bytenr - len ]
762 		 *                 [ ]
763 		 *                 [csum     ]
764 		 * we need to truncate from the beginning of the csum
765 		 */
766 		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
767 		new_size *= csum_size;
768 
769 		btrfs_truncate_item(path, new_size, 0);
770 
771 		key->offset = end_byte;
772 		btrfs_set_item_key_safe(fs_info, path, key);
773 	} else {
774 		BUG();
775 	}
776 }
777 
778 /*
779  * deletes the csum items from the csum tree for a given
780  * range of bytes.
781  */
782 int btrfs_del_csums(struct btrfs_trans_handle *trans,
783 		    struct btrfs_root *root, u64 bytenr, u64 len)
784 {
785 	struct btrfs_fs_info *fs_info = trans->fs_info;
786 	struct btrfs_path *path;
787 	struct btrfs_key key;
788 	u64 end_byte = bytenr + len;
789 	u64 csum_end;
790 	struct extent_buffer *leaf;
791 	int ret = 0;
792 	const u32 csum_size = fs_info->csum_size;
793 	u32 blocksize_bits = fs_info->sectorsize_bits;
794 
795 	ASSERT(root == fs_info->csum_root ||
796 	       root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
797 
798 	path = btrfs_alloc_path();
799 	if (!path)
800 		return -ENOMEM;
801 
802 	while (1) {
803 		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
804 		key.offset = end_byte - 1;
805 		key.type = BTRFS_EXTENT_CSUM_KEY;
806 
807 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
808 		if (ret > 0) {
809 			ret = 0;
810 			if (path->slots[0] == 0)
811 				break;
812 			path->slots[0]--;
813 		} else if (ret < 0) {
814 			break;
815 		}
816 
817 		leaf = path->nodes[0];
818 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
819 
820 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
821 		    key.type != BTRFS_EXTENT_CSUM_KEY) {
822 			break;
823 		}
824 
825 		if (key.offset >= end_byte)
826 			break;
827 
828 		csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
829 		csum_end <<= blocksize_bits;
830 		csum_end += key.offset;
831 
832 		/* this csum ends before we start, we're done */
833 		if (csum_end <= bytenr)
834 			break;
835 
836 		/* delete the entire item, it is inside our range */
837 		if (key.offset >= bytenr && csum_end <= end_byte) {
838 			int del_nr = 1;
839 
840 			/*
841 			 * Check how many csum items preceding this one in this
842 			 * leaf correspond to our range and then delete them all
843 			 * at once.
844 			 */
845 			if (key.offset > bytenr && path->slots[0] > 0) {
846 				int slot = path->slots[0] - 1;
847 
848 				while (slot >= 0) {
849 					struct btrfs_key pk;
850 
851 					btrfs_item_key_to_cpu(leaf, &pk, slot);
852 					if (pk.offset < bytenr ||
853 					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
854 					    pk.objectid !=
855 					    BTRFS_EXTENT_CSUM_OBJECTID)
856 						break;
857 					path->slots[0] = slot;
858 					del_nr++;
859 					key.offset = pk.offset;
860 					slot--;
861 				}
862 			}
863 			ret = btrfs_del_items(trans, root, path,
864 					      path->slots[0], del_nr);
865 			if (ret)
866 				break;
867 			if (key.offset == bytenr)
868 				break;
869 		} else if (key.offset < bytenr && csum_end > end_byte) {
870 			unsigned long offset;
871 			unsigned long shift_len;
872 			unsigned long item_offset;
873 			/*
874 			 *        [ bytenr - len ]
875 			 *     [csum                ]
876 			 *
877 			 * Our bytes are in the middle of the csum,
878 			 * we need to split this item and insert a new one.
879 			 *
880 			 * But we can't drop the path because the
881 			 * csum could change, get removed, extended etc.
882 			 *
883 			 * The trick here is the max size of a csum item leaves
884 			 * enough room in the tree block for a single
885 			 * item header.  So, we split the item in place,
886 			 * adding a new header pointing to the existing
887 			 * bytes.  Then we loop around again and we have
888 			 * a nicely formed csum item that we can neatly
889 			 * truncate.
890 			 */
891 			offset = (bytenr - key.offset) >> blocksize_bits;
892 			offset *= csum_size;
893 
894 			shift_len = (len >> blocksize_bits) * csum_size;
895 
896 			item_offset = btrfs_item_ptr_offset(leaf,
897 							    path->slots[0]);
898 
899 			memzero_extent_buffer(leaf, item_offset + offset,
900 					     shift_len);
901 			key.offset = bytenr;
902 
903 			/*
904 			 * btrfs_split_item returns -EAGAIN when the
905 			 * item changed size or key
906 			 */
907 			ret = btrfs_split_item(trans, root, path, &key, offset);
908 			if (ret && ret != -EAGAIN) {
909 				btrfs_abort_transaction(trans, ret);
910 				break;
911 			}
912 			ret = 0;
913 
914 			key.offset = end_byte - 1;
915 		} else {
916 			truncate_one_csum(fs_info, path, &key, bytenr, len);
917 			if (key.offset < bytenr)
918 				break;
919 		}
920 		btrfs_release_path(path);
921 	}
922 	btrfs_free_path(path);
923 	return ret;
924 }
925 
926 static int find_next_csum_offset(struct btrfs_root *root,
927 				 struct btrfs_path *path,
928 				 u64 *next_offset)
929 {
930 	const u32 nritems = btrfs_header_nritems(path->nodes[0]);
931 	struct btrfs_key found_key;
932 	int slot = path->slots[0] + 1;
933 	int ret;
934 
935 	if (nritems == 0 || slot >= nritems) {
936 		ret = btrfs_next_leaf(root, path);
937 		if (ret < 0) {
938 			return ret;
939 		} else if (ret > 0) {
940 			*next_offset = (u64)-1;
941 			return 0;
942 		}
943 		slot = path->slots[0];
944 	}
945 
946 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
947 
948 	if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
949 	    found_key.type != BTRFS_EXTENT_CSUM_KEY)
950 		*next_offset = (u64)-1;
951 	else
952 		*next_offset = found_key.offset;
953 
954 	return 0;
955 }
956 
957 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
958 			   struct btrfs_root *root,
959 			   struct btrfs_ordered_sum *sums)
960 {
961 	struct btrfs_fs_info *fs_info = root->fs_info;
962 	struct btrfs_key file_key;
963 	struct btrfs_key found_key;
964 	struct btrfs_path *path;
965 	struct btrfs_csum_item *item;
966 	struct btrfs_csum_item *item_end;
967 	struct extent_buffer *leaf = NULL;
968 	u64 next_offset;
969 	u64 total_bytes = 0;
970 	u64 csum_offset;
971 	u64 bytenr;
972 	u32 ins_size;
973 	int index = 0;
974 	int found_next;
975 	int ret;
976 	const u32 csum_size = fs_info->csum_size;
977 
978 	path = btrfs_alloc_path();
979 	if (!path)
980 		return -ENOMEM;
981 again:
982 	next_offset = (u64)-1;
983 	found_next = 0;
984 	bytenr = sums->bytenr + total_bytes;
985 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
986 	file_key.offset = bytenr;
987 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
988 
989 	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
990 	if (!IS_ERR(item)) {
991 		ret = 0;
992 		leaf = path->nodes[0];
993 		item_end = btrfs_item_ptr(leaf, path->slots[0],
994 					  struct btrfs_csum_item);
995 		item_end = (struct btrfs_csum_item *)((char *)item_end +
996 			   btrfs_item_size_nr(leaf, path->slots[0]));
997 		goto found;
998 	}
999 	ret = PTR_ERR(item);
1000 	if (ret != -EFBIG && ret != -ENOENT)
1001 		goto out;
1002 
1003 	if (ret == -EFBIG) {
1004 		u32 item_size;
1005 		/* we found one, but it isn't big enough yet */
1006 		leaf = path->nodes[0];
1007 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1008 		if ((item_size / csum_size) >=
1009 		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
1010 			/* already at max size, make a new one */
1011 			goto insert;
1012 		}
1013 	} else {
1014 		/* We didn't find a csum item, insert one. */
1015 		ret = find_next_csum_offset(root, path, &next_offset);
1016 		if (ret < 0)
1017 			goto out;
1018 		found_next = 1;
1019 		goto insert;
1020 	}
1021 
1022 	/*
1023 	 * At this point, we know the tree has a checksum item that ends at an
1024 	 * offset matching the start of the checksum range we want to insert.
1025 	 * We try to extend that item as much as possible and then add as many
1026 	 * checksums to it as they fit.
1027 	 *
1028 	 * First check if the leaf has enough free space for at least one
1029 	 * checksum. If it has go directly to the item extension code, otherwise
1030 	 * release the path and do a search for insertion before the extension.
1031 	 */
1032 	if (btrfs_leaf_free_space(leaf) >= csum_size) {
1033 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1034 		csum_offset = (bytenr - found_key.offset) >>
1035 			fs_info->sectorsize_bits;
1036 		goto extend_csum;
1037 	}
1038 
1039 	btrfs_release_path(path);
1040 	path->search_for_extension = 1;
1041 	ret = btrfs_search_slot(trans, root, &file_key, path,
1042 				csum_size, 1);
1043 	path->search_for_extension = 0;
1044 	if (ret < 0)
1045 		goto out;
1046 
1047 	if (ret > 0) {
1048 		if (path->slots[0] == 0)
1049 			goto insert;
1050 		path->slots[0]--;
1051 	}
1052 
1053 	leaf = path->nodes[0];
1054 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1055 	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1056 
1057 	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1058 	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1059 	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1060 		goto insert;
1061 	}
1062 
1063 extend_csum:
1064 	if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) /
1065 	    csum_size) {
1066 		int extend_nr;
1067 		u64 tmp;
1068 		u32 diff;
1069 
1070 		tmp = sums->len - total_bytes;
1071 		tmp >>= fs_info->sectorsize_bits;
1072 		WARN_ON(tmp < 1);
1073 		extend_nr = max_t(int, 1, tmp);
1074 
1075 		/*
1076 		 * A log tree can already have checksum items with a subset of
1077 		 * the checksums we are trying to log. This can happen after
1078 		 * doing a sequence of partial writes into prealloc extents and
1079 		 * fsyncs in between, with a full fsync logging a larger subrange
1080 		 * of an extent for which a previous fast fsync logged a smaller
1081 		 * subrange. And this happens in particular due to merging file
1082 		 * extent items when we complete an ordered extent for a range
1083 		 * covered by a prealloc extent - this is done at
1084 		 * btrfs_mark_extent_written().
1085 		 *
1086 		 * So if we try to extend the previous checksum item, which has
1087 		 * a range that ends at the start of the range we want to insert,
1088 		 * make sure we don't extend beyond the start offset of the next
1089 		 * checksum item. If we are at the last item in the leaf, then
1090 		 * forget the optimization of extending and add a new checksum
1091 		 * item - it is not worth the complexity of releasing the path,
1092 		 * getting the first key for the next leaf, repeat the btree
1093 		 * search, etc, because log trees are temporary anyway and it
1094 		 * would only save a few bytes of leaf space.
1095 		 */
1096 		if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1097 			if (path->slots[0] + 1 >=
1098 			    btrfs_header_nritems(path->nodes[0])) {
1099 				ret = find_next_csum_offset(root, path, &next_offset);
1100 				if (ret < 0)
1101 					goto out;
1102 				found_next = 1;
1103 				goto insert;
1104 			}
1105 
1106 			ret = find_next_csum_offset(root, path, &next_offset);
1107 			if (ret < 0)
1108 				goto out;
1109 
1110 			tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1111 			if (tmp <= INT_MAX)
1112 				extend_nr = min_t(int, extend_nr, tmp);
1113 		}
1114 
1115 		diff = (csum_offset + extend_nr) * csum_size;
1116 		diff = min(diff,
1117 			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1118 
1119 		diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
1120 		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1121 		diff /= csum_size;
1122 		diff *= csum_size;
1123 
1124 		btrfs_extend_item(path, diff);
1125 		ret = 0;
1126 		goto csum;
1127 	}
1128 
1129 insert:
1130 	btrfs_release_path(path);
1131 	csum_offset = 0;
1132 	if (found_next) {
1133 		u64 tmp;
1134 
1135 		tmp = sums->len - total_bytes;
1136 		tmp >>= fs_info->sectorsize_bits;
1137 		tmp = min(tmp, (next_offset - file_key.offset) >>
1138 					 fs_info->sectorsize_bits);
1139 
1140 		tmp = max_t(u64, 1, tmp);
1141 		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1142 		ins_size = csum_size * tmp;
1143 	} else {
1144 		ins_size = csum_size;
1145 	}
1146 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1147 				      ins_size);
1148 	if (ret < 0)
1149 		goto out;
1150 	if (WARN_ON(ret != 0))
1151 		goto out;
1152 	leaf = path->nodes[0];
1153 csum:
1154 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1155 	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1156 				      btrfs_item_size_nr(leaf, path->slots[0]));
1157 	item = (struct btrfs_csum_item *)((unsigned char *)item +
1158 					  csum_offset * csum_size);
1159 found:
1160 	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1161 	ins_size *= csum_size;
1162 	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1163 			      ins_size);
1164 	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1165 			    ins_size);
1166 
1167 	index += ins_size;
1168 	ins_size /= csum_size;
1169 	total_bytes += ins_size * fs_info->sectorsize;
1170 
1171 	btrfs_mark_buffer_dirty(path->nodes[0]);
1172 	if (total_bytes < sums->len) {
1173 		btrfs_release_path(path);
1174 		cond_resched();
1175 		goto again;
1176 	}
1177 out:
1178 	btrfs_free_path(path);
1179 	return ret;
1180 }
1181 
1182 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1183 				     const struct btrfs_path *path,
1184 				     struct btrfs_file_extent_item *fi,
1185 				     const bool new_inline,
1186 				     struct extent_map *em)
1187 {
1188 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1189 	struct btrfs_root *root = inode->root;
1190 	struct extent_buffer *leaf = path->nodes[0];
1191 	const int slot = path->slots[0];
1192 	struct btrfs_key key;
1193 	u64 extent_start, extent_end;
1194 	u64 bytenr;
1195 	u8 type = btrfs_file_extent_type(leaf, fi);
1196 	int compress_type = btrfs_file_extent_compression(leaf, fi);
1197 
1198 	btrfs_item_key_to_cpu(leaf, &key, slot);
1199 	extent_start = key.offset;
1200 	extent_end = btrfs_file_extent_end(path);
1201 	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1202 	if (type == BTRFS_FILE_EXTENT_REG ||
1203 	    type == BTRFS_FILE_EXTENT_PREALLOC) {
1204 		em->start = extent_start;
1205 		em->len = extent_end - extent_start;
1206 		em->orig_start = extent_start -
1207 			btrfs_file_extent_offset(leaf, fi);
1208 		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1209 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1210 		if (bytenr == 0) {
1211 			em->block_start = EXTENT_MAP_HOLE;
1212 			return;
1213 		}
1214 		if (compress_type != BTRFS_COMPRESS_NONE) {
1215 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1216 			em->compress_type = compress_type;
1217 			em->block_start = bytenr;
1218 			em->block_len = em->orig_block_len;
1219 		} else {
1220 			bytenr += btrfs_file_extent_offset(leaf, fi);
1221 			em->block_start = bytenr;
1222 			em->block_len = em->len;
1223 			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1224 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1225 		}
1226 	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1227 		em->block_start = EXTENT_MAP_INLINE;
1228 		em->start = extent_start;
1229 		em->len = extent_end - extent_start;
1230 		/*
1231 		 * Initialize orig_start and block_len with the same values
1232 		 * as in inode.c:btrfs_get_extent().
1233 		 */
1234 		em->orig_start = EXTENT_MAP_HOLE;
1235 		em->block_len = (u64)-1;
1236 		if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
1237 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1238 			em->compress_type = compress_type;
1239 		}
1240 	} else {
1241 		btrfs_err(fs_info,
1242 			  "unknown file extent item type %d, inode %llu, offset %llu, "
1243 			  "root %llu", type, btrfs_ino(inode), extent_start,
1244 			  root->root_key.objectid);
1245 	}
1246 }
1247 
1248 /*
1249  * Returns the end offset (non inclusive) of the file extent item the given path
1250  * points to. If it points to an inline extent, the returned offset is rounded
1251  * up to the sector size.
1252  */
1253 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1254 {
1255 	const struct extent_buffer *leaf = path->nodes[0];
1256 	const int slot = path->slots[0];
1257 	struct btrfs_file_extent_item *fi;
1258 	struct btrfs_key key;
1259 	u64 end;
1260 
1261 	btrfs_item_key_to_cpu(leaf, &key, slot);
1262 	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1263 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1264 
1265 	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1266 		end = btrfs_file_extent_ram_bytes(leaf, fi);
1267 		end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1268 	} else {
1269 		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1270 	}
1271 
1272 	return end;
1273 }
1274