xref: /linux/fs/btrfs/extent_io.c (revision fcb29877f7e18a1f27d7d6871f5f7bb6aaade575)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "misc.h"
18 #include "extent_io.h"
19 #include "extent-io-tree.h"
20 #include "extent_map.h"
21 #include "ctree.h"
22 #include "btrfs_inode.h"
23 #include "bio.h"
24 #include "locking.h"
25 #include "rcu-string.h"
26 #include "backref.h"
27 #include "disk-io.h"
28 #include "subpage.h"
29 #include "zoned.h"
30 #include "block-group.h"
31 #include "compression.h"
32 #include "fs.h"
33 #include "accessors.h"
34 #include "file-item.h"
35 #include "file.h"
36 #include "dev-replace.h"
37 #include "super.h"
38 #include "transaction.h"
39 
40 static struct kmem_cache *extent_buffer_cache;
41 
42 #ifdef CONFIG_BTRFS_DEBUG
43 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
44 {
45 	struct btrfs_fs_info *fs_info = eb->fs_info;
46 	unsigned long flags;
47 
48 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
49 	list_add(&eb->leak_list, &fs_info->allocated_ebs);
50 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
51 }
52 
53 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
54 {
55 	struct btrfs_fs_info *fs_info = eb->fs_info;
56 	unsigned long flags;
57 
58 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
59 	list_del(&eb->leak_list);
60 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
61 }
62 
63 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
64 {
65 	struct extent_buffer *eb;
66 	unsigned long flags;
67 
68 	/*
69 	 * If we didn't get into open_ctree our allocated_ebs will not be
70 	 * initialized, so just skip this.
71 	 */
72 	if (!fs_info->allocated_ebs.next)
73 		return;
74 
75 	WARN_ON(!list_empty(&fs_info->allocated_ebs));
76 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
77 	while (!list_empty(&fs_info->allocated_ebs)) {
78 		eb = list_first_entry(&fs_info->allocated_ebs,
79 				      struct extent_buffer, leak_list);
80 		pr_err(
81 	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
82 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
83 		       btrfs_header_owner(eb));
84 		list_del(&eb->leak_list);
85 		kmem_cache_free(extent_buffer_cache, eb);
86 	}
87 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
88 }
89 #else
90 #define btrfs_leak_debug_add_eb(eb)			do {} while (0)
91 #define btrfs_leak_debug_del_eb(eb)			do {} while (0)
92 #endif
93 
94 /*
95  * Structure to record info about the bio being assembled, and other info like
96  * how many bytes are there before stripe/ordered extent boundary.
97  */
98 struct btrfs_bio_ctrl {
99 	struct btrfs_bio *bbio;
100 	enum btrfs_compression_type compress_type;
101 	u32 len_to_oe_boundary;
102 	blk_opf_t opf;
103 	btrfs_bio_end_io_t end_io_func;
104 	struct writeback_control *wbc;
105 };
106 
107 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
108 {
109 	struct btrfs_bio *bbio = bio_ctrl->bbio;
110 
111 	if (!bbio)
112 		return;
113 
114 	/* Caller should ensure the bio has at least some range added */
115 	ASSERT(bbio->bio.bi_iter.bi_size);
116 
117 	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
118 	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
119 		btrfs_submit_compressed_read(bbio);
120 	else
121 		btrfs_submit_bio(bbio, 0);
122 
123 	/* The bbio is owned by the end_io handler now */
124 	bio_ctrl->bbio = NULL;
125 }
126 
127 /*
128  * Submit or fail the current bio in the bio_ctrl structure.
129  */
130 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
131 {
132 	struct btrfs_bio *bbio = bio_ctrl->bbio;
133 
134 	if (!bbio)
135 		return;
136 
137 	if (ret) {
138 		ASSERT(ret < 0);
139 		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
140 		/* The bio is owned by the end_io handler now */
141 		bio_ctrl->bbio = NULL;
142 	} else {
143 		submit_one_bio(bio_ctrl);
144 	}
145 }
146 
147 int __init extent_buffer_init_cachep(void)
148 {
149 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
150 			sizeof(struct extent_buffer), 0,
151 			SLAB_MEM_SPREAD, NULL);
152 	if (!extent_buffer_cache)
153 		return -ENOMEM;
154 
155 	return 0;
156 }
157 
158 void __cold extent_buffer_free_cachep(void)
159 {
160 	/*
161 	 * Make sure all delayed rcu free are flushed before we
162 	 * destroy caches.
163 	 */
164 	rcu_barrier();
165 	kmem_cache_destroy(extent_buffer_cache);
166 }
167 
168 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
169 {
170 	unsigned long index = start >> PAGE_SHIFT;
171 	unsigned long end_index = end >> PAGE_SHIFT;
172 	struct page *page;
173 
174 	while (index <= end_index) {
175 		page = find_get_page(inode->i_mapping, index);
176 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
177 		clear_page_dirty_for_io(page);
178 		put_page(page);
179 		index++;
180 	}
181 }
182 
183 static void process_one_page(struct btrfs_fs_info *fs_info,
184 			     struct page *page, struct page *locked_page,
185 			     unsigned long page_ops, u64 start, u64 end)
186 {
187 	u32 len;
188 
189 	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
190 	len = end + 1 - start;
191 
192 	if (page_ops & PAGE_SET_ORDERED)
193 		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
194 	if (page_ops & PAGE_START_WRITEBACK) {
195 		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
196 		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
197 	}
198 	if (page_ops & PAGE_END_WRITEBACK)
199 		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
200 
201 	if (page != locked_page && (page_ops & PAGE_UNLOCK))
202 		btrfs_page_end_writer_lock(fs_info, page, start, len);
203 }
204 
205 static void __process_pages_contig(struct address_space *mapping,
206 				   struct page *locked_page, u64 start, u64 end,
207 				   unsigned long page_ops)
208 {
209 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
210 	pgoff_t start_index = start >> PAGE_SHIFT;
211 	pgoff_t end_index = end >> PAGE_SHIFT;
212 	pgoff_t index = start_index;
213 	struct folio_batch fbatch;
214 	int i;
215 
216 	folio_batch_init(&fbatch);
217 	while (index <= end_index) {
218 		int found_folios;
219 
220 		found_folios = filemap_get_folios_contig(mapping, &index,
221 				end_index, &fbatch);
222 		for (i = 0; i < found_folios; i++) {
223 			struct folio *folio = fbatch.folios[i];
224 
225 			process_one_page(fs_info, &folio->page, locked_page,
226 					 page_ops, start, end);
227 		}
228 		folio_batch_release(&fbatch);
229 		cond_resched();
230 	}
231 }
232 
233 static noinline void __unlock_for_delalloc(struct inode *inode,
234 					   struct page *locked_page,
235 					   u64 start, u64 end)
236 {
237 	unsigned long index = start >> PAGE_SHIFT;
238 	unsigned long end_index = end >> PAGE_SHIFT;
239 
240 	ASSERT(locked_page);
241 	if (index == locked_page->index && end_index == index)
242 		return;
243 
244 	__process_pages_contig(inode->i_mapping, locked_page, start, end,
245 			       PAGE_UNLOCK);
246 }
247 
248 static noinline int lock_delalloc_pages(struct inode *inode,
249 					struct page *locked_page,
250 					u64 start,
251 					u64 end)
252 {
253 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
254 	struct address_space *mapping = inode->i_mapping;
255 	pgoff_t start_index = start >> PAGE_SHIFT;
256 	pgoff_t end_index = end >> PAGE_SHIFT;
257 	pgoff_t index = start_index;
258 	u64 processed_end = start;
259 	struct folio_batch fbatch;
260 
261 	if (index == locked_page->index && index == end_index)
262 		return 0;
263 
264 	folio_batch_init(&fbatch);
265 	while (index <= end_index) {
266 		unsigned int found_folios, i;
267 
268 		found_folios = filemap_get_folios_contig(mapping, &index,
269 				end_index, &fbatch);
270 		if (found_folios == 0)
271 			goto out;
272 
273 		for (i = 0; i < found_folios; i++) {
274 			struct page *page = &fbatch.folios[i]->page;
275 			u32 len = end + 1 - start;
276 
277 			if (page == locked_page)
278 				continue;
279 
280 			if (btrfs_page_start_writer_lock(fs_info, page, start,
281 							 len))
282 				goto out;
283 
284 			if (!PageDirty(page) || page->mapping != mapping) {
285 				btrfs_page_end_writer_lock(fs_info, page, start,
286 							   len);
287 				goto out;
288 			}
289 
290 			processed_end = page_offset(page) + PAGE_SIZE - 1;
291 		}
292 		folio_batch_release(&fbatch);
293 		cond_resched();
294 	}
295 
296 	return 0;
297 out:
298 	folio_batch_release(&fbatch);
299 	if (processed_end > start)
300 		__unlock_for_delalloc(inode, locked_page, start, processed_end);
301 	return -EAGAIN;
302 }
303 
304 /*
305  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
306  * more than @max_bytes.
307  *
308  * @start:	The original start bytenr to search.
309  *		Will store the extent range start bytenr.
310  * @end:	The original end bytenr of the search range
311  *		Will store the extent range end bytenr.
312  *
313  * Return true if we find a delalloc range which starts inside the original
314  * range, and @start/@end will store the delalloc range start/end.
315  *
316  * Return false if we can't find any delalloc range which starts inside the
317  * original range, and @start/@end will be the non-delalloc range start/end.
318  */
319 EXPORT_FOR_TESTS
320 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
321 				    struct page *locked_page, u64 *start,
322 				    u64 *end)
323 {
324 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
325 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
326 	const u64 orig_start = *start;
327 	const u64 orig_end = *end;
328 	/* The sanity tests may not set a valid fs_info. */
329 	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
330 	u64 delalloc_start;
331 	u64 delalloc_end;
332 	bool found;
333 	struct extent_state *cached_state = NULL;
334 	int ret;
335 	int loops = 0;
336 
337 	/* Caller should pass a valid @end to indicate the search range end */
338 	ASSERT(orig_end > orig_start);
339 
340 	/* The range should at least cover part of the page */
341 	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
342 		 orig_end <= page_offset(locked_page)));
343 again:
344 	/* step one, find a bunch of delalloc bytes starting at start */
345 	delalloc_start = *start;
346 	delalloc_end = 0;
347 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
348 					  max_bytes, &cached_state);
349 	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
350 		*start = delalloc_start;
351 
352 		/* @delalloc_end can be -1, never go beyond @orig_end */
353 		*end = min(delalloc_end, orig_end);
354 		free_extent_state(cached_state);
355 		return false;
356 	}
357 
358 	/*
359 	 * start comes from the offset of locked_page.  We have to lock
360 	 * pages in order, so we can't process delalloc bytes before
361 	 * locked_page
362 	 */
363 	if (delalloc_start < *start)
364 		delalloc_start = *start;
365 
366 	/*
367 	 * make sure to limit the number of pages we try to lock down
368 	 */
369 	if (delalloc_end + 1 - delalloc_start > max_bytes)
370 		delalloc_end = delalloc_start + max_bytes - 1;
371 
372 	/* step two, lock all the pages after the page that has start */
373 	ret = lock_delalloc_pages(inode, locked_page,
374 				  delalloc_start, delalloc_end);
375 	ASSERT(!ret || ret == -EAGAIN);
376 	if (ret == -EAGAIN) {
377 		/* some of the pages are gone, lets avoid looping by
378 		 * shortening the size of the delalloc range we're searching
379 		 */
380 		free_extent_state(cached_state);
381 		cached_state = NULL;
382 		if (!loops) {
383 			max_bytes = PAGE_SIZE;
384 			loops = 1;
385 			goto again;
386 		} else {
387 			found = false;
388 			goto out_failed;
389 		}
390 	}
391 
392 	/* step three, lock the state bits for the whole range */
393 	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
394 
395 	/* then test to make sure it is all still delalloc */
396 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
397 			     EXTENT_DELALLOC, cached_state);
398 	if (!ret) {
399 		unlock_extent(tree, delalloc_start, delalloc_end,
400 			      &cached_state);
401 		__unlock_for_delalloc(inode, locked_page,
402 			      delalloc_start, delalloc_end);
403 		cond_resched();
404 		goto again;
405 	}
406 	free_extent_state(cached_state);
407 	*start = delalloc_start;
408 	*end = delalloc_end;
409 out_failed:
410 	return found;
411 }
412 
413 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
414 				  struct page *locked_page,
415 				  u32 clear_bits, unsigned long page_ops)
416 {
417 	clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
418 
419 	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
420 			       start, end, page_ops);
421 }
422 
423 static bool btrfs_verify_page(struct page *page, u64 start)
424 {
425 	if (!fsverity_active(page->mapping->host) ||
426 	    PageUptodate(page) ||
427 	    start >= i_size_read(page->mapping->host))
428 		return true;
429 	return fsverity_verify_page(page);
430 }
431 
432 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
433 {
434 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
435 
436 	ASSERT(page_offset(page) <= start &&
437 	       start + len <= page_offset(page) + PAGE_SIZE);
438 
439 	if (uptodate && btrfs_verify_page(page, start))
440 		btrfs_page_set_uptodate(fs_info, page, start, len);
441 	else
442 		btrfs_page_clear_uptodate(fs_info, page, start, len);
443 
444 	if (!btrfs_is_subpage(fs_info, page))
445 		unlock_page(page);
446 	else
447 		btrfs_subpage_end_reader(fs_info, page, start, len);
448 }
449 
450 /*
451  * after a writepage IO is done, we need to:
452  * clear the uptodate bits on error
453  * clear the writeback bits in the extent tree for this IO
454  * end_page_writeback if the page has no more pending IO
455  *
456  * Scheduling is not allowed, so the extent state tree is expected
457  * to have one and only one object corresponding to this IO.
458  */
459 static void end_bio_extent_writepage(struct btrfs_bio *bbio)
460 {
461 	struct bio *bio = &bbio->bio;
462 	int error = blk_status_to_errno(bio->bi_status);
463 	struct bio_vec *bvec;
464 	struct bvec_iter_all iter_all;
465 
466 	ASSERT(!bio_flagged(bio, BIO_CLONED));
467 	bio_for_each_segment_all(bvec, bio, iter_all) {
468 		struct page *page = bvec->bv_page;
469 		struct inode *inode = page->mapping->host;
470 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
471 		const u32 sectorsize = fs_info->sectorsize;
472 		u64 start = page_offset(page) + bvec->bv_offset;
473 		u32 len = bvec->bv_len;
474 
475 		/* Our read/write should always be sector aligned. */
476 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
477 			btrfs_err(fs_info,
478 		"partial page write in btrfs with offset %u and length %u",
479 				  bvec->bv_offset, bvec->bv_len);
480 		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
481 			btrfs_info(fs_info,
482 		"incomplete page write with offset %u and length %u",
483 				   bvec->bv_offset, bvec->bv_len);
484 
485 		btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error);
486 		if (error)
487 			mapping_set_error(page->mapping, error);
488 		btrfs_page_clear_writeback(fs_info, page, start, len);
489 	}
490 
491 	bio_put(bio);
492 }
493 
494 /*
495  * Record previously processed extent range
496  *
497  * For endio_readpage_release_extent() to handle a full extent range, reducing
498  * the extent io operations.
499  */
500 struct processed_extent {
501 	struct btrfs_inode *inode;
502 	/* Start of the range in @inode */
503 	u64 start;
504 	/* End of the range in @inode */
505 	u64 end;
506 	bool uptodate;
507 };
508 
509 /*
510  * Try to release processed extent range
511  *
512  * May not release the extent range right now if the current range is
513  * contiguous to processed extent.
514  *
515  * Will release processed extent when any of @inode, @uptodate, the range is
516  * no longer contiguous to the processed range.
517  *
518  * Passing @inode == NULL will force processed extent to be released.
519  */
520 static void endio_readpage_release_extent(struct processed_extent *processed,
521 			      struct btrfs_inode *inode, u64 start, u64 end,
522 			      bool uptodate)
523 {
524 	struct extent_state *cached = NULL;
525 	struct extent_io_tree *tree;
526 
527 	/* The first extent, initialize @processed */
528 	if (!processed->inode)
529 		goto update;
530 
531 	/*
532 	 * Contiguous to processed extent, just uptodate the end.
533 	 *
534 	 * Several things to notice:
535 	 *
536 	 * - bio can be merged as long as on-disk bytenr is contiguous
537 	 *   This means we can have page belonging to other inodes, thus need to
538 	 *   check if the inode still matches.
539 	 * - bvec can contain range beyond current page for multi-page bvec
540 	 *   Thus we need to do processed->end + 1 >= start check
541 	 */
542 	if (processed->inode == inode && processed->uptodate == uptodate &&
543 	    processed->end + 1 >= start && end >= processed->end) {
544 		processed->end = end;
545 		return;
546 	}
547 
548 	tree = &processed->inode->io_tree;
549 	/*
550 	 * Now we don't have range contiguous to the processed range, release
551 	 * the processed range now.
552 	 */
553 	unlock_extent(tree, processed->start, processed->end, &cached);
554 
555 update:
556 	/* Update processed to current range */
557 	processed->inode = inode;
558 	processed->start = start;
559 	processed->end = end;
560 	processed->uptodate = uptodate;
561 }
562 
563 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
564 {
565 	ASSERT(PageLocked(page));
566 	if (!btrfs_is_subpage(fs_info, page))
567 		return;
568 
569 	ASSERT(PagePrivate(page));
570 	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
571 }
572 
573 /*
574  * after a readpage IO is done, we need to:
575  * clear the uptodate bits on error
576  * set the uptodate bits if things worked
577  * set the page up to date if all extents in the tree are uptodate
578  * clear the lock bit in the extent tree
579  * unlock the page if there are no other extents locked for it
580  *
581  * Scheduling is not allowed, so the extent state tree is expected
582  * to have one and only one object corresponding to this IO.
583  */
584 static void end_bio_extent_readpage(struct btrfs_bio *bbio)
585 {
586 	struct bio *bio = &bbio->bio;
587 	struct bio_vec *bvec;
588 	struct processed_extent processed = { 0 };
589 	/*
590 	 * The offset to the beginning of a bio, since one bio can never be
591 	 * larger than UINT_MAX, u32 here is enough.
592 	 */
593 	u32 bio_offset = 0;
594 	struct bvec_iter_all iter_all;
595 
596 	ASSERT(!bio_flagged(bio, BIO_CLONED));
597 	bio_for_each_segment_all(bvec, bio, iter_all) {
598 		bool uptodate = !bio->bi_status;
599 		struct page *page = bvec->bv_page;
600 		struct inode *inode = page->mapping->host;
601 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
602 		const u32 sectorsize = fs_info->sectorsize;
603 		u64 start;
604 		u64 end;
605 		u32 len;
606 
607 		btrfs_debug(fs_info,
608 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
609 			bio->bi_iter.bi_sector, bio->bi_status,
610 			bbio->mirror_num);
611 
612 		/*
613 		 * We always issue full-sector reads, but if some block in a
614 		 * page fails to read, blk_update_request() will advance
615 		 * bv_offset and adjust bv_len to compensate.  Print a warning
616 		 * for unaligned offsets, and an error if they don't add up to
617 		 * a full sector.
618 		 */
619 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
620 			btrfs_err(fs_info,
621 		"partial page read in btrfs with offset %u and length %u",
622 				  bvec->bv_offset, bvec->bv_len);
623 		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
624 				     sectorsize))
625 			btrfs_info(fs_info,
626 		"incomplete page read with offset %u and length %u",
627 				   bvec->bv_offset, bvec->bv_len);
628 
629 		start = page_offset(page) + bvec->bv_offset;
630 		end = start + bvec->bv_len - 1;
631 		len = bvec->bv_len;
632 
633 		if (likely(uptodate)) {
634 			loff_t i_size = i_size_read(inode);
635 			pgoff_t end_index = i_size >> PAGE_SHIFT;
636 
637 			/*
638 			 * Zero out the remaining part if this range straddles
639 			 * i_size.
640 			 *
641 			 * Here we should only zero the range inside the bvec,
642 			 * not touch anything else.
643 			 *
644 			 * NOTE: i_size is exclusive while end is inclusive.
645 			 */
646 			if (page->index == end_index && i_size <= end) {
647 				u32 zero_start = max(offset_in_page(i_size),
648 						     offset_in_page(start));
649 
650 				zero_user_segment(page, zero_start,
651 						  offset_in_page(end) + 1);
652 			}
653 		}
654 
655 		/* Update page status and unlock. */
656 		end_page_read(page, uptodate, start, len);
657 		endio_readpage_release_extent(&processed, BTRFS_I(inode),
658 					      start, end, uptodate);
659 
660 		ASSERT(bio_offset + len > bio_offset);
661 		bio_offset += len;
662 
663 	}
664 	/* Release the last extent */
665 	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
666 	bio_put(bio);
667 }
668 
669 /*
670  * Populate every free slot in a provided array with pages.
671  *
672  * @nr_pages:   number of pages to allocate
673  * @page_array: the array to fill with pages; any existing non-null entries in
674  * 		the array will be skipped
675  *
676  * Return: 0        if all pages were able to be allocated;
677  *         -ENOMEM  otherwise, the partially allocated pages would be freed and
678  *                  the array slots zeroed
679  */
680 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
681 {
682 	unsigned int allocated;
683 
684 	for (allocated = 0; allocated < nr_pages;) {
685 		unsigned int last = allocated;
686 
687 		allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
688 
689 		if (allocated == nr_pages)
690 			return 0;
691 
692 		/*
693 		 * During this iteration, no page could be allocated, even
694 		 * though alloc_pages_bulk_array() falls back to alloc_page()
695 		 * if  it could not bulk-allocate. So we must be out of memory.
696 		 */
697 		if (allocated == last) {
698 			for (int i = 0; i < allocated; i++) {
699 				__free_page(page_array[i]);
700 				page_array[i] = NULL;
701 			}
702 			return -ENOMEM;
703 		}
704 
705 		memalloc_retry_wait(GFP_NOFS);
706 	}
707 	return 0;
708 }
709 
710 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
711 				struct page *page, u64 disk_bytenr,
712 				unsigned int pg_offset)
713 {
714 	struct bio *bio = &bio_ctrl->bbio->bio;
715 	struct bio_vec *bvec = bio_last_bvec_all(bio);
716 	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
717 
718 	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
719 		/*
720 		 * For compression, all IO should have its logical bytenr set
721 		 * to the starting bytenr of the compressed extent.
722 		 */
723 		return bio->bi_iter.bi_sector == sector;
724 	}
725 
726 	/*
727 	 * The contig check requires the following conditions to be met:
728 	 *
729 	 * 1) The pages are belonging to the same inode
730 	 *    This is implied by the call chain.
731 	 *
732 	 * 2) The range has adjacent logical bytenr
733 	 *
734 	 * 3) The range has adjacent file offset
735 	 *    This is required for the usage of btrfs_bio->file_offset.
736 	 */
737 	return bio_end_sector(bio) == sector &&
738 		page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
739 		page_offset(page) + pg_offset;
740 }
741 
742 static void alloc_new_bio(struct btrfs_inode *inode,
743 			  struct btrfs_bio_ctrl *bio_ctrl,
744 			  u64 disk_bytenr, u64 file_offset)
745 {
746 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
747 	struct btrfs_bio *bbio;
748 
749 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
750 			       bio_ctrl->end_io_func, NULL);
751 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
752 	bbio->inode = inode;
753 	bbio->file_offset = file_offset;
754 	bio_ctrl->bbio = bbio;
755 	bio_ctrl->len_to_oe_boundary = U32_MAX;
756 
757 	/* Limit data write bios to the ordered boundary. */
758 	if (bio_ctrl->wbc) {
759 		struct btrfs_ordered_extent *ordered;
760 
761 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
762 		if (ordered) {
763 			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
764 					ordered->file_offset +
765 					ordered->disk_num_bytes - file_offset);
766 			bbio->ordered = ordered;
767 		}
768 
769 		/*
770 		 * Pick the last added device to support cgroup writeback.  For
771 		 * multi-device file systems this means blk-cgroup policies have
772 		 * to always be set on the last added/replaced device.
773 		 * This is a bit odd but has been like that for a long time.
774 		 */
775 		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
776 		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
777 	}
778 }
779 
780 /*
781  * @disk_bytenr: logical bytenr where the write will be
782  * @page:	page to add to the bio
783  * @size:	portion of page that we want to write to
784  * @pg_offset:	offset of the new bio or to check whether we are adding
785  *              a contiguous page to the previous one
786  *
787  * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
788  * new one in @bio_ctrl->bbio.
789  * The mirror number for this IO should already be initizlied in
790  * @bio_ctrl->mirror_num.
791  */
792 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
793 			       u64 disk_bytenr, struct page *page,
794 			       size_t size, unsigned long pg_offset)
795 {
796 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
797 
798 	ASSERT(pg_offset + size <= PAGE_SIZE);
799 	ASSERT(bio_ctrl->end_io_func);
800 
801 	if (bio_ctrl->bbio &&
802 	    !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
803 		submit_one_bio(bio_ctrl);
804 
805 	do {
806 		u32 len = size;
807 
808 		/* Allocate new bio if needed */
809 		if (!bio_ctrl->bbio) {
810 			alloc_new_bio(inode, bio_ctrl, disk_bytenr,
811 				      page_offset(page) + pg_offset);
812 		}
813 
814 		/* Cap to the current ordered extent boundary if there is one. */
815 		if (len > bio_ctrl->len_to_oe_boundary) {
816 			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
817 			ASSERT(is_data_inode(&inode->vfs_inode));
818 			len = bio_ctrl->len_to_oe_boundary;
819 		}
820 
821 		if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
822 			/* bio full: move on to a new one */
823 			submit_one_bio(bio_ctrl);
824 			continue;
825 		}
826 
827 		if (bio_ctrl->wbc)
828 			wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
829 
830 		size -= len;
831 		pg_offset += len;
832 		disk_bytenr += len;
833 
834 		/*
835 		 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
836 		 * sector aligned.  alloc_new_bio() then sets it to the end of
837 		 * our ordered extent for writes into zoned devices.
838 		 *
839 		 * When len_to_oe_boundary is tracking an ordered extent, we
840 		 * trust the ordered extent code to align things properly, and
841 		 * the check above to cap our write to the ordered extent
842 		 * boundary is correct.
843 		 *
844 		 * When len_to_oe_boundary is U32_MAX, the cap above would
845 		 * result in a 4095 byte IO for the last page right before
846 		 * we hit the bio limit of UINT_MAX.  bio_add_page() has all
847 		 * the checks required to make sure we don't overflow the bio,
848 		 * and we should just ignore len_to_oe_boundary completely
849 		 * unless we're using it to track an ordered extent.
850 		 *
851 		 * It's pretty hard to make a bio sized U32_MAX, but it can
852 		 * happen when the page cache is able to feed us contiguous
853 		 * pages for large extents.
854 		 */
855 		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
856 			bio_ctrl->len_to_oe_boundary -= len;
857 
858 		/* Ordered extent boundary: move on to a new bio. */
859 		if (bio_ctrl->len_to_oe_boundary == 0)
860 			submit_one_bio(bio_ctrl);
861 	} while (size);
862 }
863 
864 static int attach_extent_buffer_page(struct extent_buffer *eb,
865 				     struct page *page,
866 				     struct btrfs_subpage *prealloc)
867 {
868 	struct btrfs_fs_info *fs_info = eb->fs_info;
869 	int ret = 0;
870 
871 	/*
872 	 * If the page is mapped to btree inode, we should hold the private
873 	 * lock to prevent race.
874 	 * For cloned or dummy extent buffers, their pages are not mapped and
875 	 * will not race with any other ebs.
876 	 */
877 	if (page->mapping)
878 		lockdep_assert_held(&page->mapping->private_lock);
879 
880 	if (fs_info->nodesize >= PAGE_SIZE) {
881 		if (!PagePrivate(page))
882 			attach_page_private(page, eb);
883 		else
884 			WARN_ON(page->private != (unsigned long)eb);
885 		return 0;
886 	}
887 
888 	/* Already mapped, just free prealloc */
889 	if (PagePrivate(page)) {
890 		btrfs_free_subpage(prealloc);
891 		return 0;
892 	}
893 
894 	if (prealloc)
895 		/* Has preallocated memory for subpage */
896 		attach_page_private(page, prealloc);
897 	else
898 		/* Do new allocation to attach subpage */
899 		ret = btrfs_attach_subpage(fs_info, page,
900 					   BTRFS_SUBPAGE_METADATA);
901 	return ret;
902 }
903 
904 int set_page_extent_mapped(struct page *page)
905 {
906 	struct btrfs_fs_info *fs_info;
907 
908 	ASSERT(page->mapping);
909 
910 	if (PagePrivate(page))
911 		return 0;
912 
913 	fs_info = btrfs_sb(page->mapping->host->i_sb);
914 
915 	if (btrfs_is_subpage(fs_info, page))
916 		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
917 
918 	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
919 	return 0;
920 }
921 
922 void clear_page_extent_mapped(struct page *page)
923 {
924 	struct btrfs_fs_info *fs_info;
925 
926 	ASSERT(page->mapping);
927 
928 	if (!PagePrivate(page))
929 		return;
930 
931 	fs_info = btrfs_sb(page->mapping->host->i_sb);
932 	if (btrfs_is_subpage(fs_info, page))
933 		return btrfs_detach_subpage(fs_info, page);
934 
935 	detach_page_private(page);
936 }
937 
938 static struct extent_map *
939 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
940 		 u64 start, u64 len, struct extent_map **em_cached)
941 {
942 	struct extent_map *em;
943 
944 	if (em_cached && *em_cached) {
945 		em = *em_cached;
946 		if (extent_map_in_tree(em) && start >= em->start &&
947 		    start < extent_map_end(em)) {
948 			refcount_inc(&em->refs);
949 			return em;
950 		}
951 
952 		free_extent_map(em);
953 		*em_cached = NULL;
954 	}
955 
956 	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
957 	if (em_cached && !IS_ERR(em)) {
958 		BUG_ON(*em_cached);
959 		refcount_inc(&em->refs);
960 		*em_cached = em;
961 	}
962 	return em;
963 }
964 /*
965  * basic readpage implementation.  Locked extent state structs are inserted
966  * into the tree that are removed when the IO is done (by the end_io
967  * handlers)
968  * XXX JDM: This needs looking at to ensure proper page locking
969  * return 0 on success, otherwise return error
970  */
971 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
972 		      struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
973 {
974 	struct inode *inode = page->mapping->host;
975 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
976 	u64 start = page_offset(page);
977 	const u64 end = start + PAGE_SIZE - 1;
978 	u64 cur = start;
979 	u64 extent_offset;
980 	u64 last_byte = i_size_read(inode);
981 	u64 block_start;
982 	struct extent_map *em;
983 	int ret = 0;
984 	size_t pg_offset = 0;
985 	size_t iosize;
986 	size_t blocksize = inode->i_sb->s_blocksize;
987 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
988 
989 	ret = set_page_extent_mapped(page);
990 	if (ret < 0) {
991 		unlock_extent(tree, start, end, NULL);
992 		unlock_page(page);
993 		return ret;
994 	}
995 
996 	if (page->index == last_byte >> PAGE_SHIFT) {
997 		size_t zero_offset = offset_in_page(last_byte);
998 
999 		if (zero_offset) {
1000 			iosize = PAGE_SIZE - zero_offset;
1001 			memzero_page(page, zero_offset, iosize);
1002 		}
1003 	}
1004 	bio_ctrl->end_io_func = end_bio_extent_readpage;
1005 	begin_page_read(fs_info, page);
1006 	while (cur <= end) {
1007 		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1008 		bool force_bio_submit = false;
1009 		u64 disk_bytenr;
1010 
1011 		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1012 		if (cur >= last_byte) {
1013 			iosize = PAGE_SIZE - pg_offset;
1014 			memzero_page(page, pg_offset, iosize);
1015 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1016 			end_page_read(page, true, cur, iosize);
1017 			break;
1018 		}
1019 		em = __get_extent_map(inode, page, pg_offset, cur,
1020 				      end - cur + 1, em_cached);
1021 		if (IS_ERR(em)) {
1022 			unlock_extent(tree, cur, end, NULL);
1023 			end_page_read(page, false, cur, end + 1 - cur);
1024 			return PTR_ERR(em);
1025 		}
1026 		extent_offset = cur - em->start;
1027 		BUG_ON(extent_map_end(em) <= cur);
1028 		BUG_ON(end < cur);
1029 
1030 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1031 			compress_type = em->compress_type;
1032 
1033 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
1034 		iosize = ALIGN(iosize, blocksize);
1035 		if (compress_type != BTRFS_COMPRESS_NONE)
1036 			disk_bytenr = em->block_start;
1037 		else
1038 			disk_bytenr = em->block_start + extent_offset;
1039 		block_start = em->block_start;
1040 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1041 			block_start = EXTENT_MAP_HOLE;
1042 
1043 		/*
1044 		 * If we have a file range that points to a compressed extent
1045 		 * and it's followed by a consecutive file range that points
1046 		 * to the same compressed extent (possibly with a different
1047 		 * offset and/or length, so it either points to the whole extent
1048 		 * or only part of it), we must make sure we do not submit a
1049 		 * single bio to populate the pages for the 2 ranges because
1050 		 * this makes the compressed extent read zero out the pages
1051 		 * belonging to the 2nd range. Imagine the following scenario:
1052 		 *
1053 		 *  File layout
1054 		 *  [0 - 8K]                     [8K - 24K]
1055 		 *    |                               |
1056 		 *    |                               |
1057 		 * points to extent X,         points to extent X,
1058 		 * offset 4K, length of 8K     offset 0, length 16K
1059 		 *
1060 		 * [extent X, compressed length = 4K uncompressed length = 16K]
1061 		 *
1062 		 * If the bio to read the compressed extent covers both ranges,
1063 		 * it will decompress extent X into the pages belonging to the
1064 		 * first range and then it will stop, zeroing out the remaining
1065 		 * pages that belong to the other range that points to extent X.
1066 		 * So here we make sure we submit 2 bios, one for the first
1067 		 * range and another one for the third range. Both will target
1068 		 * the same physical extent from disk, but we can't currently
1069 		 * make the compressed bio endio callback populate the pages
1070 		 * for both ranges because each compressed bio is tightly
1071 		 * coupled with a single extent map, and each range can have
1072 		 * an extent map with a different offset value relative to the
1073 		 * uncompressed data of our extent and different lengths. This
1074 		 * is a corner case so we prioritize correctness over
1075 		 * non-optimal behavior (submitting 2 bios for the same extent).
1076 		 */
1077 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1078 		    prev_em_start && *prev_em_start != (u64)-1 &&
1079 		    *prev_em_start != em->start)
1080 			force_bio_submit = true;
1081 
1082 		if (prev_em_start)
1083 			*prev_em_start = em->start;
1084 
1085 		free_extent_map(em);
1086 		em = NULL;
1087 
1088 		/* we've found a hole, just zero and go on */
1089 		if (block_start == EXTENT_MAP_HOLE) {
1090 			memzero_page(page, pg_offset, iosize);
1091 
1092 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1093 			end_page_read(page, true, cur, iosize);
1094 			cur = cur + iosize;
1095 			pg_offset += iosize;
1096 			continue;
1097 		}
1098 		/* the get_extent function already copied into the page */
1099 		if (block_start == EXTENT_MAP_INLINE) {
1100 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1101 			end_page_read(page, true, cur, iosize);
1102 			cur = cur + iosize;
1103 			pg_offset += iosize;
1104 			continue;
1105 		}
1106 
1107 		if (bio_ctrl->compress_type != compress_type) {
1108 			submit_one_bio(bio_ctrl);
1109 			bio_ctrl->compress_type = compress_type;
1110 		}
1111 
1112 		if (force_bio_submit)
1113 			submit_one_bio(bio_ctrl);
1114 		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1115 				   pg_offset);
1116 		cur = cur + iosize;
1117 		pg_offset += iosize;
1118 	}
1119 
1120 	return 0;
1121 }
1122 
1123 int btrfs_read_folio(struct file *file, struct folio *folio)
1124 {
1125 	struct page *page = &folio->page;
1126 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1127 	u64 start = page_offset(page);
1128 	u64 end = start + PAGE_SIZE - 1;
1129 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1130 	int ret;
1131 
1132 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1133 
1134 	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL);
1135 	/*
1136 	 * If btrfs_do_readpage() failed we will want to submit the assembled
1137 	 * bio to do the cleanup.
1138 	 */
1139 	submit_one_bio(&bio_ctrl);
1140 	return ret;
1141 }
1142 
1143 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1144 					u64 start, u64 end,
1145 					struct extent_map **em_cached,
1146 					struct btrfs_bio_ctrl *bio_ctrl,
1147 					u64 *prev_em_start)
1148 {
1149 	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1150 	int index;
1151 
1152 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1153 
1154 	for (index = 0; index < nr_pages; index++) {
1155 		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1156 				  prev_em_start);
1157 		put_page(pages[index]);
1158 	}
1159 }
1160 
1161 /*
1162  * helper for __extent_writepage, doing all of the delayed allocation setup.
1163  *
1164  * This returns 1 if btrfs_run_delalloc_range function did all the work required
1165  * to write the page (copy into inline extent).  In this case the IO has
1166  * been started and the page is already unlocked.
1167  *
1168  * This returns 0 if all went well (page still locked)
1169  * This returns < 0 if there were errors (page still locked)
1170  */
1171 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1172 		struct page *page, struct writeback_control *wbc)
1173 {
1174 	const u64 page_start = page_offset(page);
1175 	const u64 page_end = page_start + PAGE_SIZE - 1;
1176 	u64 delalloc_start = page_start;
1177 	u64 delalloc_end = page_end;
1178 	u64 delalloc_to_write = 0;
1179 	int ret = 0;
1180 
1181 	while (delalloc_start < page_end) {
1182 		delalloc_end = page_end;
1183 		if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1184 					      &delalloc_start, &delalloc_end)) {
1185 			delalloc_start = delalloc_end + 1;
1186 			continue;
1187 		}
1188 
1189 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1190 					       delalloc_end, wbc);
1191 		if (ret < 0)
1192 			return ret;
1193 
1194 		delalloc_start = delalloc_end + 1;
1195 	}
1196 
1197 	/*
1198 	 * delalloc_end is already one less than the total length, so
1199 	 * we don't subtract one from PAGE_SIZE
1200 	 */
1201 	delalloc_to_write +=
1202 		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1203 
1204 	/*
1205 	 * If btrfs_run_dealloc_range() already started I/O and unlocked
1206 	 * the pages, we just need to account for them here.
1207 	 */
1208 	if (ret == 1) {
1209 		wbc->nr_to_write -= delalloc_to_write;
1210 		return 1;
1211 	}
1212 
1213 	if (wbc->nr_to_write < delalloc_to_write) {
1214 		int thresh = 8192;
1215 
1216 		if (delalloc_to_write < thresh * 2)
1217 			thresh = delalloc_to_write;
1218 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1219 					 thresh);
1220 	}
1221 
1222 	return 0;
1223 }
1224 
1225 /*
1226  * Find the first byte we need to write.
1227  *
1228  * For subpage, one page can contain several sectors, and
1229  * __extent_writepage_io() will just grab all extent maps in the page
1230  * range and try to submit all non-inline/non-compressed extents.
1231  *
1232  * This is a big problem for subpage, we shouldn't re-submit already written
1233  * data at all.
1234  * This function will lookup subpage dirty bit to find which range we really
1235  * need to submit.
1236  *
1237  * Return the next dirty range in [@start, @end).
1238  * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1239  */
1240 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1241 				 struct page *page, u64 *start, u64 *end)
1242 {
1243 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1244 	struct btrfs_subpage_info *spi = fs_info->subpage_info;
1245 	u64 orig_start = *start;
1246 	/* Declare as unsigned long so we can use bitmap ops */
1247 	unsigned long flags;
1248 	int range_start_bit;
1249 	int range_end_bit;
1250 
1251 	/*
1252 	 * For regular sector size == page size case, since one page only
1253 	 * contains one sector, we return the page offset directly.
1254 	 */
1255 	if (!btrfs_is_subpage(fs_info, page)) {
1256 		*start = page_offset(page);
1257 		*end = page_offset(page) + PAGE_SIZE;
1258 		return;
1259 	}
1260 
1261 	range_start_bit = spi->dirty_offset +
1262 			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1263 
1264 	/* We should have the page locked, but just in case */
1265 	spin_lock_irqsave(&subpage->lock, flags);
1266 	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1267 			       spi->dirty_offset + spi->bitmap_nr_bits);
1268 	spin_unlock_irqrestore(&subpage->lock, flags);
1269 
1270 	range_start_bit -= spi->dirty_offset;
1271 	range_end_bit -= spi->dirty_offset;
1272 
1273 	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1274 	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1275 }
1276 
1277 /*
1278  * helper for __extent_writepage.  This calls the writepage start hooks,
1279  * and does the loop to map the page into extents and bios.
1280  *
1281  * We return 1 if the IO is started and the page is unlocked,
1282  * 0 if all went well (page still locked)
1283  * < 0 if there were errors (page still locked)
1284  */
1285 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1286 				 struct page *page,
1287 				 struct btrfs_bio_ctrl *bio_ctrl,
1288 				 loff_t i_size,
1289 				 int *nr_ret)
1290 {
1291 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1292 	u64 cur = page_offset(page);
1293 	u64 end = cur + PAGE_SIZE - 1;
1294 	u64 extent_offset;
1295 	u64 block_start;
1296 	struct extent_map *em;
1297 	int ret = 0;
1298 	int nr = 0;
1299 
1300 	ret = btrfs_writepage_cow_fixup(page);
1301 	if (ret) {
1302 		/* Fixup worker will requeue */
1303 		redirty_page_for_writepage(bio_ctrl->wbc, page);
1304 		unlock_page(page);
1305 		return 1;
1306 	}
1307 
1308 	bio_ctrl->end_io_func = end_bio_extent_writepage;
1309 	while (cur <= end) {
1310 		u32 len = end - cur + 1;
1311 		u64 disk_bytenr;
1312 		u64 em_end;
1313 		u64 dirty_range_start = cur;
1314 		u64 dirty_range_end;
1315 		u32 iosize;
1316 
1317 		if (cur >= i_size) {
1318 			btrfs_mark_ordered_io_finished(inode, page, cur, len,
1319 						       true);
1320 			/*
1321 			 * This range is beyond i_size, thus we don't need to
1322 			 * bother writing back.
1323 			 * But we still need to clear the dirty subpage bit, or
1324 			 * the next time the page gets dirtied, we will try to
1325 			 * writeback the sectors with subpage dirty bits,
1326 			 * causing writeback without ordered extent.
1327 			 */
1328 			btrfs_page_clear_dirty(fs_info, page, cur, len);
1329 			break;
1330 		}
1331 
1332 		find_next_dirty_byte(fs_info, page, &dirty_range_start,
1333 				     &dirty_range_end);
1334 		if (cur < dirty_range_start) {
1335 			cur = dirty_range_start;
1336 			continue;
1337 		}
1338 
1339 		em = btrfs_get_extent(inode, NULL, 0, cur, len);
1340 		if (IS_ERR(em)) {
1341 			ret = PTR_ERR_OR_ZERO(em);
1342 			goto out_error;
1343 		}
1344 
1345 		extent_offset = cur - em->start;
1346 		em_end = extent_map_end(em);
1347 		ASSERT(cur <= em_end);
1348 		ASSERT(cur < end);
1349 		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1350 		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1351 
1352 		block_start = em->block_start;
1353 		disk_bytenr = em->block_start + extent_offset;
1354 
1355 		ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
1356 		ASSERT(block_start != EXTENT_MAP_HOLE);
1357 		ASSERT(block_start != EXTENT_MAP_INLINE);
1358 
1359 		/*
1360 		 * Note that em_end from extent_map_end() and dirty_range_end from
1361 		 * find_next_dirty_byte() are all exclusive
1362 		 */
1363 		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1364 		free_extent_map(em);
1365 		em = NULL;
1366 
1367 		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1368 		if (!PageWriteback(page)) {
1369 			btrfs_err(inode->root->fs_info,
1370 				   "page %lu not writeback, cur %llu end %llu",
1371 			       page->index, cur, end);
1372 		}
1373 
1374 		/*
1375 		 * Although the PageDirty bit is cleared before entering this
1376 		 * function, subpage dirty bit is not cleared.
1377 		 * So clear subpage dirty bit here so next time we won't submit
1378 		 * page for range already written to disk.
1379 		 */
1380 		btrfs_page_clear_dirty(fs_info, page, cur, iosize);
1381 
1382 		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1383 				   cur - page_offset(page));
1384 		cur += iosize;
1385 		nr++;
1386 	}
1387 
1388 	btrfs_page_assert_not_dirty(fs_info, page);
1389 	*nr_ret = nr;
1390 	return 0;
1391 
1392 out_error:
1393 	/*
1394 	 * If we finish without problem, we should not only clear page dirty,
1395 	 * but also empty subpage dirty bits
1396 	 */
1397 	*nr_ret = nr;
1398 	return ret;
1399 }
1400 
1401 /*
1402  * the writepage semantics are similar to regular writepage.  extent
1403  * records are inserted to lock ranges in the tree, and as dirty areas
1404  * are found, they are marked writeback.  Then the lock bits are removed
1405  * and the end_io handler clears the writeback ranges
1406  *
1407  * Return 0 if everything goes well.
1408  * Return <0 for error.
1409  */
1410 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
1411 {
1412 	struct folio *folio = page_folio(page);
1413 	struct inode *inode = page->mapping->host;
1414 	const u64 page_start = page_offset(page);
1415 	int ret;
1416 	int nr = 0;
1417 	size_t pg_offset;
1418 	loff_t i_size = i_size_read(inode);
1419 	unsigned long end_index = i_size >> PAGE_SHIFT;
1420 
1421 	trace___extent_writepage(page, inode, bio_ctrl->wbc);
1422 
1423 	WARN_ON(!PageLocked(page));
1424 
1425 	pg_offset = offset_in_page(i_size);
1426 	if (page->index > end_index ||
1427 	   (page->index == end_index && !pg_offset)) {
1428 		folio_invalidate(folio, 0, folio_size(folio));
1429 		folio_unlock(folio);
1430 		return 0;
1431 	}
1432 
1433 	if (page->index == end_index)
1434 		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
1435 
1436 	ret = set_page_extent_mapped(page);
1437 	if (ret < 0)
1438 		goto done;
1439 
1440 	ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1441 	if (ret == 1)
1442 		return 0;
1443 	if (ret)
1444 		goto done;
1445 
1446 	ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
1447 	if (ret == 1)
1448 		return 0;
1449 
1450 	bio_ctrl->wbc->nr_to_write--;
1451 
1452 done:
1453 	if (nr == 0) {
1454 		/* make sure the mapping tag for page dirty gets cleared */
1455 		set_page_writeback(page);
1456 		end_page_writeback(page);
1457 	}
1458 	if (ret) {
1459 		btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1460 					       PAGE_SIZE, !ret);
1461 		mapping_set_error(page->mapping, ret);
1462 	}
1463 	unlock_page(page);
1464 	ASSERT(ret <= 0);
1465 	return ret;
1466 }
1467 
1468 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1469 {
1470 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1471 		       TASK_UNINTERRUPTIBLE);
1472 }
1473 
1474 /*
1475  * Lock extent buffer status and pages for writeback.
1476  *
1477  * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1478  * extent buffer is not dirty)
1479  * Return %true is the extent buffer is submitted to bio.
1480  */
1481 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1482 			  struct writeback_control *wbc)
1483 {
1484 	struct btrfs_fs_info *fs_info = eb->fs_info;
1485 	bool ret = false;
1486 
1487 	btrfs_tree_lock(eb);
1488 	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1489 		btrfs_tree_unlock(eb);
1490 		if (wbc->sync_mode != WB_SYNC_ALL)
1491 			return false;
1492 		wait_on_extent_buffer_writeback(eb);
1493 		btrfs_tree_lock(eb);
1494 	}
1495 
1496 	/*
1497 	 * We need to do this to prevent races in people who check if the eb is
1498 	 * under IO since we can end up having no IO bits set for a short period
1499 	 * of time.
1500 	 */
1501 	spin_lock(&eb->refs_lock);
1502 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1503 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1504 		spin_unlock(&eb->refs_lock);
1505 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1506 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1507 					 -eb->len,
1508 					 fs_info->dirty_metadata_batch);
1509 		ret = true;
1510 	} else {
1511 		spin_unlock(&eb->refs_lock);
1512 	}
1513 	btrfs_tree_unlock(eb);
1514 	return ret;
1515 }
1516 
1517 static void set_btree_ioerr(struct extent_buffer *eb)
1518 {
1519 	struct btrfs_fs_info *fs_info = eb->fs_info;
1520 
1521 	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1522 
1523 	/*
1524 	 * A read may stumble upon this buffer later, make sure that it gets an
1525 	 * error and knows there was an error.
1526 	 */
1527 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1528 
1529 	/*
1530 	 * We need to set the mapping with the io error as well because a write
1531 	 * error will flip the file system readonly, and then syncfs() will
1532 	 * return a 0 because we are readonly if we don't modify the err seq for
1533 	 * the superblock.
1534 	 */
1535 	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1536 
1537 	/*
1538 	 * If writeback for a btree extent that doesn't belong to a log tree
1539 	 * failed, increment the counter transaction->eb_write_errors.
1540 	 * We do this because while the transaction is running and before it's
1541 	 * committing (when we call filemap_fdata[write|wait]_range against
1542 	 * the btree inode), we might have
1543 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1544 	 * returns an error or an error happens during writeback, when we're
1545 	 * committing the transaction we wouldn't know about it, since the pages
1546 	 * can be no longer dirty nor marked anymore for writeback (if a
1547 	 * subsequent modification to the extent buffer didn't happen before the
1548 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1549 	 * able to find the pages tagged with SetPageError at transaction
1550 	 * commit time. So if this happens we must abort the transaction,
1551 	 * otherwise we commit a super block with btree roots that point to
1552 	 * btree nodes/leafs whose content on disk is invalid - either garbage
1553 	 * or the content of some node/leaf from a past generation that got
1554 	 * cowed or deleted and is no longer valid.
1555 	 *
1556 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1557 	 * not be enough - we need to distinguish between log tree extents vs
1558 	 * non-log tree extents, and the next filemap_fdatawait_range() call
1559 	 * will catch and clear such errors in the mapping - and that call might
1560 	 * be from a log sync and not from a transaction commit. Also, checking
1561 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1562 	 * not done and would not be reliable - the eb might have been released
1563 	 * from memory and reading it back again means that flag would not be
1564 	 * set (since it's a runtime flag, not persisted on disk).
1565 	 *
1566 	 * Using the flags below in the btree inode also makes us achieve the
1567 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1568 	 * writeback for all dirty pages and before filemap_fdatawait_range()
1569 	 * is called, the writeback for all dirty pages had already finished
1570 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1571 	 * filemap_fdatawait_range() would return success, as it could not know
1572 	 * that writeback errors happened (the pages were no longer tagged for
1573 	 * writeback).
1574 	 */
1575 	switch (eb->log_index) {
1576 	case -1:
1577 		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1578 		break;
1579 	case 0:
1580 		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1581 		break;
1582 	case 1:
1583 		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1584 		break;
1585 	default:
1586 		BUG(); /* unexpected, logic error */
1587 	}
1588 }
1589 
1590 /*
1591  * The endio specific version which won't touch any unsafe spinlock in endio
1592  * context.
1593  */
1594 static struct extent_buffer *find_extent_buffer_nolock(
1595 		struct btrfs_fs_info *fs_info, u64 start)
1596 {
1597 	struct extent_buffer *eb;
1598 
1599 	rcu_read_lock();
1600 	eb = radix_tree_lookup(&fs_info->buffer_radix,
1601 			       start >> fs_info->sectorsize_bits);
1602 	if (eb && atomic_inc_not_zero(&eb->refs)) {
1603 		rcu_read_unlock();
1604 		return eb;
1605 	}
1606 	rcu_read_unlock();
1607 	return NULL;
1608 }
1609 
1610 static void extent_buffer_write_end_io(struct btrfs_bio *bbio)
1611 {
1612 	struct extent_buffer *eb = bbio->private;
1613 	struct btrfs_fs_info *fs_info = eb->fs_info;
1614 	bool uptodate = !bbio->bio.bi_status;
1615 	struct bvec_iter_all iter_all;
1616 	struct bio_vec *bvec;
1617 	u32 bio_offset = 0;
1618 
1619 	if (!uptodate)
1620 		set_btree_ioerr(eb);
1621 
1622 	bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
1623 		u64 start = eb->start + bio_offset;
1624 		struct page *page = bvec->bv_page;
1625 		u32 len = bvec->bv_len;
1626 
1627 		btrfs_page_clear_writeback(fs_info, page, start, len);
1628 		bio_offset += len;
1629 	}
1630 
1631 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1632 	smp_mb__after_atomic();
1633 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1634 
1635 	bio_put(&bbio->bio);
1636 }
1637 
1638 static void prepare_eb_write(struct extent_buffer *eb)
1639 {
1640 	u32 nritems;
1641 	unsigned long start;
1642 	unsigned long end;
1643 
1644 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1645 
1646 	/* Set btree blocks beyond nritems with 0 to avoid stale content */
1647 	nritems = btrfs_header_nritems(eb);
1648 	if (btrfs_header_level(eb) > 0) {
1649 		end = btrfs_node_key_ptr_offset(eb, nritems);
1650 		memzero_extent_buffer(eb, end, eb->len - end);
1651 	} else {
1652 		/*
1653 		 * Leaf:
1654 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1655 		 */
1656 		start = btrfs_item_nr_offset(eb, nritems);
1657 		end = btrfs_item_nr_offset(eb, 0);
1658 		if (nritems == 0)
1659 			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1660 		else
1661 			end += btrfs_item_offset(eb, nritems - 1);
1662 		memzero_extent_buffer(eb, start, end - start);
1663 	}
1664 }
1665 
1666 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1667 					    struct writeback_control *wbc)
1668 {
1669 	struct btrfs_fs_info *fs_info = eb->fs_info;
1670 	struct btrfs_bio *bbio;
1671 
1672 	prepare_eb_write(eb);
1673 
1674 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1675 			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1676 			       eb->fs_info, extent_buffer_write_end_io, eb);
1677 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1678 	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1679 	wbc_init_bio(wbc, &bbio->bio);
1680 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1681 	bbio->file_offset = eb->start;
1682 	if (fs_info->nodesize < PAGE_SIZE) {
1683 		struct page *p = eb->pages[0];
1684 
1685 		lock_page(p);
1686 		btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len);
1687 		if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start,
1688 						       eb->len)) {
1689 			clear_page_dirty_for_io(p);
1690 			wbc->nr_to_write--;
1691 		}
1692 		__bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p));
1693 		wbc_account_cgroup_owner(wbc, p, eb->len);
1694 		unlock_page(p);
1695 	} else {
1696 		for (int i = 0; i < num_extent_pages(eb); i++) {
1697 			struct page *p = eb->pages[i];
1698 
1699 			lock_page(p);
1700 			clear_page_dirty_for_io(p);
1701 			set_page_writeback(p);
1702 			__bio_add_page(&bbio->bio, p, PAGE_SIZE, 0);
1703 			wbc_account_cgroup_owner(wbc, p, PAGE_SIZE);
1704 			wbc->nr_to_write--;
1705 			unlock_page(p);
1706 		}
1707 	}
1708 	btrfs_submit_bio(bbio, 0);
1709 }
1710 
1711 /*
1712  * Submit one subpage btree page.
1713  *
1714  * The main difference to submit_eb_page() is:
1715  * - Page locking
1716  *   For subpage, we don't rely on page locking at all.
1717  *
1718  * - Flush write bio
1719  *   We only flush bio if we may be unable to fit current extent buffers into
1720  *   current bio.
1721  *
1722  * Return >=0 for the number of submitted extent buffers.
1723  * Return <0 for fatal error.
1724  */
1725 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
1726 {
1727 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1728 	int submitted = 0;
1729 	u64 page_start = page_offset(page);
1730 	int bit_start = 0;
1731 	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1732 
1733 	/* Lock and write each dirty extent buffers in the range */
1734 	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1735 		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1736 		struct extent_buffer *eb;
1737 		unsigned long flags;
1738 		u64 start;
1739 
1740 		/*
1741 		 * Take private lock to ensure the subpage won't be detached
1742 		 * in the meantime.
1743 		 */
1744 		spin_lock(&page->mapping->private_lock);
1745 		if (!PagePrivate(page)) {
1746 			spin_unlock(&page->mapping->private_lock);
1747 			break;
1748 		}
1749 		spin_lock_irqsave(&subpage->lock, flags);
1750 		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1751 			      subpage->bitmaps)) {
1752 			spin_unlock_irqrestore(&subpage->lock, flags);
1753 			spin_unlock(&page->mapping->private_lock);
1754 			bit_start++;
1755 			continue;
1756 		}
1757 
1758 		start = page_start + bit_start * fs_info->sectorsize;
1759 		bit_start += sectors_per_node;
1760 
1761 		/*
1762 		 * Here we just want to grab the eb without touching extra
1763 		 * spin locks, so call find_extent_buffer_nolock().
1764 		 */
1765 		eb = find_extent_buffer_nolock(fs_info, start);
1766 		spin_unlock_irqrestore(&subpage->lock, flags);
1767 		spin_unlock(&page->mapping->private_lock);
1768 
1769 		/*
1770 		 * The eb has already reached 0 refs thus find_extent_buffer()
1771 		 * doesn't return it. We don't need to write back such eb
1772 		 * anyway.
1773 		 */
1774 		if (!eb)
1775 			continue;
1776 
1777 		if (lock_extent_buffer_for_io(eb, wbc)) {
1778 			write_one_eb(eb, wbc);
1779 			submitted++;
1780 		}
1781 		free_extent_buffer(eb);
1782 	}
1783 	return submitted;
1784 }
1785 
1786 /*
1787  * Submit all page(s) of one extent buffer.
1788  *
1789  * @page:	the page of one extent buffer
1790  * @eb_context:	to determine if we need to submit this page, if current page
1791  *		belongs to this eb, we don't need to submit
1792  *
1793  * The caller should pass each page in their bytenr order, and here we use
1794  * @eb_context to determine if we have submitted pages of one extent buffer.
1795  *
1796  * If we have, we just skip until we hit a new page that doesn't belong to
1797  * current @eb_context.
1798  *
1799  * If not, we submit all the page(s) of the extent buffer.
1800  *
1801  * Return >0 if we have submitted the extent buffer successfully.
1802  * Return 0 if we don't need to submit the page, as it's already submitted by
1803  * previous call.
1804  * Return <0 for fatal error.
1805  */
1806 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
1807 {
1808 	struct writeback_control *wbc = ctx->wbc;
1809 	struct address_space *mapping = page->mapping;
1810 	struct extent_buffer *eb;
1811 	int ret;
1812 
1813 	if (!PagePrivate(page))
1814 		return 0;
1815 
1816 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
1817 		return submit_eb_subpage(page, wbc);
1818 
1819 	spin_lock(&mapping->private_lock);
1820 	if (!PagePrivate(page)) {
1821 		spin_unlock(&mapping->private_lock);
1822 		return 0;
1823 	}
1824 
1825 	eb = (struct extent_buffer *)page->private;
1826 
1827 	/*
1828 	 * Shouldn't happen and normally this would be a BUG_ON but no point
1829 	 * crashing the machine for something we can survive anyway.
1830 	 */
1831 	if (WARN_ON(!eb)) {
1832 		spin_unlock(&mapping->private_lock);
1833 		return 0;
1834 	}
1835 
1836 	if (eb == ctx->eb) {
1837 		spin_unlock(&mapping->private_lock);
1838 		return 0;
1839 	}
1840 	ret = atomic_inc_not_zero(&eb->refs);
1841 	spin_unlock(&mapping->private_lock);
1842 	if (!ret)
1843 		return 0;
1844 
1845 	ctx->eb = eb;
1846 
1847 	ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1848 	if (ret) {
1849 		if (ret == -EBUSY)
1850 			ret = 0;
1851 		free_extent_buffer(eb);
1852 		return ret;
1853 	}
1854 
1855 	if (!lock_extent_buffer_for_io(eb, wbc)) {
1856 		free_extent_buffer(eb);
1857 		return 0;
1858 	}
1859 	/* Implies write in zoned mode. */
1860 	if (ctx->zoned_bg) {
1861 		/* Mark the last eb in the block group. */
1862 		btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1863 		ctx->zoned_bg->meta_write_pointer += eb->len;
1864 	}
1865 	write_one_eb(eb, wbc);
1866 	free_extent_buffer(eb);
1867 	return 1;
1868 }
1869 
1870 int btree_write_cache_pages(struct address_space *mapping,
1871 				   struct writeback_control *wbc)
1872 {
1873 	struct btrfs_eb_write_context ctx = { .wbc = wbc };
1874 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
1875 	int ret = 0;
1876 	int done = 0;
1877 	int nr_to_write_done = 0;
1878 	struct folio_batch fbatch;
1879 	unsigned int nr_folios;
1880 	pgoff_t index;
1881 	pgoff_t end;		/* Inclusive */
1882 	int scanned = 0;
1883 	xa_mark_t tag;
1884 
1885 	folio_batch_init(&fbatch);
1886 	if (wbc->range_cyclic) {
1887 		index = mapping->writeback_index; /* Start from prev offset */
1888 		end = -1;
1889 		/*
1890 		 * Start from the beginning does not need to cycle over the
1891 		 * range, mark it as scanned.
1892 		 */
1893 		scanned = (index == 0);
1894 	} else {
1895 		index = wbc->range_start >> PAGE_SHIFT;
1896 		end = wbc->range_end >> PAGE_SHIFT;
1897 		scanned = 1;
1898 	}
1899 	if (wbc->sync_mode == WB_SYNC_ALL)
1900 		tag = PAGECACHE_TAG_TOWRITE;
1901 	else
1902 		tag = PAGECACHE_TAG_DIRTY;
1903 	btrfs_zoned_meta_io_lock(fs_info);
1904 retry:
1905 	if (wbc->sync_mode == WB_SYNC_ALL)
1906 		tag_pages_for_writeback(mapping, index, end);
1907 	while (!done && !nr_to_write_done && (index <= end) &&
1908 	       (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1909 					    tag, &fbatch))) {
1910 		unsigned i;
1911 
1912 		for (i = 0; i < nr_folios; i++) {
1913 			struct folio *folio = fbatch.folios[i];
1914 
1915 			ret = submit_eb_page(&folio->page, &ctx);
1916 			if (ret == 0)
1917 				continue;
1918 			if (ret < 0) {
1919 				done = 1;
1920 				break;
1921 			}
1922 
1923 			/*
1924 			 * the filesystem may choose to bump up nr_to_write.
1925 			 * We have to make sure to honor the new nr_to_write
1926 			 * at any time
1927 			 */
1928 			nr_to_write_done = wbc->nr_to_write <= 0;
1929 		}
1930 		folio_batch_release(&fbatch);
1931 		cond_resched();
1932 	}
1933 	if (!scanned && !done) {
1934 		/*
1935 		 * We hit the last page and there is more work to be done: wrap
1936 		 * back to the start of the file
1937 		 */
1938 		scanned = 1;
1939 		index = 0;
1940 		goto retry;
1941 	}
1942 	/*
1943 	 * If something went wrong, don't allow any metadata write bio to be
1944 	 * submitted.
1945 	 *
1946 	 * This would prevent use-after-free if we had dirty pages not
1947 	 * cleaned up, which can still happen by fuzzed images.
1948 	 *
1949 	 * - Bad extent tree
1950 	 *   Allowing existing tree block to be allocated for other trees.
1951 	 *
1952 	 * - Log tree operations
1953 	 *   Exiting tree blocks get allocated to log tree, bumps its
1954 	 *   generation, then get cleaned in tree re-balance.
1955 	 *   Such tree block will not be written back, since it's clean,
1956 	 *   thus no WRITTEN flag set.
1957 	 *   And after log writes back, this tree block is not traced by
1958 	 *   any dirty extent_io_tree.
1959 	 *
1960 	 * - Offending tree block gets re-dirtied from its original owner
1961 	 *   Since it has bumped generation, no WRITTEN flag, it can be
1962 	 *   reused without COWing. This tree block will not be traced
1963 	 *   by btrfs_transaction::dirty_pages.
1964 	 *
1965 	 *   Now such dirty tree block will not be cleaned by any dirty
1966 	 *   extent io tree. Thus we don't want to submit such wild eb
1967 	 *   if the fs already has error.
1968 	 *
1969 	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
1970 	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
1971 	 */
1972 	if (ret > 0)
1973 		ret = 0;
1974 	if (!ret && BTRFS_FS_ERROR(fs_info))
1975 		ret = -EROFS;
1976 
1977 	if (ctx.zoned_bg)
1978 		btrfs_put_block_group(ctx.zoned_bg);
1979 	btrfs_zoned_meta_io_unlock(fs_info);
1980 	return ret;
1981 }
1982 
1983 /*
1984  * Walk the list of dirty pages of the given address space and write all of them.
1985  *
1986  * @mapping:   address space structure to write
1987  * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
1988  * @bio_ctrl:  holds context for the write, namely the bio
1989  *
1990  * If a page is already under I/O, write_cache_pages() skips it, even
1991  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1992  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1993  * and msync() need to guarantee that all the data which was dirty at the time
1994  * the call was made get new I/O started against them.  If wbc->sync_mode is
1995  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1996  * existing IO to complete.
1997  */
1998 static int extent_write_cache_pages(struct address_space *mapping,
1999 			     struct btrfs_bio_ctrl *bio_ctrl)
2000 {
2001 	struct writeback_control *wbc = bio_ctrl->wbc;
2002 	struct inode *inode = mapping->host;
2003 	int ret = 0;
2004 	int done = 0;
2005 	int nr_to_write_done = 0;
2006 	struct folio_batch fbatch;
2007 	unsigned int nr_folios;
2008 	pgoff_t index;
2009 	pgoff_t end;		/* Inclusive */
2010 	pgoff_t done_index;
2011 	int range_whole = 0;
2012 	int scanned = 0;
2013 	xa_mark_t tag;
2014 
2015 	/*
2016 	 * We have to hold onto the inode so that ordered extents can do their
2017 	 * work when the IO finishes.  The alternative to this is failing to add
2018 	 * an ordered extent if the igrab() fails there and that is a huge pain
2019 	 * to deal with, so instead just hold onto the inode throughout the
2020 	 * writepages operation.  If it fails here we are freeing up the inode
2021 	 * anyway and we'd rather not waste our time writing out stuff that is
2022 	 * going to be truncated anyway.
2023 	 */
2024 	if (!igrab(inode))
2025 		return 0;
2026 
2027 	folio_batch_init(&fbatch);
2028 	if (wbc->range_cyclic) {
2029 		index = mapping->writeback_index; /* Start from prev offset */
2030 		end = -1;
2031 		/*
2032 		 * Start from the beginning does not need to cycle over the
2033 		 * range, mark it as scanned.
2034 		 */
2035 		scanned = (index == 0);
2036 	} else {
2037 		index = wbc->range_start >> PAGE_SHIFT;
2038 		end = wbc->range_end >> PAGE_SHIFT;
2039 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2040 			range_whole = 1;
2041 		scanned = 1;
2042 	}
2043 
2044 	/*
2045 	 * We do the tagged writepage as long as the snapshot flush bit is set
2046 	 * and we are the first one who do the filemap_flush() on this inode.
2047 	 *
2048 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2049 	 * not race in and drop the bit.
2050 	 */
2051 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2052 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2053 			       &BTRFS_I(inode)->runtime_flags))
2054 		wbc->tagged_writepages = 1;
2055 
2056 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2057 		tag = PAGECACHE_TAG_TOWRITE;
2058 	else
2059 		tag = PAGECACHE_TAG_DIRTY;
2060 retry:
2061 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2062 		tag_pages_for_writeback(mapping, index, end);
2063 	done_index = index;
2064 	while (!done && !nr_to_write_done && (index <= end) &&
2065 			(nr_folios = filemap_get_folios_tag(mapping, &index,
2066 							end, tag, &fbatch))) {
2067 		unsigned i;
2068 
2069 		for (i = 0; i < nr_folios; i++) {
2070 			struct folio *folio = fbatch.folios[i];
2071 
2072 			done_index = folio_next_index(folio);
2073 			/*
2074 			 * At this point we hold neither the i_pages lock nor
2075 			 * the page lock: the page may be truncated or
2076 			 * invalidated (changing page->mapping to NULL),
2077 			 * or even swizzled back from swapper_space to
2078 			 * tmpfs file mapping
2079 			 */
2080 			if (!folio_trylock(folio)) {
2081 				submit_write_bio(bio_ctrl, 0);
2082 				folio_lock(folio);
2083 			}
2084 
2085 			if (unlikely(folio->mapping != mapping)) {
2086 				folio_unlock(folio);
2087 				continue;
2088 			}
2089 
2090 			if (!folio_test_dirty(folio)) {
2091 				/* Someone wrote it for us. */
2092 				folio_unlock(folio);
2093 				continue;
2094 			}
2095 
2096 			if (wbc->sync_mode != WB_SYNC_NONE) {
2097 				if (folio_test_writeback(folio))
2098 					submit_write_bio(bio_ctrl, 0);
2099 				folio_wait_writeback(folio);
2100 			}
2101 
2102 			if (folio_test_writeback(folio) ||
2103 			    !folio_clear_dirty_for_io(folio)) {
2104 				folio_unlock(folio);
2105 				continue;
2106 			}
2107 
2108 			ret = __extent_writepage(&folio->page, bio_ctrl);
2109 			if (ret < 0) {
2110 				done = 1;
2111 				break;
2112 			}
2113 
2114 			/*
2115 			 * The filesystem may choose to bump up nr_to_write.
2116 			 * We have to make sure to honor the new nr_to_write
2117 			 * at any time.
2118 			 */
2119 			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2120 					    wbc->nr_to_write <= 0);
2121 		}
2122 		folio_batch_release(&fbatch);
2123 		cond_resched();
2124 	}
2125 	if (!scanned && !done) {
2126 		/*
2127 		 * We hit the last page and there is more work to be done: wrap
2128 		 * back to the start of the file
2129 		 */
2130 		scanned = 1;
2131 		index = 0;
2132 
2133 		/*
2134 		 * If we're looping we could run into a page that is locked by a
2135 		 * writer and that writer could be waiting on writeback for a
2136 		 * page in our current bio, and thus deadlock, so flush the
2137 		 * write bio here.
2138 		 */
2139 		submit_write_bio(bio_ctrl, 0);
2140 		goto retry;
2141 	}
2142 
2143 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2144 		mapping->writeback_index = done_index;
2145 
2146 	btrfs_add_delayed_iput(BTRFS_I(inode));
2147 	return ret;
2148 }
2149 
2150 /*
2151  * Submit the pages in the range to bio for call sites which delalloc range has
2152  * already been ran (aka, ordered extent inserted) and all pages are still
2153  * locked.
2154  */
2155 void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2156 			       u64 start, u64 end, struct writeback_control *wbc,
2157 			       bool pages_dirty)
2158 {
2159 	bool found_error = false;
2160 	int ret = 0;
2161 	struct address_space *mapping = inode->i_mapping;
2162 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2163 	const u32 sectorsize = fs_info->sectorsize;
2164 	loff_t i_size = i_size_read(inode);
2165 	u64 cur = start;
2166 	struct btrfs_bio_ctrl bio_ctrl = {
2167 		.wbc = wbc,
2168 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2169 	};
2170 
2171 	if (wbc->no_cgroup_owner)
2172 		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2173 
2174 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2175 
2176 	while (cur <= end) {
2177 		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2178 		u32 cur_len = cur_end + 1 - cur;
2179 		struct page *page;
2180 		int nr = 0;
2181 
2182 		page = find_get_page(mapping, cur >> PAGE_SHIFT);
2183 		ASSERT(PageLocked(page));
2184 		if (pages_dirty && page != locked_page) {
2185 			ASSERT(PageDirty(page));
2186 			clear_page_dirty_for_io(page);
2187 		}
2188 
2189 		ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2190 					    i_size, &nr);
2191 		if (ret == 1)
2192 			goto next_page;
2193 
2194 		/* Make sure the mapping tag for page dirty gets cleared. */
2195 		if (nr == 0) {
2196 			set_page_writeback(page);
2197 			end_page_writeback(page);
2198 		}
2199 		if (ret) {
2200 			btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2201 						       cur, cur_len, !ret);
2202 			mapping_set_error(page->mapping, ret);
2203 		}
2204 		btrfs_page_unlock_writer(fs_info, page, cur, cur_len);
2205 		if (ret < 0)
2206 			found_error = true;
2207 next_page:
2208 		put_page(page);
2209 		cur = cur_end + 1;
2210 	}
2211 
2212 	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2213 }
2214 
2215 int extent_writepages(struct address_space *mapping,
2216 		      struct writeback_control *wbc)
2217 {
2218 	struct inode *inode = mapping->host;
2219 	int ret = 0;
2220 	struct btrfs_bio_ctrl bio_ctrl = {
2221 		.wbc = wbc,
2222 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2223 	};
2224 
2225 	/*
2226 	 * Allow only a single thread to do the reloc work in zoned mode to
2227 	 * protect the write pointer updates.
2228 	 */
2229 	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2230 	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2231 	submit_write_bio(&bio_ctrl, ret);
2232 	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2233 	return ret;
2234 }
2235 
2236 void extent_readahead(struct readahead_control *rac)
2237 {
2238 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2239 	struct page *pagepool[16];
2240 	struct extent_map *em_cached = NULL;
2241 	u64 prev_em_start = (u64)-1;
2242 	int nr;
2243 
2244 	while ((nr = readahead_page_batch(rac, pagepool))) {
2245 		u64 contig_start = readahead_pos(rac);
2246 		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2247 
2248 		contiguous_readpages(pagepool, nr, contig_start, contig_end,
2249 				&em_cached, &bio_ctrl, &prev_em_start);
2250 	}
2251 
2252 	if (em_cached)
2253 		free_extent_map(em_cached);
2254 	submit_one_bio(&bio_ctrl);
2255 }
2256 
2257 /*
2258  * basic invalidate_folio code, this waits on any locked or writeback
2259  * ranges corresponding to the folio, and then deletes any extent state
2260  * records from the tree
2261  */
2262 int extent_invalidate_folio(struct extent_io_tree *tree,
2263 			  struct folio *folio, size_t offset)
2264 {
2265 	struct extent_state *cached_state = NULL;
2266 	u64 start = folio_pos(folio);
2267 	u64 end = start + folio_size(folio) - 1;
2268 	size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
2269 
2270 	/* This function is only called for the btree inode */
2271 	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2272 
2273 	start += ALIGN(offset, blocksize);
2274 	if (start > end)
2275 		return 0;
2276 
2277 	lock_extent(tree, start, end, &cached_state);
2278 	folio_wait_writeback(folio);
2279 
2280 	/*
2281 	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2282 	 * so here we only need to unlock the extent range to free any
2283 	 * existing extent state.
2284 	 */
2285 	unlock_extent(tree, start, end, &cached_state);
2286 	return 0;
2287 }
2288 
2289 /*
2290  * a helper for release_folio, this tests for areas of the page that
2291  * are locked or under IO and drops the related state bits if it is safe
2292  * to drop the page.
2293  */
2294 static int try_release_extent_state(struct extent_io_tree *tree,
2295 				    struct page *page, gfp_t mask)
2296 {
2297 	u64 start = page_offset(page);
2298 	u64 end = start + PAGE_SIZE - 1;
2299 	int ret = 1;
2300 
2301 	if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
2302 		ret = 0;
2303 	} else {
2304 		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2305 				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2306 				   EXTENT_QGROUP_RESERVED);
2307 
2308 		/*
2309 		 * At this point we can safely clear everything except the
2310 		 * locked bit, the nodatasum bit and the delalloc new bit.
2311 		 * The delalloc new bit will be cleared by ordered extent
2312 		 * completion.
2313 		 */
2314 		ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2315 
2316 		/* if clear_extent_bit failed for enomem reasons,
2317 		 * we can't allow the release to continue.
2318 		 */
2319 		if (ret < 0)
2320 			ret = 0;
2321 		else
2322 			ret = 1;
2323 	}
2324 	return ret;
2325 }
2326 
2327 /*
2328  * a helper for release_folio.  As long as there are no locked extents
2329  * in the range corresponding to the page, both state records and extent
2330  * map records are removed
2331  */
2332 int try_release_extent_mapping(struct page *page, gfp_t mask)
2333 {
2334 	struct extent_map *em;
2335 	u64 start = page_offset(page);
2336 	u64 end = start + PAGE_SIZE - 1;
2337 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
2338 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
2339 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
2340 
2341 	if (gfpflags_allow_blocking(mask) &&
2342 	    page->mapping->host->i_size > SZ_16M) {
2343 		u64 len;
2344 		while (start <= end) {
2345 			struct btrfs_fs_info *fs_info;
2346 			u64 cur_gen;
2347 
2348 			len = end - start + 1;
2349 			write_lock(&map->lock);
2350 			em = lookup_extent_mapping(map, start, len);
2351 			if (!em) {
2352 				write_unlock(&map->lock);
2353 				break;
2354 			}
2355 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2356 			    em->start != start) {
2357 				write_unlock(&map->lock);
2358 				free_extent_map(em);
2359 				break;
2360 			}
2361 			if (test_range_bit_exists(tree, em->start,
2362 						  extent_map_end(em) - 1,
2363 						  EXTENT_LOCKED))
2364 				goto next;
2365 			/*
2366 			 * If it's not in the list of modified extents, used
2367 			 * by a fast fsync, we can remove it. If it's being
2368 			 * logged we can safely remove it since fsync took an
2369 			 * extra reference on the em.
2370 			 */
2371 			if (list_empty(&em->list) ||
2372 			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
2373 				goto remove_em;
2374 			/*
2375 			 * If it's in the list of modified extents, remove it
2376 			 * only if its generation is older then the current one,
2377 			 * in which case we don't need it for a fast fsync.
2378 			 * Otherwise don't remove it, we could be racing with an
2379 			 * ongoing fast fsync that could miss the new extent.
2380 			 */
2381 			fs_info = btrfs_inode->root->fs_info;
2382 			spin_lock(&fs_info->trans_lock);
2383 			cur_gen = fs_info->generation;
2384 			spin_unlock(&fs_info->trans_lock);
2385 			if (em->generation >= cur_gen)
2386 				goto next;
2387 remove_em:
2388 			/*
2389 			 * We only remove extent maps that are not in the list of
2390 			 * modified extents or that are in the list but with a
2391 			 * generation lower then the current generation, so there
2392 			 * is no need to set the full fsync flag on the inode (it
2393 			 * hurts the fsync performance for workloads with a data
2394 			 * size that exceeds or is close to the system's memory).
2395 			 */
2396 			remove_extent_mapping(map, em);
2397 			/* once for the rb tree */
2398 			free_extent_map(em);
2399 next:
2400 			start = extent_map_end(em);
2401 			write_unlock(&map->lock);
2402 
2403 			/* once for us */
2404 			free_extent_map(em);
2405 
2406 			cond_resched(); /* Allow large-extent preemption. */
2407 		}
2408 	}
2409 	return try_release_extent_state(tree, page, mask);
2410 }
2411 
2412 /*
2413  * To cache previous fiemap extent
2414  *
2415  * Will be used for merging fiemap extent
2416  */
2417 struct fiemap_cache {
2418 	u64 offset;
2419 	u64 phys;
2420 	u64 len;
2421 	u32 flags;
2422 	bool cached;
2423 };
2424 
2425 /*
2426  * Helper to submit fiemap extent.
2427  *
2428  * Will try to merge current fiemap extent specified by @offset, @phys,
2429  * @len and @flags with cached one.
2430  * And only when we fails to merge, cached one will be submitted as
2431  * fiemap extent.
2432  *
2433  * Return value is the same as fiemap_fill_next_extent().
2434  */
2435 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2436 				struct fiemap_cache *cache,
2437 				u64 offset, u64 phys, u64 len, u32 flags)
2438 {
2439 	int ret = 0;
2440 
2441 	/* Set at the end of extent_fiemap(). */
2442 	ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2443 
2444 	if (!cache->cached)
2445 		goto assign;
2446 
2447 	/*
2448 	 * Sanity check, extent_fiemap() should have ensured that new
2449 	 * fiemap extent won't overlap with cached one.
2450 	 * Not recoverable.
2451 	 *
2452 	 * NOTE: Physical address can overlap, due to compression
2453 	 */
2454 	if (cache->offset + cache->len > offset) {
2455 		WARN_ON(1);
2456 		return -EINVAL;
2457 	}
2458 
2459 	/*
2460 	 * Only merges fiemap extents if
2461 	 * 1) Their logical addresses are continuous
2462 	 *
2463 	 * 2) Their physical addresses are continuous
2464 	 *    So truly compressed (physical size smaller than logical size)
2465 	 *    extents won't get merged with each other
2466 	 *
2467 	 * 3) Share same flags
2468 	 */
2469 	if (cache->offset + cache->len  == offset &&
2470 	    cache->phys + cache->len == phys  &&
2471 	    cache->flags == flags) {
2472 		cache->len += len;
2473 		return 0;
2474 	}
2475 
2476 	/* Not mergeable, need to submit cached one */
2477 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2478 				      cache->len, cache->flags);
2479 	cache->cached = false;
2480 	if (ret)
2481 		return ret;
2482 assign:
2483 	cache->cached = true;
2484 	cache->offset = offset;
2485 	cache->phys = phys;
2486 	cache->len = len;
2487 	cache->flags = flags;
2488 
2489 	return 0;
2490 }
2491 
2492 /*
2493  * Emit last fiemap cache
2494  *
2495  * The last fiemap cache may still be cached in the following case:
2496  * 0		      4k		    8k
2497  * |<- Fiemap range ->|
2498  * |<------------  First extent ----------->|
2499  *
2500  * In this case, the first extent range will be cached but not emitted.
2501  * So we must emit it before ending extent_fiemap().
2502  */
2503 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2504 				  struct fiemap_cache *cache)
2505 {
2506 	int ret;
2507 
2508 	if (!cache->cached)
2509 		return 0;
2510 
2511 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2512 				      cache->len, cache->flags);
2513 	cache->cached = false;
2514 	if (ret > 0)
2515 		ret = 0;
2516 	return ret;
2517 }
2518 
2519 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
2520 {
2521 	struct extent_buffer *clone;
2522 	struct btrfs_key key;
2523 	int slot;
2524 	int ret;
2525 
2526 	path->slots[0]++;
2527 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2528 		return 0;
2529 
2530 	ret = btrfs_next_leaf(inode->root, path);
2531 	if (ret != 0)
2532 		return ret;
2533 
2534 	/*
2535 	 * Don't bother with cloning if there are no more file extent items for
2536 	 * our inode.
2537 	 */
2538 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2539 	if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
2540 		return 1;
2541 
2542 	/* See the comment at fiemap_search_slot() about why we clone. */
2543 	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2544 	if (!clone)
2545 		return -ENOMEM;
2546 
2547 	slot = path->slots[0];
2548 	btrfs_release_path(path);
2549 	path->nodes[0] = clone;
2550 	path->slots[0] = slot;
2551 
2552 	return 0;
2553 }
2554 
2555 /*
2556  * Search for the first file extent item that starts at a given file offset or
2557  * the one that starts immediately before that offset.
2558  * Returns: 0 on success, < 0 on error, 1 if not found.
2559  */
2560 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2561 			      u64 file_offset)
2562 {
2563 	const u64 ino = btrfs_ino(inode);
2564 	struct btrfs_root *root = inode->root;
2565 	struct extent_buffer *clone;
2566 	struct btrfs_key key;
2567 	int slot;
2568 	int ret;
2569 
2570 	key.objectid = ino;
2571 	key.type = BTRFS_EXTENT_DATA_KEY;
2572 	key.offset = file_offset;
2573 
2574 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2575 	if (ret < 0)
2576 		return ret;
2577 
2578 	if (ret > 0 && path->slots[0] > 0) {
2579 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2580 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2581 			path->slots[0]--;
2582 	}
2583 
2584 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2585 		ret = btrfs_next_leaf(root, path);
2586 		if (ret != 0)
2587 			return ret;
2588 
2589 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2590 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2591 			return 1;
2592 	}
2593 
2594 	/*
2595 	 * We clone the leaf and use it during fiemap. This is because while
2596 	 * using the leaf we do expensive things like checking if an extent is
2597 	 * shared, which can take a long time. In order to prevent blocking
2598 	 * other tasks for too long, we use a clone of the leaf. We have locked
2599 	 * the file range in the inode's io tree, so we know none of our file
2600 	 * extent items can change. This way we avoid blocking other tasks that
2601 	 * want to insert items for other inodes in the same leaf or b+tree
2602 	 * rebalance operations (triggered for example when someone is trying
2603 	 * to push items into this leaf when trying to insert an item in a
2604 	 * neighbour leaf).
2605 	 * We also need the private clone because holding a read lock on an
2606 	 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2607 	 * when we call fiemap_fill_next_extent(), because that may cause a page
2608 	 * fault when filling the user space buffer with fiemap data.
2609 	 */
2610 	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2611 	if (!clone)
2612 		return -ENOMEM;
2613 
2614 	slot = path->slots[0];
2615 	btrfs_release_path(path);
2616 	path->nodes[0] = clone;
2617 	path->slots[0] = slot;
2618 
2619 	return 0;
2620 }
2621 
2622 /*
2623  * Process a range which is a hole or a prealloc extent in the inode's subvolume
2624  * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2625  * extent. The end offset (@end) is inclusive.
2626  */
2627 static int fiemap_process_hole(struct btrfs_inode *inode,
2628 			       struct fiemap_extent_info *fieinfo,
2629 			       struct fiemap_cache *cache,
2630 			       struct extent_state **delalloc_cached_state,
2631 			       struct btrfs_backref_share_check_ctx *backref_ctx,
2632 			       u64 disk_bytenr, u64 extent_offset,
2633 			       u64 extent_gen,
2634 			       u64 start, u64 end)
2635 {
2636 	const u64 i_size = i_size_read(&inode->vfs_inode);
2637 	u64 cur_offset = start;
2638 	u64 last_delalloc_end = 0;
2639 	u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2640 	bool checked_extent_shared = false;
2641 	int ret;
2642 
2643 	/*
2644 	 * There can be no delalloc past i_size, so don't waste time looking for
2645 	 * it beyond i_size.
2646 	 */
2647 	while (cur_offset < end && cur_offset < i_size) {
2648 		u64 delalloc_start;
2649 		u64 delalloc_end;
2650 		u64 prealloc_start;
2651 		u64 prealloc_len = 0;
2652 		bool delalloc;
2653 
2654 		delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2655 							delalloc_cached_state,
2656 							&delalloc_start,
2657 							&delalloc_end);
2658 		if (!delalloc)
2659 			break;
2660 
2661 		/*
2662 		 * If this is a prealloc extent we have to report every section
2663 		 * of it that has no delalloc.
2664 		 */
2665 		if (disk_bytenr != 0) {
2666 			if (last_delalloc_end == 0) {
2667 				prealloc_start = start;
2668 				prealloc_len = delalloc_start - start;
2669 			} else {
2670 				prealloc_start = last_delalloc_end + 1;
2671 				prealloc_len = delalloc_start - prealloc_start;
2672 			}
2673 		}
2674 
2675 		if (prealloc_len > 0) {
2676 			if (!checked_extent_shared && fieinfo->fi_extents_max) {
2677 				ret = btrfs_is_data_extent_shared(inode,
2678 								  disk_bytenr,
2679 								  extent_gen,
2680 								  backref_ctx);
2681 				if (ret < 0)
2682 					return ret;
2683 				else if (ret > 0)
2684 					prealloc_flags |= FIEMAP_EXTENT_SHARED;
2685 
2686 				checked_extent_shared = true;
2687 			}
2688 			ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2689 						 disk_bytenr + extent_offset,
2690 						 prealloc_len, prealloc_flags);
2691 			if (ret)
2692 				return ret;
2693 			extent_offset += prealloc_len;
2694 		}
2695 
2696 		ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2697 					 delalloc_end + 1 - delalloc_start,
2698 					 FIEMAP_EXTENT_DELALLOC |
2699 					 FIEMAP_EXTENT_UNKNOWN);
2700 		if (ret)
2701 			return ret;
2702 
2703 		last_delalloc_end = delalloc_end;
2704 		cur_offset = delalloc_end + 1;
2705 		extent_offset += cur_offset - delalloc_start;
2706 		cond_resched();
2707 	}
2708 
2709 	/*
2710 	 * Either we found no delalloc for the whole prealloc extent or we have
2711 	 * a prealloc extent that spans i_size or starts at or after i_size.
2712 	 */
2713 	if (disk_bytenr != 0 && last_delalloc_end < end) {
2714 		u64 prealloc_start;
2715 		u64 prealloc_len;
2716 
2717 		if (last_delalloc_end == 0) {
2718 			prealloc_start = start;
2719 			prealloc_len = end + 1 - start;
2720 		} else {
2721 			prealloc_start = last_delalloc_end + 1;
2722 			prealloc_len = end + 1 - prealloc_start;
2723 		}
2724 
2725 		if (!checked_extent_shared && fieinfo->fi_extents_max) {
2726 			ret = btrfs_is_data_extent_shared(inode,
2727 							  disk_bytenr,
2728 							  extent_gen,
2729 							  backref_ctx);
2730 			if (ret < 0)
2731 				return ret;
2732 			else if (ret > 0)
2733 				prealloc_flags |= FIEMAP_EXTENT_SHARED;
2734 		}
2735 		ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2736 					 disk_bytenr + extent_offset,
2737 					 prealloc_len, prealloc_flags);
2738 		if (ret)
2739 			return ret;
2740 	}
2741 
2742 	return 0;
2743 }
2744 
2745 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2746 					  struct btrfs_path *path,
2747 					  u64 *last_extent_end_ret)
2748 {
2749 	const u64 ino = btrfs_ino(inode);
2750 	struct btrfs_root *root = inode->root;
2751 	struct extent_buffer *leaf;
2752 	struct btrfs_file_extent_item *ei;
2753 	struct btrfs_key key;
2754 	u64 disk_bytenr;
2755 	int ret;
2756 
2757 	/*
2758 	 * Lookup the last file extent. We're not using i_size here because
2759 	 * there might be preallocation past i_size.
2760 	 */
2761 	ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
2762 	/* There can't be a file extent item at offset (u64)-1 */
2763 	ASSERT(ret != 0);
2764 	if (ret < 0)
2765 		return ret;
2766 
2767 	/*
2768 	 * For a non-existing key, btrfs_search_slot() always leaves us at a
2769 	 * slot > 0, except if the btree is empty, which is impossible because
2770 	 * at least it has the inode item for this inode and all the items for
2771 	 * the root inode 256.
2772 	 */
2773 	ASSERT(path->slots[0] > 0);
2774 	path->slots[0]--;
2775 	leaf = path->nodes[0];
2776 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2777 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
2778 		/* No file extent items in the subvolume tree. */
2779 		*last_extent_end_ret = 0;
2780 		return 0;
2781 	}
2782 
2783 	/*
2784 	 * For an inline extent, the disk_bytenr is where inline data starts at,
2785 	 * so first check if we have an inline extent item before checking if we
2786 	 * have an implicit hole (disk_bytenr == 0).
2787 	 */
2788 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2789 	if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
2790 		*last_extent_end_ret = btrfs_file_extent_end(path);
2791 		return 0;
2792 	}
2793 
2794 	/*
2795 	 * Find the last file extent item that is not a hole (when NO_HOLES is
2796 	 * not enabled). This should take at most 2 iterations in the worst
2797 	 * case: we have one hole file extent item at slot 0 of a leaf and
2798 	 * another hole file extent item as the last item in the previous leaf.
2799 	 * This is because we merge file extent items that represent holes.
2800 	 */
2801 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2802 	while (disk_bytenr == 0) {
2803 		ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
2804 		if (ret < 0) {
2805 			return ret;
2806 		} else if (ret > 0) {
2807 			/* No file extent items that are not holes. */
2808 			*last_extent_end_ret = 0;
2809 			return 0;
2810 		}
2811 		leaf = path->nodes[0];
2812 		ei = btrfs_item_ptr(leaf, path->slots[0],
2813 				    struct btrfs_file_extent_item);
2814 		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2815 	}
2816 
2817 	*last_extent_end_ret = btrfs_file_extent_end(path);
2818 	return 0;
2819 }
2820 
2821 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
2822 		  u64 start, u64 len)
2823 {
2824 	const u64 ino = btrfs_ino(inode);
2825 	struct extent_state *cached_state = NULL;
2826 	struct extent_state *delalloc_cached_state = NULL;
2827 	struct btrfs_path *path;
2828 	struct fiemap_cache cache = { 0 };
2829 	struct btrfs_backref_share_check_ctx *backref_ctx;
2830 	u64 last_extent_end;
2831 	u64 prev_extent_end;
2832 	u64 lockstart;
2833 	u64 lockend;
2834 	bool stopped = false;
2835 	int ret;
2836 
2837 	backref_ctx = btrfs_alloc_backref_share_check_ctx();
2838 	path = btrfs_alloc_path();
2839 	if (!backref_ctx || !path) {
2840 		ret = -ENOMEM;
2841 		goto out;
2842 	}
2843 
2844 	lockstart = round_down(start, inode->root->fs_info->sectorsize);
2845 	lockend = round_up(start + len, inode->root->fs_info->sectorsize);
2846 	prev_extent_end = lockstart;
2847 
2848 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
2849 	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
2850 
2851 	ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
2852 	if (ret < 0)
2853 		goto out_unlock;
2854 	btrfs_release_path(path);
2855 
2856 	path->reada = READA_FORWARD;
2857 	ret = fiemap_search_slot(inode, path, lockstart);
2858 	if (ret < 0) {
2859 		goto out_unlock;
2860 	} else if (ret > 0) {
2861 		/*
2862 		 * No file extent item found, but we may have delalloc between
2863 		 * the current offset and i_size. So check for that.
2864 		 */
2865 		ret = 0;
2866 		goto check_eof_delalloc;
2867 	}
2868 
2869 	while (prev_extent_end < lockend) {
2870 		struct extent_buffer *leaf = path->nodes[0];
2871 		struct btrfs_file_extent_item *ei;
2872 		struct btrfs_key key;
2873 		u64 extent_end;
2874 		u64 extent_len;
2875 		u64 extent_offset = 0;
2876 		u64 extent_gen;
2877 		u64 disk_bytenr = 0;
2878 		u64 flags = 0;
2879 		int extent_type;
2880 		u8 compression;
2881 
2882 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2883 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2884 			break;
2885 
2886 		extent_end = btrfs_file_extent_end(path);
2887 
2888 		/*
2889 		 * The first iteration can leave us at an extent item that ends
2890 		 * before our range's start. Move to the next item.
2891 		 */
2892 		if (extent_end <= lockstart)
2893 			goto next_item;
2894 
2895 		backref_ctx->curr_leaf_bytenr = leaf->start;
2896 
2897 		/* We have in implicit hole (NO_HOLES feature enabled). */
2898 		if (prev_extent_end < key.offset) {
2899 			const u64 range_end = min(key.offset, lockend) - 1;
2900 
2901 			ret = fiemap_process_hole(inode, fieinfo, &cache,
2902 						  &delalloc_cached_state,
2903 						  backref_ctx, 0, 0, 0,
2904 						  prev_extent_end, range_end);
2905 			if (ret < 0) {
2906 				goto out_unlock;
2907 			} else if (ret > 0) {
2908 				/* fiemap_fill_next_extent() told us to stop. */
2909 				stopped = true;
2910 				break;
2911 			}
2912 
2913 			/* We've reached the end of the fiemap range, stop. */
2914 			if (key.offset >= lockend) {
2915 				stopped = true;
2916 				break;
2917 			}
2918 		}
2919 
2920 		extent_len = extent_end - key.offset;
2921 		ei = btrfs_item_ptr(leaf, path->slots[0],
2922 				    struct btrfs_file_extent_item);
2923 		compression = btrfs_file_extent_compression(leaf, ei);
2924 		extent_type = btrfs_file_extent_type(leaf, ei);
2925 		extent_gen = btrfs_file_extent_generation(leaf, ei);
2926 
2927 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2928 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2929 			if (compression == BTRFS_COMPRESS_NONE)
2930 				extent_offset = btrfs_file_extent_offset(leaf, ei);
2931 		}
2932 
2933 		if (compression != BTRFS_COMPRESS_NONE)
2934 			flags |= FIEMAP_EXTENT_ENCODED;
2935 
2936 		if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2937 			flags |= FIEMAP_EXTENT_DATA_INLINE;
2938 			flags |= FIEMAP_EXTENT_NOT_ALIGNED;
2939 			ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
2940 						 extent_len, flags);
2941 		} else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
2942 			ret = fiemap_process_hole(inode, fieinfo, &cache,
2943 						  &delalloc_cached_state,
2944 						  backref_ctx,
2945 						  disk_bytenr, extent_offset,
2946 						  extent_gen, key.offset,
2947 						  extent_end - 1);
2948 		} else if (disk_bytenr == 0) {
2949 			/* We have an explicit hole. */
2950 			ret = fiemap_process_hole(inode, fieinfo, &cache,
2951 						  &delalloc_cached_state,
2952 						  backref_ctx, 0, 0, 0,
2953 						  key.offset, extent_end - 1);
2954 		} else {
2955 			/* We have a regular extent. */
2956 			if (fieinfo->fi_extents_max) {
2957 				ret = btrfs_is_data_extent_shared(inode,
2958 								  disk_bytenr,
2959 								  extent_gen,
2960 								  backref_ctx);
2961 				if (ret < 0)
2962 					goto out_unlock;
2963 				else if (ret > 0)
2964 					flags |= FIEMAP_EXTENT_SHARED;
2965 			}
2966 
2967 			ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
2968 						 disk_bytenr + extent_offset,
2969 						 extent_len, flags);
2970 		}
2971 
2972 		if (ret < 0) {
2973 			goto out_unlock;
2974 		} else if (ret > 0) {
2975 			/* fiemap_fill_next_extent() told us to stop. */
2976 			stopped = true;
2977 			break;
2978 		}
2979 
2980 		prev_extent_end = extent_end;
2981 next_item:
2982 		if (fatal_signal_pending(current)) {
2983 			ret = -EINTR;
2984 			goto out_unlock;
2985 		}
2986 
2987 		ret = fiemap_next_leaf_item(inode, path);
2988 		if (ret < 0) {
2989 			goto out_unlock;
2990 		} else if (ret > 0) {
2991 			/* No more file extent items for this inode. */
2992 			break;
2993 		}
2994 		cond_resched();
2995 	}
2996 
2997 check_eof_delalloc:
2998 	/*
2999 	 * Release (and free) the path before emitting any final entries to
3000 	 * fiemap_fill_next_extent() to keep lockdep happy. This is because
3001 	 * once we find no more file extent items exist, we may have a
3002 	 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
3003 	 * faults when copying data to the user space buffer.
3004 	 */
3005 	btrfs_free_path(path);
3006 	path = NULL;
3007 
3008 	if (!stopped && prev_extent_end < lockend) {
3009 		ret = fiemap_process_hole(inode, fieinfo, &cache,
3010 					  &delalloc_cached_state, backref_ctx,
3011 					  0, 0, 0, prev_extent_end, lockend - 1);
3012 		if (ret < 0)
3013 			goto out_unlock;
3014 		prev_extent_end = lockend;
3015 	}
3016 
3017 	if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3018 		const u64 i_size = i_size_read(&inode->vfs_inode);
3019 
3020 		if (prev_extent_end < i_size) {
3021 			u64 delalloc_start;
3022 			u64 delalloc_end;
3023 			bool delalloc;
3024 
3025 			delalloc = btrfs_find_delalloc_in_range(inode,
3026 								prev_extent_end,
3027 								i_size - 1,
3028 								&delalloc_cached_state,
3029 								&delalloc_start,
3030 								&delalloc_end);
3031 			if (!delalloc)
3032 				cache.flags |= FIEMAP_EXTENT_LAST;
3033 		} else {
3034 			cache.flags |= FIEMAP_EXTENT_LAST;
3035 		}
3036 	}
3037 
3038 	ret = emit_last_fiemap_cache(fieinfo, &cache);
3039 
3040 out_unlock:
3041 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3042 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3043 out:
3044 	free_extent_state(delalloc_cached_state);
3045 	btrfs_free_backref_share_ctx(backref_ctx);
3046 	btrfs_free_path(path);
3047 	return ret;
3048 }
3049 
3050 static void __free_extent_buffer(struct extent_buffer *eb)
3051 {
3052 	kmem_cache_free(extent_buffer_cache, eb);
3053 }
3054 
3055 static int extent_buffer_under_io(const struct extent_buffer *eb)
3056 {
3057 	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3058 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3059 }
3060 
3061 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
3062 {
3063 	struct btrfs_subpage *subpage;
3064 
3065 	lockdep_assert_held(&page->mapping->private_lock);
3066 
3067 	if (PagePrivate(page)) {
3068 		subpage = (struct btrfs_subpage *)page->private;
3069 		if (atomic_read(&subpage->eb_refs))
3070 			return true;
3071 		/*
3072 		 * Even there is no eb refs here, we may still have
3073 		 * end_page_read() call relying on page::private.
3074 		 */
3075 		if (atomic_read(&subpage->readers))
3076 			return true;
3077 	}
3078 	return false;
3079 }
3080 
3081 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
3082 {
3083 	struct btrfs_fs_info *fs_info = eb->fs_info;
3084 	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3085 
3086 	/*
3087 	 * For mapped eb, we're going to change the page private, which should
3088 	 * be done under the private_lock.
3089 	 */
3090 	if (mapped)
3091 		spin_lock(&page->mapping->private_lock);
3092 
3093 	if (!PagePrivate(page)) {
3094 		if (mapped)
3095 			spin_unlock(&page->mapping->private_lock);
3096 		return;
3097 	}
3098 
3099 	if (fs_info->nodesize >= PAGE_SIZE) {
3100 		/*
3101 		 * We do this since we'll remove the pages after we've
3102 		 * removed the eb from the radix tree, so we could race
3103 		 * and have this page now attached to the new eb.  So
3104 		 * only clear page_private if it's still connected to
3105 		 * this eb.
3106 		 */
3107 		if (PagePrivate(page) &&
3108 		    page->private == (unsigned long)eb) {
3109 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3110 			BUG_ON(PageDirty(page));
3111 			BUG_ON(PageWriteback(page));
3112 			/*
3113 			 * We need to make sure we haven't be attached
3114 			 * to a new eb.
3115 			 */
3116 			detach_page_private(page);
3117 		}
3118 		if (mapped)
3119 			spin_unlock(&page->mapping->private_lock);
3120 		return;
3121 	}
3122 
3123 	/*
3124 	 * For subpage, we can have dummy eb with page private.  In this case,
3125 	 * we can directly detach the private as such page is only attached to
3126 	 * one dummy eb, no sharing.
3127 	 */
3128 	if (!mapped) {
3129 		btrfs_detach_subpage(fs_info, page);
3130 		return;
3131 	}
3132 
3133 	btrfs_page_dec_eb_refs(fs_info, page);
3134 
3135 	/*
3136 	 * We can only detach the page private if there are no other ebs in the
3137 	 * page range and no unfinished IO.
3138 	 */
3139 	if (!page_range_has_eb(fs_info, page))
3140 		btrfs_detach_subpage(fs_info, page);
3141 
3142 	spin_unlock(&page->mapping->private_lock);
3143 }
3144 
3145 /* Release all pages attached to the extent buffer */
3146 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3147 {
3148 	int i;
3149 	int num_pages;
3150 
3151 	ASSERT(!extent_buffer_under_io(eb));
3152 
3153 	num_pages = num_extent_pages(eb);
3154 	for (i = 0; i < num_pages; i++) {
3155 		struct page *page = eb->pages[i];
3156 
3157 		if (!page)
3158 			continue;
3159 
3160 		detach_extent_buffer_page(eb, page);
3161 
3162 		/* One for when we allocated the page */
3163 		put_page(page);
3164 	}
3165 }
3166 
3167 /*
3168  * Helper for releasing the extent buffer.
3169  */
3170 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3171 {
3172 	btrfs_release_extent_buffer_pages(eb);
3173 	btrfs_leak_debug_del_eb(eb);
3174 	__free_extent_buffer(eb);
3175 }
3176 
3177 static struct extent_buffer *
3178 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3179 		      unsigned long len)
3180 {
3181 	struct extent_buffer *eb = NULL;
3182 
3183 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3184 	eb->start = start;
3185 	eb->len = len;
3186 	eb->fs_info = fs_info;
3187 	init_rwsem(&eb->lock);
3188 
3189 	btrfs_leak_debug_add_eb(eb);
3190 
3191 	spin_lock_init(&eb->refs_lock);
3192 	atomic_set(&eb->refs, 1);
3193 
3194 	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3195 
3196 	return eb;
3197 }
3198 
3199 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3200 {
3201 	int i;
3202 	struct extent_buffer *new;
3203 	int num_pages = num_extent_pages(src);
3204 	int ret;
3205 
3206 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3207 	if (new == NULL)
3208 		return NULL;
3209 
3210 	/*
3211 	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3212 	 * btrfs_release_extent_buffer() have different behavior for
3213 	 * UNMAPPED subpage extent buffer.
3214 	 */
3215 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3216 
3217 	ret = btrfs_alloc_page_array(num_pages, new->pages);
3218 	if (ret) {
3219 		btrfs_release_extent_buffer(new);
3220 		return NULL;
3221 	}
3222 
3223 	for (i = 0; i < num_pages; i++) {
3224 		int ret;
3225 		struct page *p = new->pages[i];
3226 
3227 		ret = attach_extent_buffer_page(new, p, NULL);
3228 		if (ret < 0) {
3229 			btrfs_release_extent_buffer(new);
3230 			return NULL;
3231 		}
3232 		WARN_ON(PageDirty(p));
3233 	}
3234 	copy_extent_buffer_full(new, src);
3235 	set_extent_buffer_uptodate(new);
3236 
3237 	return new;
3238 }
3239 
3240 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3241 						  u64 start, unsigned long len)
3242 {
3243 	struct extent_buffer *eb;
3244 	int num_pages;
3245 	int i;
3246 	int ret;
3247 
3248 	eb = __alloc_extent_buffer(fs_info, start, len);
3249 	if (!eb)
3250 		return NULL;
3251 
3252 	num_pages = num_extent_pages(eb);
3253 	ret = btrfs_alloc_page_array(num_pages, eb->pages);
3254 	if (ret)
3255 		goto err;
3256 
3257 	for (i = 0; i < num_pages; i++) {
3258 		struct page *p = eb->pages[i];
3259 
3260 		ret = attach_extent_buffer_page(eb, p, NULL);
3261 		if (ret < 0)
3262 			goto err;
3263 	}
3264 
3265 	set_extent_buffer_uptodate(eb);
3266 	btrfs_set_header_nritems(eb, 0);
3267 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3268 
3269 	return eb;
3270 err:
3271 	for (i = 0; i < num_pages; i++) {
3272 		if (eb->pages[i]) {
3273 			detach_extent_buffer_page(eb, eb->pages[i]);
3274 			__free_page(eb->pages[i]);
3275 		}
3276 	}
3277 	__free_extent_buffer(eb);
3278 	return NULL;
3279 }
3280 
3281 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3282 						u64 start)
3283 {
3284 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3285 }
3286 
3287 static void check_buffer_tree_ref(struct extent_buffer *eb)
3288 {
3289 	int refs;
3290 	/*
3291 	 * The TREE_REF bit is first set when the extent_buffer is added
3292 	 * to the radix tree. It is also reset, if unset, when a new reference
3293 	 * is created by find_extent_buffer.
3294 	 *
3295 	 * It is only cleared in two cases: freeing the last non-tree
3296 	 * reference to the extent_buffer when its STALE bit is set or
3297 	 * calling release_folio when the tree reference is the only reference.
3298 	 *
3299 	 * In both cases, care is taken to ensure that the extent_buffer's
3300 	 * pages are not under io. However, release_folio can be concurrently
3301 	 * called with creating new references, which is prone to race
3302 	 * conditions between the calls to check_buffer_tree_ref in those
3303 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3304 	 *
3305 	 * The actual lifetime of the extent_buffer in the radix tree is
3306 	 * adequately protected by the refcount, but the TREE_REF bit and
3307 	 * its corresponding reference are not. To protect against this
3308 	 * class of races, we call check_buffer_tree_ref from the codepaths
3309 	 * which trigger io. Note that once io is initiated, TREE_REF can no
3310 	 * longer be cleared, so that is the moment at which any such race is
3311 	 * best fixed.
3312 	 */
3313 	refs = atomic_read(&eb->refs);
3314 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3315 		return;
3316 
3317 	spin_lock(&eb->refs_lock);
3318 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3319 		atomic_inc(&eb->refs);
3320 	spin_unlock(&eb->refs_lock);
3321 }
3322 
3323 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
3324 		struct page *accessed)
3325 {
3326 	int num_pages, i;
3327 
3328 	check_buffer_tree_ref(eb);
3329 
3330 	num_pages = num_extent_pages(eb);
3331 	for (i = 0; i < num_pages; i++) {
3332 		struct page *p = eb->pages[i];
3333 
3334 		if (p != accessed)
3335 			mark_page_accessed(p);
3336 	}
3337 }
3338 
3339 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3340 					 u64 start)
3341 {
3342 	struct extent_buffer *eb;
3343 
3344 	eb = find_extent_buffer_nolock(fs_info, start);
3345 	if (!eb)
3346 		return NULL;
3347 	/*
3348 	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3349 	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3350 	 * another task running free_extent_buffer() might have seen that flag
3351 	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3352 	 * writeback flags not set) and it's still in the tree (flag
3353 	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3354 	 * decrementing the extent buffer's reference count twice.  So here we
3355 	 * could race and increment the eb's reference count, clear its stale
3356 	 * flag, mark it as dirty and drop our reference before the other task
3357 	 * finishes executing free_extent_buffer, which would later result in
3358 	 * an attempt to free an extent buffer that is dirty.
3359 	 */
3360 	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3361 		spin_lock(&eb->refs_lock);
3362 		spin_unlock(&eb->refs_lock);
3363 	}
3364 	mark_extent_buffer_accessed(eb, NULL);
3365 	return eb;
3366 }
3367 
3368 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3369 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3370 					u64 start)
3371 {
3372 	struct extent_buffer *eb, *exists = NULL;
3373 	int ret;
3374 
3375 	eb = find_extent_buffer(fs_info, start);
3376 	if (eb)
3377 		return eb;
3378 	eb = alloc_dummy_extent_buffer(fs_info, start);
3379 	if (!eb)
3380 		return ERR_PTR(-ENOMEM);
3381 	eb->fs_info = fs_info;
3382 again:
3383 	ret = radix_tree_preload(GFP_NOFS);
3384 	if (ret) {
3385 		exists = ERR_PTR(ret);
3386 		goto free_eb;
3387 	}
3388 	spin_lock(&fs_info->buffer_lock);
3389 	ret = radix_tree_insert(&fs_info->buffer_radix,
3390 				start >> fs_info->sectorsize_bits, eb);
3391 	spin_unlock(&fs_info->buffer_lock);
3392 	radix_tree_preload_end();
3393 	if (ret == -EEXIST) {
3394 		exists = find_extent_buffer(fs_info, start);
3395 		if (exists)
3396 			goto free_eb;
3397 		else
3398 			goto again;
3399 	}
3400 	check_buffer_tree_ref(eb);
3401 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3402 
3403 	return eb;
3404 free_eb:
3405 	btrfs_release_extent_buffer(eb);
3406 	return exists;
3407 }
3408 #endif
3409 
3410 static struct extent_buffer *grab_extent_buffer(
3411 		struct btrfs_fs_info *fs_info, struct page *page)
3412 {
3413 	struct extent_buffer *exists;
3414 
3415 	/*
3416 	 * For subpage case, we completely rely on radix tree to ensure we
3417 	 * don't try to insert two ebs for the same bytenr.  So here we always
3418 	 * return NULL and just continue.
3419 	 */
3420 	if (fs_info->nodesize < PAGE_SIZE)
3421 		return NULL;
3422 
3423 	/* Page not yet attached to an extent buffer */
3424 	if (!PagePrivate(page))
3425 		return NULL;
3426 
3427 	/*
3428 	 * We could have already allocated an eb for this page and attached one
3429 	 * so lets see if we can get a ref on the existing eb, and if we can we
3430 	 * know it's good and we can just return that one, else we know we can
3431 	 * just overwrite page->private.
3432 	 */
3433 	exists = (struct extent_buffer *)page->private;
3434 	if (atomic_inc_not_zero(&exists->refs))
3435 		return exists;
3436 
3437 	WARN_ON(PageDirty(page));
3438 	detach_page_private(page);
3439 	return NULL;
3440 }
3441 
3442 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3443 {
3444 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3445 		btrfs_err(fs_info, "bad tree block start %llu", start);
3446 		return -EINVAL;
3447 	}
3448 
3449 	if (fs_info->nodesize < PAGE_SIZE &&
3450 	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3451 		btrfs_err(fs_info,
3452 		"tree block crosses page boundary, start %llu nodesize %u",
3453 			  start, fs_info->nodesize);
3454 		return -EINVAL;
3455 	}
3456 	if (fs_info->nodesize >= PAGE_SIZE &&
3457 	    !PAGE_ALIGNED(start)) {
3458 		btrfs_err(fs_info,
3459 		"tree block is not page aligned, start %llu nodesize %u",
3460 			  start, fs_info->nodesize);
3461 		return -EINVAL;
3462 	}
3463 	if (!IS_ALIGNED(start, fs_info->nodesize) &&
3464 	    !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
3465 		btrfs_warn(fs_info,
3466 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3467 			      start, fs_info->nodesize);
3468 	}
3469 	return 0;
3470 }
3471 
3472 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3473 					  u64 start, u64 owner_root, int level)
3474 {
3475 	unsigned long len = fs_info->nodesize;
3476 	int num_pages;
3477 	int i;
3478 	unsigned long index = start >> PAGE_SHIFT;
3479 	struct extent_buffer *eb;
3480 	struct extent_buffer *exists = NULL;
3481 	struct page *p;
3482 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3483 	struct btrfs_subpage *prealloc = NULL;
3484 	u64 lockdep_owner = owner_root;
3485 	int uptodate = 1;
3486 	int ret;
3487 
3488 	if (check_eb_alignment(fs_info, start))
3489 		return ERR_PTR(-EINVAL);
3490 
3491 #if BITS_PER_LONG == 32
3492 	if (start >= MAX_LFS_FILESIZE) {
3493 		btrfs_err_rl(fs_info,
3494 		"extent buffer %llu is beyond 32bit page cache limit", start);
3495 		btrfs_err_32bit_limit(fs_info);
3496 		return ERR_PTR(-EOVERFLOW);
3497 	}
3498 	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3499 		btrfs_warn_32bit_limit(fs_info);
3500 #endif
3501 
3502 	eb = find_extent_buffer(fs_info, start);
3503 	if (eb)
3504 		return eb;
3505 
3506 	eb = __alloc_extent_buffer(fs_info, start, len);
3507 	if (!eb)
3508 		return ERR_PTR(-ENOMEM);
3509 
3510 	/*
3511 	 * The reloc trees are just snapshots, so we need them to appear to be
3512 	 * just like any other fs tree WRT lockdep.
3513 	 */
3514 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3515 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3516 
3517 	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3518 
3519 	num_pages = num_extent_pages(eb);
3520 
3521 	/*
3522 	 * Preallocate page->private for subpage case, so that we won't
3523 	 * allocate memory with private_lock nor page lock hold.
3524 	 *
3525 	 * The memory will be freed by attach_extent_buffer_page() or freed
3526 	 * manually if we exit earlier.
3527 	 */
3528 	if (fs_info->nodesize < PAGE_SIZE) {
3529 		prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3530 		if (IS_ERR(prealloc)) {
3531 			exists = ERR_CAST(prealloc);
3532 			goto free_eb;
3533 		}
3534 	}
3535 
3536 	for (i = 0; i < num_pages; i++, index++) {
3537 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
3538 		if (!p) {
3539 			exists = ERR_PTR(-ENOMEM);
3540 			btrfs_free_subpage(prealloc);
3541 			goto free_eb;
3542 		}
3543 
3544 		spin_lock(&mapping->private_lock);
3545 		exists = grab_extent_buffer(fs_info, p);
3546 		if (exists) {
3547 			spin_unlock(&mapping->private_lock);
3548 			unlock_page(p);
3549 			put_page(p);
3550 			mark_extent_buffer_accessed(exists, p);
3551 			btrfs_free_subpage(prealloc);
3552 			goto free_eb;
3553 		}
3554 		/* Should not fail, as we have preallocated the memory */
3555 		ret = attach_extent_buffer_page(eb, p, prealloc);
3556 		ASSERT(!ret);
3557 		/*
3558 		 * To inform we have extra eb under allocation, so that
3559 		 * detach_extent_buffer_page() won't release the page private
3560 		 * when the eb hasn't yet been inserted into radix tree.
3561 		 *
3562 		 * The ref will be decreased when the eb released the page, in
3563 		 * detach_extent_buffer_page().
3564 		 * Thus needs no special handling in error path.
3565 		 */
3566 		btrfs_page_inc_eb_refs(fs_info, p);
3567 		spin_unlock(&mapping->private_lock);
3568 
3569 		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
3570 		eb->pages[i] = p;
3571 		if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len))
3572 			uptodate = 0;
3573 
3574 		/*
3575 		 * We can't unlock the pages just yet since the extent buffer
3576 		 * hasn't been properly inserted in the radix tree, this
3577 		 * opens a race with btree_release_folio which can free a page
3578 		 * while we are still filling in all pages for the buffer and
3579 		 * we could crash.
3580 		 */
3581 	}
3582 	if (uptodate)
3583 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3584 again:
3585 	ret = radix_tree_preload(GFP_NOFS);
3586 	if (ret) {
3587 		exists = ERR_PTR(ret);
3588 		goto free_eb;
3589 	}
3590 
3591 	spin_lock(&fs_info->buffer_lock);
3592 	ret = radix_tree_insert(&fs_info->buffer_radix,
3593 				start >> fs_info->sectorsize_bits, eb);
3594 	spin_unlock(&fs_info->buffer_lock);
3595 	radix_tree_preload_end();
3596 	if (ret == -EEXIST) {
3597 		exists = find_extent_buffer(fs_info, start);
3598 		if (exists)
3599 			goto free_eb;
3600 		else
3601 			goto again;
3602 	}
3603 	/* add one reference for the tree */
3604 	check_buffer_tree_ref(eb);
3605 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3606 
3607 	/*
3608 	 * Now it's safe to unlock the pages because any calls to
3609 	 * btree_release_folio will correctly detect that a page belongs to a
3610 	 * live buffer and won't free them prematurely.
3611 	 */
3612 	for (i = 0; i < num_pages; i++)
3613 		unlock_page(eb->pages[i]);
3614 	return eb;
3615 
3616 free_eb:
3617 	WARN_ON(!atomic_dec_and_test(&eb->refs));
3618 	for (i = 0; i < num_pages; i++) {
3619 		if (eb->pages[i])
3620 			unlock_page(eb->pages[i]);
3621 	}
3622 
3623 	btrfs_release_extent_buffer(eb);
3624 	return exists;
3625 }
3626 
3627 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3628 {
3629 	struct extent_buffer *eb =
3630 			container_of(head, struct extent_buffer, rcu_head);
3631 
3632 	__free_extent_buffer(eb);
3633 }
3634 
3635 static int release_extent_buffer(struct extent_buffer *eb)
3636 	__releases(&eb->refs_lock)
3637 {
3638 	lockdep_assert_held(&eb->refs_lock);
3639 
3640 	WARN_ON(atomic_read(&eb->refs) == 0);
3641 	if (atomic_dec_and_test(&eb->refs)) {
3642 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3643 			struct btrfs_fs_info *fs_info = eb->fs_info;
3644 
3645 			spin_unlock(&eb->refs_lock);
3646 
3647 			spin_lock(&fs_info->buffer_lock);
3648 			radix_tree_delete(&fs_info->buffer_radix,
3649 					  eb->start >> fs_info->sectorsize_bits);
3650 			spin_unlock(&fs_info->buffer_lock);
3651 		} else {
3652 			spin_unlock(&eb->refs_lock);
3653 		}
3654 
3655 		btrfs_leak_debug_del_eb(eb);
3656 		/* Should be safe to release our pages at this point */
3657 		btrfs_release_extent_buffer_pages(eb);
3658 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3659 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3660 			__free_extent_buffer(eb);
3661 			return 1;
3662 		}
3663 #endif
3664 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3665 		return 1;
3666 	}
3667 	spin_unlock(&eb->refs_lock);
3668 
3669 	return 0;
3670 }
3671 
3672 void free_extent_buffer(struct extent_buffer *eb)
3673 {
3674 	int refs;
3675 	if (!eb)
3676 		return;
3677 
3678 	refs = atomic_read(&eb->refs);
3679 	while (1) {
3680 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3681 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3682 			refs == 1))
3683 			break;
3684 		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3685 			return;
3686 	}
3687 
3688 	spin_lock(&eb->refs_lock);
3689 	if (atomic_read(&eb->refs) == 2 &&
3690 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3691 	    !extent_buffer_under_io(eb) &&
3692 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3693 		atomic_dec(&eb->refs);
3694 
3695 	/*
3696 	 * I know this is terrible, but it's temporary until we stop tracking
3697 	 * the uptodate bits and such for the extent buffers.
3698 	 */
3699 	release_extent_buffer(eb);
3700 }
3701 
3702 void free_extent_buffer_stale(struct extent_buffer *eb)
3703 {
3704 	if (!eb)
3705 		return;
3706 
3707 	spin_lock(&eb->refs_lock);
3708 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3709 
3710 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3711 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3712 		atomic_dec(&eb->refs);
3713 	release_extent_buffer(eb);
3714 }
3715 
3716 static void btree_clear_page_dirty(struct page *page)
3717 {
3718 	ASSERT(PageDirty(page));
3719 	ASSERT(PageLocked(page));
3720 	clear_page_dirty_for_io(page);
3721 	xa_lock_irq(&page->mapping->i_pages);
3722 	if (!PageDirty(page))
3723 		__xa_clear_mark(&page->mapping->i_pages,
3724 				page_index(page), PAGECACHE_TAG_DIRTY);
3725 	xa_unlock_irq(&page->mapping->i_pages);
3726 }
3727 
3728 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3729 {
3730 	struct btrfs_fs_info *fs_info = eb->fs_info;
3731 	struct page *page = eb->pages[0];
3732 	bool last;
3733 
3734 	/* btree_clear_page_dirty() needs page locked */
3735 	lock_page(page);
3736 	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
3737 						  eb->len);
3738 	if (last)
3739 		btree_clear_page_dirty(page);
3740 	unlock_page(page);
3741 	WARN_ON(atomic_read(&eb->refs) == 0);
3742 }
3743 
3744 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3745 			      struct extent_buffer *eb)
3746 {
3747 	struct btrfs_fs_info *fs_info = eb->fs_info;
3748 	int i;
3749 	int num_pages;
3750 	struct page *page;
3751 
3752 	btrfs_assert_tree_write_locked(eb);
3753 
3754 	if (trans && btrfs_header_generation(eb) != trans->transid)
3755 		return;
3756 
3757 	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3758 		return;
3759 
3760 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3761 				 fs_info->dirty_metadata_batch);
3762 
3763 	if (eb->fs_info->nodesize < PAGE_SIZE)
3764 		return clear_subpage_extent_buffer_dirty(eb);
3765 
3766 	num_pages = num_extent_pages(eb);
3767 
3768 	for (i = 0; i < num_pages; i++) {
3769 		page = eb->pages[i];
3770 		if (!PageDirty(page))
3771 			continue;
3772 		lock_page(page);
3773 		btree_clear_page_dirty(page);
3774 		unlock_page(page);
3775 	}
3776 	WARN_ON(atomic_read(&eb->refs) == 0);
3777 }
3778 
3779 void set_extent_buffer_dirty(struct extent_buffer *eb)
3780 {
3781 	int i;
3782 	int num_pages;
3783 	bool was_dirty;
3784 
3785 	check_buffer_tree_ref(eb);
3786 
3787 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3788 
3789 	num_pages = num_extent_pages(eb);
3790 	WARN_ON(atomic_read(&eb->refs) == 0);
3791 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3792 
3793 	if (!was_dirty) {
3794 		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
3795 
3796 		/*
3797 		 * For subpage case, we can have other extent buffers in the
3798 		 * same page, and in clear_subpage_extent_buffer_dirty() we
3799 		 * have to clear page dirty without subpage lock held.
3800 		 * This can cause race where our page gets dirty cleared after
3801 		 * we just set it.
3802 		 *
3803 		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
3804 		 * its page for other reasons, we can use page lock to prevent
3805 		 * the above race.
3806 		 */
3807 		if (subpage)
3808 			lock_page(eb->pages[0]);
3809 		for (i = 0; i < num_pages; i++)
3810 			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
3811 					     eb->start, eb->len);
3812 		if (subpage)
3813 			unlock_page(eb->pages[0]);
3814 		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3815 					 eb->len,
3816 					 eb->fs_info->dirty_metadata_batch);
3817 	}
3818 #ifdef CONFIG_BTRFS_DEBUG
3819 	for (i = 0; i < num_pages; i++)
3820 		ASSERT(PageDirty(eb->pages[i]));
3821 #endif
3822 }
3823 
3824 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3825 {
3826 	struct btrfs_fs_info *fs_info = eb->fs_info;
3827 	struct page *page;
3828 	int num_pages;
3829 	int i;
3830 
3831 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3832 	num_pages = num_extent_pages(eb);
3833 	for (i = 0; i < num_pages; i++) {
3834 		page = eb->pages[i];
3835 		if (!page)
3836 			continue;
3837 
3838 		/*
3839 		 * This is special handling for metadata subpage, as regular
3840 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3841 		 */
3842 		if (fs_info->nodesize >= PAGE_SIZE)
3843 			ClearPageUptodate(page);
3844 		else
3845 			btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
3846 						     eb->len);
3847 	}
3848 }
3849 
3850 void set_extent_buffer_uptodate(struct extent_buffer *eb)
3851 {
3852 	struct btrfs_fs_info *fs_info = eb->fs_info;
3853 	struct page *page;
3854 	int num_pages;
3855 	int i;
3856 
3857 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3858 	num_pages = num_extent_pages(eb);
3859 	for (i = 0; i < num_pages; i++) {
3860 		page = eb->pages[i];
3861 
3862 		/*
3863 		 * This is special handling for metadata subpage, as regular
3864 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3865 		 */
3866 		if (fs_info->nodesize >= PAGE_SIZE)
3867 			SetPageUptodate(page);
3868 		else
3869 			btrfs_subpage_set_uptodate(fs_info, page, eb->start,
3870 						   eb->len);
3871 	}
3872 }
3873 
3874 static void extent_buffer_read_end_io(struct btrfs_bio *bbio)
3875 {
3876 	struct extent_buffer *eb = bbio->private;
3877 	struct btrfs_fs_info *fs_info = eb->fs_info;
3878 	bool uptodate = !bbio->bio.bi_status;
3879 	struct bvec_iter_all iter_all;
3880 	struct bio_vec *bvec;
3881 	u32 bio_offset = 0;
3882 
3883 	eb->read_mirror = bbio->mirror_num;
3884 
3885 	if (uptodate &&
3886 	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3887 		uptodate = false;
3888 
3889 	if (uptodate) {
3890 		set_extent_buffer_uptodate(eb);
3891 	} else {
3892 		clear_extent_buffer_uptodate(eb);
3893 		set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3894 	}
3895 
3896 	bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
3897 		u64 start = eb->start + bio_offset;
3898 		struct page *page = bvec->bv_page;
3899 		u32 len = bvec->bv_len;
3900 
3901 		if (uptodate)
3902 			btrfs_page_set_uptodate(fs_info, page, start, len);
3903 		else
3904 			btrfs_page_clear_uptodate(fs_info, page, start, len);
3905 
3906 		bio_offset += len;
3907 	}
3908 
3909 	clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3910 	smp_mb__after_atomic();
3911 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
3912 	free_extent_buffer(eb);
3913 
3914 	bio_put(&bbio->bio);
3915 }
3916 
3917 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
3918 			     struct btrfs_tree_parent_check *check)
3919 {
3920 	int num_pages = num_extent_pages(eb), i;
3921 	struct btrfs_bio *bbio;
3922 
3923 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3924 		return 0;
3925 
3926 	/*
3927 	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3928 	 * operation, which could potentially still be in flight.  In this case
3929 	 * we simply want to return an error.
3930 	 */
3931 	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3932 		return -EIO;
3933 
3934 	/* Someone else is already reading the buffer, just wait for it. */
3935 	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3936 		goto done;
3937 
3938 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3939 	eb->read_mirror = 0;
3940 	check_buffer_tree_ref(eb);
3941 	atomic_inc(&eb->refs);
3942 
3943 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3944 			       REQ_OP_READ | REQ_META, eb->fs_info,
3945 			       extent_buffer_read_end_io, eb);
3946 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3947 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3948 	bbio->file_offset = eb->start;
3949 	memcpy(&bbio->parent_check, check, sizeof(*check));
3950 	if (eb->fs_info->nodesize < PAGE_SIZE) {
3951 		__bio_add_page(&bbio->bio, eb->pages[0], eb->len,
3952 			       eb->start - page_offset(eb->pages[0]));
3953 	} else {
3954 		for (i = 0; i < num_pages; i++)
3955 			__bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0);
3956 	}
3957 	btrfs_submit_bio(bbio, mirror_num);
3958 
3959 done:
3960 	if (wait == WAIT_COMPLETE) {
3961 		wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3962 		if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3963 			return -EIO;
3964 	}
3965 
3966 	return 0;
3967 }
3968 
3969 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3970 			    unsigned long len)
3971 {
3972 	btrfs_warn(eb->fs_info,
3973 		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
3974 		eb->start, eb->len, start, len);
3975 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
3976 
3977 	return true;
3978 }
3979 
3980 /*
3981  * Check if the [start, start + len) range is valid before reading/writing
3982  * the eb.
3983  * NOTE: @start and @len are offset inside the eb, not logical address.
3984  *
3985  * Caller should not touch the dst/src memory if this function returns error.
3986  */
3987 static inline int check_eb_range(const struct extent_buffer *eb,
3988 				 unsigned long start, unsigned long len)
3989 {
3990 	unsigned long offset;
3991 
3992 	/* start, start + len should not go beyond eb->len nor overflow */
3993 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3994 		return report_eb_range(eb, start, len);
3995 
3996 	return false;
3997 }
3998 
3999 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
4000 			unsigned long start, unsigned long len)
4001 {
4002 	size_t cur;
4003 	size_t offset;
4004 	struct page *page;
4005 	char *kaddr;
4006 	char *dst = (char *)dstv;
4007 	unsigned long i = get_eb_page_index(start);
4008 
4009 	if (check_eb_range(eb, start, len)) {
4010 		/*
4011 		 * Invalid range hit, reset the memory, so callers won't get
4012 		 * some random garbage for their uninitialzed memory.
4013 		 */
4014 		memset(dstv, 0, len);
4015 		return;
4016 	}
4017 
4018 	offset = get_eb_offset_in_page(eb, start);
4019 
4020 	while (len > 0) {
4021 		page = eb->pages[i];
4022 
4023 		cur = min(len, (PAGE_SIZE - offset));
4024 		kaddr = page_address(page);
4025 		memcpy(dst, kaddr + offset, cur);
4026 
4027 		dst += cur;
4028 		len -= cur;
4029 		offset = 0;
4030 		i++;
4031 	}
4032 }
4033 
4034 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4035 				       void __user *dstv,
4036 				       unsigned long start, unsigned long len)
4037 {
4038 	size_t cur;
4039 	size_t offset;
4040 	struct page *page;
4041 	char *kaddr;
4042 	char __user *dst = (char __user *)dstv;
4043 	unsigned long i = get_eb_page_index(start);
4044 	int ret = 0;
4045 
4046 	WARN_ON(start > eb->len);
4047 	WARN_ON(start + len > eb->start + eb->len);
4048 
4049 	offset = get_eb_offset_in_page(eb, start);
4050 
4051 	while (len > 0) {
4052 		page = eb->pages[i];
4053 
4054 		cur = min(len, (PAGE_SIZE - offset));
4055 		kaddr = page_address(page);
4056 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4057 			ret = -EFAULT;
4058 			break;
4059 		}
4060 
4061 		dst += cur;
4062 		len -= cur;
4063 		offset = 0;
4064 		i++;
4065 	}
4066 
4067 	return ret;
4068 }
4069 
4070 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4071 			 unsigned long start, unsigned long len)
4072 {
4073 	size_t cur;
4074 	size_t offset;
4075 	struct page *page;
4076 	char *kaddr;
4077 	char *ptr = (char *)ptrv;
4078 	unsigned long i = get_eb_page_index(start);
4079 	int ret = 0;
4080 
4081 	if (check_eb_range(eb, start, len))
4082 		return -EINVAL;
4083 
4084 	offset = get_eb_offset_in_page(eb, start);
4085 
4086 	while (len > 0) {
4087 		page = eb->pages[i];
4088 
4089 		cur = min(len, (PAGE_SIZE - offset));
4090 
4091 		kaddr = page_address(page);
4092 		ret = memcmp(ptr, kaddr + offset, cur);
4093 		if (ret)
4094 			break;
4095 
4096 		ptr += cur;
4097 		len -= cur;
4098 		offset = 0;
4099 		i++;
4100 	}
4101 	return ret;
4102 }
4103 
4104 /*
4105  * Check that the extent buffer is uptodate.
4106  *
4107  * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4108  * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4109  */
4110 static void assert_eb_page_uptodate(const struct extent_buffer *eb,
4111 				    struct page *page)
4112 {
4113 	struct btrfs_fs_info *fs_info = eb->fs_info;
4114 
4115 	/*
4116 	 * If we are using the commit root we could potentially clear a page
4117 	 * Uptodate while we're using the extent buffer that we've previously
4118 	 * looked up.  We don't want to complain in this case, as the page was
4119 	 * valid before, we just didn't write it out.  Instead we want to catch
4120 	 * the case where we didn't actually read the block properly, which
4121 	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4122 	 */
4123 	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4124 		return;
4125 
4126 	if (fs_info->nodesize < PAGE_SIZE) {
4127 		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page,
4128 							 eb->start, eb->len)))
4129 			btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len);
4130 	} else {
4131 		WARN_ON(!PageUptodate(page));
4132 	}
4133 }
4134 
4135 static void __write_extent_buffer(const struct extent_buffer *eb,
4136 				  const void *srcv, unsigned long start,
4137 				  unsigned long len, bool use_memmove)
4138 {
4139 	size_t cur;
4140 	size_t offset;
4141 	struct page *page;
4142 	char *kaddr;
4143 	char *src = (char *)srcv;
4144 	unsigned long i = get_eb_page_index(start);
4145 	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
4146 	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4147 
4148 	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
4149 
4150 	if (check_eb_range(eb, start, len))
4151 		return;
4152 
4153 	offset = get_eb_offset_in_page(eb, start);
4154 
4155 	while (len > 0) {
4156 		page = eb->pages[i];
4157 		if (check_uptodate)
4158 			assert_eb_page_uptodate(eb, page);
4159 
4160 		cur = min(len, PAGE_SIZE - offset);
4161 		kaddr = page_address(page);
4162 		if (use_memmove)
4163 			memmove(kaddr + offset, src, cur);
4164 		else
4165 			memcpy(kaddr + offset, src, cur);
4166 
4167 		src += cur;
4168 		len -= cur;
4169 		offset = 0;
4170 		i++;
4171 	}
4172 }
4173 
4174 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4175 			 unsigned long start, unsigned long len)
4176 {
4177 	return __write_extent_buffer(eb, srcv, start, len, false);
4178 }
4179 
4180 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4181 				 unsigned long start, unsigned long len)
4182 {
4183 	unsigned long cur = start;
4184 
4185 	while (cur < start + len) {
4186 		unsigned long index = get_eb_page_index(cur);
4187 		unsigned int offset = get_eb_offset_in_page(eb, cur);
4188 		unsigned int cur_len = min(start + len - cur, PAGE_SIZE - offset);
4189 		struct page *page = eb->pages[index];
4190 
4191 		assert_eb_page_uptodate(eb, page);
4192 		memset(page_address(page) + offset, c, cur_len);
4193 
4194 		cur += cur_len;
4195 	}
4196 }
4197 
4198 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4199 			   unsigned long len)
4200 {
4201 	if (check_eb_range(eb, start, len))
4202 		return;
4203 	return memset_extent_buffer(eb, 0, start, len);
4204 }
4205 
4206 void copy_extent_buffer_full(const struct extent_buffer *dst,
4207 			     const struct extent_buffer *src)
4208 {
4209 	unsigned long cur = 0;
4210 
4211 	ASSERT(dst->len == src->len);
4212 
4213 	while (cur < src->len) {
4214 		unsigned long index = get_eb_page_index(cur);
4215 		unsigned long offset = get_eb_offset_in_page(src, cur);
4216 		unsigned long cur_len = min(src->len, PAGE_SIZE - offset);
4217 		void *addr = page_address(src->pages[index]) + offset;
4218 
4219 		write_extent_buffer(dst, addr, cur, cur_len);
4220 
4221 		cur += cur_len;
4222 	}
4223 }
4224 
4225 void copy_extent_buffer(const struct extent_buffer *dst,
4226 			const struct extent_buffer *src,
4227 			unsigned long dst_offset, unsigned long src_offset,
4228 			unsigned long len)
4229 {
4230 	u64 dst_len = dst->len;
4231 	size_t cur;
4232 	size_t offset;
4233 	struct page *page;
4234 	char *kaddr;
4235 	unsigned long i = get_eb_page_index(dst_offset);
4236 
4237 	if (check_eb_range(dst, dst_offset, len) ||
4238 	    check_eb_range(src, src_offset, len))
4239 		return;
4240 
4241 	WARN_ON(src->len != dst_len);
4242 
4243 	offset = get_eb_offset_in_page(dst, dst_offset);
4244 
4245 	while (len > 0) {
4246 		page = dst->pages[i];
4247 		assert_eb_page_uptodate(dst, page);
4248 
4249 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
4250 
4251 		kaddr = page_address(page);
4252 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4253 
4254 		src_offset += cur;
4255 		len -= cur;
4256 		offset = 0;
4257 		i++;
4258 	}
4259 }
4260 
4261 /*
4262  * Calculate the page and offset of the byte containing the given bit number.
4263  *
4264  * @eb:           the extent buffer
4265  * @start:        offset of the bitmap item in the extent buffer
4266  * @nr:           bit number
4267  * @page_index:   return index of the page in the extent buffer that contains
4268  *                the given bit number
4269  * @page_offset:  return offset into the page given by page_index
4270  *
4271  * This helper hides the ugliness of finding the byte in an extent buffer which
4272  * contains a given bit.
4273  */
4274 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4275 				    unsigned long start, unsigned long nr,
4276 				    unsigned long *page_index,
4277 				    size_t *page_offset)
4278 {
4279 	size_t byte_offset = BIT_BYTE(nr);
4280 	size_t offset;
4281 
4282 	/*
4283 	 * The byte we want is the offset of the extent buffer + the offset of
4284 	 * the bitmap item in the extent buffer + the offset of the byte in the
4285 	 * bitmap item.
4286 	 */
4287 	offset = start + offset_in_page(eb->start) + byte_offset;
4288 
4289 	*page_index = offset >> PAGE_SHIFT;
4290 	*page_offset = offset_in_page(offset);
4291 }
4292 
4293 /*
4294  * Determine whether a bit in a bitmap item is set.
4295  *
4296  * @eb:     the extent buffer
4297  * @start:  offset of the bitmap item in the extent buffer
4298  * @nr:     bit number to test
4299  */
4300 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4301 			   unsigned long nr)
4302 {
4303 	u8 *kaddr;
4304 	struct page *page;
4305 	unsigned long i;
4306 	size_t offset;
4307 
4308 	eb_bitmap_offset(eb, start, nr, &i, &offset);
4309 	page = eb->pages[i];
4310 	assert_eb_page_uptodate(eb, page);
4311 	kaddr = page_address(page);
4312 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4313 }
4314 
4315 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4316 {
4317 	unsigned long index = get_eb_page_index(bytenr);
4318 
4319 	if (check_eb_range(eb, bytenr, 1))
4320 		return NULL;
4321 	return page_address(eb->pages[index]) + get_eb_offset_in_page(eb, bytenr);
4322 }
4323 
4324 /*
4325  * Set an area of a bitmap to 1.
4326  *
4327  * @eb:     the extent buffer
4328  * @start:  offset of the bitmap item in the extent buffer
4329  * @pos:    bit number of the first bit
4330  * @len:    number of bits to set
4331  */
4332 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4333 			      unsigned long pos, unsigned long len)
4334 {
4335 	unsigned int first_byte = start + BIT_BYTE(pos);
4336 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4337 	const bool same_byte = (first_byte == last_byte);
4338 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4339 	u8 *kaddr;
4340 
4341 	if (same_byte)
4342 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4343 
4344 	/* Handle the first byte. */
4345 	kaddr = extent_buffer_get_byte(eb, first_byte);
4346 	*kaddr |= mask;
4347 	if (same_byte)
4348 		return;
4349 
4350 	/* Handle the byte aligned part. */
4351 	ASSERT(first_byte + 1 <= last_byte);
4352 	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4353 
4354 	/* Handle the last byte. */
4355 	kaddr = extent_buffer_get_byte(eb, last_byte);
4356 	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4357 }
4358 
4359 
4360 /*
4361  * Clear an area of a bitmap.
4362  *
4363  * @eb:     the extent buffer
4364  * @start:  offset of the bitmap item in the extent buffer
4365  * @pos:    bit number of the first bit
4366  * @len:    number of bits to clear
4367  */
4368 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4369 				unsigned long start, unsigned long pos,
4370 				unsigned long len)
4371 {
4372 	unsigned int first_byte = start + BIT_BYTE(pos);
4373 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4374 	const bool same_byte = (first_byte == last_byte);
4375 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4376 	u8 *kaddr;
4377 
4378 	if (same_byte)
4379 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4380 
4381 	/* Handle the first byte. */
4382 	kaddr = extent_buffer_get_byte(eb, first_byte);
4383 	*kaddr &= ~mask;
4384 	if (same_byte)
4385 		return;
4386 
4387 	/* Handle the byte aligned part. */
4388 	ASSERT(first_byte + 1 <= last_byte);
4389 	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4390 
4391 	/* Handle the last byte. */
4392 	kaddr = extent_buffer_get_byte(eb, last_byte);
4393 	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4394 }
4395 
4396 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4397 {
4398 	unsigned long distance = (src > dst) ? src - dst : dst - src;
4399 	return distance < len;
4400 }
4401 
4402 void memcpy_extent_buffer(const struct extent_buffer *dst,
4403 			  unsigned long dst_offset, unsigned long src_offset,
4404 			  unsigned long len)
4405 {
4406 	unsigned long cur_off = 0;
4407 
4408 	if (check_eb_range(dst, dst_offset, len) ||
4409 	    check_eb_range(dst, src_offset, len))
4410 		return;
4411 
4412 	while (cur_off < len) {
4413 		unsigned long cur_src = cur_off + src_offset;
4414 		unsigned long pg_index = get_eb_page_index(cur_src);
4415 		unsigned long pg_off = get_eb_offset_in_page(dst, cur_src);
4416 		unsigned long cur_len = min(src_offset + len - cur_src,
4417 					    PAGE_SIZE - pg_off);
4418 		void *src_addr = page_address(dst->pages[pg_index]) + pg_off;
4419 		const bool use_memmove = areas_overlap(src_offset + cur_off,
4420 						       dst_offset + cur_off, cur_len);
4421 
4422 		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4423 				      use_memmove);
4424 		cur_off += cur_len;
4425 	}
4426 }
4427 
4428 void memmove_extent_buffer(const struct extent_buffer *dst,
4429 			   unsigned long dst_offset, unsigned long src_offset,
4430 			   unsigned long len)
4431 {
4432 	unsigned long dst_end = dst_offset + len - 1;
4433 	unsigned long src_end = src_offset + len - 1;
4434 
4435 	if (check_eb_range(dst, dst_offset, len) ||
4436 	    check_eb_range(dst, src_offset, len))
4437 		return;
4438 
4439 	if (dst_offset < src_offset) {
4440 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4441 		return;
4442 	}
4443 
4444 	while (len > 0) {
4445 		unsigned long src_i;
4446 		size_t cur;
4447 		size_t dst_off_in_page;
4448 		size_t src_off_in_page;
4449 		void *src_addr;
4450 		bool use_memmove;
4451 
4452 		src_i = get_eb_page_index(src_end);
4453 
4454 		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
4455 		src_off_in_page = get_eb_offset_in_page(dst, src_end);
4456 
4457 		cur = min_t(unsigned long, len, src_off_in_page + 1);
4458 		cur = min(cur, dst_off_in_page + 1);
4459 
4460 		src_addr = page_address(dst->pages[src_i]) + src_off_in_page -
4461 					cur + 1;
4462 		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4463 					    cur);
4464 
4465 		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4466 				      use_memmove);
4467 
4468 		dst_end -= cur;
4469 		src_end -= cur;
4470 		len -= cur;
4471 	}
4472 }
4473 
4474 #define GANG_LOOKUP_SIZE	16
4475 static struct extent_buffer *get_next_extent_buffer(
4476 		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4477 {
4478 	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4479 	struct extent_buffer *found = NULL;
4480 	u64 page_start = page_offset(page);
4481 	u64 cur = page_start;
4482 
4483 	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4484 	lockdep_assert_held(&fs_info->buffer_lock);
4485 
4486 	while (cur < page_start + PAGE_SIZE) {
4487 		int ret;
4488 		int i;
4489 
4490 		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4491 				(void **)gang, cur >> fs_info->sectorsize_bits,
4492 				min_t(unsigned int, GANG_LOOKUP_SIZE,
4493 				      PAGE_SIZE / fs_info->nodesize));
4494 		if (ret == 0)
4495 			goto out;
4496 		for (i = 0; i < ret; i++) {
4497 			/* Already beyond page end */
4498 			if (gang[i]->start >= page_start + PAGE_SIZE)
4499 				goto out;
4500 			/* Found one */
4501 			if (gang[i]->start >= bytenr) {
4502 				found = gang[i];
4503 				goto out;
4504 			}
4505 		}
4506 		cur = gang[ret - 1]->start + gang[ret - 1]->len;
4507 	}
4508 out:
4509 	return found;
4510 }
4511 
4512 static int try_release_subpage_extent_buffer(struct page *page)
4513 {
4514 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4515 	u64 cur = page_offset(page);
4516 	const u64 end = page_offset(page) + PAGE_SIZE;
4517 	int ret;
4518 
4519 	while (cur < end) {
4520 		struct extent_buffer *eb = NULL;
4521 
4522 		/*
4523 		 * Unlike try_release_extent_buffer() which uses page->private
4524 		 * to grab buffer, for subpage case we rely on radix tree, thus
4525 		 * we need to ensure radix tree consistency.
4526 		 *
4527 		 * We also want an atomic snapshot of the radix tree, thus go
4528 		 * with spinlock rather than RCU.
4529 		 */
4530 		spin_lock(&fs_info->buffer_lock);
4531 		eb = get_next_extent_buffer(fs_info, page, cur);
4532 		if (!eb) {
4533 			/* No more eb in the page range after or at cur */
4534 			spin_unlock(&fs_info->buffer_lock);
4535 			break;
4536 		}
4537 		cur = eb->start + eb->len;
4538 
4539 		/*
4540 		 * The same as try_release_extent_buffer(), to ensure the eb
4541 		 * won't disappear out from under us.
4542 		 */
4543 		spin_lock(&eb->refs_lock);
4544 		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4545 			spin_unlock(&eb->refs_lock);
4546 			spin_unlock(&fs_info->buffer_lock);
4547 			break;
4548 		}
4549 		spin_unlock(&fs_info->buffer_lock);
4550 
4551 		/*
4552 		 * If tree ref isn't set then we know the ref on this eb is a
4553 		 * real ref, so just return, this eb will likely be freed soon
4554 		 * anyway.
4555 		 */
4556 		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4557 			spin_unlock(&eb->refs_lock);
4558 			break;
4559 		}
4560 
4561 		/*
4562 		 * Here we don't care about the return value, we will always
4563 		 * check the page private at the end.  And
4564 		 * release_extent_buffer() will release the refs_lock.
4565 		 */
4566 		release_extent_buffer(eb);
4567 	}
4568 	/*
4569 	 * Finally to check if we have cleared page private, as if we have
4570 	 * released all ebs in the page, the page private should be cleared now.
4571 	 */
4572 	spin_lock(&page->mapping->private_lock);
4573 	if (!PagePrivate(page))
4574 		ret = 1;
4575 	else
4576 		ret = 0;
4577 	spin_unlock(&page->mapping->private_lock);
4578 	return ret;
4579 
4580 }
4581 
4582 int try_release_extent_buffer(struct page *page)
4583 {
4584 	struct extent_buffer *eb;
4585 
4586 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4587 		return try_release_subpage_extent_buffer(page);
4588 
4589 	/*
4590 	 * We need to make sure nobody is changing page->private, as we rely on
4591 	 * page->private as the pointer to extent buffer.
4592 	 */
4593 	spin_lock(&page->mapping->private_lock);
4594 	if (!PagePrivate(page)) {
4595 		spin_unlock(&page->mapping->private_lock);
4596 		return 1;
4597 	}
4598 
4599 	eb = (struct extent_buffer *)page->private;
4600 	BUG_ON(!eb);
4601 
4602 	/*
4603 	 * This is a little awful but should be ok, we need to make sure that
4604 	 * the eb doesn't disappear out from under us while we're looking at
4605 	 * this page.
4606 	 */
4607 	spin_lock(&eb->refs_lock);
4608 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4609 		spin_unlock(&eb->refs_lock);
4610 		spin_unlock(&page->mapping->private_lock);
4611 		return 0;
4612 	}
4613 	spin_unlock(&page->mapping->private_lock);
4614 
4615 	/*
4616 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
4617 	 * so just return, this page will likely be freed soon anyway.
4618 	 */
4619 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4620 		spin_unlock(&eb->refs_lock);
4621 		return 0;
4622 	}
4623 
4624 	return release_extent_buffer(eb);
4625 }
4626 
4627 /*
4628  * Attempt to readahead a child block.
4629  *
4630  * @fs_info:	the fs_info
4631  * @bytenr:	bytenr to read
4632  * @owner_root: objectid of the root that owns this eb
4633  * @gen:	generation for the uptodate check, can be 0
4634  * @level:	level for the eb
4635  *
4636  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
4637  * normal uptodate check of the eb, without checking the generation.  If we have
4638  * to read the block we will not block on anything.
4639  */
4640 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4641 				u64 bytenr, u64 owner_root, u64 gen, int level)
4642 {
4643 	struct btrfs_tree_parent_check check = {
4644 		.has_first_key = 0,
4645 		.level = level,
4646 		.transid = gen
4647 	};
4648 	struct extent_buffer *eb;
4649 	int ret;
4650 
4651 	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4652 	if (IS_ERR(eb))
4653 		return;
4654 
4655 	if (btrfs_buffer_uptodate(eb, gen, 1)) {
4656 		free_extent_buffer(eb);
4657 		return;
4658 	}
4659 
4660 	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4661 	if (ret < 0)
4662 		free_extent_buffer_stale(eb);
4663 	else
4664 		free_extent_buffer(eb);
4665 }
4666 
4667 /*
4668  * Readahead a node's child block.
4669  *
4670  * @node:	parent node we're reading from
4671  * @slot:	slot in the parent node for the child we want to read
4672  *
4673  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4674  * the slot in the node provided.
4675  */
4676 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4677 {
4678 	btrfs_readahead_tree_block(node->fs_info,
4679 				   btrfs_node_blockptr(node, slot),
4680 				   btrfs_header_owner(node),
4681 				   btrfs_node_ptr_generation(node, slot),
4682 				   btrfs_header_level(node) - 1);
4683 }
4684