xref: /linux/fs/btrfs/file-item.c (revision 1274b37ab31211beb0f1c6e12e059d6b58a6e40a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "messages.h"
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "bio.h"
18 #include "print-tree.h"
19 #include "compression.h"
20 #include "fs.h"
21 #include "accessors.h"
22 #include "file-item.h"
23 #include "super.h"
24 
25 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
26 				   sizeof(struct btrfs_item) * 2) / \
27 				  size) - 1))
28 
29 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
30 				       PAGE_SIZE))
31 
32 /*
33  * Set inode's size according to filesystem options.
34  *
35  * @inode:      inode we want to update the disk_i_size for
36  * @new_i_size: i_size we want to set to, 0 if we use i_size
37  *
38  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
39  * returns as it is perfectly fine with a file that has holes without hole file
40  * extent items.
41  *
42  * However without NO_HOLES we need to only return the area that is contiguous
43  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
44  * to an extent that has a gap in between.
45  *
46  * Finally new_i_size should only be set in the case of truncate where we're not
47  * ready to use i_size_read() as the limiter yet.
48  */
49 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
50 {
51 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
52 	u64 start, end, i_size;
53 	int ret;
54 
55 	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
56 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
57 		inode->disk_i_size = i_size;
58 		return;
59 	}
60 
61 	spin_lock(&inode->lock);
62 	ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
63 					 &end, EXTENT_DIRTY);
64 	if (!ret && start == 0)
65 		i_size = min(i_size, end + 1);
66 	else
67 		i_size = 0;
68 	inode->disk_i_size = i_size;
69 	spin_unlock(&inode->lock);
70 }
71 
72 /*
73  * Mark range within a file as having a new extent inserted.
74  *
75  * @inode: inode being modified
76  * @start: start file offset of the file extent we've inserted
77  * @len:   logical length of the file extent item
78  *
79  * Call when we are inserting a new file extent where there was none before.
80  * Does not need to call this in the case where we're replacing an existing file
81  * extent, however if not sure it's fine to call this multiple times.
82  *
83  * The start and len must match the file extent item, so thus must be sectorsize
84  * aligned.
85  */
86 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
87 				      u64 len)
88 {
89 	if (len == 0)
90 		return 0;
91 
92 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
93 
94 	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
95 		return 0;
96 	return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
97 			       EXTENT_DIRTY);
98 }
99 
100 /*
101  * Mark an inode range as not having a backing extent.
102  *
103  * @inode: inode being modified
104  * @start: start file offset of the file extent we've inserted
105  * @len:   logical length of the file extent item
106  *
107  * Called when we drop a file extent, for example when we truncate.  Doesn't
108  * need to be called for cases where we're replacing a file extent, like when
109  * we've COWed a file extent.
110  *
111  * The start and len must match the file extent item, so thus must be sectorsize
112  * aligned.
113  */
114 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
115 					u64 len)
116 {
117 	if (len == 0)
118 		return 0;
119 
120 	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
121 	       len == (u64)-1);
122 
123 	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
124 		return 0;
125 	return clear_extent_bit(&inode->file_extent_tree, start,
126 				start + len - 1, EXTENT_DIRTY, NULL);
127 }
128 
129 static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
130 {
131 	ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
132 
133 	return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
134 }
135 
136 static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
137 {
138 	ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
139 
140 	return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
141 }
142 
143 static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
144 {
145 	u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
146 				       fs_info->csum_size);
147 
148 	return csum_size_to_bytes(fs_info, max_csum_size);
149 }
150 
151 /*
152  * Calculate the total size needed to allocate for an ordered sum structure
153  * spanning @bytes in the file.
154  */
155 static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
156 {
157 	return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
158 }
159 
160 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
161 			     struct btrfs_root *root,
162 			     u64 objectid, u64 pos, u64 num_bytes)
163 {
164 	int ret = 0;
165 	struct btrfs_file_extent_item *item;
166 	struct btrfs_key file_key;
167 	struct btrfs_path *path;
168 	struct extent_buffer *leaf;
169 
170 	path = btrfs_alloc_path();
171 	if (!path)
172 		return -ENOMEM;
173 	file_key.objectid = objectid;
174 	file_key.offset = pos;
175 	file_key.type = BTRFS_EXTENT_DATA_KEY;
176 
177 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
178 				      sizeof(*item));
179 	if (ret < 0)
180 		goto out;
181 	BUG_ON(ret); /* Can't happen */
182 	leaf = path->nodes[0];
183 	item = btrfs_item_ptr(leaf, path->slots[0],
184 			      struct btrfs_file_extent_item);
185 	btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
186 	btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
187 	btrfs_set_file_extent_offset(leaf, item, 0);
188 	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
189 	btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
190 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
191 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
192 	btrfs_set_file_extent_compression(leaf, item, 0);
193 	btrfs_set_file_extent_encryption(leaf, item, 0);
194 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
195 
196 	btrfs_mark_buffer_dirty(leaf);
197 out:
198 	btrfs_free_path(path);
199 	return ret;
200 }
201 
202 static struct btrfs_csum_item *
203 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
204 		  struct btrfs_root *root,
205 		  struct btrfs_path *path,
206 		  u64 bytenr, int cow)
207 {
208 	struct btrfs_fs_info *fs_info = root->fs_info;
209 	int ret;
210 	struct btrfs_key file_key;
211 	struct btrfs_key found_key;
212 	struct btrfs_csum_item *item;
213 	struct extent_buffer *leaf;
214 	u64 csum_offset = 0;
215 	const u32 csum_size = fs_info->csum_size;
216 	int csums_in_item;
217 
218 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
219 	file_key.offset = bytenr;
220 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
221 	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
222 	if (ret < 0)
223 		goto fail;
224 	leaf = path->nodes[0];
225 	if (ret > 0) {
226 		ret = 1;
227 		if (path->slots[0] == 0)
228 			goto fail;
229 		path->slots[0]--;
230 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
231 		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
232 			goto fail;
233 
234 		csum_offset = (bytenr - found_key.offset) >>
235 				fs_info->sectorsize_bits;
236 		csums_in_item = btrfs_item_size(leaf, path->slots[0]);
237 		csums_in_item /= csum_size;
238 
239 		if (csum_offset == csums_in_item) {
240 			ret = -EFBIG;
241 			goto fail;
242 		} else if (csum_offset > csums_in_item) {
243 			goto fail;
244 		}
245 	}
246 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
247 	item = (struct btrfs_csum_item *)((unsigned char *)item +
248 					  csum_offset * csum_size);
249 	return item;
250 fail:
251 	if (ret > 0)
252 		ret = -ENOENT;
253 	return ERR_PTR(ret);
254 }
255 
256 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
257 			     struct btrfs_root *root,
258 			     struct btrfs_path *path, u64 objectid,
259 			     u64 offset, int mod)
260 {
261 	struct btrfs_key file_key;
262 	int ins_len = mod < 0 ? -1 : 0;
263 	int cow = mod != 0;
264 
265 	file_key.objectid = objectid;
266 	file_key.offset = offset;
267 	file_key.type = BTRFS_EXTENT_DATA_KEY;
268 
269 	return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
270 }
271 
272 /*
273  * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
274  * store the result to @dst.
275  *
276  * Return >0 for the number of sectors we found.
277  * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
278  * for it. Caller may want to try next sector until one range is hit.
279  * Return <0 for fatal error.
280  */
281 static int search_csum_tree(struct btrfs_fs_info *fs_info,
282 			    struct btrfs_path *path, u64 disk_bytenr,
283 			    u64 len, u8 *dst)
284 {
285 	struct btrfs_root *csum_root;
286 	struct btrfs_csum_item *item = NULL;
287 	struct btrfs_key key;
288 	const u32 sectorsize = fs_info->sectorsize;
289 	const u32 csum_size = fs_info->csum_size;
290 	u32 itemsize;
291 	int ret;
292 	u64 csum_start;
293 	u64 csum_len;
294 
295 	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
296 	       IS_ALIGNED(len, sectorsize));
297 
298 	/* Check if the current csum item covers disk_bytenr */
299 	if (path->nodes[0]) {
300 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
301 				      struct btrfs_csum_item);
302 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
303 		itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
304 
305 		csum_start = key.offset;
306 		csum_len = (itemsize / csum_size) * sectorsize;
307 
308 		if (in_range(disk_bytenr, csum_start, csum_len))
309 			goto found;
310 	}
311 
312 	/* Current item doesn't contain the desired range, search again */
313 	btrfs_release_path(path);
314 	csum_root = btrfs_csum_root(fs_info, disk_bytenr);
315 	item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
316 	if (IS_ERR(item)) {
317 		ret = PTR_ERR(item);
318 		goto out;
319 	}
320 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
321 	itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
322 
323 	csum_start = key.offset;
324 	csum_len = (itemsize / csum_size) * sectorsize;
325 	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
326 
327 found:
328 	ret = (min(csum_start + csum_len, disk_bytenr + len) -
329 		   disk_bytenr) >> fs_info->sectorsize_bits;
330 	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
331 			ret * csum_size);
332 out:
333 	if (ret == -ENOENT || ret == -EFBIG)
334 		ret = 0;
335 	return ret;
336 }
337 
338 /*
339  * Locate the file_offset of @cur_disk_bytenr of a @bio.
340  *
341  * Bio of btrfs represents read range of
342  * [bi_sector << 9, bi_sector << 9 + bi_size).
343  * Knowing this, we can iterate through each bvec to locate the page belong to
344  * @cur_disk_bytenr and get the file offset.
345  *
346  * @inode is used to determine if the bvec page really belongs to @inode.
347  *
348  * Return 0 if we can't find the file offset
349  * Return >0 if we find the file offset and restore it to @file_offset_ret
350  */
351 static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
352 				     u64 disk_bytenr, u64 *file_offset_ret)
353 {
354 	struct bvec_iter iter;
355 	struct bio_vec bvec;
356 	u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
357 	int ret = 0;
358 
359 	bio_for_each_segment(bvec, bio, iter) {
360 		struct page *page = bvec.bv_page;
361 
362 		if (cur > disk_bytenr)
363 			break;
364 		if (cur + bvec.bv_len <= disk_bytenr) {
365 			cur += bvec.bv_len;
366 			continue;
367 		}
368 		ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
369 		if (page->mapping && page->mapping->host &&
370 		    page->mapping->host == inode) {
371 			ret = 1;
372 			*file_offset_ret = page_offset(page) + bvec.bv_offset +
373 					   disk_bytenr - cur;
374 			break;
375 		}
376 	}
377 	return ret;
378 }
379 
380 /*
381  * Lookup the checksum for the read bio in csum tree.
382  *
383  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
384  */
385 blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
386 {
387 	struct btrfs_inode *inode = bbio->inode;
388 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
389 	struct extent_io_tree *io_tree = &inode->io_tree;
390 	struct bio *bio = &bbio->bio;
391 	struct btrfs_path *path;
392 	const u32 sectorsize = fs_info->sectorsize;
393 	const u32 csum_size = fs_info->csum_size;
394 	u32 orig_len = bio->bi_iter.bi_size;
395 	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
396 	u64 cur_disk_bytenr;
397 	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
398 	int count = 0;
399 	blk_status_t ret = BLK_STS_OK;
400 
401 	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
402 	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
403 		return BLK_STS_OK;
404 
405 	/*
406 	 * This function is only called for read bio.
407 	 *
408 	 * This means two things:
409 	 * - All our csums should only be in csum tree
410 	 *   No ordered extents csums, as ordered extents are only for write
411 	 *   path.
412 	 * - No need to bother any other info from bvec
413 	 *   Since we're looking up csums, the only important info is the
414 	 *   disk_bytenr and the length, which can be extracted from bi_iter
415 	 *   directly.
416 	 */
417 	ASSERT(bio_op(bio) == REQ_OP_READ);
418 	path = btrfs_alloc_path();
419 	if (!path)
420 		return BLK_STS_RESOURCE;
421 
422 	if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
423 		bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
424 		if (!bbio->csum) {
425 			btrfs_free_path(path);
426 			return BLK_STS_RESOURCE;
427 		}
428 	} else {
429 		bbio->csum = bbio->csum_inline;
430 	}
431 
432 	/*
433 	 * If requested number of sectors is larger than one leaf can contain,
434 	 * kick the readahead for csum tree.
435 	 */
436 	if (nblocks > fs_info->csums_per_leaf)
437 		path->reada = READA_FORWARD;
438 
439 	/*
440 	 * the free space stuff is only read when it hasn't been
441 	 * updated in the current transaction.  So, we can safely
442 	 * read from the commit root and sidestep a nasty deadlock
443 	 * between reading the free space cache and updating the csum tree.
444 	 */
445 	if (btrfs_is_free_space_inode(inode)) {
446 		path->search_commit_root = 1;
447 		path->skip_locking = 1;
448 	}
449 
450 	for (cur_disk_bytenr = orig_disk_bytenr;
451 	     cur_disk_bytenr < orig_disk_bytenr + orig_len;
452 	     cur_disk_bytenr += (count * sectorsize)) {
453 		u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
454 		unsigned int sector_offset;
455 		u8 *csum_dst;
456 
457 		/*
458 		 * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
459 		 * we're calculating the offset to the bio start.
460 		 *
461 		 * Bio size is limited to UINT_MAX, thus unsigned int is large
462 		 * enough to contain the raw result, not to mention the right
463 		 * shifted result.
464 		 */
465 		ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
466 		sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
467 				fs_info->sectorsize_bits;
468 		csum_dst = bbio->csum + sector_offset * csum_size;
469 
470 		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
471 					 search_len, csum_dst);
472 		if (count < 0) {
473 			ret = errno_to_blk_status(count);
474 			if (bbio->csum != bbio->csum_inline)
475 				kfree(bbio->csum);
476 			bbio->csum = NULL;
477 			break;
478 		}
479 
480 		/*
481 		 * We didn't find a csum for this range.  We need to make sure
482 		 * we complain loudly about this, because we are not NODATASUM.
483 		 *
484 		 * However for the DATA_RELOC inode we could potentially be
485 		 * relocating data extents for a NODATASUM inode, so the inode
486 		 * itself won't be marked with NODATASUM, but the extent we're
487 		 * copying is in fact NODATASUM.  If we don't find a csum we
488 		 * assume this is the case.
489 		 */
490 		if (count == 0) {
491 			memset(csum_dst, 0, csum_size);
492 			count = 1;
493 
494 			if (inode->root->root_key.objectid ==
495 			    BTRFS_DATA_RELOC_TREE_OBJECTID) {
496 				u64 file_offset;
497 				int ret;
498 
499 				ret = search_file_offset_in_bio(bio,
500 						&inode->vfs_inode,
501 						cur_disk_bytenr, &file_offset);
502 				if (ret)
503 					set_extent_bits(io_tree, file_offset,
504 						file_offset + sectorsize - 1,
505 						EXTENT_NODATASUM);
506 			} else {
507 				btrfs_warn_rl(fs_info,
508 			"csum hole found for disk bytenr range [%llu, %llu)",
509 				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
510 			}
511 		}
512 	}
513 
514 	btrfs_free_path(path);
515 	return ret;
516 }
517 
518 int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
519 			    struct list_head *list, int search_commit,
520 			    bool nowait)
521 {
522 	struct btrfs_fs_info *fs_info = root->fs_info;
523 	struct btrfs_key key;
524 	struct btrfs_path *path;
525 	struct extent_buffer *leaf;
526 	struct btrfs_ordered_sum *sums;
527 	struct btrfs_csum_item *item;
528 	LIST_HEAD(tmplist);
529 	int ret;
530 
531 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
532 	       IS_ALIGNED(end + 1, fs_info->sectorsize));
533 
534 	path = btrfs_alloc_path();
535 	if (!path)
536 		return -ENOMEM;
537 
538 	path->nowait = nowait;
539 	if (search_commit) {
540 		path->skip_locking = 1;
541 		path->reada = READA_FORWARD;
542 		path->search_commit_root = 1;
543 	}
544 
545 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
546 	key.offset = start;
547 	key.type = BTRFS_EXTENT_CSUM_KEY;
548 
549 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
550 	if (ret < 0)
551 		goto fail;
552 	if (ret > 0 && path->slots[0] > 0) {
553 		leaf = path->nodes[0];
554 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
555 
556 		/*
557 		 * There are two cases we can hit here for the previous csum
558 		 * item:
559 		 *
560 		 *		|<- search range ->|
561 		 *	|<- csum item ->|
562 		 *
563 		 * Or
564 		 *				|<- search range ->|
565 		 *	|<- csum item ->|
566 		 *
567 		 * Check if the previous csum item covers the leading part of
568 		 * the search range.  If so we have to start from previous csum
569 		 * item.
570 		 */
571 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
572 		    key.type == BTRFS_EXTENT_CSUM_KEY) {
573 			if (bytes_to_csum_size(fs_info, start - key.offset) <
574 			    btrfs_item_size(leaf, path->slots[0] - 1))
575 				path->slots[0]--;
576 		}
577 	}
578 
579 	while (start <= end) {
580 		u64 csum_end;
581 
582 		leaf = path->nodes[0];
583 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
584 			ret = btrfs_next_leaf(root, path);
585 			if (ret < 0)
586 				goto fail;
587 			if (ret > 0)
588 				break;
589 			leaf = path->nodes[0];
590 		}
591 
592 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
593 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
594 		    key.type != BTRFS_EXTENT_CSUM_KEY ||
595 		    key.offset > end)
596 			break;
597 
598 		if (key.offset > start)
599 			start = key.offset;
600 
601 		csum_end = key.offset + csum_size_to_bytes(fs_info,
602 					btrfs_item_size(leaf, path->slots[0]));
603 		if (csum_end <= start) {
604 			path->slots[0]++;
605 			continue;
606 		}
607 
608 		csum_end = min(csum_end, end + 1);
609 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
610 				      struct btrfs_csum_item);
611 		while (start < csum_end) {
612 			unsigned long offset;
613 			size_t size;
614 
615 			size = min_t(size_t, csum_end - start,
616 				     max_ordered_sum_bytes(fs_info));
617 			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
618 				       GFP_NOFS);
619 			if (!sums) {
620 				ret = -ENOMEM;
621 				goto fail;
622 			}
623 
624 			sums->bytenr = start;
625 			sums->len = (int)size;
626 
627 			offset = bytes_to_csum_size(fs_info, start - key.offset);
628 
629 			read_extent_buffer(path->nodes[0],
630 					   sums->sums,
631 					   ((unsigned long)item) + offset,
632 					   bytes_to_csum_size(fs_info, size));
633 
634 			start += size;
635 			list_add_tail(&sums->list, &tmplist);
636 		}
637 		path->slots[0]++;
638 	}
639 	ret = 0;
640 fail:
641 	while (ret < 0 && !list_empty(&tmplist)) {
642 		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
643 		list_del(&sums->list);
644 		kfree(sums);
645 	}
646 	list_splice_tail(&tmplist, list);
647 
648 	btrfs_free_path(path);
649 	return ret;
650 }
651 
652 /*
653  * Do the same work as btrfs_lookup_csums_list(), the difference is in how
654  * we return the result.
655  *
656  * This version will set the corresponding bits in @csum_bitmap to represent
657  * that there is a csum found.
658  * Each bit represents a sector. Thus caller should ensure @csum_buf passed
659  * in is large enough to contain all csums.
660  */
661 int btrfs_lookup_csums_bitmap(struct btrfs_root *root, u64 start, u64 end,
662 			      u8 *csum_buf, unsigned long *csum_bitmap)
663 {
664 	struct btrfs_fs_info *fs_info = root->fs_info;
665 	struct btrfs_key key;
666 	struct btrfs_path *path;
667 	struct extent_buffer *leaf;
668 	struct btrfs_csum_item *item;
669 	const u64 orig_start = start;
670 	int ret;
671 
672 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
673 	       IS_ALIGNED(end + 1, fs_info->sectorsize));
674 
675 	path = btrfs_alloc_path();
676 	if (!path)
677 		return -ENOMEM;
678 
679 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
680 	key.type = BTRFS_EXTENT_CSUM_KEY;
681 	key.offset = start;
682 
683 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
684 	if (ret < 0)
685 		goto fail;
686 	if (ret > 0 && path->slots[0] > 0) {
687 		leaf = path->nodes[0];
688 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
689 
690 		/*
691 		 * There are two cases we can hit here for the previous csum
692 		 * item:
693 		 *
694 		 *		|<- search range ->|
695 		 *	|<- csum item ->|
696 		 *
697 		 * Or
698 		 *				|<- search range ->|
699 		 *	|<- csum item ->|
700 		 *
701 		 * Check if the previous csum item covers the leading part of
702 		 * the search range.  If so we have to start from previous csum
703 		 * item.
704 		 */
705 		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
706 		    key.type == BTRFS_EXTENT_CSUM_KEY) {
707 			if (bytes_to_csum_size(fs_info, start - key.offset) <
708 			    btrfs_item_size(leaf, path->slots[0] - 1))
709 				path->slots[0]--;
710 		}
711 	}
712 
713 	while (start <= end) {
714 		u64 csum_end;
715 
716 		leaf = path->nodes[0];
717 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
718 			ret = btrfs_next_leaf(root, path);
719 			if (ret < 0)
720 				goto fail;
721 			if (ret > 0)
722 				break;
723 			leaf = path->nodes[0];
724 		}
725 
726 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
727 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
728 		    key.type != BTRFS_EXTENT_CSUM_KEY ||
729 		    key.offset > end)
730 			break;
731 
732 		if (key.offset > start)
733 			start = key.offset;
734 
735 		csum_end = key.offset + csum_size_to_bytes(fs_info,
736 					btrfs_item_size(leaf, path->slots[0]));
737 		if (csum_end <= start) {
738 			path->slots[0]++;
739 			continue;
740 		}
741 
742 		csum_end = min(csum_end, end + 1);
743 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
744 				      struct btrfs_csum_item);
745 		while (start < csum_end) {
746 			unsigned long offset;
747 			size_t size;
748 			u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
749 						start - orig_start);
750 
751 			size = min_t(size_t, csum_end - start, end + 1 - start);
752 
753 			offset = bytes_to_csum_size(fs_info, start - key.offset);
754 
755 			read_extent_buffer(path->nodes[0], csum_dest,
756 					   ((unsigned long)item) + offset,
757 					   bytes_to_csum_size(fs_info, size));
758 
759 			bitmap_set(csum_bitmap,
760 				(start - orig_start) >> fs_info->sectorsize_bits,
761 				size >> fs_info->sectorsize_bits);
762 
763 			start += size;
764 		}
765 		path->slots[0]++;
766 	}
767 	ret = 0;
768 fail:
769 	btrfs_free_path(path);
770 	return ret;
771 }
772 
773 /*
774  * Calculate checksums of the data contained inside a bio.
775  */
776 blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
777 {
778 	struct btrfs_inode *inode = bbio->inode;
779 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
780 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
781 	struct bio *bio = &bbio->bio;
782 	u64 offset = bbio->file_offset;
783 	struct btrfs_ordered_sum *sums;
784 	struct btrfs_ordered_extent *ordered = NULL;
785 	char *data;
786 	struct bvec_iter iter;
787 	struct bio_vec bvec;
788 	int index;
789 	unsigned int blockcount;
790 	unsigned long total_bytes = 0;
791 	unsigned long this_sum_bytes = 0;
792 	int i;
793 	unsigned nofs_flag;
794 
795 	nofs_flag = memalloc_nofs_save();
796 	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
797 		       GFP_KERNEL);
798 	memalloc_nofs_restore(nofs_flag);
799 
800 	if (!sums)
801 		return BLK_STS_RESOURCE;
802 
803 	sums->len = bio->bi_iter.bi_size;
804 	INIT_LIST_HEAD(&sums->list);
805 
806 	sums->bytenr = bio->bi_iter.bi_sector << 9;
807 	index = 0;
808 
809 	shash->tfm = fs_info->csum_shash;
810 
811 	bio_for_each_segment(bvec, bio, iter) {
812 		if (!ordered) {
813 			ordered = btrfs_lookup_ordered_extent(inode, offset);
814 			/*
815 			 * The bio range is not covered by any ordered extent,
816 			 * must be a code logic error.
817 			 */
818 			if (unlikely(!ordered)) {
819 				WARN(1, KERN_WARNING
820 			"no ordered extent for root %llu ino %llu offset %llu\n",
821 				     inode->root->root_key.objectid,
822 				     btrfs_ino(inode), offset);
823 				kvfree(sums);
824 				return BLK_STS_IOERR;
825 			}
826 		}
827 
828 		blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
829 						 bvec.bv_len + fs_info->sectorsize
830 						 - 1);
831 
832 		for (i = 0; i < blockcount; i++) {
833 			if (!(bio->bi_opf & REQ_BTRFS_ONE_ORDERED) &&
834 			    !in_range(offset, ordered->file_offset,
835 				      ordered->num_bytes)) {
836 				unsigned long bytes_left;
837 
838 				sums->len = this_sum_bytes;
839 				this_sum_bytes = 0;
840 				btrfs_add_ordered_sum(ordered, sums);
841 				btrfs_put_ordered_extent(ordered);
842 
843 				bytes_left = bio->bi_iter.bi_size - total_bytes;
844 
845 				nofs_flag = memalloc_nofs_save();
846 				sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
847 						      bytes_left), GFP_KERNEL);
848 				memalloc_nofs_restore(nofs_flag);
849 				BUG_ON(!sums); /* -ENOMEM */
850 				sums->len = bytes_left;
851 				ordered = btrfs_lookup_ordered_extent(inode,
852 								offset);
853 				ASSERT(ordered); /* Logic error */
854 				sums->bytenr = (bio->bi_iter.bi_sector << 9)
855 					+ total_bytes;
856 				index = 0;
857 			}
858 
859 			data = bvec_kmap_local(&bvec);
860 			crypto_shash_digest(shash,
861 					    data + (i * fs_info->sectorsize),
862 					    fs_info->sectorsize,
863 					    sums->sums + index);
864 			kunmap_local(data);
865 			index += fs_info->csum_size;
866 			offset += fs_info->sectorsize;
867 			this_sum_bytes += fs_info->sectorsize;
868 			total_bytes += fs_info->sectorsize;
869 		}
870 
871 	}
872 	this_sum_bytes = 0;
873 	btrfs_add_ordered_sum(ordered, sums);
874 	btrfs_put_ordered_extent(ordered);
875 	return 0;
876 }
877 
878 /*
879  * Remove one checksum overlapping a range.
880  *
881  * This expects the key to describe the csum pointed to by the path, and it
882  * expects the csum to overlap the range [bytenr, len]
883  *
884  * The csum should not be entirely contained in the range and the range should
885  * not be entirely contained in the csum.
886  *
887  * This calls btrfs_truncate_item with the correct args based on the overlap,
888  * and fixes up the key as required.
889  */
890 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
891 				       struct btrfs_path *path,
892 				       struct btrfs_key *key,
893 				       u64 bytenr, u64 len)
894 {
895 	struct extent_buffer *leaf;
896 	const u32 csum_size = fs_info->csum_size;
897 	u64 csum_end;
898 	u64 end_byte = bytenr + len;
899 	u32 blocksize_bits = fs_info->sectorsize_bits;
900 
901 	leaf = path->nodes[0];
902 	csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
903 	csum_end <<= blocksize_bits;
904 	csum_end += key->offset;
905 
906 	if (key->offset < bytenr && csum_end <= end_byte) {
907 		/*
908 		 *         [ bytenr - len ]
909 		 *         [   ]
910 		 *   [csum     ]
911 		 *   A simple truncate off the end of the item
912 		 */
913 		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
914 		new_size *= csum_size;
915 		btrfs_truncate_item(path, new_size, 1);
916 	} else if (key->offset >= bytenr && csum_end > end_byte &&
917 		   end_byte > key->offset) {
918 		/*
919 		 *         [ bytenr - len ]
920 		 *                 [ ]
921 		 *                 [csum     ]
922 		 * we need to truncate from the beginning of the csum
923 		 */
924 		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
925 		new_size *= csum_size;
926 
927 		btrfs_truncate_item(path, new_size, 0);
928 
929 		key->offset = end_byte;
930 		btrfs_set_item_key_safe(fs_info, path, key);
931 	} else {
932 		BUG();
933 	}
934 }
935 
936 /*
937  * Delete the csum items from the csum tree for a given range of bytes.
938  */
939 int btrfs_del_csums(struct btrfs_trans_handle *trans,
940 		    struct btrfs_root *root, u64 bytenr, u64 len)
941 {
942 	struct btrfs_fs_info *fs_info = trans->fs_info;
943 	struct btrfs_path *path;
944 	struct btrfs_key key;
945 	u64 end_byte = bytenr + len;
946 	u64 csum_end;
947 	struct extent_buffer *leaf;
948 	int ret = 0;
949 	const u32 csum_size = fs_info->csum_size;
950 	u32 blocksize_bits = fs_info->sectorsize_bits;
951 
952 	ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
953 	       root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
954 
955 	path = btrfs_alloc_path();
956 	if (!path)
957 		return -ENOMEM;
958 
959 	while (1) {
960 		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
961 		key.offset = end_byte - 1;
962 		key.type = BTRFS_EXTENT_CSUM_KEY;
963 
964 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
965 		if (ret > 0) {
966 			ret = 0;
967 			if (path->slots[0] == 0)
968 				break;
969 			path->slots[0]--;
970 		} else if (ret < 0) {
971 			break;
972 		}
973 
974 		leaf = path->nodes[0];
975 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
976 
977 		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
978 		    key.type != BTRFS_EXTENT_CSUM_KEY) {
979 			break;
980 		}
981 
982 		if (key.offset >= end_byte)
983 			break;
984 
985 		csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
986 		csum_end <<= blocksize_bits;
987 		csum_end += key.offset;
988 
989 		/* this csum ends before we start, we're done */
990 		if (csum_end <= bytenr)
991 			break;
992 
993 		/* delete the entire item, it is inside our range */
994 		if (key.offset >= bytenr && csum_end <= end_byte) {
995 			int del_nr = 1;
996 
997 			/*
998 			 * Check how many csum items preceding this one in this
999 			 * leaf correspond to our range and then delete them all
1000 			 * at once.
1001 			 */
1002 			if (key.offset > bytenr && path->slots[0] > 0) {
1003 				int slot = path->slots[0] - 1;
1004 
1005 				while (slot >= 0) {
1006 					struct btrfs_key pk;
1007 
1008 					btrfs_item_key_to_cpu(leaf, &pk, slot);
1009 					if (pk.offset < bytenr ||
1010 					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
1011 					    pk.objectid !=
1012 					    BTRFS_EXTENT_CSUM_OBJECTID)
1013 						break;
1014 					path->slots[0] = slot;
1015 					del_nr++;
1016 					key.offset = pk.offset;
1017 					slot--;
1018 				}
1019 			}
1020 			ret = btrfs_del_items(trans, root, path,
1021 					      path->slots[0], del_nr);
1022 			if (ret)
1023 				break;
1024 			if (key.offset == bytenr)
1025 				break;
1026 		} else if (key.offset < bytenr && csum_end > end_byte) {
1027 			unsigned long offset;
1028 			unsigned long shift_len;
1029 			unsigned long item_offset;
1030 			/*
1031 			 *        [ bytenr - len ]
1032 			 *     [csum                ]
1033 			 *
1034 			 * Our bytes are in the middle of the csum,
1035 			 * we need to split this item and insert a new one.
1036 			 *
1037 			 * But we can't drop the path because the
1038 			 * csum could change, get removed, extended etc.
1039 			 *
1040 			 * The trick here is the max size of a csum item leaves
1041 			 * enough room in the tree block for a single
1042 			 * item header.  So, we split the item in place,
1043 			 * adding a new header pointing to the existing
1044 			 * bytes.  Then we loop around again and we have
1045 			 * a nicely formed csum item that we can neatly
1046 			 * truncate.
1047 			 */
1048 			offset = (bytenr - key.offset) >> blocksize_bits;
1049 			offset *= csum_size;
1050 
1051 			shift_len = (len >> blocksize_bits) * csum_size;
1052 
1053 			item_offset = btrfs_item_ptr_offset(leaf,
1054 							    path->slots[0]);
1055 
1056 			memzero_extent_buffer(leaf, item_offset + offset,
1057 					     shift_len);
1058 			key.offset = bytenr;
1059 
1060 			/*
1061 			 * btrfs_split_item returns -EAGAIN when the
1062 			 * item changed size or key
1063 			 */
1064 			ret = btrfs_split_item(trans, root, path, &key, offset);
1065 			if (ret && ret != -EAGAIN) {
1066 				btrfs_abort_transaction(trans, ret);
1067 				break;
1068 			}
1069 			ret = 0;
1070 
1071 			key.offset = end_byte - 1;
1072 		} else {
1073 			truncate_one_csum(fs_info, path, &key, bytenr, len);
1074 			if (key.offset < bytenr)
1075 				break;
1076 		}
1077 		btrfs_release_path(path);
1078 	}
1079 	btrfs_free_path(path);
1080 	return ret;
1081 }
1082 
1083 static int find_next_csum_offset(struct btrfs_root *root,
1084 				 struct btrfs_path *path,
1085 				 u64 *next_offset)
1086 {
1087 	const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1088 	struct btrfs_key found_key;
1089 	int slot = path->slots[0] + 1;
1090 	int ret;
1091 
1092 	if (nritems == 0 || slot >= nritems) {
1093 		ret = btrfs_next_leaf(root, path);
1094 		if (ret < 0) {
1095 			return ret;
1096 		} else if (ret > 0) {
1097 			*next_offset = (u64)-1;
1098 			return 0;
1099 		}
1100 		slot = path->slots[0];
1101 	}
1102 
1103 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1104 
1105 	if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1106 	    found_key.type != BTRFS_EXTENT_CSUM_KEY)
1107 		*next_offset = (u64)-1;
1108 	else
1109 		*next_offset = found_key.offset;
1110 
1111 	return 0;
1112 }
1113 
1114 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1115 			   struct btrfs_root *root,
1116 			   struct btrfs_ordered_sum *sums)
1117 {
1118 	struct btrfs_fs_info *fs_info = root->fs_info;
1119 	struct btrfs_key file_key;
1120 	struct btrfs_key found_key;
1121 	struct btrfs_path *path;
1122 	struct btrfs_csum_item *item;
1123 	struct btrfs_csum_item *item_end;
1124 	struct extent_buffer *leaf = NULL;
1125 	u64 next_offset;
1126 	u64 total_bytes = 0;
1127 	u64 csum_offset;
1128 	u64 bytenr;
1129 	u32 ins_size;
1130 	int index = 0;
1131 	int found_next;
1132 	int ret;
1133 	const u32 csum_size = fs_info->csum_size;
1134 
1135 	path = btrfs_alloc_path();
1136 	if (!path)
1137 		return -ENOMEM;
1138 again:
1139 	next_offset = (u64)-1;
1140 	found_next = 0;
1141 	bytenr = sums->bytenr + total_bytes;
1142 	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1143 	file_key.offset = bytenr;
1144 	file_key.type = BTRFS_EXTENT_CSUM_KEY;
1145 
1146 	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1147 	if (!IS_ERR(item)) {
1148 		ret = 0;
1149 		leaf = path->nodes[0];
1150 		item_end = btrfs_item_ptr(leaf, path->slots[0],
1151 					  struct btrfs_csum_item);
1152 		item_end = (struct btrfs_csum_item *)((char *)item_end +
1153 			   btrfs_item_size(leaf, path->slots[0]));
1154 		goto found;
1155 	}
1156 	ret = PTR_ERR(item);
1157 	if (ret != -EFBIG && ret != -ENOENT)
1158 		goto out;
1159 
1160 	if (ret == -EFBIG) {
1161 		u32 item_size;
1162 		/* we found one, but it isn't big enough yet */
1163 		leaf = path->nodes[0];
1164 		item_size = btrfs_item_size(leaf, path->slots[0]);
1165 		if ((item_size / csum_size) >=
1166 		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
1167 			/* already at max size, make a new one */
1168 			goto insert;
1169 		}
1170 	} else {
1171 		/* We didn't find a csum item, insert one. */
1172 		ret = find_next_csum_offset(root, path, &next_offset);
1173 		if (ret < 0)
1174 			goto out;
1175 		found_next = 1;
1176 		goto insert;
1177 	}
1178 
1179 	/*
1180 	 * At this point, we know the tree has a checksum item that ends at an
1181 	 * offset matching the start of the checksum range we want to insert.
1182 	 * We try to extend that item as much as possible and then add as many
1183 	 * checksums to it as they fit.
1184 	 *
1185 	 * First check if the leaf has enough free space for at least one
1186 	 * checksum. If it has go directly to the item extension code, otherwise
1187 	 * release the path and do a search for insertion before the extension.
1188 	 */
1189 	if (btrfs_leaf_free_space(leaf) >= csum_size) {
1190 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1191 		csum_offset = (bytenr - found_key.offset) >>
1192 			fs_info->sectorsize_bits;
1193 		goto extend_csum;
1194 	}
1195 
1196 	btrfs_release_path(path);
1197 	path->search_for_extension = 1;
1198 	ret = btrfs_search_slot(trans, root, &file_key, path,
1199 				csum_size, 1);
1200 	path->search_for_extension = 0;
1201 	if (ret < 0)
1202 		goto out;
1203 
1204 	if (ret > 0) {
1205 		if (path->slots[0] == 0)
1206 			goto insert;
1207 		path->slots[0]--;
1208 	}
1209 
1210 	leaf = path->nodes[0];
1211 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1212 	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1213 
1214 	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1215 	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1216 	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1217 		goto insert;
1218 	}
1219 
1220 extend_csum:
1221 	if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1222 	    csum_size) {
1223 		int extend_nr;
1224 		u64 tmp;
1225 		u32 diff;
1226 
1227 		tmp = sums->len - total_bytes;
1228 		tmp >>= fs_info->sectorsize_bits;
1229 		WARN_ON(tmp < 1);
1230 		extend_nr = max_t(int, 1, tmp);
1231 
1232 		/*
1233 		 * A log tree can already have checksum items with a subset of
1234 		 * the checksums we are trying to log. This can happen after
1235 		 * doing a sequence of partial writes into prealloc extents and
1236 		 * fsyncs in between, with a full fsync logging a larger subrange
1237 		 * of an extent for which a previous fast fsync logged a smaller
1238 		 * subrange. And this happens in particular due to merging file
1239 		 * extent items when we complete an ordered extent for a range
1240 		 * covered by a prealloc extent - this is done at
1241 		 * btrfs_mark_extent_written().
1242 		 *
1243 		 * So if we try to extend the previous checksum item, which has
1244 		 * a range that ends at the start of the range we want to insert,
1245 		 * make sure we don't extend beyond the start offset of the next
1246 		 * checksum item. If we are at the last item in the leaf, then
1247 		 * forget the optimization of extending and add a new checksum
1248 		 * item - it is not worth the complexity of releasing the path,
1249 		 * getting the first key for the next leaf, repeat the btree
1250 		 * search, etc, because log trees are temporary anyway and it
1251 		 * would only save a few bytes of leaf space.
1252 		 */
1253 		if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1254 			if (path->slots[0] + 1 >=
1255 			    btrfs_header_nritems(path->nodes[0])) {
1256 				ret = find_next_csum_offset(root, path, &next_offset);
1257 				if (ret < 0)
1258 					goto out;
1259 				found_next = 1;
1260 				goto insert;
1261 			}
1262 
1263 			ret = find_next_csum_offset(root, path, &next_offset);
1264 			if (ret < 0)
1265 				goto out;
1266 
1267 			tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1268 			if (tmp <= INT_MAX)
1269 				extend_nr = min_t(int, extend_nr, tmp);
1270 		}
1271 
1272 		diff = (csum_offset + extend_nr) * csum_size;
1273 		diff = min(diff,
1274 			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1275 
1276 		diff = diff - btrfs_item_size(leaf, path->slots[0]);
1277 		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1278 		diff /= csum_size;
1279 		diff *= csum_size;
1280 
1281 		btrfs_extend_item(path, diff);
1282 		ret = 0;
1283 		goto csum;
1284 	}
1285 
1286 insert:
1287 	btrfs_release_path(path);
1288 	csum_offset = 0;
1289 	if (found_next) {
1290 		u64 tmp;
1291 
1292 		tmp = sums->len - total_bytes;
1293 		tmp >>= fs_info->sectorsize_bits;
1294 		tmp = min(tmp, (next_offset - file_key.offset) >>
1295 					 fs_info->sectorsize_bits);
1296 
1297 		tmp = max_t(u64, 1, tmp);
1298 		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1299 		ins_size = csum_size * tmp;
1300 	} else {
1301 		ins_size = csum_size;
1302 	}
1303 	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1304 				      ins_size);
1305 	if (ret < 0)
1306 		goto out;
1307 	if (WARN_ON(ret != 0))
1308 		goto out;
1309 	leaf = path->nodes[0];
1310 csum:
1311 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1312 	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1313 				      btrfs_item_size(leaf, path->slots[0]));
1314 	item = (struct btrfs_csum_item *)((unsigned char *)item +
1315 					  csum_offset * csum_size);
1316 found:
1317 	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1318 	ins_size *= csum_size;
1319 	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1320 			      ins_size);
1321 	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1322 			    ins_size);
1323 
1324 	index += ins_size;
1325 	ins_size /= csum_size;
1326 	total_bytes += ins_size * fs_info->sectorsize;
1327 
1328 	btrfs_mark_buffer_dirty(path->nodes[0]);
1329 	if (total_bytes < sums->len) {
1330 		btrfs_release_path(path);
1331 		cond_resched();
1332 		goto again;
1333 	}
1334 out:
1335 	btrfs_free_path(path);
1336 	return ret;
1337 }
1338 
1339 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1340 				     const struct btrfs_path *path,
1341 				     struct btrfs_file_extent_item *fi,
1342 				     struct extent_map *em)
1343 {
1344 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1345 	struct btrfs_root *root = inode->root;
1346 	struct extent_buffer *leaf = path->nodes[0];
1347 	const int slot = path->slots[0];
1348 	struct btrfs_key key;
1349 	u64 extent_start, extent_end;
1350 	u64 bytenr;
1351 	u8 type = btrfs_file_extent_type(leaf, fi);
1352 	int compress_type = btrfs_file_extent_compression(leaf, fi);
1353 
1354 	btrfs_item_key_to_cpu(leaf, &key, slot);
1355 	extent_start = key.offset;
1356 	extent_end = btrfs_file_extent_end(path);
1357 	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1358 	em->generation = btrfs_file_extent_generation(leaf, fi);
1359 	if (type == BTRFS_FILE_EXTENT_REG ||
1360 	    type == BTRFS_FILE_EXTENT_PREALLOC) {
1361 		em->start = extent_start;
1362 		em->len = extent_end - extent_start;
1363 		em->orig_start = extent_start -
1364 			btrfs_file_extent_offset(leaf, fi);
1365 		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1366 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1367 		if (bytenr == 0) {
1368 			em->block_start = EXTENT_MAP_HOLE;
1369 			return;
1370 		}
1371 		if (compress_type != BTRFS_COMPRESS_NONE) {
1372 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1373 			em->compress_type = compress_type;
1374 			em->block_start = bytenr;
1375 			em->block_len = em->orig_block_len;
1376 		} else {
1377 			bytenr += btrfs_file_extent_offset(leaf, fi);
1378 			em->block_start = bytenr;
1379 			em->block_len = em->len;
1380 			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1381 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1382 		}
1383 	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1384 		em->block_start = EXTENT_MAP_INLINE;
1385 		em->start = extent_start;
1386 		em->len = extent_end - extent_start;
1387 		/*
1388 		 * Initialize orig_start and block_len with the same values
1389 		 * as in inode.c:btrfs_get_extent().
1390 		 */
1391 		em->orig_start = EXTENT_MAP_HOLE;
1392 		em->block_len = (u64)-1;
1393 		em->compress_type = compress_type;
1394 		if (compress_type != BTRFS_COMPRESS_NONE)
1395 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1396 	} else {
1397 		btrfs_err(fs_info,
1398 			  "unknown file extent item type %d, inode %llu, offset %llu, "
1399 			  "root %llu", type, btrfs_ino(inode), extent_start,
1400 			  root->root_key.objectid);
1401 	}
1402 }
1403 
1404 /*
1405  * Returns the end offset (non inclusive) of the file extent item the given path
1406  * points to. If it points to an inline extent, the returned offset is rounded
1407  * up to the sector size.
1408  */
1409 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1410 {
1411 	const struct extent_buffer *leaf = path->nodes[0];
1412 	const int slot = path->slots[0];
1413 	struct btrfs_file_extent_item *fi;
1414 	struct btrfs_key key;
1415 	u64 end;
1416 
1417 	btrfs_item_key_to_cpu(leaf, &key, slot);
1418 	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1419 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1420 
1421 	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1422 		end = btrfs_file_extent_ram_bytes(leaf, fi);
1423 		end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1424 	} else {
1425 		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1426 	}
1427 
1428 	return end;
1429 }
1430