1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/bitops.h> 3 #include <linux/slab.h> 4 #include <linux/bio.h> 5 #include <linux/mm.h> 6 #include <linux/pagemap.h> 7 #include <linux/page-flags.h> 8 #include <linux/spinlock.h> 9 #include <linux/blkdev.h> 10 #include <linux/swap.h> 11 #include <linux/writeback.h> 12 #include <linux/pagevec.h> 13 #include <linux/prefetch.h> 14 #include <linux/cleancache.h> 15 #include "extent_io.h" 16 #include "extent_map.h" 17 #include "ctree.h" 18 #include "btrfs_inode.h" 19 #include "volumes.h" 20 #include "check-integrity.h" 21 #include "locking.h" 22 #include "rcu-string.h" 23 #include "backref.h" 24 25 static struct kmem_cache *extent_state_cache; 26 static struct kmem_cache *extent_buffer_cache; 27 static struct bio_set *btrfs_bioset; 28 29 static inline bool extent_state_in_tree(const struct extent_state *state) 30 { 31 return !RB_EMPTY_NODE(&state->rb_node); 32 } 33 34 #ifdef CONFIG_BTRFS_DEBUG 35 static LIST_HEAD(buffers); 36 static LIST_HEAD(states); 37 38 static DEFINE_SPINLOCK(leak_lock); 39 40 static inline 41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 42 { 43 unsigned long flags; 44 45 spin_lock_irqsave(&leak_lock, flags); 46 list_add(new, head); 47 spin_unlock_irqrestore(&leak_lock, flags); 48 } 49 50 static inline 51 void btrfs_leak_debug_del(struct list_head *entry) 52 { 53 unsigned long flags; 54 55 spin_lock_irqsave(&leak_lock, flags); 56 list_del(entry); 57 spin_unlock_irqrestore(&leak_lock, flags); 58 } 59 60 static inline 61 void btrfs_leak_debug_check(void) 62 { 63 struct extent_state *state; 64 struct extent_buffer *eb; 65 66 while (!list_empty(&states)) { 67 state = list_entry(states.next, struct extent_state, leak_list); 68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 69 state->start, state->end, state->state, 70 extent_state_in_tree(state), 71 refcount_read(&state->refs)); 72 list_del(&state->leak_list); 73 kmem_cache_free(extent_state_cache, state); 74 } 75 76 while (!list_empty(&buffers)) { 77 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n", 79 eb->start, eb->len, atomic_read(&eb->refs)); 80 list_del(&eb->leak_list); 81 kmem_cache_free(extent_buffer_cache, eb); 82 } 83 } 84 85 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 87 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 88 struct extent_io_tree *tree, u64 start, u64 end) 89 { 90 if (tree->ops && tree->ops->check_extent_io_range) 91 tree->ops->check_extent_io_range(tree->private_data, caller, 92 start, end); 93 } 94 #else 95 #define btrfs_leak_debug_add(new, head) do {} while (0) 96 #define btrfs_leak_debug_del(entry) do {} while (0) 97 #define btrfs_leak_debug_check() do {} while (0) 98 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 99 #endif 100 101 #define BUFFER_LRU_MAX 64 102 103 struct tree_entry { 104 u64 start; 105 u64 end; 106 struct rb_node rb_node; 107 }; 108 109 struct extent_page_data { 110 struct bio *bio; 111 struct extent_io_tree *tree; 112 get_extent_t *get_extent; 113 114 /* tells writepage not to lock the state bits for this range 115 * it still does the unlocking 116 */ 117 unsigned int extent_locked:1; 118 119 /* tells the submit_bio code to use REQ_SYNC */ 120 unsigned int sync_io:1; 121 }; 122 123 static void add_extent_changeset(struct extent_state *state, unsigned bits, 124 struct extent_changeset *changeset, 125 int set) 126 { 127 int ret; 128 129 if (!changeset) 130 return; 131 if (set && (state->state & bits) == bits) 132 return; 133 if (!set && (state->state & bits) == 0) 134 return; 135 changeset->bytes_changed += state->end - state->start + 1; 136 ret = ulist_add(&changeset->range_changed, state->start, state->end, 137 GFP_ATOMIC); 138 /* ENOMEM */ 139 BUG_ON(ret < 0); 140 } 141 142 static noinline void flush_write_bio(void *data); 143 static inline struct btrfs_fs_info * 144 tree_fs_info(struct extent_io_tree *tree) 145 { 146 if (tree->ops) 147 return tree->ops->tree_fs_info(tree->private_data); 148 return NULL; 149 } 150 151 int __init extent_io_init(void) 152 { 153 extent_state_cache = kmem_cache_create("btrfs_extent_state", 154 sizeof(struct extent_state), 0, 155 SLAB_MEM_SPREAD, NULL); 156 if (!extent_state_cache) 157 return -ENOMEM; 158 159 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 160 sizeof(struct extent_buffer), 0, 161 SLAB_MEM_SPREAD, NULL); 162 if (!extent_buffer_cache) 163 goto free_state_cache; 164 165 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 166 offsetof(struct btrfs_io_bio, bio), 167 BIOSET_NEED_BVECS); 168 if (!btrfs_bioset) 169 goto free_buffer_cache; 170 171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 172 goto free_bioset; 173 174 return 0; 175 176 free_bioset: 177 bioset_free(btrfs_bioset); 178 btrfs_bioset = NULL; 179 180 free_buffer_cache: 181 kmem_cache_destroy(extent_buffer_cache); 182 extent_buffer_cache = NULL; 183 184 free_state_cache: 185 kmem_cache_destroy(extent_state_cache); 186 extent_state_cache = NULL; 187 return -ENOMEM; 188 } 189 190 void extent_io_exit(void) 191 { 192 btrfs_leak_debug_check(); 193 194 /* 195 * Make sure all delayed rcu free are flushed before we 196 * destroy caches. 197 */ 198 rcu_barrier(); 199 kmem_cache_destroy(extent_state_cache); 200 kmem_cache_destroy(extent_buffer_cache); 201 if (btrfs_bioset) 202 bioset_free(btrfs_bioset); 203 } 204 205 void extent_io_tree_init(struct extent_io_tree *tree, 206 void *private_data) 207 { 208 tree->state = RB_ROOT; 209 tree->ops = NULL; 210 tree->dirty_bytes = 0; 211 spin_lock_init(&tree->lock); 212 tree->private_data = private_data; 213 } 214 215 static struct extent_state *alloc_extent_state(gfp_t mask) 216 { 217 struct extent_state *state; 218 219 /* 220 * The given mask might be not appropriate for the slab allocator, 221 * drop the unsupported bits 222 */ 223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 224 state = kmem_cache_alloc(extent_state_cache, mask); 225 if (!state) 226 return state; 227 state->state = 0; 228 state->failrec = NULL; 229 RB_CLEAR_NODE(&state->rb_node); 230 btrfs_leak_debug_add(&state->leak_list, &states); 231 refcount_set(&state->refs, 1); 232 init_waitqueue_head(&state->wq); 233 trace_alloc_extent_state(state, mask, _RET_IP_); 234 return state; 235 } 236 237 void free_extent_state(struct extent_state *state) 238 { 239 if (!state) 240 return; 241 if (refcount_dec_and_test(&state->refs)) { 242 WARN_ON(extent_state_in_tree(state)); 243 btrfs_leak_debug_del(&state->leak_list); 244 trace_free_extent_state(state, _RET_IP_); 245 kmem_cache_free(extent_state_cache, state); 246 } 247 } 248 249 static struct rb_node *tree_insert(struct rb_root *root, 250 struct rb_node *search_start, 251 u64 offset, 252 struct rb_node *node, 253 struct rb_node ***p_in, 254 struct rb_node **parent_in) 255 { 256 struct rb_node **p; 257 struct rb_node *parent = NULL; 258 struct tree_entry *entry; 259 260 if (p_in && parent_in) { 261 p = *p_in; 262 parent = *parent_in; 263 goto do_insert; 264 } 265 266 p = search_start ? &search_start : &root->rb_node; 267 while (*p) { 268 parent = *p; 269 entry = rb_entry(parent, struct tree_entry, rb_node); 270 271 if (offset < entry->start) 272 p = &(*p)->rb_left; 273 else if (offset > entry->end) 274 p = &(*p)->rb_right; 275 else 276 return parent; 277 } 278 279 do_insert: 280 rb_link_node(node, parent, p); 281 rb_insert_color(node, root); 282 return NULL; 283 } 284 285 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 286 struct rb_node **prev_ret, 287 struct rb_node **next_ret, 288 struct rb_node ***p_ret, 289 struct rb_node **parent_ret) 290 { 291 struct rb_root *root = &tree->state; 292 struct rb_node **n = &root->rb_node; 293 struct rb_node *prev = NULL; 294 struct rb_node *orig_prev = NULL; 295 struct tree_entry *entry; 296 struct tree_entry *prev_entry = NULL; 297 298 while (*n) { 299 prev = *n; 300 entry = rb_entry(prev, struct tree_entry, rb_node); 301 prev_entry = entry; 302 303 if (offset < entry->start) 304 n = &(*n)->rb_left; 305 else if (offset > entry->end) 306 n = &(*n)->rb_right; 307 else 308 return *n; 309 } 310 311 if (p_ret) 312 *p_ret = n; 313 if (parent_ret) 314 *parent_ret = prev; 315 316 if (prev_ret) { 317 orig_prev = prev; 318 while (prev && offset > prev_entry->end) { 319 prev = rb_next(prev); 320 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 321 } 322 *prev_ret = prev; 323 prev = orig_prev; 324 } 325 326 if (next_ret) { 327 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 328 while (prev && offset < prev_entry->start) { 329 prev = rb_prev(prev); 330 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 331 } 332 *next_ret = prev; 333 } 334 return NULL; 335 } 336 337 static inline struct rb_node * 338 tree_search_for_insert(struct extent_io_tree *tree, 339 u64 offset, 340 struct rb_node ***p_ret, 341 struct rb_node **parent_ret) 342 { 343 struct rb_node *prev = NULL; 344 struct rb_node *ret; 345 346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 347 if (!ret) 348 return prev; 349 return ret; 350 } 351 352 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 353 u64 offset) 354 { 355 return tree_search_for_insert(tree, offset, NULL, NULL); 356 } 357 358 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 359 struct extent_state *other) 360 { 361 if (tree->ops && tree->ops->merge_extent_hook) 362 tree->ops->merge_extent_hook(tree->private_data, new, other); 363 } 364 365 /* 366 * utility function to look for merge candidates inside a given range. 367 * Any extents with matching state are merged together into a single 368 * extent in the tree. Extents with EXTENT_IO in their state field 369 * are not merged because the end_io handlers need to be able to do 370 * operations on them without sleeping (or doing allocations/splits). 371 * 372 * This should be called with the tree lock held. 373 */ 374 static void merge_state(struct extent_io_tree *tree, 375 struct extent_state *state) 376 { 377 struct extent_state *other; 378 struct rb_node *other_node; 379 380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 381 return; 382 383 other_node = rb_prev(&state->rb_node); 384 if (other_node) { 385 other = rb_entry(other_node, struct extent_state, rb_node); 386 if (other->end == state->start - 1 && 387 other->state == state->state) { 388 merge_cb(tree, state, other); 389 state->start = other->start; 390 rb_erase(&other->rb_node, &tree->state); 391 RB_CLEAR_NODE(&other->rb_node); 392 free_extent_state(other); 393 } 394 } 395 other_node = rb_next(&state->rb_node); 396 if (other_node) { 397 other = rb_entry(other_node, struct extent_state, rb_node); 398 if (other->start == state->end + 1 && 399 other->state == state->state) { 400 merge_cb(tree, state, other); 401 state->end = other->end; 402 rb_erase(&other->rb_node, &tree->state); 403 RB_CLEAR_NODE(&other->rb_node); 404 free_extent_state(other); 405 } 406 } 407 } 408 409 static void set_state_cb(struct extent_io_tree *tree, 410 struct extent_state *state, unsigned *bits) 411 { 412 if (tree->ops && tree->ops->set_bit_hook) 413 tree->ops->set_bit_hook(tree->private_data, state, bits); 414 } 415 416 static void clear_state_cb(struct extent_io_tree *tree, 417 struct extent_state *state, unsigned *bits) 418 { 419 if (tree->ops && tree->ops->clear_bit_hook) 420 tree->ops->clear_bit_hook(tree->private_data, state, bits); 421 } 422 423 static void set_state_bits(struct extent_io_tree *tree, 424 struct extent_state *state, unsigned *bits, 425 struct extent_changeset *changeset); 426 427 /* 428 * insert an extent_state struct into the tree. 'bits' are set on the 429 * struct before it is inserted. 430 * 431 * This may return -EEXIST if the extent is already there, in which case the 432 * state struct is freed. 433 * 434 * The tree lock is not taken internally. This is a utility function and 435 * probably isn't what you want to call (see set/clear_extent_bit). 436 */ 437 static int insert_state(struct extent_io_tree *tree, 438 struct extent_state *state, u64 start, u64 end, 439 struct rb_node ***p, 440 struct rb_node **parent, 441 unsigned *bits, struct extent_changeset *changeset) 442 { 443 struct rb_node *node; 444 445 if (end < start) 446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 447 end, start); 448 state->start = start; 449 state->end = end; 450 451 set_state_bits(tree, state, bits, changeset); 452 453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 454 if (node) { 455 struct extent_state *found; 456 found = rb_entry(node, struct extent_state, rb_node); 457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n", 458 found->start, found->end, start, end); 459 return -EEXIST; 460 } 461 merge_state(tree, state); 462 return 0; 463 } 464 465 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 466 u64 split) 467 { 468 if (tree->ops && tree->ops->split_extent_hook) 469 tree->ops->split_extent_hook(tree->private_data, orig, split); 470 } 471 472 /* 473 * split a given extent state struct in two, inserting the preallocated 474 * struct 'prealloc' as the newly created second half. 'split' indicates an 475 * offset inside 'orig' where it should be split. 476 * 477 * Before calling, 478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 479 * are two extent state structs in the tree: 480 * prealloc: [orig->start, split - 1] 481 * orig: [ split, orig->end ] 482 * 483 * The tree locks are not taken by this function. They need to be held 484 * by the caller. 485 */ 486 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 487 struct extent_state *prealloc, u64 split) 488 { 489 struct rb_node *node; 490 491 split_cb(tree, orig, split); 492 493 prealloc->start = orig->start; 494 prealloc->end = split - 1; 495 prealloc->state = orig->state; 496 orig->start = split; 497 498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 499 &prealloc->rb_node, NULL, NULL); 500 if (node) { 501 free_extent_state(prealloc); 502 return -EEXIST; 503 } 504 return 0; 505 } 506 507 static struct extent_state *next_state(struct extent_state *state) 508 { 509 struct rb_node *next = rb_next(&state->rb_node); 510 if (next) 511 return rb_entry(next, struct extent_state, rb_node); 512 else 513 return NULL; 514 } 515 516 /* 517 * utility function to clear some bits in an extent state struct. 518 * it will optionally wake up any one waiting on this state (wake == 1). 519 * 520 * If no bits are set on the state struct after clearing things, the 521 * struct is freed and removed from the tree 522 */ 523 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 524 struct extent_state *state, 525 unsigned *bits, int wake, 526 struct extent_changeset *changeset) 527 { 528 struct extent_state *next; 529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 530 531 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 532 u64 range = state->end - state->start + 1; 533 WARN_ON(range > tree->dirty_bytes); 534 tree->dirty_bytes -= range; 535 } 536 clear_state_cb(tree, state, bits); 537 add_extent_changeset(state, bits_to_clear, changeset, 0); 538 state->state &= ~bits_to_clear; 539 if (wake) 540 wake_up(&state->wq); 541 if (state->state == 0) { 542 next = next_state(state); 543 if (extent_state_in_tree(state)) { 544 rb_erase(&state->rb_node, &tree->state); 545 RB_CLEAR_NODE(&state->rb_node); 546 free_extent_state(state); 547 } else { 548 WARN_ON(1); 549 } 550 } else { 551 merge_state(tree, state); 552 next = next_state(state); 553 } 554 return next; 555 } 556 557 static struct extent_state * 558 alloc_extent_state_atomic(struct extent_state *prealloc) 559 { 560 if (!prealloc) 561 prealloc = alloc_extent_state(GFP_ATOMIC); 562 563 return prealloc; 564 } 565 566 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 567 { 568 btrfs_panic(tree_fs_info(tree), err, 569 "Locking error: Extent tree was modified by another thread while locked."); 570 } 571 572 /* 573 * clear some bits on a range in the tree. This may require splitting 574 * or inserting elements in the tree, so the gfp mask is used to 575 * indicate which allocations or sleeping are allowed. 576 * 577 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 578 * the given range from the tree regardless of state (ie for truncate). 579 * 580 * the range [start, end] is inclusive. 581 * 582 * This takes the tree lock, and returns 0 on success and < 0 on error. 583 */ 584 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 585 unsigned bits, int wake, int delete, 586 struct extent_state **cached_state, 587 gfp_t mask, struct extent_changeset *changeset) 588 { 589 struct extent_state *state; 590 struct extent_state *cached; 591 struct extent_state *prealloc = NULL; 592 struct rb_node *node; 593 u64 last_end; 594 int err; 595 int clear = 0; 596 597 btrfs_debug_check_extent_io_range(tree, start, end); 598 599 if (bits & EXTENT_DELALLOC) 600 bits |= EXTENT_NORESERVE; 601 602 if (delete) 603 bits |= ~EXTENT_CTLBITS; 604 bits |= EXTENT_FIRST_DELALLOC; 605 606 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 607 clear = 1; 608 again: 609 if (!prealloc && gfpflags_allow_blocking(mask)) { 610 /* 611 * Don't care for allocation failure here because we might end 612 * up not needing the pre-allocated extent state at all, which 613 * is the case if we only have in the tree extent states that 614 * cover our input range and don't cover too any other range. 615 * If we end up needing a new extent state we allocate it later. 616 */ 617 prealloc = alloc_extent_state(mask); 618 } 619 620 spin_lock(&tree->lock); 621 if (cached_state) { 622 cached = *cached_state; 623 624 if (clear) { 625 *cached_state = NULL; 626 cached_state = NULL; 627 } 628 629 if (cached && extent_state_in_tree(cached) && 630 cached->start <= start && cached->end > start) { 631 if (clear) 632 refcount_dec(&cached->refs); 633 state = cached; 634 goto hit_next; 635 } 636 if (clear) 637 free_extent_state(cached); 638 } 639 /* 640 * this search will find the extents that end after 641 * our range starts 642 */ 643 node = tree_search(tree, start); 644 if (!node) 645 goto out; 646 state = rb_entry(node, struct extent_state, rb_node); 647 hit_next: 648 if (state->start > end) 649 goto out; 650 WARN_ON(state->end < start); 651 last_end = state->end; 652 653 /* the state doesn't have the wanted bits, go ahead */ 654 if (!(state->state & bits)) { 655 state = next_state(state); 656 goto next; 657 } 658 659 /* 660 * | ---- desired range ---- | 661 * | state | or 662 * | ------------- state -------------- | 663 * 664 * We need to split the extent we found, and may flip 665 * bits on second half. 666 * 667 * If the extent we found extends past our range, we 668 * just split and search again. It'll get split again 669 * the next time though. 670 * 671 * If the extent we found is inside our range, we clear 672 * the desired bit on it. 673 */ 674 675 if (state->start < start) { 676 prealloc = alloc_extent_state_atomic(prealloc); 677 BUG_ON(!prealloc); 678 err = split_state(tree, state, prealloc, start); 679 if (err) 680 extent_io_tree_panic(tree, err); 681 682 prealloc = NULL; 683 if (err) 684 goto out; 685 if (state->end <= end) { 686 state = clear_state_bit(tree, state, &bits, wake, 687 changeset); 688 goto next; 689 } 690 goto search_again; 691 } 692 /* 693 * | ---- desired range ---- | 694 * | state | 695 * We need to split the extent, and clear the bit 696 * on the first half 697 */ 698 if (state->start <= end && state->end > end) { 699 prealloc = alloc_extent_state_atomic(prealloc); 700 BUG_ON(!prealloc); 701 err = split_state(tree, state, prealloc, end + 1); 702 if (err) 703 extent_io_tree_panic(tree, err); 704 705 if (wake) 706 wake_up(&state->wq); 707 708 clear_state_bit(tree, prealloc, &bits, wake, changeset); 709 710 prealloc = NULL; 711 goto out; 712 } 713 714 state = clear_state_bit(tree, state, &bits, wake, changeset); 715 next: 716 if (last_end == (u64)-1) 717 goto out; 718 start = last_end + 1; 719 if (start <= end && state && !need_resched()) 720 goto hit_next; 721 722 search_again: 723 if (start > end) 724 goto out; 725 spin_unlock(&tree->lock); 726 if (gfpflags_allow_blocking(mask)) 727 cond_resched(); 728 goto again; 729 730 out: 731 spin_unlock(&tree->lock); 732 if (prealloc) 733 free_extent_state(prealloc); 734 735 return 0; 736 737 } 738 739 static void wait_on_state(struct extent_io_tree *tree, 740 struct extent_state *state) 741 __releases(tree->lock) 742 __acquires(tree->lock) 743 { 744 DEFINE_WAIT(wait); 745 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 746 spin_unlock(&tree->lock); 747 schedule(); 748 spin_lock(&tree->lock); 749 finish_wait(&state->wq, &wait); 750 } 751 752 /* 753 * waits for one or more bits to clear on a range in the state tree. 754 * The range [start, end] is inclusive. 755 * The tree lock is taken by this function 756 */ 757 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 758 unsigned long bits) 759 { 760 struct extent_state *state; 761 struct rb_node *node; 762 763 btrfs_debug_check_extent_io_range(tree, start, end); 764 765 spin_lock(&tree->lock); 766 again: 767 while (1) { 768 /* 769 * this search will find all the extents that end after 770 * our range starts 771 */ 772 node = tree_search(tree, start); 773 process_node: 774 if (!node) 775 break; 776 777 state = rb_entry(node, struct extent_state, rb_node); 778 779 if (state->start > end) 780 goto out; 781 782 if (state->state & bits) { 783 start = state->start; 784 refcount_inc(&state->refs); 785 wait_on_state(tree, state); 786 free_extent_state(state); 787 goto again; 788 } 789 start = state->end + 1; 790 791 if (start > end) 792 break; 793 794 if (!cond_resched_lock(&tree->lock)) { 795 node = rb_next(node); 796 goto process_node; 797 } 798 } 799 out: 800 spin_unlock(&tree->lock); 801 } 802 803 static void set_state_bits(struct extent_io_tree *tree, 804 struct extent_state *state, 805 unsigned *bits, struct extent_changeset *changeset) 806 { 807 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 808 809 set_state_cb(tree, state, bits); 810 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 811 u64 range = state->end - state->start + 1; 812 tree->dirty_bytes += range; 813 } 814 add_extent_changeset(state, bits_to_set, changeset, 1); 815 state->state |= bits_to_set; 816 } 817 818 static void cache_state_if_flags(struct extent_state *state, 819 struct extent_state **cached_ptr, 820 unsigned flags) 821 { 822 if (cached_ptr && !(*cached_ptr)) { 823 if (!flags || (state->state & flags)) { 824 *cached_ptr = state; 825 refcount_inc(&state->refs); 826 } 827 } 828 } 829 830 static void cache_state(struct extent_state *state, 831 struct extent_state **cached_ptr) 832 { 833 return cache_state_if_flags(state, cached_ptr, 834 EXTENT_IOBITS | EXTENT_BOUNDARY); 835 } 836 837 /* 838 * set some bits on a range in the tree. This may require allocations or 839 * sleeping, so the gfp mask is used to indicate what is allowed. 840 * 841 * If any of the exclusive bits are set, this will fail with -EEXIST if some 842 * part of the range already has the desired bits set. The start of the 843 * existing range is returned in failed_start in this case. 844 * 845 * [start, end] is inclusive This takes the tree lock. 846 */ 847 848 static int __must_check 849 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 850 unsigned bits, unsigned exclusive_bits, 851 u64 *failed_start, struct extent_state **cached_state, 852 gfp_t mask, struct extent_changeset *changeset) 853 { 854 struct extent_state *state; 855 struct extent_state *prealloc = NULL; 856 struct rb_node *node; 857 struct rb_node **p; 858 struct rb_node *parent; 859 int err = 0; 860 u64 last_start; 861 u64 last_end; 862 863 btrfs_debug_check_extent_io_range(tree, start, end); 864 865 bits |= EXTENT_FIRST_DELALLOC; 866 again: 867 if (!prealloc && gfpflags_allow_blocking(mask)) { 868 /* 869 * Don't care for allocation failure here because we might end 870 * up not needing the pre-allocated extent state at all, which 871 * is the case if we only have in the tree extent states that 872 * cover our input range and don't cover too any other range. 873 * If we end up needing a new extent state we allocate it later. 874 */ 875 prealloc = alloc_extent_state(mask); 876 } 877 878 spin_lock(&tree->lock); 879 if (cached_state && *cached_state) { 880 state = *cached_state; 881 if (state->start <= start && state->end > start && 882 extent_state_in_tree(state)) { 883 node = &state->rb_node; 884 goto hit_next; 885 } 886 } 887 /* 888 * this search will find all the extents that end after 889 * our range starts. 890 */ 891 node = tree_search_for_insert(tree, start, &p, &parent); 892 if (!node) { 893 prealloc = alloc_extent_state_atomic(prealloc); 894 BUG_ON(!prealloc); 895 err = insert_state(tree, prealloc, start, end, 896 &p, &parent, &bits, changeset); 897 if (err) 898 extent_io_tree_panic(tree, err); 899 900 cache_state(prealloc, cached_state); 901 prealloc = NULL; 902 goto out; 903 } 904 state = rb_entry(node, struct extent_state, rb_node); 905 hit_next: 906 last_start = state->start; 907 last_end = state->end; 908 909 /* 910 * | ---- desired range ---- | 911 * | state | 912 * 913 * Just lock what we found and keep going 914 */ 915 if (state->start == start && state->end <= end) { 916 if (state->state & exclusive_bits) { 917 *failed_start = state->start; 918 err = -EEXIST; 919 goto out; 920 } 921 922 set_state_bits(tree, state, &bits, changeset); 923 cache_state(state, cached_state); 924 merge_state(tree, state); 925 if (last_end == (u64)-1) 926 goto out; 927 start = last_end + 1; 928 state = next_state(state); 929 if (start < end && state && state->start == start && 930 !need_resched()) 931 goto hit_next; 932 goto search_again; 933 } 934 935 /* 936 * | ---- desired range ---- | 937 * | state | 938 * or 939 * | ------------- state -------------- | 940 * 941 * We need to split the extent we found, and may flip bits on 942 * second half. 943 * 944 * If the extent we found extends past our 945 * range, we just split and search again. It'll get split 946 * again the next time though. 947 * 948 * If the extent we found is inside our range, we set the 949 * desired bit on it. 950 */ 951 if (state->start < start) { 952 if (state->state & exclusive_bits) { 953 *failed_start = start; 954 err = -EEXIST; 955 goto out; 956 } 957 958 prealloc = alloc_extent_state_atomic(prealloc); 959 BUG_ON(!prealloc); 960 err = split_state(tree, state, prealloc, start); 961 if (err) 962 extent_io_tree_panic(tree, err); 963 964 prealloc = NULL; 965 if (err) 966 goto out; 967 if (state->end <= end) { 968 set_state_bits(tree, state, &bits, changeset); 969 cache_state(state, cached_state); 970 merge_state(tree, state); 971 if (last_end == (u64)-1) 972 goto out; 973 start = last_end + 1; 974 state = next_state(state); 975 if (start < end && state && state->start == start && 976 !need_resched()) 977 goto hit_next; 978 } 979 goto search_again; 980 } 981 /* 982 * | ---- desired range ---- | 983 * | state | or | state | 984 * 985 * There's a hole, we need to insert something in it and 986 * ignore the extent we found. 987 */ 988 if (state->start > start) { 989 u64 this_end; 990 if (end < last_start) 991 this_end = end; 992 else 993 this_end = last_start - 1; 994 995 prealloc = alloc_extent_state_atomic(prealloc); 996 BUG_ON(!prealloc); 997 998 /* 999 * Avoid to free 'prealloc' if it can be merged with 1000 * the later extent. 1001 */ 1002 err = insert_state(tree, prealloc, start, this_end, 1003 NULL, NULL, &bits, changeset); 1004 if (err) 1005 extent_io_tree_panic(tree, err); 1006 1007 cache_state(prealloc, cached_state); 1008 prealloc = NULL; 1009 start = this_end + 1; 1010 goto search_again; 1011 } 1012 /* 1013 * | ---- desired range ---- | 1014 * | state | 1015 * We need to split the extent, and set the bit 1016 * on the first half 1017 */ 1018 if (state->start <= end && state->end > end) { 1019 if (state->state & exclusive_bits) { 1020 *failed_start = start; 1021 err = -EEXIST; 1022 goto out; 1023 } 1024 1025 prealloc = alloc_extent_state_atomic(prealloc); 1026 BUG_ON(!prealloc); 1027 err = split_state(tree, state, prealloc, end + 1); 1028 if (err) 1029 extent_io_tree_panic(tree, err); 1030 1031 set_state_bits(tree, prealloc, &bits, changeset); 1032 cache_state(prealloc, cached_state); 1033 merge_state(tree, prealloc); 1034 prealloc = NULL; 1035 goto out; 1036 } 1037 1038 search_again: 1039 if (start > end) 1040 goto out; 1041 spin_unlock(&tree->lock); 1042 if (gfpflags_allow_blocking(mask)) 1043 cond_resched(); 1044 goto again; 1045 1046 out: 1047 spin_unlock(&tree->lock); 1048 if (prealloc) 1049 free_extent_state(prealloc); 1050 1051 return err; 1052 1053 } 1054 1055 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1056 unsigned bits, u64 * failed_start, 1057 struct extent_state **cached_state, gfp_t mask) 1058 { 1059 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1060 cached_state, mask, NULL); 1061 } 1062 1063 1064 /** 1065 * convert_extent_bit - convert all bits in a given range from one bit to 1066 * another 1067 * @tree: the io tree to search 1068 * @start: the start offset in bytes 1069 * @end: the end offset in bytes (inclusive) 1070 * @bits: the bits to set in this range 1071 * @clear_bits: the bits to clear in this range 1072 * @cached_state: state that we're going to cache 1073 * 1074 * This will go through and set bits for the given range. If any states exist 1075 * already in this range they are set with the given bit and cleared of the 1076 * clear_bits. This is only meant to be used by things that are mergeable, ie 1077 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1078 * boundary bits like LOCK. 1079 * 1080 * All allocations are done with GFP_NOFS. 1081 */ 1082 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1083 unsigned bits, unsigned clear_bits, 1084 struct extent_state **cached_state) 1085 { 1086 struct extent_state *state; 1087 struct extent_state *prealloc = NULL; 1088 struct rb_node *node; 1089 struct rb_node **p; 1090 struct rb_node *parent; 1091 int err = 0; 1092 u64 last_start; 1093 u64 last_end; 1094 bool first_iteration = true; 1095 1096 btrfs_debug_check_extent_io_range(tree, start, end); 1097 1098 again: 1099 if (!prealloc) { 1100 /* 1101 * Best effort, don't worry if extent state allocation fails 1102 * here for the first iteration. We might have a cached state 1103 * that matches exactly the target range, in which case no 1104 * extent state allocations are needed. We'll only know this 1105 * after locking the tree. 1106 */ 1107 prealloc = alloc_extent_state(GFP_NOFS); 1108 if (!prealloc && !first_iteration) 1109 return -ENOMEM; 1110 } 1111 1112 spin_lock(&tree->lock); 1113 if (cached_state && *cached_state) { 1114 state = *cached_state; 1115 if (state->start <= start && state->end > start && 1116 extent_state_in_tree(state)) { 1117 node = &state->rb_node; 1118 goto hit_next; 1119 } 1120 } 1121 1122 /* 1123 * this search will find all the extents that end after 1124 * our range starts. 1125 */ 1126 node = tree_search_for_insert(tree, start, &p, &parent); 1127 if (!node) { 1128 prealloc = alloc_extent_state_atomic(prealloc); 1129 if (!prealloc) { 1130 err = -ENOMEM; 1131 goto out; 1132 } 1133 err = insert_state(tree, prealloc, start, end, 1134 &p, &parent, &bits, NULL); 1135 if (err) 1136 extent_io_tree_panic(tree, err); 1137 cache_state(prealloc, cached_state); 1138 prealloc = NULL; 1139 goto out; 1140 } 1141 state = rb_entry(node, struct extent_state, rb_node); 1142 hit_next: 1143 last_start = state->start; 1144 last_end = state->end; 1145 1146 /* 1147 * | ---- desired range ---- | 1148 * | state | 1149 * 1150 * Just lock what we found and keep going 1151 */ 1152 if (state->start == start && state->end <= end) { 1153 set_state_bits(tree, state, &bits, NULL); 1154 cache_state(state, cached_state); 1155 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1156 if (last_end == (u64)-1) 1157 goto out; 1158 start = last_end + 1; 1159 if (start < end && state && state->start == start && 1160 !need_resched()) 1161 goto hit_next; 1162 goto search_again; 1163 } 1164 1165 /* 1166 * | ---- desired range ---- | 1167 * | state | 1168 * or 1169 * | ------------- state -------------- | 1170 * 1171 * We need to split the extent we found, and may flip bits on 1172 * second half. 1173 * 1174 * If the extent we found extends past our 1175 * range, we just split and search again. It'll get split 1176 * again the next time though. 1177 * 1178 * If the extent we found is inside our range, we set the 1179 * desired bit on it. 1180 */ 1181 if (state->start < start) { 1182 prealloc = alloc_extent_state_atomic(prealloc); 1183 if (!prealloc) { 1184 err = -ENOMEM; 1185 goto out; 1186 } 1187 err = split_state(tree, state, prealloc, start); 1188 if (err) 1189 extent_io_tree_panic(tree, err); 1190 prealloc = NULL; 1191 if (err) 1192 goto out; 1193 if (state->end <= end) { 1194 set_state_bits(tree, state, &bits, NULL); 1195 cache_state(state, cached_state); 1196 state = clear_state_bit(tree, state, &clear_bits, 0, 1197 NULL); 1198 if (last_end == (u64)-1) 1199 goto out; 1200 start = last_end + 1; 1201 if (start < end && state && state->start == start && 1202 !need_resched()) 1203 goto hit_next; 1204 } 1205 goto search_again; 1206 } 1207 /* 1208 * | ---- desired range ---- | 1209 * | state | or | state | 1210 * 1211 * There's a hole, we need to insert something in it and 1212 * ignore the extent we found. 1213 */ 1214 if (state->start > start) { 1215 u64 this_end; 1216 if (end < last_start) 1217 this_end = end; 1218 else 1219 this_end = last_start - 1; 1220 1221 prealloc = alloc_extent_state_atomic(prealloc); 1222 if (!prealloc) { 1223 err = -ENOMEM; 1224 goto out; 1225 } 1226 1227 /* 1228 * Avoid to free 'prealloc' if it can be merged with 1229 * the later extent. 1230 */ 1231 err = insert_state(tree, prealloc, start, this_end, 1232 NULL, NULL, &bits, NULL); 1233 if (err) 1234 extent_io_tree_panic(tree, err); 1235 cache_state(prealloc, cached_state); 1236 prealloc = NULL; 1237 start = this_end + 1; 1238 goto search_again; 1239 } 1240 /* 1241 * | ---- desired range ---- | 1242 * | state | 1243 * We need to split the extent, and set the bit 1244 * on the first half 1245 */ 1246 if (state->start <= end && state->end > end) { 1247 prealloc = alloc_extent_state_atomic(prealloc); 1248 if (!prealloc) { 1249 err = -ENOMEM; 1250 goto out; 1251 } 1252 1253 err = split_state(tree, state, prealloc, end + 1); 1254 if (err) 1255 extent_io_tree_panic(tree, err); 1256 1257 set_state_bits(tree, prealloc, &bits, NULL); 1258 cache_state(prealloc, cached_state); 1259 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1260 prealloc = NULL; 1261 goto out; 1262 } 1263 1264 search_again: 1265 if (start > end) 1266 goto out; 1267 spin_unlock(&tree->lock); 1268 cond_resched(); 1269 first_iteration = false; 1270 goto again; 1271 1272 out: 1273 spin_unlock(&tree->lock); 1274 if (prealloc) 1275 free_extent_state(prealloc); 1276 1277 return err; 1278 } 1279 1280 /* wrappers around set/clear extent bit */ 1281 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1282 unsigned bits, struct extent_changeset *changeset) 1283 { 1284 /* 1285 * We don't support EXTENT_LOCKED yet, as current changeset will 1286 * record any bits changed, so for EXTENT_LOCKED case, it will 1287 * either fail with -EEXIST or changeset will record the whole 1288 * range. 1289 */ 1290 BUG_ON(bits & EXTENT_LOCKED); 1291 1292 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1293 changeset); 1294 } 1295 1296 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1297 unsigned bits, int wake, int delete, 1298 struct extent_state **cached, gfp_t mask) 1299 { 1300 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1301 cached, mask, NULL); 1302 } 1303 1304 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1305 unsigned bits, struct extent_changeset *changeset) 1306 { 1307 /* 1308 * Don't support EXTENT_LOCKED case, same reason as 1309 * set_record_extent_bits(). 1310 */ 1311 BUG_ON(bits & EXTENT_LOCKED); 1312 1313 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1314 changeset); 1315 } 1316 1317 /* 1318 * either insert or lock state struct between start and end use mask to tell 1319 * us if waiting is desired. 1320 */ 1321 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1322 struct extent_state **cached_state) 1323 { 1324 int err; 1325 u64 failed_start; 1326 1327 while (1) { 1328 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1329 EXTENT_LOCKED, &failed_start, 1330 cached_state, GFP_NOFS, NULL); 1331 if (err == -EEXIST) { 1332 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1333 start = failed_start; 1334 } else 1335 break; 1336 WARN_ON(start > end); 1337 } 1338 return err; 1339 } 1340 1341 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1342 { 1343 int err; 1344 u64 failed_start; 1345 1346 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1347 &failed_start, NULL, GFP_NOFS, NULL); 1348 if (err == -EEXIST) { 1349 if (failed_start > start) 1350 clear_extent_bit(tree, start, failed_start - 1, 1351 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1352 return 0; 1353 } 1354 return 1; 1355 } 1356 1357 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1358 { 1359 unsigned long index = start >> PAGE_SHIFT; 1360 unsigned long end_index = end >> PAGE_SHIFT; 1361 struct page *page; 1362 1363 while (index <= end_index) { 1364 page = find_get_page(inode->i_mapping, index); 1365 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1366 clear_page_dirty_for_io(page); 1367 put_page(page); 1368 index++; 1369 } 1370 } 1371 1372 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1373 { 1374 unsigned long index = start >> PAGE_SHIFT; 1375 unsigned long end_index = end >> PAGE_SHIFT; 1376 struct page *page; 1377 1378 while (index <= end_index) { 1379 page = find_get_page(inode->i_mapping, index); 1380 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1381 __set_page_dirty_nobuffers(page); 1382 account_page_redirty(page); 1383 put_page(page); 1384 index++; 1385 } 1386 } 1387 1388 /* 1389 * helper function to set both pages and extents in the tree writeback 1390 */ 1391 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1392 { 1393 tree->ops->set_range_writeback(tree->private_data, start, end); 1394 } 1395 1396 /* find the first state struct with 'bits' set after 'start', and 1397 * return it. tree->lock must be held. NULL will returned if 1398 * nothing was found after 'start' 1399 */ 1400 static struct extent_state * 1401 find_first_extent_bit_state(struct extent_io_tree *tree, 1402 u64 start, unsigned bits) 1403 { 1404 struct rb_node *node; 1405 struct extent_state *state; 1406 1407 /* 1408 * this search will find all the extents that end after 1409 * our range starts. 1410 */ 1411 node = tree_search(tree, start); 1412 if (!node) 1413 goto out; 1414 1415 while (1) { 1416 state = rb_entry(node, struct extent_state, rb_node); 1417 if (state->end >= start && (state->state & bits)) 1418 return state; 1419 1420 node = rb_next(node); 1421 if (!node) 1422 break; 1423 } 1424 out: 1425 return NULL; 1426 } 1427 1428 /* 1429 * find the first offset in the io tree with 'bits' set. zero is 1430 * returned if we find something, and *start_ret and *end_ret are 1431 * set to reflect the state struct that was found. 1432 * 1433 * If nothing was found, 1 is returned. If found something, return 0. 1434 */ 1435 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1436 u64 *start_ret, u64 *end_ret, unsigned bits, 1437 struct extent_state **cached_state) 1438 { 1439 struct extent_state *state; 1440 struct rb_node *n; 1441 int ret = 1; 1442 1443 spin_lock(&tree->lock); 1444 if (cached_state && *cached_state) { 1445 state = *cached_state; 1446 if (state->end == start - 1 && extent_state_in_tree(state)) { 1447 n = rb_next(&state->rb_node); 1448 while (n) { 1449 state = rb_entry(n, struct extent_state, 1450 rb_node); 1451 if (state->state & bits) 1452 goto got_it; 1453 n = rb_next(n); 1454 } 1455 free_extent_state(*cached_state); 1456 *cached_state = NULL; 1457 goto out; 1458 } 1459 free_extent_state(*cached_state); 1460 *cached_state = NULL; 1461 } 1462 1463 state = find_first_extent_bit_state(tree, start, bits); 1464 got_it: 1465 if (state) { 1466 cache_state_if_flags(state, cached_state, 0); 1467 *start_ret = state->start; 1468 *end_ret = state->end; 1469 ret = 0; 1470 } 1471 out: 1472 spin_unlock(&tree->lock); 1473 return ret; 1474 } 1475 1476 /* 1477 * find a contiguous range of bytes in the file marked as delalloc, not 1478 * more than 'max_bytes'. start and end are used to return the range, 1479 * 1480 * 1 is returned if we find something, 0 if nothing was in the tree 1481 */ 1482 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1483 u64 *start, u64 *end, u64 max_bytes, 1484 struct extent_state **cached_state) 1485 { 1486 struct rb_node *node; 1487 struct extent_state *state; 1488 u64 cur_start = *start; 1489 u64 found = 0; 1490 u64 total_bytes = 0; 1491 1492 spin_lock(&tree->lock); 1493 1494 /* 1495 * this search will find all the extents that end after 1496 * our range starts. 1497 */ 1498 node = tree_search(tree, cur_start); 1499 if (!node) { 1500 if (!found) 1501 *end = (u64)-1; 1502 goto out; 1503 } 1504 1505 while (1) { 1506 state = rb_entry(node, struct extent_state, rb_node); 1507 if (found && (state->start != cur_start || 1508 (state->state & EXTENT_BOUNDARY))) { 1509 goto out; 1510 } 1511 if (!(state->state & EXTENT_DELALLOC)) { 1512 if (!found) 1513 *end = state->end; 1514 goto out; 1515 } 1516 if (!found) { 1517 *start = state->start; 1518 *cached_state = state; 1519 refcount_inc(&state->refs); 1520 } 1521 found++; 1522 *end = state->end; 1523 cur_start = state->end + 1; 1524 node = rb_next(node); 1525 total_bytes += state->end - state->start + 1; 1526 if (total_bytes >= max_bytes) 1527 break; 1528 if (!node) 1529 break; 1530 } 1531 out: 1532 spin_unlock(&tree->lock); 1533 return found; 1534 } 1535 1536 static int __process_pages_contig(struct address_space *mapping, 1537 struct page *locked_page, 1538 pgoff_t start_index, pgoff_t end_index, 1539 unsigned long page_ops, pgoff_t *index_ret); 1540 1541 static noinline void __unlock_for_delalloc(struct inode *inode, 1542 struct page *locked_page, 1543 u64 start, u64 end) 1544 { 1545 unsigned long index = start >> PAGE_SHIFT; 1546 unsigned long end_index = end >> PAGE_SHIFT; 1547 1548 ASSERT(locked_page); 1549 if (index == locked_page->index && end_index == index) 1550 return; 1551 1552 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1553 PAGE_UNLOCK, NULL); 1554 } 1555 1556 static noinline int lock_delalloc_pages(struct inode *inode, 1557 struct page *locked_page, 1558 u64 delalloc_start, 1559 u64 delalloc_end) 1560 { 1561 unsigned long index = delalloc_start >> PAGE_SHIFT; 1562 unsigned long index_ret = index; 1563 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1564 int ret; 1565 1566 ASSERT(locked_page); 1567 if (index == locked_page->index && index == end_index) 1568 return 0; 1569 1570 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1571 end_index, PAGE_LOCK, &index_ret); 1572 if (ret == -EAGAIN) 1573 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1574 (u64)index_ret << PAGE_SHIFT); 1575 return ret; 1576 } 1577 1578 /* 1579 * find a contiguous range of bytes in the file marked as delalloc, not 1580 * more than 'max_bytes'. start and end are used to return the range, 1581 * 1582 * 1 is returned if we find something, 0 if nothing was in the tree 1583 */ 1584 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1585 struct extent_io_tree *tree, 1586 struct page *locked_page, u64 *start, 1587 u64 *end, u64 max_bytes) 1588 { 1589 u64 delalloc_start; 1590 u64 delalloc_end; 1591 u64 found; 1592 struct extent_state *cached_state = NULL; 1593 int ret; 1594 int loops = 0; 1595 1596 again: 1597 /* step one, find a bunch of delalloc bytes starting at start */ 1598 delalloc_start = *start; 1599 delalloc_end = 0; 1600 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1601 max_bytes, &cached_state); 1602 if (!found || delalloc_end <= *start) { 1603 *start = delalloc_start; 1604 *end = delalloc_end; 1605 free_extent_state(cached_state); 1606 return 0; 1607 } 1608 1609 /* 1610 * start comes from the offset of locked_page. We have to lock 1611 * pages in order, so we can't process delalloc bytes before 1612 * locked_page 1613 */ 1614 if (delalloc_start < *start) 1615 delalloc_start = *start; 1616 1617 /* 1618 * make sure to limit the number of pages we try to lock down 1619 */ 1620 if (delalloc_end + 1 - delalloc_start > max_bytes) 1621 delalloc_end = delalloc_start + max_bytes - 1; 1622 1623 /* step two, lock all the pages after the page that has start */ 1624 ret = lock_delalloc_pages(inode, locked_page, 1625 delalloc_start, delalloc_end); 1626 if (ret == -EAGAIN) { 1627 /* some of the pages are gone, lets avoid looping by 1628 * shortening the size of the delalloc range we're searching 1629 */ 1630 free_extent_state(cached_state); 1631 cached_state = NULL; 1632 if (!loops) { 1633 max_bytes = PAGE_SIZE; 1634 loops = 1; 1635 goto again; 1636 } else { 1637 found = 0; 1638 goto out_failed; 1639 } 1640 } 1641 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1642 1643 /* step three, lock the state bits for the whole range */ 1644 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1645 1646 /* then test to make sure it is all still delalloc */ 1647 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1648 EXTENT_DELALLOC, 1, cached_state); 1649 if (!ret) { 1650 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1651 &cached_state, GFP_NOFS); 1652 __unlock_for_delalloc(inode, locked_page, 1653 delalloc_start, delalloc_end); 1654 cond_resched(); 1655 goto again; 1656 } 1657 free_extent_state(cached_state); 1658 *start = delalloc_start; 1659 *end = delalloc_end; 1660 out_failed: 1661 return found; 1662 } 1663 1664 static int __process_pages_contig(struct address_space *mapping, 1665 struct page *locked_page, 1666 pgoff_t start_index, pgoff_t end_index, 1667 unsigned long page_ops, pgoff_t *index_ret) 1668 { 1669 unsigned long nr_pages = end_index - start_index + 1; 1670 unsigned long pages_locked = 0; 1671 pgoff_t index = start_index; 1672 struct page *pages[16]; 1673 unsigned ret; 1674 int err = 0; 1675 int i; 1676 1677 if (page_ops & PAGE_LOCK) { 1678 ASSERT(page_ops == PAGE_LOCK); 1679 ASSERT(index_ret && *index_ret == start_index); 1680 } 1681 1682 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1683 mapping_set_error(mapping, -EIO); 1684 1685 while (nr_pages > 0) { 1686 ret = find_get_pages_contig(mapping, index, 1687 min_t(unsigned long, 1688 nr_pages, ARRAY_SIZE(pages)), pages); 1689 if (ret == 0) { 1690 /* 1691 * Only if we're going to lock these pages, 1692 * can we find nothing at @index. 1693 */ 1694 ASSERT(page_ops & PAGE_LOCK); 1695 err = -EAGAIN; 1696 goto out; 1697 } 1698 1699 for (i = 0; i < ret; i++) { 1700 if (page_ops & PAGE_SET_PRIVATE2) 1701 SetPagePrivate2(pages[i]); 1702 1703 if (pages[i] == locked_page) { 1704 put_page(pages[i]); 1705 pages_locked++; 1706 continue; 1707 } 1708 if (page_ops & PAGE_CLEAR_DIRTY) 1709 clear_page_dirty_for_io(pages[i]); 1710 if (page_ops & PAGE_SET_WRITEBACK) 1711 set_page_writeback(pages[i]); 1712 if (page_ops & PAGE_SET_ERROR) 1713 SetPageError(pages[i]); 1714 if (page_ops & PAGE_END_WRITEBACK) 1715 end_page_writeback(pages[i]); 1716 if (page_ops & PAGE_UNLOCK) 1717 unlock_page(pages[i]); 1718 if (page_ops & PAGE_LOCK) { 1719 lock_page(pages[i]); 1720 if (!PageDirty(pages[i]) || 1721 pages[i]->mapping != mapping) { 1722 unlock_page(pages[i]); 1723 put_page(pages[i]); 1724 err = -EAGAIN; 1725 goto out; 1726 } 1727 } 1728 put_page(pages[i]); 1729 pages_locked++; 1730 } 1731 nr_pages -= ret; 1732 index += ret; 1733 cond_resched(); 1734 } 1735 out: 1736 if (err && index_ret) 1737 *index_ret = start_index + pages_locked - 1; 1738 return err; 1739 } 1740 1741 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1742 u64 delalloc_end, struct page *locked_page, 1743 unsigned clear_bits, 1744 unsigned long page_ops) 1745 { 1746 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0, 1747 NULL, GFP_NOFS); 1748 1749 __process_pages_contig(inode->i_mapping, locked_page, 1750 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 1751 page_ops, NULL); 1752 } 1753 1754 /* 1755 * count the number of bytes in the tree that have a given bit(s) 1756 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1757 * cached. The total number found is returned. 1758 */ 1759 u64 count_range_bits(struct extent_io_tree *tree, 1760 u64 *start, u64 search_end, u64 max_bytes, 1761 unsigned bits, int contig) 1762 { 1763 struct rb_node *node; 1764 struct extent_state *state; 1765 u64 cur_start = *start; 1766 u64 total_bytes = 0; 1767 u64 last = 0; 1768 int found = 0; 1769 1770 if (WARN_ON(search_end <= cur_start)) 1771 return 0; 1772 1773 spin_lock(&tree->lock); 1774 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1775 total_bytes = tree->dirty_bytes; 1776 goto out; 1777 } 1778 /* 1779 * this search will find all the extents that end after 1780 * our range starts. 1781 */ 1782 node = tree_search(tree, cur_start); 1783 if (!node) 1784 goto out; 1785 1786 while (1) { 1787 state = rb_entry(node, struct extent_state, rb_node); 1788 if (state->start > search_end) 1789 break; 1790 if (contig && found && state->start > last + 1) 1791 break; 1792 if (state->end >= cur_start && (state->state & bits) == bits) { 1793 total_bytes += min(search_end, state->end) + 1 - 1794 max(cur_start, state->start); 1795 if (total_bytes >= max_bytes) 1796 break; 1797 if (!found) { 1798 *start = max(cur_start, state->start); 1799 found = 1; 1800 } 1801 last = state->end; 1802 } else if (contig && found) { 1803 break; 1804 } 1805 node = rb_next(node); 1806 if (!node) 1807 break; 1808 } 1809 out: 1810 spin_unlock(&tree->lock); 1811 return total_bytes; 1812 } 1813 1814 /* 1815 * set the private field for a given byte offset in the tree. If there isn't 1816 * an extent_state there already, this does nothing. 1817 */ 1818 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start, 1819 struct io_failure_record *failrec) 1820 { 1821 struct rb_node *node; 1822 struct extent_state *state; 1823 int ret = 0; 1824 1825 spin_lock(&tree->lock); 1826 /* 1827 * this search will find all the extents that end after 1828 * our range starts. 1829 */ 1830 node = tree_search(tree, start); 1831 if (!node) { 1832 ret = -ENOENT; 1833 goto out; 1834 } 1835 state = rb_entry(node, struct extent_state, rb_node); 1836 if (state->start != start) { 1837 ret = -ENOENT; 1838 goto out; 1839 } 1840 state->failrec = failrec; 1841 out: 1842 spin_unlock(&tree->lock); 1843 return ret; 1844 } 1845 1846 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start, 1847 struct io_failure_record **failrec) 1848 { 1849 struct rb_node *node; 1850 struct extent_state *state; 1851 int ret = 0; 1852 1853 spin_lock(&tree->lock); 1854 /* 1855 * this search will find all the extents that end after 1856 * our range starts. 1857 */ 1858 node = tree_search(tree, start); 1859 if (!node) { 1860 ret = -ENOENT; 1861 goto out; 1862 } 1863 state = rb_entry(node, struct extent_state, rb_node); 1864 if (state->start != start) { 1865 ret = -ENOENT; 1866 goto out; 1867 } 1868 *failrec = state->failrec; 1869 out: 1870 spin_unlock(&tree->lock); 1871 return ret; 1872 } 1873 1874 /* 1875 * searches a range in the state tree for a given mask. 1876 * If 'filled' == 1, this returns 1 only if every extent in the tree 1877 * has the bits set. Otherwise, 1 is returned if any bit in the 1878 * range is found set. 1879 */ 1880 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1881 unsigned bits, int filled, struct extent_state *cached) 1882 { 1883 struct extent_state *state = NULL; 1884 struct rb_node *node; 1885 int bitset = 0; 1886 1887 spin_lock(&tree->lock); 1888 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1889 cached->end > start) 1890 node = &cached->rb_node; 1891 else 1892 node = tree_search(tree, start); 1893 while (node && start <= end) { 1894 state = rb_entry(node, struct extent_state, rb_node); 1895 1896 if (filled && state->start > start) { 1897 bitset = 0; 1898 break; 1899 } 1900 1901 if (state->start > end) 1902 break; 1903 1904 if (state->state & bits) { 1905 bitset = 1; 1906 if (!filled) 1907 break; 1908 } else if (filled) { 1909 bitset = 0; 1910 break; 1911 } 1912 1913 if (state->end == (u64)-1) 1914 break; 1915 1916 start = state->end + 1; 1917 if (start > end) 1918 break; 1919 node = rb_next(node); 1920 if (!node) { 1921 if (filled) 1922 bitset = 0; 1923 break; 1924 } 1925 } 1926 spin_unlock(&tree->lock); 1927 return bitset; 1928 } 1929 1930 /* 1931 * helper function to set a given page up to date if all the 1932 * extents in the tree for that page are up to date 1933 */ 1934 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1935 { 1936 u64 start = page_offset(page); 1937 u64 end = start + PAGE_SIZE - 1; 1938 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1939 SetPageUptodate(page); 1940 } 1941 1942 int free_io_failure(struct extent_io_tree *failure_tree, 1943 struct extent_io_tree *io_tree, 1944 struct io_failure_record *rec) 1945 { 1946 int ret; 1947 int err = 0; 1948 1949 set_state_failrec(failure_tree, rec->start, NULL); 1950 ret = clear_extent_bits(failure_tree, rec->start, 1951 rec->start + rec->len - 1, 1952 EXTENT_LOCKED | EXTENT_DIRTY); 1953 if (ret) 1954 err = ret; 1955 1956 ret = clear_extent_bits(io_tree, rec->start, 1957 rec->start + rec->len - 1, 1958 EXTENT_DAMAGED); 1959 if (ret && !err) 1960 err = ret; 1961 1962 kfree(rec); 1963 return err; 1964 } 1965 1966 /* 1967 * this bypasses the standard btrfs submit functions deliberately, as 1968 * the standard behavior is to write all copies in a raid setup. here we only 1969 * want to write the one bad copy. so we do the mapping for ourselves and issue 1970 * submit_bio directly. 1971 * to avoid any synchronization issues, wait for the data after writing, which 1972 * actually prevents the read that triggered the error from finishing. 1973 * currently, there can be no more than two copies of every data bit. thus, 1974 * exactly one rewrite is required. 1975 */ 1976 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 1977 u64 length, u64 logical, struct page *page, 1978 unsigned int pg_offset, int mirror_num) 1979 { 1980 struct bio *bio; 1981 struct btrfs_device *dev; 1982 u64 map_length = 0; 1983 u64 sector; 1984 struct btrfs_bio *bbio = NULL; 1985 int ret; 1986 1987 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 1988 BUG_ON(!mirror_num); 1989 1990 bio = btrfs_io_bio_alloc(1); 1991 bio->bi_iter.bi_size = 0; 1992 map_length = length; 1993 1994 /* 1995 * Avoid races with device replace and make sure our bbio has devices 1996 * associated to its stripes that don't go away while we are doing the 1997 * read repair operation. 1998 */ 1999 btrfs_bio_counter_inc_blocked(fs_info); 2000 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2001 /* 2002 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2003 * to update all raid stripes, but here we just want to correct 2004 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2005 * stripe's dev and sector. 2006 */ 2007 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2008 &map_length, &bbio, 0); 2009 if (ret) { 2010 btrfs_bio_counter_dec(fs_info); 2011 bio_put(bio); 2012 return -EIO; 2013 } 2014 ASSERT(bbio->mirror_num == 1); 2015 } else { 2016 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2017 &map_length, &bbio, mirror_num); 2018 if (ret) { 2019 btrfs_bio_counter_dec(fs_info); 2020 bio_put(bio); 2021 return -EIO; 2022 } 2023 BUG_ON(mirror_num != bbio->mirror_num); 2024 } 2025 2026 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2027 bio->bi_iter.bi_sector = sector; 2028 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2029 btrfs_put_bbio(bbio); 2030 if (!dev || !dev->bdev || !dev->writeable) { 2031 btrfs_bio_counter_dec(fs_info); 2032 bio_put(bio); 2033 return -EIO; 2034 } 2035 bio_set_dev(bio, dev->bdev); 2036 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2037 bio_add_page(bio, page, length, pg_offset); 2038 2039 if (btrfsic_submit_bio_wait(bio)) { 2040 /* try to remap that extent elsewhere? */ 2041 btrfs_bio_counter_dec(fs_info); 2042 bio_put(bio); 2043 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2044 return -EIO; 2045 } 2046 2047 btrfs_info_rl_in_rcu(fs_info, 2048 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2049 ino, start, 2050 rcu_str_deref(dev->name), sector); 2051 btrfs_bio_counter_dec(fs_info); 2052 bio_put(bio); 2053 return 0; 2054 } 2055 2056 int repair_eb_io_failure(struct btrfs_fs_info *fs_info, 2057 struct extent_buffer *eb, int mirror_num) 2058 { 2059 u64 start = eb->start; 2060 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2061 int ret = 0; 2062 2063 if (sb_rdonly(fs_info->sb)) 2064 return -EROFS; 2065 2066 for (i = 0; i < num_pages; i++) { 2067 struct page *p = eb->pages[i]; 2068 2069 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2070 start - page_offset(p), mirror_num); 2071 if (ret) 2072 break; 2073 start += PAGE_SIZE; 2074 } 2075 2076 return ret; 2077 } 2078 2079 /* 2080 * each time an IO finishes, we do a fast check in the IO failure tree 2081 * to see if we need to process or clean up an io_failure_record 2082 */ 2083 int clean_io_failure(struct btrfs_fs_info *fs_info, 2084 struct extent_io_tree *failure_tree, 2085 struct extent_io_tree *io_tree, u64 start, 2086 struct page *page, u64 ino, unsigned int pg_offset) 2087 { 2088 u64 private; 2089 struct io_failure_record *failrec; 2090 struct extent_state *state; 2091 int num_copies; 2092 int ret; 2093 2094 private = 0; 2095 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2096 EXTENT_DIRTY, 0); 2097 if (!ret) 2098 return 0; 2099 2100 ret = get_state_failrec(failure_tree, start, &failrec); 2101 if (ret) 2102 return 0; 2103 2104 BUG_ON(!failrec->this_mirror); 2105 2106 if (failrec->in_validation) { 2107 /* there was no real error, just free the record */ 2108 btrfs_debug(fs_info, 2109 "clean_io_failure: freeing dummy error at %llu", 2110 failrec->start); 2111 goto out; 2112 } 2113 if (sb_rdonly(fs_info->sb)) 2114 goto out; 2115 2116 spin_lock(&io_tree->lock); 2117 state = find_first_extent_bit_state(io_tree, 2118 failrec->start, 2119 EXTENT_LOCKED); 2120 spin_unlock(&io_tree->lock); 2121 2122 if (state && state->start <= failrec->start && 2123 state->end >= failrec->start + failrec->len - 1) { 2124 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2125 failrec->len); 2126 if (num_copies > 1) { 2127 repair_io_failure(fs_info, ino, start, failrec->len, 2128 failrec->logical, page, pg_offset, 2129 failrec->failed_mirror); 2130 } 2131 } 2132 2133 out: 2134 free_io_failure(failure_tree, io_tree, failrec); 2135 2136 return 0; 2137 } 2138 2139 /* 2140 * Can be called when 2141 * - hold extent lock 2142 * - under ordered extent 2143 * - the inode is freeing 2144 */ 2145 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2146 { 2147 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2148 struct io_failure_record *failrec; 2149 struct extent_state *state, *next; 2150 2151 if (RB_EMPTY_ROOT(&failure_tree->state)) 2152 return; 2153 2154 spin_lock(&failure_tree->lock); 2155 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2156 while (state) { 2157 if (state->start > end) 2158 break; 2159 2160 ASSERT(state->end <= end); 2161 2162 next = next_state(state); 2163 2164 failrec = state->failrec; 2165 free_extent_state(state); 2166 kfree(failrec); 2167 2168 state = next; 2169 } 2170 spin_unlock(&failure_tree->lock); 2171 } 2172 2173 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2174 struct io_failure_record **failrec_ret) 2175 { 2176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2177 struct io_failure_record *failrec; 2178 struct extent_map *em; 2179 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2180 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2181 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2182 int ret; 2183 u64 logical; 2184 2185 ret = get_state_failrec(failure_tree, start, &failrec); 2186 if (ret) { 2187 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2188 if (!failrec) 2189 return -ENOMEM; 2190 2191 failrec->start = start; 2192 failrec->len = end - start + 1; 2193 failrec->this_mirror = 0; 2194 failrec->bio_flags = 0; 2195 failrec->in_validation = 0; 2196 2197 read_lock(&em_tree->lock); 2198 em = lookup_extent_mapping(em_tree, start, failrec->len); 2199 if (!em) { 2200 read_unlock(&em_tree->lock); 2201 kfree(failrec); 2202 return -EIO; 2203 } 2204 2205 if (em->start > start || em->start + em->len <= start) { 2206 free_extent_map(em); 2207 em = NULL; 2208 } 2209 read_unlock(&em_tree->lock); 2210 if (!em) { 2211 kfree(failrec); 2212 return -EIO; 2213 } 2214 2215 logical = start - em->start; 2216 logical = em->block_start + logical; 2217 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2218 logical = em->block_start; 2219 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2220 extent_set_compress_type(&failrec->bio_flags, 2221 em->compress_type); 2222 } 2223 2224 btrfs_debug(fs_info, 2225 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2226 logical, start, failrec->len); 2227 2228 failrec->logical = logical; 2229 free_extent_map(em); 2230 2231 /* set the bits in the private failure tree */ 2232 ret = set_extent_bits(failure_tree, start, end, 2233 EXTENT_LOCKED | EXTENT_DIRTY); 2234 if (ret >= 0) 2235 ret = set_state_failrec(failure_tree, start, failrec); 2236 /* set the bits in the inode's tree */ 2237 if (ret >= 0) 2238 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2239 if (ret < 0) { 2240 kfree(failrec); 2241 return ret; 2242 } 2243 } else { 2244 btrfs_debug(fs_info, 2245 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2246 failrec->logical, failrec->start, failrec->len, 2247 failrec->in_validation); 2248 /* 2249 * when data can be on disk more than twice, add to failrec here 2250 * (e.g. with a list for failed_mirror) to make 2251 * clean_io_failure() clean all those errors at once. 2252 */ 2253 } 2254 2255 *failrec_ret = failrec; 2256 2257 return 0; 2258 } 2259 2260 bool btrfs_check_repairable(struct inode *inode, struct bio *failed_bio, 2261 struct io_failure_record *failrec, int failed_mirror) 2262 { 2263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2264 int num_copies; 2265 2266 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2267 if (num_copies == 1) { 2268 /* 2269 * we only have a single copy of the data, so don't bother with 2270 * all the retry and error correction code that follows. no 2271 * matter what the error is, it is very likely to persist. 2272 */ 2273 btrfs_debug(fs_info, 2274 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2275 num_copies, failrec->this_mirror, failed_mirror); 2276 return false; 2277 } 2278 2279 /* 2280 * there are two premises: 2281 * a) deliver good data to the caller 2282 * b) correct the bad sectors on disk 2283 */ 2284 if (failed_bio->bi_vcnt > 1) { 2285 /* 2286 * to fulfill b), we need to know the exact failing sectors, as 2287 * we don't want to rewrite any more than the failed ones. thus, 2288 * we need separate read requests for the failed bio 2289 * 2290 * if the following BUG_ON triggers, our validation request got 2291 * merged. we need separate requests for our algorithm to work. 2292 */ 2293 BUG_ON(failrec->in_validation); 2294 failrec->in_validation = 1; 2295 failrec->this_mirror = failed_mirror; 2296 } else { 2297 /* 2298 * we're ready to fulfill a) and b) alongside. get a good copy 2299 * of the failed sector and if we succeed, we have setup 2300 * everything for repair_io_failure to do the rest for us. 2301 */ 2302 if (failrec->in_validation) { 2303 BUG_ON(failrec->this_mirror != failed_mirror); 2304 failrec->in_validation = 0; 2305 failrec->this_mirror = 0; 2306 } 2307 failrec->failed_mirror = failed_mirror; 2308 failrec->this_mirror++; 2309 if (failrec->this_mirror == failed_mirror) 2310 failrec->this_mirror++; 2311 } 2312 2313 if (failrec->this_mirror > num_copies) { 2314 btrfs_debug(fs_info, 2315 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2316 num_copies, failrec->this_mirror, failed_mirror); 2317 return false; 2318 } 2319 2320 return true; 2321 } 2322 2323 2324 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2325 struct io_failure_record *failrec, 2326 struct page *page, int pg_offset, int icsum, 2327 bio_end_io_t *endio_func, void *data) 2328 { 2329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2330 struct bio *bio; 2331 struct btrfs_io_bio *btrfs_failed_bio; 2332 struct btrfs_io_bio *btrfs_bio; 2333 2334 bio = btrfs_io_bio_alloc(1); 2335 bio->bi_end_io = endio_func; 2336 bio->bi_iter.bi_sector = failrec->logical >> 9; 2337 bio_set_dev(bio, fs_info->fs_devices->latest_bdev); 2338 bio->bi_iter.bi_size = 0; 2339 bio->bi_private = data; 2340 2341 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2342 if (btrfs_failed_bio->csum) { 2343 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2344 2345 btrfs_bio = btrfs_io_bio(bio); 2346 btrfs_bio->csum = btrfs_bio->csum_inline; 2347 icsum *= csum_size; 2348 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2349 csum_size); 2350 } 2351 2352 bio_add_page(bio, page, failrec->len, pg_offset); 2353 2354 return bio; 2355 } 2356 2357 /* 2358 * this is a generic handler for readpage errors (default 2359 * readpage_io_failed_hook). if other copies exist, read those and write back 2360 * good data to the failed position. does not investigate in remapping the 2361 * failed extent elsewhere, hoping the device will be smart enough to do this as 2362 * needed 2363 */ 2364 2365 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2366 struct page *page, u64 start, u64 end, 2367 int failed_mirror) 2368 { 2369 struct io_failure_record *failrec; 2370 struct inode *inode = page->mapping->host; 2371 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2372 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2373 struct bio *bio; 2374 int read_mode = 0; 2375 blk_status_t status; 2376 int ret; 2377 2378 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2379 2380 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2381 if (ret) 2382 return ret; 2383 2384 if (!btrfs_check_repairable(inode, failed_bio, failrec, 2385 failed_mirror)) { 2386 free_io_failure(failure_tree, tree, failrec); 2387 return -EIO; 2388 } 2389 2390 if (failed_bio->bi_vcnt > 1) 2391 read_mode |= REQ_FAILFAST_DEV; 2392 2393 phy_offset >>= inode->i_sb->s_blocksize_bits; 2394 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2395 start - page_offset(page), 2396 (int)phy_offset, failed_bio->bi_end_io, 2397 NULL); 2398 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 2399 2400 btrfs_debug(btrfs_sb(inode->i_sb), 2401 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d", 2402 read_mode, failrec->this_mirror, failrec->in_validation); 2403 2404 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror, 2405 failrec->bio_flags, 0); 2406 if (status) { 2407 free_io_failure(failure_tree, tree, failrec); 2408 bio_put(bio); 2409 ret = blk_status_to_errno(status); 2410 } 2411 2412 return ret; 2413 } 2414 2415 /* lots and lots of room for performance fixes in the end_bio funcs */ 2416 2417 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2418 { 2419 int uptodate = (err == 0); 2420 struct extent_io_tree *tree; 2421 int ret = 0; 2422 2423 tree = &BTRFS_I(page->mapping->host)->io_tree; 2424 2425 if (tree->ops && tree->ops->writepage_end_io_hook) 2426 tree->ops->writepage_end_io_hook(page, start, end, NULL, 2427 uptodate); 2428 2429 if (!uptodate) { 2430 ClearPageUptodate(page); 2431 SetPageError(page); 2432 ret = err < 0 ? err : -EIO; 2433 mapping_set_error(page->mapping, ret); 2434 } 2435 } 2436 2437 /* 2438 * after a writepage IO is done, we need to: 2439 * clear the uptodate bits on error 2440 * clear the writeback bits in the extent tree for this IO 2441 * end_page_writeback if the page has no more pending IO 2442 * 2443 * Scheduling is not allowed, so the extent state tree is expected 2444 * to have one and only one object corresponding to this IO. 2445 */ 2446 static void end_bio_extent_writepage(struct bio *bio) 2447 { 2448 int error = blk_status_to_errno(bio->bi_status); 2449 struct bio_vec *bvec; 2450 u64 start; 2451 u64 end; 2452 int i; 2453 2454 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2455 bio_for_each_segment_all(bvec, bio, i) { 2456 struct page *page = bvec->bv_page; 2457 struct inode *inode = page->mapping->host; 2458 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2459 2460 /* We always issue full-page reads, but if some block 2461 * in a page fails to read, blk_update_request() will 2462 * advance bv_offset and adjust bv_len to compensate. 2463 * Print a warning for nonzero offsets, and an error 2464 * if they don't add up to a full page. */ 2465 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2466 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2467 btrfs_err(fs_info, 2468 "partial page write in btrfs with offset %u and length %u", 2469 bvec->bv_offset, bvec->bv_len); 2470 else 2471 btrfs_info(fs_info, 2472 "incomplete page write in btrfs with offset %u and length %u", 2473 bvec->bv_offset, bvec->bv_len); 2474 } 2475 2476 start = page_offset(page); 2477 end = start + bvec->bv_offset + bvec->bv_len - 1; 2478 2479 end_extent_writepage(page, error, start, end); 2480 end_page_writeback(page); 2481 } 2482 2483 bio_put(bio); 2484 } 2485 2486 static void 2487 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2488 int uptodate) 2489 { 2490 struct extent_state *cached = NULL; 2491 u64 end = start + len - 1; 2492 2493 if (uptodate && tree->track_uptodate) 2494 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2495 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2496 } 2497 2498 /* 2499 * after a readpage IO is done, we need to: 2500 * clear the uptodate bits on error 2501 * set the uptodate bits if things worked 2502 * set the page up to date if all extents in the tree are uptodate 2503 * clear the lock bit in the extent tree 2504 * unlock the page if there are no other extents locked for it 2505 * 2506 * Scheduling is not allowed, so the extent state tree is expected 2507 * to have one and only one object corresponding to this IO. 2508 */ 2509 static void end_bio_extent_readpage(struct bio *bio) 2510 { 2511 struct bio_vec *bvec; 2512 int uptodate = !bio->bi_status; 2513 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2514 struct extent_io_tree *tree, *failure_tree; 2515 u64 offset = 0; 2516 u64 start; 2517 u64 end; 2518 u64 len; 2519 u64 extent_start = 0; 2520 u64 extent_len = 0; 2521 int mirror; 2522 int ret; 2523 int i; 2524 2525 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2526 bio_for_each_segment_all(bvec, bio, i) { 2527 struct page *page = bvec->bv_page; 2528 struct inode *inode = page->mapping->host; 2529 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2530 2531 btrfs_debug(fs_info, 2532 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2533 (u64)bio->bi_iter.bi_sector, bio->bi_status, 2534 io_bio->mirror_num); 2535 tree = &BTRFS_I(inode)->io_tree; 2536 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2537 2538 /* We always issue full-page reads, but if some block 2539 * in a page fails to read, blk_update_request() will 2540 * advance bv_offset and adjust bv_len to compensate. 2541 * Print a warning for nonzero offsets, and an error 2542 * if they don't add up to a full page. */ 2543 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2544 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2545 btrfs_err(fs_info, 2546 "partial page read in btrfs with offset %u and length %u", 2547 bvec->bv_offset, bvec->bv_len); 2548 else 2549 btrfs_info(fs_info, 2550 "incomplete page read in btrfs with offset %u and length %u", 2551 bvec->bv_offset, bvec->bv_len); 2552 } 2553 2554 start = page_offset(page); 2555 end = start + bvec->bv_offset + bvec->bv_len - 1; 2556 len = bvec->bv_len; 2557 2558 mirror = io_bio->mirror_num; 2559 if (likely(uptodate && tree->ops)) { 2560 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2561 page, start, end, 2562 mirror); 2563 if (ret) 2564 uptodate = 0; 2565 else 2566 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2567 failure_tree, tree, start, 2568 page, 2569 btrfs_ino(BTRFS_I(inode)), 0); 2570 } 2571 2572 if (likely(uptodate)) 2573 goto readpage_ok; 2574 2575 if (tree->ops) { 2576 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2577 if (ret == -EAGAIN) { 2578 /* 2579 * Data inode's readpage_io_failed_hook() always 2580 * returns -EAGAIN. 2581 * 2582 * The generic bio_readpage_error handles errors 2583 * the following way: If possible, new read 2584 * requests are created and submitted and will 2585 * end up in end_bio_extent_readpage as well (if 2586 * we're lucky, not in the !uptodate case). In 2587 * that case it returns 0 and we just go on with 2588 * the next page in our bio. If it can't handle 2589 * the error it will return -EIO and we remain 2590 * responsible for that page. 2591 */ 2592 ret = bio_readpage_error(bio, offset, page, 2593 start, end, mirror); 2594 if (ret == 0) { 2595 uptodate = !bio->bi_status; 2596 offset += len; 2597 continue; 2598 } 2599 } 2600 2601 /* 2602 * metadata's readpage_io_failed_hook() always returns 2603 * -EIO and fixes nothing. -EIO is also returned if 2604 * data inode error could not be fixed. 2605 */ 2606 ASSERT(ret == -EIO); 2607 } 2608 readpage_ok: 2609 if (likely(uptodate)) { 2610 loff_t i_size = i_size_read(inode); 2611 pgoff_t end_index = i_size >> PAGE_SHIFT; 2612 unsigned off; 2613 2614 /* Zero out the end if this page straddles i_size */ 2615 off = i_size & (PAGE_SIZE-1); 2616 if (page->index == end_index && off) 2617 zero_user_segment(page, off, PAGE_SIZE); 2618 SetPageUptodate(page); 2619 } else { 2620 ClearPageUptodate(page); 2621 SetPageError(page); 2622 } 2623 unlock_page(page); 2624 offset += len; 2625 2626 if (unlikely(!uptodate)) { 2627 if (extent_len) { 2628 endio_readpage_release_extent(tree, 2629 extent_start, 2630 extent_len, 1); 2631 extent_start = 0; 2632 extent_len = 0; 2633 } 2634 endio_readpage_release_extent(tree, start, 2635 end - start + 1, 0); 2636 } else if (!extent_len) { 2637 extent_start = start; 2638 extent_len = end + 1 - start; 2639 } else if (extent_start + extent_len == start) { 2640 extent_len += end + 1 - start; 2641 } else { 2642 endio_readpage_release_extent(tree, extent_start, 2643 extent_len, uptodate); 2644 extent_start = start; 2645 extent_len = end + 1 - start; 2646 } 2647 } 2648 2649 if (extent_len) 2650 endio_readpage_release_extent(tree, extent_start, extent_len, 2651 uptodate); 2652 if (io_bio->end_io) 2653 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status)); 2654 bio_put(bio); 2655 } 2656 2657 /* 2658 * Initialize the members up to but not including 'bio'. Use after allocating a 2659 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 2660 * 'bio' because use of __GFP_ZERO is not supported. 2661 */ 2662 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 2663 { 2664 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 2665 } 2666 2667 /* 2668 * The following helpers allocate a bio. As it's backed by a bioset, it'll 2669 * never fail. We're returning a bio right now but you can call btrfs_io_bio 2670 * for the appropriate container_of magic 2671 */ 2672 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte) 2673 { 2674 struct bio *bio; 2675 2676 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset); 2677 bio_set_dev(bio, bdev); 2678 bio->bi_iter.bi_sector = first_byte >> 9; 2679 btrfs_io_bio_init(btrfs_io_bio(bio)); 2680 return bio; 2681 } 2682 2683 struct bio *btrfs_bio_clone(struct bio *bio) 2684 { 2685 struct btrfs_io_bio *btrfs_bio; 2686 struct bio *new; 2687 2688 /* Bio allocation backed by a bioset does not fail */ 2689 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset); 2690 btrfs_bio = btrfs_io_bio(new); 2691 btrfs_io_bio_init(btrfs_bio); 2692 btrfs_bio->iter = bio->bi_iter; 2693 return new; 2694 } 2695 2696 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 2697 { 2698 struct bio *bio; 2699 2700 /* Bio allocation backed by a bioset does not fail */ 2701 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset); 2702 btrfs_io_bio_init(btrfs_io_bio(bio)); 2703 return bio; 2704 } 2705 2706 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 2707 { 2708 struct bio *bio; 2709 struct btrfs_io_bio *btrfs_bio; 2710 2711 /* this will never fail when it's backed by a bioset */ 2712 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset); 2713 ASSERT(bio); 2714 2715 btrfs_bio = btrfs_io_bio(bio); 2716 btrfs_io_bio_init(btrfs_bio); 2717 2718 bio_trim(bio, offset >> 9, size >> 9); 2719 btrfs_bio->iter = bio->bi_iter; 2720 return bio; 2721 } 2722 2723 static int __must_check submit_one_bio(struct bio *bio, int mirror_num, 2724 unsigned long bio_flags) 2725 { 2726 blk_status_t ret = 0; 2727 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2728 struct page *page = bvec->bv_page; 2729 struct extent_io_tree *tree = bio->bi_private; 2730 u64 start; 2731 2732 start = page_offset(page) + bvec->bv_offset; 2733 2734 bio->bi_private = NULL; 2735 bio_get(bio); 2736 2737 if (tree->ops) 2738 ret = tree->ops->submit_bio_hook(tree->private_data, bio, 2739 mirror_num, bio_flags, start); 2740 else 2741 btrfsic_submit_bio(bio); 2742 2743 bio_put(bio); 2744 return blk_status_to_errno(ret); 2745 } 2746 2747 static int merge_bio(struct extent_io_tree *tree, struct page *page, 2748 unsigned long offset, size_t size, struct bio *bio, 2749 unsigned long bio_flags) 2750 { 2751 int ret = 0; 2752 if (tree->ops) 2753 ret = tree->ops->merge_bio_hook(page, offset, size, bio, 2754 bio_flags); 2755 return ret; 2756 2757 } 2758 2759 /* 2760 * @opf: bio REQ_OP_* and REQ_* flags as one value 2761 */ 2762 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree, 2763 struct writeback_control *wbc, 2764 struct page *page, u64 offset, 2765 size_t size, unsigned long pg_offset, 2766 struct block_device *bdev, 2767 struct bio **bio_ret, 2768 bio_end_io_t end_io_func, 2769 int mirror_num, 2770 unsigned long prev_bio_flags, 2771 unsigned long bio_flags, 2772 bool force_bio_submit) 2773 { 2774 int ret = 0; 2775 struct bio *bio; 2776 int contig = 0; 2777 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2778 size_t page_size = min_t(size_t, size, PAGE_SIZE); 2779 sector_t sector = offset >> 9; 2780 2781 if (bio_ret && *bio_ret) { 2782 bio = *bio_ret; 2783 if (old_compressed) 2784 contig = bio->bi_iter.bi_sector == sector; 2785 else 2786 contig = bio_end_sector(bio) == sector; 2787 2788 if (prev_bio_flags != bio_flags || !contig || 2789 force_bio_submit || 2790 merge_bio(tree, page, pg_offset, page_size, bio, bio_flags) || 2791 bio_add_page(bio, page, page_size, pg_offset) < page_size) { 2792 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 2793 if (ret < 0) { 2794 *bio_ret = NULL; 2795 return ret; 2796 } 2797 bio = NULL; 2798 } else { 2799 if (wbc) 2800 wbc_account_io(wbc, page, page_size); 2801 return 0; 2802 } 2803 } 2804 2805 bio = btrfs_bio_alloc(bdev, offset); 2806 bio_add_page(bio, page, page_size, pg_offset); 2807 bio->bi_end_io = end_io_func; 2808 bio->bi_private = tree; 2809 bio->bi_write_hint = page->mapping->host->i_write_hint; 2810 bio->bi_opf = opf; 2811 if (wbc) { 2812 wbc_init_bio(wbc, bio); 2813 wbc_account_io(wbc, page, page_size); 2814 } 2815 2816 if (bio_ret) 2817 *bio_ret = bio; 2818 else 2819 ret = submit_one_bio(bio, mirror_num, bio_flags); 2820 2821 return ret; 2822 } 2823 2824 static void attach_extent_buffer_page(struct extent_buffer *eb, 2825 struct page *page) 2826 { 2827 if (!PagePrivate(page)) { 2828 SetPagePrivate(page); 2829 get_page(page); 2830 set_page_private(page, (unsigned long)eb); 2831 } else { 2832 WARN_ON(page->private != (unsigned long)eb); 2833 } 2834 } 2835 2836 void set_page_extent_mapped(struct page *page) 2837 { 2838 if (!PagePrivate(page)) { 2839 SetPagePrivate(page); 2840 get_page(page); 2841 set_page_private(page, EXTENT_PAGE_PRIVATE); 2842 } 2843 } 2844 2845 static struct extent_map * 2846 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2847 u64 start, u64 len, get_extent_t *get_extent, 2848 struct extent_map **em_cached) 2849 { 2850 struct extent_map *em; 2851 2852 if (em_cached && *em_cached) { 2853 em = *em_cached; 2854 if (extent_map_in_tree(em) && start >= em->start && 2855 start < extent_map_end(em)) { 2856 refcount_inc(&em->refs); 2857 return em; 2858 } 2859 2860 free_extent_map(em); 2861 *em_cached = NULL; 2862 } 2863 2864 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0); 2865 if (em_cached && !IS_ERR_OR_NULL(em)) { 2866 BUG_ON(*em_cached); 2867 refcount_inc(&em->refs); 2868 *em_cached = em; 2869 } 2870 return em; 2871 } 2872 /* 2873 * basic readpage implementation. Locked extent state structs are inserted 2874 * into the tree that are removed when the IO is done (by the end_io 2875 * handlers) 2876 * XXX JDM: This needs looking at to ensure proper page locking 2877 * return 0 on success, otherwise return error 2878 */ 2879 static int __do_readpage(struct extent_io_tree *tree, 2880 struct page *page, 2881 get_extent_t *get_extent, 2882 struct extent_map **em_cached, 2883 struct bio **bio, int mirror_num, 2884 unsigned long *bio_flags, unsigned int read_flags, 2885 u64 *prev_em_start) 2886 { 2887 struct inode *inode = page->mapping->host; 2888 u64 start = page_offset(page); 2889 u64 page_end = start + PAGE_SIZE - 1; 2890 u64 end; 2891 u64 cur = start; 2892 u64 extent_offset; 2893 u64 last_byte = i_size_read(inode); 2894 u64 block_start; 2895 u64 cur_end; 2896 struct extent_map *em; 2897 struct block_device *bdev; 2898 int ret = 0; 2899 int nr = 0; 2900 size_t pg_offset = 0; 2901 size_t iosize; 2902 size_t disk_io_size; 2903 size_t blocksize = inode->i_sb->s_blocksize; 2904 unsigned long this_bio_flag = 0; 2905 2906 set_page_extent_mapped(page); 2907 2908 end = page_end; 2909 if (!PageUptodate(page)) { 2910 if (cleancache_get_page(page) == 0) { 2911 BUG_ON(blocksize != PAGE_SIZE); 2912 unlock_extent(tree, start, end); 2913 goto out; 2914 } 2915 } 2916 2917 if (page->index == last_byte >> PAGE_SHIFT) { 2918 char *userpage; 2919 size_t zero_offset = last_byte & (PAGE_SIZE - 1); 2920 2921 if (zero_offset) { 2922 iosize = PAGE_SIZE - zero_offset; 2923 userpage = kmap_atomic(page); 2924 memset(userpage + zero_offset, 0, iosize); 2925 flush_dcache_page(page); 2926 kunmap_atomic(userpage); 2927 } 2928 } 2929 while (cur <= end) { 2930 bool force_bio_submit = false; 2931 u64 offset; 2932 2933 if (cur >= last_byte) { 2934 char *userpage; 2935 struct extent_state *cached = NULL; 2936 2937 iosize = PAGE_SIZE - pg_offset; 2938 userpage = kmap_atomic(page); 2939 memset(userpage + pg_offset, 0, iosize); 2940 flush_dcache_page(page); 2941 kunmap_atomic(userpage); 2942 set_extent_uptodate(tree, cur, cur + iosize - 1, 2943 &cached, GFP_NOFS); 2944 unlock_extent_cached(tree, cur, 2945 cur + iosize - 1, 2946 &cached, GFP_NOFS); 2947 break; 2948 } 2949 em = __get_extent_map(inode, page, pg_offset, cur, 2950 end - cur + 1, get_extent, em_cached); 2951 if (IS_ERR_OR_NULL(em)) { 2952 SetPageError(page); 2953 unlock_extent(tree, cur, end); 2954 break; 2955 } 2956 extent_offset = cur - em->start; 2957 BUG_ON(extent_map_end(em) <= cur); 2958 BUG_ON(end < cur); 2959 2960 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2961 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2962 extent_set_compress_type(&this_bio_flag, 2963 em->compress_type); 2964 } 2965 2966 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2967 cur_end = min(extent_map_end(em) - 1, end); 2968 iosize = ALIGN(iosize, blocksize); 2969 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2970 disk_io_size = em->block_len; 2971 offset = em->block_start; 2972 } else { 2973 offset = em->block_start + extent_offset; 2974 disk_io_size = iosize; 2975 } 2976 bdev = em->bdev; 2977 block_start = em->block_start; 2978 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2979 block_start = EXTENT_MAP_HOLE; 2980 2981 /* 2982 * If we have a file range that points to a compressed extent 2983 * and it's followed by a consecutive file range that points to 2984 * to the same compressed extent (possibly with a different 2985 * offset and/or length, so it either points to the whole extent 2986 * or only part of it), we must make sure we do not submit a 2987 * single bio to populate the pages for the 2 ranges because 2988 * this makes the compressed extent read zero out the pages 2989 * belonging to the 2nd range. Imagine the following scenario: 2990 * 2991 * File layout 2992 * [0 - 8K] [8K - 24K] 2993 * | | 2994 * | | 2995 * points to extent X, points to extent X, 2996 * offset 4K, length of 8K offset 0, length 16K 2997 * 2998 * [extent X, compressed length = 4K uncompressed length = 16K] 2999 * 3000 * If the bio to read the compressed extent covers both ranges, 3001 * it will decompress extent X into the pages belonging to the 3002 * first range and then it will stop, zeroing out the remaining 3003 * pages that belong to the other range that points to extent X. 3004 * So here we make sure we submit 2 bios, one for the first 3005 * range and another one for the third range. Both will target 3006 * the same physical extent from disk, but we can't currently 3007 * make the compressed bio endio callback populate the pages 3008 * for both ranges because each compressed bio is tightly 3009 * coupled with a single extent map, and each range can have 3010 * an extent map with a different offset value relative to the 3011 * uncompressed data of our extent and different lengths. This 3012 * is a corner case so we prioritize correctness over 3013 * non-optimal behavior (submitting 2 bios for the same extent). 3014 */ 3015 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3016 prev_em_start && *prev_em_start != (u64)-1 && 3017 *prev_em_start != em->orig_start) 3018 force_bio_submit = true; 3019 3020 if (prev_em_start) 3021 *prev_em_start = em->orig_start; 3022 3023 free_extent_map(em); 3024 em = NULL; 3025 3026 /* we've found a hole, just zero and go on */ 3027 if (block_start == EXTENT_MAP_HOLE) { 3028 char *userpage; 3029 struct extent_state *cached = NULL; 3030 3031 userpage = kmap_atomic(page); 3032 memset(userpage + pg_offset, 0, iosize); 3033 flush_dcache_page(page); 3034 kunmap_atomic(userpage); 3035 3036 set_extent_uptodate(tree, cur, cur + iosize - 1, 3037 &cached, GFP_NOFS); 3038 unlock_extent_cached(tree, cur, 3039 cur + iosize - 1, 3040 &cached, GFP_NOFS); 3041 cur = cur + iosize; 3042 pg_offset += iosize; 3043 continue; 3044 } 3045 /* the get_extent function already copied into the page */ 3046 if (test_range_bit(tree, cur, cur_end, 3047 EXTENT_UPTODATE, 1, NULL)) { 3048 check_page_uptodate(tree, page); 3049 unlock_extent(tree, cur, cur + iosize - 1); 3050 cur = cur + iosize; 3051 pg_offset += iosize; 3052 continue; 3053 } 3054 /* we have an inline extent but it didn't get marked up 3055 * to date. Error out 3056 */ 3057 if (block_start == EXTENT_MAP_INLINE) { 3058 SetPageError(page); 3059 unlock_extent(tree, cur, cur + iosize - 1); 3060 cur = cur + iosize; 3061 pg_offset += iosize; 3062 continue; 3063 } 3064 3065 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL, 3066 page, offset, disk_io_size, 3067 pg_offset, bdev, bio, 3068 end_bio_extent_readpage, mirror_num, 3069 *bio_flags, 3070 this_bio_flag, 3071 force_bio_submit); 3072 if (!ret) { 3073 nr++; 3074 *bio_flags = this_bio_flag; 3075 } else { 3076 SetPageError(page); 3077 unlock_extent(tree, cur, cur + iosize - 1); 3078 goto out; 3079 } 3080 cur = cur + iosize; 3081 pg_offset += iosize; 3082 } 3083 out: 3084 if (!nr) { 3085 if (!PageError(page)) 3086 SetPageUptodate(page); 3087 unlock_page(page); 3088 } 3089 return ret; 3090 } 3091 3092 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3093 struct page *pages[], int nr_pages, 3094 u64 start, u64 end, 3095 get_extent_t *get_extent, 3096 struct extent_map **em_cached, 3097 struct bio **bio, int mirror_num, 3098 unsigned long *bio_flags, 3099 u64 *prev_em_start) 3100 { 3101 struct inode *inode; 3102 struct btrfs_ordered_extent *ordered; 3103 int index; 3104 3105 inode = pages[0]->mapping->host; 3106 while (1) { 3107 lock_extent(tree, start, end); 3108 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3109 end - start + 1); 3110 if (!ordered) 3111 break; 3112 unlock_extent(tree, start, end); 3113 btrfs_start_ordered_extent(inode, ordered, 1); 3114 btrfs_put_ordered_extent(ordered); 3115 } 3116 3117 for (index = 0; index < nr_pages; index++) { 3118 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 3119 mirror_num, bio_flags, 0, prev_em_start); 3120 put_page(pages[index]); 3121 } 3122 } 3123 3124 static void __extent_readpages(struct extent_io_tree *tree, 3125 struct page *pages[], 3126 int nr_pages, get_extent_t *get_extent, 3127 struct extent_map **em_cached, 3128 struct bio **bio, int mirror_num, 3129 unsigned long *bio_flags, 3130 u64 *prev_em_start) 3131 { 3132 u64 start = 0; 3133 u64 end = 0; 3134 u64 page_start; 3135 int index; 3136 int first_index = 0; 3137 3138 for (index = 0; index < nr_pages; index++) { 3139 page_start = page_offset(pages[index]); 3140 if (!end) { 3141 start = page_start; 3142 end = start + PAGE_SIZE - 1; 3143 first_index = index; 3144 } else if (end + 1 == page_start) { 3145 end += PAGE_SIZE; 3146 } else { 3147 __do_contiguous_readpages(tree, &pages[first_index], 3148 index - first_index, start, 3149 end, get_extent, em_cached, 3150 bio, mirror_num, bio_flags, 3151 prev_em_start); 3152 start = page_start; 3153 end = start + PAGE_SIZE - 1; 3154 first_index = index; 3155 } 3156 } 3157 3158 if (end) 3159 __do_contiguous_readpages(tree, &pages[first_index], 3160 index - first_index, start, 3161 end, get_extent, em_cached, bio, 3162 mirror_num, bio_flags, 3163 prev_em_start); 3164 } 3165 3166 static int __extent_read_full_page(struct extent_io_tree *tree, 3167 struct page *page, 3168 get_extent_t *get_extent, 3169 struct bio **bio, int mirror_num, 3170 unsigned long *bio_flags, 3171 unsigned int read_flags) 3172 { 3173 struct inode *inode = page->mapping->host; 3174 struct btrfs_ordered_extent *ordered; 3175 u64 start = page_offset(page); 3176 u64 end = start + PAGE_SIZE - 1; 3177 int ret; 3178 3179 while (1) { 3180 lock_extent(tree, start, end); 3181 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3182 PAGE_SIZE); 3183 if (!ordered) 3184 break; 3185 unlock_extent(tree, start, end); 3186 btrfs_start_ordered_extent(inode, ordered, 1); 3187 btrfs_put_ordered_extent(ordered); 3188 } 3189 3190 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3191 bio_flags, read_flags, NULL); 3192 return ret; 3193 } 3194 3195 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3196 get_extent_t *get_extent, int mirror_num) 3197 { 3198 struct bio *bio = NULL; 3199 unsigned long bio_flags = 0; 3200 int ret; 3201 3202 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3203 &bio_flags, 0); 3204 if (bio) 3205 ret = submit_one_bio(bio, mirror_num, bio_flags); 3206 return ret; 3207 } 3208 3209 static void update_nr_written(struct writeback_control *wbc, 3210 unsigned long nr_written) 3211 { 3212 wbc->nr_to_write -= nr_written; 3213 } 3214 3215 /* 3216 * helper for __extent_writepage, doing all of the delayed allocation setup. 3217 * 3218 * This returns 1 if our fill_delalloc function did all the work required 3219 * to write the page (copy into inline extent). In this case the IO has 3220 * been started and the page is already unlocked. 3221 * 3222 * This returns 0 if all went well (page still locked) 3223 * This returns < 0 if there were errors (page still locked) 3224 */ 3225 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3226 struct page *page, struct writeback_control *wbc, 3227 struct extent_page_data *epd, 3228 u64 delalloc_start, 3229 unsigned long *nr_written) 3230 { 3231 struct extent_io_tree *tree = epd->tree; 3232 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3233 u64 nr_delalloc; 3234 u64 delalloc_to_write = 0; 3235 u64 delalloc_end = 0; 3236 int ret; 3237 int page_started = 0; 3238 3239 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3240 return 0; 3241 3242 while (delalloc_end < page_end) { 3243 nr_delalloc = find_lock_delalloc_range(inode, tree, 3244 page, 3245 &delalloc_start, 3246 &delalloc_end, 3247 BTRFS_MAX_EXTENT_SIZE); 3248 if (nr_delalloc == 0) { 3249 delalloc_start = delalloc_end + 1; 3250 continue; 3251 } 3252 ret = tree->ops->fill_delalloc(inode, page, 3253 delalloc_start, 3254 delalloc_end, 3255 &page_started, 3256 nr_written, wbc); 3257 /* File system has been set read-only */ 3258 if (ret) { 3259 SetPageError(page); 3260 /* fill_delalloc should be return < 0 for error 3261 * but just in case, we use > 0 here meaning the 3262 * IO is started, so we don't want to return > 0 3263 * unless things are going well. 3264 */ 3265 ret = ret < 0 ? ret : -EIO; 3266 goto done; 3267 } 3268 /* 3269 * delalloc_end is already one less than the total length, so 3270 * we don't subtract one from PAGE_SIZE 3271 */ 3272 delalloc_to_write += (delalloc_end - delalloc_start + 3273 PAGE_SIZE) >> PAGE_SHIFT; 3274 delalloc_start = delalloc_end + 1; 3275 } 3276 if (wbc->nr_to_write < delalloc_to_write) { 3277 int thresh = 8192; 3278 3279 if (delalloc_to_write < thresh * 2) 3280 thresh = delalloc_to_write; 3281 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3282 thresh); 3283 } 3284 3285 /* did the fill delalloc function already unlock and start 3286 * the IO? 3287 */ 3288 if (page_started) { 3289 /* 3290 * we've unlocked the page, so we can't update 3291 * the mapping's writeback index, just update 3292 * nr_to_write. 3293 */ 3294 wbc->nr_to_write -= *nr_written; 3295 return 1; 3296 } 3297 3298 ret = 0; 3299 3300 done: 3301 return ret; 3302 } 3303 3304 /* 3305 * helper for __extent_writepage. This calls the writepage start hooks, 3306 * and does the loop to map the page into extents and bios. 3307 * 3308 * We return 1 if the IO is started and the page is unlocked, 3309 * 0 if all went well (page still locked) 3310 * < 0 if there were errors (page still locked) 3311 */ 3312 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3313 struct page *page, 3314 struct writeback_control *wbc, 3315 struct extent_page_data *epd, 3316 loff_t i_size, 3317 unsigned long nr_written, 3318 unsigned int write_flags, int *nr_ret) 3319 { 3320 struct extent_io_tree *tree = epd->tree; 3321 u64 start = page_offset(page); 3322 u64 page_end = start + PAGE_SIZE - 1; 3323 u64 end; 3324 u64 cur = start; 3325 u64 extent_offset; 3326 u64 block_start; 3327 u64 iosize; 3328 struct extent_map *em; 3329 struct block_device *bdev; 3330 size_t pg_offset = 0; 3331 size_t blocksize; 3332 int ret = 0; 3333 int nr = 0; 3334 bool compressed; 3335 3336 if (tree->ops && tree->ops->writepage_start_hook) { 3337 ret = tree->ops->writepage_start_hook(page, start, 3338 page_end); 3339 if (ret) { 3340 /* Fixup worker will requeue */ 3341 if (ret == -EBUSY) 3342 wbc->pages_skipped++; 3343 else 3344 redirty_page_for_writepage(wbc, page); 3345 3346 update_nr_written(wbc, nr_written); 3347 unlock_page(page); 3348 return 1; 3349 } 3350 } 3351 3352 /* 3353 * we don't want to touch the inode after unlocking the page, 3354 * so we update the mapping writeback index now 3355 */ 3356 update_nr_written(wbc, nr_written + 1); 3357 3358 end = page_end; 3359 if (i_size <= start) { 3360 if (tree->ops && tree->ops->writepage_end_io_hook) 3361 tree->ops->writepage_end_io_hook(page, start, 3362 page_end, NULL, 1); 3363 goto done; 3364 } 3365 3366 blocksize = inode->i_sb->s_blocksize; 3367 3368 while (cur <= end) { 3369 u64 em_end; 3370 u64 offset; 3371 3372 if (cur >= i_size) { 3373 if (tree->ops && tree->ops->writepage_end_io_hook) 3374 tree->ops->writepage_end_io_hook(page, cur, 3375 page_end, NULL, 1); 3376 break; 3377 } 3378 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur, 3379 end - cur + 1, 1); 3380 if (IS_ERR_OR_NULL(em)) { 3381 SetPageError(page); 3382 ret = PTR_ERR_OR_ZERO(em); 3383 break; 3384 } 3385 3386 extent_offset = cur - em->start; 3387 em_end = extent_map_end(em); 3388 BUG_ON(em_end <= cur); 3389 BUG_ON(end < cur); 3390 iosize = min(em_end - cur, end - cur + 1); 3391 iosize = ALIGN(iosize, blocksize); 3392 offset = em->block_start + extent_offset; 3393 bdev = em->bdev; 3394 block_start = em->block_start; 3395 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3396 free_extent_map(em); 3397 em = NULL; 3398 3399 /* 3400 * compressed and inline extents are written through other 3401 * paths in the FS 3402 */ 3403 if (compressed || block_start == EXTENT_MAP_HOLE || 3404 block_start == EXTENT_MAP_INLINE) { 3405 /* 3406 * end_io notification does not happen here for 3407 * compressed extents 3408 */ 3409 if (!compressed && tree->ops && 3410 tree->ops->writepage_end_io_hook) 3411 tree->ops->writepage_end_io_hook(page, cur, 3412 cur + iosize - 1, 3413 NULL, 1); 3414 else if (compressed) { 3415 /* we don't want to end_page_writeback on 3416 * a compressed extent. this happens 3417 * elsewhere 3418 */ 3419 nr++; 3420 } 3421 3422 cur += iosize; 3423 pg_offset += iosize; 3424 continue; 3425 } 3426 3427 set_range_writeback(tree, cur, cur + iosize - 1); 3428 if (!PageWriteback(page)) { 3429 btrfs_err(BTRFS_I(inode)->root->fs_info, 3430 "page %lu not writeback, cur %llu end %llu", 3431 page->index, cur, end); 3432 } 3433 3434 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3435 page, offset, iosize, pg_offset, 3436 bdev, &epd->bio, 3437 end_bio_extent_writepage, 3438 0, 0, 0, false); 3439 if (ret) { 3440 SetPageError(page); 3441 if (PageWriteback(page)) 3442 end_page_writeback(page); 3443 } 3444 3445 cur = cur + iosize; 3446 pg_offset += iosize; 3447 nr++; 3448 } 3449 done: 3450 *nr_ret = nr; 3451 return ret; 3452 } 3453 3454 /* 3455 * the writepage semantics are similar to regular writepage. extent 3456 * records are inserted to lock ranges in the tree, and as dirty areas 3457 * are found, they are marked writeback. Then the lock bits are removed 3458 * and the end_io handler clears the writeback ranges 3459 */ 3460 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3461 void *data) 3462 { 3463 struct inode *inode = page->mapping->host; 3464 struct extent_page_data *epd = data; 3465 u64 start = page_offset(page); 3466 u64 page_end = start + PAGE_SIZE - 1; 3467 int ret; 3468 int nr = 0; 3469 size_t pg_offset = 0; 3470 loff_t i_size = i_size_read(inode); 3471 unsigned long end_index = i_size >> PAGE_SHIFT; 3472 unsigned int write_flags = 0; 3473 unsigned long nr_written = 0; 3474 3475 write_flags = wbc_to_write_flags(wbc); 3476 3477 trace___extent_writepage(page, inode, wbc); 3478 3479 WARN_ON(!PageLocked(page)); 3480 3481 ClearPageError(page); 3482 3483 pg_offset = i_size & (PAGE_SIZE - 1); 3484 if (page->index > end_index || 3485 (page->index == end_index && !pg_offset)) { 3486 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3487 unlock_page(page); 3488 return 0; 3489 } 3490 3491 if (page->index == end_index) { 3492 char *userpage; 3493 3494 userpage = kmap_atomic(page); 3495 memset(userpage + pg_offset, 0, 3496 PAGE_SIZE - pg_offset); 3497 kunmap_atomic(userpage); 3498 flush_dcache_page(page); 3499 } 3500 3501 pg_offset = 0; 3502 3503 set_page_extent_mapped(page); 3504 3505 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3506 if (ret == 1) 3507 goto done_unlocked; 3508 if (ret) 3509 goto done; 3510 3511 ret = __extent_writepage_io(inode, page, wbc, epd, 3512 i_size, nr_written, write_flags, &nr); 3513 if (ret == 1) 3514 goto done_unlocked; 3515 3516 done: 3517 if (nr == 0) { 3518 /* make sure the mapping tag for page dirty gets cleared */ 3519 set_page_writeback(page); 3520 end_page_writeback(page); 3521 } 3522 if (PageError(page)) { 3523 ret = ret < 0 ? ret : -EIO; 3524 end_extent_writepage(page, ret, start, page_end); 3525 } 3526 unlock_page(page); 3527 return ret; 3528 3529 done_unlocked: 3530 return 0; 3531 } 3532 3533 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3534 { 3535 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3536 TASK_UNINTERRUPTIBLE); 3537 } 3538 3539 static noinline_for_stack int 3540 lock_extent_buffer_for_io(struct extent_buffer *eb, 3541 struct btrfs_fs_info *fs_info, 3542 struct extent_page_data *epd) 3543 { 3544 unsigned long i, num_pages; 3545 int flush = 0; 3546 int ret = 0; 3547 3548 if (!btrfs_try_tree_write_lock(eb)) { 3549 flush = 1; 3550 flush_write_bio(epd); 3551 btrfs_tree_lock(eb); 3552 } 3553 3554 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3555 btrfs_tree_unlock(eb); 3556 if (!epd->sync_io) 3557 return 0; 3558 if (!flush) { 3559 flush_write_bio(epd); 3560 flush = 1; 3561 } 3562 while (1) { 3563 wait_on_extent_buffer_writeback(eb); 3564 btrfs_tree_lock(eb); 3565 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3566 break; 3567 btrfs_tree_unlock(eb); 3568 } 3569 } 3570 3571 /* 3572 * We need to do this to prevent races in people who check if the eb is 3573 * under IO since we can end up having no IO bits set for a short period 3574 * of time. 3575 */ 3576 spin_lock(&eb->refs_lock); 3577 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3578 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3579 spin_unlock(&eb->refs_lock); 3580 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3581 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3582 -eb->len, 3583 fs_info->dirty_metadata_batch); 3584 ret = 1; 3585 } else { 3586 spin_unlock(&eb->refs_lock); 3587 } 3588 3589 btrfs_tree_unlock(eb); 3590 3591 if (!ret) 3592 return ret; 3593 3594 num_pages = num_extent_pages(eb->start, eb->len); 3595 for (i = 0; i < num_pages; i++) { 3596 struct page *p = eb->pages[i]; 3597 3598 if (!trylock_page(p)) { 3599 if (!flush) { 3600 flush_write_bio(epd); 3601 flush = 1; 3602 } 3603 lock_page(p); 3604 } 3605 } 3606 3607 return ret; 3608 } 3609 3610 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3611 { 3612 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3613 smp_mb__after_atomic(); 3614 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3615 } 3616 3617 static void set_btree_ioerr(struct page *page) 3618 { 3619 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3620 3621 SetPageError(page); 3622 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3623 return; 3624 3625 /* 3626 * If writeback for a btree extent that doesn't belong to a log tree 3627 * failed, increment the counter transaction->eb_write_errors. 3628 * We do this because while the transaction is running and before it's 3629 * committing (when we call filemap_fdata[write|wait]_range against 3630 * the btree inode), we might have 3631 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3632 * returns an error or an error happens during writeback, when we're 3633 * committing the transaction we wouldn't know about it, since the pages 3634 * can be no longer dirty nor marked anymore for writeback (if a 3635 * subsequent modification to the extent buffer didn't happen before the 3636 * transaction commit), which makes filemap_fdata[write|wait]_range not 3637 * able to find the pages tagged with SetPageError at transaction 3638 * commit time. So if this happens we must abort the transaction, 3639 * otherwise we commit a super block with btree roots that point to 3640 * btree nodes/leafs whose content on disk is invalid - either garbage 3641 * or the content of some node/leaf from a past generation that got 3642 * cowed or deleted and is no longer valid. 3643 * 3644 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3645 * not be enough - we need to distinguish between log tree extents vs 3646 * non-log tree extents, and the next filemap_fdatawait_range() call 3647 * will catch and clear such errors in the mapping - and that call might 3648 * be from a log sync and not from a transaction commit. Also, checking 3649 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3650 * not done and would not be reliable - the eb might have been released 3651 * from memory and reading it back again means that flag would not be 3652 * set (since it's a runtime flag, not persisted on disk). 3653 * 3654 * Using the flags below in the btree inode also makes us achieve the 3655 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3656 * writeback for all dirty pages and before filemap_fdatawait_range() 3657 * is called, the writeback for all dirty pages had already finished 3658 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3659 * filemap_fdatawait_range() would return success, as it could not know 3660 * that writeback errors happened (the pages were no longer tagged for 3661 * writeback). 3662 */ 3663 switch (eb->log_index) { 3664 case -1: 3665 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 3666 break; 3667 case 0: 3668 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 3669 break; 3670 case 1: 3671 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 3672 break; 3673 default: 3674 BUG(); /* unexpected, logic error */ 3675 } 3676 } 3677 3678 static void end_bio_extent_buffer_writepage(struct bio *bio) 3679 { 3680 struct bio_vec *bvec; 3681 struct extent_buffer *eb; 3682 int i, done; 3683 3684 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3685 bio_for_each_segment_all(bvec, bio, i) { 3686 struct page *page = bvec->bv_page; 3687 3688 eb = (struct extent_buffer *)page->private; 3689 BUG_ON(!eb); 3690 done = atomic_dec_and_test(&eb->io_pages); 3691 3692 if (bio->bi_status || 3693 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3694 ClearPageUptodate(page); 3695 set_btree_ioerr(page); 3696 } 3697 3698 end_page_writeback(page); 3699 3700 if (!done) 3701 continue; 3702 3703 end_extent_buffer_writeback(eb); 3704 } 3705 3706 bio_put(bio); 3707 } 3708 3709 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3710 struct btrfs_fs_info *fs_info, 3711 struct writeback_control *wbc, 3712 struct extent_page_data *epd) 3713 { 3714 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3715 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3716 u64 offset = eb->start; 3717 u32 nritems; 3718 unsigned long i, num_pages; 3719 unsigned long start, end; 3720 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 3721 int ret = 0; 3722 3723 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3724 num_pages = num_extent_pages(eb->start, eb->len); 3725 atomic_set(&eb->io_pages, num_pages); 3726 3727 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 3728 nritems = btrfs_header_nritems(eb); 3729 if (btrfs_header_level(eb) > 0) { 3730 end = btrfs_node_key_ptr_offset(nritems); 3731 3732 memzero_extent_buffer(eb, end, eb->len - end); 3733 } else { 3734 /* 3735 * leaf: 3736 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 3737 */ 3738 start = btrfs_item_nr_offset(nritems); 3739 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb); 3740 memzero_extent_buffer(eb, start, end - start); 3741 } 3742 3743 for (i = 0; i < num_pages; i++) { 3744 struct page *p = eb->pages[i]; 3745 3746 clear_page_dirty_for_io(p); 3747 set_page_writeback(p); 3748 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3749 p, offset, PAGE_SIZE, 0, bdev, 3750 &epd->bio, 3751 end_bio_extent_buffer_writepage, 3752 0, 0, 0, false); 3753 if (ret) { 3754 set_btree_ioerr(p); 3755 if (PageWriteback(p)) 3756 end_page_writeback(p); 3757 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3758 end_extent_buffer_writeback(eb); 3759 ret = -EIO; 3760 break; 3761 } 3762 offset += PAGE_SIZE; 3763 update_nr_written(wbc, 1); 3764 unlock_page(p); 3765 } 3766 3767 if (unlikely(ret)) { 3768 for (; i < num_pages; i++) { 3769 struct page *p = eb->pages[i]; 3770 clear_page_dirty_for_io(p); 3771 unlock_page(p); 3772 } 3773 } 3774 3775 return ret; 3776 } 3777 3778 int btree_write_cache_pages(struct address_space *mapping, 3779 struct writeback_control *wbc) 3780 { 3781 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3782 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3783 struct extent_buffer *eb, *prev_eb = NULL; 3784 struct extent_page_data epd = { 3785 .bio = NULL, 3786 .tree = tree, 3787 .extent_locked = 0, 3788 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3789 }; 3790 int ret = 0; 3791 int done = 0; 3792 int nr_to_write_done = 0; 3793 struct pagevec pvec; 3794 int nr_pages; 3795 pgoff_t index; 3796 pgoff_t end; /* Inclusive */ 3797 int scanned = 0; 3798 int tag; 3799 3800 pagevec_init(&pvec); 3801 if (wbc->range_cyclic) { 3802 index = mapping->writeback_index; /* Start from prev offset */ 3803 end = -1; 3804 } else { 3805 index = wbc->range_start >> PAGE_SHIFT; 3806 end = wbc->range_end >> PAGE_SHIFT; 3807 scanned = 1; 3808 } 3809 if (wbc->sync_mode == WB_SYNC_ALL) 3810 tag = PAGECACHE_TAG_TOWRITE; 3811 else 3812 tag = PAGECACHE_TAG_DIRTY; 3813 retry: 3814 if (wbc->sync_mode == WB_SYNC_ALL) 3815 tag_pages_for_writeback(mapping, index, end); 3816 while (!done && !nr_to_write_done && (index <= end) && 3817 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 3818 tag))) { 3819 unsigned i; 3820 3821 scanned = 1; 3822 for (i = 0; i < nr_pages; i++) { 3823 struct page *page = pvec.pages[i]; 3824 3825 if (!PagePrivate(page)) 3826 continue; 3827 3828 spin_lock(&mapping->private_lock); 3829 if (!PagePrivate(page)) { 3830 spin_unlock(&mapping->private_lock); 3831 continue; 3832 } 3833 3834 eb = (struct extent_buffer *)page->private; 3835 3836 /* 3837 * Shouldn't happen and normally this would be a BUG_ON 3838 * but no sense in crashing the users box for something 3839 * we can survive anyway. 3840 */ 3841 if (WARN_ON(!eb)) { 3842 spin_unlock(&mapping->private_lock); 3843 continue; 3844 } 3845 3846 if (eb == prev_eb) { 3847 spin_unlock(&mapping->private_lock); 3848 continue; 3849 } 3850 3851 ret = atomic_inc_not_zero(&eb->refs); 3852 spin_unlock(&mapping->private_lock); 3853 if (!ret) 3854 continue; 3855 3856 prev_eb = eb; 3857 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3858 if (!ret) { 3859 free_extent_buffer(eb); 3860 continue; 3861 } 3862 3863 ret = write_one_eb(eb, fs_info, wbc, &epd); 3864 if (ret) { 3865 done = 1; 3866 free_extent_buffer(eb); 3867 break; 3868 } 3869 free_extent_buffer(eb); 3870 3871 /* 3872 * the filesystem may choose to bump up nr_to_write. 3873 * We have to make sure to honor the new nr_to_write 3874 * at any time 3875 */ 3876 nr_to_write_done = wbc->nr_to_write <= 0; 3877 } 3878 pagevec_release(&pvec); 3879 cond_resched(); 3880 } 3881 if (!scanned && !done) { 3882 /* 3883 * We hit the last page and there is more work to be done: wrap 3884 * back to the start of the file 3885 */ 3886 scanned = 1; 3887 index = 0; 3888 goto retry; 3889 } 3890 flush_write_bio(&epd); 3891 return ret; 3892 } 3893 3894 /** 3895 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3896 * @mapping: address space structure to write 3897 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3898 * @writepage: function called for each page 3899 * @data: data passed to writepage function 3900 * 3901 * If a page is already under I/O, write_cache_pages() skips it, even 3902 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3903 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3904 * and msync() need to guarantee that all the data which was dirty at the time 3905 * the call was made get new I/O started against them. If wbc->sync_mode is 3906 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3907 * existing IO to complete. 3908 */ 3909 static int extent_write_cache_pages(struct address_space *mapping, 3910 struct writeback_control *wbc, 3911 writepage_t writepage, void *data, 3912 void (*flush_fn)(void *)) 3913 { 3914 struct inode *inode = mapping->host; 3915 int ret = 0; 3916 int done = 0; 3917 int nr_to_write_done = 0; 3918 struct pagevec pvec; 3919 int nr_pages; 3920 pgoff_t index; 3921 pgoff_t end; /* Inclusive */ 3922 pgoff_t done_index; 3923 int range_whole = 0; 3924 int scanned = 0; 3925 int tag; 3926 3927 /* 3928 * We have to hold onto the inode so that ordered extents can do their 3929 * work when the IO finishes. The alternative to this is failing to add 3930 * an ordered extent if the igrab() fails there and that is a huge pain 3931 * to deal with, so instead just hold onto the inode throughout the 3932 * writepages operation. If it fails here we are freeing up the inode 3933 * anyway and we'd rather not waste our time writing out stuff that is 3934 * going to be truncated anyway. 3935 */ 3936 if (!igrab(inode)) 3937 return 0; 3938 3939 pagevec_init(&pvec); 3940 if (wbc->range_cyclic) { 3941 index = mapping->writeback_index; /* Start from prev offset */ 3942 end = -1; 3943 } else { 3944 index = wbc->range_start >> PAGE_SHIFT; 3945 end = wbc->range_end >> PAGE_SHIFT; 3946 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3947 range_whole = 1; 3948 scanned = 1; 3949 } 3950 if (wbc->sync_mode == WB_SYNC_ALL) 3951 tag = PAGECACHE_TAG_TOWRITE; 3952 else 3953 tag = PAGECACHE_TAG_DIRTY; 3954 retry: 3955 if (wbc->sync_mode == WB_SYNC_ALL) 3956 tag_pages_for_writeback(mapping, index, end); 3957 done_index = index; 3958 while (!done && !nr_to_write_done && (index <= end) && 3959 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 3960 &index, end, tag))) { 3961 unsigned i; 3962 3963 scanned = 1; 3964 for (i = 0; i < nr_pages; i++) { 3965 struct page *page = pvec.pages[i]; 3966 3967 done_index = page->index; 3968 /* 3969 * At this point we hold neither mapping->tree_lock nor 3970 * lock on the page itself: the page may be truncated or 3971 * invalidated (changing page->mapping to NULL), or even 3972 * swizzled back from swapper_space to tmpfs file 3973 * mapping 3974 */ 3975 if (!trylock_page(page)) { 3976 flush_fn(data); 3977 lock_page(page); 3978 } 3979 3980 if (unlikely(page->mapping != mapping)) { 3981 unlock_page(page); 3982 continue; 3983 } 3984 3985 if (wbc->sync_mode != WB_SYNC_NONE) { 3986 if (PageWriteback(page)) 3987 flush_fn(data); 3988 wait_on_page_writeback(page); 3989 } 3990 3991 if (PageWriteback(page) || 3992 !clear_page_dirty_for_io(page)) { 3993 unlock_page(page); 3994 continue; 3995 } 3996 3997 ret = (*writepage)(page, wbc, data); 3998 3999 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 4000 unlock_page(page); 4001 ret = 0; 4002 } 4003 if (ret < 0) { 4004 /* 4005 * done_index is set past this page, 4006 * so media errors will not choke 4007 * background writeout for the entire 4008 * file. This has consequences for 4009 * range_cyclic semantics (ie. it may 4010 * not be suitable for data integrity 4011 * writeout). 4012 */ 4013 done_index = page->index + 1; 4014 done = 1; 4015 break; 4016 } 4017 4018 /* 4019 * the filesystem may choose to bump up nr_to_write. 4020 * We have to make sure to honor the new nr_to_write 4021 * at any time 4022 */ 4023 nr_to_write_done = wbc->nr_to_write <= 0; 4024 } 4025 pagevec_release(&pvec); 4026 cond_resched(); 4027 } 4028 if (!scanned && !done) { 4029 /* 4030 * We hit the last page and there is more work to be done: wrap 4031 * back to the start of the file 4032 */ 4033 scanned = 1; 4034 index = 0; 4035 goto retry; 4036 } 4037 4038 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4039 mapping->writeback_index = done_index; 4040 4041 btrfs_add_delayed_iput(inode); 4042 return ret; 4043 } 4044 4045 static void flush_epd_write_bio(struct extent_page_data *epd) 4046 { 4047 if (epd->bio) { 4048 int ret; 4049 4050 ret = submit_one_bio(epd->bio, 0, 0); 4051 BUG_ON(ret < 0); /* -ENOMEM */ 4052 epd->bio = NULL; 4053 } 4054 } 4055 4056 static noinline void flush_write_bio(void *data) 4057 { 4058 struct extent_page_data *epd = data; 4059 flush_epd_write_bio(epd); 4060 } 4061 4062 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 4063 get_extent_t *get_extent, 4064 struct writeback_control *wbc) 4065 { 4066 int ret; 4067 struct extent_page_data epd = { 4068 .bio = NULL, 4069 .tree = tree, 4070 .get_extent = get_extent, 4071 .extent_locked = 0, 4072 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4073 }; 4074 4075 ret = __extent_writepage(page, wbc, &epd); 4076 4077 flush_epd_write_bio(&epd); 4078 return ret; 4079 } 4080 4081 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 4082 u64 start, u64 end, get_extent_t *get_extent, 4083 int mode) 4084 { 4085 int ret = 0; 4086 struct address_space *mapping = inode->i_mapping; 4087 struct page *page; 4088 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4089 PAGE_SHIFT; 4090 4091 struct extent_page_data epd = { 4092 .bio = NULL, 4093 .tree = tree, 4094 .get_extent = get_extent, 4095 .extent_locked = 1, 4096 .sync_io = mode == WB_SYNC_ALL, 4097 }; 4098 struct writeback_control wbc_writepages = { 4099 .sync_mode = mode, 4100 .nr_to_write = nr_pages * 2, 4101 .range_start = start, 4102 .range_end = end + 1, 4103 }; 4104 4105 while (start <= end) { 4106 page = find_get_page(mapping, start >> PAGE_SHIFT); 4107 if (clear_page_dirty_for_io(page)) 4108 ret = __extent_writepage(page, &wbc_writepages, &epd); 4109 else { 4110 if (tree->ops && tree->ops->writepage_end_io_hook) 4111 tree->ops->writepage_end_io_hook(page, start, 4112 start + PAGE_SIZE - 1, 4113 NULL, 1); 4114 unlock_page(page); 4115 } 4116 put_page(page); 4117 start += PAGE_SIZE; 4118 } 4119 4120 flush_epd_write_bio(&epd); 4121 return ret; 4122 } 4123 4124 int extent_writepages(struct extent_io_tree *tree, 4125 struct address_space *mapping, 4126 get_extent_t *get_extent, 4127 struct writeback_control *wbc) 4128 { 4129 int ret = 0; 4130 struct extent_page_data epd = { 4131 .bio = NULL, 4132 .tree = tree, 4133 .get_extent = get_extent, 4134 .extent_locked = 0, 4135 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4136 }; 4137 4138 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd, 4139 flush_write_bio); 4140 flush_epd_write_bio(&epd); 4141 return ret; 4142 } 4143 4144 int extent_readpages(struct extent_io_tree *tree, 4145 struct address_space *mapping, 4146 struct list_head *pages, unsigned nr_pages, 4147 get_extent_t get_extent) 4148 { 4149 struct bio *bio = NULL; 4150 unsigned page_idx; 4151 unsigned long bio_flags = 0; 4152 struct page *pagepool[16]; 4153 struct page *page; 4154 struct extent_map *em_cached = NULL; 4155 int nr = 0; 4156 u64 prev_em_start = (u64)-1; 4157 4158 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4159 page = list_entry(pages->prev, struct page, lru); 4160 4161 prefetchw(&page->flags); 4162 list_del(&page->lru); 4163 if (add_to_page_cache_lru(page, mapping, 4164 page->index, 4165 readahead_gfp_mask(mapping))) { 4166 put_page(page); 4167 continue; 4168 } 4169 4170 pagepool[nr++] = page; 4171 if (nr < ARRAY_SIZE(pagepool)) 4172 continue; 4173 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4174 &bio, 0, &bio_flags, &prev_em_start); 4175 nr = 0; 4176 } 4177 if (nr) 4178 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4179 &bio, 0, &bio_flags, &prev_em_start); 4180 4181 if (em_cached) 4182 free_extent_map(em_cached); 4183 4184 BUG_ON(!list_empty(pages)); 4185 if (bio) 4186 return submit_one_bio(bio, 0, bio_flags); 4187 return 0; 4188 } 4189 4190 /* 4191 * basic invalidatepage code, this waits on any locked or writeback 4192 * ranges corresponding to the page, and then deletes any extent state 4193 * records from the tree 4194 */ 4195 int extent_invalidatepage(struct extent_io_tree *tree, 4196 struct page *page, unsigned long offset) 4197 { 4198 struct extent_state *cached_state = NULL; 4199 u64 start = page_offset(page); 4200 u64 end = start + PAGE_SIZE - 1; 4201 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4202 4203 start += ALIGN(offset, blocksize); 4204 if (start > end) 4205 return 0; 4206 4207 lock_extent_bits(tree, start, end, &cached_state); 4208 wait_on_page_writeback(page); 4209 clear_extent_bit(tree, start, end, 4210 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4211 EXTENT_DO_ACCOUNTING, 4212 1, 1, &cached_state, GFP_NOFS); 4213 return 0; 4214 } 4215 4216 /* 4217 * a helper for releasepage, this tests for areas of the page that 4218 * are locked or under IO and drops the related state bits if it is safe 4219 * to drop the page. 4220 */ 4221 static int try_release_extent_state(struct extent_map_tree *map, 4222 struct extent_io_tree *tree, 4223 struct page *page, gfp_t mask) 4224 { 4225 u64 start = page_offset(page); 4226 u64 end = start + PAGE_SIZE - 1; 4227 int ret = 1; 4228 4229 if (test_range_bit(tree, start, end, 4230 EXTENT_IOBITS, 0, NULL)) 4231 ret = 0; 4232 else { 4233 /* 4234 * at this point we can safely clear everything except the 4235 * locked bit and the nodatasum bit 4236 */ 4237 ret = clear_extent_bit(tree, start, end, 4238 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4239 0, 0, NULL, mask); 4240 4241 /* if clear_extent_bit failed for enomem reasons, 4242 * we can't allow the release to continue. 4243 */ 4244 if (ret < 0) 4245 ret = 0; 4246 else 4247 ret = 1; 4248 } 4249 return ret; 4250 } 4251 4252 /* 4253 * a helper for releasepage. As long as there are no locked extents 4254 * in the range corresponding to the page, both state records and extent 4255 * map records are removed 4256 */ 4257 int try_release_extent_mapping(struct extent_map_tree *map, 4258 struct extent_io_tree *tree, struct page *page, 4259 gfp_t mask) 4260 { 4261 struct extent_map *em; 4262 u64 start = page_offset(page); 4263 u64 end = start + PAGE_SIZE - 1; 4264 4265 if (gfpflags_allow_blocking(mask) && 4266 page->mapping->host->i_size > SZ_16M) { 4267 u64 len; 4268 while (start <= end) { 4269 len = end - start + 1; 4270 write_lock(&map->lock); 4271 em = lookup_extent_mapping(map, start, len); 4272 if (!em) { 4273 write_unlock(&map->lock); 4274 break; 4275 } 4276 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4277 em->start != start) { 4278 write_unlock(&map->lock); 4279 free_extent_map(em); 4280 break; 4281 } 4282 if (!test_range_bit(tree, em->start, 4283 extent_map_end(em) - 1, 4284 EXTENT_LOCKED | EXTENT_WRITEBACK, 4285 0, NULL)) { 4286 remove_extent_mapping(map, em); 4287 /* once for the rb tree */ 4288 free_extent_map(em); 4289 } 4290 start = extent_map_end(em); 4291 write_unlock(&map->lock); 4292 4293 /* once for us */ 4294 free_extent_map(em); 4295 } 4296 } 4297 return try_release_extent_state(map, tree, page, mask); 4298 } 4299 4300 /* 4301 * helper function for fiemap, which doesn't want to see any holes. 4302 * This maps until we find something past 'last' 4303 */ 4304 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4305 u64 offset, 4306 u64 last, 4307 get_extent_t *get_extent) 4308 { 4309 u64 sectorsize = btrfs_inode_sectorsize(inode); 4310 struct extent_map *em; 4311 u64 len; 4312 4313 if (offset >= last) 4314 return NULL; 4315 4316 while (1) { 4317 len = last - offset; 4318 if (len == 0) 4319 break; 4320 len = ALIGN(len, sectorsize); 4321 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0); 4322 if (IS_ERR_OR_NULL(em)) 4323 return em; 4324 4325 /* if this isn't a hole return it */ 4326 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4327 em->block_start != EXTENT_MAP_HOLE) { 4328 return em; 4329 } 4330 4331 /* this is a hole, advance to the next extent */ 4332 offset = extent_map_end(em); 4333 free_extent_map(em); 4334 if (offset >= last) 4335 break; 4336 } 4337 return NULL; 4338 } 4339 4340 /* 4341 * To cache previous fiemap extent 4342 * 4343 * Will be used for merging fiemap extent 4344 */ 4345 struct fiemap_cache { 4346 u64 offset; 4347 u64 phys; 4348 u64 len; 4349 u32 flags; 4350 bool cached; 4351 }; 4352 4353 /* 4354 * Helper to submit fiemap extent. 4355 * 4356 * Will try to merge current fiemap extent specified by @offset, @phys, 4357 * @len and @flags with cached one. 4358 * And only when we fails to merge, cached one will be submitted as 4359 * fiemap extent. 4360 * 4361 * Return value is the same as fiemap_fill_next_extent(). 4362 */ 4363 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4364 struct fiemap_cache *cache, 4365 u64 offset, u64 phys, u64 len, u32 flags) 4366 { 4367 int ret = 0; 4368 4369 if (!cache->cached) 4370 goto assign; 4371 4372 /* 4373 * Sanity check, extent_fiemap() should have ensured that new 4374 * fiemap extent won't overlap with cahced one. 4375 * Not recoverable. 4376 * 4377 * NOTE: Physical address can overlap, due to compression 4378 */ 4379 if (cache->offset + cache->len > offset) { 4380 WARN_ON(1); 4381 return -EINVAL; 4382 } 4383 4384 /* 4385 * Only merges fiemap extents if 4386 * 1) Their logical addresses are continuous 4387 * 4388 * 2) Their physical addresses are continuous 4389 * So truly compressed (physical size smaller than logical size) 4390 * extents won't get merged with each other 4391 * 4392 * 3) Share same flags except FIEMAP_EXTENT_LAST 4393 * So regular extent won't get merged with prealloc extent 4394 */ 4395 if (cache->offset + cache->len == offset && 4396 cache->phys + cache->len == phys && 4397 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4398 (flags & ~FIEMAP_EXTENT_LAST)) { 4399 cache->len += len; 4400 cache->flags |= flags; 4401 goto try_submit_last; 4402 } 4403 4404 /* Not mergeable, need to submit cached one */ 4405 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4406 cache->len, cache->flags); 4407 cache->cached = false; 4408 if (ret) 4409 return ret; 4410 assign: 4411 cache->cached = true; 4412 cache->offset = offset; 4413 cache->phys = phys; 4414 cache->len = len; 4415 cache->flags = flags; 4416 try_submit_last: 4417 if (cache->flags & FIEMAP_EXTENT_LAST) { 4418 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4419 cache->phys, cache->len, cache->flags); 4420 cache->cached = false; 4421 } 4422 return ret; 4423 } 4424 4425 /* 4426 * Emit last fiemap cache 4427 * 4428 * The last fiemap cache may still be cached in the following case: 4429 * 0 4k 8k 4430 * |<- Fiemap range ->| 4431 * |<------------ First extent ----------->| 4432 * 4433 * In this case, the first extent range will be cached but not emitted. 4434 * So we must emit it before ending extent_fiemap(). 4435 */ 4436 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info, 4437 struct fiemap_extent_info *fieinfo, 4438 struct fiemap_cache *cache) 4439 { 4440 int ret; 4441 4442 if (!cache->cached) 4443 return 0; 4444 4445 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4446 cache->len, cache->flags); 4447 cache->cached = false; 4448 if (ret > 0) 4449 ret = 0; 4450 return ret; 4451 } 4452 4453 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4454 __u64 start, __u64 len, get_extent_t *get_extent) 4455 { 4456 int ret = 0; 4457 u64 off = start; 4458 u64 max = start + len; 4459 u32 flags = 0; 4460 u32 found_type; 4461 u64 last; 4462 u64 last_for_get_extent = 0; 4463 u64 disko = 0; 4464 u64 isize = i_size_read(inode); 4465 struct btrfs_key found_key; 4466 struct extent_map *em = NULL; 4467 struct extent_state *cached_state = NULL; 4468 struct btrfs_path *path; 4469 struct btrfs_root *root = BTRFS_I(inode)->root; 4470 struct fiemap_cache cache = { 0 }; 4471 int end = 0; 4472 u64 em_start = 0; 4473 u64 em_len = 0; 4474 u64 em_end = 0; 4475 4476 if (len == 0) 4477 return -EINVAL; 4478 4479 path = btrfs_alloc_path(); 4480 if (!path) 4481 return -ENOMEM; 4482 path->leave_spinning = 1; 4483 4484 start = round_down(start, btrfs_inode_sectorsize(inode)); 4485 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4486 4487 /* 4488 * lookup the last file extent. We're not using i_size here 4489 * because there might be preallocation past i_size 4490 */ 4491 ret = btrfs_lookup_file_extent(NULL, root, path, 4492 btrfs_ino(BTRFS_I(inode)), -1, 0); 4493 if (ret < 0) { 4494 btrfs_free_path(path); 4495 return ret; 4496 } else { 4497 WARN_ON(!ret); 4498 if (ret == 1) 4499 ret = 0; 4500 } 4501 4502 path->slots[0]--; 4503 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4504 found_type = found_key.type; 4505 4506 /* No extents, but there might be delalloc bits */ 4507 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) || 4508 found_type != BTRFS_EXTENT_DATA_KEY) { 4509 /* have to trust i_size as the end */ 4510 last = (u64)-1; 4511 last_for_get_extent = isize; 4512 } else { 4513 /* 4514 * remember the start of the last extent. There are a 4515 * bunch of different factors that go into the length of the 4516 * extent, so its much less complex to remember where it started 4517 */ 4518 last = found_key.offset; 4519 last_for_get_extent = last + 1; 4520 } 4521 btrfs_release_path(path); 4522 4523 /* 4524 * we might have some extents allocated but more delalloc past those 4525 * extents. so, we trust isize unless the start of the last extent is 4526 * beyond isize 4527 */ 4528 if (last < isize) { 4529 last = (u64)-1; 4530 last_for_get_extent = isize; 4531 } 4532 4533 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4534 &cached_state); 4535 4536 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4537 get_extent); 4538 if (!em) 4539 goto out; 4540 if (IS_ERR(em)) { 4541 ret = PTR_ERR(em); 4542 goto out; 4543 } 4544 4545 while (!end) { 4546 u64 offset_in_extent = 0; 4547 4548 /* break if the extent we found is outside the range */ 4549 if (em->start >= max || extent_map_end(em) < off) 4550 break; 4551 4552 /* 4553 * get_extent may return an extent that starts before our 4554 * requested range. We have to make sure the ranges 4555 * we return to fiemap always move forward and don't 4556 * overlap, so adjust the offsets here 4557 */ 4558 em_start = max(em->start, off); 4559 4560 /* 4561 * record the offset from the start of the extent 4562 * for adjusting the disk offset below. Only do this if the 4563 * extent isn't compressed since our in ram offset may be past 4564 * what we have actually allocated on disk. 4565 */ 4566 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4567 offset_in_extent = em_start - em->start; 4568 em_end = extent_map_end(em); 4569 em_len = em_end - em_start; 4570 disko = 0; 4571 flags = 0; 4572 4573 /* 4574 * bump off for our next call to get_extent 4575 */ 4576 off = extent_map_end(em); 4577 if (off >= max) 4578 end = 1; 4579 4580 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4581 end = 1; 4582 flags |= FIEMAP_EXTENT_LAST; 4583 } else if (em->block_start == EXTENT_MAP_INLINE) { 4584 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4585 FIEMAP_EXTENT_NOT_ALIGNED); 4586 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4587 flags |= (FIEMAP_EXTENT_DELALLOC | 4588 FIEMAP_EXTENT_UNKNOWN); 4589 } else if (fieinfo->fi_extents_max) { 4590 u64 bytenr = em->block_start - 4591 (em->start - em->orig_start); 4592 4593 disko = em->block_start + offset_in_extent; 4594 4595 /* 4596 * As btrfs supports shared space, this information 4597 * can be exported to userspace tools via 4598 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4599 * then we're just getting a count and we can skip the 4600 * lookup stuff. 4601 */ 4602 ret = btrfs_check_shared(root, 4603 btrfs_ino(BTRFS_I(inode)), 4604 bytenr); 4605 if (ret < 0) 4606 goto out_free; 4607 if (ret) 4608 flags |= FIEMAP_EXTENT_SHARED; 4609 ret = 0; 4610 } 4611 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4612 flags |= FIEMAP_EXTENT_ENCODED; 4613 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4614 flags |= FIEMAP_EXTENT_UNWRITTEN; 4615 4616 free_extent_map(em); 4617 em = NULL; 4618 if ((em_start >= last) || em_len == (u64)-1 || 4619 (last == (u64)-1 && isize <= em_end)) { 4620 flags |= FIEMAP_EXTENT_LAST; 4621 end = 1; 4622 } 4623 4624 /* now scan forward to see if this is really the last extent. */ 4625 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4626 get_extent); 4627 if (IS_ERR(em)) { 4628 ret = PTR_ERR(em); 4629 goto out; 4630 } 4631 if (!em) { 4632 flags |= FIEMAP_EXTENT_LAST; 4633 end = 1; 4634 } 4635 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 4636 em_len, flags); 4637 if (ret) { 4638 if (ret == 1) 4639 ret = 0; 4640 goto out_free; 4641 } 4642 } 4643 out_free: 4644 if (!ret) 4645 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache); 4646 free_extent_map(em); 4647 out: 4648 btrfs_free_path(path); 4649 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4650 &cached_state, GFP_NOFS); 4651 return ret; 4652 } 4653 4654 static void __free_extent_buffer(struct extent_buffer *eb) 4655 { 4656 btrfs_leak_debug_del(&eb->leak_list); 4657 kmem_cache_free(extent_buffer_cache, eb); 4658 } 4659 4660 int extent_buffer_under_io(struct extent_buffer *eb) 4661 { 4662 return (atomic_read(&eb->io_pages) || 4663 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4664 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4665 } 4666 4667 /* 4668 * Helper for releasing extent buffer page. 4669 */ 4670 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb) 4671 { 4672 unsigned long index; 4673 struct page *page; 4674 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4675 4676 BUG_ON(extent_buffer_under_io(eb)); 4677 4678 index = num_extent_pages(eb->start, eb->len); 4679 if (index == 0) 4680 return; 4681 4682 do { 4683 index--; 4684 page = eb->pages[index]; 4685 if (!page) 4686 continue; 4687 if (mapped) 4688 spin_lock(&page->mapping->private_lock); 4689 /* 4690 * We do this since we'll remove the pages after we've 4691 * removed the eb from the radix tree, so we could race 4692 * and have this page now attached to the new eb. So 4693 * only clear page_private if it's still connected to 4694 * this eb. 4695 */ 4696 if (PagePrivate(page) && 4697 page->private == (unsigned long)eb) { 4698 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4699 BUG_ON(PageDirty(page)); 4700 BUG_ON(PageWriteback(page)); 4701 /* 4702 * We need to make sure we haven't be attached 4703 * to a new eb. 4704 */ 4705 ClearPagePrivate(page); 4706 set_page_private(page, 0); 4707 /* One for the page private */ 4708 put_page(page); 4709 } 4710 4711 if (mapped) 4712 spin_unlock(&page->mapping->private_lock); 4713 4714 /* One for when we allocated the page */ 4715 put_page(page); 4716 } while (index != 0); 4717 } 4718 4719 /* 4720 * Helper for releasing the extent buffer. 4721 */ 4722 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4723 { 4724 btrfs_release_extent_buffer_page(eb); 4725 __free_extent_buffer(eb); 4726 } 4727 4728 static struct extent_buffer * 4729 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4730 unsigned long len) 4731 { 4732 struct extent_buffer *eb = NULL; 4733 4734 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4735 eb->start = start; 4736 eb->len = len; 4737 eb->fs_info = fs_info; 4738 eb->bflags = 0; 4739 rwlock_init(&eb->lock); 4740 atomic_set(&eb->write_locks, 0); 4741 atomic_set(&eb->read_locks, 0); 4742 atomic_set(&eb->blocking_readers, 0); 4743 atomic_set(&eb->blocking_writers, 0); 4744 atomic_set(&eb->spinning_readers, 0); 4745 atomic_set(&eb->spinning_writers, 0); 4746 eb->lock_nested = 0; 4747 init_waitqueue_head(&eb->write_lock_wq); 4748 init_waitqueue_head(&eb->read_lock_wq); 4749 4750 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4751 4752 spin_lock_init(&eb->refs_lock); 4753 atomic_set(&eb->refs, 1); 4754 atomic_set(&eb->io_pages, 0); 4755 4756 /* 4757 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4758 */ 4759 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4760 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4761 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4762 4763 return eb; 4764 } 4765 4766 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4767 { 4768 unsigned long i; 4769 struct page *p; 4770 struct extent_buffer *new; 4771 unsigned long num_pages = num_extent_pages(src->start, src->len); 4772 4773 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4774 if (new == NULL) 4775 return NULL; 4776 4777 for (i = 0; i < num_pages; i++) { 4778 p = alloc_page(GFP_NOFS); 4779 if (!p) { 4780 btrfs_release_extent_buffer(new); 4781 return NULL; 4782 } 4783 attach_extent_buffer_page(new, p); 4784 WARN_ON(PageDirty(p)); 4785 SetPageUptodate(p); 4786 new->pages[i] = p; 4787 copy_page(page_address(p), page_address(src->pages[i])); 4788 } 4789 4790 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4791 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4792 4793 return new; 4794 } 4795 4796 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4797 u64 start, unsigned long len) 4798 { 4799 struct extent_buffer *eb; 4800 unsigned long num_pages; 4801 unsigned long i; 4802 4803 num_pages = num_extent_pages(start, len); 4804 4805 eb = __alloc_extent_buffer(fs_info, start, len); 4806 if (!eb) 4807 return NULL; 4808 4809 for (i = 0; i < num_pages; i++) { 4810 eb->pages[i] = alloc_page(GFP_NOFS); 4811 if (!eb->pages[i]) 4812 goto err; 4813 } 4814 set_extent_buffer_uptodate(eb); 4815 btrfs_set_header_nritems(eb, 0); 4816 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4817 4818 return eb; 4819 err: 4820 for (; i > 0; i--) 4821 __free_page(eb->pages[i - 1]); 4822 __free_extent_buffer(eb); 4823 return NULL; 4824 } 4825 4826 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4827 u64 start) 4828 { 4829 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 4830 } 4831 4832 static void check_buffer_tree_ref(struct extent_buffer *eb) 4833 { 4834 int refs; 4835 /* the ref bit is tricky. We have to make sure it is set 4836 * if we have the buffer dirty. Otherwise the 4837 * code to free a buffer can end up dropping a dirty 4838 * page 4839 * 4840 * Once the ref bit is set, it won't go away while the 4841 * buffer is dirty or in writeback, and it also won't 4842 * go away while we have the reference count on the 4843 * eb bumped. 4844 * 4845 * We can't just set the ref bit without bumping the 4846 * ref on the eb because free_extent_buffer might 4847 * see the ref bit and try to clear it. If this happens 4848 * free_extent_buffer might end up dropping our original 4849 * ref by mistake and freeing the page before we are able 4850 * to add one more ref. 4851 * 4852 * So bump the ref count first, then set the bit. If someone 4853 * beat us to it, drop the ref we added. 4854 */ 4855 refs = atomic_read(&eb->refs); 4856 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4857 return; 4858 4859 spin_lock(&eb->refs_lock); 4860 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4861 atomic_inc(&eb->refs); 4862 spin_unlock(&eb->refs_lock); 4863 } 4864 4865 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4866 struct page *accessed) 4867 { 4868 unsigned long num_pages, i; 4869 4870 check_buffer_tree_ref(eb); 4871 4872 num_pages = num_extent_pages(eb->start, eb->len); 4873 for (i = 0; i < num_pages; i++) { 4874 struct page *p = eb->pages[i]; 4875 4876 if (p != accessed) 4877 mark_page_accessed(p); 4878 } 4879 } 4880 4881 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4882 u64 start) 4883 { 4884 struct extent_buffer *eb; 4885 4886 rcu_read_lock(); 4887 eb = radix_tree_lookup(&fs_info->buffer_radix, 4888 start >> PAGE_SHIFT); 4889 if (eb && atomic_inc_not_zero(&eb->refs)) { 4890 rcu_read_unlock(); 4891 /* 4892 * Lock our eb's refs_lock to avoid races with 4893 * free_extent_buffer. When we get our eb it might be flagged 4894 * with EXTENT_BUFFER_STALE and another task running 4895 * free_extent_buffer might have seen that flag set, 4896 * eb->refs == 2, that the buffer isn't under IO (dirty and 4897 * writeback flags not set) and it's still in the tree (flag 4898 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4899 * of decrementing the extent buffer's reference count twice. 4900 * So here we could race and increment the eb's reference count, 4901 * clear its stale flag, mark it as dirty and drop our reference 4902 * before the other task finishes executing free_extent_buffer, 4903 * which would later result in an attempt to free an extent 4904 * buffer that is dirty. 4905 */ 4906 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4907 spin_lock(&eb->refs_lock); 4908 spin_unlock(&eb->refs_lock); 4909 } 4910 mark_extent_buffer_accessed(eb, NULL); 4911 return eb; 4912 } 4913 rcu_read_unlock(); 4914 4915 return NULL; 4916 } 4917 4918 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4919 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4920 u64 start) 4921 { 4922 struct extent_buffer *eb, *exists = NULL; 4923 int ret; 4924 4925 eb = find_extent_buffer(fs_info, start); 4926 if (eb) 4927 return eb; 4928 eb = alloc_dummy_extent_buffer(fs_info, start); 4929 if (!eb) 4930 return NULL; 4931 eb->fs_info = fs_info; 4932 again: 4933 ret = radix_tree_preload(GFP_NOFS); 4934 if (ret) 4935 goto free_eb; 4936 spin_lock(&fs_info->buffer_lock); 4937 ret = radix_tree_insert(&fs_info->buffer_radix, 4938 start >> PAGE_SHIFT, eb); 4939 spin_unlock(&fs_info->buffer_lock); 4940 radix_tree_preload_end(); 4941 if (ret == -EEXIST) { 4942 exists = find_extent_buffer(fs_info, start); 4943 if (exists) 4944 goto free_eb; 4945 else 4946 goto again; 4947 } 4948 check_buffer_tree_ref(eb); 4949 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4950 4951 /* 4952 * We will free dummy extent buffer's if they come into 4953 * free_extent_buffer with a ref count of 2, but if we are using this we 4954 * want the buffers to stay in memory until we're done with them, so 4955 * bump the ref count again. 4956 */ 4957 atomic_inc(&eb->refs); 4958 return eb; 4959 free_eb: 4960 btrfs_release_extent_buffer(eb); 4961 return exists; 4962 } 4963 #endif 4964 4965 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4966 u64 start) 4967 { 4968 unsigned long len = fs_info->nodesize; 4969 unsigned long num_pages = num_extent_pages(start, len); 4970 unsigned long i; 4971 unsigned long index = start >> PAGE_SHIFT; 4972 struct extent_buffer *eb; 4973 struct extent_buffer *exists = NULL; 4974 struct page *p; 4975 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4976 int uptodate = 1; 4977 int ret; 4978 4979 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 4980 btrfs_err(fs_info, "bad tree block start %llu", start); 4981 return ERR_PTR(-EINVAL); 4982 } 4983 4984 eb = find_extent_buffer(fs_info, start); 4985 if (eb) 4986 return eb; 4987 4988 eb = __alloc_extent_buffer(fs_info, start, len); 4989 if (!eb) 4990 return ERR_PTR(-ENOMEM); 4991 4992 for (i = 0; i < num_pages; i++, index++) { 4993 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4994 if (!p) { 4995 exists = ERR_PTR(-ENOMEM); 4996 goto free_eb; 4997 } 4998 4999 spin_lock(&mapping->private_lock); 5000 if (PagePrivate(p)) { 5001 /* 5002 * We could have already allocated an eb for this page 5003 * and attached one so lets see if we can get a ref on 5004 * the existing eb, and if we can we know it's good and 5005 * we can just return that one, else we know we can just 5006 * overwrite page->private. 5007 */ 5008 exists = (struct extent_buffer *)p->private; 5009 if (atomic_inc_not_zero(&exists->refs)) { 5010 spin_unlock(&mapping->private_lock); 5011 unlock_page(p); 5012 put_page(p); 5013 mark_extent_buffer_accessed(exists, p); 5014 goto free_eb; 5015 } 5016 exists = NULL; 5017 5018 /* 5019 * Do this so attach doesn't complain and we need to 5020 * drop the ref the old guy had. 5021 */ 5022 ClearPagePrivate(p); 5023 WARN_ON(PageDirty(p)); 5024 put_page(p); 5025 } 5026 attach_extent_buffer_page(eb, p); 5027 spin_unlock(&mapping->private_lock); 5028 WARN_ON(PageDirty(p)); 5029 eb->pages[i] = p; 5030 if (!PageUptodate(p)) 5031 uptodate = 0; 5032 5033 /* 5034 * see below about how we avoid a nasty race with release page 5035 * and why we unlock later 5036 */ 5037 } 5038 if (uptodate) 5039 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5040 again: 5041 ret = radix_tree_preload(GFP_NOFS); 5042 if (ret) { 5043 exists = ERR_PTR(ret); 5044 goto free_eb; 5045 } 5046 5047 spin_lock(&fs_info->buffer_lock); 5048 ret = radix_tree_insert(&fs_info->buffer_radix, 5049 start >> PAGE_SHIFT, eb); 5050 spin_unlock(&fs_info->buffer_lock); 5051 radix_tree_preload_end(); 5052 if (ret == -EEXIST) { 5053 exists = find_extent_buffer(fs_info, start); 5054 if (exists) 5055 goto free_eb; 5056 else 5057 goto again; 5058 } 5059 /* add one reference for the tree */ 5060 check_buffer_tree_ref(eb); 5061 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5062 5063 /* 5064 * there is a race where release page may have 5065 * tried to find this extent buffer in the radix 5066 * but failed. It will tell the VM it is safe to 5067 * reclaim the, and it will clear the page private bit. 5068 * We must make sure to set the page private bit properly 5069 * after the extent buffer is in the radix tree so 5070 * it doesn't get lost 5071 */ 5072 SetPageChecked(eb->pages[0]); 5073 for (i = 1; i < num_pages; i++) { 5074 p = eb->pages[i]; 5075 ClearPageChecked(p); 5076 unlock_page(p); 5077 } 5078 unlock_page(eb->pages[0]); 5079 return eb; 5080 5081 free_eb: 5082 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5083 for (i = 0; i < num_pages; i++) { 5084 if (eb->pages[i]) 5085 unlock_page(eb->pages[i]); 5086 } 5087 5088 btrfs_release_extent_buffer(eb); 5089 return exists; 5090 } 5091 5092 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5093 { 5094 struct extent_buffer *eb = 5095 container_of(head, struct extent_buffer, rcu_head); 5096 5097 __free_extent_buffer(eb); 5098 } 5099 5100 /* Expects to have eb->eb_lock already held */ 5101 static int release_extent_buffer(struct extent_buffer *eb) 5102 { 5103 WARN_ON(atomic_read(&eb->refs) == 0); 5104 if (atomic_dec_and_test(&eb->refs)) { 5105 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5106 struct btrfs_fs_info *fs_info = eb->fs_info; 5107 5108 spin_unlock(&eb->refs_lock); 5109 5110 spin_lock(&fs_info->buffer_lock); 5111 radix_tree_delete(&fs_info->buffer_radix, 5112 eb->start >> PAGE_SHIFT); 5113 spin_unlock(&fs_info->buffer_lock); 5114 } else { 5115 spin_unlock(&eb->refs_lock); 5116 } 5117 5118 /* Should be safe to release our pages at this point */ 5119 btrfs_release_extent_buffer_page(eb); 5120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5121 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) { 5122 __free_extent_buffer(eb); 5123 return 1; 5124 } 5125 #endif 5126 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5127 return 1; 5128 } 5129 spin_unlock(&eb->refs_lock); 5130 5131 return 0; 5132 } 5133 5134 void free_extent_buffer(struct extent_buffer *eb) 5135 { 5136 int refs; 5137 int old; 5138 if (!eb) 5139 return; 5140 5141 while (1) { 5142 refs = atomic_read(&eb->refs); 5143 if (refs <= 3) 5144 break; 5145 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5146 if (old == refs) 5147 return; 5148 } 5149 5150 spin_lock(&eb->refs_lock); 5151 if (atomic_read(&eb->refs) == 2 && 5152 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 5153 atomic_dec(&eb->refs); 5154 5155 if (atomic_read(&eb->refs) == 2 && 5156 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5157 !extent_buffer_under_io(eb) && 5158 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5159 atomic_dec(&eb->refs); 5160 5161 /* 5162 * I know this is terrible, but it's temporary until we stop tracking 5163 * the uptodate bits and such for the extent buffers. 5164 */ 5165 release_extent_buffer(eb); 5166 } 5167 5168 void free_extent_buffer_stale(struct extent_buffer *eb) 5169 { 5170 if (!eb) 5171 return; 5172 5173 spin_lock(&eb->refs_lock); 5174 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5175 5176 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5177 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5178 atomic_dec(&eb->refs); 5179 release_extent_buffer(eb); 5180 } 5181 5182 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5183 { 5184 unsigned long i; 5185 unsigned long num_pages; 5186 struct page *page; 5187 5188 num_pages = num_extent_pages(eb->start, eb->len); 5189 5190 for (i = 0; i < num_pages; i++) { 5191 page = eb->pages[i]; 5192 if (!PageDirty(page)) 5193 continue; 5194 5195 lock_page(page); 5196 WARN_ON(!PagePrivate(page)); 5197 5198 clear_page_dirty_for_io(page); 5199 spin_lock_irq(&page->mapping->tree_lock); 5200 if (!PageDirty(page)) { 5201 radix_tree_tag_clear(&page->mapping->page_tree, 5202 page_index(page), 5203 PAGECACHE_TAG_DIRTY); 5204 } 5205 spin_unlock_irq(&page->mapping->tree_lock); 5206 ClearPageError(page); 5207 unlock_page(page); 5208 } 5209 WARN_ON(atomic_read(&eb->refs) == 0); 5210 } 5211 5212 int set_extent_buffer_dirty(struct extent_buffer *eb) 5213 { 5214 unsigned long i; 5215 unsigned long num_pages; 5216 int was_dirty = 0; 5217 5218 check_buffer_tree_ref(eb); 5219 5220 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5221 5222 num_pages = num_extent_pages(eb->start, eb->len); 5223 WARN_ON(atomic_read(&eb->refs) == 0); 5224 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5225 5226 for (i = 0; i < num_pages; i++) 5227 set_page_dirty(eb->pages[i]); 5228 return was_dirty; 5229 } 5230 5231 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5232 { 5233 unsigned long i; 5234 struct page *page; 5235 unsigned long num_pages; 5236 5237 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5238 num_pages = num_extent_pages(eb->start, eb->len); 5239 for (i = 0; i < num_pages; i++) { 5240 page = eb->pages[i]; 5241 if (page) 5242 ClearPageUptodate(page); 5243 } 5244 } 5245 5246 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5247 { 5248 unsigned long i; 5249 struct page *page; 5250 unsigned long num_pages; 5251 5252 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5253 num_pages = num_extent_pages(eb->start, eb->len); 5254 for (i = 0; i < num_pages; i++) { 5255 page = eb->pages[i]; 5256 SetPageUptodate(page); 5257 } 5258 } 5259 5260 int extent_buffer_uptodate(struct extent_buffer *eb) 5261 { 5262 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5263 } 5264 5265 int read_extent_buffer_pages(struct extent_io_tree *tree, 5266 struct extent_buffer *eb, int wait, 5267 get_extent_t *get_extent, int mirror_num) 5268 { 5269 unsigned long i; 5270 struct page *page; 5271 int err; 5272 int ret = 0; 5273 int locked_pages = 0; 5274 int all_uptodate = 1; 5275 unsigned long num_pages; 5276 unsigned long num_reads = 0; 5277 struct bio *bio = NULL; 5278 unsigned long bio_flags = 0; 5279 5280 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5281 return 0; 5282 5283 num_pages = num_extent_pages(eb->start, eb->len); 5284 for (i = 0; i < num_pages; i++) { 5285 page = eb->pages[i]; 5286 if (wait == WAIT_NONE) { 5287 if (!trylock_page(page)) 5288 goto unlock_exit; 5289 } else { 5290 lock_page(page); 5291 } 5292 locked_pages++; 5293 } 5294 /* 5295 * We need to firstly lock all pages to make sure that 5296 * the uptodate bit of our pages won't be affected by 5297 * clear_extent_buffer_uptodate(). 5298 */ 5299 for (i = 0; i < num_pages; i++) { 5300 page = eb->pages[i]; 5301 if (!PageUptodate(page)) { 5302 num_reads++; 5303 all_uptodate = 0; 5304 } 5305 } 5306 5307 if (all_uptodate) { 5308 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5309 goto unlock_exit; 5310 } 5311 5312 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5313 eb->read_mirror = 0; 5314 atomic_set(&eb->io_pages, num_reads); 5315 for (i = 0; i < num_pages; i++) { 5316 page = eb->pages[i]; 5317 5318 if (!PageUptodate(page)) { 5319 if (ret) { 5320 atomic_dec(&eb->io_pages); 5321 unlock_page(page); 5322 continue; 5323 } 5324 5325 ClearPageError(page); 5326 err = __extent_read_full_page(tree, page, 5327 get_extent, &bio, 5328 mirror_num, &bio_flags, 5329 REQ_META); 5330 if (err) { 5331 ret = err; 5332 /* 5333 * We use &bio in above __extent_read_full_page, 5334 * so we ensure that if it returns error, the 5335 * current page fails to add itself to bio and 5336 * it's been unlocked. 5337 * 5338 * We must dec io_pages by ourselves. 5339 */ 5340 atomic_dec(&eb->io_pages); 5341 } 5342 } else { 5343 unlock_page(page); 5344 } 5345 } 5346 5347 if (bio) { 5348 err = submit_one_bio(bio, mirror_num, bio_flags); 5349 if (err) 5350 return err; 5351 } 5352 5353 if (ret || wait != WAIT_COMPLETE) 5354 return ret; 5355 5356 for (i = 0; i < num_pages; i++) { 5357 page = eb->pages[i]; 5358 wait_on_page_locked(page); 5359 if (!PageUptodate(page)) 5360 ret = -EIO; 5361 } 5362 5363 return ret; 5364 5365 unlock_exit: 5366 while (locked_pages > 0) { 5367 locked_pages--; 5368 page = eb->pages[locked_pages]; 5369 unlock_page(page); 5370 } 5371 return ret; 5372 } 5373 5374 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5375 unsigned long start, unsigned long len) 5376 { 5377 size_t cur; 5378 size_t offset; 5379 struct page *page; 5380 char *kaddr; 5381 char *dst = (char *)dstv; 5382 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5383 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5384 5385 if (start + len > eb->len) { 5386 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5387 eb->start, eb->len, start, len); 5388 memset(dst, 0, len); 5389 return; 5390 } 5391 5392 offset = (start_offset + start) & (PAGE_SIZE - 1); 5393 5394 while (len > 0) { 5395 page = eb->pages[i]; 5396 5397 cur = min(len, (PAGE_SIZE - offset)); 5398 kaddr = page_address(page); 5399 memcpy(dst, kaddr + offset, cur); 5400 5401 dst += cur; 5402 len -= cur; 5403 offset = 0; 5404 i++; 5405 } 5406 } 5407 5408 int read_extent_buffer_to_user(const struct extent_buffer *eb, 5409 void __user *dstv, 5410 unsigned long start, unsigned long len) 5411 { 5412 size_t cur; 5413 size_t offset; 5414 struct page *page; 5415 char *kaddr; 5416 char __user *dst = (char __user *)dstv; 5417 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5418 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5419 int ret = 0; 5420 5421 WARN_ON(start > eb->len); 5422 WARN_ON(start + len > eb->start + eb->len); 5423 5424 offset = (start_offset + start) & (PAGE_SIZE - 1); 5425 5426 while (len > 0) { 5427 page = eb->pages[i]; 5428 5429 cur = min(len, (PAGE_SIZE - offset)); 5430 kaddr = page_address(page); 5431 if (copy_to_user(dst, kaddr + offset, cur)) { 5432 ret = -EFAULT; 5433 break; 5434 } 5435 5436 dst += cur; 5437 len -= cur; 5438 offset = 0; 5439 i++; 5440 } 5441 5442 return ret; 5443 } 5444 5445 /* 5446 * return 0 if the item is found within a page. 5447 * return 1 if the item spans two pages. 5448 * return -EINVAL otherwise. 5449 */ 5450 int map_private_extent_buffer(const struct extent_buffer *eb, 5451 unsigned long start, unsigned long min_len, 5452 char **map, unsigned long *map_start, 5453 unsigned long *map_len) 5454 { 5455 size_t offset = start & (PAGE_SIZE - 1); 5456 char *kaddr; 5457 struct page *p; 5458 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5459 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5460 unsigned long end_i = (start_offset + start + min_len - 1) >> 5461 PAGE_SHIFT; 5462 5463 if (start + min_len > eb->len) { 5464 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5465 eb->start, eb->len, start, min_len); 5466 return -EINVAL; 5467 } 5468 5469 if (i != end_i) 5470 return 1; 5471 5472 if (i == 0) { 5473 offset = start_offset; 5474 *map_start = 0; 5475 } else { 5476 offset = 0; 5477 *map_start = ((u64)i << PAGE_SHIFT) - start_offset; 5478 } 5479 5480 p = eb->pages[i]; 5481 kaddr = page_address(p); 5482 *map = kaddr + offset; 5483 *map_len = PAGE_SIZE - offset; 5484 return 0; 5485 } 5486 5487 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5488 unsigned long start, unsigned long len) 5489 { 5490 size_t cur; 5491 size_t offset; 5492 struct page *page; 5493 char *kaddr; 5494 char *ptr = (char *)ptrv; 5495 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5496 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5497 int ret = 0; 5498 5499 WARN_ON(start > eb->len); 5500 WARN_ON(start + len > eb->start + eb->len); 5501 5502 offset = (start_offset + start) & (PAGE_SIZE - 1); 5503 5504 while (len > 0) { 5505 page = eb->pages[i]; 5506 5507 cur = min(len, (PAGE_SIZE - offset)); 5508 5509 kaddr = page_address(page); 5510 ret = memcmp(ptr, kaddr + offset, cur); 5511 if (ret) 5512 break; 5513 5514 ptr += cur; 5515 len -= cur; 5516 offset = 0; 5517 i++; 5518 } 5519 return ret; 5520 } 5521 5522 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb, 5523 const void *srcv) 5524 { 5525 char *kaddr; 5526 5527 WARN_ON(!PageUptodate(eb->pages[0])); 5528 kaddr = page_address(eb->pages[0]); 5529 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 5530 BTRFS_FSID_SIZE); 5531 } 5532 5533 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv) 5534 { 5535 char *kaddr; 5536 5537 WARN_ON(!PageUptodate(eb->pages[0])); 5538 kaddr = page_address(eb->pages[0]); 5539 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 5540 BTRFS_FSID_SIZE); 5541 } 5542 5543 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5544 unsigned long start, unsigned long len) 5545 { 5546 size_t cur; 5547 size_t offset; 5548 struct page *page; 5549 char *kaddr; 5550 char *src = (char *)srcv; 5551 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5552 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5553 5554 WARN_ON(start > eb->len); 5555 WARN_ON(start + len > eb->start + eb->len); 5556 5557 offset = (start_offset + start) & (PAGE_SIZE - 1); 5558 5559 while (len > 0) { 5560 page = eb->pages[i]; 5561 WARN_ON(!PageUptodate(page)); 5562 5563 cur = min(len, PAGE_SIZE - offset); 5564 kaddr = page_address(page); 5565 memcpy(kaddr + offset, src, cur); 5566 5567 src += cur; 5568 len -= cur; 5569 offset = 0; 5570 i++; 5571 } 5572 } 5573 5574 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start, 5575 unsigned long len) 5576 { 5577 size_t cur; 5578 size_t offset; 5579 struct page *page; 5580 char *kaddr; 5581 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5582 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5583 5584 WARN_ON(start > eb->len); 5585 WARN_ON(start + len > eb->start + eb->len); 5586 5587 offset = (start_offset + start) & (PAGE_SIZE - 1); 5588 5589 while (len > 0) { 5590 page = eb->pages[i]; 5591 WARN_ON(!PageUptodate(page)); 5592 5593 cur = min(len, PAGE_SIZE - offset); 5594 kaddr = page_address(page); 5595 memset(kaddr + offset, 0, cur); 5596 5597 len -= cur; 5598 offset = 0; 5599 i++; 5600 } 5601 } 5602 5603 void copy_extent_buffer_full(struct extent_buffer *dst, 5604 struct extent_buffer *src) 5605 { 5606 int i; 5607 unsigned num_pages; 5608 5609 ASSERT(dst->len == src->len); 5610 5611 num_pages = num_extent_pages(dst->start, dst->len); 5612 for (i = 0; i < num_pages; i++) 5613 copy_page(page_address(dst->pages[i]), 5614 page_address(src->pages[i])); 5615 } 5616 5617 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5618 unsigned long dst_offset, unsigned long src_offset, 5619 unsigned long len) 5620 { 5621 u64 dst_len = dst->len; 5622 size_t cur; 5623 size_t offset; 5624 struct page *page; 5625 char *kaddr; 5626 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5627 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT; 5628 5629 WARN_ON(src->len != dst_len); 5630 5631 offset = (start_offset + dst_offset) & 5632 (PAGE_SIZE - 1); 5633 5634 while (len > 0) { 5635 page = dst->pages[i]; 5636 WARN_ON(!PageUptodate(page)); 5637 5638 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5639 5640 kaddr = page_address(page); 5641 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5642 5643 src_offset += cur; 5644 len -= cur; 5645 offset = 0; 5646 i++; 5647 } 5648 } 5649 5650 void le_bitmap_set(u8 *map, unsigned int start, int len) 5651 { 5652 u8 *p = map + BIT_BYTE(start); 5653 const unsigned int size = start + len; 5654 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE); 5655 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start); 5656 5657 while (len - bits_to_set >= 0) { 5658 *p |= mask_to_set; 5659 len -= bits_to_set; 5660 bits_to_set = BITS_PER_BYTE; 5661 mask_to_set = ~0; 5662 p++; 5663 } 5664 if (len) { 5665 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5666 *p |= mask_to_set; 5667 } 5668 } 5669 5670 void le_bitmap_clear(u8 *map, unsigned int start, int len) 5671 { 5672 u8 *p = map + BIT_BYTE(start); 5673 const unsigned int size = start + len; 5674 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE); 5675 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start); 5676 5677 while (len - bits_to_clear >= 0) { 5678 *p &= ~mask_to_clear; 5679 len -= bits_to_clear; 5680 bits_to_clear = BITS_PER_BYTE; 5681 mask_to_clear = ~0; 5682 p++; 5683 } 5684 if (len) { 5685 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5686 *p &= ~mask_to_clear; 5687 } 5688 } 5689 5690 /* 5691 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5692 * given bit number 5693 * @eb: the extent buffer 5694 * @start: offset of the bitmap item in the extent buffer 5695 * @nr: bit number 5696 * @page_index: return index of the page in the extent buffer that contains the 5697 * given bit number 5698 * @page_offset: return offset into the page given by page_index 5699 * 5700 * This helper hides the ugliness of finding the byte in an extent buffer which 5701 * contains a given bit. 5702 */ 5703 static inline void eb_bitmap_offset(struct extent_buffer *eb, 5704 unsigned long start, unsigned long nr, 5705 unsigned long *page_index, 5706 size_t *page_offset) 5707 { 5708 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5709 size_t byte_offset = BIT_BYTE(nr); 5710 size_t offset; 5711 5712 /* 5713 * The byte we want is the offset of the extent buffer + the offset of 5714 * the bitmap item in the extent buffer + the offset of the byte in the 5715 * bitmap item. 5716 */ 5717 offset = start_offset + start + byte_offset; 5718 5719 *page_index = offset >> PAGE_SHIFT; 5720 *page_offset = offset & (PAGE_SIZE - 1); 5721 } 5722 5723 /** 5724 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5725 * @eb: the extent buffer 5726 * @start: offset of the bitmap item in the extent buffer 5727 * @nr: bit number to test 5728 */ 5729 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, 5730 unsigned long nr) 5731 { 5732 u8 *kaddr; 5733 struct page *page; 5734 unsigned long i; 5735 size_t offset; 5736 5737 eb_bitmap_offset(eb, start, nr, &i, &offset); 5738 page = eb->pages[i]; 5739 WARN_ON(!PageUptodate(page)); 5740 kaddr = page_address(page); 5741 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5742 } 5743 5744 /** 5745 * extent_buffer_bitmap_set - set an area of a bitmap 5746 * @eb: the extent buffer 5747 * @start: offset of the bitmap item in the extent buffer 5748 * @pos: bit number of the first bit 5749 * @len: number of bits to set 5750 */ 5751 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, 5752 unsigned long pos, unsigned long len) 5753 { 5754 u8 *kaddr; 5755 struct page *page; 5756 unsigned long i; 5757 size_t offset; 5758 const unsigned int size = pos + len; 5759 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5760 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5761 5762 eb_bitmap_offset(eb, start, pos, &i, &offset); 5763 page = eb->pages[i]; 5764 WARN_ON(!PageUptodate(page)); 5765 kaddr = page_address(page); 5766 5767 while (len >= bits_to_set) { 5768 kaddr[offset] |= mask_to_set; 5769 len -= bits_to_set; 5770 bits_to_set = BITS_PER_BYTE; 5771 mask_to_set = ~0; 5772 if (++offset >= PAGE_SIZE && len > 0) { 5773 offset = 0; 5774 page = eb->pages[++i]; 5775 WARN_ON(!PageUptodate(page)); 5776 kaddr = page_address(page); 5777 } 5778 } 5779 if (len) { 5780 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5781 kaddr[offset] |= mask_to_set; 5782 } 5783 } 5784 5785 5786 /** 5787 * extent_buffer_bitmap_clear - clear an area of a bitmap 5788 * @eb: the extent buffer 5789 * @start: offset of the bitmap item in the extent buffer 5790 * @pos: bit number of the first bit 5791 * @len: number of bits to clear 5792 */ 5793 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, 5794 unsigned long pos, unsigned long len) 5795 { 5796 u8 *kaddr; 5797 struct page *page; 5798 unsigned long i; 5799 size_t offset; 5800 const unsigned int size = pos + len; 5801 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5802 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5803 5804 eb_bitmap_offset(eb, start, pos, &i, &offset); 5805 page = eb->pages[i]; 5806 WARN_ON(!PageUptodate(page)); 5807 kaddr = page_address(page); 5808 5809 while (len >= bits_to_clear) { 5810 kaddr[offset] &= ~mask_to_clear; 5811 len -= bits_to_clear; 5812 bits_to_clear = BITS_PER_BYTE; 5813 mask_to_clear = ~0; 5814 if (++offset >= PAGE_SIZE && len > 0) { 5815 offset = 0; 5816 page = eb->pages[++i]; 5817 WARN_ON(!PageUptodate(page)); 5818 kaddr = page_address(page); 5819 } 5820 } 5821 if (len) { 5822 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5823 kaddr[offset] &= ~mask_to_clear; 5824 } 5825 } 5826 5827 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5828 { 5829 unsigned long distance = (src > dst) ? src - dst : dst - src; 5830 return distance < len; 5831 } 5832 5833 static void copy_pages(struct page *dst_page, struct page *src_page, 5834 unsigned long dst_off, unsigned long src_off, 5835 unsigned long len) 5836 { 5837 char *dst_kaddr = page_address(dst_page); 5838 char *src_kaddr; 5839 int must_memmove = 0; 5840 5841 if (dst_page != src_page) { 5842 src_kaddr = page_address(src_page); 5843 } else { 5844 src_kaddr = dst_kaddr; 5845 if (areas_overlap(src_off, dst_off, len)) 5846 must_memmove = 1; 5847 } 5848 5849 if (must_memmove) 5850 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5851 else 5852 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5853 } 5854 5855 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5856 unsigned long src_offset, unsigned long len) 5857 { 5858 struct btrfs_fs_info *fs_info = dst->fs_info; 5859 size_t cur; 5860 size_t dst_off_in_page; 5861 size_t src_off_in_page; 5862 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5863 unsigned long dst_i; 5864 unsigned long src_i; 5865 5866 if (src_offset + len > dst->len) { 5867 btrfs_err(fs_info, 5868 "memmove bogus src_offset %lu move len %lu dst len %lu", 5869 src_offset, len, dst->len); 5870 BUG_ON(1); 5871 } 5872 if (dst_offset + len > dst->len) { 5873 btrfs_err(fs_info, 5874 "memmove bogus dst_offset %lu move len %lu dst len %lu", 5875 dst_offset, len, dst->len); 5876 BUG_ON(1); 5877 } 5878 5879 while (len > 0) { 5880 dst_off_in_page = (start_offset + dst_offset) & 5881 (PAGE_SIZE - 1); 5882 src_off_in_page = (start_offset + src_offset) & 5883 (PAGE_SIZE - 1); 5884 5885 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT; 5886 src_i = (start_offset + src_offset) >> PAGE_SHIFT; 5887 5888 cur = min(len, (unsigned long)(PAGE_SIZE - 5889 src_off_in_page)); 5890 cur = min_t(unsigned long, cur, 5891 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5892 5893 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5894 dst_off_in_page, src_off_in_page, cur); 5895 5896 src_offset += cur; 5897 dst_offset += cur; 5898 len -= cur; 5899 } 5900 } 5901 5902 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5903 unsigned long src_offset, unsigned long len) 5904 { 5905 struct btrfs_fs_info *fs_info = dst->fs_info; 5906 size_t cur; 5907 size_t dst_off_in_page; 5908 size_t src_off_in_page; 5909 unsigned long dst_end = dst_offset + len - 1; 5910 unsigned long src_end = src_offset + len - 1; 5911 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5912 unsigned long dst_i; 5913 unsigned long src_i; 5914 5915 if (src_offset + len > dst->len) { 5916 btrfs_err(fs_info, 5917 "memmove bogus src_offset %lu move len %lu len %lu", 5918 src_offset, len, dst->len); 5919 BUG_ON(1); 5920 } 5921 if (dst_offset + len > dst->len) { 5922 btrfs_err(fs_info, 5923 "memmove bogus dst_offset %lu move len %lu len %lu", 5924 dst_offset, len, dst->len); 5925 BUG_ON(1); 5926 } 5927 if (dst_offset < src_offset) { 5928 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5929 return; 5930 } 5931 while (len > 0) { 5932 dst_i = (start_offset + dst_end) >> PAGE_SHIFT; 5933 src_i = (start_offset + src_end) >> PAGE_SHIFT; 5934 5935 dst_off_in_page = (start_offset + dst_end) & 5936 (PAGE_SIZE - 1); 5937 src_off_in_page = (start_offset + src_end) & 5938 (PAGE_SIZE - 1); 5939 5940 cur = min_t(unsigned long, len, src_off_in_page + 1); 5941 cur = min(cur, dst_off_in_page + 1); 5942 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5943 dst_off_in_page - cur + 1, 5944 src_off_in_page - cur + 1, cur); 5945 5946 dst_end -= cur; 5947 src_end -= cur; 5948 len -= cur; 5949 } 5950 } 5951 5952 int try_release_extent_buffer(struct page *page) 5953 { 5954 struct extent_buffer *eb; 5955 5956 /* 5957 * We need to make sure nobody is attaching this page to an eb right 5958 * now. 5959 */ 5960 spin_lock(&page->mapping->private_lock); 5961 if (!PagePrivate(page)) { 5962 spin_unlock(&page->mapping->private_lock); 5963 return 1; 5964 } 5965 5966 eb = (struct extent_buffer *)page->private; 5967 BUG_ON(!eb); 5968 5969 /* 5970 * This is a little awful but should be ok, we need to make sure that 5971 * the eb doesn't disappear out from under us while we're looking at 5972 * this page. 5973 */ 5974 spin_lock(&eb->refs_lock); 5975 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5976 spin_unlock(&eb->refs_lock); 5977 spin_unlock(&page->mapping->private_lock); 5978 return 0; 5979 } 5980 spin_unlock(&page->mapping->private_lock); 5981 5982 /* 5983 * If tree ref isn't set then we know the ref on this eb is a real ref, 5984 * so just return, this page will likely be freed soon anyway. 5985 */ 5986 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5987 spin_unlock(&eb->refs_lock); 5988 return 0; 5989 } 5990 5991 return release_extent_buffer(eb); 5992 } 5993