xref: /linux/fs/btrfs/file-item.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "messages.h"
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "bio.h"
17 #include "compression.h"
18 #include "fs.h"
19 #include "accessors.h"
20 #include "file-item.h"
21 
22 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
23 				   sizeof(struct btrfs_item) * 2) / \
24 				  size) - 1))
25 
26 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
27 				       PAGE_SIZE))
28 
29 /*
30  * Set inode's size according to filesystem options.
31  *
32  * @inode:      inode we want to update the disk_i_size for
33  * @new_i_size: i_size we want to set to, 0 if we use i_size
34  *
35  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
36  * returns as it is perfectly fine with a file that has holes without hole file
37  * extent items.
38  *
39  * However without NO_HOLES we need to only return the area that is contiguous
40  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
41  * to an extent that has a gap in between.
42  *
43  * Finally new_i_size should only be set in the case of truncate where we're not
44  * ready to use i_size_read() as the limiter yet.
45  */
46 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
47 {
48 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
49 	u64 start, end, i_size;
50 	int ret;
51 
52 	spin_lock(&inode->lock);
53 	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
54 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
55 		inode->disk_i_size = i_size;
56 		goto out_unlock;
57 	}
58 
59 	ret = find_contiguous_extent_bit(inode->file_extent_tree, 0, &start,
60 					 &end, EXTENT_DIRTY);
61 	if (!ret && start == 0)
62 		i_size = min(i_size, end + 1);
63 	else
64 		i_size = 0;
65 	inode->disk_i_size = i_size;
66 out_unlock:
67 	spin_unlock(&inode->lock);
68 }
69 
70 /*
71  * Mark range within a file as having a new extent inserted.
72  *
73  * @inode: inode being modified
74  * @start: start file offset of the file extent we've inserted
75  * @len:   logical length of the file extent item
76  *
77  * Call when we are inserting a new file extent where there was none before.
78  * Does not need to call this in the case where we're replacing an existing file
79  * extent, however if not sure it's fine to call this multiple times.
80  *
81  * The start and len must match the file extent item, so thus must be sectorsize
82  * aligned.
83  */
84 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
85 				      u64 len)
86 {
87 	if (len == 0)
88 		return 0;
89 
90 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
91 
92 	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
93 		return 0;
94 	return set_extent_bit(inode->file_extent_tree, start, start + len - 1,
95 			      EXTENT_DIRTY, NULL);
96 }
97 
98 /*
99  * Mark an inode range as not having a backing extent.
100  *
101  * @inode: inode being modified
102  * @start: start file offset of the file extent we've inserted
103  * @len:   logical length of the file extent item
104  *
105  * Called when we drop a file extent, for example when we truncate.  Doesn't
106  * need to be called for cases where we're replacing a file extent, like when
107  * we've COWed a file extent.
108  *
109  * The start and len must match the file extent item, so thus must be sectorsize
110  * aligned.
111  */
112 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
113 					u64 len)
114 {
115 	if (len == 0)
116 		return 0;
117 
118 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
119 	       len == (u64)-1);
120 
121 	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
122 		return 0;
123 	return clear_extent_bit(inode->file_extent_tree, start,
124 				start + len - 1, EXTENT_DIRTY, NULL);
125 }
126 
127 static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
128 {
129 	ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
130 
131 	return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
132 }
133 
134 static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
135 {
136 	ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
137 
138 	return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
139 }
140 
141 static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
142 {
143 	u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
144 				       fs_info->csum_size);
145 
146 	return csum_size_to_bytes(fs_info, max_csum_size);
147 }
148 
149 /*
150  * Calculate the total size needed to allocate for an ordered sum structure
151  * spanning @bytes in the file.
152  */
153 static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
154 {
155 	return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
156 }
157 
158 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
159 			     struct btrfs_root *root,
160 			     u64 objectid, u64 pos, u64 num_bytes)
161 {
162 	int ret = 0;
163 	struct btrfs_file_extent_item *item;
164 	struct btrfs_key file_key;
165 	struct btrfs_path *path;
166 	struct extent_buffer *leaf;
167 
168 	path = btrfs_alloc_path();
169 	if (!path)
170 		return -ENOMEM;
171 	file_key.objectid = objectid;
172 	file_key.offset = pos;
173 	file_key.type = BTRFS_EXTENT_DATA_KEY;
174 
175 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
176 				      sizeof(*item));
177 	if (ret < 0)
178 		goto out;
179 	leaf = path->nodes[0];
180 	item = btrfs_item_ptr(leaf, path->slots[0],
181 			      struct btrfs_file_extent_item);
182 	btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
183 	btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
184 	btrfs_set_file_extent_offset(leaf, item, 0);
185 	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
186 	btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
187 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
188 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
189 	btrfs_set_file_extent_compression(leaf, item, 0);
190 	btrfs_set_file_extent_encryption(leaf, item, 0);
191 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
192 
193 	btrfs_mark_buffer_dirty(trans, leaf);
194 out:
195 	btrfs_free_path(path);
196 	return ret;
197 }
198 
199 static struct btrfs_csum_item *
200 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
201 		  struct btrfs_root *root,
202 		  struct btrfs_path *path,
203 		  u64 bytenr, int cow)
204 {
205 	struct btrfs_fs_info *fs_info = root->fs_info;
206 	int ret;
207 	struct btrfs_key file_key;
208 	struct btrfs_key found_key;
209 	struct btrfs_csum_item *item;
210 	struct extent_buffer *leaf;
211 	u64 csum_offset = 0;
212 	const u32 csum_size = fs_info->csum_size;
213 	int csums_in_item;
214 
215 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
216 	file_key.offset = bytenr;
217 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
218 	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
219 	if (ret < 0)
220 		goto fail;
221 	leaf = path->nodes[0];
222 	if (ret > 0) {
223 		ret = 1;
224 		if (path->slots[0] == 0)
225 			goto fail;
226 		path->slots[0]--;
227 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
228 		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
229 			goto fail;
230 
231 		csum_offset = (bytenr - found_key.offset) >>
232 				fs_info->sectorsize_bits;
233 		csums_in_item = btrfs_item_size(leaf, path->slots[0]);
234 		csums_in_item /= csum_size;
235 
236 		if (csum_offset == csums_in_item) {
237 			ret = -EFBIG;
238 			goto fail;
239 		} else if (csum_offset > csums_in_item) {
240 			goto fail;
241 		}
242 	}
243 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
244 	item = (struct btrfs_csum_item *)((unsigned char *)item +
245 					  csum_offset * csum_size);
246 	return item;
247 fail:
248 	if (ret > 0)
249 		ret = -ENOENT;
250 	return ERR_PTR(ret);
251 }
252 
253 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
254 			     struct btrfs_root *root,
255 			     struct btrfs_path *path, u64 objectid,
256 			     u64 offset, int mod)
257 {
258 	struct btrfs_key file_key;
259 	int ins_len = mod < 0 ? -1 : 0;
260 	int cow = mod != 0;
261 
262 	file_key.objectid = objectid;
263 	file_key.offset = offset;
264 	file_key.type = BTRFS_EXTENT_DATA_KEY;
265 
266 	return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
267 }
268 
269 /*
270  * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
271  * store the result to @dst.
272  *
273  * Return >0 for the number of sectors we found.
274  * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
275  * for it. Caller may want to try next sector until one range is hit.
276  * Return <0 for fatal error.
277  */
278 static int search_csum_tree(struct btrfs_fs_info *fs_info,
279 			    struct btrfs_path *path, u64 disk_bytenr,
280 			    u64 len, u8 *dst)
281 {
282 	struct btrfs_root *csum_root;
283 	struct btrfs_csum_item *item = NULL;
284 	struct btrfs_key key;
285 	const u32 sectorsize = fs_info->sectorsize;
286 	const u32 csum_size = fs_info->csum_size;
287 	u32 itemsize;
288 	int ret;
289 	u64 csum_start;
290 	u64 csum_len;
291 
292 	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
293 	       IS_ALIGNED(len, sectorsize));
294 
295 	/* Check if the current csum item covers disk_bytenr */
296 	if (path->nodes[0]) {
297 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
298 				      struct btrfs_csum_item);
299 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
300 		itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
301 
302 		csum_start = key.offset;
303 		csum_len = (itemsize / csum_size) * sectorsize;
304 
305 		if (in_range(disk_bytenr, csum_start, csum_len))
306 			goto found;
307 	}
308 
309 	/* Current item doesn't contain the desired range, search again */
310 	btrfs_release_path(path);
311 	csum_root = btrfs_csum_root(fs_info, disk_bytenr);
312 	item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
313 	if (IS_ERR(item)) {
314 		ret = PTR_ERR(item);
315 		goto out;
316 	}
317 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
318 	itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
319 
320 	csum_start = key.offset;
321 	csum_len = (itemsize / csum_size) * sectorsize;
322 	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
323 
324 found:
325 	ret = (min(csum_start + csum_len, disk_bytenr + len) -
326 		   disk_bytenr) >> fs_info->sectorsize_bits;
327 	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
328 			ret * csum_size);
329 out:
330 	if (ret == -ENOENT || ret == -EFBIG)
331 		ret = 0;
332 	return ret;
333 }
334 
335 /*
336  * Lookup the checksum for the read bio in csum tree.
337  *
338  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
339  */
340 blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
341 {
342 	struct btrfs_inode *inode = bbio->inode;
343 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
344 	struct bio *bio = &bbio->bio;
345 	struct btrfs_path *path;
346 	const u32 sectorsize = fs_info->sectorsize;
347 	const u32 csum_size = fs_info->csum_size;
348 	u32 orig_len = bio->bi_iter.bi_size;
349 	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
350 	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
351 	blk_status_t ret = BLK_STS_OK;
352 	u32 bio_offset = 0;
353 
354 	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
355 	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
356 		return BLK_STS_OK;
357 
358 	/*
359 	 * This function is only called for read bio.
360 	 *
361 	 * This means two things:
362 	 * - All our csums should only be in csum tree
363 	 *   No ordered extents csums, as ordered extents are only for write
364 	 *   path.
365 	 * - No need to bother any other info from bvec
366 	 *   Since we're looking up csums, the only important info is the
367 	 *   disk_bytenr and the length, which can be extracted from bi_iter
368 	 *   directly.
369 	 */
370 	ASSERT(bio_op(bio) == REQ_OP_READ);
371 	path = btrfs_alloc_path();
372 	if (!path)
373 		return BLK_STS_RESOURCE;
374 
375 	if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
376 		bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
377 		if (!bbio->csum) {
378 			btrfs_free_path(path);
379 			return BLK_STS_RESOURCE;
380 		}
381 	} else {
382 		bbio->csum = bbio->csum_inline;
383 	}
384 
385 	/*
386 	 * If requested number of sectors is larger than one leaf can contain,
387 	 * kick the readahead for csum tree.
388 	 */
389 	if (nblocks > fs_info->csums_per_leaf)
390 		path->reada = READA_FORWARD;
391 
392 	/*
393 	 * the free space stuff is only read when it hasn't been
394 	 * updated in the current transaction.  So, we can safely
395 	 * read from the commit root and sidestep a nasty deadlock
396 	 * between reading the free space cache and updating the csum tree.
397 	 */
398 	if (btrfs_is_free_space_inode(inode)) {
399 		path->search_commit_root = 1;
400 		path->skip_locking = 1;
401 	}
402 
403 	while (bio_offset < orig_len) {
404 		int count;
405 		u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
406 		u8 *csum_dst = bbio->csum +
407 			(bio_offset >> fs_info->sectorsize_bits) * csum_size;
408 
409 		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
410 					 orig_len - bio_offset, csum_dst);
411 		if (count < 0) {
412 			ret = errno_to_blk_status(count);
413 			if (bbio->csum != bbio->csum_inline)
414 				kfree(bbio->csum);
415 			bbio->csum = NULL;
416 			break;
417 		}
418 
419 		/*
420 		 * We didn't find a csum for this range.  We need to make sure
421 		 * we complain loudly about this, because we are not NODATASUM.
422 		 *
423 		 * However for the DATA_RELOC inode we could potentially be
424 		 * relocating data extents for a NODATASUM inode, so the inode
425 		 * itself won't be marked with NODATASUM, but the extent we're
426 		 * copying is in fact NODATASUM.  If we don't find a csum we
427 		 * assume this is the case.
428 		 */
429 		if (count == 0) {
430 			memset(csum_dst, 0, csum_size);
431 			count = 1;
432 
433 			if (btrfs_root_id(inode->root) == BTRFS_DATA_RELOC_TREE_OBJECTID) {
434 				u64 file_offset = bbio->file_offset + bio_offset;
435 
436 				set_extent_bit(&inode->io_tree, file_offset,
437 					       file_offset + sectorsize - 1,
438 					       EXTENT_NODATASUM, NULL);
439 			} else {
440 				btrfs_warn_rl(fs_info,
441 			"csum hole found for disk bytenr range [%llu, %llu)",
442 				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
443 			}
444 		}
445 		bio_offset += count * sectorsize;
446 	}
447 
448 	btrfs_free_path(path);
449 	return ret;
450 }
451 
452 /*
453  * Search for checksums for a given logical range.
454  *
455  * @root:		The root where to look for checksums.
456  * @start:		Logical address of target checksum range.
457  * @end:		End offset (inclusive) of the target checksum range.
458  * @list:		List for adding each checksum that was found.
459  *			Can be NULL in case the caller only wants to check if
460  *			there any checksums for the range.
461  * @nowait:		Indicate if the search must be non-blocking or not.
462  *
463  * Return < 0 on error, 0 if no checksums were found, or 1 if checksums were
464  * found.
465  */
466 int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
467 			    struct list_head *list, bool nowait)
468 {
469 	struct btrfs_fs_info *fs_info = root->fs_info;
470 	struct btrfs_key key;
471 	struct btrfs_path *path;
472 	struct extent_buffer *leaf;
473 	struct btrfs_ordered_sum *sums;
474 	struct btrfs_csum_item *item;
475 	int ret;
476 	bool found_csums = false;
477 
478 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
479 	       IS_ALIGNED(end + 1, fs_info->sectorsize));
480 
481 	path = btrfs_alloc_path();
482 	if (!path)
483 		return -ENOMEM;
484 
485 	path->nowait = nowait;
486 
487 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
488 	key.offset = start;
489 	key.type = BTRFS_EXTENT_CSUM_KEY;
490 
491 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
492 	if (ret < 0)
493 		goto out;
494 	if (ret > 0 && path->slots[0] > 0) {
495 		leaf = path->nodes[0];
496 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
497 
498 		/*
499 		 * There are two cases we can hit here for the previous csum
500 		 * item:
501 		 *
502 		 *		|<- search range ->|
503 		 *	|<- csum item ->|
504 		 *
505 		 * Or
506 		 *				|<- search range ->|
507 		 *	|<- csum item ->|
508 		 *
509 		 * Check if the previous csum item covers the leading part of
510 		 * the search range.  If so we have to start from previous csum
511 		 * item.
512 		 */
513 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
514 		    key.type == BTRFS_EXTENT_CSUM_KEY) {
515 			if (bytes_to_csum_size(fs_info, start - key.offset) <
516 			    btrfs_item_size(leaf, path->slots[0] - 1))
517 				path->slots[0]--;
518 		}
519 	}
520 
521 	while (start <= end) {
522 		u64 csum_end;
523 
524 		leaf = path->nodes[0];
525 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
526 			ret = btrfs_next_leaf(root, path);
527 			if (ret < 0)
528 				goto out;
529 			if (ret > 0)
530 				break;
531 			leaf = path->nodes[0];
532 		}
533 
534 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
535 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
536 		    key.type != BTRFS_EXTENT_CSUM_KEY ||
537 		    key.offset > end)
538 			break;
539 
540 		if (key.offset > start)
541 			start = key.offset;
542 
543 		csum_end = key.offset + csum_size_to_bytes(fs_info,
544 					btrfs_item_size(leaf, path->slots[0]));
545 		if (csum_end <= start) {
546 			path->slots[0]++;
547 			continue;
548 		}
549 
550 		found_csums = true;
551 		if (!list)
552 			goto out;
553 
554 		csum_end = min(csum_end, end + 1);
555 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
556 				      struct btrfs_csum_item);
557 		while (start < csum_end) {
558 			unsigned long offset;
559 			size_t size;
560 
561 			size = min_t(size_t, csum_end - start,
562 				     max_ordered_sum_bytes(fs_info));
563 			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
564 				       GFP_NOFS);
565 			if (!sums) {
566 				ret = -ENOMEM;
567 				goto out;
568 			}
569 
570 			sums->logical = start;
571 			sums->len = size;
572 
573 			offset = bytes_to_csum_size(fs_info, start - key.offset);
574 
575 			read_extent_buffer(path->nodes[0],
576 					   sums->sums,
577 					   ((unsigned long)item) + offset,
578 					   bytes_to_csum_size(fs_info, size));
579 
580 			start += size;
581 			list_add_tail(&sums->list, list);
582 		}
583 		path->slots[0]++;
584 	}
585 out:
586 	btrfs_free_path(path);
587 	if (ret < 0) {
588 		if (list) {
589 			struct btrfs_ordered_sum *tmp_sums;
590 
591 			list_for_each_entry_safe(sums, tmp_sums, list, list)
592 				kfree(sums);
593 		}
594 
595 		return ret;
596 	}
597 
598 	return found_csums ? 1 : 0;
599 }
600 
601 /*
602  * Do the same work as btrfs_lookup_csums_list(), the difference is in how
603  * we return the result.
604  *
605  * This version will set the corresponding bits in @csum_bitmap to represent
606  * that there is a csum found.
607  * Each bit represents a sector. Thus caller should ensure @csum_buf passed
608  * in is large enough to contain all csums.
609  */
610 int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path,
611 			      u64 start, u64 end, u8 *csum_buf,
612 			      unsigned long *csum_bitmap)
613 {
614 	struct btrfs_fs_info *fs_info = root->fs_info;
615 	struct btrfs_key key;
616 	struct extent_buffer *leaf;
617 	struct btrfs_csum_item *item;
618 	const u64 orig_start = start;
619 	bool free_path = false;
620 	int ret;
621 
622 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
623 	       IS_ALIGNED(end + 1, fs_info->sectorsize));
624 
625 	if (!path) {
626 		path = btrfs_alloc_path();
627 		if (!path)
628 			return -ENOMEM;
629 		free_path = true;
630 	}
631 
632 	/* Check if we can reuse the previous path. */
633 	if (path->nodes[0]) {
634 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
635 
636 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
637 		    key.type == BTRFS_EXTENT_CSUM_KEY &&
638 		    key.offset <= start)
639 			goto search_forward;
640 		btrfs_release_path(path);
641 	}
642 
643 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
644 	key.type = BTRFS_EXTENT_CSUM_KEY;
645 	key.offset = start;
646 
647 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
648 	if (ret < 0)
649 		goto fail;
650 	if (ret > 0 && path->slots[0] > 0) {
651 		leaf = path->nodes[0];
652 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
653 
654 		/*
655 		 * There are two cases we can hit here for the previous csum
656 		 * item:
657 		 *
658 		 *		|<- search range ->|
659 		 *	|<- csum item ->|
660 		 *
661 		 * Or
662 		 *				|<- search range ->|
663 		 *	|<- csum item ->|
664 		 *
665 		 * Check if the previous csum item covers the leading part of
666 		 * the search range.  If so we have to start from previous csum
667 		 * item.
668 		 */
669 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
670 		    key.type == BTRFS_EXTENT_CSUM_KEY) {
671 			if (bytes_to_csum_size(fs_info, start - key.offset) <
672 			    btrfs_item_size(leaf, path->slots[0] - 1))
673 				path->slots[0]--;
674 		}
675 	}
676 
677 search_forward:
678 	while (start <= end) {
679 		u64 csum_end;
680 
681 		leaf = path->nodes[0];
682 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
683 			ret = btrfs_next_leaf(root, path);
684 			if (ret < 0)
685 				goto fail;
686 			if (ret > 0)
687 				break;
688 			leaf = path->nodes[0];
689 		}
690 
691 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
692 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
693 		    key.type != BTRFS_EXTENT_CSUM_KEY ||
694 		    key.offset > end)
695 			break;
696 
697 		if (key.offset > start)
698 			start = key.offset;
699 
700 		csum_end = key.offset + csum_size_to_bytes(fs_info,
701 					btrfs_item_size(leaf, path->slots[0]));
702 		if (csum_end <= start) {
703 			path->slots[0]++;
704 			continue;
705 		}
706 
707 		csum_end = min(csum_end, end + 1);
708 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
709 				      struct btrfs_csum_item);
710 		while (start < csum_end) {
711 			unsigned long offset;
712 			size_t size;
713 			u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
714 						start - orig_start);
715 
716 			size = min_t(size_t, csum_end - start, end + 1 - start);
717 
718 			offset = bytes_to_csum_size(fs_info, start - key.offset);
719 
720 			read_extent_buffer(path->nodes[0], csum_dest,
721 					   ((unsigned long)item) + offset,
722 					   bytes_to_csum_size(fs_info, size));
723 
724 			bitmap_set(csum_bitmap,
725 				(start - orig_start) >> fs_info->sectorsize_bits,
726 				size >> fs_info->sectorsize_bits);
727 
728 			start += size;
729 		}
730 		path->slots[0]++;
731 	}
732 	ret = 0;
733 fail:
734 	if (free_path)
735 		btrfs_free_path(path);
736 	return ret;
737 }
738 
739 /*
740  * Calculate checksums of the data contained inside a bio.
741  */
742 blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
743 {
744 	struct btrfs_ordered_extent *ordered = bbio->ordered;
745 	struct btrfs_inode *inode = bbio->inode;
746 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
747 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
748 	struct bio *bio = &bbio->bio;
749 	struct btrfs_ordered_sum *sums;
750 	char *data;
751 	struct bvec_iter iter;
752 	struct bio_vec bvec;
753 	int index;
754 	unsigned int blockcount;
755 	int i;
756 	unsigned nofs_flag;
757 
758 	nofs_flag = memalloc_nofs_save();
759 	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
760 		       GFP_KERNEL);
761 	memalloc_nofs_restore(nofs_flag);
762 
763 	if (!sums)
764 		return BLK_STS_RESOURCE;
765 
766 	sums->len = bio->bi_iter.bi_size;
767 	INIT_LIST_HEAD(&sums->list);
768 
769 	sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
770 	index = 0;
771 
772 	shash->tfm = fs_info->csum_shash;
773 
774 	bio_for_each_segment(bvec, bio, iter) {
775 		blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
776 						 bvec.bv_len + fs_info->sectorsize
777 						 - 1);
778 
779 		for (i = 0; i < blockcount; i++) {
780 			data = bvec_kmap_local(&bvec);
781 			crypto_shash_digest(shash,
782 					    data + (i * fs_info->sectorsize),
783 					    fs_info->sectorsize,
784 					    sums->sums + index);
785 			kunmap_local(data);
786 			index += fs_info->csum_size;
787 		}
788 
789 	}
790 
791 	bbio->sums = sums;
792 	btrfs_add_ordered_sum(ordered, sums);
793 	return 0;
794 }
795 
796 /*
797  * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to
798  * record the updated logical address on Zone Append completion.
799  * Allocate just the structure with an empty sums array here for that case.
800  */
801 blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio)
802 {
803 	bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS);
804 	if (!bbio->sums)
805 		return BLK_STS_RESOURCE;
806 	bbio->sums->len = bbio->bio.bi_iter.bi_size;
807 	bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
808 	btrfs_add_ordered_sum(bbio->ordered, bbio->sums);
809 	return 0;
810 }
811 
812 /*
813  * Remove one checksum overlapping a range.
814  *
815  * This expects the key to describe the csum pointed to by the path, and it
816  * expects the csum to overlap the range [bytenr, len]
817  *
818  * The csum should not be entirely contained in the range and the range should
819  * not be entirely contained in the csum.
820  *
821  * This calls btrfs_truncate_item with the correct args based on the overlap,
822  * and fixes up the key as required.
823  */
824 static noinline void truncate_one_csum(struct btrfs_trans_handle *trans,
825 				       struct btrfs_path *path,
826 				       struct btrfs_key *key,
827 				       u64 bytenr, u64 len)
828 {
829 	struct btrfs_fs_info *fs_info = trans->fs_info;
830 	struct extent_buffer *leaf;
831 	const u32 csum_size = fs_info->csum_size;
832 	u64 csum_end;
833 	u64 end_byte = bytenr + len;
834 	u32 blocksize_bits = fs_info->sectorsize_bits;
835 
836 	leaf = path->nodes[0];
837 	csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
838 	csum_end <<= blocksize_bits;
839 	csum_end += key->offset;
840 
841 	if (key->offset < bytenr && csum_end <= end_byte) {
842 		/*
843 		 *         [ bytenr - len ]
844 		 *         [   ]
845 		 *   [csum     ]
846 		 *   A simple truncate off the end of the item
847 		 */
848 		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
849 		new_size *= csum_size;
850 		btrfs_truncate_item(trans, path, new_size, 1);
851 	} else if (key->offset >= bytenr && csum_end > end_byte &&
852 		   end_byte > key->offset) {
853 		/*
854 		 *         [ bytenr - len ]
855 		 *                 [ ]
856 		 *                 [csum     ]
857 		 * we need to truncate from the beginning of the csum
858 		 */
859 		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
860 		new_size *= csum_size;
861 
862 		btrfs_truncate_item(trans, path, new_size, 0);
863 
864 		key->offset = end_byte;
865 		btrfs_set_item_key_safe(trans, path, key);
866 	} else {
867 		BUG();
868 	}
869 }
870 
871 /*
872  * Delete the csum items from the csum tree for a given range of bytes.
873  */
874 int btrfs_del_csums(struct btrfs_trans_handle *trans,
875 		    struct btrfs_root *root, u64 bytenr, u64 len)
876 {
877 	struct btrfs_fs_info *fs_info = trans->fs_info;
878 	struct btrfs_path *path;
879 	struct btrfs_key key;
880 	u64 end_byte = bytenr + len;
881 	u64 csum_end;
882 	struct extent_buffer *leaf;
883 	int ret = 0;
884 	const u32 csum_size = fs_info->csum_size;
885 	u32 blocksize_bits = fs_info->sectorsize_bits;
886 
887 	ASSERT(btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID ||
888 	       btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
889 
890 	path = btrfs_alloc_path();
891 	if (!path)
892 		return -ENOMEM;
893 
894 	while (1) {
895 		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
896 		key.offset = end_byte - 1;
897 		key.type = BTRFS_EXTENT_CSUM_KEY;
898 
899 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
900 		if (ret > 0) {
901 			ret = 0;
902 			if (path->slots[0] == 0)
903 				break;
904 			path->slots[0]--;
905 		} else if (ret < 0) {
906 			break;
907 		}
908 
909 		leaf = path->nodes[0];
910 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
911 
912 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
913 		    key.type != BTRFS_EXTENT_CSUM_KEY) {
914 			break;
915 		}
916 
917 		if (key.offset >= end_byte)
918 			break;
919 
920 		csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
921 		csum_end <<= blocksize_bits;
922 		csum_end += key.offset;
923 
924 		/* this csum ends before we start, we're done */
925 		if (csum_end <= bytenr)
926 			break;
927 
928 		/* delete the entire item, it is inside our range */
929 		if (key.offset >= bytenr && csum_end <= end_byte) {
930 			int del_nr = 1;
931 
932 			/*
933 			 * Check how many csum items preceding this one in this
934 			 * leaf correspond to our range and then delete them all
935 			 * at once.
936 			 */
937 			if (key.offset > bytenr && path->slots[0] > 0) {
938 				int slot = path->slots[0] - 1;
939 
940 				while (slot >= 0) {
941 					struct btrfs_key pk;
942 
943 					btrfs_item_key_to_cpu(leaf, &pk, slot);
944 					if (pk.offset < bytenr ||
945 					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
946 					    pk.objectid !=
947 					    BTRFS_EXTENT_CSUM_OBJECTID)
948 						break;
949 					path->slots[0] = slot;
950 					del_nr++;
951 					key.offset = pk.offset;
952 					slot--;
953 				}
954 			}
955 			ret = btrfs_del_items(trans, root, path,
956 					      path->slots[0], del_nr);
957 			if (ret)
958 				break;
959 			if (key.offset == bytenr)
960 				break;
961 		} else if (key.offset < bytenr && csum_end > end_byte) {
962 			unsigned long offset;
963 			unsigned long shift_len;
964 			unsigned long item_offset;
965 			/*
966 			 *        [ bytenr - len ]
967 			 *     [csum                ]
968 			 *
969 			 * Our bytes are in the middle of the csum,
970 			 * we need to split this item and insert a new one.
971 			 *
972 			 * But we can't drop the path because the
973 			 * csum could change, get removed, extended etc.
974 			 *
975 			 * The trick here is the max size of a csum item leaves
976 			 * enough room in the tree block for a single
977 			 * item header.  So, we split the item in place,
978 			 * adding a new header pointing to the existing
979 			 * bytes.  Then we loop around again and we have
980 			 * a nicely formed csum item that we can neatly
981 			 * truncate.
982 			 */
983 			offset = (bytenr - key.offset) >> blocksize_bits;
984 			offset *= csum_size;
985 
986 			shift_len = (len >> blocksize_bits) * csum_size;
987 
988 			item_offset = btrfs_item_ptr_offset(leaf,
989 							    path->slots[0]);
990 
991 			memzero_extent_buffer(leaf, item_offset + offset,
992 					     shift_len);
993 			key.offset = bytenr;
994 
995 			/*
996 			 * btrfs_split_item returns -EAGAIN when the
997 			 * item changed size or key
998 			 */
999 			ret = btrfs_split_item(trans, root, path, &key, offset);
1000 			if (ret && ret != -EAGAIN) {
1001 				btrfs_abort_transaction(trans, ret);
1002 				break;
1003 			}
1004 			ret = 0;
1005 
1006 			key.offset = end_byte - 1;
1007 		} else {
1008 			truncate_one_csum(trans, path, &key, bytenr, len);
1009 			if (key.offset < bytenr)
1010 				break;
1011 		}
1012 		btrfs_release_path(path);
1013 	}
1014 	btrfs_free_path(path);
1015 	return ret;
1016 }
1017 
1018 static int find_next_csum_offset(struct btrfs_root *root,
1019 				 struct btrfs_path *path,
1020 				 u64 *next_offset)
1021 {
1022 	const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1023 	struct btrfs_key found_key;
1024 	int slot = path->slots[0] + 1;
1025 	int ret;
1026 
1027 	if (nritems == 0 || slot >= nritems) {
1028 		ret = btrfs_next_leaf(root, path);
1029 		if (ret < 0) {
1030 			return ret;
1031 		} else if (ret > 0) {
1032 			*next_offset = (u64)-1;
1033 			return 0;
1034 		}
1035 		slot = path->slots[0];
1036 	}
1037 
1038 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1039 
1040 	if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1041 	    found_key.type != BTRFS_EXTENT_CSUM_KEY)
1042 		*next_offset = (u64)-1;
1043 	else
1044 		*next_offset = found_key.offset;
1045 
1046 	return 0;
1047 }
1048 
1049 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1050 			   struct btrfs_root *root,
1051 			   struct btrfs_ordered_sum *sums)
1052 {
1053 	struct btrfs_fs_info *fs_info = root->fs_info;
1054 	struct btrfs_key file_key;
1055 	struct btrfs_key found_key;
1056 	struct btrfs_path *path;
1057 	struct btrfs_csum_item *item;
1058 	struct btrfs_csum_item *item_end;
1059 	struct extent_buffer *leaf = NULL;
1060 	u64 next_offset;
1061 	u64 total_bytes = 0;
1062 	u64 csum_offset;
1063 	u64 bytenr;
1064 	u32 ins_size;
1065 	int index = 0;
1066 	int found_next;
1067 	int ret;
1068 	const u32 csum_size = fs_info->csum_size;
1069 
1070 	path = btrfs_alloc_path();
1071 	if (!path)
1072 		return -ENOMEM;
1073 again:
1074 	next_offset = (u64)-1;
1075 	found_next = 0;
1076 	bytenr = sums->logical + total_bytes;
1077 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1078 	file_key.offset = bytenr;
1079 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
1080 
1081 	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1082 	if (!IS_ERR(item)) {
1083 		ret = 0;
1084 		leaf = path->nodes[0];
1085 		item_end = btrfs_item_ptr(leaf, path->slots[0],
1086 					  struct btrfs_csum_item);
1087 		item_end = (struct btrfs_csum_item *)((char *)item_end +
1088 			   btrfs_item_size(leaf, path->slots[0]));
1089 		goto found;
1090 	}
1091 	ret = PTR_ERR(item);
1092 	if (ret != -EFBIG && ret != -ENOENT)
1093 		goto out;
1094 
1095 	if (ret == -EFBIG) {
1096 		u32 item_size;
1097 		/* we found one, but it isn't big enough yet */
1098 		leaf = path->nodes[0];
1099 		item_size = btrfs_item_size(leaf, path->slots[0]);
1100 		if ((item_size / csum_size) >=
1101 		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
1102 			/* already at max size, make a new one */
1103 			goto insert;
1104 		}
1105 	} else {
1106 		/* We didn't find a csum item, insert one. */
1107 		ret = find_next_csum_offset(root, path, &next_offset);
1108 		if (ret < 0)
1109 			goto out;
1110 		found_next = 1;
1111 		goto insert;
1112 	}
1113 
1114 	/*
1115 	 * At this point, we know the tree has a checksum item that ends at an
1116 	 * offset matching the start of the checksum range we want to insert.
1117 	 * We try to extend that item as much as possible and then add as many
1118 	 * checksums to it as they fit.
1119 	 *
1120 	 * First check if the leaf has enough free space for at least one
1121 	 * checksum. If it has go directly to the item extension code, otherwise
1122 	 * release the path and do a search for insertion before the extension.
1123 	 */
1124 	if (btrfs_leaf_free_space(leaf) >= csum_size) {
1125 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1126 		csum_offset = (bytenr - found_key.offset) >>
1127 			fs_info->sectorsize_bits;
1128 		goto extend_csum;
1129 	}
1130 
1131 	btrfs_release_path(path);
1132 	path->search_for_extension = 1;
1133 	ret = btrfs_search_slot(trans, root, &file_key, path,
1134 				csum_size, 1);
1135 	path->search_for_extension = 0;
1136 	if (ret < 0)
1137 		goto out;
1138 
1139 	if (ret > 0) {
1140 		if (path->slots[0] == 0)
1141 			goto insert;
1142 		path->slots[0]--;
1143 	}
1144 
1145 	leaf = path->nodes[0];
1146 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1147 	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1148 
1149 	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1150 	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1151 	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1152 		goto insert;
1153 	}
1154 
1155 extend_csum:
1156 	if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1157 	    csum_size) {
1158 		int extend_nr;
1159 		u64 tmp;
1160 		u32 diff;
1161 
1162 		tmp = sums->len - total_bytes;
1163 		tmp >>= fs_info->sectorsize_bits;
1164 		WARN_ON(tmp < 1);
1165 		extend_nr = max_t(int, 1, tmp);
1166 
1167 		/*
1168 		 * A log tree can already have checksum items with a subset of
1169 		 * the checksums we are trying to log. This can happen after
1170 		 * doing a sequence of partial writes into prealloc extents and
1171 		 * fsyncs in between, with a full fsync logging a larger subrange
1172 		 * of an extent for which a previous fast fsync logged a smaller
1173 		 * subrange. And this happens in particular due to merging file
1174 		 * extent items when we complete an ordered extent for a range
1175 		 * covered by a prealloc extent - this is done at
1176 		 * btrfs_mark_extent_written().
1177 		 *
1178 		 * So if we try to extend the previous checksum item, which has
1179 		 * a range that ends at the start of the range we want to insert,
1180 		 * make sure we don't extend beyond the start offset of the next
1181 		 * checksum item. If we are at the last item in the leaf, then
1182 		 * forget the optimization of extending and add a new checksum
1183 		 * item - it is not worth the complexity of releasing the path,
1184 		 * getting the first key for the next leaf, repeat the btree
1185 		 * search, etc, because log trees are temporary anyway and it
1186 		 * would only save a few bytes of leaf space.
1187 		 */
1188 		if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
1189 			if (path->slots[0] + 1 >=
1190 			    btrfs_header_nritems(path->nodes[0])) {
1191 				ret = find_next_csum_offset(root, path, &next_offset);
1192 				if (ret < 0)
1193 					goto out;
1194 				found_next = 1;
1195 				goto insert;
1196 			}
1197 
1198 			ret = find_next_csum_offset(root, path, &next_offset);
1199 			if (ret < 0)
1200 				goto out;
1201 
1202 			tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1203 			if (tmp <= INT_MAX)
1204 				extend_nr = min_t(int, extend_nr, tmp);
1205 		}
1206 
1207 		diff = (csum_offset + extend_nr) * csum_size;
1208 		diff = min(diff,
1209 			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1210 
1211 		diff = diff - btrfs_item_size(leaf, path->slots[0]);
1212 		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1213 		diff /= csum_size;
1214 		diff *= csum_size;
1215 
1216 		btrfs_extend_item(trans, path, diff);
1217 		ret = 0;
1218 		goto csum;
1219 	}
1220 
1221 insert:
1222 	btrfs_release_path(path);
1223 	csum_offset = 0;
1224 	if (found_next) {
1225 		u64 tmp;
1226 
1227 		tmp = sums->len - total_bytes;
1228 		tmp >>= fs_info->sectorsize_bits;
1229 		tmp = min(tmp, (next_offset - file_key.offset) >>
1230 					 fs_info->sectorsize_bits);
1231 
1232 		tmp = max_t(u64, 1, tmp);
1233 		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1234 		ins_size = csum_size * tmp;
1235 	} else {
1236 		ins_size = csum_size;
1237 	}
1238 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1239 				      ins_size);
1240 	if (ret < 0)
1241 		goto out;
1242 	leaf = path->nodes[0];
1243 csum:
1244 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1245 	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1246 				      btrfs_item_size(leaf, path->slots[0]));
1247 	item = (struct btrfs_csum_item *)((unsigned char *)item +
1248 					  csum_offset * csum_size);
1249 found:
1250 	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1251 	ins_size *= csum_size;
1252 	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1253 			      ins_size);
1254 	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1255 			    ins_size);
1256 
1257 	index += ins_size;
1258 	ins_size /= csum_size;
1259 	total_bytes += ins_size * fs_info->sectorsize;
1260 
1261 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
1262 	if (total_bytes < sums->len) {
1263 		btrfs_release_path(path);
1264 		cond_resched();
1265 		goto again;
1266 	}
1267 out:
1268 	btrfs_free_path(path);
1269 	return ret;
1270 }
1271 
1272 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1273 				     const struct btrfs_path *path,
1274 				     struct btrfs_file_extent_item *fi,
1275 				     struct extent_map *em)
1276 {
1277 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1278 	struct btrfs_root *root = inode->root;
1279 	struct extent_buffer *leaf = path->nodes[0];
1280 	const int slot = path->slots[0];
1281 	struct btrfs_key key;
1282 	u64 extent_start;
1283 	u64 bytenr;
1284 	u8 type = btrfs_file_extent_type(leaf, fi);
1285 	int compress_type = btrfs_file_extent_compression(leaf, fi);
1286 
1287 	btrfs_item_key_to_cpu(leaf, &key, slot);
1288 	extent_start = key.offset;
1289 	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1290 	em->generation = btrfs_file_extent_generation(leaf, fi);
1291 	if (type == BTRFS_FILE_EXTENT_REG ||
1292 	    type == BTRFS_FILE_EXTENT_PREALLOC) {
1293 		em->start = extent_start;
1294 		em->len = btrfs_file_extent_end(path) - extent_start;
1295 		em->orig_start = extent_start -
1296 			btrfs_file_extent_offset(leaf, fi);
1297 		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1298 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1299 		if (bytenr == 0) {
1300 			em->block_start = EXTENT_MAP_HOLE;
1301 			return;
1302 		}
1303 		if (compress_type != BTRFS_COMPRESS_NONE) {
1304 			extent_map_set_compression(em, compress_type);
1305 			em->block_start = bytenr;
1306 			em->block_len = em->orig_block_len;
1307 		} else {
1308 			bytenr += btrfs_file_extent_offset(leaf, fi);
1309 			em->block_start = bytenr;
1310 			em->block_len = em->len;
1311 			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1312 				em->flags |= EXTENT_FLAG_PREALLOC;
1313 		}
1314 	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1315 		/* Tree-checker has ensured this. */
1316 		ASSERT(extent_start == 0);
1317 
1318 		em->block_start = EXTENT_MAP_INLINE;
1319 		em->start = 0;
1320 		em->len = fs_info->sectorsize;
1321 		/*
1322 		 * Initialize orig_start and block_len with the same values
1323 		 * as in inode.c:btrfs_get_extent().
1324 		 */
1325 		em->orig_start = EXTENT_MAP_HOLE;
1326 		em->block_len = (u64)-1;
1327 		extent_map_set_compression(em, compress_type);
1328 	} else {
1329 		btrfs_err(fs_info,
1330 			  "unknown file extent item type %d, inode %llu, offset %llu, "
1331 			  "root %llu", type, btrfs_ino(inode), extent_start,
1332 			  btrfs_root_id(root));
1333 	}
1334 }
1335 
1336 /*
1337  * Returns the end offset (non inclusive) of the file extent item the given path
1338  * points to. If it points to an inline extent, the returned offset is rounded
1339  * up to the sector size.
1340  */
1341 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1342 {
1343 	const struct extent_buffer *leaf = path->nodes[0];
1344 	const int slot = path->slots[0];
1345 	struct btrfs_file_extent_item *fi;
1346 	struct btrfs_key key;
1347 	u64 end;
1348 
1349 	btrfs_item_key_to_cpu(leaf, &key, slot);
1350 	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1351 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1352 
1353 	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE)
1354 		end = leaf->fs_info->sectorsize;
1355 	else
1356 		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1357 
1358 	return end;
1359 }
1360