1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/bio.h> 7 #include <linux/slab.h> 8 #include <linux/pagemap.h> 9 #include <linux/highmem.h> 10 #include <linux/sched/mm.h> 11 #include <crypto/hash.h> 12 #include "messages.h" 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "bio.h" 17 #include "compression.h" 18 #include "fs.h" 19 #include "accessors.h" 20 #include "file-item.h" 21 22 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \ 23 sizeof(struct btrfs_item) * 2) / \ 24 size) - 1)) 25 26 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \ 27 PAGE_SIZE)) 28 29 /* 30 * Set inode's size according to filesystem options. 31 * 32 * @inode: inode we want to update the disk_i_size for 33 * @new_i_size: i_size we want to set to, 0 if we use i_size 34 * 35 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read() 36 * returns as it is perfectly fine with a file that has holes without hole file 37 * extent items. 38 * 39 * However without NO_HOLES we need to only return the area that is contiguous 40 * from the 0 offset of the file. Otherwise we could end up adjust i_size up 41 * to an extent that has a gap in between. 42 * 43 * Finally new_i_size should only be set in the case of truncate where we're not 44 * ready to use i_size_read() as the limiter yet. 45 */ 46 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size) 47 { 48 struct btrfs_fs_info *fs_info = inode->root->fs_info; 49 u64 start, end, i_size; 50 int ret; 51 52 spin_lock(&inode->lock); 53 i_size = new_i_size ?: i_size_read(&inode->vfs_inode); 54 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 55 inode->disk_i_size = i_size; 56 goto out_unlock; 57 } 58 59 ret = find_contiguous_extent_bit(inode->file_extent_tree, 0, &start, 60 &end, EXTENT_DIRTY); 61 if (!ret && start == 0) 62 i_size = min(i_size, end + 1); 63 else 64 i_size = 0; 65 inode->disk_i_size = i_size; 66 out_unlock: 67 spin_unlock(&inode->lock); 68 } 69 70 /* 71 * Mark range within a file as having a new extent inserted. 72 * 73 * @inode: inode being modified 74 * @start: start file offset of the file extent we've inserted 75 * @len: logical length of the file extent item 76 * 77 * Call when we are inserting a new file extent where there was none before. 78 * Does not need to call this in the case where we're replacing an existing file 79 * extent, however if not sure it's fine to call this multiple times. 80 * 81 * The start and len must match the file extent item, so thus must be sectorsize 82 * aligned. 83 */ 84 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 85 u64 len) 86 { 87 if (len == 0) 88 return 0; 89 90 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize)); 91 92 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 93 return 0; 94 return set_extent_bit(inode->file_extent_tree, start, start + len - 1, 95 EXTENT_DIRTY, NULL); 96 } 97 98 /* 99 * Mark an inode range as not having a backing extent. 100 * 101 * @inode: inode being modified 102 * @start: start file offset of the file extent we've inserted 103 * @len: logical length of the file extent item 104 * 105 * Called when we drop a file extent, for example when we truncate. Doesn't 106 * need to be called for cases where we're replacing a file extent, like when 107 * we've COWed a file extent. 108 * 109 * The start and len must match the file extent item, so thus must be sectorsize 110 * aligned. 111 */ 112 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 113 u64 len) 114 { 115 if (len == 0) 116 return 0; 117 118 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) || 119 len == (u64)-1); 120 121 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 122 return 0; 123 return clear_extent_bit(inode->file_extent_tree, start, 124 start + len - 1, EXTENT_DIRTY, NULL); 125 } 126 127 static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes) 128 { 129 ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize)); 130 131 return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size; 132 } 133 134 static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size) 135 { 136 ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size)); 137 138 return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits; 139 } 140 141 static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info) 142 { 143 u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum), 144 fs_info->csum_size); 145 146 return csum_size_to_bytes(fs_info, max_csum_size); 147 } 148 149 /* 150 * Calculate the total size needed to allocate for an ordered sum structure 151 * spanning @bytes in the file. 152 */ 153 static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes) 154 { 155 return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes); 156 } 157 158 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans, 159 struct btrfs_root *root, 160 u64 objectid, u64 pos, u64 num_bytes) 161 { 162 int ret = 0; 163 struct btrfs_file_extent_item *item; 164 struct btrfs_key file_key; 165 struct btrfs_path *path; 166 struct extent_buffer *leaf; 167 168 path = btrfs_alloc_path(); 169 if (!path) 170 return -ENOMEM; 171 file_key.objectid = objectid; 172 file_key.offset = pos; 173 file_key.type = BTRFS_EXTENT_DATA_KEY; 174 175 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 176 sizeof(*item)); 177 if (ret < 0) 178 goto out; 179 leaf = path->nodes[0]; 180 item = btrfs_item_ptr(leaf, path->slots[0], 181 struct btrfs_file_extent_item); 182 btrfs_set_file_extent_disk_bytenr(leaf, item, 0); 183 btrfs_set_file_extent_disk_num_bytes(leaf, item, 0); 184 btrfs_set_file_extent_offset(leaf, item, 0); 185 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes); 186 btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes); 187 btrfs_set_file_extent_generation(leaf, item, trans->transid); 188 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 189 btrfs_set_file_extent_compression(leaf, item, 0); 190 btrfs_set_file_extent_encryption(leaf, item, 0); 191 btrfs_set_file_extent_other_encoding(leaf, item, 0); 192 193 btrfs_mark_buffer_dirty(trans, leaf); 194 out: 195 btrfs_free_path(path); 196 return ret; 197 } 198 199 static struct btrfs_csum_item * 200 btrfs_lookup_csum(struct btrfs_trans_handle *trans, 201 struct btrfs_root *root, 202 struct btrfs_path *path, 203 u64 bytenr, int cow) 204 { 205 struct btrfs_fs_info *fs_info = root->fs_info; 206 int ret; 207 struct btrfs_key file_key; 208 struct btrfs_key found_key; 209 struct btrfs_csum_item *item; 210 struct extent_buffer *leaf; 211 u64 csum_offset = 0; 212 const u32 csum_size = fs_info->csum_size; 213 int csums_in_item; 214 215 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 216 file_key.offset = bytenr; 217 file_key.type = BTRFS_EXTENT_CSUM_KEY; 218 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow); 219 if (ret < 0) 220 goto fail; 221 leaf = path->nodes[0]; 222 if (ret > 0) { 223 ret = 1; 224 if (path->slots[0] == 0) 225 goto fail; 226 path->slots[0]--; 227 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 228 if (found_key.type != BTRFS_EXTENT_CSUM_KEY) 229 goto fail; 230 231 csum_offset = (bytenr - found_key.offset) >> 232 fs_info->sectorsize_bits; 233 csums_in_item = btrfs_item_size(leaf, path->slots[0]); 234 csums_in_item /= csum_size; 235 236 if (csum_offset == csums_in_item) { 237 ret = -EFBIG; 238 goto fail; 239 } else if (csum_offset > csums_in_item) { 240 goto fail; 241 } 242 } 243 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 244 item = (struct btrfs_csum_item *)((unsigned char *)item + 245 csum_offset * csum_size); 246 return item; 247 fail: 248 if (ret > 0) 249 ret = -ENOENT; 250 return ERR_PTR(ret); 251 } 252 253 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 254 struct btrfs_root *root, 255 struct btrfs_path *path, u64 objectid, 256 u64 offset, int mod) 257 { 258 struct btrfs_key file_key; 259 int ins_len = mod < 0 ? -1 : 0; 260 int cow = mod != 0; 261 262 file_key.objectid = objectid; 263 file_key.offset = offset; 264 file_key.type = BTRFS_EXTENT_DATA_KEY; 265 266 return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow); 267 } 268 269 /* 270 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and 271 * store the result to @dst. 272 * 273 * Return >0 for the number of sectors we found. 274 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum 275 * for it. Caller may want to try next sector until one range is hit. 276 * Return <0 for fatal error. 277 */ 278 static int search_csum_tree(struct btrfs_fs_info *fs_info, 279 struct btrfs_path *path, u64 disk_bytenr, 280 u64 len, u8 *dst) 281 { 282 struct btrfs_root *csum_root; 283 struct btrfs_csum_item *item = NULL; 284 struct btrfs_key key; 285 const u32 sectorsize = fs_info->sectorsize; 286 const u32 csum_size = fs_info->csum_size; 287 u32 itemsize; 288 int ret; 289 u64 csum_start; 290 u64 csum_len; 291 292 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) && 293 IS_ALIGNED(len, sectorsize)); 294 295 /* Check if the current csum item covers disk_bytenr */ 296 if (path->nodes[0]) { 297 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 298 struct btrfs_csum_item); 299 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 300 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); 301 302 csum_start = key.offset; 303 csum_len = (itemsize / csum_size) * sectorsize; 304 305 if (in_range(disk_bytenr, csum_start, csum_len)) 306 goto found; 307 } 308 309 /* Current item doesn't contain the desired range, search again */ 310 btrfs_release_path(path); 311 csum_root = btrfs_csum_root(fs_info, disk_bytenr); 312 item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0); 313 if (IS_ERR(item)) { 314 ret = PTR_ERR(item); 315 goto out; 316 } 317 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 318 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); 319 320 csum_start = key.offset; 321 csum_len = (itemsize / csum_size) * sectorsize; 322 ASSERT(in_range(disk_bytenr, csum_start, csum_len)); 323 324 found: 325 ret = (min(csum_start + csum_len, disk_bytenr + len) - 326 disk_bytenr) >> fs_info->sectorsize_bits; 327 read_extent_buffer(path->nodes[0], dst, (unsigned long)item, 328 ret * csum_size); 329 out: 330 if (ret == -ENOENT || ret == -EFBIG) 331 ret = 0; 332 return ret; 333 } 334 335 /* 336 * Lookup the checksum for the read bio in csum tree. 337 * 338 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise. 339 */ 340 blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio) 341 { 342 struct btrfs_inode *inode = bbio->inode; 343 struct btrfs_fs_info *fs_info = inode->root->fs_info; 344 struct bio *bio = &bbio->bio; 345 struct btrfs_path *path; 346 const u32 sectorsize = fs_info->sectorsize; 347 const u32 csum_size = fs_info->csum_size; 348 u32 orig_len = bio->bi_iter.bi_size; 349 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; 350 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits; 351 blk_status_t ret = BLK_STS_OK; 352 u32 bio_offset = 0; 353 354 if ((inode->flags & BTRFS_INODE_NODATASUM) || 355 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) 356 return BLK_STS_OK; 357 358 /* 359 * This function is only called for read bio. 360 * 361 * This means two things: 362 * - All our csums should only be in csum tree 363 * No ordered extents csums, as ordered extents are only for write 364 * path. 365 * - No need to bother any other info from bvec 366 * Since we're looking up csums, the only important info is the 367 * disk_bytenr and the length, which can be extracted from bi_iter 368 * directly. 369 */ 370 ASSERT(bio_op(bio) == REQ_OP_READ); 371 path = btrfs_alloc_path(); 372 if (!path) 373 return BLK_STS_RESOURCE; 374 375 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) { 376 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS); 377 if (!bbio->csum) { 378 btrfs_free_path(path); 379 return BLK_STS_RESOURCE; 380 } 381 } else { 382 bbio->csum = bbio->csum_inline; 383 } 384 385 /* 386 * If requested number of sectors is larger than one leaf can contain, 387 * kick the readahead for csum tree. 388 */ 389 if (nblocks > fs_info->csums_per_leaf) 390 path->reada = READA_FORWARD; 391 392 /* 393 * the free space stuff is only read when it hasn't been 394 * updated in the current transaction. So, we can safely 395 * read from the commit root and sidestep a nasty deadlock 396 * between reading the free space cache and updating the csum tree. 397 */ 398 if (btrfs_is_free_space_inode(inode)) { 399 path->search_commit_root = 1; 400 path->skip_locking = 1; 401 } 402 403 while (bio_offset < orig_len) { 404 int count; 405 u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset; 406 u8 *csum_dst = bbio->csum + 407 (bio_offset >> fs_info->sectorsize_bits) * csum_size; 408 409 count = search_csum_tree(fs_info, path, cur_disk_bytenr, 410 orig_len - bio_offset, csum_dst); 411 if (count < 0) { 412 ret = errno_to_blk_status(count); 413 if (bbio->csum != bbio->csum_inline) 414 kfree(bbio->csum); 415 bbio->csum = NULL; 416 break; 417 } 418 419 /* 420 * We didn't find a csum for this range. We need to make sure 421 * we complain loudly about this, because we are not NODATASUM. 422 * 423 * However for the DATA_RELOC inode we could potentially be 424 * relocating data extents for a NODATASUM inode, so the inode 425 * itself won't be marked with NODATASUM, but the extent we're 426 * copying is in fact NODATASUM. If we don't find a csum we 427 * assume this is the case. 428 */ 429 if (count == 0) { 430 memset(csum_dst, 0, csum_size); 431 count = 1; 432 433 if (btrfs_root_id(inode->root) == BTRFS_DATA_RELOC_TREE_OBJECTID) { 434 u64 file_offset = bbio->file_offset + bio_offset; 435 436 set_extent_bit(&inode->io_tree, file_offset, 437 file_offset + sectorsize - 1, 438 EXTENT_NODATASUM, NULL); 439 } else { 440 btrfs_warn_rl(fs_info, 441 "csum hole found for disk bytenr range [%llu, %llu)", 442 cur_disk_bytenr, cur_disk_bytenr + sectorsize); 443 } 444 } 445 bio_offset += count * sectorsize; 446 } 447 448 btrfs_free_path(path); 449 return ret; 450 } 451 452 /* 453 * Search for checksums for a given logical range. 454 * 455 * @root: The root where to look for checksums. 456 * @start: Logical address of target checksum range. 457 * @end: End offset (inclusive) of the target checksum range. 458 * @list: List for adding each checksum that was found. 459 * Can be NULL in case the caller only wants to check if 460 * there any checksums for the range. 461 * @nowait: Indicate if the search must be non-blocking or not. 462 * 463 * Return < 0 on error, 0 if no checksums were found, or 1 if checksums were 464 * found. 465 */ 466 int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end, 467 struct list_head *list, bool nowait) 468 { 469 struct btrfs_fs_info *fs_info = root->fs_info; 470 struct btrfs_key key; 471 struct btrfs_path *path; 472 struct extent_buffer *leaf; 473 struct btrfs_ordered_sum *sums; 474 struct btrfs_csum_item *item; 475 int ret; 476 bool found_csums = false; 477 478 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 479 IS_ALIGNED(end + 1, fs_info->sectorsize)); 480 481 path = btrfs_alloc_path(); 482 if (!path) 483 return -ENOMEM; 484 485 path->nowait = nowait; 486 487 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 488 key.offset = start; 489 key.type = BTRFS_EXTENT_CSUM_KEY; 490 491 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 492 if (ret < 0) 493 goto out; 494 if (ret > 0 && path->slots[0] > 0) { 495 leaf = path->nodes[0]; 496 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 497 498 /* 499 * There are two cases we can hit here for the previous csum 500 * item: 501 * 502 * |<- search range ->| 503 * |<- csum item ->| 504 * 505 * Or 506 * |<- search range ->| 507 * |<- csum item ->| 508 * 509 * Check if the previous csum item covers the leading part of 510 * the search range. If so we have to start from previous csum 511 * item. 512 */ 513 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 514 key.type == BTRFS_EXTENT_CSUM_KEY) { 515 if (bytes_to_csum_size(fs_info, start - key.offset) < 516 btrfs_item_size(leaf, path->slots[0] - 1)) 517 path->slots[0]--; 518 } 519 } 520 521 while (start <= end) { 522 u64 csum_end; 523 524 leaf = path->nodes[0]; 525 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 526 ret = btrfs_next_leaf(root, path); 527 if (ret < 0) 528 goto out; 529 if (ret > 0) 530 break; 531 leaf = path->nodes[0]; 532 } 533 534 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 535 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 536 key.type != BTRFS_EXTENT_CSUM_KEY || 537 key.offset > end) 538 break; 539 540 if (key.offset > start) 541 start = key.offset; 542 543 csum_end = key.offset + csum_size_to_bytes(fs_info, 544 btrfs_item_size(leaf, path->slots[0])); 545 if (csum_end <= start) { 546 path->slots[0]++; 547 continue; 548 } 549 550 found_csums = true; 551 if (!list) 552 goto out; 553 554 csum_end = min(csum_end, end + 1); 555 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 556 struct btrfs_csum_item); 557 while (start < csum_end) { 558 unsigned long offset; 559 size_t size; 560 561 size = min_t(size_t, csum_end - start, 562 max_ordered_sum_bytes(fs_info)); 563 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size), 564 GFP_NOFS); 565 if (!sums) { 566 ret = -ENOMEM; 567 goto out; 568 } 569 570 sums->logical = start; 571 sums->len = size; 572 573 offset = bytes_to_csum_size(fs_info, start - key.offset); 574 575 read_extent_buffer(path->nodes[0], 576 sums->sums, 577 ((unsigned long)item) + offset, 578 bytes_to_csum_size(fs_info, size)); 579 580 start += size; 581 list_add_tail(&sums->list, list); 582 } 583 path->slots[0]++; 584 } 585 out: 586 btrfs_free_path(path); 587 if (ret < 0) { 588 if (list) { 589 struct btrfs_ordered_sum *tmp_sums; 590 591 list_for_each_entry_safe(sums, tmp_sums, list, list) 592 kfree(sums); 593 } 594 595 return ret; 596 } 597 598 return found_csums ? 1 : 0; 599 } 600 601 /* 602 * Do the same work as btrfs_lookup_csums_list(), the difference is in how 603 * we return the result. 604 * 605 * This version will set the corresponding bits in @csum_bitmap to represent 606 * that there is a csum found. 607 * Each bit represents a sector. Thus caller should ensure @csum_buf passed 608 * in is large enough to contain all csums. 609 */ 610 int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path, 611 u64 start, u64 end, u8 *csum_buf, 612 unsigned long *csum_bitmap) 613 { 614 struct btrfs_fs_info *fs_info = root->fs_info; 615 struct btrfs_key key; 616 struct extent_buffer *leaf; 617 struct btrfs_csum_item *item; 618 const u64 orig_start = start; 619 bool free_path = false; 620 int ret; 621 622 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 623 IS_ALIGNED(end + 1, fs_info->sectorsize)); 624 625 if (!path) { 626 path = btrfs_alloc_path(); 627 if (!path) 628 return -ENOMEM; 629 free_path = true; 630 } 631 632 /* Check if we can reuse the previous path. */ 633 if (path->nodes[0]) { 634 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 635 636 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 637 key.type == BTRFS_EXTENT_CSUM_KEY && 638 key.offset <= start) 639 goto search_forward; 640 btrfs_release_path(path); 641 } 642 643 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 644 key.type = BTRFS_EXTENT_CSUM_KEY; 645 key.offset = start; 646 647 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 648 if (ret < 0) 649 goto fail; 650 if (ret > 0 && path->slots[0] > 0) { 651 leaf = path->nodes[0]; 652 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 653 654 /* 655 * There are two cases we can hit here for the previous csum 656 * item: 657 * 658 * |<- search range ->| 659 * |<- csum item ->| 660 * 661 * Or 662 * |<- search range ->| 663 * |<- csum item ->| 664 * 665 * Check if the previous csum item covers the leading part of 666 * the search range. If so we have to start from previous csum 667 * item. 668 */ 669 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 670 key.type == BTRFS_EXTENT_CSUM_KEY) { 671 if (bytes_to_csum_size(fs_info, start - key.offset) < 672 btrfs_item_size(leaf, path->slots[0] - 1)) 673 path->slots[0]--; 674 } 675 } 676 677 search_forward: 678 while (start <= end) { 679 u64 csum_end; 680 681 leaf = path->nodes[0]; 682 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 683 ret = btrfs_next_leaf(root, path); 684 if (ret < 0) 685 goto fail; 686 if (ret > 0) 687 break; 688 leaf = path->nodes[0]; 689 } 690 691 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 692 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 693 key.type != BTRFS_EXTENT_CSUM_KEY || 694 key.offset > end) 695 break; 696 697 if (key.offset > start) 698 start = key.offset; 699 700 csum_end = key.offset + csum_size_to_bytes(fs_info, 701 btrfs_item_size(leaf, path->slots[0])); 702 if (csum_end <= start) { 703 path->slots[0]++; 704 continue; 705 } 706 707 csum_end = min(csum_end, end + 1); 708 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 709 struct btrfs_csum_item); 710 while (start < csum_end) { 711 unsigned long offset; 712 size_t size; 713 u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info, 714 start - orig_start); 715 716 size = min_t(size_t, csum_end - start, end + 1 - start); 717 718 offset = bytes_to_csum_size(fs_info, start - key.offset); 719 720 read_extent_buffer(path->nodes[0], csum_dest, 721 ((unsigned long)item) + offset, 722 bytes_to_csum_size(fs_info, size)); 723 724 bitmap_set(csum_bitmap, 725 (start - orig_start) >> fs_info->sectorsize_bits, 726 size >> fs_info->sectorsize_bits); 727 728 start += size; 729 } 730 path->slots[0]++; 731 } 732 ret = 0; 733 fail: 734 if (free_path) 735 btrfs_free_path(path); 736 return ret; 737 } 738 739 /* 740 * Calculate checksums of the data contained inside a bio. 741 */ 742 blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio) 743 { 744 struct btrfs_ordered_extent *ordered = bbio->ordered; 745 struct btrfs_inode *inode = bbio->inode; 746 struct btrfs_fs_info *fs_info = inode->root->fs_info; 747 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 748 struct bio *bio = &bbio->bio; 749 struct btrfs_ordered_sum *sums; 750 char *data; 751 struct bvec_iter iter; 752 struct bio_vec bvec; 753 int index; 754 unsigned int blockcount; 755 int i; 756 unsigned nofs_flag; 757 758 nofs_flag = memalloc_nofs_save(); 759 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size), 760 GFP_KERNEL); 761 memalloc_nofs_restore(nofs_flag); 762 763 if (!sums) 764 return BLK_STS_RESOURCE; 765 766 sums->len = bio->bi_iter.bi_size; 767 INIT_LIST_HEAD(&sums->list); 768 769 sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 770 index = 0; 771 772 shash->tfm = fs_info->csum_shash; 773 774 bio_for_each_segment(bvec, bio, iter) { 775 blockcount = BTRFS_BYTES_TO_BLKS(fs_info, 776 bvec.bv_len + fs_info->sectorsize 777 - 1); 778 779 for (i = 0; i < blockcount; i++) { 780 data = bvec_kmap_local(&bvec); 781 crypto_shash_digest(shash, 782 data + (i * fs_info->sectorsize), 783 fs_info->sectorsize, 784 sums->sums + index); 785 kunmap_local(data); 786 index += fs_info->csum_size; 787 } 788 789 } 790 791 bbio->sums = sums; 792 btrfs_add_ordered_sum(ordered, sums); 793 return 0; 794 } 795 796 /* 797 * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to 798 * record the updated logical address on Zone Append completion. 799 * Allocate just the structure with an empty sums array here for that case. 800 */ 801 blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio) 802 { 803 bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS); 804 if (!bbio->sums) 805 return BLK_STS_RESOURCE; 806 bbio->sums->len = bbio->bio.bi_iter.bi_size; 807 bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 808 btrfs_add_ordered_sum(bbio->ordered, bbio->sums); 809 return 0; 810 } 811 812 /* 813 * Remove one checksum overlapping a range. 814 * 815 * This expects the key to describe the csum pointed to by the path, and it 816 * expects the csum to overlap the range [bytenr, len] 817 * 818 * The csum should not be entirely contained in the range and the range should 819 * not be entirely contained in the csum. 820 * 821 * This calls btrfs_truncate_item with the correct args based on the overlap, 822 * and fixes up the key as required. 823 */ 824 static noinline void truncate_one_csum(struct btrfs_trans_handle *trans, 825 struct btrfs_path *path, 826 struct btrfs_key *key, 827 u64 bytenr, u64 len) 828 { 829 struct btrfs_fs_info *fs_info = trans->fs_info; 830 struct extent_buffer *leaf; 831 const u32 csum_size = fs_info->csum_size; 832 u64 csum_end; 833 u64 end_byte = bytenr + len; 834 u32 blocksize_bits = fs_info->sectorsize_bits; 835 836 leaf = path->nodes[0]; 837 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; 838 csum_end <<= blocksize_bits; 839 csum_end += key->offset; 840 841 if (key->offset < bytenr && csum_end <= end_byte) { 842 /* 843 * [ bytenr - len ] 844 * [ ] 845 * [csum ] 846 * A simple truncate off the end of the item 847 */ 848 u32 new_size = (bytenr - key->offset) >> blocksize_bits; 849 new_size *= csum_size; 850 btrfs_truncate_item(trans, path, new_size, 1); 851 } else if (key->offset >= bytenr && csum_end > end_byte && 852 end_byte > key->offset) { 853 /* 854 * [ bytenr - len ] 855 * [ ] 856 * [csum ] 857 * we need to truncate from the beginning of the csum 858 */ 859 u32 new_size = (csum_end - end_byte) >> blocksize_bits; 860 new_size *= csum_size; 861 862 btrfs_truncate_item(trans, path, new_size, 0); 863 864 key->offset = end_byte; 865 btrfs_set_item_key_safe(trans, path, key); 866 } else { 867 BUG(); 868 } 869 } 870 871 /* 872 * Delete the csum items from the csum tree for a given range of bytes. 873 */ 874 int btrfs_del_csums(struct btrfs_trans_handle *trans, 875 struct btrfs_root *root, u64 bytenr, u64 len) 876 { 877 struct btrfs_fs_info *fs_info = trans->fs_info; 878 struct btrfs_path *path; 879 struct btrfs_key key; 880 u64 end_byte = bytenr + len; 881 u64 csum_end; 882 struct extent_buffer *leaf; 883 int ret = 0; 884 const u32 csum_size = fs_info->csum_size; 885 u32 blocksize_bits = fs_info->sectorsize_bits; 886 887 ASSERT(btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID || 888 btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID); 889 890 path = btrfs_alloc_path(); 891 if (!path) 892 return -ENOMEM; 893 894 while (1) { 895 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 896 key.offset = end_byte - 1; 897 key.type = BTRFS_EXTENT_CSUM_KEY; 898 899 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 900 if (ret > 0) { 901 ret = 0; 902 if (path->slots[0] == 0) 903 break; 904 path->slots[0]--; 905 } else if (ret < 0) { 906 break; 907 } 908 909 leaf = path->nodes[0]; 910 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 911 912 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 913 key.type != BTRFS_EXTENT_CSUM_KEY) { 914 break; 915 } 916 917 if (key.offset >= end_byte) 918 break; 919 920 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; 921 csum_end <<= blocksize_bits; 922 csum_end += key.offset; 923 924 /* this csum ends before we start, we're done */ 925 if (csum_end <= bytenr) 926 break; 927 928 /* delete the entire item, it is inside our range */ 929 if (key.offset >= bytenr && csum_end <= end_byte) { 930 int del_nr = 1; 931 932 /* 933 * Check how many csum items preceding this one in this 934 * leaf correspond to our range and then delete them all 935 * at once. 936 */ 937 if (key.offset > bytenr && path->slots[0] > 0) { 938 int slot = path->slots[0] - 1; 939 940 while (slot >= 0) { 941 struct btrfs_key pk; 942 943 btrfs_item_key_to_cpu(leaf, &pk, slot); 944 if (pk.offset < bytenr || 945 pk.type != BTRFS_EXTENT_CSUM_KEY || 946 pk.objectid != 947 BTRFS_EXTENT_CSUM_OBJECTID) 948 break; 949 path->slots[0] = slot; 950 del_nr++; 951 key.offset = pk.offset; 952 slot--; 953 } 954 } 955 ret = btrfs_del_items(trans, root, path, 956 path->slots[0], del_nr); 957 if (ret) 958 break; 959 if (key.offset == bytenr) 960 break; 961 } else if (key.offset < bytenr && csum_end > end_byte) { 962 unsigned long offset; 963 unsigned long shift_len; 964 unsigned long item_offset; 965 /* 966 * [ bytenr - len ] 967 * [csum ] 968 * 969 * Our bytes are in the middle of the csum, 970 * we need to split this item and insert a new one. 971 * 972 * But we can't drop the path because the 973 * csum could change, get removed, extended etc. 974 * 975 * The trick here is the max size of a csum item leaves 976 * enough room in the tree block for a single 977 * item header. So, we split the item in place, 978 * adding a new header pointing to the existing 979 * bytes. Then we loop around again and we have 980 * a nicely formed csum item that we can neatly 981 * truncate. 982 */ 983 offset = (bytenr - key.offset) >> blocksize_bits; 984 offset *= csum_size; 985 986 shift_len = (len >> blocksize_bits) * csum_size; 987 988 item_offset = btrfs_item_ptr_offset(leaf, 989 path->slots[0]); 990 991 memzero_extent_buffer(leaf, item_offset + offset, 992 shift_len); 993 key.offset = bytenr; 994 995 /* 996 * btrfs_split_item returns -EAGAIN when the 997 * item changed size or key 998 */ 999 ret = btrfs_split_item(trans, root, path, &key, offset); 1000 if (ret && ret != -EAGAIN) { 1001 btrfs_abort_transaction(trans, ret); 1002 break; 1003 } 1004 ret = 0; 1005 1006 key.offset = end_byte - 1; 1007 } else { 1008 truncate_one_csum(trans, path, &key, bytenr, len); 1009 if (key.offset < bytenr) 1010 break; 1011 } 1012 btrfs_release_path(path); 1013 } 1014 btrfs_free_path(path); 1015 return ret; 1016 } 1017 1018 static int find_next_csum_offset(struct btrfs_root *root, 1019 struct btrfs_path *path, 1020 u64 *next_offset) 1021 { 1022 const u32 nritems = btrfs_header_nritems(path->nodes[0]); 1023 struct btrfs_key found_key; 1024 int slot = path->slots[0] + 1; 1025 int ret; 1026 1027 if (nritems == 0 || slot >= nritems) { 1028 ret = btrfs_next_leaf(root, path); 1029 if (ret < 0) { 1030 return ret; 1031 } else if (ret > 0) { 1032 *next_offset = (u64)-1; 1033 return 0; 1034 } 1035 slot = path->slots[0]; 1036 } 1037 1038 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot); 1039 1040 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 1041 found_key.type != BTRFS_EXTENT_CSUM_KEY) 1042 *next_offset = (u64)-1; 1043 else 1044 *next_offset = found_key.offset; 1045 1046 return 0; 1047 } 1048 1049 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 1050 struct btrfs_root *root, 1051 struct btrfs_ordered_sum *sums) 1052 { 1053 struct btrfs_fs_info *fs_info = root->fs_info; 1054 struct btrfs_key file_key; 1055 struct btrfs_key found_key; 1056 struct btrfs_path *path; 1057 struct btrfs_csum_item *item; 1058 struct btrfs_csum_item *item_end; 1059 struct extent_buffer *leaf = NULL; 1060 u64 next_offset; 1061 u64 total_bytes = 0; 1062 u64 csum_offset; 1063 u64 bytenr; 1064 u32 ins_size; 1065 int index = 0; 1066 int found_next; 1067 int ret; 1068 const u32 csum_size = fs_info->csum_size; 1069 1070 path = btrfs_alloc_path(); 1071 if (!path) 1072 return -ENOMEM; 1073 again: 1074 next_offset = (u64)-1; 1075 found_next = 0; 1076 bytenr = sums->logical + total_bytes; 1077 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 1078 file_key.offset = bytenr; 1079 file_key.type = BTRFS_EXTENT_CSUM_KEY; 1080 1081 item = btrfs_lookup_csum(trans, root, path, bytenr, 1); 1082 if (!IS_ERR(item)) { 1083 ret = 0; 1084 leaf = path->nodes[0]; 1085 item_end = btrfs_item_ptr(leaf, path->slots[0], 1086 struct btrfs_csum_item); 1087 item_end = (struct btrfs_csum_item *)((char *)item_end + 1088 btrfs_item_size(leaf, path->slots[0])); 1089 goto found; 1090 } 1091 ret = PTR_ERR(item); 1092 if (ret != -EFBIG && ret != -ENOENT) 1093 goto out; 1094 1095 if (ret == -EFBIG) { 1096 u32 item_size; 1097 /* we found one, but it isn't big enough yet */ 1098 leaf = path->nodes[0]; 1099 item_size = btrfs_item_size(leaf, path->slots[0]); 1100 if ((item_size / csum_size) >= 1101 MAX_CSUM_ITEMS(fs_info, csum_size)) { 1102 /* already at max size, make a new one */ 1103 goto insert; 1104 } 1105 } else { 1106 /* We didn't find a csum item, insert one. */ 1107 ret = find_next_csum_offset(root, path, &next_offset); 1108 if (ret < 0) 1109 goto out; 1110 found_next = 1; 1111 goto insert; 1112 } 1113 1114 /* 1115 * At this point, we know the tree has a checksum item that ends at an 1116 * offset matching the start of the checksum range we want to insert. 1117 * We try to extend that item as much as possible and then add as many 1118 * checksums to it as they fit. 1119 * 1120 * First check if the leaf has enough free space for at least one 1121 * checksum. If it has go directly to the item extension code, otherwise 1122 * release the path and do a search for insertion before the extension. 1123 */ 1124 if (btrfs_leaf_free_space(leaf) >= csum_size) { 1125 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1126 csum_offset = (bytenr - found_key.offset) >> 1127 fs_info->sectorsize_bits; 1128 goto extend_csum; 1129 } 1130 1131 btrfs_release_path(path); 1132 path->search_for_extension = 1; 1133 ret = btrfs_search_slot(trans, root, &file_key, path, 1134 csum_size, 1); 1135 path->search_for_extension = 0; 1136 if (ret < 0) 1137 goto out; 1138 1139 if (ret > 0) { 1140 if (path->slots[0] == 0) 1141 goto insert; 1142 path->slots[0]--; 1143 } 1144 1145 leaf = path->nodes[0]; 1146 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1147 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits; 1148 1149 if (found_key.type != BTRFS_EXTENT_CSUM_KEY || 1150 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 1151 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) { 1152 goto insert; 1153 } 1154 1155 extend_csum: 1156 if (csum_offset == btrfs_item_size(leaf, path->slots[0]) / 1157 csum_size) { 1158 int extend_nr; 1159 u64 tmp; 1160 u32 diff; 1161 1162 tmp = sums->len - total_bytes; 1163 tmp >>= fs_info->sectorsize_bits; 1164 WARN_ON(tmp < 1); 1165 extend_nr = max_t(int, 1, tmp); 1166 1167 /* 1168 * A log tree can already have checksum items with a subset of 1169 * the checksums we are trying to log. This can happen after 1170 * doing a sequence of partial writes into prealloc extents and 1171 * fsyncs in between, with a full fsync logging a larger subrange 1172 * of an extent for which a previous fast fsync logged a smaller 1173 * subrange. And this happens in particular due to merging file 1174 * extent items when we complete an ordered extent for a range 1175 * covered by a prealloc extent - this is done at 1176 * btrfs_mark_extent_written(). 1177 * 1178 * So if we try to extend the previous checksum item, which has 1179 * a range that ends at the start of the range we want to insert, 1180 * make sure we don't extend beyond the start offset of the next 1181 * checksum item. If we are at the last item in the leaf, then 1182 * forget the optimization of extending and add a new checksum 1183 * item - it is not worth the complexity of releasing the path, 1184 * getting the first key for the next leaf, repeat the btree 1185 * search, etc, because log trees are temporary anyway and it 1186 * would only save a few bytes of leaf space. 1187 */ 1188 if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) { 1189 if (path->slots[0] + 1 >= 1190 btrfs_header_nritems(path->nodes[0])) { 1191 ret = find_next_csum_offset(root, path, &next_offset); 1192 if (ret < 0) 1193 goto out; 1194 found_next = 1; 1195 goto insert; 1196 } 1197 1198 ret = find_next_csum_offset(root, path, &next_offset); 1199 if (ret < 0) 1200 goto out; 1201 1202 tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits; 1203 if (tmp <= INT_MAX) 1204 extend_nr = min_t(int, extend_nr, tmp); 1205 } 1206 1207 diff = (csum_offset + extend_nr) * csum_size; 1208 diff = min(diff, 1209 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size); 1210 1211 diff = diff - btrfs_item_size(leaf, path->slots[0]); 1212 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff); 1213 diff /= csum_size; 1214 diff *= csum_size; 1215 1216 btrfs_extend_item(trans, path, diff); 1217 ret = 0; 1218 goto csum; 1219 } 1220 1221 insert: 1222 btrfs_release_path(path); 1223 csum_offset = 0; 1224 if (found_next) { 1225 u64 tmp; 1226 1227 tmp = sums->len - total_bytes; 1228 tmp >>= fs_info->sectorsize_bits; 1229 tmp = min(tmp, (next_offset - file_key.offset) >> 1230 fs_info->sectorsize_bits); 1231 1232 tmp = max_t(u64, 1, tmp); 1233 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size)); 1234 ins_size = csum_size * tmp; 1235 } else { 1236 ins_size = csum_size; 1237 } 1238 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 1239 ins_size); 1240 if (ret < 0) 1241 goto out; 1242 leaf = path->nodes[0]; 1243 csum: 1244 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 1245 item_end = (struct btrfs_csum_item *)((unsigned char *)item + 1246 btrfs_item_size(leaf, path->slots[0])); 1247 item = (struct btrfs_csum_item *)((unsigned char *)item + 1248 csum_offset * csum_size); 1249 found: 1250 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits; 1251 ins_size *= csum_size; 1252 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item, 1253 ins_size); 1254 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item, 1255 ins_size); 1256 1257 index += ins_size; 1258 ins_size /= csum_size; 1259 total_bytes += ins_size * fs_info->sectorsize; 1260 1261 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 1262 if (total_bytes < sums->len) { 1263 btrfs_release_path(path); 1264 cond_resched(); 1265 goto again; 1266 } 1267 out: 1268 btrfs_free_path(path); 1269 return ret; 1270 } 1271 1272 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 1273 const struct btrfs_path *path, 1274 struct btrfs_file_extent_item *fi, 1275 struct extent_map *em) 1276 { 1277 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1278 struct btrfs_root *root = inode->root; 1279 struct extent_buffer *leaf = path->nodes[0]; 1280 const int slot = path->slots[0]; 1281 struct btrfs_key key; 1282 u64 extent_start; 1283 u64 bytenr; 1284 u8 type = btrfs_file_extent_type(leaf, fi); 1285 int compress_type = btrfs_file_extent_compression(leaf, fi); 1286 1287 btrfs_item_key_to_cpu(leaf, &key, slot); 1288 extent_start = key.offset; 1289 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1290 em->generation = btrfs_file_extent_generation(leaf, fi); 1291 if (type == BTRFS_FILE_EXTENT_REG || 1292 type == BTRFS_FILE_EXTENT_PREALLOC) { 1293 em->start = extent_start; 1294 em->len = btrfs_file_extent_end(path) - extent_start; 1295 em->orig_start = extent_start - 1296 btrfs_file_extent_offset(leaf, fi); 1297 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 1298 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1299 if (bytenr == 0) { 1300 em->block_start = EXTENT_MAP_HOLE; 1301 return; 1302 } 1303 if (compress_type != BTRFS_COMPRESS_NONE) { 1304 extent_map_set_compression(em, compress_type); 1305 em->block_start = bytenr; 1306 em->block_len = em->orig_block_len; 1307 } else { 1308 bytenr += btrfs_file_extent_offset(leaf, fi); 1309 em->block_start = bytenr; 1310 em->block_len = em->len; 1311 if (type == BTRFS_FILE_EXTENT_PREALLOC) 1312 em->flags |= EXTENT_FLAG_PREALLOC; 1313 } 1314 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 1315 /* Tree-checker has ensured this. */ 1316 ASSERT(extent_start == 0); 1317 1318 em->block_start = EXTENT_MAP_INLINE; 1319 em->start = 0; 1320 em->len = fs_info->sectorsize; 1321 /* 1322 * Initialize orig_start and block_len with the same values 1323 * as in inode.c:btrfs_get_extent(). 1324 */ 1325 em->orig_start = EXTENT_MAP_HOLE; 1326 em->block_len = (u64)-1; 1327 extent_map_set_compression(em, compress_type); 1328 } else { 1329 btrfs_err(fs_info, 1330 "unknown file extent item type %d, inode %llu, offset %llu, " 1331 "root %llu", type, btrfs_ino(inode), extent_start, 1332 btrfs_root_id(root)); 1333 } 1334 } 1335 1336 /* 1337 * Returns the end offset (non inclusive) of the file extent item the given path 1338 * points to. If it points to an inline extent, the returned offset is rounded 1339 * up to the sector size. 1340 */ 1341 u64 btrfs_file_extent_end(const struct btrfs_path *path) 1342 { 1343 const struct extent_buffer *leaf = path->nodes[0]; 1344 const int slot = path->slots[0]; 1345 struct btrfs_file_extent_item *fi; 1346 struct btrfs_key key; 1347 u64 end; 1348 1349 btrfs_item_key_to_cpu(leaf, &key, slot); 1350 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 1351 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1352 1353 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) 1354 end = leaf->fs_info->sectorsize; 1355 else 1356 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1357 1358 return end; 1359 } 1360