xref: /linux/fs/btrfs/file-item.c (revision 3da3cc1b5f47115b16b5ffeeb4bf09ec331b0164)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "volumes.h"
16 #include "print-tree.h"
17 #include "compression.h"
18 
19 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
20 				   sizeof(struct btrfs_item) * 2) / \
21 				  size) - 1))
22 
23 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
24 				       PAGE_SIZE))
25 
26 /**
27  * @inode - the inode we want to update the disk_i_size for
28  * @new_i_size - the i_size we want to set to, 0 if we use i_size
29  *
30  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
31  * returns as it is perfectly fine with a file that has holes without hole file
32  * extent items.
33  *
34  * However without NO_HOLES we need to only return the area that is contiguous
35  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
36  * to an extent that has a gap in between.
37  *
38  * Finally new_i_size should only be set in the case of truncate where we're not
39  * ready to use i_size_read() as the limiter yet.
40  */
41 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
42 {
43 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
44 	u64 start, end, i_size;
45 	int ret;
46 
47 	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
48 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
49 		inode->disk_i_size = i_size;
50 		return;
51 	}
52 
53 	spin_lock(&inode->lock);
54 	ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
55 					 &end, EXTENT_DIRTY);
56 	if (!ret && start == 0)
57 		i_size = min(i_size, end + 1);
58 	else
59 		i_size = 0;
60 	inode->disk_i_size = i_size;
61 	spin_unlock(&inode->lock);
62 }
63 
64 /**
65  * @inode - the inode we're modifying
66  * @start - the start file offset of the file extent we've inserted
67  * @len - the logical length of the file extent item
68  *
69  * Call when we are inserting a new file extent where there was none before.
70  * Does not need to call this in the case where we're replacing an existing file
71  * extent, however if not sure it's fine to call this multiple times.
72  *
73  * The start and len must match the file extent item, so thus must be sectorsize
74  * aligned.
75  */
76 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
77 				      u64 len)
78 {
79 	if (len == 0)
80 		return 0;
81 
82 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
83 
84 	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
85 		return 0;
86 	return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
87 			       EXTENT_DIRTY);
88 }
89 
90 /**
91  * @inode - the inode we're modifying
92  * @start - the start file offset of the file extent we've inserted
93  * @len - the logical length of the file extent item
94  *
95  * Called when we drop a file extent, for example when we truncate.  Doesn't
96  * need to be called for cases where we're replacing a file extent, like when
97  * we've COWed a file extent.
98  *
99  * The start and len must match the file extent item, so thus must be sectorsize
100  * aligned.
101  */
102 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
103 					u64 len)
104 {
105 	if (len == 0)
106 		return 0;
107 
108 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
109 	       len == (u64)-1);
110 
111 	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
112 		return 0;
113 	return clear_extent_bit(&inode->file_extent_tree, start,
114 				start + len - 1, EXTENT_DIRTY, 0, 0, NULL);
115 }
116 
117 static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
118 					u16 csum_size)
119 {
120 	u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
121 
122 	return ncsums * fs_info->sectorsize;
123 }
124 
125 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
126 			     struct btrfs_root *root,
127 			     u64 objectid, u64 pos,
128 			     u64 disk_offset, u64 disk_num_bytes,
129 			     u64 num_bytes, u64 offset, u64 ram_bytes,
130 			     u8 compression, u8 encryption, u16 other_encoding)
131 {
132 	int ret = 0;
133 	struct btrfs_file_extent_item *item;
134 	struct btrfs_key file_key;
135 	struct btrfs_path *path;
136 	struct extent_buffer *leaf;
137 
138 	path = btrfs_alloc_path();
139 	if (!path)
140 		return -ENOMEM;
141 	file_key.objectid = objectid;
142 	file_key.offset = pos;
143 	file_key.type = BTRFS_EXTENT_DATA_KEY;
144 
145 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
146 				      sizeof(*item));
147 	if (ret < 0)
148 		goto out;
149 	BUG_ON(ret); /* Can't happen */
150 	leaf = path->nodes[0];
151 	item = btrfs_item_ptr(leaf, path->slots[0],
152 			      struct btrfs_file_extent_item);
153 	btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
154 	btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
155 	btrfs_set_file_extent_offset(leaf, item, offset);
156 	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
157 	btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
158 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
159 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
160 	btrfs_set_file_extent_compression(leaf, item, compression);
161 	btrfs_set_file_extent_encryption(leaf, item, encryption);
162 	btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
163 
164 	btrfs_mark_buffer_dirty(leaf);
165 out:
166 	btrfs_free_path(path);
167 	return ret;
168 }
169 
170 static struct btrfs_csum_item *
171 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
172 		  struct btrfs_root *root,
173 		  struct btrfs_path *path,
174 		  u64 bytenr, int cow)
175 {
176 	struct btrfs_fs_info *fs_info = root->fs_info;
177 	int ret;
178 	struct btrfs_key file_key;
179 	struct btrfs_key found_key;
180 	struct btrfs_csum_item *item;
181 	struct extent_buffer *leaf;
182 	u64 csum_offset = 0;
183 	const u32 csum_size = fs_info->csum_size;
184 	int csums_in_item;
185 
186 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
187 	file_key.offset = bytenr;
188 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
189 	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
190 	if (ret < 0)
191 		goto fail;
192 	leaf = path->nodes[0];
193 	if (ret > 0) {
194 		ret = 1;
195 		if (path->slots[0] == 0)
196 			goto fail;
197 		path->slots[0]--;
198 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
199 		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
200 			goto fail;
201 
202 		csum_offset = (bytenr - found_key.offset) >>
203 				fs_info->sectorsize_bits;
204 		csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
205 		csums_in_item /= csum_size;
206 
207 		if (csum_offset == csums_in_item) {
208 			ret = -EFBIG;
209 			goto fail;
210 		} else if (csum_offset > csums_in_item) {
211 			goto fail;
212 		}
213 	}
214 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
215 	item = (struct btrfs_csum_item *)((unsigned char *)item +
216 					  csum_offset * csum_size);
217 	return item;
218 fail:
219 	if (ret > 0)
220 		ret = -ENOENT;
221 	return ERR_PTR(ret);
222 }
223 
224 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
225 			     struct btrfs_root *root,
226 			     struct btrfs_path *path, u64 objectid,
227 			     u64 offset, int mod)
228 {
229 	int ret;
230 	struct btrfs_key file_key;
231 	int ins_len = mod < 0 ? -1 : 0;
232 	int cow = mod != 0;
233 
234 	file_key.objectid = objectid;
235 	file_key.offset = offset;
236 	file_key.type = BTRFS_EXTENT_DATA_KEY;
237 	ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
238 	return ret;
239 }
240 
241 /*
242  * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
243  * estore the result to @dst.
244  *
245  * Return >0 for the number of sectors we found.
246  * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
247  * for it. Caller may want to try next sector until one range is hit.
248  * Return <0 for fatal error.
249  */
250 static int search_csum_tree(struct btrfs_fs_info *fs_info,
251 			    struct btrfs_path *path, u64 disk_bytenr,
252 			    u64 len, u8 *dst)
253 {
254 	struct btrfs_csum_item *item = NULL;
255 	struct btrfs_key key;
256 	const u32 sectorsize = fs_info->sectorsize;
257 	const u32 csum_size = fs_info->csum_size;
258 	u32 itemsize;
259 	int ret;
260 	u64 csum_start;
261 	u64 csum_len;
262 
263 	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
264 	       IS_ALIGNED(len, sectorsize));
265 
266 	/* Check if the current csum item covers disk_bytenr */
267 	if (path->nodes[0]) {
268 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
269 				      struct btrfs_csum_item);
270 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
271 		itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
272 
273 		csum_start = key.offset;
274 		csum_len = (itemsize / csum_size) * sectorsize;
275 
276 		if (in_range(disk_bytenr, csum_start, csum_len))
277 			goto found;
278 	}
279 
280 	/* Current item doesn't contain the desired range, search again */
281 	btrfs_release_path(path);
282 	item = btrfs_lookup_csum(NULL, fs_info->csum_root, path, disk_bytenr, 0);
283 	if (IS_ERR(item)) {
284 		ret = PTR_ERR(item);
285 		goto out;
286 	}
287 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
288 	itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
289 
290 	csum_start = key.offset;
291 	csum_len = (itemsize / csum_size) * sectorsize;
292 	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
293 
294 found:
295 	ret = (min(csum_start + csum_len, disk_bytenr + len) -
296 		   disk_bytenr) >> fs_info->sectorsize_bits;
297 	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
298 			ret * csum_size);
299 out:
300 	if (ret == -ENOENT)
301 		ret = 0;
302 	return ret;
303 }
304 
305 /*
306  * Locate the file_offset of @cur_disk_bytenr of a @bio.
307  *
308  * Bio of btrfs represents read range of
309  * [bi_sector << 9, bi_sector << 9 + bi_size).
310  * Knowing this, we can iterate through each bvec to locate the page belong to
311  * @cur_disk_bytenr and get the file offset.
312  *
313  * @inode is used to determine if the bvec page really belongs to @inode.
314  *
315  * Return 0 if we can't find the file offset
316  * Return >0 if we find the file offset and restore it to @file_offset_ret
317  */
318 static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
319 				     u64 disk_bytenr, u64 *file_offset_ret)
320 {
321 	struct bvec_iter iter;
322 	struct bio_vec bvec;
323 	u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
324 	int ret = 0;
325 
326 	bio_for_each_segment(bvec, bio, iter) {
327 		struct page *page = bvec.bv_page;
328 
329 		if (cur > disk_bytenr)
330 			break;
331 		if (cur + bvec.bv_len <= disk_bytenr) {
332 			cur += bvec.bv_len;
333 			continue;
334 		}
335 		ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
336 		if (page->mapping && page->mapping->host &&
337 		    page->mapping->host == inode) {
338 			ret = 1;
339 			*file_offset_ret = page_offset(page) + bvec.bv_offset +
340 					   disk_bytenr - cur;
341 			break;
342 		}
343 	}
344 	return ret;
345 }
346 
347 /**
348  * Lookup the checksum for the read bio in csum tree.
349  *
350  * @inode: inode that the bio is for.
351  * @bio: bio to look up.
352  * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
353  *       checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
354  *       NULL, the checksum buffer is allocated and returned in
355  *       btrfs_io_bio(bio)->csum instead.
356  *
357  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
358  */
359 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst)
360 {
361 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
362 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
363 	struct btrfs_path *path;
364 	const u32 sectorsize = fs_info->sectorsize;
365 	const u32 csum_size = fs_info->csum_size;
366 	u32 orig_len = bio->bi_iter.bi_size;
367 	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
368 	u64 cur_disk_bytenr;
369 	u8 *csum;
370 	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
371 	int count = 0;
372 
373 	if (!fs_info->csum_root || (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
374 		return BLK_STS_OK;
375 
376 	/*
377 	 * This function is only called for read bio.
378 	 *
379 	 * This means two things:
380 	 * - All our csums should only be in csum tree
381 	 *   No ordered extents csums, as ordered extents are only for write
382 	 *   path.
383 	 * - No need to bother any other info from bvec
384 	 *   Since we're looking up csums, the only important info is the
385 	 *   disk_bytenr and the length, which can be extracted from bi_iter
386 	 *   directly.
387 	 */
388 	ASSERT(bio_op(bio) == REQ_OP_READ);
389 	path = btrfs_alloc_path();
390 	if (!path)
391 		return BLK_STS_RESOURCE;
392 
393 	if (!dst) {
394 		struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio);
395 
396 		if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
397 			btrfs_bio->csum = kmalloc_array(nblocks, csum_size,
398 							GFP_NOFS);
399 			if (!btrfs_bio->csum) {
400 				btrfs_free_path(path);
401 				return BLK_STS_RESOURCE;
402 			}
403 		} else {
404 			btrfs_bio->csum = btrfs_bio->csum_inline;
405 		}
406 		csum = btrfs_bio->csum;
407 	} else {
408 		csum = dst;
409 	}
410 
411 	/*
412 	 * If requested number of sectors is larger than one leaf can contain,
413 	 * kick the readahead for csum tree.
414 	 */
415 	if (nblocks > fs_info->csums_per_leaf)
416 		path->reada = READA_FORWARD;
417 
418 	/*
419 	 * the free space stuff is only read when it hasn't been
420 	 * updated in the current transaction.  So, we can safely
421 	 * read from the commit root and sidestep a nasty deadlock
422 	 * between reading the free space cache and updating the csum tree.
423 	 */
424 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
425 		path->search_commit_root = 1;
426 		path->skip_locking = 1;
427 	}
428 
429 	for (cur_disk_bytenr = orig_disk_bytenr;
430 	     cur_disk_bytenr < orig_disk_bytenr + orig_len;
431 	     cur_disk_bytenr += (count * sectorsize)) {
432 		u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
433 		unsigned int sector_offset;
434 		u8 *csum_dst;
435 
436 		/*
437 		 * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
438 		 * we're calculating the offset to the bio start.
439 		 *
440 		 * Bio size is limited to UINT_MAX, thus unsigned int is large
441 		 * enough to contain the raw result, not to mention the right
442 		 * shifted result.
443 		 */
444 		ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
445 		sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
446 				fs_info->sectorsize_bits;
447 		csum_dst = csum + sector_offset * csum_size;
448 
449 		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
450 					 search_len, csum_dst);
451 		if (count <= 0) {
452 			/*
453 			 * Either we hit a critical error or we didn't find
454 			 * the csum.
455 			 * Either way, we put zero into the csums dst, and skip
456 			 * to the next sector.
457 			 */
458 			memset(csum_dst, 0, csum_size);
459 			count = 1;
460 
461 			/*
462 			 * For data reloc inode, we need to mark the range
463 			 * NODATASUM so that balance won't report false csum
464 			 * error.
465 			 */
466 			if (BTRFS_I(inode)->root->root_key.objectid ==
467 			    BTRFS_DATA_RELOC_TREE_OBJECTID) {
468 				u64 file_offset;
469 				int ret;
470 
471 				ret = search_file_offset_in_bio(bio, inode,
472 						cur_disk_bytenr, &file_offset);
473 				if (ret)
474 					set_extent_bits(io_tree, file_offset,
475 						file_offset + sectorsize - 1,
476 						EXTENT_NODATASUM);
477 			} else {
478 				btrfs_warn_rl(fs_info,
479 			"csum hole found for disk bytenr range [%llu, %llu)",
480 				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
481 			}
482 		}
483 	}
484 
485 	btrfs_free_path(path);
486 	return BLK_STS_OK;
487 }
488 
489 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
490 			     struct list_head *list, int search_commit)
491 {
492 	struct btrfs_fs_info *fs_info = root->fs_info;
493 	struct btrfs_key key;
494 	struct btrfs_path *path;
495 	struct extent_buffer *leaf;
496 	struct btrfs_ordered_sum *sums;
497 	struct btrfs_csum_item *item;
498 	LIST_HEAD(tmplist);
499 	unsigned long offset;
500 	int ret;
501 	size_t size;
502 	u64 csum_end;
503 	const u32 csum_size = fs_info->csum_size;
504 
505 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
506 	       IS_ALIGNED(end + 1, fs_info->sectorsize));
507 
508 	path = btrfs_alloc_path();
509 	if (!path)
510 		return -ENOMEM;
511 
512 	if (search_commit) {
513 		path->skip_locking = 1;
514 		path->reada = READA_FORWARD;
515 		path->search_commit_root = 1;
516 	}
517 
518 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
519 	key.offset = start;
520 	key.type = BTRFS_EXTENT_CSUM_KEY;
521 
522 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
523 	if (ret < 0)
524 		goto fail;
525 	if (ret > 0 && path->slots[0] > 0) {
526 		leaf = path->nodes[0];
527 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
528 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
529 		    key.type == BTRFS_EXTENT_CSUM_KEY) {
530 			offset = (start - key.offset) >> fs_info->sectorsize_bits;
531 			if (offset * csum_size <
532 			    btrfs_item_size_nr(leaf, path->slots[0] - 1))
533 				path->slots[0]--;
534 		}
535 	}
536 
537 	while (start <= end) {
538 		leaf = path->nodes[0];
539 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
540 			ret = btrfs_next_leaf(root, path);
541 			if (ret < 0)
542 				goto fail;
543 			if (ret > 0)
544 				break;
545 			leaf = path->nodes[0];
546 		}
547 
548 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
549 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
550 		    key.type != BTRFS_EXTENT_CSUM_KEY ||
551 		    key.offset > end)
552 			break;
553 
554 		if (key.offset > start)
555 			start = key.offset;
556 
557 		size = btrfs_item_size_nr(leaf, path->slots[0]);
558 		csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
559 		if (csum_end <= start) {
560 			path->slots[0]++;
561 			continue;
562 		}
563 
564 		csum_end = min(csum_end, end + 1);
565 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
566 				      struct btrfs_csum_item);
567 		while (start < csum_end) {
568 			size = min_t(size_t, csum_end - start,
569 				     max_ordered_sum_bytes(fs_info, csum_size));
570 			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
571 				       GFP_NOFS);
572 			if (!sums) {
573 				ret = -ENOMEM;
574 				goto fail;
575 			}
576 
577 			sums->bytenr = start;
578 			sums->len = (int)size;
579 
580 			offset = (start - key.offset) >> fs_info->sectorsize_bits;
581 			offset *= csum_size;
582 			size >>= fs_info->sectorsize_bits;
583 
584 			read_extent_buffer(path->nodes[0],
585 					   sums->sums,
586 					   ((unsigned long)item) + offset,
587 					   csum_size * size);
588 
589 			start += fs_info->sectorsize * size;
590 			list_add_tail(&sums->list, &tmplist);
591 		}
592 		path->slots[0]++;
593 	}
594 	ret = 0;
595 fail:
596 	while (ret < 0 && !list_empty(&tmplist)) {
597 		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
598 		list_del(&sums->list);
599 		kfree(sums);
600 	}
601 	list_splice_tail(&tmplist, list);
602 
603 	btrfs_free_path(path);
604 	return ret;
605 }
606 
607 /*
608  * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
609  * @inode:	 Owner of the data inside the bio
610  * @bio:	 Contains the data to be checksummed
611  * @file_start:  offset in file this bio begins to describe
612  * @contig:	 Boolean. If true/1 means all bio vecs in this bio are
613  *		 contiguous and they begin at @file_start in the file. False/0
614  *		 means this bio can contains potentially discontigous bio vecs
615  *		 so the logical offset of each should be calculated separately.
616  */
617 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
618 		       u64 file_start, int contig)
619 {
620 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
621 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
622 	struct btrfs_ordered_sum *sums;
623 	struct btrfs_ordered_extent *ordered = NULL;
624 	char *data;
625 	struct bvec_iter iter;
626 	struct bio_vec bvec;
627 	int index;
628 	int nr_sectors;
629 	unsigned long total_bytes = 0;
630 	unsigned long this_sum_bytes = 0;
631 	int i;
632 	u64 offset;
633 	unsigned nofs_flag;
634 
635 	nofs_flag = memalloc_nofs_save();
636 	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
637 		       GFP_KERNEL);
638 	memalloc_nofs_restore(nofs_flag);
639 
640 	if (!sums)
641 		return BLK_STS_RESOURCE;
642 
643 	sums->len = bio->bi_iter.bi_size;
644 	INIT_LIST_HEAD(&sums->list);
645 
646 	if (contig)
647 		offset = file_start;
648 	else
649 		offset = 0; /* shut up gcc */
650 
651 	sums->bytenr = bio->bi_iter.bi_sector << 9;
652 	index = 0;
653 
654 	shash->tfm = fs_info->csum_shash;
655 
656 	bio_for_each_segment(bvec, bio, iter) {
657 		if (!contig)
658 			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
659 
660 		if (!ordered) {
661 			ordered = btrfs_lookup_ordered_extent(inode, offset);
662 			BUG_ON(!ordered); /* Logic error */
663 		}
664 
665 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
666 						 bvec.bv_len + fs_info->sectorsize
667 						 - 1);
668 
669 		for (i = 0; i < nr_sectors; i++) {
670 			if (offset >= ordered->file_offset + ordered->num_bytes ||
671 			    offset < ordered->file_offset) {
672 				unsigned long bytes_left;
673 
674 				sums->len = this_sum_bytes;
675 				this_sum_bytes = 0;
676 				btrfs_add_ordered_sum(ordered, sums);
677 				btrfs_put_ordered_extent(ordered);
678 
679 				bytes_left = bio->bi_iter.bi_size - total_bytes;
680 
681 				nofs_flag = memalloc_nofs_save();
682 				sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
683 						      bytes_left), GFP_KERNEL);
684 				memalloc_nofs_restore(nofs_flag);
685 				BUG_ON(!sums); /* -ENOMEM */
686 				sums->len = bytes_left;
687 				ordered = btrfs_lookup_ordered_extent(inode,
688 								offset);
689 				ASSERT(ordered); /* Logic error */
690 				sums->bytenr = (bio->bi_iter.bi_sector << 9)
691 					+ total_bytes;
692 				index = 0;
693 			}
694 
695 			data = kmap_atomic(bvec.bv_page);
696 			crypto_shash_digest(shash, data + bvec.bv_offset
697 					    + (i * fs_info->sectorsize),
698 					    fs_info->sectorsize,
699 					    sums->sums + index);
700 			kunmap_atomic(data);
701 			index += fs_info->csum_size;
702 			offset += fs_info->sectorsize;
703 			this_sum_bytes += fs_info->sectorsize;
704 			total_bytes += fs_info->sectorsize;
705 		}
706 
707 	}
708 	this_sum_bytes = 0;
709 	btrfs_add_ordered_sum(ordered, sums);
710 	btrfs_put_ordered_extent(ordered);
711 	return 0;
712 }
713 
714 /*
715  * helper function for csum removal, this expects the
716  * key to describe the csum pointed to by the path, and it expects
717  * the csum to overlap the range [bytenr, len]
718  *
719  * The csum should not be entirely contained in the range and the
720  * range should not be entirely contained in the csum.
721  *
722  * This calls btrfs_truncate_item with the correct args based on the
723  * overlap, and fixes up the key as required.
724  */
725 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
726 				       struct btrfs_path *path,
727 				       struct btrfs_key *key,
728 				       u64 bytenr, u64 len)
729 {
730 	struct extent_buffer *leaf;
731 	const u32 csum_size = fs_info->csum_size;
732 	u64 csum_end;
733 	u64 end_byte = bytenr + len;
734 	u32 blocksize_bits = fs_info->sectorsize_bits;
735 
736 	leaf = path->nodes[0];
737 	csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
738 	csum_end <<= blocksize_bits;
739 	csum_end += key->offset;
740 
741 	if (key->offset < bytenr && csum_end <= end_byte) {
742 		/*
743 		 *         [ bytenr - len ]
744 		 *         [   ]
745 		 *   [csum     ]
746 		 *   A simple truncate off the end of the item
747 		 */
748 		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
749 		new_size *= csum_size;
750 		btrfs_truncate_item(path, new_size, 1);
751 	} else if (key->offset >= bytenr && csum_end > end_byte &&
752 		   end_byte > key->offset) {
753 		/*
754 		 *         [ bytenr - len ]
755 		 *                 [ ]
756 		 *                 [csum     ]
757 		 * we need to truncate from the beginning of the csum
758 		 */
759 		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
760 		new_size *= csum_size;
761 
762 		btrfs_truncate_item(path, new_size, 0);
763 
764 		key->offset = end_byte;
765 		btrfs_set_item_key_safe(fs_info, path, key);
766 	} else {
767 		BUG();
768 	}
769 }
770 
771 /*
772  * deletes the csum items from the csum tree for a given
773  * range of bytes.
774  */
775 int btrfs_del_csums(struct btrfs_trans_handle *trans,
776 		    struct btrfs_root *root, u64 bytenr, u64 len)
777 {
778 	struct btrfs_fs_info *fs_info = trans->fs_info;
779 	struct btrfs_path *path;
780 	struct btrfs_key key;
781 	u64 end_byte = bytenr + len;
782 	u64 csum_end;
783 	struct extent_buffer *leaf;
784 	int ret;
785 	const u32 csum_size = fs_info->csum_size;
786 	u32 blocksize_bits = fs_info->sectorsize_bits;
787 
788 	ASSERT(root == fs_info->csum_root ||
789 	       root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
790 
791 	path = btrfs_alloc_path();
792 	if (!path)
793 		return -ENOMEM;
794 
795 	while (1) {
796 		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
797 		key.offset = end_byte - 1;
798 		key.type = BTRFS_EXTENT_CSUM_KEY;
799 
800 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
801 		if (ret > 0) {
802 			if (path->slots[0] == 0)
803 				break;
804 			path->slots[0]--;
805 		} else if (ret < 0) {
806 			break;
807 		}
808 
809 		leaf = path->nodes[0];
810 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
811 
812 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
813 		    key.type != BTRFS_EXTENT_CSUM_KEY) {
814 			break;
815 		}
816 
817 		if (key.offset >= end_byte)
818 			break;
819 
820 		csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
821 		csum_end <<= blocksize_bits;
822 		csum_end += key.offset;
823 
824 		/* this csum ends before we start, we're done */
825 		if (csum_end <= bytenr)
826 			break;
827 
828 		/* delete the entire item, it is inside our range */
829 		if (key.offset >= bytenr && csum_end <= end_byte) {
830 			int del_nr = 1;
831 
832 			/*
833 			 * Check how many csum items preceding this one in this
834 			 * leaf correspond to our range and then delete them all
835 			 * at once.
836 			 */
837 			if (key.offset > bytenr && path->slots[0] > 0) {
838 				int slot = path->slots[0] - 1;
839 
840 				while (slot >= 0) {
841 					struct btrfs_key pk;
842 
843 					btrfs_item_key_to_cpu(leaf, &pk, slot);
844 					if (pk.offset < bytenr ||
845 					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
846 					    pk.objectid !=
847 					    BTRFS_EXTENT_CSUM_OBJECTID)
848 						break;
849 					path->slots[0] = slot;
850 					del_nr++;
851 					key.offset = pk.offset;
852 					slot--;
853 				}
854 			}
855 			ret = btrfs_del_items(trans, root, path,
856 					      path->slots[0], del_nr);
857 			if (ret)
858 				goto out;
859 			if (key.offset == bytenr)
860 				break;
861 		} else if (key.offset < bytenr && csum_end > end_byte) {
862 			unsigned long offset;
863 			unsigned long shift_len;
864 			unsigned long item_offset;
865 			/*
866 			 *        [ bytenr - len ]
867 			 *     [csum                ]
868 			 *
869 			 * Our bytes are in the middle of the csum,
870 			 * we need to split this item and insert a new one.
871 			 *
872 			 * But we can't drop the path because the
873 			 * csum could change, get removed, extended etc.
874 			 *
875 			 * The trick here is the max size of a csum item leaves
876 			 * enough room in the tree block for a single
877 			 * item header.  So, we split the item in place,
878 			 * adding a new header pointing to the existing
879 			 * bytes.  Then we loop around again and we have
880 			 * a nicely formed csum item that we can neatly
881 			 * truncate.
882 			 */
883 			offset = (bytenr - key.offset) >> blocksize_bits;
884 			offset *= csum_size;
885 
886 			shift_len = (len >> blocksize_bits) * csum_size;
887 
888 			item_offset = btrfs_item_ptr_offset(leaf,
889 							    path->slots[0]);
890 
891 			memzero_extent_buffer(leaf, item_offset + offset,
892 					     shift_len);
893 			key.offset = bytenr;
894 
895 			/*
896 			 * btrfs_split_item returns -EAGAIN when the
897 			 * item changed size or key
898 			 */
899 			ret = btrfs_split_item(trans, root, path, &key, offset);
900 			if (ret && ret != -EAGAIN) {
901 				btrfs_abort_transaction(trans, ret);
902 				goto out;
903 			}
904 
905 			key.offset = end_byte - 1;
906 		} else {
907 			truncate_one_csum(fs_info, path, &key, bytenr, len);
908 			if (key.offset < bytenr)
909 				break;
910 		}
911 		btrfs_release_path(path);
912 	}
913 	ret = 0;
914 out:
915 	btrfs_free_path(path);
916 	return ret;
917 }
918 
919 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
920 			   struct btrfs_root *root,
921 			   struct btrfs_ordered_sum *sums)
922 {
923 	struct btrfs_fs_info *fs_info = root->fs_info;
924 	struct btrfs_key file_key;
925 	struct btrfs_key found_key;
926 	struct btrfs_path *path;
927 	struct btrfs_csum_item *item;
928 	struct btrfs_csum_item *item_end;
929 	struct extent_buffer *leaf = NULL;
930 	u64 next_offset;
931 	u64 total_bytes = 0;
932 	u64 csum_offset;
933 	u64 bytenr;
934 	u32 nritems;
935 	u32 ins_size;
936 	int index = 0;
937 	int found_next;
938 	int ret;
939 	const u32 csum_size = fs_info->csum_size;
940 
941 	path = btrfs_alloc_path();
942 	if (!path)
943 		return -ENOMEM;
944 again:
945 	next_offset = (u64)-1;
946 	found_next = 0;
947 	bytenr = sums->bytenr + total_bytes;
948 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
949 	file_key.offset = bytenr;
950 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
951 
952 	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
953 	if (!IS_ERR(item)) {
954 		ret = 0;
955 		leaf = path->nodes[0];
956 		item_end = btrfs_item_ptr(leaf, path->slots[0],
957 					  struct btrfs_csum_item);
958 		item_end = (struct btrfs_csum_item *)((char *)item_end +
959 			   btrfs_item_size_nr(leaf, path->slots[0]));
960 		goto found;
961 	}
962 	ret = PTR_ERR(item);
963 	if (ret != -EFBIG && ret != -ENOENT)
964 		goto out;
965 
966 	if (ret == -EFBIG) {
967 		u32 item_size;
968 		/* we found one, but it isn't big enough yet */
969 		leaf = path->nodes[0];
970 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
971 		if ((item_size / csum_size) >=
972 		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
973 			/* already at max size, make a new one */
974 			goto insert;
975 		}
976 	} else {
977 		int slot = path->slots[0] + 1;
978 		/* we didn't find a csum item, insert one */
979 		nritems = btrfs_header_nritems(path->nodes[0]);
980 		if (!nritems || (path->slots[0] >= nritems - 1)) {
981 			ret = btrfs_next_leaf(root, path);
982 			if (ret < 0) {
983 				goto out;
984 			} else if (ret > 0) {
985 				found_next = 1;
986 				goto insert;
987 			}
988 			slot = path->slots[0];
989 		}
990 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
991 		if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
992 		    found_key.type != BTRFS_EXTENT_CSUM_KEY) {
993 			found_next = 1;
994 			goto insert;
995 		}
996 		next_offset = found_key.offset;
997 		found_next = 1;
998 		goto insert;
999 	}
1000 
1001 	/*
1002 	 * At this point, we know the tree has a checksum item that ends at an
1003 	 * offset matching the start of the checksum range we want to insert.
1004 	 * We try to extend that item as much as possible and then add as many
1005 	 * checksums to it as they fit.
1006 	 *
1007 	 * First check if the leaf has enough free space for at least one
1008 	 * checksum. If it has go directly to the item extension code, otherwise
1009 	 * release the path and do a search for insertion before the extension.
1010 	 */
1011 	if (btrfs_leaf_free_space(leaf) >= csum_size) {
1012 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1013 		csum_offset = (bytenr - found_key.offset) >>
1014 			fs_info->sectorsize_bits;
1015 		goto extend_csum;
1016 	}
1017 
1018 	btrfs_release_path(path);
1019 	path->search_for_extension = 1;
1020 	ret = btrfs_search_slot(trans, root, &file_key, path,
1021 				csum_size, 1);
1022 	path->search_for_extension = 0;
1023 	if (ret < 0)
1024 		goto out;
1025 
1026 	if (ret > 0) {
1027 		if (path->slots[0] == 0)
1028 			goto insert;
1029 		path->slots[0]--;
1030 	}
1031 
1032 	leaf = path->nodes[0];
1033 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1034 	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1035 
1036 	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1037 	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1038 	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1039 		goto insert;
1040 	}
1041 
1042 extend_csum:
1043 	if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) /
1044 	    csum_size) {
1045 		int extend_nr;
1046 		u64 tmp;
1047 		u32 diff;
1048 
1049 		tmp = sums->len - total_bytes;
1050 		tmp >>= fs_info->sectorsize_bits;
1051 		WARN_ON(tmp < 1);
1052 
1053 		extend_nr = max_t(int, 1, (int)tmp);
1054 		diff = (csum_offset + extend_nr) * csum_size;
1055 		diff = min(diff,
1056 			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1057 
1058 		diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
1059 		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1060 		diff /= csum_size;
1061 		diff *= csum_size;
1062 
1063 		btrfs_extend_item(path, diff);
1064 		ret = 0;
1065 		goto csum;
1066 	}
1067 
1068 insert:
1069 	btrfs_release_path(path);
1070 	csum_offset = 0;
1071 	if (found_next) {
1072 		u64 tmp;
1073 
1074 		tmp = sums->len - total_bytes;
1075 		tmp >>= fs_info->sectorsize_bits;
1076 		tmp = min(tmp, (next_offset - file_key.offset) >>
1077 					 fs_info->sectorsize_bits);
1078 
1079 		tmp = max_t(u64, 1, tmp);
1080 		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1081 		ins_size = csum_size * tmp;
1082 	} else {
1083 		ins_size = csum_size;
1084 	}
1085 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1086 				      ins_size);
1087 	if (ret < 0)
1088 		goto out;
1089 	if (WARN_ON(ret != 0))
1090 		goto out;
1091 	leaf = path->nodes[0];
1092 csum:
1093 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1094 	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1095 				      btrfs_item_size_nr(leaf, path->slots[0]));
1096 	item = (struct btrfs_csum_item *)((unsigned char *)item +
1097 					  csum_offset * csum_size);
1098 found:
1099 	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1100 	ins_size *= csum_size;
1101 	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1102 			      ins_size);
1103 	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1104 			    ins_size);
1105 
1106 	index += ins_size;
1107 	ins_size /= csum_size;
1108 	total_bytes += ins_size * fs_info->sectorsize;
1109 
1110 	btrfs_mark_buffer_dirty(path->nodes[0]);
1111 	if (total_bytes < sums->len) {
1112 		btrfs_release_path(path);
1113 		cond_resched();
1114 		goto again;
1115 	}
1116 out:
1117 	btrfs_free_path(path);
1118 	return ret;
1119 }
1120 
1121 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1122 				     const struct btrfs_path *path,
1123 				     struct btrfs_file_extent_item *fi,
1124 				     const bool new_inline,
1125 				     struct extent_map *em)
1126 {
1127 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1128 	struct btrfs_root *root = inode->root;
1129 	struct extent_buffer *leaf = path->nodes[0];
1130 	const int slot = path->slots[0];
1131 	struct btrfs_key key;
1132 	u64 extent_start, extent_end;
1133 	u64 bytenr;
1134 	u8 type = btrfs_file_extent_type(leaf, fi);
1135 	int compress_type = btrfs_file_extent_compression(leaf, fi);
1136 
1137 	btrfs_item_key_to_cpu(leaf, &key, slot);
1138 	extent_start = key.offset;
1139 	extent_end = btrfs_file_extent_end(path);
1140 	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1141 	if (type == BTRFS_FILE_EXTENT_REG ||
1142 	    type == BTRFS_FILE_EXTENT_PREALLOC) {
1143 		em->start = extent_start;
1144 		em->len = extent_end - extent_start;
1145 		em->orig_start = extent_start -
1146 			btrfs_file_extent_offset(leaf, fi);
1147 		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1148 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1149 		if (bytenr == 0) {
1150 			em->block_start = EXTENT_MAP_HOLE;
1151 			return;
1152 		}
1153 		if (compress_type != BTRFS_COMPRESS_NONE) {
1154 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1155 			em->compress_type = compress_type;
1156 			em->block_start = bytenr;
1157 			em->block_len = em->orig_block_len;
1158 		} else {
1159 			bytenr += btrfs_file_extent_offset(leaf, fi);
1160 			em->block_start = bytenr;
1161 			em->block_len = em->len;
1162 			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1163 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1164 		}
1165 	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1166 		em->block_start = EXTENT_MAP_INLINE;
1167 		em->start = extent_start;
1168 		em->len = extent_end - extent_start;
1169 		/*
1170 		 * Initialize orig_start and block_len with the same values
1171 		 * as in inode.c:btrfs_get_extent().
1172 		 */
1173 		em->orig_start = EXTENT_MAP_HOLE;
1174 		em->block_len = (u64)-1;
1175 		if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
1176 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1177 			em->compress_type = compress_type;
1178 		}
1179 	} else {
1180 		btrfs_err(fs_info,
1181 			  "unknown file extent item type %d, inode %llu, offset %llu, "
1182 			  "root %llu", type, btrfs_ino(inode), extent_start,
1183 			  root->root_key.objectid);
1184 	}
1185 }
1186 
1187 /*
1188  * Returns the end offset (non inclusive) of the file extent item the given path
1189  * points to. If it points to an inline extent, the returned offset is rounded
1190  * up to the sector size.
1191  */
1192 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1193 {
1194 	const struct extent_buffer *leaf = path->nodes[0];
1195 	const int slot = path->slots[0];
1196 	struct btrfs_file_extent_item *fi;
1197 	struct btrfs_key key;
1198 	u64 end;
1199 
1200 	btrfs_item_key_to_cpu(leaf, &key, slot);
1201 	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1202 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1203 
1204 	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1205 		end = btrfs_file_extent_ram_bytes(leaf, fi);
1206 		end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1207 	} else {
1208 		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1209 	}
1210 
1211 	return end;
1212 }
1213