1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/bio.h> 7 #include <linux/slab.h> 8 #include <linux/pagemap.h> 9 #include <linux/highmem.h> 10 #include <linux/sched/mm.h> 11 #include <crypto/hash.h> 12 #include "messages.h" 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "bio.h" 17 #include "compression.h" 18 #include "fs.h" 19 #include "accessors.h" 20 #include "file-item.h" 21 22 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \ 23 sizeof(struct btrfs_item) * 2) / \ 24 size) - 1)) 25 26 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \ 27 PAGE_SIZE)) 28 29 /* 30 * Set inode's size according to filesystem options. 31 * 32 * @inode: inode we want to update the disk_i_size for 33 * @new_i_size: i_size we want to set to, 0 if we use i_size 34 * 35 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read() 36 * returns as it is perfectly fine with a file that has holes without hole file 37 * extent items. 38 * 39 * However without NO_HOLES we need to only return the area that is contiguous 40 * from the 0 offset of the file. Otherwise we could end up adjust i_size up 41 * to an extent that has a gap in between. 42 * 43 * Finally new_i_size should only be set in the case of truncate where we're not 44 * ready to use i_size_read() as the limiter yet. 45 */ 46 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size) 47 { 48 u64 start, end, i_size; 49 int ret; 50 51 spin_lock(&inode->lock); 52 i_size = new_i_size ?: i_size_read(&inode->vfs_inode); 53 if (!inode->file_extent_tree) { 54 inode->disk_i_size = i_size; 55 goto out_unlock; 56 } 57 58 ret = find_contiguous_extent_bit(inode->file_extent_tree, 0, &start, 59 &end, EXTENT_DIRTY); 60 if (!ret && start == 0) 61 i_size = min(i_size, end + 1); 62 else 63 i_size = 0; 64 inode->disk_i_size = i_size; 65 out_unlock: 66 spin_unlock(&inode->lock); 67 } 68 69 /* 70 * Mark range within a file as having a new extent inserted. 71 * 72 * @inode: inode being modified 73 * @start: start file offset of the file extent we've inserted 74 * @len: logical length of the file extent item 75 * 76 * Call when we are inserting a new file extent where there was none before. 77 * Does not need to call this in the case where we're replacing an existing file 78 * extent, however if not sure it's fine to call this multiple times. 79 * 80 * The start and len must match the file extent item, so thus must be sectorsize 81 * aligned. 82 */ 83 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 84 u64 len) 85 { 86 if (!inode->file_extent_tree) 87 return 0; 88 89 if (len == 0) 90 return 0; 91 92 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize)); 93 94 return set_extent_bit(inode->file_extent_tree, start, start + len - 1, 95 EXTENT_DIRTY, NULL); 96 } 97 98 /* 99 * Mark an inode range as not having a backing extent. 100 * 101 * @inode: inode being modified 102 * @start: start file offset of the file extent we've inserted 103 * @len: logical length of the file extent item 104 * 105 * Called when we drop a file extent, for example when we truncate. Doesn't 106 * need to be called for cases where we're replacing a file extent, like when 107 * we've COWed a file extent. 108 * 109 * The start and len must match the file extent item, so thus must be sectorsize 110 * aligned. 111 */ 112 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 113 u64 len) 114 { 115 if (!inode->file_extent_tree) 116 return 0; 117 118 if (len == 0) 119 return 0; 120 121 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) || 122 len == (u64)-1); 123 124 return clear_extent_bit(inode->file_extent_tree, start, 125 start + len - 1, EXTENT_DIRTY, NULL); 126 } 127 128 static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes) 129 { 130 ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize)); 131 132 return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size; 133 } 134 135 static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size) 136 { 137 ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size)); 138 139 return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits; 140 } 141 142 static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info) 143 { 144 u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum), 145 fs_info->csum_size); 146 147 return csum_size_to_bytes(fs_info, max_csum_size); 148 } 149 150 /* 151 * Calculate the total size needed to allocate for an ordered sum structure 152 * spanning @bytes in the file. 153 */ 154 static int btrfs_ordered_sum_size(const struct btrfs_fs_info *fs_info, unsigned long bytes) 155 { 156 return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes); 157 } 158 159 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans, 160 struct btrfs_root *root, 161 u64 objectid, u64 pos, u64 num_bytes) 162 { 163 int ret = 0; 164 struct btrfs_file_extent_item *item; 165 struct btrfs_key file_key; 166 struct btrfs_path *path; 167 struct extent_buffer *leaf; 168 169 path = btrfs_alloc_path(); 170 if (!path) 171 return -ENOMEM; 172 file_key.objectid = objectid; 173 file_key.offset = pos; 174 file_key.type = BTRFS_EXTENT_DATA_KEY; 175 176 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 177 sizeof(*item)); 178 if (ret < 0) 179 goto out; 180 leaf = path->nodes[0]; 181 item = btrfs_item_ptr(leaf, path->slots[0], 182 struct btrfs_file_extent_item); 183 btrfs_set_file_extent_disk_bytenr(leaf, item, 0); 184 btrfs_set_file_extent_disk_num_bytes(leaf, item, 0); 185 btrfs_set_file_extent_offset(leaf, item, 0); 186 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes); 187 btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes); 188 btrfs_set_file_extent_generation(leaf, item, trans->transid); 189 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 190 btrfs_set_file_extent_compression(leaf, item, 0); 191 btrfs_set_file_extent_encryption(leaf, item, 0); 192 btrfs_set_file_extent_other_encoding(leaf, item, 0); 193 out: 194 btrfs_free_path(path); 195 return ret; 196 } 197 198 static struct btrfs_csum_item * 199 btrfs_lookup_csum(struct btrfs_trans_handle *trans, 200 struct btrfs_root *root, 201 struct btrfs_path *path, 202 u64 bytenr, int cow) 203 { 204 struct btrfs_fs_info *fs_info = root->fs_info; 205 int ret; 206 struct btrfs_key file_key; 207 struct btrfs_key found_key; 208 struct btrfs_csum_item *item; 209 struct extent_buffer *leaf; 210 u64 csum_offset = 0; 211 const u32 csum_size = fs_info->csum_size; 212 int csums_in_item; 213 214 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 215 file_key.offset = bytenr; 216 file_key.type = BTRFS_EXTENT_CSUM_KEY; 217 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow); 218 if (ret < 0) 219 goto fail; 220 leaf = path->nodes[0]; 221 if (ret > 0) { 222 ret = 1; 223 if (path->slots[0] == 0) 224 goto fail; 225 path->slots[0]--; 226 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 227 if (found_key.type != BTRFS_EXTENT_CSUM_KEY) 228 goto fail; 229 230 csum_offset = (bytenr - found_key.offset) >> 231 fs_info->sectorsize_bits; 232 csums_in_item = btrfs_item_size(leaf, path->slots[0]); 233 csums_in_item /= csum_size; 234 235 if (csum_offset == csums_in_item) { 236 ret = -EFBIG; 237 goto fail; 238 } else if (csum_offset > csums_in_item) { 239 goto fail; 240 } 241 } 242 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 243 item = (struct btrfs_csum_item *)((unsigned char *)item + 244 csum_offset * csum_size); 245 return item; 246 fail: 247 if (ret > 0) 248 ret = -ENOENT; 249 return ERR_PTR(ret); 250 } 251 252 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 253 struct btrfs_root *root, 254 struct btrfs_path *path, u64 objectid, 255 u64 offset, int mod) 256 { 257 struct btrfs_key file_key; 258 int ins_len = mod < 0 ? -1 : 0; 259 int cow = mod != 0; 260 261 file_key.objectid = objectid; 262 file_key.offset = offset; 263 file_key.type = BTRFS_EXTENT_DATA_KEY; 264 265 return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow); 266 } 267 268 /* 269 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and 270 * store the result to @dst. 271 * 272 * Return >0 for the number of sectors we found. 273 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum 274 * for it. Caller may want to try next sector until one range is hit. 275 * Return <0 for fatal error. 276 */ 277 static int search_csum_tree(struct btrfs_fs_info *fs_info, 278 struct btrfs_path *path, u64 disk_bytenr, 279 u64 len, u8 *dst) 280 { 281 struct btrfs_root *csum_root; 282 struct btrfs_csum_item *item = NULL; 283 struct btrfs_key key; 284 const u32 sectorsize = fs_info->sectorsize; 285 const u32 csum_size = fs_info->csum_size; 286 u32 itemsize; 287 int ret; 288 u64 csum_start; 289 u64 csum_len; 290 291 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) && 292 IS_ALIGNED(len, sectorsize)); 293 294 /* Check if the current csum item covers disk_bytenr */ 295 if (path->nodes[0]) { 296 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 297 struct btrfs_csum_item); 298 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 299 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); 300 301 csum_start = key.offset; 302 csum_len = (itemsize / csum_size) * sectorsize; 303 304 if (in_range(disk_bytenr, csum_start, csum_len)) 305 goto found; 306 } 307 308 /* Current item doesn't contain the desired range, search again */ 309 btrfs_release_path(path); 310 csum_root = btrfs_csum_root(fs_info, disk_bytenr); 311 item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0); 312 if (IS_ERR(item)) { 313 ret = PTR_ERR(item); 314 goto out; 315 } 316 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 317 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]); 318 319 csum_start = key.offset; 320 csum_len = (itemsize / csum_size) * sectorsize; 321 ASSERT(in_range(disk_bytenr, csum_start, csum_len)); 322 323 found: 324 ret = (min(csum_start + csum_len, disk_bytenr + len) - 325 disk_bytenr) >> fs_info->sectorsize_bits; 326 read_extent_buffer(path->nodes[0], dst, (unsigned long)item, 327 ret * csum_size); 328 out: 329 if (ret == -ENOENT || ret == -EFBIG) 330 ret = 0; 331 return ret; 332 } 333 334 /* 335 * Lookup the checksum for the read bio in csum tree. 336 * 337 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise. 338 */ 339 blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio) 340 { 341 struct btrfs_inode *inode = bbio->inode; 342 struct btrfs_fs_info *fs_info = inode->root->fs_info; 343 struct bio *bio = &bbio->bio; 344 struct btrfs_path *path; 345 const u32 sectorsize = fs_info->sectorsize; 346 const u32 csum_size = fs_info->csum_size; 347 u32 orig_len = bio->bi_iter.bi_size; 348 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; 349 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits; 350 blk_status_t ret = BLK_STS_OK; 351 u32 bio_offset = 0; 352 353 if ((inode->flags & BTRFS_INODE_NODATASUM) || 354 test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state)) 355 return BLK_STS_OK; 356 357 /* 358 * This function is only called for read bio. 359 * 360 * This means two things: 361 * - All our csums should only be in csum tree 362 * No ordered extents csums, as ordered extents are only for write 363 * path. 364 * - No need to bother any other info from bvec 365 * Since we're looking up csums, the only important info is the 366 * disk_bytenr and the length, which can be extracted from bi_iter 367 * directly. 368 */ 369 ASSERT(bio_op(bio) == REQ_OP_READ); 370 path = btrfs_alloc_path(); 371 if (!path) 372 return BLK_STS_RESOURCE; 373 374 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) { 375 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS); 376 if (!bbio->csum) { 377 btrfs_free_path(path); 378 return BLK_STS_RESOURCE; 379 } 380 } else { 381 bbio->csum = bbio->csum_inline; 382 } 383 384 /* 385 * If requested number of sectors is larger than one leaf can contain, 386 * kick the readahead for csum tree. 387 */ 388 if (nblocks > fs_info->csums_per_leaf) 389 path->reada = READA_FORWARD; 390 391 /* 392 * the free space stuff is only read when it hasn't been 393 * updated in the current transaction. So, we can safely 394 * read from the commit root and sidestep a nasty deadlock 395 * between reading the free space cache and updating the csum tree. 396 */ 397 if (btrfs_is_free_space_inode(inode)) { 398 path->search_commit_root = 1; 399 path->skip_locking = 1; 400 } 401 402 while (bio_offset < orig_len) { 403 int count; 404 u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset; 405 u8 *csum_dst = bbio->csum + 406 (bio_offset >> fs_info->sectorsize_bits) * csum_size; 407 408 count = search_csum_tree(fs_info, path, cur_disk_bytenr, 409 orig_len - bio_offset, csum_dst); 410 if (count < 0) { 411 ret = errno_to_blk_status(count); 412 if (bbio->csum != bbio->csum_inline) 413 kfree(bbio->csum); 414 bbio->csum = NULL; 415 break; 416 } 417 418 /* 419 * We didn't find a csum for this range. We need to make sure 420 * we complain loudly about this, because we are not NODATASUM. 421 * 422 * However for the DATA_RELOC inode we could potentially be 423 * relocating data extents for a NODATASUM inode, so the inode 424 * itself won't be marked with NODATASUM, but the extent we're 425 * copying is in fact NODATASUM. If we don't find a csum we 426 * assume this is the case. 427 */ 428 if (count == 0) { 429 memset(csum_dst, 0, csum_size); 430 count = 1; 431 432 if (btrfs_root_id(inode->root) == BTRFS_DATA_RELOC_TREE_OBJECTID) { 433 u64 file_offset = bbio->file_offset + bio_offset; 434 435 set_extent_bit(&inode->io_tree, file_offset, 436 file_offset + sectorsize - 1, 437 EXTENT_NODATASUM, NULL); 438 } else { 439 btrfs_warn_rl(fs_info, 440 "csum hole found for disk bytenr range [%llu, %llu)", 441 cur_disk_bytenr, cur_disk_bytenr + sectorsize); 442 } 443 } 444 bio_offset += count * sectorsize; 445 } 446 447 btrfs_free_path(path); 448 return ret; 449 } 450 451 /* 452 * Search for checksums for a given logical range. 453 * 454 * @root: The root where to look for checksums. 455 * @start: Logical address of target checksum range. 456 * @end: End offset (inclusive) of the target checksum range. 457 * @list: List for adding each checksum that was found. 458 * Can be NULL in case the caller only wants to check if 459 * there any checksums for the range. 460 * @nowait: Indicate if the search must be non-blocking or not. 461 * 462 * Return < 0 on error, 0 if no checksums were found, or 1 if checksums were 463 * found. 464 */ 465 int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end, 466 struct list_head *list, bool nowait) 467 { 468 struct btrfs_fs_info *fs_info = root->fs_info; 469 struct btrfs_key key; 470 struct btrfs_path *path; 471 struct extent_buffer *leaf; 472 struct btrfs_ordered_sum *sums; 473 struct btrfs_csum_item *item; 474 int ret; 475 bool found_csums = false; 476 477 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 478 IS_ALIGNED(end + 1, fs_info->sectorsize)); 479 480 path = btrfs_alloc_path(); 481 if (!path) 482 return -ENOMEM; 483 484 path->nowait = nowait; 485 486 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 487 key.offset = start; 488 key.type = BTRFS_EXTENT_CSUM_KEY; 489 490 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 491 if (ret < 0) 492 goto out; 493 if (ret > 0 && path->slots[0] > 0) { 494 leaf = path->nodes[0]; 495 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 496 497 /* 498 * There are two cases we can hit here for the previous csum 499 * item: 500 * 501 * |<- search range ->| 502 * |<- csum item ->| 503 * 504 * Or 505 * |<- search range ->| 506 * |<- csum item ->| 507 * 508 * Check if the previous csum item covers the leading part of 509 * the search range. If so we have to start from previous csum 510 * item. 511 */ 512 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 513 key.type == BTRFS_EXTENT_CSUM_KEY) { 514 if (bytes_to_csum_size(fs_info, start - key.offset) < 515 btrfs_item_size(leaf, path->slots[0] - 1)) 516 path->slots[0]--; 517 } 518 } 519 520 while (start <= end) { 521 u64 csum_end; 522 523 leaf = path->nodes[0]; 524 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 525 ret = btrfs_next_leaf(root, path); 526 if (ret < 0) 527 goto out; 528 if (ret > 0) 529 break; 530 leaf = path->nodes[0]; 531 } 532 533 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 534 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 535 key.type != BTRFS_EXTENT_CSUM_KEY || 536 key.offset > end) 537 break; 538 539 if (key.offset > start) 540 start = key.offset; 541 542 csum_end = key.offset + csum_size_to_bytes(fs_info, 543 btrfs_item_size(leaf, path->slots[0])); 544 if (csum_end <= start) { 545 path->slots[0]++; 546 continue; 547 } 548 549 found_csums = true; 550 if (!list) 551 goto out; 552 553 csum_end = min(csum_end, end + 1); 554 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 555 struct btrfs_csum_item); 556 while (start < csum_end) { 557 unsigned long offset; 558 size_t size; 559 560 size = min_t(size_t, csum_end - start, 561 max_ordered_sum_bytes(fs_info)); 562 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size), 563 GFP_NOFS); 564 if (!sums) { 565 ret = -ENOMEM; 566 goto out; 567 } 568 569 sums->logical = start; 570 sums->len = size; 571 572 offset = bytes_to_csum_size(fs_info, start - key.offset); 573 574 read_extent_buffer(path->nodes[0], 575 sums->sums, 576 ((unsigned long)item) + offset, 577 bytes_to_csum_size(fs_info, size)); 578 579 start += size; 580 list_add_tail(&sums->list, list); 581 } 582 path->slots[0]++; 583 } 584 out: 585 btrfs_free_path(path); 586 if (ret < 0) { 587 if (list) { 588 struct btrfs_ordered_sum *tmp_sums; 589 590 list_for_each_entry_safe(sums, tmp_sums, list, list) 591 kfree(sums); 592 } 593 594 return ret; 595 } 596 597 return found_csums ? 1 : 0; 598 } 599 600 /* 601 * Do the same work as btrfs_lookup_csums_list(), the difference is in how 602 * we return the result. 603 * 604 * This version will set the corresponding bits in @csum_bitmap to represent 605 * that there is a csum found. 606 * Each bit represents a sector. Thus caller should ensure @csum_buf passed 607 * in is large enough to contain all csums. 608 */ 609 int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path, 610 u64 start, u64 end, u8 *csum_buf, 611 unsigned long *csum_bitmap) 612 { 613 struct btrfs_fs_info *fs_info = root->fs_info; 614 struct btrfs_key key; 615 struct extent_buffer *leaf; 616 struct btrfs_csum_item *item; 617 const u64 orig_start = start; 618 bool free_path = false; 619 int ret; 620 621 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 622 IS_ALIGNED(end + 1, fs_info->sectorsize)); 623 624 if (!path) { 625 path = btrfs_alloc_path(); 626 if (!path) 627 return -ENOMEM; 628 free_path = true; 629 } 630 631 /* Check if we can reuse the previous path. */ 632 if (path->nodes[0]) { 633 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 634 635 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 636 key.type == BTRFS_EXTENT_CSUM_KEY && 637 key.offset <= start) 638 goto search_forward; 639 btrfs_release_path(path); 640 } 641 642 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 643 key.type = BTRFS_EXTENT_CSUM_KEY; 644 key.offset = start; 645 646 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 647 if (ret < 0) 648 goto fail; 649 if (ret > 0 && path->slots[0] > 0) { 650 leaf = path->nodes[0]; 651 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1); 652 653 /* 654 * There are two cases we can hit here for the previous csum 655 * item: 656 * 657 * |<- search range ->| 658 * |<- csum item ->| 659 * 660 * Or 661 * |<- search range ->| 662 * |<- csum item ->| 663 * 664 * Check if the previous csum item covers the leading part of 665 * the search range. If so we have to start from previous csum 666 * item. 667 */ 668 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID && 669 key.type == BTRFS_EXTENT_CSUM_KEY) { 670 if (bytes_to_csum_size(fs_info, start - key.offset) < 671 btrfs_item_size(leaf, path->slots[0] - 1)) 672 path->slots[0]--; 673 } 674 } 675 676 search_forward: 677 while (start <= end) { 678 u64 csum_end; 679 680 leaf = path->nodes[0]; 681 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 682 ret = btrfs_next_leaf(root, path); 683 if (ret < 0) 684 goto fail; 685 if (ret > 0) 686 break; 687 leaf = path->nodes[0]; 688 } 689 690 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 691 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 692 key.type != BTRFS_EXTENT_CSUM_KEY || 693 key.offset > end) 694 break; 695 696 if (key.offset > start) 697 start = key.offset; 698 699 csum_end = key.offset + csum_size_to_bytes(fs_info, 700 btrfs_item_size(leaf, path->slots[0])); 701 if (csum_end <= start) { 702 path->slots[0]++; 703 continue; 704 } 705 706 csum_end = min(csum_end, end + 1); 707 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 708 struct btrfs_csum_item); 709 while (start < csum_end) { 710 unsigned long offset; 711 size_t size; 712 u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info, 713 start - orig_start); 714 715 size = min_t(size_t, csum_end - start, end + 1 - start); 716 717 offset = bytes_to_csum_size(fs_info, start - key.offset); 718 719 read_extent_buffer(path->nodes[0], csum_dest, 720 ((unsigned long)item) + offset, 721 bytes_to_csum_size(fs_info, size)); 722 723 bitmap_set(csum_bitmap, 724 (start - orig_start) >> fs_info->sectorsize_bits, 725 size >> fs_info->sectorsize_bits); 726 727 start += size; 728 } 729 path->slots[0]++; 730 } 731 ret = 0; 732 fail: 733 if (free_path) 734 btrfs_free_path(path); 735 return ret; 736 } 737 738 /* 739 * Calculate checksums of the data contained inside a bio. 740 */ 741 blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio) 742 { 743 struct btrfs_ordered_extent *ordered = bbio->ordered; 744 struct btrfs_inode *inode = bbio->inode; 745 struct btrfs_fs_info *fs_info = inode->root->fs_info; 746 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 747 struct bio *bio = &bbio->bio; 748 struct btrfs_ordered_sum *sums; 749 char *data; 750 struct bvec_iter iter; 751 struct bio_vec bvec; 752 int index; 753 unsigned int blockcount; 754 int i; 755 unsigned nofs_flag; 756 757 nofs_flag = memalloc_nofs_save(); 758 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size), 759 GFP_KERNEL); 760 memalloc_nofs_restore(nofs_flag); 761 762 if (!sums) 763 return BLK_STS_RESOURCE; 764 765 sums->len = bio->bi_iter.bi_size; 766 INIT_LIST_HEAD(&sums->list); 767 768 sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 769 index = 0; 770 771 shash->tfm = fs_info->csum_shash; 772 773 bio_for_each_segment(bvec, bio, iter) { 774 blockcount = BTRFS_BYTES_TO_BLKS(fs_info, 775 bvec.bv_len + fs_info->sectorsize 776 - 1); 777 778 for (i = 0; i < blockcount; i++) { 779 data = bvec_kmap_local(&bvec); 780 crypto_shash_digest(shash, 781 data + (i * fs_info->sectorsize), 782 fs_info->sectorsize, 783 sums->sums + index); 784 kunmap_local(data); 785 index += fs_info->csum_size; 786 } 787 788 } 789 790 bbio->sums = sums; 791 btrfs_add_ordered_sum(ordered, sums); 792 return 0; 793 } 794 795 /* 796 * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to 797 * record the updated logical address on Zone Append completion. 798 * Allocate just the structure with an empty sums array here for that case. 799 */ 800 blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio) 801 { 802 bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS); 803 if (!bbio->sums) 804 return BLK_STS_RESOURCE; 805 bbio->sums->len = bbio->bio.bi_iter.bi_size; 806 bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 807 btrfs_add_ordered_sum(bbio->ordered, bbio->sums); 808 return 0; 809 } 810 811 /* 812 * Remove one checksum overlapping a range. 813 * 814 * This expects the key to describe the csum pointed to by the path, and it 815 * expects the csum to overlap the range [bytenr, len] 816 * 817 * The csum should not be entirely contained in the range and the range should 818 * not be entirely contained in the csum. 819 * 820 * This calls btrfs_truncate_item with the correct args based on the overlap, 821 * and fixes up the key as required. 822 */ 823 static noinline void truncate_one_csum(struct btrfs_trans_handle *trans, 824 struct btrfs_path *path, 825 struct btrfs_key *key, 826 u64 bytenr, u64 len) 827 { 828 struct btrfs_fs_info *fs_info = trans->fs_info; 829 struct extent_buffer *leaf; 830 const u32 csum_size = fs_info->csum_size; 831 u64 csum_end; 832 u64 end_byte = bytenr + len; 833 u32 blocksize_bits = fs_info->sectorsize_bits; 834 835 leaf = path->nodes[0]; 836 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; 837 csum_end <<= blocksize_bits; 838 csum_end += key->offset; 839 840 if (key->offset < bytenr && csum_end <= end_byte) { 841 /* 842 * [ bytenr - len ] 843 * [ ] 844 * [csum ] 845 * A simple truncate off the end of the item 846 */ 847 u32 new_size = (bytenr - key->offset) >> blocksize_bits; 848 new_size *= csum_size; 849 btrfs_truncate_item(trans, path, new_size, 1); 850 } else if (key->offset >= bytenr && csum_end > end_byte && 851 end_byte > key->offset) { 852 /* 853 * [ bytenr - len ] 854 * [ ] 855 * [csum ] 856 * we need to truncate from the beginning of the csum 857 */ 858 u32 new_size = (csum_end - end_byte) >> blocksize_bits; 859 new_size *= csum_size; 860 861 btrfs_truncate_item(trans, path, new_size, 0); 862 863 key->offset = end_byte; 864 btrfs_set_item_key_safe(trans, path, key); 865 } else { 866 BUG(); 867 } 868 } 869 870 /* 871 * Delete the csum items from the csum tree for a given range of bytes. 872 */ 873 int btrfs_del_csums(struct btrfs_trans_handle *trans, 874 struct btrfs_root *root, u64 bytenr, u64 len) 875 { 876 struct btrfs_fs_info *fs_info = trans->fs_info; 877 struct btrfs_path *path; 878 struct btrfs_key key; 879 u64 end_byte = bytenr + len; 880 u64 csum_end; 881 struct extent_buffer *leaf; 882 int ret = 0; 883 const u32 csum_size = fs_info->csum_size; 884 u32 blocksize_bits = fs_info->sectorsize_bits; 885 886 ASSERT(btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID || 887 btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID); 888 889 path = btrfs_alloc_path(); 890 if (!path) 891 return -ENOMEM; 892 893 while (1) { 894 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 895 key.offset = end_byte - 1; 896 key.type = BTRFS_EXTENT_CSUM_KEY; 897 898 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 899 if (ret > 0) { 900 ret = 0; 901 if (path->slots[0] == 0) 902 break; 903 path->slots[0]--; 904 } else if (ret < 0) { 905 break; 906 } 907 908 leaf = path->nodes[0]; 909 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 910 911 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 912 key.type != BTRFS_EXTENT_CSUM_KEY) { 913 break; 914 } 915 916 if (key.offset >= end_byte) 917 break; 918 919 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size; 920 csum_end <<= blocksize_bits; 921 csum_end += key.offset; 922 923 /* this csum ends before we start, we're done */ 924 if (csum_end <= bytenr) 925 break; 926 927 /* delete the entire item, it is inside our range */ 928 if (key.offset >= bytenr && csum_end <= end_byte) { 929 int del_nr = 1; 930 931 /* 932 * Check how many csum items preceding this one in this 933 * leaf correspond to our range and then delete them all 934 * at once. 935 */ 936 if (key.offset > bytenr && path->slots[0] > 0) { 937 int slot = path->slots[0] - 1; 938 939 while (slot >= 0) { 940 struct btrfs_key pk; 941 942 btrfs_item_key_to_cpu(leaf, &pk, slot); 943 if (pk.offset < bytenr || 944 pk.type != BTRFS_EXTENT_CSUM_KEY || 945 pk.objectid != 946 BTRFS_EXTENT_CSUM_OBJECTID) 947 break; 948 path->slots[0] = slot; 949 del_nr++; 950 key.offset = pk.offset; 951 slot--; 952 } 953 } 954 ret = btrfs_del_items(trans, root, path, 955 path->slots[0], del_nr); 956 if (ret) 957 break; 958 if (key.offset == bytenr) 959 break; 960 } else if (key.offset < bytenr && csum_end > end_byte) { 961 unsigned long offset; 962 unsigned long shift_len; 963 unsigned long item_offset; 964 /* 965 * [ bytenr - len ] 966 * [csum ] 967 * 968 * Our bytes are in the middle of the csum, 969 * we need to split this item and insert a new one. 970 * 971 * But we can't drop the path because the 972 * csum could change, get removed, extended etc. 973 * 974 * The trick here is the max size of a csum item leaves 975 * enough room in the tree block for a single 976 * item header. So, we split the item in place, 977 * adding a new header pointing to the existing 978 * bytes. Then we loop around again and we have 979 * a nicely formed csum item that we can neatly 980 * truncate. 981 */ 982 offset = (bytenr - key.offset) >> blocksize_bits; 983 offset *= csum_size; 984 985 shift_len = (len >> blocksize_bits) * csum_size; 986 987 item_offset = btrfs_item_ptr_offset(leaf, 988 path->slots[0]); 989 990 memzero_extent_buffer(leaf, item_offset + offset, 991 shift_len); 992 key.offset = bytenr; 993 994 /* 995 * btrfs_split_item returns -EAGAIN when the 996 * item changed size or key 997 */ 998 ret = btrfs_split_item(trans, root, path, &key, offset); 999 if (ret && ret != -EAGAIN) { 1000 btrfs_abort_transaction(trans, ret); 1001 break; 1002 } 1003 ret = 0; 1004 1005 key.offset = end_byte - 1; 1006 } else { 1007 truncate_one_csum(trans, path, &key, bytenr, len); 1008 if (key.offset < bytenr) 1009 break; 1010 } 1011 btrfs_release_path(path); 1012 } 1013 btrfs_free_path(path); 1014 return ret; 1015 } 1016 1017 static int find_next_csum_offset(struct btrfs_root *root, 1018 struct btrfs_path *path, 1019 u64 *next_offset) 1020 { 1021 const u32 nritems = btrfs_header_nritems(path->nodes[0]); 1022 struct btrfs_key found_key; 1023 int slot = path->slots[0] + 1; 1024 int ret; 1025 1026 if (nritems == 0 || slot >= nritems) { 1027 ret = btrfs_next_leaf(root, path); 1028 if (ret < 0) { 1029 return ret; 1030 } else if (ret > 0) { 1031 *next_offset = (u64)-1; 1032 return 0; 1033 } 1034 slot = path->slots[0]; 1035 } 1036 1037 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot); 1038 1039 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 1040 found_key.type != BTRFS_EXTENT_CSUM_KEY) 1041 *next_offset = (u64)-1; 1042 else 1043 *next_offset = found_key.offset; 1044 1045 return 0; 1046 } 1047 1048 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 1049 struct btrfs_root *root, 1050 struct btrfs_ordered_sum *sums) 1051 { 1052 struct btrfs_fs_info *fs_info = root->fs_info; 1053 struct btrfs_key file_key; 1054 struct btrfs_key found_key; 1055 struct btrfs_path *path; 1056 struct btrfs_csum_item *item; 1057 struct btrfs_csum_item *item_end; 1058 struct extent_buffer *leaf = NULL; 1059 u64 next_offset; 1060 u64 total_bytes = 0; 1061 u64 csum_offset; 1062 u64 bytenr; 1063 u32 ins_size; 1064 int index = 0; 1065 int found_next; 1066 int ret; 1067 const u32 csum_size = fs_info->csum_size; 1068 1069 path = btrfs_alloc_path(); 1070 if (!path) 1071 return -ENOMEM; 1072 again: 1073 next_offset = (u64)-1; 1074 found_next = 0; 1075 bytenr = sums->logical + total_bytes; 1076 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 1077 file_key.offset = bytenr; 1078 file_key.type = BTRFS_EXTENT_CSUM_KEY; 1079 1080 item = btrfs_lookup_csum(trans, root, path, bytenr, 1); 1081 if (!IS_ERR(item)) { 1082 ret = 0; 1083 leaf = path->nodes[0]; 1084 item_end = btrfs_item_ptr(leaf, path->slots[0], 1085 struct btrfs_csum_item); 1086 item_end = (struct btrfs_csum_item *)((char *)item_end + 1087 btrfs_item_size(leaf, path->slots[0])); 1088 goto found; 1089 } 1090 ret = PTR_ERR(item); 1091 if (ret != -EFBIG && ret != -ENOENT) 1092 goto out; 1093 1094 if (ret == -EFBIG) { 1095 u32 item_size; 1096 /* we found one, but it isn't big enough yet */ 1097 leaf = path->nodes[0]; 1098 item_size = btrfs_item_size(leaf, path->slots[0]); 1099 if ((item_size / csum_size) >= 1100 MAX_CSUM_ITEMS(fs_info, csum_size)) { 1101 /* already at max size, make a new one */ 1102 goto insert; 1103 } 1104 } else { 1105 /* We didn't find a csum item, insert one. */ 1106 ret = find_next_csum_offset(root, path, &next_offset); 1107 if (ret < 0) 1108 goto out; 1109 found_next = 1; 1110 goto insert; 1111 } 1112 1113 /* 1114 * At this point, we know the tree has a checksum item that ends at an 1115 * offset matching the start of the checksum range we want to insert. 1116 * We try to extend that item as much as possible and then add as many 1117 * checksums to it as they fit. 1118 * 1119 * First check if the leaf has enough free space for at least one 1120 * checksum. If it has go directly to the item extension code, otherwise 1121 * release the path and do a search for insertion before the extension. 1122 */ 1123 if (btrfs_leaf_free_space(leaf) >= csum_size) { 1124 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1125 csum_offset = (bytenr - found_key.offset) >> 1126 fs_info->sectorsize_bits; 1127 goto extend_csum; 1128 } 1129 1130 btrfs_release_path(path); 1131 path->search_for_extension = 1; 1132 ret = btrfs_search_slot(trans, root, &file_key, path, 1133 csum_size, 1); 1134 path->search_for_extension = 0; 1135 if (ret < 0) 1136 goto out; 1137 1138 if (ret > 0) { 1139 if (path->slots[0] == 0) 1140 goto insert; 1141 path->slots[0]--; 1142 } 1143 1144 leaf = path->nodes[0]; 1145 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1146 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits; 1147 1148 if (found_key.type != BTRFS_EXTENT_CSUM_KEY || 1149 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID || 1150 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) { 1151 goto insert; 1152 } 1153 1154 extend_csum: 1155 if (csum_offset == btrfs_item_size(leaf, path->slots[0]) / 1156 csum_size) { 1157 int extend_nr; 1158 u64 tmp; 1159 u32 diff; 1160 1161 tmp = sums->len - total_bytes; 1162 tmp >>= fs_info->sectorsize_bits; 1163 WARN_ON(tmp < 1); 1164 extend_nr = max_t(int, 1, tmp); 1165 1166 /* 1167 * A log tree can already have checksum items with a subset of 1168 * the checksums we are trying to log. This can happen after 1169 * doing a sequence of partial writes into prealloc extents and 1170 * fsyncs in between, with a full fsync logging a larger subrange 1171 * of an extent for which a previous fast fsync logged a smaller 1172 * subrange. And this happens in particular due to merging file 1173 * extent items when we complete an ordered extent for a range 1174 * covered by a prealloc extent - this is done at 1175 * btrfs_mark_extent_written(). 1176 * 1177 * So if we try to extend the previous checksum item, which has 1178 * a range that ends at the start of the range we want to insert, 1179 * make sure we don't extend beyond the start offset of the next 1180 * checksum item. If we are at the last item in the leaf, then 1181 * forget the optimization of extending and add a new checksum 1182 * item - it is not worth the complexity of releasing the path, 1183 * getting the first key for the next leaf, repeat the btree 1184 * search, etc, because log trees are temporary anyway and it 1185 * would only save a few bytes of leaf space. 1186 */ 1187 if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) { 1188 if (path->slots[0] + 1 >= 1189 btrfs_header_nritems(path->nodes[0])) { 1190 ret = find_next_csum_offset(root, path, &next_offset); 1191 if (ret < 0) 1192 goto out; 1193 found_next = 1; 1194 goto insert; 1195 } 1196 1197 ret = find_next_csum_offset(root, path, &next_offset); 1198 if (ret < 0) 1199 goto out; 1200 1201 tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits; 1202 if (tmp <= INT_MAX) 1203 extend_nr = min_t(int, extend_nr, tmp); 1204 } 1205 1206 diff = (csum_offset + extend_nr) * csum_size; 1207 diff = min(diff, 1208 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size); 1209 1210 diff = diff - btrfs_item_size(leaf, path->slots[0]); 1211 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff); 1212 diff /= csum_size; 1213 diff *= csum_size; 1214 1215 btrfs_extend_item(trans, path, diff); 1216 ret = 0; 1217 goto csum; 1218 } 1219 1220 insert: 1221 btrfs_release_path(path); 1222 csum_offset = 0; 1223 if (found_next) { 1224 u64 tmp; 1225 1226 tmp = sums->len - total_bytes; 1227 tmp >>= fs_info->sectorsize_bits; 1228 tmp = min(tmp, (next_offset - file_key.offset) >> 1229 fs_info->sectorsize_bits); 1230 1231 tmp = max_t(u64, 1, tmp); 1232 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size)); 1233 ins_size = csum_size * tmp; 1234 } else { 1235 ins_size = csum_size; 1236 } 1237 ret = btrfs_insert_empty_item(trans, root, path, &file_key, 1238 ins_size); 1239 if (ret < 0) 1240 goto out; 1241 leaf = path->nodes[0]; 1242 csum: 1243 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item); 1244 item_end = (struct btrfs_csum_item *)((unsigned char *)item + 1245 btrfs_item_size(leaf, path->slots[0])); 1246 item = (struct btrfs_csum_item *)((unsigned char *)item + 1247 csum_offset * csum_size); 1248 found: 1249 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits; 1250 ins_size *= csum_size; 1251 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item, 1252 ins_size); 1253 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item, 1254 ins_size); 1255 1256 index += ins_size; 1257 ins_size /= csum_size; 1258 total_bytes += ins_size * fs_info->sectorsize; 1259 1260 if (total_bytes < sums->len) { 1261 btrfs_release_path(path); 1262 cond_resched(); 1263 goto again; 1264 } 1265 out: 1266 btrfs_free_path(path); 1267 return ret; 1268 } 1269 1270 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 1271 const struct btrfs_path *path, 1272 const struct btrfs_file_extent_item *fi, 1273 struct extent_map *em) 1274 { 1275 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1276 struct btrfs_root *root = inode->root; 1277 struct extent_buffer *leaf = path->nodes[0]; 1278 const int slot = path->slots[0]; 1279 struct btrfs_key key; 1280 u64 extent_start; 1281 u8 type = btrfs_file_extent_type(leaf, fi); 1282 int compress_type = btrfs_file_extent_compression(leaf, fi); 1283 1284 btrfs_item_key_to_cpu(leaf, &key, slot); 1285 extent_start = key.offset; 1286 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1287 em->generation = btrfs_file_extent_generation(leaf, fi); 1288 if (type == BTRFS_FILE_EXTENT_REG || 1289 type == BTRFS_FILE_EXTENT_PREALLOC) { 1290 const u64 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1291 1292 em->start = extent_start; 1293 em->len = btrfs_file_extent_end(path) - extent_start; 1294 if (disk_bytenr == 0) { 1295 em->disk_bytenr = EXTENT_MAP_HOLE; 1296 em->disk_num_bytes = 0; 1297 em->offset = 0; 1298 return; 1299 } 1300 em->disk_bytenr = disk_bytenr; 1301 em->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1302 em->offset = btrfs_file_extent_offset(leaf, fi); 1303 if (compress_type != BTRFS_COMPRESS_NONE) { 1304 extent_map_set_compression(em, compress_type); 1305 } else { 1306 /* 1307 * Older kernels can create regular non-hole data 1308 * extents with ram_bytes smaller than disk_num_bytes. 1309 * Not a big deal, just always use disk_num_bytes 1310 * for ram_bytes. 1311 */ 1312 em->ram_bytes = em->disk_num_bytes; 1313 if (type == BTRFS_FILE_EXTENT_PREALLOC) 1314 em->flags |= EXTENT_FLAG_PREALLOC; 1315 } 1316 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 1317 /* Tree-checker has ensured this. */ 1318 ASSERT(extent_start == 0); 1319 1320 em->disk_bytenr = EXTENT_MAP_INLINE; 1321 em->start = 0; 1322 em->len = fs_info->sectorsize; 1323 em->offset = 0; 1324 extent_map_set_compression(em, compress_type); 1325 } else { 1326 btrfs_err(fs_info, 1327 "unknown file extent item type %d, inode %llu, offset %llu, " 1328 "root %llu", type, btrfs_ino(inode), extent_start, 1329 btrfs_root_id(root)); 1330 } 1331 } 1332 1333 /* 1334 * Returns the end offset (non inclusive) of the file extent item the given path 1335 * points to. If it points to an inline extent, the returned offset is rounded 1336 * up to the sector size. 1337 */ 1338 u64 btrfs_file_extent_end(const struct btrfs_path *path) 1339 { 1340 const struct extent_buffer *leaf = path->nodes[0]; 1341 const int slot = path->slots[0]; 1342 struct btrfs_file_extent_item *fi; 1343 struct btrfs_key key; 1344 u64 end; 1345 1346 btrfs_item_key_to_cpu(leaf, &key, slot); 1347 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 1348 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 1349 1350 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) 1351 end = leaf->fs_info->sectorsize; 1352 else 1353 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 1354 1355 return end; 1356 } 1357