xref: /linux/fs/btrfs/file-item.c (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "messages.h"
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "bio.h"
17 #include "compression.h"
18 #include "fs.h"
19 #include "accessors.h"
20 #include "file-item.h"
21 
22 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
23 				   sizeof(struct btrfs_item) * 2) / \
24 				  size) - 1))
25 
26 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
27 				       PAGE_SIZE))
28 
29 /*
30  * Set inode's size according to filesystem options.
31  *
32  * @inode:      inode we want to update the disk_i_size for
33  * @new_i_size: i_size we want to set to, 0 if we use i_size
34  *
35  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
36  * returns as it is perfectly fine with a file that has holes without hole file
37  * extent items.
38  *
39  * However without NO_HOLES we need to only return the area that is contiguous
40  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
41  * to an extent that has a gap in between.
42  *
43  * Finally new_i_size should only be set in the case of truncate where we're not
44  * ready to use i_size_read() as the limiter yet.
45  */
46 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
47 {
48 	u64 start, end, i_size;
49 	int ret;
50 
51 	spin_lock(&inode->lock);
52 	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
53 	if (!inode->file_extent_tree) {
54 		inode->disk_i_size = i_size;
55 		goto out_unlock;
56 	}
57 
58 	ret = find_contiguous_extent_bit(inode->file_extent_tree, 0, &start,
59 					 &end, EXTENT_DIRTY);
60 	if (!ret && start == 0)
61 		i_size = min(i_size, end + 1);
62 	else
63 		i_size = 0;
64 	inode->disk_i_size = i_size;
65 out_unlock:
66 	spin_unlock(&inode->lock);
67 }
68 
69 /*
70  * Mark range within a file as having a new extent inserted.
71  *
72  * @inode: inode being modified
73  * @start: start file offset of the file extent we've inserted
74  * @len:   logical length of the file extent item
75  *
76  * Call when we are inserting a new file extent where there was none before.
77  * Does not need to call this in the case where we're replacing an existing file
78  * extent, however if not sure it's fine to call this multiple times.
79  *
80  * The start and len must match the file extent item, so thus must be sectorsize
81  * aligned.
82  */
83 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
84 				      u64 len)
85 {
86 	if (!inode->file_extent_tree)
87 		return 0;
88 
89 	if (len == 0)
90 		return 0;
91 
92 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
93 
94 	return set_extent_bit(inode->file_extent_tree, start, start + len - 1,
95 			      EXTENT_DIRTY, NULL);
96 }
97 
98 /*
99  * Mark an inode range as not having a backing extent.
100  *
101  * @inode: inode being modified
102  * @start: start file offset of the file extent we've inserted
103  * @len:   logical length of the file extent item
104  *
105  * Called when we drop a file extent, for example when we truncate.  Doesn't
106  * need to be called for cases where we're replacing a file extent, like when
107  * we've COWed a file extent.
108  *
109  * The start and len must match the file extent item, so thus must be sectorsize
110  * aligned.
111  */
112 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
113 					u64 len)
114 {
115 	if (!inode->file_extent_tree)
116 		return 0;
117 
118 	if (len == 0)
119 		return 0;
120 
121 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
122 	       len == (u64)-1);
123 
124 	return clear_extent_bit(inode->file_extent_tree, start,
125 				start + len - 1, EXTENT_DIRTY, NULL);
126 }
127 
128 static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
129 {
130 	ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
131 
132 	return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
133 }
134 
135 static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
136 {
137 	ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
138 
139 	return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
140 }
141 
142 static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
143 {
144 	u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
145 				       fs_info->csum_size);
146 
147 	return csum_size_to_bytes(fs_info, max_csum_size);
148 }
149 
150 /*
151  * Calculate the total size needed to allocate for an ordered sum structure
152  * spanning @bytes in the file.
153  */
154 static int btrfs_ordered_sum_size(const struct btrfs_fs_info *fs_info, unsigned long bytes)
155 {
156 	return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
157 }
158 
159 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
160 			     struct btrfs_root *root,
161 			     u64 objectid, u64 pos, u64 num_bytes)
162 {
163 	int ret = 0;
164 	struct btrfs_file_extent_item *item;
165 	struct btrfs_key file_key;
166 	struct btrfs_path *path;
167 	struct extent_buffer *leaf;
168 
169 	path = btrfs_alloc_path();
170 	if (!path)
171 		return -ENOMEM;
172 	file_key.objectid = objectid;
173 	file_key.offset = pos;
174 	file_key.type = BTRFS_EXTENT_DATA_KEY;
175 
176 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
177 				      sizeof(*item));
178 	if (ret < 0)
179 		goto out;
180 	leaf = path->nodes[0];
181 	item = btrfs_item_ptr(leaf, path->slots[0],
182 			      struct btrfs_file_extent_item);
183 	btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
184 	btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
185 	btrfs_set_file_extent_offset(leaf, item, 0);
186 	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
187 	btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
188 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
189 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
190 	btrfs_set_file_extent_compression(leaf, item, 0);
191 	btrfs_set_file_extent_encryption(leaf, item, 0);
192 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
193 
194 	btrfs_mark_buffer_dirty(trans, leaf);
195 out:
196 	btrfs_free_path(path);
197 	return ret;
198 }
199 
200 static struct btrfs_csum_item *
201 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
202 		  struct btrfs_root *root,
203 		  struct btrfs_path *path,
204 		  u64 bytenr, int cow)
205 {
206 	struct btrfs_fs_info *fs_info = root->fs_info;
207 	int ret;
208 	struct btrfs_key file_key;
209 	struct btrfs_key found_key;
210 	struct btrfs_csum_item *item;
211 	struct extent_buffer *leaf;
212 	u64 csum_offset = 0;
213 	const u32 csum_size = fs_info->csum_size;
214 	int csums_in_item;
215 
216 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
217 	file_key.offset = bytenr;
218 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
219 	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
220 	if (ret < 0)
221 		goto fail;
222 	leaf = path->nodes[0];
223 	if (ret > 0) {
224 		ret = 1;
225 		if (path->slots[0] == 0)
226 			goto fail;
227 		path->slots[0]--;
228 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
229 		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
230 			goto fail;
231 
232 		csum_offset = (bytenr - found_key.offset) >>
233 				fs_info->sectorsize_bits;
234 		csums_in_item = btrfs_item_size(leaf, path->slots[0]);
235 		csums_in_item /= csum_size;
236 
237 		if (csum_offset == csums_in_item) {
238 			ret = -EFBIG;
239 			goto fail;
240 		} else if (csum_offset > csums_in_item) {
241 			goto fail;
242 		}
243 	}
244 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
245 	item = (struct btrfs_csum_item *)((unsigned char *)item +
246 					  csum_offset * csum_size);
247 	return item;
248 fail:
249 	if (ret > 0)
250 		ret = -ENOENT;
251 	return ERR_PTR(ret);
252 }
253 
254 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
255 			     struct btrfs_root *root,
256 			     struct btrfs_path *path, u64 objectid,
257 			     u64 offset, int mod)
258 {
259 	struct btrfs_key file_key;
260 	int ins_len = mod < 0 ? -1 : 0;
261 	int cow = mod != 0;
262 
263 	file_key.objectid = objectid;
264 	file_key.offset = offset;
265 	file_key.type = BTRFS_EXTENT_DATA_KEY;
266 
267 	return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
268 }
269 
270 /*
271  * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
272  * store the result to @dst.
273  *
274  * Return >0 for the number of sectors we found.
275  * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
276  * for it. Caller may want to try next sector until one range is hit.
277  * Return <0 for fatal error.
278  */
279 static int search_csum_tree(struct btrfs_fs_info *fs_info,
280 			    struct btrfs_path *path, u64 disk_bytenr,
281 			    u64 len, u8 *dst)
282 {
283 	struct btrfs_root *csum_root;
284 	struct btrfs_csum_item *item = NULL;
285 	struct btrfs_key key;
286 	const u32 sectorsize = fs_info->sectorsize;
287 	const u32 csum_size = fs_info->csum_size;
288 	u32 itemsize;
289 	int ret;
290 	u64 csum_start;
291 	u64 csum_len;
292 
293 	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
294 	       IS_ALIGNED(len, sectorsize));
295 
296 	/* Check if the current csum item covers disk_bytenr */
297 	if (path->nodes[0]) {
298 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
299 				      struct btrfs_csum_item);
300 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
301 		itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
302 
303 		csum_start = key.offset;
304 		csum_len = (itemsize / csum_size) * sectorsize;
305 
306 		if (in_range(disk_bytenr, csum_start, csum_len))
307 			goto found;
308 	}
309 
310 	/* Current item doesn't contain the desired range, search again */
311 	btrfs_release_path(path);
312 	csum_root = btrfs_csum_root(fs_info, disk_bytenr);
313 	item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
314 	if (IS_ERR(item)) {
315 		ret = PTR_ERR(item);
316 		goto out;
317 	}
318 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
319 	itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
320 
321 	csum_start = key.offset;
322 	csum_len = (itemsize / csum_size) * sectorsize;
323 	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
324 
325 found:
326 	ret = (min(csum_start + csum_len, disk_bytenr + len) -
327 		   disk_bytenr) >> fs_info->sectorsize_bits;
328 	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
329 			ret * csum_size);
330 out:
331 	if (ret == -ENOENT || ret == -EFBIG)
332 		ret = 0;
333 	return ret;
334 }
335 
336 /*
337  * Lookup the checksum for the read bio in csum tree.
338  *
339  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
340  */
341 blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
342 {
343 	struct btrfs_inode *inode = bbio->inode;
344 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
345 	struct bio *bio = &bbio->bio;
346 	struct btrfs_path *path;
347 	const u32 sectorsize = fs_info->sectorsize;
348 	const u32 csum_size = fs_info->csum_size;
349 	u32 orig_len = bio->bi_iter.bi_size;
350 	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
351 	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
352 	blk_status_t ret = BLK_STS_OK;
353 	u32 bio_offset = 0;
354 
355 	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
356 	    test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state))
357 		return BLK_STS_OK;
358 
359 	/*
360 	 * This function is only called for read bio.
361 	 *
362 	 * This means two things:
363 	 * - All our csums should only be in csum tree
364 	 *   No ordered extents csums, as ordered extents are only for write
365 	 *   path.
366 	 * - No need to bother any other info from bvec
367 	 *   Since we're looking up csums, the only important info is the
368 	 *   disk_bytenr and the length, which can be extracted from bi_iter
369 	 *   directly.
370 	 */
371 	ASSERT(bio_op(bio) == REQ_OP_READ);
372 	path = btrfs_alloc_path();
373 	if (!path)
374 		return BLK_STS_RESOURCE;
375 
376 	if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
377 		bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
378 		if (!bbio->csum) {
379 			btrfs_free_path(path);
380 			return BLK_STS_RESOURCE;
381 		}
382 	} else {
383 		bbio->csum = bbio->csum_inline;
384 	}
385 
386 	/*
387 	 * If requested number of sectors is larger than one leaf can contain,
388 	 * kick the readahead for csum tree.
389 	 */
390 	if (nblocks > fs_info->csums_per_leaf)
391 		path->reada = READA_FORWARD;
392 
393 	/*
394 	 * the free space stuff is only read when it hasn't been
395 	 * updated in the current transaction.  So, we can safely
396 	 * read from the commit root and sidestep a nasty deadlock
397 	 * between reading the free space cache and updating the csum tree.
398 	 */
399 	if (btrfs_is_free_space_inode(inode)) {
400 		path->search_commit_root = 1;
401 		path->skip_locking = 1;
402 	}
403 
404 	while (bio_offset < orig_len) {
405 		int count;
406 		u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
407 		u8 *csum_dst = bbio->csum +
408 			(bio_offset >> fs_info->sectorsize_bits) * csum_size;
409 
410 		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
411 					 orig_len - bio_offset, csum_dst);
412 		if (count < 0) {
413 			ret = errno_to_blk_status(count);
414 			if (bbio->csum != bbio->csum_inline)
415 				kfree(bbio->csum);
416 			bbio->csum = NULL;
417 			break;
418 		}
419 
420 		/*
421 		 * We didn't find a csum for this range.  We need to make sure
422 		 * we complain loudly about this, because we are not NODATASUM.
423 		 *
424 		 * However for the DATA_RELOC inode we could potentially be
425 		 * relocating data extents for a NODATASUM inode, so the inode
426 		 * itself won't be marked with NODATASUM, but the extent we're
427 		 * copying is in fact NODATASUM.  If we don't find a csum we
428 		 * assume this is the case.
429 		 */
430 		if (count == 0) {
431 			memset(csum_dst, 0, csum_size);
432 			count = 1;
433 
434 			if (btrfs_root_id(inode->root) == BTRFS_DATA_RELOC_TREE_OBJECTID) {
435 				u64 file_offset = bbio->file_offset + bio_offset;
436 
437 				set_extent_bit(&inode->io_tree, file_offset,
438 					       file_offset + sectorsize - 1,
439 					       EXTENT_NODATASUM, NULL);
440 			} else {
441 				btrfs_warn_rl(fs_info,
442 			"csum hole found for disk bytenr range [%llu, %llu)",
443 				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
444 			}
445 		}
446 		bio_offset += count * sectorsize;
447 	}
448 
449 	btrfs_free_path(path);
450 	return ret;
451 }
452 
453 /*
454  * Search for checksums for a given logical range.
455  *
456  * @root:		The root where to look for checksums.
457  * @start:		Logical address of target checksum range.
458  * @end:		End offset (inclusive) of the target checksum range.
459  * @list:		List for adding each checksum that was found.
460  *			Can be NULL in case the caller only wants to check if
461  *			there any checksums for the range.
462  * @nowait:		Indicate if the search must be non-blocking or not.
463  *
464  * Return < 0 on error, 0 if no checksums were found, or 1 if checksums were
465  * found.
466  */
467 int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
468 			    struct list_head *list, bool nowait)
469 {
470 	struct btrfs_fs_info *fs_info = root->fs_info;
471 	struct btrfs_key key;
472 	struct btrfs_path *path;
473 	struct extent_buffer *leaf;
474 	struct btrfs_ordered_sum *sums;
475 	struct btrfs_csum_item *item;
476 	int ret;
477 	bool found_csums = false;
478 
479 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
480 	       IS_ALIGNED(end + 1, fs_info->sectorsize));
481 
482 	path = btrfs_alloc_path();
483 	if (!path)
484 		return -ENOMEM;
485 
486 	path->nowait = nowait;
487 
488 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
489 	key.offset = start;
490 	key.type = BTRFS_EXTENT_CSUM_KEY;
491 
492 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
493 	if (ret < 0)
494 		goto out;
495 	if (ret > 0 && path->slots[0] > 0) {
496 		leaf = path->nodes[0];
497 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
498 
499 		/*
500 		 * There are two cases we can hit here for the previous csum
501 		 * item:
502 		 *
503 		 *		|<- search range ->|
504 		 *	|<- csum item ->|
505 		 *
506 		 * Or
507 		 *				|<- search range ->|
508 		 *	|<- csum item ->|
509 		 *
510 		 * Check if the previous csum item covers the leading part of
511 		 * the search range.  If so we have to start from previous csum
512 		 * item.
513 		 */
514 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
515 		    key.type == BTRFS_EXTENT_CSUM_KEY) {
516 			if (bytes_to_csum_size(fs_info, start - key.offset) <
517 			    btrfs_item_size(leaf, path->slots[0] - 1))
518 				path->slots[0]--;
519 		}
520 	}
521 
522 	while (start <= end) {
523 		u64 csum_end;
524 
525 		leaf = path->nodes[0];
526 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
527 			ret = btrfs_next_leaf(root, path);
528 			if (ret < 0)
529 				goto out;
530 			if (ret > 0)
531 				break;
532 			leaf = path->nodes[0];
533 		}
534 
535 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
536 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
537 		    key.type != BTRFS_EXTENT_CSUM_KEY ||
538 		    key.offset > end)
539 			break;
540 
541 		if (key.offset > start)
542 			start = key.offset;
543 
544 		csum_end = key.offset + csum_size_to_bytes(fs_info,
545 					btrfs_item_size(leaf, path->slots[0]));
546 		if (csum_end <= start) {
547 			path->slots[0]++;
548 			continue;
549 		}
550 
551 		found_csums = true;
552 		if (!list)
553 			goto out;
554 
555 		csum_end = min(csum_end, end + 1);
556 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
557 				      struct btrfs_csum_item);
558 		while (start < csum_end) {
559 			unsigned long offset;
560 			size_t size;
561 
562 			size = min_t(size_t, csum_end - start,
563 				     max_ordered_sum_bytes(fs_info));
564 			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
565 				       GFP_NOFS);
566 			if (!sums) {
567 				ret = -ENOMEM;
568 				goto out;
569 			}
570 
571 			sums->logical = start;
572 			sums->len = size;
573 
574 			offset = bytes_to_csum_size(fs_info, start - key.offset);
575 
576 			read_extent_buffer(path->nodes[0],
577 					   sums->sums,
578 					   ((unsigned long)item) + offset,
579 					   bytes_to_csum_size(fs_info, size));
580 
581 			start += size;
582 			list_add_tail(&sums->list, list);
583 		}
584 		path->slots[0]++;
585 	}
586 out:
587 	btrfs_free_path(path);
588 	if (ret < 0) {
589 		if (list) {
590 			struct btrfs_ordered_sum *tmp_sums;
591 
592 			list_for_each_entry_safe(sums, tmp_sums, list, list)
593 				kfree(sums);
594 		}
595 
596 		return ret;
597 	}
598 
599 	return found_csums ? 1 : 0;
600 }
601 
602 /*
603  * Do the same work as btrfs_lookup_csums_list(), the difference is in how
604  * we return the result.
605  *
606  * This version will set the corresponding bits in @csum_bitmap to represent
607  * that there is a csum found.
608  * Each bit represents a sector. Thus caller should ensure @csum_buf passed
609  * in is large enough to contain all csums.
610  */
611 int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path,
612 			      u64 start, u64 end, u8 *csum_buf,
613 			      unsigned long *csum_bitmap)
614 {
615 	struct btrfs_fs_info *fs_info = root->fs_info;
616 	struct btrfs_key key;
617 	struct extent_buffer *leaf;
618 	struct btrfs_csum_item *item;
619 	const u64 orig_start = start;
620 	bool free_path = false;
621 	int ret;
622 
623 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
624 	       IS_ALIGNED(end + 1, fs_info->sectorsize));
625 
626 	if (!path) {
627 		path = btrfs_alloc_path();
628 		if (!path)
629 			return -ENOMEM;
630 		free_path = true;
631 	}
632 
633 	/* Check if we can reuse the previous path. */
634 	if (path->nodes[0]) {
635 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
636 
637 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
638 		    key.type == BTRFS_EXTENT_CSUM_KEY &&
639 		    key.offset <= start)
640 			goto search_forward;
641 		btrfs_release_path(path);
642 	}
643 
644 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
645 	key.type = BTRFS_EXTENT_CSUM_KEY;
646 	key.offset = start;
647 
648 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
649 	if (ret < 0)
650 		goto fail;
651 	if (ret > 0 && path->slots[0] > 0) {
652 		leaf = path->nodes[0];
653 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
654 
655 		/*
656 		 * There are two cases we can hit here for the previous csum
657 		 * item:
658 		 *
659 		 *		|<- search range ->|
660 		 *	|<- csum item ->|
661 		 *
662 		 * Or
663 		 *				|<- search range ->|
664 		 *	|<- csum item ->|
665 		 *
666 		 * Check if the previous csum item covers the leading part of
667 		 * the search range.  If so we have to start from previous csum
668 		 * item.
669 		 */
670 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
671 		    key.type == BTRFS_EXTENT_CSUM_KEY) {
672 			if (bytes_to_csum_size(fs_info, start - key.offset) <
673 			    btrfs_item_size(leaf, path->slots[0] - 1))
674 				path->slots[0]--;
675 		}
676 	}
677 
678 search_forward:
679 	while (start <= end) {
680 		u64 csum_end;
681 
682 		leaf = path->nodes[0];
683 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
684 			ret = btrfs_next_leaf(root, path);
685 			if (ret < 0)
686 				goto fail;
687 			if (ret > 0)
688 				break;
689 			leaf = path->nodes[0];
690 		}
691 
692 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
693 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
694 		    key.type != BTRFS_EXTENT_CSUM_KEY ||
695 		    key.offset > end)
696 			break;
697 
698 		if (key.offset > start)
699 			start = key.offset;
700 
701 		csum_end = key.offset + csum_size_to_bytes(fs_info,
702 					btrfs_item_size(leaf, path->slots[0]));
703 		if (csum_end <= start) {
704 			path->slots[0]++;
705 			continue;
706 		}
707 
708 		csum_end = min(csum_end, end + 1);
709 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
710 				      struct btrfs_csum_item);
711 		while (start < csum_end) {
712 			unsigned long offset;
713 			size_t size;
714 			u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
715 						start - orig_start);
716 
717 			size = min_t(size_t, csum_end - start, end + 1 - start);
718 
719 			offset = bytes_to_csum_size(fs_info, start - key.offset);
720 
721 			read_extent_buffer(path->nodes[0], csum_dest,
722 					   ((unsigned long)item) + offset,
723 					   bytes_to_csum_size(fs_info, size));
724 
725 			bitmap_set(csum_bitmap,
726 				(start - orig_start) >> fs_info->sectorsize_bits,
727 				size >> fs_info->sectorsize_bits);
728 
729 			start += size;
730 		}
731 		path->slots[0]++;
732 	}
733 	ret = 0;
734 fail:
735 	if (free_path)
736 		btrfs_free_path(path);
737 	return ret;
738 }
739 
740 /*
741  * Calculate checksums of the data contained inside a bio.
742  */
743 blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
744 {
745 	struct btrfs_ordered_extent *ordered = bbio->ordered;
746 	struct btrfs_inode *inode = bbio->inode;
747 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
748 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
749 	struct bio *bio = &bbio->bio;
750 	struct btrfs_ordered_sum *sums;
751 	char *data;
752 	struct bvec_iter iter;
753 	struct bio_vec bvec;
754 	int index;
755 	unsigned int blockcount;
756 	int i;
757 	unsigned nofs_flag;
758 
759 	nofs_flag = memalloc_nofs_save();
760 	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
761 		       GFP_KERNEL);
762 	memalloc_nofs_restore(nofs_flag);
763 
764 	if (!sums)
765 		return BLK_STS_RESOURCE;
766 
767 	sums->len = bio->bi_iter.bi_size;
768 	INIT_LIST_HEAD(&sums->list);
769 
770 	sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
771 	index = 0;
772 
773 	shash->tfm = fs_info->csum_shash;
774 
775 	bio_for_each_segment(bvec, bio, iter) {
776 		blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
777 						 bvec.bv_len + fs_info->sectorsize
778 						 - 1);
779 
780 		for (i = 0; i < blockcount; i++) {
781 			data = bvec_kmap_local(&bvec);
782 			crypto_shash_digest(shash,
783 					    data + (i * fs_info->sectorsize),
784 					    fs_info->sectorsize,
785 					    sums->sums + index);
786 			kunmap_local(data);
787 			index += fs_info->csum_size;
788 		}
789 
790 	}
791 
792 	bbio->sums = sums;
793 	btrfs_add_ordered_sum(ordered, sums);
794 	return 0;
795 }
796 
797 /*
798  * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to
799  * record the updated logical address on Zone Append completion.
800  * Allocate just the structure with an empty sums array here for that case.
801  */
802 blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio)
803 {
804 	bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS);
805 	if (!bbio->sums)
806 		return BLK_STS_RESOURCE;
807 	bbio->sums->len = bbio->bio.bi_iter.bi_size;
808 	bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
809 	btrfs_add_ordered_sum(bbio->ordered, bbio->sums);
810 	return 0;
811 }
812 
813 /*
814  * Remove one checksum overlapping a range.
815  *
816  * This expects the key to describe the csum pointed to by the path, and it
817  * expects the csum to overlap the range [bytenr, len]
818  *
819  * The csum should not be entirely contained in the range and the range should
820  * not be entirely contained in the csum.
821  *
822  * This calls btrfs_truncate_item with the correct args based on the overlap,
823  * and fixes up the key as required.
824  */
825 static noinline void truncate_one_csum(struct btrfs_trans_handle *trans,
826 				       struct btrfs_path *path,
827 				       struct btrfs_key *key,
828 				       u64 bytenr, u64 len)
829 {
830 	struct btrfs_fs_info *fs_info = trans->fs_info;
831 	struct extent_buffer *leaf;
832 	const u32 csum_size = fs_info->csum_size;
833 	u64 csum_end;
834 	u64 end_byte = bytenr + len;
835 	u32 blocksize_bits = fs_info->sectorsize_bits;
836 
837 	leaf = path->nodes[0];
838 	csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
839 	csum_end <<= blocksize_bits;
840 	csum_end += key->offset;
841 
842 	if (key->offset < bytenr && csum_end <= end_byte) {
843 		/*
844 		 *         [ bytenr - len ]
845 		 *         [   ]
846 		 *   [csum     ]
847 		 *   A simple truncate off the end of the item
848 		 */
849 		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
850 		new_size *= csum_size;
851 		btrfs_truncate_item(trans, path, new_size, 1);
852 	} else if (key->offset >= bytenr && csum_end > end_byte &&
853 		   end_byte > key->offset) {
854 		/*
855 		 *         [ bytenr - len ]
856 		 *                 [ ]
857 		 *                 [csum     ]
858 		 * we need to truncate from the beginning of the csum
859 		 */
860 		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
861 		new_size *= csum_size;
862 
863 		btrfs_truncate_item(trans, path, new_size, 0);
864 
865 		key->offset = end_byte;
866 		btrfs_set_item_key_safe(trans, path, key);
867 	} else {
868 		BUG();
869 	}
870 }
871 
872 /*
873  * Delete the csum items from the csum tree for a given range of bytes.
874  */
875 int btrfs_del_csums(struct btrfs_trans_handle *trans,
876 		    struct btrfs_root *root, u64 bytenr, u64 len)
877 {
878 	struct btrfs_fs_info *fs_info = trans->fs_info;
879 	struct btrfs_path *path;
880 	struct btrfs_key key;
881 	u64 end_byte = bytenr + len;
882 	u64 csum_end;
883 	struct extent_buffer *leaf;
884 	int ret = 0;
885 	const u32 csum_size = fs_info->csum_size;
886 	u32 blocksize_bits = fs_info->sectorsize_bits;
887 
888 	ASSERT(btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID ||
889 	       btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
890 
891 	path = btrfs_alloc_path();
892 	if (!path)
893 		return -ENOMEM;
894 
895 	while (1) {
896 		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
897 		key.offset = end_byte - 1;
898 		key.type = BTRFS_EXTENT_CSUM_KEY;
899 
900 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
901 		if (ret > 0) {
902 			ret = 0;
903 			if (path->slots[0] == 0)
904 				break;
905 			path->slots[0]--;
906 		} else if (ret < 0) {
907 			break;
908 		}
909 
910 		leaf = path->nodes[0];
911 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
912 
913 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
914 		    key.type != BTRFS_EXTENT_CSUM_KEY) {
915 			break;
916 		}
917 
918 		if (key.offset >= end_byte)
919 			break;
920 
921 		csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
922 		csum_end <<= blocksize_bits;
923 		csum_end += key.offset;
924 
925 		/* this csum ends before we start, we're done */
926 		if (csum_end <= bytenr)
927 			break;
928 
929 		/* delete the entire item, it is inside our range */
930 		if (key.offset >= bytenr && csum_end <= end_byte) {
931 			int del_nr = 1;
932 
933 			/*
934 			 * Check how many csum items preceding this one in this
935 			 * leaf correspond to our range and then delete them all
936 			 * at once.
937 			 */
938 			if (key.offset > bytenr && path->slots[0] > 0) {
939 				int slot = path->slots[0] - 1;
940 
941 				while (slot >= 0) {
942 					struct btrfs_key pk;
943 
944 					btrfs_item_key_to_cpu(leaf, &pk, slot);
945 					if (pk.offset < bytenr ||
946 					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
947 					    pk.objectid !=
948 					    BTRFS_EXTENT_CSUM_OBJECTID)
949 						break;
950 					path->slots[0] = slot;
951 					del_nr++;
952 					key.offset = pk.offset;
953 					slot--;
954 				}
955 			}
956 			ret = btrfs_del_items(trans, root, path,
957 					      path->slots[0], del_nr);
958 			if (ret)
959 				break;
960 			if (key.offset == bytenr)
961 				break;
962 		} else if (key.offset < bytenr && csum_end > end_byte) {
963 			unsigned long offset;
964 			unsigned long shift_len;
965 			unsigned long item_offset;
966 			/*
967 			 *        [ bytenr - len ]
968 			 *     [csum                ]
969 			 *
970 			 * Our bytes are in the middle of the csum,
971 			 * we need to split this item and insert a new one.
972 			 *
973 			 * But we can't drop the path because the
974 			 * csum could change, get removed, extended etc.
975 			 *
976 			 * The trick here is the max size of a csum item leaves
977 			 * enough room in the tree block for a single
978 			 * item header.  So, we split the item in place,
979 			 * adding a new header pointing to the existing
980 			 * bytes.  Then we loop around again and we have
981 			 * a nicely formed csum item that we can neatly
982 			 * truncate.
983 			 */
984 			offset = (bytenr - key.offset) >> blocksize_bits;
985 			offset *= csum_size;
986 
987 			shift_len = (len >> blocksize_bits) * csum_size;
988 
989 			item_offset = btrfs_item_ptr_offset(leaf,
990 							    path->slots[0]);
991 
992 			memzero_extent_buffer(leaf, item_offset + offset,
993 					     shift_len);
994 			key.offset = bytenr;
995 
996 			/*
997 			 * btrfs_split_item returns -EAGAIN when the
998 			 * item changed size or key
999 			 */
1000 			ret = btrfs_split_item(trans, root, path, &key, offset);
1001 			if (ret && ret != -EAGAIN) {
1002 				btrfs_abort_transaction(trans, ret);
1003 				break;
1004 			}
1005 			ret = 0;
1006 
1007 			key.offset = end_byte - 1;
1008 		} else {
1009 			truncate_one_csum(trans, path, &key, bytenr, len);
1010 			if (key.offset < bytenr)
1011 				break;
1012 		}
1013 		btrfs_release_path(path);
1014 	}
1015 	btrfs_free_path(path);
1016 	return ret;
1017 }
1018 
1019 static int find_next_csum_offset(struct btrfs_root *root,
1020 				 struct btrfs_path *path,
1021 				 u64 *next_offset)
1022 {
1023 	const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1024 	struct btrfs_key found_key;
1025 	int slot = path->slots[0] + 1;
1026 	int ret;
1027 
1028 	if (nritems == 0 || slot >= nritems) {
1029 		ret = btrfs_next_leaf(root, path);
1030 		if (ret < 0) {
1031 			return ret;
1032 		} else if (ret > 0) {
1033 			*next_offset = (u64)-1;
1034 			return 0;
1035 		}
1036 		slot = path->slots[0];
1037 	}
1038 
1039 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1040 
1041 	if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1042 	    found_key.type != BTRFS_EXTENT_CSUM_KEY)
1043 		*next_offset = (u64)-1;
1044 	else
1045 		*next_offset = found_key.offset;
1046 
1047 	return 0;
1048 }
1049 
1050 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1051 			   struct btrfs_root *root,
1052 			   struct btrfs_ordered_sum *sums)
1053 {
1054 	struct btrfs_fs_info *fs_info = root->fs_info;
1055 	struct btrfs_key file_key;
1056 	struct btrfs_key found_key;
1057 	struct btrfs_path *path;
1058 	struct btrfs_csum_item *item;
1059 	struct btrfs_csum_item *item_end;
1060 	struct extent_buffer *leaf = NULL;
1061 	u64 next_offset;
1062 	u64 total_bytes = 0;
1063 	u64 csum_offset;
1064 	u64 bytenr;
1065 	u32 ins_size;
1066 	int index = 0;
1067 	int found_next;
1068 	int ret;
1069 	const u32 csum_size = fs_info->csum_size;
1070 
1071 	path = btrfs_alloc_path();
1072 	if (!path)
1073 		return -ENOMEM;
1074 again:
1075 	next_offset = (u64)-1;
1076 	found_next = 0;
1077 	bytenr = sums->logical + total_bytes;
1078 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1079 	file_key.offset = bytenr;
1080 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
1081 
1082 	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1083 	if (!IS_ERR(item)) {
1084 		ret = 0;
1085 		leaf = path->nodes[0];
1086 		item_end = btrfs_item_ptr(leaf, path->slots[0],
1087 					  struct btrfs_csum_item);
1088 		item_end = (struct btrfs_csum_item *)((char *)item_end +
1089 			   btrfs_item_size(leaf, path->slots[0]));
1090 		goto found;
1091 	}
1092 	ret = PTR_ERR(item);
1093 	if (ret != -EFBIG && ret != -ENOENT)
1094 		goto out;
1095 
1096 	if (ret == -EFBIG) {
1097 		u32 item_size;
1098 		/* we found one, but it isn't big enough yet */
1099 		leaf = path->nodes[0];
1100 		item_size = btrfs_item_size(leaf, path->slots[0]);
1101 		if ((item_size / csum_size) >=
1102 		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
1103 			/* already at max size, make a new one */
1104 			goto insert;
1105 		}
1106 	} else {
1107 		/* We didn't find a csum item, insert one. */
1108 		ret = find_next_csum_offset(root, path, &next_offset);
1109 		if (ret < 0)
1110 			goto out;
1111 		found_next = 1;
1112 		goto insert;
1113 	}
1114 
1115 	/*
1116 	 * At this point, we know the tree has a checksum item that ends at an
1117 	 * offset matching the start of the checksum range we want to insert.
1118 	 * We try to extend that item as much as possible and then add as many
1119 	 * checksums to it as they fit.
1120 	 *
1121 	 * First check if the leaf has enough free space for at least one
1122 	 * checksum. If it has go directly to the item extension code, otherwise
1123 	 * release the path and do a search for insertion before the extension.
1124 	 */
1125 	if (btrfs_leaf_free_space(leaf) >= csum_size) {
1126 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1127 		csum_offset = (bytenr - found_key.offset) >>
1128 			fs_info->sectorsize_bits;
1129 		goto extend_csum;
1130 	}
1131 
1132 	btrfs_release_path(path);
1133 	path->search_for_extension = 1;
1134 	ret = btrfs_search_slot(trans, root, &file_key, path,
1135 				csum_size, 1);
1136 	path->search_for_extension = 0;
1137 	if (ret < 0)
1138 		goto out;
1139 
1140 	if (ret > 0) {
1141 		if (path->slots[0] == 0)
1142 			goto insert;
1143 		path->slots[0]--;
1144 	}
1145 
1146 	leaf = path->nodes[0];
1147 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1148 	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1149 
1150 	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1151 	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1152 	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1153 		goto insert;
1154 	}
1155 
1156 extend_csum:
1157 	if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1158 	    csum_size) {
1159 		int extend_nr;
1160 		u64 tmp;
1161 		u32 diff;
1162 
1163 		tmp = sums->len - total_bytes;
1164 		tmp >>= fs_info->sectorsize_bits;
1165 		WARN_ON(tmp < 1);
1166 		extend_nr = max_t(int, 1, tmp);
1167 
1168 		/*
1169 		 * A log tree can already have checksum items with a subset of
1170 		 * the checksums we are trying to log. This can happen after
1171 		 * doing a sequence of partial writes into prealloc extents and
1172 		 * fsyncs in between, with a full fsync logging a larger subrange
1173 		 * of an extent for which a previous fast fsync logged a smaller
1174 		 * subrange. And this happens in particular due to merging file
1175 		 * extent items when we complete an ordered extent for a range
1176 		 * covered by a prealloc extent - this is done at
1177 		 * btrfs_mark_extent_written().
1178 		 *
1179 		 * So if we try to extend the previous checksum item, which has
1180 		 * a range that ends at the start of the range we want to insert,
1181 		 * make sure we don't extend beyond the start offset of the next
1182 		 * checksum item. If we are at the last item in the leaf, then
1183 		 * forget the optimization of extending and add a new checksum
1184 		 * item - it is not worth the complexity of releasing the path,
1185 		 * getting the first key for the next leaf, repeat the btree
1186 		 * search, etc, because log trees are temporary anyway and it
1187 		 * would only save a few bytes of leaf space.
1188 		 */
1189 		if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
1190 			if (path->slots[0] + 1 >=
1191 			    btrfs_header_nritems(path->nodes[0])) {
1192 				ret = find_next_csum_offset(root, path, &next_offset);
1193 				if (ret < 0)
1194 					goto out;
1195 				found_next = 1;
1196 				goto insert;
1197 			}
1198 
1199 			ret = find_next_csum_offset(root, path, &next_offset);
1200 			if (ret < 0)
1201 				goto out;
1202 
1203 			tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1204 			if (tmp <= INT_MAX)
1205 				extend_nr = min_t(int, extend_nr, tmp);
1206 		}
1207 
1208 		diff = (csum_offset + extend_nr) * csum_size;
1209 		diff = min(diff,
1210 			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1211 
1212 		diff = diff - btrfs_item_size(leaf, path->slots[0]);
1213 		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1214 		diff /= csum_size;
1215 		diff *= csum_size;
1216 
1217 		btrfs_extend_item(trans, path, diff);
1218 		ret = 0;
1219 		goto csum;
1220 	}
1221 
1222 insert:
1223 	btrfs_release_path(path);
1224 	csum_offset = 0;
1225 	if (found_next) {
1226 		u64 tmp;
1227 
1228 		tmp = sums->len - total_bytes;
1229 		tmp >>= fs_info->sectorsize_bits;
1230 		tmp = min(tmp, (next_offset - file_key.offset) >>
1231 					 fs_info->sectorsize_bits);
1232 
1233 		tmp = max_t(u64, 1, tmp);
1234 		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1235 		ins_size = csum_size * tmp;
1236 	} else {
1237 		ins_size = csum_size;
1238 	}
1239 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1240 				      ins_size);
1241 	if (ret < 0)
1242 		goto out;
1243 	leaf = path->nodes[0];
1244 csum:
1245 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1246 	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1247 				      btrfs_item_size(leaf, path->slots[0]));
1248 	item = (struct btrfs_csum_item *)((unsigned char *)item +
1249 					  csum_offset * csum_size);
1250 found:
1251 	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1252 	ins_size *= csum_size;
1253 	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1254 			      ins_size);
1255 	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1256 			    ins_size);
1257 
1258 	index += ins_size;
1259 	ins_size /= csum_size;
1260 	total_bytes += ins_size * fs_info->sectorsize;
1261 
1262 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
1263 	if (total_bytes < sums->len) {
1264 		btrfs_release_path(path);
1265 		cond_resched();
1266 		goto again;
1267 	}
1268 out:
1269 	btrfs_free_path(path);
1270 	return ret;
1271 }
1272 
1273 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1274 				     const struct btrfs_path *path,
1275 				     const struct btrfs_file_extent_item *fi,
1276 				     struct extent_map *em)
1277 {
1278 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1279 	struct btrfs_root *root = inode->root;
1280 	struct extent_buffer *leaf = path->nodes[0];
1281 	const int slot = path->slots[0];
1282 	struct btrfs_key key;
1283 	u64 extent_start;
1284 	u8 type = btrfs_file_extent_type(leaf, fi);
1285 	int compress_type = btrfs_file_extent_compression(leaf, fi);
1286 
1287 	btrfs_item_key_to_cpu(leaf, &key, slot);
1288 	extent_start = key.offset;
1289 	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1290 	em->generation = btrfs_file_extent_generation(leaf, fi);
1291 	if (type == BTRFS_FILE_EXTENT_REG ||
1292 	    type == BTRFS_FILE_EXTENT_PREALLOC) {
1293 		const u64 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1294 
1295 		em->start = extent_start;
1296 		em->len = btrfs_file_extent_end(path) - extent_start;
1297 		if (disk_bytenr == 0) {
1298 			em->disk_bytenr = EXTENT_MAP_HOLE;
1299 			em->disk_num_bytes = 0;
1300 			em->offset = 0;
1301 			return;
1302 		}
1303 		em->disk_bytenr = disk_bytenr;
1304 		em->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1305 		em->offset = btrfs_file_extent_offset(leaf, fi);
1306 		if (compress_type != BTRFS_COMPRESS_NONE) {
1307 			extent_map_set_compression(em, compress_type);
1308 		} else {
1309 			/*
1310 			 * Older kernels can create regular non-hole data
1311 			 * extents with ram_bytes smaller than disk_num_bytes.
1312 			 * Not a big deal, just always use disk_num_bytes
1313 			 * for ram_bytes.
1314 			 */
1315 			em->ram_bytes = em->disk_num_bytes;
1316 			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1317 				em->flags |= EXTENT_FLAG_PREALLOC;
1318 		}
1319 	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1320 		/* Tree-checker has ensured this. */
1321 		ASSERT(extent_start == 0);
1322 
1323 		em->disk_bytenr = EXTENT_MAP_INLINE;
1324 		em->start = 0;
1325 		em->len = fs_info->sectorsize;
1326 		em->offset = 0;
1327 		extent_map_set_compression(em, compress_type);
1328 	} else {
1329 		btrfs_err(fs_info,
1330 			  "unknown file extent item type %d, inode %llu, offset %llu, "
1331 			  "root %llu", type, btrfs_ino(inode), extent_start,
1332 			  btrfs_root_id(root));
1333 	}
1334 }
1335 
1336 /*
1337  * Returns the end offset (non inclusive) of the file extent item the given path
1338  * points to. If it points to an inline extent, the returned offset is rounded
1339  * up to the sector size.
1340  */
1341 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1342 {
1343 	const struct extent_buffer *leaf = path->nodes[0];
1344 	const int slot = path->slots[0];
1345 	struct btrfs_file_extent_item *fi;
1346 	struct btrfs_key key;
1347 	u64 end;
1348 
1349 	btrfs_item_key_to_cpu(leaf, &key, slot);
1350 	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1351 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1352 
1353 	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE)
1354 		end = leaf->fs_info->sectorsize;
1355 	else
1356 		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1357 
1358 	return end;
1359 }
1360