1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/bio.h> 7 #include <linux/slab.h> 8 #include <linux/pagemap.h> 9 #include <linux/highmem.h> 10 #include <linux/sched/mm.h> 11 #include <crypto/hash.h> 12 #include "ctree.h" 13 #include "disk-io.h" 14 #include "transaction.h" 15 #include "volumes.h" 16 #include "print-tree.h" 17 #include "compression.h" 18 19 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \ 20 sizeof(struct btrfs_item) * 2) / \ 21 size) - 1)) 22 23 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \ 24 PAGE_SIZE)) 25 26 /** 27 * @inode - the inode we want to update the disk_i_size for 28 * @new_i_size - the i_size we want to set to, 0 if we use i_size 29 * 30 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read() 31 * returns as it is perfectly fine with a file that has holes without hole file 32 * extent items. 33 * 34 * However without NO_HOLES we need to only return the area that is contiguous 35 * from the 0 offset of the file. Otherwise we could end up adjust i_size up 36 * to an extent that has a gap in between. 37 * 38 * Finally new_i_size should only be set in the case of truncate where we're not 39 * ready to use i_size_read() as the limiter yet. 40 */ 41 void btrfs_inode_safe_disk_i_size_write(struct inode *inode, u64 new_i_size) 42 { 43 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 44 u64 start, end, i_size; 45 int ret; 46 47 i_size = new_i_size ?: i_size_read(inode); 48 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 49 BTRFS_I(inode)->disk_i_size = i_size; 50 return; 51 } 52 53 spin_lock(&BTRFS_I(inode)->lock); 54 ret = find_contiguous_extent_bit(&BTRFS_I(inode)->file_extent_tree, 0, 55 &start, &end, EXTENT_DIRTY); 56 if (!ret && start == 0) 57 i_size = min(i_size, end + 1); 58 else 59 i_size = 0; 60 BTRFS_I(inode)->disk_i_size = i_size; 61 spin_unlock(&BTRFS_I(inode)->lock); 62 } 63 64 /** 65 * @inode - the inode we're modifying 66 * @start - the start file offset of the file extent we've inserted 67 * @len - the logical length of the file extent item 68 * 69 * Call when we are inserting a new file extent where there was none before. 70 * Does not need to call this in the case where we're replacing an existing file 71 * extent, however if not sure it's fine to call this multiple times. 72 * 73 * The start and len must match the file extent item, so thus must be sectorsize 74 * aligned. 75 */ 76 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 77 u64 len) 78 { 79 if (len == 0) 80 return 0; 81 82 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize)); 83 84 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 85 return 0; 86 return set_extent_bits(&inode->file_extent_tree, start, start + len - 1, 87 EXTENT_DIRTY); 88 } 89 90 /** 91 * @inode - the inode we're modifying 92 * @start - the start file offset of the file extent we've inserted 93 * @len - the logical length of the file extent item 94 * 95 * Called when we drop a file extent, for example when we truncate. Doesn't 96 * need to be called for cases where we're replacing a file extent, like when 97 * we've COWed a file extent. 98 * 99 * The start and len must match the file extent item, so thus must be sectorsize 100 * aligned. 101 */ 102 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 103 u64 len) 104 { 105 if (len == 0) 106 return 0; 107 108 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) || 109 len == (u64)-1); 110 111 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES)) 112 return 0; 113 return clear_extent_bit(&inode->file_extent_tree, start, 114 start + len - 1, EXTENT_DIRTY, 0, 0, NULL); 115 } 116 117 static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info, 118 u16 csum_size) 119 { 120 u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size; 121 122 return ncsums * fs_info->sectorsize; 123 } 124 125 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 126 struct btrfs_root *root, 127 u64 objectid, u64 pos, 128 u64 disk_offset, u64 disk_num_bytes, 129 u64 num_bytes, u64 offset, u64 ram_bytes, 130 u8 compression, u8 encryption, u16 other_encoding) 131 { 132 int ret = 0; 133 struct btrfs_file_extent_item *item; 134 struct btrfs_key file_key; 135 struct btrfs_path *path; 136 struct extent_buffer *leaf; 137 138 path = btrfs_alloc_path(); 139 if (!path) 140 return -ENOMEM; 141 file_key.objectid = objectid; 142 file_key.offset = pos; 143 file_key.type = BTRFS_EXTENT_DATA_KEY; 144 145 path->leave_spinning = 1; 146 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 147 sizeof(*item)); 148 if (ret < 0) 149 goto out; 150 BUG_ON(ret); /* Can't happen */ 151 leaf = path->nodes[0]; 152 item = btrfs_item_ptr(leaf, path->slots[0], 153 struct btrfs_file_extent_item); 154 btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset); 155 btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes); 156 btrfs_set_file_extent_offset(leaf, item, offset); 157 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes); 158 btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes); 159 btrfs_set_file_extent_generation(leaf, item, trans->transid); 160 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 161 btrfs_set_file_extent_compression(leaf, item, compression); 162 btrfs_set_file_extent_encryption(leaf, item, encryption); 163 btrfs_set_file_extent_other_encoding(leaf, item, other_encoding); 164 165 btrfs_mark_buffer_dirty(leaf); 166 out: 167 btrfs_free_path(path); 168 return ret; 169 } 170 171 static struct btrfs_csum_item * 172 btrfs_lookup_csum(struct btrfs_trans_handle *trans, 173 struct btrfs_root *root, 174 struct btrfs_path *path, 175 u64 bytenr, int cow) 176 { 177 struct btrfs_fs_info *fs_info = root->fs_info; 178 int ret; 179 struct btrfs_key file_key; 180 struct btrfs_key found_key; 181 struct btrfs_csum_item *item; 182 struct extent_buffer *leaf; 183 u64 csum_offset = 0; 184 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 185 int csums_in_item; 186 187 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 188 file_key.offset = bytenr; 189 file_key.type = BTRFS_EXTENT_CSUM_KEY; 190 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow); 191 if (ret < 0) 192 goto fail; 193 leaf = path->nodes[0]; 194 if (ret > 0) { 195 ret = 1; 196 if (path->slots[0] == 0) 197 goto fail; 198 path->slots[0]--; 199 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 200 if (found_key.type != BTRFS_EXTENT_CSUM_KEY) 201 goto fail; 202 203 csum_offset = (bytenr - found_key.offset) >> 204 fs_info->sb->s_blocksize_bits; 205 csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]); 206 csums_in_item /= csum_size; 207 208 if (csum_offset == csums_in_item) { 209 ret = -EFBIG; 210 goto fail; 211 } else if (csum_offset > csums_in_item) { 212 goto fail; 213 } 214 } 215 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 216 item = (struct btrfs_csum_item *)((unsigned char *)item + 217 csum_offset * csum_size); 218 return item; 219 fail: 220 if (ret > 0) 221 ret = -ENOENT; 222 return ERR_PTR(ret); 223 } 224 225 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 226 struct btrfs_root *root, 227 struct btrfs_path *path, u64 objectid, 228 u64 offset, int mod) 229 { 230 int ret; 231 struct btrfs_key file_key; 232 int ins_len = mod < 0 ? -1 : 0; 233 int cow = mod != 0; 234 235 file_key.objectid = objectid; 236 file_key.offset = offset; 237 file_key.type = BTRFS_EXTENT_DATA_KEY; 238 ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow); 239 return ret; 240 } 241 242 /** 243 * btrfs_lookup_bio_sums - Look up checksums for a bio. 244 * @inode: inode that the bio is for. 245 * @bio: bio embedded in btrfs_io_bio. 246 * @offset: Unless (u64)-1, look up checksums for this offset in the file. 247 * If (u64)-1, use the page offsets from the bio instead. 248 * @dst: Buffer of size btrfs_super_csum_size() used to return checksum. If 249 * NULL, the checksum is returned in btrfs_io_bio(bio)->csum instead. 250 * 251 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise. 252 */ 253 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, 254 u64 offset, u8 *dst) 255 { 256 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 257 struct bio_vec bvec; 258 struct bvec_iter iter; 259 struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio); 260 struct btrfs_csum_item *item = NULL; 261 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 262 struct btrfs_path *path; 263 const bool page_offsets = (offset == (u64)-1); 264 u8 *csum; 265 u64 item_start_offset = 0; 266 u64 item_last_offset = 0; 267 u64 disk_bytenr; 268 u64 page_bytes_left; 269 u32 diff; 270 int nblocks; 271 int count = 0; 272 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 273 274 path = btrfs_alloc_path(); 275 if (!path) 276 return BLK_STS_RESOURCE; 277 278 nblocks = bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits; 279 if (!dst) { 280 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) { 281 btrfs_bio->csum = kmalloc_array(nblocks, csum_size, 282 GFP_NOFS); 283 if (!btrfs_bio->csum) { 284 btrfs_free_path(path); 285 return BLK_STS_RESOURCE; 286 } 287 } else { 288 btrfs_bio->csum = btrfs_bio->csum_inline; 289 } 290 csum = btrfs_bio->csum; 291 } else { 292 csum = dst; 293 } 294 295 if (bio->bi_iter.bi_size > PAGE_SIZE * 8) 296 path->reada = READA_FORWARD; 297 298 /* 299 * the free space stuff is only read when it hasn't been 300 * updated in the current transaction. So, we can safely 301 * read from the commit root and sidestep a nasty deadlock 302 * between reading the free space cache and updating the csum tree. 303 */ 304 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 305 path->search_commit_root = 1; 306 path->skip_locking = 1; 307 } 308 309 disk_bytenr = (u64)bio->bi_iter.bi_sector << 9; 310 311 bio_for_each_segment(bvec, bio, iter) { 312 page_bytes_left = bvec.bv_len; 313 if (count) 314 goto next; 315 316 if (page_offsets) 317 offset = page_offset(bvec.bv_page) + bvec.bv_offset; 318 count = btrfs_find_ordered_sum(inode, offset, disk_bytenr, 319 csum, nblocks); 320 if (count) 321 goto found; 322 323 if (!item || disk_bytenr < item_start_offset || 324 disk_bytenr >= item_last_offset) { 325 struct btrfs_key found_key; 326 u32 item_size; 327 328 if (item) 329 btrfs_release_path(path); 330 item = btrfs_lookup_csum(NULL, fs_info->csum_root, 331 path, disk_bytenr, 0); 332 if (IS_ERR(item)) { 333 count = 1; 334 memset(csum, 0, csum_size); 335 if (BTRFS_I(inode)->root->root_key.objectid == 336 BTRFS_DATA_RELOC_TREE_OBJECTID) { 337 set_extent_bits(io_tree, offset, 338 offset + fs_info->sectorsize - 1, 339 EXTENT_NODATASUM); 340 } else { 341 btrfs_info_rl(fs_info, 342 "no csum found for inode %llu start %llu", 343 btrfs_ino(BTRFS_I(inode)), offset); 344 } 345 item = NULL; 346 btrfs_release_path(path); 347 goto found; 348 } 349 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 350 path->slots[0]); 351 352 item_start_offset = found_key.offset; 353 item_size = btrfs_item_size_nr(path->nodes[0], 354 path->slots[0]); 355 item_last_offset = item_start_offset + 356 (item_size / csum_size) * 357 fs_info->sectorsize; 358 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 359 struct btrfs_csum_item); 360 } 361 /* 362 * this byte range must be able to fit inside 363 * a single leaf so it will also fit inside a u32 364 */ 365 diff = disk_bytenr - item_start_offset; 366 diff = diff / fs_info->sectorsize; 367 diff = diff * csum_size; 368 count = min_t(int, nblocks, (item_last_offset - disk_bytenr) >> 369 inode->i_sb->s_blocksize_bits); 370 read_extent_buffer(path->nodes[0], csum, 371 ((unsigned long)item) + diff, 372 csum_size * count); 373 found: 374 csum += count * csum_size; 375 nblocks -= count; 376 next: 377 while (count > 0) { 378 count--; 379 disk_bytenr += fs_info->sectorsize; 380 offset += fs_info->sectorsize; 381 page_bytes_left -= fs_info->sectorsize; 382 if (!page_bytes_left) 383 break; /* move to next bio */ 384 } 385 } 386 387 WARN_ON_ONCE(count); 388 btrfs_free_path(path); 389 return BLK_STS_OK; 390 } 391 392 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 393 struct list_head *list, int search_commit) 394 { 395 struct btrfs_fs_info *fs_info = root->fs_info; 396 struct btrfs_key key; 397 struct btrfs_path *path; 398 struct extent_buffer *leaf; 399 struct btrfs_ordered_sum *sums; 400 struct btrfs_csum_item *item; 401 LIST_HEAD(tmplist); 402 unsigned long offset; 403 int ret; 404 size_t size; 405 u64 csum_end; 406 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 407 408 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 409 IS_ALIGNED(end + 1, fs_info->sectorsize)); 410 411 path = btrfs_alloc_path(); 412 if (!path) 413 return -ENOMEM; 414 415 if (search_commit) { 416 path->skip_locking = 1; 417 path->reada = READA_FORWARD; 418 path->search_commit_root = 1; 419 } 420 421 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 422 key.offset = start; 423 key.type = BTRFS_EXTENT_CSUM_KEY; 424 425 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 426 if (ret < 0) 427 goto fail; 428 if (ret > 0 && path->slots[0] > 0) { 429 leaf = path->nodes[0]; 430 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 431 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 432 key.type == BTRFS_EXTENT_CSUM_KEY) { 433 offset = (start - key.offset) >> 434 fs_info->sb->s_blocksize_bits; 435 if (offset * csum_size < 436 btrfs_item_size_nr(leaf, path->slots[0] - 1)) 437 path->slots[0]--; 438 } 439 } 440 441 while (start <= end) { 442 leaf = path->nodes[0]; 443 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 444 ret = btrfs_next_leaf(root, path); 445 if (ret < 0) 446 goto fail; 447 if (ret > 0) 448 break; 449 leaf = path->nodes[0]; 450 } 451 452 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 453 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 454 key.type != BTRFS_EXTENT_CSUM_KEY || 455 key.offset > end) 456 break; 457 458 if (key.offset > start) 459 start = key.offset; 460 461 size = btrfs_item_size_nr(leaf, path->slots[0]); 462 csum_end = key.offset + (size / csum_size) * fs_info->sectorsize; 463 if (csum_end <= start) { 464 path->slots[0]++; 465 continue; 466 } 467 468 csum_end = min(csum_end, end + 1); 469 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 470 struct btrfs_csum_item); 471 while (start < csum_end) { 472 size = min_t(size_t, csum_end - start, 473 max_ordered_sum_bytes(fs_info, csum_size)); 474 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size), 475 GFP_NOFS); 476 if (!sums) { 477 ret = -ENOMEM; 478 goto fail; 479 } 480 481 sums->bytenr = start; 482 sums->len = (int)size; 483 484 offset = (start - key.offset) >> 485 fs_info->sb->s_blocksize_bits; 486 offset *= csum_size; 487 size >>= fs_info->sb->s_blocksize_bits; 488 489 read_extent_buffer(path->nodes[0], 490 sums->sums, 491 ((unsigned long)item) + offset, 492 csum_size * size); 493 494 start += fs_info->sectorsize * size; 495 list_add_tail(&sums->list, &tmplist); 496 } 497 path->slots[0]++; 498 } 499 ret = 0; 500 fail: 501 while (ret < 0 && !list_empty(&tmplist)) { 502 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list); 503 list_del(&sums->list); 504 kfree(sums); 505 } 506 list_splice_tail(&tmplist, list); 507 508 btrfs_free_path(path); 509 return ret; 510 } 511 512 /* 513 * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio 514 * @inode: Owner of the data inside the bio 515 * @bio: Contains the data to be checksummed 516 * @file_start: offset in file this bio begins to describe 517 * @contig: Boolean. If true/1 means all bio vecs in this bio are 518 * contiguous and they begin at @file_start in the file. False/0 519 * means this bio can contains potentially discontigous bio vecs 520 * so the logical offset of each should be calculated separately. 521 */ 522 blk_status_t btrfs_csum_one_bio(struct inode *inode, struct bio *bio, 523 u64 file_start, int contig) 524 { 525 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 526 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 527 struct btrfs_ordered_sum *sums; 528 struct btrfs_ordered_extent *ordered = NULL; 529 char *data; 530 struct bvec_iter iter; 531 struct bio_vec bvec; 532 int index; 533 int nr_sectors; 534 unsigned long total_bytes = 0; 535 unsigned long this_sum_bytes = 0; 536 int i; 537 u64 offset; 538 unsigned nofs_flag; 539 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 540 541 nofs_flag = memalloc_nofs_save(); 542 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size), 543 GFP_KERNEL); 544 memalloc_nofs_restore(nofs_flag); 545 546 if (!sums) 547 return BLK_STS_RESOURCE; 548 549 sums->len = bio->bi_iter.bi_size; 550 INIT_LIST_HEAD(&sums->list); 551 552 if (contig) 553 offset = file_start; 554 else 555 offset = 0; /* shut up gcc */ 556 557 sums->bytenr = (u64)bio->bi_iter.bi_sector << 9; 558 index = 0; 559 560 shash->tfm = fs_info->csum_shash; 561 562 bio_for_each_segment(bvec, bio, iter) { 563 if (!contig) 564 offset = page_offset(bvec.bv_page) + bvec.bv_offset; 565 566 if (!ordered) { 567 ordered = btrfs_lookup_ordered_extent(inode, offset); 568 BUG_ON(!ordered); /* Logic error */ 569 } 570 571 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, 572 bvec.bv_len + fs_info->sectorsize 573 - 1); 574 575 for (i = 0; i < nr_sectors; i++) { 576 if (offset >= ordered->file_offset + ordered->num_bytes || 577 offset < ordered->file_offset) { 578 unsigned long bytes_left; 579 580 sums->len = this_sum_bytes; 581 this_sum_bytes = 0; 582 btrfs_add_ordered_sum(ordered, sums); 583 btrfs_put_ordered_extent(ordered); 584 585 bytes_left = bio->bi_iter.bi_size - total_bytes; 586 587 nofs_flag = memalloc_nofs_save(); 588 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, 589 bytes_left), GFP_KERNEL); 590 memalloc_nofs_restore(nofs_flag); 591 BUG_ON(!sums); /* -ENOMEM */ 592 sums->len = bytes_left; 593 ordered = btrfs_lookup_ordered_extent(inode, 594 offset); 595 ASSERT(ordered); /* Logic error */ 596 sums->bytenr = ((u64)bio->bi_iter.bi_sector << 9) 597 + total_bytes; 598 index = 0; 599 } 600 601 crypto_shash_init(shash); 602 data = kmap_atomic(bvec.bv_page); 603 crypto_shash_update(shash, data + bvec.bv_offset 604 + (i * fs_info->sectorsize), 605 fs_info->sectorsize); 606 kunmap_atomic(data); 607 crypto_shash_final(shash, (char *)(sums->sums + index)); 608 index += csum_size; 609 offset += fs_info->sectorsize; 610 this_sum_bytes += fs_info->sectorsize; 611 total_bytes += fs_info->sectorsize; 612 } 613 614 } 615 this_sum_bytes = 0; 616 btrfs_add_ordered_sum(ordered, sums); 617 btrfs_put_ordered_extent(ordered); 618 return 0; 619 } 620 621 /* 622 * helper function for csum removal, this expects the 623 * key to describe the csum pointed to by the path, and it expects 624 * the csum to overlap the range [bytenr, len] 625 * 626 * The csum should not be entirely contained in the range and the 627 * range should not be entirely contained in the csum. 628 * 629 * This calls btrfs_truncate_item with the correct args based on the 630 * overlap, and fixes up the key as required. 631 */ 632 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info, 633 struct btrfs_path *path, 634 struct btrfs_key *key, 635 u64 bytenr, u64 len) 636 { 637 struct extent_buffer *leaf; 638 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 639 u64 csum_end; 640 u64 end_byte = bytenr + len; 641 u32 blocksize_bits = fs_info->sb->s_blocksize_bits; 642 643 leaf = path->nodes[0]; 644 csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size; 645 csum_end <<= fs_info->sb->s_blocksize_bits; 646 csum_end += key->offset; 647 648 if (key->offset < bytenr && csum_end <= end_byte) { 649 /* 650 * [ bytenr - len ] 651 * [ ] 652 * [csum ] 653 * A simple truncate off the end of the item 654 */ 655 u32 new_size = (bytenr - key->offset) >> blocksize_bits; 656 new_size *= csum_size; 657 btrfs_truncate_item(path, new_size, 1); 658 } else if (key->offset >= bytenr && csum_end > end_byte && 659 end_byte > key->offset) { 660 /* 661 * [ bytenr - len ] 662 * [ ] 663 * [csum ] 664 * we need to truncate from the beginning of the csum 665 */ 666 u32 new_size = (csum_end - end_byte) >> blocksize_bits; 667 new_size *= csum_size; 668 669 btrfs_truncate_item(path, new_size, 0); 670 671 key->offset = end_byte; 672 btrfs_set_item_key_safe(fs_info, path, key); 673 } else { 674 BUG(); 675 } 676 } 677 678 /* 679 * deletes the csum items from the csum tree for a given 680 * range of bytes. 681 */ 682 int btrfs_del_csums(struct btrfs_trans_handle *trans, 683 struct btrfs_root *root, u64 bytenr, u64 len) 684 { 685 struct btrfs_fs_info *fs_info = trans->fs_info; 686 struct btrfs_path *path; 687 struct btrfs_key key; 688 u64 end_byte = bytenr + len; 689 u64 csum_end; 690 struct extent_buffer *leaf; 691 int ret; 692 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 693 int blocksize_bits = fs_info->sb->s_blocksize_bits; 694 695 ASSERT(root == fs_info->csum_root || 696 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 697 698 path = btrfs_alloc_path(); 699 if (!path) 700 return -ENOMEM; 701 702 while (1) { 703 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 704 key.offset = end_byte - 1; 705 key.type = BTRFS_EXTENT_CSUM_KEY; 706 707 path->leave_spinning = 1; 708 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 709 if (ret > 0) { 710 if (path->slots[0] == 0) 711 break; 712 path->slots[0]--; 713 } else if (ret < 0) { 714 break; 715 } 716 717 leaf = path->nodes[0]; 718 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 719 720 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 721 key.type != BTRFS_EXTENT_CSUM_KEY) { 722 break; 723 } 724 725 if (key.offset >= end_byte) 726 break; 727 728 csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size; 729 csum_end <<= blocksize_bits; 730 csum_end += key.offset; 731 732 /* this csum ends before we start, we're done */ 733 if (csum_end <= bytenr) 734 break; 735 736 /* delete the entire item, it is inside our range */ 737 if (key.offset >= bytenr && csum_end <= end_byte) { 738 int del_nr = 1; 739 740 /* 741 * Check how many csum items preceding this one in this 742 * leaf correspond to our range and then delete them all 743 * at once. 744 */ 745 if (key.offset > bytenr && path->slots[0] > 0) { 746 int slot = path->slots[0] - 1; 747 748 while (slot >= 0) { 749 struct btrfs_key pk; 750 751 btrfs_item_key_to_cpu(leaf, &pk, slot); 752 if (pk.offset < bytenr || 753 pk.type != BTRFS_EXTENT_CSUM_KEY || 754 pk.objectid != 755 BTRFS_EXTENT_CSUM_OBJECTID) 756 break; 757 path->slots[0] = slot; 758 del_nr++; 759 key.offset = pk.offset; 760 slot--; 761 } 762 } 763 ret = btrfs_del_items(trans, root, path, 764 path->slots[0], del_nr); 765 if (ret) 766 goto out; 767 if (key.offset == bytenr) 768 break; 769 } else if (key.offset < bytenr && csum_end > end_byte) { 770 unsigned long offset; 771 unsigned long shift_len; 772 unsigned long item_offset; 773 /* 774 * [ bytenr - len ] 775 * [csum ] 776 * 777 * Our bytes are in the middle of the csum, 778 * we need to split this item and insert a new one. 779 * 780 * But we can't drop the path because the 781 * csum could change, get removed, extended etc. 782 * 783 * The trick here is the max size of a csum item leaves 784 * enough room in the tree block for a single 785 * item header. So, we split the item in place, 786 * adding a new header pointing to the existing 787 * bytes. Then we loop around again and we have 788 * a nicely formed csum item that we can neatly 789 * truncate. 790 */ 791 offset = (bytenr - key.offset) >> blocksize_bits; 792 offset *= csum_size; 793 794 shift_len = (len >> blocksize_bits) * csum_size; 795 796 item_offset = btrfs_item_ptr_offset(leaf, 797 path->slots[0]); 798 799 memzero_extent_buffer(leaf, item_offset + offset, 800 shift_len); 801 key.offset = bytenr; 802 803 /* 804 * btrfs_split_item returns -EAGAIN when the 805 * item changed size or key 806 */ 807 ret = btrfs_split_item(trans, root, path, &key, offset); 808 if (ret && ret != -EAGAIN) { 809 btrfs_abort_transaction(trans, ret); 810 goto out; 811 } 812 813 key.offset = end_byte - 1; 814 } else { 815 truncate_one_csum(fs_info, path, &key, bytenr, len); 816 if (key.offset < bytenr) 817 break; 818 } 819 btrfs_release_path(path); 820 } 821 ret = 0; 822 out: 823 btrfs_free_path(path); 824 return ret; 825 } 826 827 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 828 struct btrfs_root *root, 829 struct btrfs_ordered_sum *sums) 830 { 831 struct btrfs_fs_info *fs_info = root->fs_info; 832 struct btrfs_key file_key; 833 struct btrfs_key found_key; 834 struct btrfs_path *path; 835 struct btrfs_csum_item *item; 836 struct btrfs_csum_item *item_end; 837 struct extent_buffer *leaf = NULL; 838 u64 next_offset; 839 u64 total_bytes = 0; 840 u64 csum_offset; 841 u64 bytenr; 842 u32 nritems; 843 u32 ins_size; 844 int index = 0; 845 int found_next; 846 int ret; 847 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 848 849 path = btrfs_alloc_path(); 850 if (!path) 851 return -ENOMEM; 852 again: 853 next_offset = (u64)-1; 854 found_next = 0; 855 bytenr = sums->bytenr + total_bytes; 856 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 857 file_key.offset = bytenr; 858 file_key.type = BTRFS_EXTENT_CSUM_KEY; 859 860 item = btrfs_lookup_csum(trans, root, path, bytenr, 1); 861 if (!IS_ERR(item)) { 862 ret = 0; 863 leaf = path->nodes[0]; 864 item_end = btrfs_item_ptr(leaf, path->slots[0], 865 struct btrfs_csum_item); 866 item_end = (struct btrfs_csum_item *)((char *)item_end + 867 btrfs_item_size_nr(leaf, path->slots[0])); 868 goto found; 869 } 870 ret = PTR_ERR(item); 871 if (ret != -EFBIG && ret != -ENOENT) 872 goto fail_unlock; 873 874 if (ret == -EFBIG) { 875 u32 item_size; 876 /* we found one, but it isn't big enough yet */ 877 leaf = path->nodes[0]; 878 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 879 if ((item_size / csum_size) >= 880 MAX_CSUM_ITEMS(fs_info, csum_size)) { 881 /* already at max size, make a new one */ 882 goto insert; 883 } 884 } else { 885 int slot = path->slots[0] + 1; 886 /* we didn't find a csum item, insert one */ 887 nritems = btrfs_header_nritems(path->nodes[0]); 888 if (!nritems || (path->slots[0] >= nritems - 1)) { 889 ret = btrfs_next_leaf(root, path); 890 if (ret == 1) 891 found_next = 1; 892 if (ret != 0) 893 goto insert; 894 slot = path->slots[0]; 895 } 896 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot); 897 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 898 found_key.type != BTRFS_EXTENT_CSUM_KEY) { 899 found_next = 1; 900 goto insert; 901 } 902 next_offset = found_key.offset; 903 found_next = 1; 904 goto insert; 905 } 906 907 /* 908 * at this point, we know the tree has an item, but it isn't big 909 * enough yet to put our csum in. Grow it 910 */ 911 btrfs_release_path(path); 912 ret = btrfs_search_slot(trans, root, &file_key, path, 913 csum_size, 1); 914 if (ret < 0) 915 goto fail_unlock; 916 917 if (ret > 0) { 918 if (path->slots[0] == 0) 919 goto insert; 920 path->slots[0]--; 921 } 922 923 leaf = path->nodes[0]; 924 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 925 csum_offset = (bytenr - found_key.offset) >> 926 fs_info->sb->s_blocksize_bits; 927 928 if (found_key.type != BTRFS_EXTENT_CSUM_KEY || 929 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 930 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) { 931 goto insert; 932 } 933 934 if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) / 935 csum_size) { 936 int extend_nr; 937 u64 tmp; 938 u32 diff; 939 u32 free_space; 940 941 if (btrfs_leaf_free_space(leaf) < 942 sizeof(struct btrfs_item) + csum_size * 2) 943 goto insert; 944 945 free_space = btrfs_leaf_free_space(leaf) - 946 sizeof(struct btrfs_item) - csum_size; 947 tmp = sums->len - total_bytes; 948 tmp >>= fs_info->sb->s_blocksize_bits; 949 WARN_ON(tmp < 1); 950 951 extend_nr = max_t(int, 1, (int)tmp); 952 diff = (csum_offset + extend_nr) * csum_size; 953 diff = min(diff, 954 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size); 955 956 diff = diff - btrfs_item_size_nr(leaf, path->slots[0]); 957 diff = min(free_space, diff); 958 diff /= csum_size; 959 diff *= csum_size; 960 961 btrfs_extend_item(path, diff); 962 ret = 0; 963 goto csum; 964 } 965 966 insert: 967 btrfs_release_path(path); 968 csum_offset = 0; 969 if (found_next) { 970 u64 tmp; 971 972 tmp = sums->len - total_bytes; 973 tmp >>= fs_info->sb->s_blocksize_bits; 974 tmp = min(tmp, (next_offset - file_key.offset) >> 975 fs_info->sb->s_blocksize_bits); 976 977 tmp = max_t(u64, 1, tmp); 978 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size)); 979 ins_size = csum_size * tmp; 980 } else { 981 ins_size = csum_size; 982 } 983 path->leave_spinning = 1; 984 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 985 ins_size); 986 path->leave_spinning = 0; 987 if (ret < 0) 988 goto fail_unlock; 989 if (WARN_ON(ret != 0)) 990 goto fail_unlock; 991 leaf = path->nodes[0]; 992 csum: 993 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 994 item_end = (struct btrfs_csum_item *)((unsigned char *)item + 995 btrfs_item_size_nr(leaf, path->slots[0])); 996 item = (struct btrfs_csum_item *)((unsigned char *)item + 997 csum_offset * csum_size); 998 found: 999 ins_size = (u32)(sums->len - total_bytes) >> 1000 fs_info->sb->s_blocksize_bits; 1001 ins_size *= csum_size; 1002 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item, 1003 ins_size); 1004 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item, 1005 ins_size); 1006 1007 index += ins_size; 1008 ins_size /= csum_size; 1009 total_bytes += ins_size * fs_info->sectorsize; 1010 1011 btrfs_mark_buffer_dirty(path->nodes[0]); 1012 if (total_bytes < sums->len) { 1013 btrfs_release_path(path); 1014 cond_resched(); 1015 goto again; 1016 } 1017 out: 1018 btrfs_free_path(path); 1019 return ret; 1020 1021 fail_unlock: 1022 goto out; 1023 } 1024 1025 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 1026 const struct btrfs_path *path, 1027 struct btrfs_file_extent_item *fi, 1028 const bool new_inline, 1029 struct extent_map *em) 1030 { 1031 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1032 struct btrfs_root *root = inode->root; 1033 struct extent_buffer *leaf = path->nodes[0]; 1034 const int slot = path->slots[0]; 1035 struct btrfs_key key; 1036 u64 extent_start, extent_end; 1037 u64 bytenr; 1038 u8 type = btrfs_file_extent_type(leaf, fi); 1039 int compress_type = btrfs_file_extent_compression(leaf, fi); 1040 1041 btrfs_item_key_to_cpu(leaf, &key, slot); 1042 extent_start = key.offset; 1043 extent_end = btrfs_file_extent_end(path); 1044 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1045 if (type == BTRFS_FILE_EXTENT_REG || 1046 type == BTRFS_FILE_EXTENT_PREALLOC) { 1047 em->start = extent_start; 1048 em->len = extent_end - extent_start; 1049 em->orig_start = extent_start - 1050 btrfs_file_extent_offset(leaf, fi); 1051 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 1052 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1053 if (bytenr == 0) { 1054 em->block_start = EXTENT_MAP_HOLE; 1055 return; 1056 } 1057 if (compress_type != BTRFS_COMPRESS_NONE) { 1058 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1059 em->compress_type = compress_type; 1060 em->block_start = bytenr; 1061 em->block_len = em->orig_block_len; 1062 } else { 1063 bytenr += btrfs_file_extent_offset(leaf, fi); 1064 em->block_start = bytenr; 1065 em->block_len = em->len; 1066 if (type == BTRFS_FILE_EXTENT_PREALLOC) 1067 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 1068 } 1069 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 1070 em->block_start = EXTENT_MAP_INLINE; 1071 em->start = extent_start; 1072 em->len = extent_end - extent_start; 1073 /* 1074 * Initialize orig_start and block_len with the same values 1075 * as in inode.c:btrfs_get_extent(). 1076 */ 1077 em->orig_start = EXTENT_MAP_HOLE; 1078 em->block_len = (u64)-1; 1079 if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) { 1080 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1081 em->compress_type = compress_type; 1082 } 1083 } else { 1084 btrfs_err(fs_info, 1085 "unknown file extent item type %d, inode %llu, offset %llu, " 1086 "root %llu", type, btrfs_ino(inode), extent_start, 1087 root->root_key.objectid); 1088 } 1089 } 1090 1091 /* 1092 * Returns the end offset (non inclusive) of the file extent item the given path 1093 * points to. If it points to an inline extent, the returned offset is rounded 1094 * up to the sector size. 1095 */ 1096 u64 btrfs_file_extent_end(const struct btrfs_path *path) 1097 { 1098 const struct extent_buffer *leaf = path->nodes[0]; 1099 const int slot = path->slots[0]; 1100 struct btrfs_file_extent_item *fi; 1101 struct btrfs_key key; 1102 u64 end; 1103 1104 btrfs_item_key_to_cpu(leaf, &key, slot); 1105 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 1106 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1107 1108 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 1109 end = btrfs_file_extent_ram_bytes(leaf, fi); 1110 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize); 1111 } else { 1112 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1113 } 1114 1115 return end; 1116 } 1117