1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "extent_io.h" 18 #include "extent-io-tree.h" 19 #include "extent_map.h" 20 #include "ctree.h" 21 #include "btrfs_inode.h" 22 #include "bio.h" 23 #include "locking.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 #include "subpage.h" 27 #include "zoned.h" 28 #include "block-group.h" 29 #include "compression.h" 30 #include "fs.h" 31 #include "accessors.h" 32 #include "file-item.h" 33 #include "file.h" 34 #include "dev-replace.h" 35 #include "super.h" 36 #include "transaction.h" 37 38 static struct kmem_cache *extent_buffer_cache; 39 40 #ifdef CONFIG_BTRFS_DEBUG 41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 42 { 43 struct btrfs_fs_info *fs_info = eb->fs_info; 44 unsigned long flags; 45 46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 47 list_add(&eb->leak_list, &fs_info->allocated_ebs); 48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 49 } 50 51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 52 { 53 struct btrfs_fs_info *fs_info = eb->fs_info; 54 unsigned long flags; 55 56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 57 list_del(&eb->leak_list); 58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 59 } 60 61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 62 { 63 struct extent_buffer *eb; 64 unsigned long flags; 65 66 /* 67 * If we didn't get into open_ctree our allocated_ebs will not be 68 * initialized, so just skip this. 69 */ 70 if (!fs_info->allocated_ebs.next) 71 return; 72 73 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 75 while (!list_empty(&fs_info->allocated_ebs)) { 76 eb = list_first_entry(&fs_info->allocated_ebs, 77 struct extent_buffer, leak_list); 78 pr_err( 79 "BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n", 80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 81 btrfs_header_owner(eb)); 82 list_del(&eb->leak_list); 83 WARN_ON_ONCE(1); 84 kmem_cache_free(extent_buffer_cache, eb); 85 } 86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 87 } 88 #else 89 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 90 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 91 #endif 92 93 /* 94 * Structure to record info about the bio being assembled, and other info like 95 * how many bytes are there before stripe/ordered extent boundary. 96 */ 97 struct btrfs_bio_ctrl { 98 struct btrfs_bio *bbio; 99 enum btrfs_compression_type compress_type; 100 u32 len_to_oe_boundary; 101 blk_opf_t opf; 102 btrfs_bio_end_io_t end_io_func; 103 struct writeback_control *wbc; 104 105 /* 106 * The sectors of the page which are going to be submitted by 107 * extent_writepage_io(). 108 * This is to avoid touching ranges covered by compression/inline. 109 */ 110 unsigned long submit_bitmap; 111 }; 112 113 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 114 { 115 struct btrfs_bio *bbio = bio_ctrl->bbio; 116 117 if (!bbio) 118 return; 119 120 /* Caller should ensure the bio has at least some range added */ 121 ASSERT(bbio->bio.bi_iter.bi_size); 122 123 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 124 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 125 btrfs_submit_compressed_read(bbio); 126 else 127 btrfs_submit_bbio(bbio, 0); 128 129 /* The bbio is owned by the end_io handler now */ 130 bio_ctrl->bbio = NULL; 131 } 132 133 /* 134 * Submit or fail the current bio in the bio_ctrl structure. 135 */ 136 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 137 { 138 struct btrfs_bio *bbio = bio_ctrl->bbio; 139 140 if (!bbio) 141 return; 142 143 if (ret) { 144 ASSERT(ret < 0); 145 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 146 /* The bio is owned by the end_io handler now */ 147 bio_ctrl->bbio = NULL; 148 } else { 149 submit_one_bio(bio_ctrl); 150 } 151 } 152 153 int __init extent_buffer_init_cachep(void) 154 { 155 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 156 sizeof(struct extent_buffer), 0, 0, 157 NULL); 158 if (!extent_buffer_cache) 159 return -ENOMEM; 160 161 return 0; 162 } 163 164 void __cold extent_buffer_free_cachep(void) 165 { 166 /* 167 * Make sure all delayed rcu free are flushed before we 168 * destroy caches. 169 */ 170 rcu_barrier(); 171 kmem_cache_destroy(extent_buffer_cache); 172 } 173 174 static void process_one_folio(struct btrfs_fs_info *fs_info, 175 struct folio *folio, const struct folio *locked_folio, 176 unsigned long page_ops, u64 start, u64 end) 177 { 178 u32 len; 179 180 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 181 len = end + 1 - start; 182 183 if (page_ops & PAGE_SET_ORDERED) 184 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len); 185 if (page_ops & PAGE_START_WRITEBACK) { 186 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len); 187 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len); 188 } 189 if (page_ops & PAGE_END_WRITEBACK) 190 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len); 191 192 if (folio != locked_folio && (page_ops & PAGE_UNLOCK)) 193 btrfs_folio_end_lock(fs_info, folio, start, len); 194 } 195 196 static void __process_folios_contig(struct address_space *mapping, 197 const struct folio *locked_folio, u64 start, 198 u64 end, unsigned long page_ops) 199 { 200 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 201 pgoff_t index = start >> PAGE_SHIFT; 202 pgoff_t end_index = end >> PAGE_SHIFT; 203 struct folio_batch fbatch; 204 int i; 205 206 folio_batch_init(&fbatch); 207 while (index <= end_index) { 208 int found_folios; 209 210 found_folios = filemap_get_folios_contig(mapping, &index, 211 end_index, &fbatch); 212 for (i = 0; i < found_folios; i++) { 213 struct folio *folio = fbatch.folios[i]; 214 215 process_one_folio(fs_info, folio, locked_folio, 216 page_ops, start, end); 217 } 218 folio_batch_release(&fbatch); 219 cond_resched(); 220 } 221 } 222 223 static noinline void unlock_delalloc_folio(const struct inode *inode, 224 const struct folio *locked_folio, 225 u64 start, u64 end) 226 { 227 unsigned long index = start >> PAGE_SHIFT; 228 unsigned long end_index = end >> PAGE_SHIFT; 229 230 ASSERT(locked_folio); 231 if (index == locked_folio->index && end_index == index) 232 return; 233 234 __process_folios_contig(inode->i_mapping, locked_folio, start, end, 235 PAGE_UNLOCK); 236 } 237 238 static noinline int lock_delalloc_folios(struct inode *inode, 239 const struct folio *locked_folio, 240 u64 start, u64 end) 241 { 242 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 243 struct address_space *mapping = inode->i_mapping; 244 pgoff_t index = start >> PAGE_SHIFT; 245 pgoff_t end_index = end >> PAGE_SHIFT; 246 u64 processed_end = start; 247 struct folio_batch fbatch; 248 249 if (index == locked_folio->index && index == end_index) 250 return 0; 251 252 folio_batch_init(&fbatch); 253 while (index <= end_index) { 254 unsigned int found_folios, i; 255 256 found_folios = filemap_get_folios_contig(mapping, &index, 257 end_index, &fbatch); 258 if (found_folios == 0) 259 goto out; 260 261 for (i = 0; i < found_folios; i++) { 262 struct folio *folio = fbatch.folios[i]; 263 u64 range_start; 264 u32 range_len; 265 266 if (folio == locked_folio) 267 continue; 268 269 folio_lock(folio); 270 if (!folio_test_dirty(folio) || folio->mapping != mapping) { 271 folio_unlock(folio); 272 goto out; 273 } 274 range_start = max_t(u64, folio_pos(folio), start); 275 range_len = min_t(u64, folio_pos(folio) + folio_size(folio), 276 end + 1) - range_start; 277 btrfs_folio_set_lock(fs_info, folio, range_start, range_len); 278 279 processed_end = range_start + range_len - 1; 280 } 281 folio_batch_release(&fbatch); 282 cond_resched(); 283 } 284 285 return 0; 286 out: 287 folio_batch_release(&fbatch); 288 if (processed_end > start) 289 unlock_delalloc_folio(inode, locked_folio, start, processed_end); 290 return -EAGAIN; 291 } 292 293 /* 294 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 295 * more than @max_bytes. 296 * 297 * @start: The original start bytenr to search. 298 * Will store the extent range start bytenr. 299 * @end: The original end bytenr of the search range 300 * Will store the extent range end bytenr. 301 * 302 * Return true if we find a delalloc range which starts inside the original 303 * range, and @start/@end will store the delalloc range start/end. 304 * 305 * Return false if we can't find any delalloc range which starts inside the 306 * original range, and @start/@end will be the non-delalloc range start/end. 307 */ 308 EXPORT_FOR_TESTS 309 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 310 struct folio *locked_folio, 311 u64 *start, u64 *end) 312 { 313 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 314 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 315 const u64 orig_start = *start; 316 const u64 orig_end = *end; 317 /* The sanity tests may not set a valid fs_info. */ 318 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 319 u64 delalloc_start; 320 u64 delalloc_end; 321 bool found; 322 struct extent_state *cached_state = NULL; 323 int ret; 324 int loops = 0; 325 326 /* Caller should pass a valid @end to indicate the search range end */ 327 ASSERT(orig_end > orig_start); 328 329 /* The range should at least cover part of the folio */ 330 ASSERT(!(orig_start >= folio_pos(locked_folio) + folio_size(locked_folio) || 331 orig_end <= folio_pos(locked_folio))); 332 again: 333 /* step one, find a bunch of delalloc bytes starting at start */ 334 delalloc_start = *start; 335 delalloc_end = 0; 336 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 337 max_bytes, &cached_state); 338 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 339 *start = delalloc_start; 340 341 /* @delalloc_end can be -1, never go beyond @orig_end */ 342 *end = min(delalloc_end, orig_end); 343 free_extent_state(cached_state); 344 return false; 345 } 346 347 /* 348 * start comes from the offset of locked_folio. We have to lock 349 * folios in order, so we can't process delalloc bytes before 350 * locked_folio 351 */ 352 if (delalloc_start < *start) 353 delalloc_start = *start; 354 355 /* 356 * make sure to limit the number of folios we try to lock down 357 */ 358 if (delalloc_end + 1 - delalloc_start > max_bytes) 359 delalloc_end = delalloc_start + max_bytes - 1; 360 361 /* step two, lock all the folioss after the folios that has start */ 362 ret = lock_delalloc_folios(inode, locked_folio, delalloc_start, 363 delalloc_end); 364 ASSERT(!ret || ret == -EAGAIN); 365 if (ret == -EAGAIN) { 366 /* some of the folios are gone, lets avoid looping by 367 * shortening the size of the delalloc range we're searching 368 */ 369 free_extent_state(cached_state); 370 cached_state = NULL; 371 if (!loops) { 372 max_bytes = PAGE_SIZE; 373 loops = 1; 374 goto again; 375 } else { 376 found = false; 377 goto out_failed; 378 } 379 } 380 381 /* step three, lock the state bits for the whole range */ 382 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 383 384 /* then test to make sure it is all still delalloc */ 385 ret = test_range_bit(tree, delalloc_start, delalloc_end, 386 EXTENT_DELALLOC, cached_state); 387 388 unlock_extent(tree, delalloc_start, delalloc_end, &cached_state); 389 if (!ret) { 390 unlock_delalloc_folio(inode, locked_folio, delalloc_start, 391 delalloc_end); 392 cond_resched(); 393 goto again; 394 } 395 *start = delalloc_start; 396 *end = delalloc_end; 397 out_failed: 398 return found; 399 } 400 401 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 402 const struct folio *locked_folio, 403 struct extent_state **cached, 404 u32 clear_bits, unsigned long page_ops) 405 { 406 clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached); 407 408 __process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start, 409 end, page_ops); 410 } 411 412 static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len) 413 { 414 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 415 416 if (!fsverity_active(folio->mapping->host) || 417 btrfs_folio_test_uptodate(fs_info, folio, start, len) || 418 start >= i_size_read(folio->mapping->host)) 419 return true; 420 return fsverity_verify_folio(folio); 421 } 422 423 static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len) 424 { 425 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 426 427 ASSERT(folio_pos(folio) <= start && 428 start + len <= folio_pos(folio) + PAGE_SIZE); 429 430 if (uptodate && btrfs_verify_folio(folio, start, len)) 431 btrfs_folio_set_uptodate(fs_info, folio, start, len); 432 else 433 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 434 435 if (!btrfs_is_subpage(fs_info, folio->mapping)) 436 folio_unlock(folio); 437 else 438 btrfs_folio_end_lock(fs_info, folio, start, len); 439 } 440 441 /* 442 * After a write IO is done, we need to: 443 * 444 * - clear the uptodate bits on error 445 * - clear the writeback bits in the extent tree for the range 446 * - filio_end_writeback() if there is no more pending io for the folio 447 * 448 * Scheduling is not allowed, so the extent state tree is expected 449 * to have one and only one object corresponding to this IO. 450 */ 451 static void end_bbio_data_write(struct btrfs_bio *bbio) 452 { 453 struct btrfs_fs_info *fs_info = bbio->fs_info; 454 struct bio *bio = &bbio->bio; 455 int error = blk_status_to_errno(bio->bi_status); 456 struct folio_iter fi; 457 const u32 sectorsize = fs_info->sectorsize; 458 459 ASSERT(!bio_flagged(bio, BIO_CLONED)); 460 bio_for_each_folio_all(fi, bio) { 461 struct folio *folio = fi.folio; 462 u64 start = folio_pos(folio) + fi.offset; 463 u32 len = fi.length; 464 465 /* Only order 0 (single page) folios are allowed for data. */ 466 ASSERT(folio_order(folio) == 0); 467 468 /* Our read/write should always be sector aligned. */ 469 if (!IS_ALIGNED(fi.offset, sectorsize)) 470 btrfs_err(fs_info, 471 "partial page write in btrfs with offset %zu and length %zu", 472 fi.offset, fi.length); 473 else if (!IS_ALIGNED(fi.length, sectorsize)) 474 btrfs_info(fs_info, 475 "incomplete page write with offset %zu and length %zu", 476 fi.offset, fi.length); 477 478 btrfs_finish_ordered_extent(bbio->ordered, folio, start, len, 479 !error); 480 if (error) 481 mapping_set_error(folio->mapping, error); 482 btrfs_folio_clear_writeback(fs_info, folio, start, len); 483 } 484 485 bio_put(bio); 486 } 487 488 static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio) 489 { 490 ASSERT(folio_test_locked(folio)); 491 if (!btrfs_is_subpage(fs_info, folio->mapping)) 492 return; 493 494 ASSERT(folio_test_private(folio)); 495 btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), PAGE_SIZE); 496 } 497 498 /* 499 * After a data read IO is done, we need to: 500 * 501 * - clear the uptodate bits on error 502 * - set the uptodate bits if things worked 503 * - set the folio up to date if all extents in the tree are uptodate 504 * - clear the lock bit in the extent tree 505 * - unlock the folio if there are no other extents locked for it 506 * 507 * Scheduling is not allowed, so the extent state tree is expected 508 * to have one and only one object corresponding to this IO. 509 */ 510 static void end_bbio_data_read(struct btrfs_bio *bbio) 511 { 512 struct btrfs_fs_info *fs_info = bbio->fs_info; 513 struct bio *bio = &bbio->bio; 514 struct folio_iter fi; 515 const u32 sectorsize = fs_info->sectorsize; 516 517 ASSERT(!bio_flagged(bio, BIO_CLONED)); 518 bio_for_each_folio_all(fi, &bbio->bio) { 519 bool uptodate = !bio->bi_status; 520 struct folio *folio = fi.folio; 521 struct inode *inode = folio->mapping->host; 522 u64 start; 523 u64 end; 524 u32 len; 525 526 /* For now only order 0 folios are supported for data. */ 527 ASSERT(folio_order(folio) == 0); 528 btrfs_debug(fs_info, 529 "%s: bi_sector=%llu, err=%d, mirror=%u", 530 __func__, bio->bi_iter.bi_sector, bio->bi_status, 531 bbio->mirror_num); 532 533 /* 534 * We always issue full-sector reads, but if some block in a 535 * folio fails to read, blk_update_request() will advance 536 * bv_offset and adjust bv_len to compensate. Print a warning 537 * for unaligned offsets, and an error if they don't add up to 538 * a full sector. 539 */ 540 if (!IS_ALIGNED(fi.offset, sectorsize)) 541 btrfs_err(fs_info, 542 "partial page read in btrfs with offset %zu and length %zu", 543 fi.offset, fi.length); 544 else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize)) 545 btrfs_info(fs_info, 546 "incomplete page read with offset %zu and length %zu", 547 fi.offset, fi.length); 548 549 start = folio_pos(folio) + fi.offset; 550 end = start + fi.length - 1; 551 len = fi.length; 552 553 if (likely(uptodate)) { 554 loff_t i_size = i_size_read(inode); 555 pgoff_t end_index = i_size >> folio_shift(folio); 556 557 /* 558 * Zero out the remaining part if this range straddles 559 * i_size. 560 * 561 * Here we should only zero the range inside the folio, 562 * not touch anything else. 563 * 564 * NOTE: i_size is exclusive while end is inclusive. 565 */ 566 if (folio_index(folio) == end_index && i_size <= end) { 567 u32 zero_start = max(offset_in_folio(folio, i_size), 568 offset_in_folio(folio, start)); 569 u32 zero_len = offset_in_folio(folio, end) + 1 - 570 zero_start; 571 572 folio_zero_range(folio, zero_start, zero_len); 573 } 574 } 575 576 /* Update page status and unlock. */ 577 end_folio_read(folio, uptodate, start, len); 578 } 579 bio_put(bio); 580 } 581 582 /* 583 * Populate every free slot in a provided array with folios using GFP_NOFS. 584 * 585 * @nr_folios: number of folios to allocate 586 * @folio_array: the array to fill with folios; any existing non-NULL entries in 587 * the array will be skipped 588 * 589 * Return: 0 if all folios were able to be allocated; 590 * -ENOMEM otherwise, the partially allocated folios would be freed and 591 * the array slots zeroed 592 */ 593 int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array) 594 { 595 for (int i = 0; i < nr_folios; i++) { 596 if (folio_array[i]) 597 continue; 598 folio_array[i] = folio_alloc(GFP_NOFS, 0); 599 if (!folio_array[i]) 600 goto error; 601 } 602 return 0; 603 error: 604 for (int i = 0; i < nr_folios; i++) { 605 if (folio_array[i]) 606 folio_put(folio_array[i]); 607 } 608 return -ENOMEM; 609 } 610 611 /* 612 * Populate every free slot in a provided array with pages, using GFP_NOFS. 613 * 614 * @nr_pages: number of pages to allocate 615 * @page_array: the array to fill with pages; any existing non-null entries in 616 * the array will be skipped 617 * @nofail: whether using __GFP_NOFAIL flag 618 * 619 * Return: 0 if all pages were able to be allocated; 620 * -ENOMEM otherwise, the partially allocated pages would be freed and 621 * the array slots zeroed 622 */ 623 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array, 624 bool nofail) 625 { 626 const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS; 627 unsigned int allocated; 628 629 for (allocated = 0; allocated < nr_pages;) { 630 unsigned int last = allocated; 631 632 allocated = alloc_pages_bulk_array(gfp, nr_pages, page_array); 633 if (unlikely(allocated == last)) { 634 /* No progress, fail and do cleanup. */ 635 for (int i = 0; i < allocated; i++) { 636 __free_page(page_array[i]); 637 page_array[i] = NULL; 638 } 639 return -ENOMEM; 640 } 641 } 642 return 0; 643 } 644 645 /* 646 * Populate needed folios for the extent buffer. 647 * 648 * For now, the folios populated are always in order 0 (aka, single page). 649 */ 650 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail) 651 { 652 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 }; 653 int num_pages = num_extent_pages(eb); 654 int ret; 655 656 ret = btrfs_alloc_page_array(num_pages, page_array, nofail); 657 if (ret < 0) 658 return ret; 659 660 for (int i = 0; i < num_pages; i++) 661 eb->folios[i] = page_folio(page_array[i]); 662 eb->folio_size = PAGE_SIZE; 663 eb->folio_shift = PAGE_SHIFT; 664 return 0; 665 } 666 667 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 668 struct folio *folio, u64 disk_bytenr, 669 unsigned int pg_offset) 670 { 671 struct bio *bio = &bio_ctrl->bbio->bio; 672 struct bio_vec *bvec = bio_last_bvec_all(bio); 673 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 674 struct folio *bv_folio = page_folio(bvec->bv_page); 675 676 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 677 /* 678 * For compression, all IO should have its logical bytenr set 679 * to the starting bytenr of the compressed extent. 680 */ 681 return bio->bi_iter.bi_sector == sector; 682 } 683 684 /* 685 * The contig check requires the following conditions to be met: 686 * 687 * 1) The folios are belonging to the same inode 688 * This is implied by the call chain. 689 * 690 * 2) The range has adjacent logical bytenr 691 * 692 * 3) The range has adjacent file offset 693 * This is required for the usage of btrfs_bio->file_offset. 694 */ 695 return bio_end_sector(bio) == sector && 696 folio_pos(bv_folio) + bvec->bv_offset + bvec->bv_len == 697 folio_pos(folio) + pg_offset; 698 } 699 700 static void alloc_new_bio(struct btrfs_inode *inode, 701 struct btrfs_bio_ctrl *bio_ctrl, 702 u64 disk_bytenr, u64 file_offset) 703 { 704 struct btrfs_fs_info *fs_info = inode->root->fs_info; 705 struct btrfs_bio *bbio; 706 707 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 708 bio_ctrl->end_io_func, NULL); 709 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 710 bbio->bio.bi_write_hint = inode->vfs_inode.i_write_hint; 711 bbio->inode = inode; 712 bbio->file_offset = file_offset; 713 bio_ctrl->bbio = bbio; 714 bio_ctrl->len_to_oe_boundary = U32_MAX; 715 716 /* Limit data write bios to the ordered boundary. */ 717 if (bio_ctrl->wbc) { 718 struct btrfs_ordered_extent *ordered; 719 720 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 721 if (ordered) { 722 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 723 ordered->file_offset + 724 ordered->disk_num_bytes - file_offset); 725 bbio->ordered = ordered; 726 } 727 728 /* 729 * Pick the last added device to support cgroup writeback. For 730 * multi-device file systems this means blk-cgroup policies have 731 * to always be set on the last added/replaced device. 732 * This is a bit odd but has been like that for a long time. 733 */ 734 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 735 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 736 } 737 } 738 739 /* 740 * @disk_bytenr: logical bytenr where the write will be 741 * @page: page to add to the bio 742 * @size: portion of page that we want to write to 743 * @pg_offset: offset of the new bio or to check whether we are adding 744 * a contiguous page to the previous one 745 * 746 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 747 * new one in @bio_ctrl->bbio. 748 * The mirror number for this IO should already be initizlied in 749 * @bio_ctrl->mirror_num. 750 */ 751 static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl, 752 u64 disk_bytenr, struct folio *folio, 753 size_t size, unsigned long pg_offset) 754 { 755 struct btrfs_inode *inode = folio_to_inode(folio); 756 757 ASSERT(pg_offset + size <= PAGE_SIZE); 758 ASSERT(bio_ctrl->end_io_func); 759 760 if (bio_ctrl->bbio && 761 !btrfs_bio_is_contig(bio_ctrl, folio, disk_bytenr, pg_offset)) 762 submit_one_bio(bio_ctrl); 763 764 do { 765 u32 len = size; 766 767 /* Allocate new bio if needed */ 768 if (!bio_ctrl->bbio) { 769 alloc_new_bio(inode, bio_ctrl, disk_bytenr, 770 folio_pos(folio) + pg_offset); 771 } 772 773 /* Cap to the current ordered extent boundary if there is one. */ 774 if (len > bio_ctrl->len_to_oe_boundary) { 775 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 776 ASSERT(is_data_inode(inode)); 777 len = bio_ctrl->len_to_oe_boundary; 778 } 779 780 if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) { 781 /* bio full: move on to a new one */ 782 submit_one_bio(bio_ctrl); 783 continue; 784 } 785 786 if (bio_ctrl->wbc) 787 wbc_account_cgroup_owner(bio_ctrl->wbc, folio, 788 len); 789 790 size -= len; 791 pg_offset += len; 792 disk_bytenr += len; 793 794 /* 795 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or 796 * sector aligned. alloc_new_bio() then sets it to the end of 797 * our ordered extent for writes into zoned devices. 798 * 799 * When len_to_oe_boundary is tracking an ordered extent, we 800 * trust the ordered extent code to align things properly, and 801 * the check above to cap our write to the ordered extent 802 * boundary is correct. 803 * 804 * When len_to_oe_boundary is U32_MAX, the cap above would 805 * result in a 4095 byte IO for the last folio right before 806 * we hit the bio limit of UINT_MAX. bio_add_folio() has all 807 * the checks required to make sure we don't overflow the bio, 808 * and we should just ignore len_to_oe_boundary completely 809 * unless we're using it to track an ordered extent. 810 * 811 * It's pretty hard to make a bio sized U32_MAX, but it can 812 * happen when the page cache is able to feed us contiguous 813 * folios for large extents. 814 */ 815 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 816 bio_ctrl->len_to_oe_boundary -= len; 817 818 /* Ordered extent boundary: move on to a new bio. */ 819 if (bio_ctrl->len_to_oe_boundary == 0) 820 submit_one_bio(bio_ctrl); 821 } while (size); 822 } 823 824 static int attach_extent_buffer_folio(struct extent_buffer *eb, 825 struct folio *folio, 826 struct btrfs_subpage *prealloc) 827 { 828 struct btrfs_fs_info *fs_info = eb->fs_info; 829 int ret = 0; 830 831 /* 832 * If the page is mapped to btree inode, we should hold the private 833 * lock to prevent race. 834 * For cloned or dummy extent buffers, their pages are not mapped and 835 * will not race with any other ebs. 836 */ 837 if (folio->mapping) 838 lockdep_assert_held(&folio->mapping->i_private_lock); 839 840 if (fs_info->nodesize >= PAGE_SIZE) { 841 if (!folio_test_private(folio)) 842 folio_attach_private(folio, eb); 843 else 844 WARN_ON(folio_get_private(folio) != eb); 845 return 0; 846 } 847 848 /* Already mapped, just free prealloc */ 849 if (folio_test_private(folio)) { 850 btrfs_free_subpage(prealloc); 851 return 0; 852 } 853 854 if (prealloc) 855 /* Has preallocated memory for subpage */ 856 folio_attach_private(folio, prealloc); 857 else 858 /* Do new allocation to attach subpage */ 859 ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA); 860 return ret; 861 } 862 863 int set_folio_extent_mapped(struct folio *folio) 864 { 865 struct btrfs_fs_info *fs_info; 866 867 ASSERT(folio->mapping); 868 869 if (folio_test_private(folio)) 870 return 0; 871 872 fs_info = folio_to_fs_info(folio); 873 874 if (btrfs_is_subpage(fs_info, folio->mapping)) 875 return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA); 876 877 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE); 878 return 0; 879 } 880 881 void clear_folio_extent_mapped(struct folio *folio) 882 { 883 struct btrfs_fs_info *fs_info; 884 885 ASSERT(folio->mapping); 886 887 if (!folio_test_private(folio)) 888 return; 889 890 fs_info = folio_to_fs_info(folio); 891 if (btrfs_is_subpage(fs_info, folio->mapping)) 892 return btrfs_detach_subpage(fs_info, folio); 893 894 folio_detach_private(folio); 895 } 896 897 static struct extent_map *get_extent_map(struct btrfs_inode *inode, 898 struct folio *folio, u64 start, 899 u64 len, struct extent_map **em_cached) 900 { 901 struct extent_map *em; 902 struct extent_state *cached_state = NULL; 903 904 ASSERT(em_cached); 905 906 if (*em_cached) { 907 em = *em_cached; 908 if (extent_map_in_tree(em) && start >= em->start && 909 start < extent_map_end(em)) { 910 refcount_inc(&em->refs); 911 return em; 912 } 913 914 free_extent_map(em); 915 *em_cached = NULL; 916 } 917 918 btrfs_lock_and_flush_ordered_range(inode, start, start + len - 1, &cached_state); 919 em = btrfs_get_extent(inode, folio, start, len); 920 if (!IS_ERR(em)) { 921 BUG_ON(*em_cached); 922 refcount_inc(&em->refs); 923 *em_cached = em; 924 } 925 unlock_extent(&inode->io_tree, start, start + len - 1, &cached_state); 926 927 return em; 928 } 929 /* 930 * basic readpage implementation. Locked extent state structs are inserted 931 * into the tree that are removed when the IO is done (by the end_io 932 * handlers) 933 * XXX JDM: This needs looking at to ensure proper page locking 934 * return 0 on success, otherwise return error 935 */ 936 static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached, 937 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 938 { 939 struct inode *inode = folio->mapping->host; 940 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 941 u64 start = folio_pos(folio); 942 const u64 end = start + PAGE_SIZE - 1; 943 u64 cur = start; 944 u64 extent_offset; 945 u64 last_byte = i_size_read(inode); 946 u64 block_start; 947 struct extent_map *em; 948 int ret = 0; 949 size_t pg_offset = 0; 950 size_t iosize; 951 size_t blocksize = fs_info->sectorsize; 952 953 ret = set_folio_extent_mapped(folio); 954 if (ret < 0) { 955 folio_unlock(folio); 956 return ret; 957 } 958 959 if (folio->index == last_byte >> folio_shift(folio)) { 960 size_t zero_offset = offset_in_folio(folio, last_byte); 961 962 if (zero_offset) { 963 iosize = folio_size(folio) - zero_offset; 964 folio_zero_range(folio, zero_offset, iosize); 965 } 966 } 967 bio_ctrl->end_io_func = end_bbio_data_read; 968 begin_folio_read(fs_info, folio); 969 while (cur <= end) { 970 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 971 bool force_bio_submit = false; 972 u64 disk_bytenr; 973 974 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 975 if (cur >= last_byte) { 976 iosize = folio_size(folio) - pg_offset; 977 folio_zero_range(folio, pg_offset, iosize); 978 end_folio_read(folio, true, cur, iosize); 979 break; 980 } 981 em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached); 982 if (IS_ERR(em)) { 983 end_folio_read(folio, false, cur, end + 1 - cur); 984 return PTR_ERR(em); 985 } 986 extent_offset = cur - em->start; 987 BUG_ON(extent_map_end(em) <= cur); 988 BUG_ON(end < cur); 989 990 compress_type = extent_map_compression(em); 991 992 iosize = min(extent_map_end(em) - cur, end - cur + 1); 993 iosize = ALIGN(iosize, blocksize); 994 if (compress_type != BTRFS_COMPRESS_NONE) 995 disk_bytenr = em->disk_bytenr; 996 else 997 disk_bytenr = extent_map_block_start(em) + extent_offset; 998 block_start = extent_map_block_start(em); 999 if (em->flags & EXTENT_FLAG_PREALLOC) 1000 block_start = EXTENT_MAP_HOLE; 1001 1002 /* 1003 * If we have a file range that points to a compressed extent 1004 * and it's followed by a consecutive file range that points 1005 * to the same compressed extent (possibly with a different 1006 * offset and/or length, so it either points to the whole extent 1007 * or only part of it), we must make sure we do not submit a 1008 * single bio to populate the folios for the 2 ranges because 1009 * this makes the compressed extent read zero out the folios 1010 * belonging to the 2nd range. Imagine the following scenario: 1011 * 1012 * File layout 1013 * [0 - 8K] [8K - 24K] 1014 * | | 1015 * | | 1016 * points to extent X, points to extent X, 1017 * offset 4K, length of 8K offset 0, length 16K 1018 * 1019 * [extent X, compressed length = 4K uncompressed length = 16K] 1020 * 1021 * If the bio to read the compressed extent covers both ranges, 1022 * it will decompress extent X into the folios belonging to the 1023 * first range and then it will stop, zeroing out the remaining 1024 * folios that belong to the other range that points to extent X. 1025 * So here we make sure we submit 2 bios, one for the first 1026 * range and another one for the third range. Both will target 1027 * the same physical extent from disk, but we can't currently 1028 * make the compressed bio endio callback populate the folios 1029 * for both ranges because each compressed bio is tightly 1030 * coupled with a single extent map, and each range can have 1031 * an extent map with a different offset value relative to the 1032 * uncompressed data of our extent and different lengths. This 1033 * is a corner case so we prioritize correctness over 1034 * non-optimal behavior (submitting 2 bios for the same extent). 1035 */ 1036 if (compress_type != BTRFS_COMPRESS_NONE && 1037 prev_em_start && *prev_em_start != (u64)-1 && 1038 *prev_em_start != em->start) 1039 force_bio_submit = true; 1040 1041 if (prev_em_start) 1042 *prev_em_start = em->start; 1043 1044 free_extent_map(em); 1045 em = NULL; 1046 1047 /* we've found a hole, just zero and go on */ 1048 if (block_start == EXTENT_MAP_HOLE) { 1049 folio_zero_range(folio, pg_offset, iosize); 1050 1051 end_folio_read(folio, true, cur, iosize); 1052 cur = cur + iosize; 1053 pg_offset += iosize; 1054 continue; 1055 } 1056 /* the get_extent function already copied into the folio */ 1057 if (block_start == EXTENT_MAP_INLINE) { 1058 end_folio_read(folio, true, cur, iosize); 1059 cur = cur + iosize; 1060 pg_offset += iosize; 1061 continue; 1062 } 1063 1064 if (bio_ctrl->compress_type != compress_type) { 1065 submit_one_bio(bio_ctrl); 1066 bio_ctrl->compress_type = compress_type; 1067 } 1068 1069 if (force_bio_submit) 1070 submit_one_bio(bio_ctrl); 1071 submit_extent_folio(bio_ctrl, disk_bytenr, folio, iosize, 1072 pg_offset); 1073 cur = cur + iosize; 1074 pg_offset += iosize; 1075 } 1076 1077 return 0; 1078 } 1079 1080 int btrfs_read_folio(struct file *file, struct folio *folio) 1081 { 1082 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1083 struct extent_map *em_cached = NULL; 1084 int ret; 1085 1086 ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, NULL); 1087 free_extent_map(em_cached); 1088 1089 /* 1090 * If btrfs_do_readpage() failed we will want to submit the assembled 1091 * bio to do the cleanup. 1092 */ 1093 submit_one_bio(&bio_ctrl); 1094 return ret; 1095 } 1096 1097 static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap, 1098 u64 start, u32 len) 1099 { 1100 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 1101 const u64 folio_start = folio_pos(folio); 1102 unsigned int start_bit; 1103 unsigned int nbits; 1104 1105 ASSERT(start >= folio_start && start + len <= folio_start + PAGE_SIZE); 1106 start_bit = (start - folio_start) >> fs_info->sectorsize_bits; 1107 nbits = len >> fs_info->sectorsize_bits; 1108 ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits)); 1109 bitmap_set(delalloc_bitmap, start_bit, nbits); 1110 } 1111 1112 static bool find_next_delalloc_bitmap(struct folio *folio, 1113 unsigned long *delalloc_bitmap, u64 start, 1114 u64 *found_start, u32 *found_len) 1115 { 1116 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 1117 const u64 folio_start = folio_pos(folio); 1118 const unsigned int bitmap_size = fs_info->sectors_per_page; 1119 unsigned int start_bit; 1120 unsigned int first_zero; 1121 unsigned int first_set; 1122 1123 ASSERT(start >= folio_start && start < folio_start + PAGE_SIZE); 1124 1125 start_bit = (start - folio_start) >> fs_info->sectorsize_bits; 1126 first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit); 1127 if (first_set >= bitmap_size) 1128 return false; 1129 1130 *found_start = folio_start + (first_set << fs_info->sectorsize_bits); 1131 first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set); 1132 *found_len = (first_zero - first_set) << fs_info->sectorsize_bits; 1133 return true; 1134 } 1135 1136 /* 1137 * Do all of the delayed allocation setup. 1138 * 1139 * Return >0 if all the dirty blocks are submitted async (compression) or inlined. 1140 * The @folio should no longer be touched (treat it as already unlocked). 1141 * 1142 * Return 0 if there is still dirty block that needs to be submitted through 1143 * extent_writepage_io(). 1144 * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be 1145 * submitted, and @folio is still kept locked. 1146 * 1147 * Return <0 if there is any error hit. 1148 * Any allocated ordered extent range covering this folio will be marked 1149 * finished (IOERR), and @folio is still kept locked. 1150 */ 1151 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1152 struct folio *folio, 1153 struct btrfs_bio_ctrl *bio_ctrl) 1154 { 1155 struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode); 1156 struct writeback_control *wbc = bio_ctrl->wbc; 1157 const bool is_subpage = btrfs_is_subpage(fs_info, folio->mapping); 1158 const u64 page_start = folio_pos(folio); 1159 const u64 page_end = page_start + folio_size(folio) - 1; 1160 unsigned long delalloc_bitmap = 0; 1161 /* 1162 * Save the last found delalloc end. As the delalloc end can go beyond 1163 * page boundary, thus we cannot rely on subpage bitmap to locate the 1164 * last delalloc end. 1165 */ 1166 u64 last_delalloc_end = 0; 1167 /* 1168 * The range end (exclusive) of the last successfully finished delalloc 1169 * range. 1170 * Any range covered by ordered extent must either be manually marked 1171 * finished (error handling), or has IO submitted (and finish the 1172 * ordered extent normally). 1173 * 1174 * This records the end of ordered extent cleanup if we hit an error. 1175 */ 1176 u64 last_finished_delalloc_end = page_start; 1177 u64 delalloc_start = page_start; 1178 u64 delalloc_end = page_end; 1179 u64 delalloc_to_write = 0; 1180 int ret = 0; 1181 int bit; 1182 1183 /* Save the dirty bitmap as our submission bitmap will be a subset of it. */ 1184 if (btrfs_is_subpage(fs_info, inode->vfs_inode.i_mapping)) { 1185 ASSERT(fs_info->sectors_per_page > 1); 1186 btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap); 1187 } else { 1188 bio_ctrl->submit_bitmap = 1; 1189 } 1190 1191 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) { 1192 u64 start = page_start + (bit << fs_info->sectorsize_bits); 1193 1194 btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize); 1195 } 1196 1197 /* Lock all (subpage) delalloc ranges inside the folio first. */ 1198 while (delalloc_start < page_end) { 1199 delalloc_end = page_end; 1200 if (!find_lock_delalloc_range(&inode->vfs_inode, folio, 1201 &delalloc_start, &delalloc_end)) { 1202 delalloc_start = delalloc_end + 1; 1203 continue; 1204 } 1205 set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start, 1206 min(delalloc_end, page_end) + 1 - delalloc_start); 1207 last_delalloc_end = delalloc_end; 1208 delalloc_start = delalloc_end + 1; 1209 } 1210 delalloc_start = page_start; 1211 1212 if (!last_delalloc_end) 1213 goto out; 1214 1215 /* Run the delalloc ranges for the above locked ranges. */ 1216 while (delalloc_start < page_end) { 1217 u64 found_start; 1218 u32 found_len; 1219 bool found; 1220 1221 if (!is_subpage) { 1222 /* 1223 * For non-subpage case, the found delalloc range must 1224 * cover this folio and there must be only one locked 1225 * delalloc range. 1226 */ 1227 found_start = page_start; 1228 found_len = last_delalloc_end + 1 - found_start; 1229 found = true; 1230 } else { 1231 found = find_next_delalloc_bitmap(folio, &delalloc_bitmap, 1232 delalloc_start, &found_start, &found_len); 1233 } 1234 if (!found) 1235 break; 1236 /* 1237 * The subpage range covers the last sector, the delalloc range may 1238 * end beyond the folio boundary, use the saved delalloc_end 1239 * instead. 1240 */ 1241 if (found_start + found_len >= page_end) 1242 found_len = last_delalloc_end + 1 - found_start; 1243 1244 if (ret >= 0) { 1245 /* 1246 * Some delalloc range may be created by previous folios. 1247 * Thus we still need to clean up this range during error 1248 * handling. 1249 */ 1250 last_finished_delalloc_end = found_start; 1251 /* No errors hit so far, run the current delalloc range. */ 1252 ret = btrfs_run_delalloc_range(inode, folio, 1253 found_start, 1254 found_start + found_len - 1, 1255 wbc); 1256 if (ret >= 0) 1257 last_finished_delalloc_end = found_start + found_len; 1258 if (unlikely(ret < 0)) 1259 btrfs_err_rl(fs_info, 1260 "failed to run delalloc range, root=%lld ino=%llu folio=%llu submit_bitmap=%*pbl start=%llu len=%u: %d", 1261 btrfs_root_id(inode->root), 1262 btrfs_ino(inode), 1263 folio_pos(folio), 1264 fs_info->sectors_per_page, 1265 &bio_ctrl->submit_bitmap, 1266 found_start, found_len, ret); 1267 } else { 1268 /* 1269 * We've hit an error during previous delalloc range, 1270 * have to cleanup the remaining locked ranges. 1271 */ 1272 unlock_extent(&inode->io_tree, found_start, 1273 found_start + found_len - 1, NULL); 1274 unlock_delalloc_folio(&inode->vfs_inode, folio, 1275 found_start, 1276 found_start + found_len - 1); 1277 } 1278 1279 /* 1280 * We have some ranges that's going to be submitted asynchronously 1281 * (compression or inline). These range have their own control 1282 * on when to unlock the pages. We should not touch them 1283 * anymore, so clear the range from the submission bitmap. 1284 */ 1285 if (ret > 0) { 1286 unsigned int start_bit = (found_start - page_start) >> 1287 fs_info->sectorsize_bits; 1288 unsigned int end_bit = (min(page_end + 1, found_start + found_len) - 1289 page_start) >> fs_info->sectorsize_bits; 1290 bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit); 1291 } 1292 /* 1293 * Above btrfs_run_delalloc_range() may have unlocked the folio, 1294 * thus for the last range, we cannot touch the folio anymore. 1295 */ 1296 if (found_start + found_len >= last_delalloc_end + 1) 1297 break; 1298 1299 delalloc_start = found_start + found_len; 1300 } 1301 /* 1302 * It's possible we had some ordered extents created before we hit 1303 * an error, cleanup non-async successfully created delalloc ranges. 1304 */ 1305 if (unlikely(ret < 0)) { 1306 unsigned int bitmap_size = min( 1307 (last_finished_delalloc_end - page_start) >> 1308 fs_info->sectorsize_bits, 1309 fs_info->sectors_per_page); 1310 1311 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size) 1312 btrfs_mark_ordered_io_finished(inode, folio, 1313 page_start + (bit << fs_info->sectorsize_bits), 1314 fs_info->sectorsize, false); 1315 return ret; 1316 } 1317 out: 1318 if (last_delalloc_end) 1319 delalloc_end = last_delalloc_end; 1320 else 1321 delalloc_end = page_end; 1322 /* 1323 * delalloc_end is already one less than the total length, so 1324 * we don't subtract one from PAGE_SIZE 1325 */ 1326 delalloc_to_write += 1327 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1328 1329 /* 1330 * If all ranges are submitted asynchronously, we just need to account 1331 * for them here. 1332 */ 1333 if (bitmap_empty(&bio_ctrl->submit_bitmap, fs_info->sectors_per_page)) { 1334 wbc->nr_to_write -= delalloc_to_write; 1335 return 1; 1336 } 1337 1338 if (wbc->nr_to_write < delalloc_to_write) { 1339 int thresh = 8192; 1340 1341 if (delalloc_to_write < thresh * 2) 1342 thresh = delalloc_to_write; 1343 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1344 thresh); 1345 } 1346 1347 return 0; 1348 } 1349 1350 /* 1351 * Return 0 if we have submitted or queued the sector for submission. 1352 * Return <0 for critical errors. 1353 * 1354 * Caller should make sure filepos < i_size and handle filepos >= i_size case. 1355 */ 1356 static int submit_one_sector(struct btrfs_inode *inode, 1357 struct folio *folio, 1358 u64 filepos, struct btrfs_bio_ctrl *bio_ctrl, 1359 loff_t i_size) 1360 { 1361 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1362 struct extent_map *em; 1363 u64 block_start; 1364 u64 disk_bytenr; 1365 u64 extent_offset; 1366 u64 em_end; 1367 const u32 sectorsize = fs_info->sectorsize; 1368 1369 ASSERT(IS_ALIGNED(filepos, sectorsize)); 1370 1371 /* @filepos >= i_size case should be handled by the caller. */ 1372 ASSERT(filepos < i_size); 1373 1374 em = btrfs_get_extent(inode, NULL, filepos, sectorsize); 1375 if (IS_ERR(em)) 1376 return PTR_ERR(em); 1377 1378 extent_offset = filepos - em->start; 1379 em_end = extent_map_end(em); 1380 ASSERT(filepos <= em_end); 1381 ASSERT(IS_ALIGNED(em->start, sectorsize)); 1382 ASSERT(IS_ALIGNED(em->len, sectorsize)); 1383 1384 block_start = extent_map_block_start(em); 1385 disk_bytenr = extent_map_block_start(em) + extent_offset; 1386 1387 ASSERT(!extent_map_is_compressed(em)); 1388 ASSERT(block_start != EXTENT_MAP_HOLE); 1389 ASSERT(block_start != EXTENT_MAP_INLINE); 1390 1391 free_extent_map(em); 1392 em = NULL; 1393 1394 /* 1395 * Although the PageDirty bit is cleared before entering this 1396 * function, subpage dirty bit is not cleared. 1397 * So clear subpage dirty bit here so next time we won't submit 1398 * a folio for a range already written to disk. 1399 */ 1400 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize); 1401 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize); 1402 /* 1403 * Above call should set the whole folio with writeback flag, even 1404 * just for a single subpage sector. 1405 * As long as the folio is properly locked and the range is correct, 1406 * we should always get the folio with writeback flag. 1407 */ 1408 ASSERT(folio_test_writeback(folio)); 1409 1410 submit_extent_folio(bio_ctrl, disk_bytenr, folio, 1411 sectorsize, filepos - folio_pos(folio)); 1412 return 0; 1413 } 1414 1415 /* 1416 * Helper for extent_writepage(). This calls the writepage start hooks, 1417 * and does the loop to map the page into extents and bios. 1418 * 1419 * We return 1 if the IO is started and the page is unlocked, 1420 * 0 if all went well (page still locked) 1421 * < 0 if there were errors (page still locked) 1422 */ 1423 static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode, 1424 struct folio *folio, 1425 u64 start, u32 len, 1426 struct btrfs_bio_ctrl *bio_ctrl, 1427 loff_t i_size) 1428 { 1429 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1430 unsigned long range_bitmap = 0; 1431 bool submitted_io = false; 1432 bool error = false; 1433 const u64 folio_start = folio_pos(folio); 1434 u64 cur; 1435 int bit; 1436 int ret = 0; 1437 1438 ASSERT(start >= folio_start && 1439 start + len <= folio_start + folio_size(folio)); 1440 1441 ret = btrfs_writepage_cow_fixup(folio); 1442 if (ret) { 1443 /* Fixup worker will requeue */ 1444 folio_redirty_for_writepage(bio_ctrl->wbc, folio); 1445 folio_unlock(folio); 1446 return 1; 1447 } 1448 1449 for (cur = start; cur < start + len; cur += fs_info->sectorsize) 1450 set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap); 1451 bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap, 1452 fs_info->sectors_per_page); 1453 1454 bio_ctrl->end_io_func = end_bbio_data_write; 1455 1456 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) { 1457 cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits); 1458 1459 if (cur >= i_size) { 1460 btrfs_mark_ordered_io_finished(inode, folio, cur, 1461 start + len - cur, true); 1462 /* 1463 * This range is beyond i_size, thus we don't need to 1464 * bother writing back. 1465 * But we still need to clear the dirty subpage bit, or 1466 * the next time the folio gets dirtied, we will try to 1467 * writeback the sectors with subpage dirty bits, 1468 * causing writeback without ordered extent. 1469 */ 1470 btrfs_folio_clear_dirty(fs_info, folio, cur, 1471 start + len - cur); 1472 break; 1473 } 1474 ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size); 1475 if (unlikely(ret < 0)) { 1476 /* 1477 * bio_ctrl may contain a bio crossing several folios. 1478 * Submit it immediately so that the bio has a chance 1479 * to finish normally, other than marked as error. 1480 */ 1481 submit_one_bio(bio_ctrl); 1482 /* 1483 * Failed to grab the extent map which should be very rare. 1484 * Since there is no bio submitted to finish the ordered 1485 * extent, we have to manually finish this sector. 1486 */ 1487 btrfs_mark_ordered_io_finished(inode, folio, cur, 1488 fs_info->sectorsize, false); 1489 error = true; 1490 continue; 1491 } 1492 submitted_io = true; 1493 } 1494 1495 /* 1496 * If we didn't submitted any sector (>= i_size), folio dirty get 1497 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared 1498 * by folio_start_writeback() if the folio is not dirty). 1499 * 1500 * Here we set writeback and clear for the range. If the full folio 1501 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag. 1502 * 1503 * If we hit any error, the corresponding sector will still be dirty 1504 * thus no need to clear PAGECACHE_TAG_DIRTY. 1505 */ 1506 if (!submitted_io && !error) { 1507 btrfs_folio_set_writeback(fs_info, folio, start, len); 1508 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1509 } 1510 return ret; 1511 } 1512 1513 /* 1514 * the writepage semantics are similar to regular writepage. extent 1515 * records are inserted to lock ranges in the tree, and as dirty areas 1516 * are found, they are marked writeback. Then the lock bits are removed 1517 * and the end_io handler clears the writeback ranges 1518 * 1519 * Return 0 if everything goes well. 1520 * Return <0 for error. 1521 */ 1522 static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl) 1523 { 1524 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 1525 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1526 int ret; 1527 size_t pg_offset; 1528 loff_t i_size = i_size_read(&inode->vfs_inode); 1529 unsigned long end_index = i_size >> PAGE_SHIFT; 1530 1531 trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc); 1532 1533 WARN_ON(!folio_test_locked(folio)); 1534 1535 pg_offset = offset_in_folio(folio, i_size); 1536 if (folio->index > end_index || 1537 (folio->index == end_index && !pg_offset)) { 1538 folio_invalidate(folio, 0, folio_size(folio)); 1539 folio_unlock(folio); 1540 return 0; 1541 } 1542 1543 if (folio->index == end_index) 1544 folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset); 1545 1546 /* 1547 * Default to unlock the whole folio. 1548 * The proper bitmap can only be initialized until writepage_delalloc(). 1549 */ 1550 bio_ctrl->submit_bitmap = (unsigned long)-1; 1551 ret = set_folio_extent_mapped(folio); 1552 if (ret < 0) 1553 goto done; 1554 1555 ret = writepage_delalloc(inode, folio, bio_ctrl); 1556 if (ret == 1) 1557 return 0; 1558 if (ret) 1559 goto done; 1560 1561 ret = extent_writepage_io(inode, folio, folio_pos(folio), 1562 PAGE_SIZE, bio_ctrl, i_size); 1563 if (ret == 1) 1564 return 0; 1565 if (ret < 0) 1566 btrfs_err_rl(fs_info, 1567 "failed to submit blocks, root=%lld inode=%llu folio=%llu submit_bitmap=%*pbl: %d", 1568 btrfs_root_id(inode->root), btrfs_ino(inode), 1569 folio_pos(folio), fs_info->sectors_per_page, 1570 &bio_ctrl->submit_bitmap, ret); 1571 1572 bio_ctrl->wbc->nr_to_write--; 1573 1574 done: 1575 if (ret < 0) 1576 mapping_set_error(folio->mapping, ret); 1577 /* 1578 * Only unlock ranges that are submitted. As there can be some async 1579 * submitted ranges inside the folio. 1580 */ 1581 btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap); 1582 ASSERT(ret <= 0); 1583 return ret; 1584 } 1585 1586 /* 1587 * Lock extent buffer status and pages for writeback. 1588 * 1589 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1590 * extent buffer is not dirty) 1591 * Return %true is the extent buffer is submitted to bio. 1592 */ 1593 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1594 struct writeback_control *wbc) 1595 { 1596 struct btrfs_fs_info *fs_info = eb->fs_info; 1597 bool ret = false; 1598 1599 btrfs_tree_lock(eb); 1600 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1601 btrfs_tree_unlock(eb); 1602 if (wbc->sync_mode != WB_SYNC_ALL) 1603 return false; 1604 wait_on_extent_buffer_writeback(eb); 1605 btrfs_tree_lock(eb); 1606 } 1607 1608 /* 1609 * We need to do this to prevent races in people who check if the eb is 1610 * under IO since we can end up having no IO bits set for a short period 1611 * of time. 1612 */ 1613 spin_lock(&eb->refs_lock); 1614 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1615 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1616 spin_unlock(&eb->refs_lock); 1617 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1618 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1619 -eb->len, 1620 fs_info->dirty_metadata_batch); 1621 ret = true; 1622 } else { 1623 spin_unlock(&eb->refs_lock); 1624 } 1625 btrfs_tree_unlock(eb); 1626 return ret; 1627 } 1628 1629 static void set_btree_ioerr(struct extent_buffer *eb) 1630 { 1631 struct btrfs_fs_info *fs_info = eb->fs_info; 1632 1633 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1634 1635 /* 1636 * A read may stumble upon this buffer later, make sure that it gets an 1637 * error and knows there was an error. 1638 */ 1639 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1640 1641 /* 1642 * We need to set the mapping with the io error as well because a write 1643 * error will flip the file system readonly, and then syncfs() will 1644 * return a 0 because we are readonly if we don't modify the err seq for 1645 * the superblock. 1646 */ 1647 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1648 1649 /* 1650 * If writeback for a btree extent that doesn't belong to a log tree 1651 * failed, increment the counter transaction->eb_write_errors. 1652 * We do this because while the transaction is running and before it's 1653 * committing (when we call filemap_fdata[write|wait]_range against 1654 * the btree inode), we might have 1655 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1656 * returns an error or an error happens during writeback, when we're 1657 * committing the transaction we wouldn't know about it, since the pages 1658 * can be no longer dirty nor marked anymore for writeback (if a 1659 * subsequent modification to the extent buffer didn't happen before the 1660 * transaction commit), which makes filemap_fdata[write|wait]_range not 1661 * able to find the pages which contain errors at transaction 1662 * commit time. So if this happens we must abort the transaction, 1663 * otherwise we commit a super block with btree roots that point to 1664 * btree nodes/leafs whose content on disk is invalid - either garbage 1665 * or the content of some node/leaf from a past generation that got 1666 * cowed or deleted and is no longer valid. 1667 * 1668 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1669 * not be enough - we need to distinguish between log tree extents vs 1670 * non-log tree extents, and the next filemap_fdatawait_range() call 1671 * will catch and clear such errors in the mapping - and that call might 1672 * be from a log sync and not from a transaction commit. Also, checking 1673 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1674 * not done and would not be reliable - the eb might have been released 1675 * from memory and reading it back again means that flag would not be 1676 * set (since it's a runtime flag, not persisted on disk). 1677 * 1678 * Using the flags below in the btree inode also makes us achieve the 1679 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1680 * writeback for all dirty pages and before filemap_fdatawait_range() 1681 * is called, the writeback for all dirty pages had already finished 1682 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1683 * filemap_fdatawait_range() would return success, as it could not know 1684 * that writeback errors happened (the pages were no longer tagged for 1685 * writeback). 1686 */ 1687 switch (eb->log_index) { 1688 case -1: 1689 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1690 break; 1691 case 0: 1692 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1693 break; 1694 case 1: 1695 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1696 break; 1697 default: 1698 BUG(); /* unexpected, logic error */ 1699 } 1700 } 1701 1702 /* 1703 * The endio specific version which won't touch any unsafe spinlock in endio 1704 * context. 1705 */ 1706 static struct extent_buffer *find_extent_buffer_nolock( 1707 const struct btrfs_fs_info *fs_info, u64 start) 1708 { 1709 struct extent_buffer *eb; 1710 1711 rcu_read_lock(); 1712 eb = radix_tree_lookup(&fs_info->buffer_radix, 1713 start >> fs_info->sectorsize_bits); 1714 if (eb && atomic_inc_not_zero(&eb->refs)) { 1715 rcu_read_unlock(); 1716 return eb; 1717 } 1718 rcu_read_unlock(); 1719 return NULL; 1720 } 1721 1722 static void end_bbio_meta_write(struct btrfs_bio *bbio) 1723 { 1724 struct extent_buffer *eb = bbio->private; 1725 struct btrfs_fs_info *fs_info = eb->fs_info; 1726 struct folio_iter fi; 1727 u32 bio_offset = 0; 1728 1729 if (bbio->bio.bi_status != BLK_STS_OK) 1730 set_btree_ioerr(eb); 1731 1732 bio_for_each_folio_all(fi, &bbio->bio) { 1733 u64 start = eb->start + bio_offset; 1734 struct folio *folio = fi.folio; 1735 u32 len = fi.length; 1736 1737 btrfs_folio_clear_writeback(fs_info, folio, start, len); 1738 bio_offset += len; 1739 } 1740 1741 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1742 smp_mb__after_atomic(); 1743 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 1744 1745 bio_put(&bbio->bio); 1746 } 1747 1748 static void prepare_eb_write(struct extent_buffer *eb) 1749 { 1750 u32 nritems; 1751 unsigned long start; 1752 unsigned long end; 1753 1754 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1755 1756 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 1757 nritems = btrfs_header_nritems(eb); 1758 if (btrfs_header_level(eb) > 0) { 1759 end = btrfs_node_key_ptr_offset(eb, nritems); 1760 memzero_extent_buffer(eb, end, eb->len - end); 1761 } else { 1762 /* 1763 * Leaf: 1764 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 1765 */ 1766 start = btrfs_item_nr_offset(eb, nritems); 1767 end = btrfs_item_nr_offset(eb, 0); 1768 if (nritems == 0) 1769 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 1770 else 1771 end += btrfs_item_offset(eb, nritems - 1); 1772 memzero_extent_buffer(eb, start, end - start); 1773 } 1774 } 1775 1776 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 1777 struct writeback_control *wbc) 1778 { 1779 struct btrfs_fs_info *fs_info = eb->fs_info; 1780 struct btrfs_bio *bbio; 1781 1782 prepare_eb_write(eb); 1783 1784 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 1785 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 1786 eb->fs_info, end_bbio_meta_write, eb); 1787 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 1788 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 1789 wbc_init_bio(wbc, &bbio->bio); 1790 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 1791 bbio->file_offset = eb->start; 1792 if (fs_info->nodesize < PAGE_SIZE) { 1793 struct folio *folio = eb->folios[0]; 1794 bool ret; 1795 1796 folio_lock(folio); 1797 btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len); 1798 if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, 1799 eb->len)) { 1800 folio_clear_dirty_for_io(folio); 1801 wbc->nr_to_write--; 1802 } 1803 ret = bio_add_folio(&bbio->bio, folio, eb->len, 1804 eb->start - folio_pos(folio)); 1805 ASSERT(ret); 1806 wbc_account_cgroup_owner(wbc, folio, eb->len); 1807 folio_unlock(folio); 1808 } else { 1809 int num_folios = num_extent_folios(eb); 1810 1811 for (int i = 0; i < num_folios; i++) { 1812 struct folio *folio = eb->folios[i]; 1813 bool ret; 1814 1815 folio_lock(folio); 1816 folio_clear_dirty_for_io(folio); 1817 folio_start_writeback(folio); 1818 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0); 1819 ASSERT(ret); 1820 wbc_account_cgroup_owner(wbc, folio, eb->folio_size); 1821 wbc->nr_to_write -= folio_nr_pages(folio); 1822 folio_unlock(folio); 1823 } 1824 } 1825 btrfs_submit_bbio(bbio, 0); 1826 } 1827 1828 /* 1829 * Submit one subpage btree page. 1830 * 1831 * The main difference to submit_eb_page() is: 1832 * - Page locking 1833 * For subpage, we don't rely on page locking at all. 1834 * 1835 * - Flush write bio 1836 * We only flush bio if we may be unable to fit current extent buffers into 1837 * current bio. 1838 * 1839 * Return >=0 for the number of submitted extent buffers. 1840 * Return <0 for fatal error. 1841 */ 1842 static int submit_eb_subpage(struct folio *folio, struct writeback_control *wbc) 1843 { 1844 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 1845 int submitted = 0; 1846 u64 folio_start = folio_pos(folio); 1847 int bit_start = 0; 1848 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 1849 1850 /* Lock and write each dirty extent buffers in the range */ 1851 while (bit_start < fs_info->sectors_per_page) { 1852 struct btrfs_subpage *subpage = folio_get_private(folio); 1853 struct extent_buffer *eb; 1854 unsigned long flags; 1855 u64 start; 1856 1857 /* 1858 * Take private lock to ensure the subpage won't be detached 1859 * in the meantime. 1860 */ 1861 spin_lock(&folio->mapping->i_private_lock); 1862 if (!folio_test_private(folio)) { 1863 spin_unlock(&folio->mapping->i_private_lock); 1864 break; 1865 } 1866 spin_lock_irqsave(&subpage->lock, flags); 1867 if (!test_bit(bit_start + btrfs_bitmap_nr_dirty * fs_info->sectors_per_page, 1868 subpage->bitmaps)) { 1869 spin_unlock_irqrestore(&subpage->lock, flags); 1870 spin_unlock(&folio->mapping->i_private_lock); 1871 bit_start++; 1872 continue; 1873 } 1874 1875 start = folio_start + bit_start * fs_info->sectorsize; 1876 bit_start += sectors_per_node; 1877 1878 /* 1879 * Here we just want to grab the eb without touching extra 1880 * spin locks, so call find_extent_buffer_nolock(). 1881 */ 1882 eb = find_extent_buffer_nolock(fs_info, start); 1883 spin_unlock_irqrestore(&subpage->lock, flags); 1884 spin_unlock(&folio->mapping->i_private_lock); 1885 1886 /* 1887 * The eb has already reached 0 refs thus find_extent_buffer() 1888 * doesn't return it. We don't need to write back such eb 1889 * anyway. 1890 */ 1891 if (!eb) 1892 continue; 1893 1894 if (lock_extent_buffer_for_io(eb, wbc)) { 1895 write_one_eb(eb, wbc); 1896 submitted++; 1897 } 1898 free_extent_buffer(eb); 1899 } 1900 return submitted; 1901 } 1902 1903 /* 1904 * Submit all page(s) of one extent buffer. 1905 * 1906 * @page: the page of one extent buffer 1907 * @eb_context: to determine if we need to submit this page, if current page 1908 * belongs to this eb, we don't need to submit 1909 * 1910 * The caller should pass each page in their bytenr order, and here we use 1911 * @eb_context to determine if we have submitted pages of one extent buffer. 1912 * 1913 * If we have, we just skip until we hit a new page that doesn't belong to 1914 * current @eb_context. 1915 * 1916 * If not, we submit all the page(s) of the extent buffer. 1917 * 1918 * Return >0 if we have submitted the extent buffer successfully. 1919 * Return 0 if we don't need to submit the page, as it's already submitted by 1920 * previous call. 1921 * Return <0 for fatal error. 1922 */ 1923 static int submit_eb_page(struct folio *folio, struct btrfs_eb_write_context *ctx) 1924 { 1925 struct writeback_control *wbc = ctx->wbc; 1926 struct address_space *mapping = folio->mapping; 1927 struct extent_buffer *eb; 1928 int ret; 1929 1930 if (!folio_test_private(folio)) 1931 return 0; 1932 1933 if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE) 1934 return submit_eb_subpage(folio, wbc); 1935 1936 spin_lock(&mapping->i_private_lock); 1937 if (!folio_test_private(folio)) { 1938 spin_unlock(&mapping->i_private_lock); 1939 return 0; 1940 } 1941 1942 eb = folio_get_private(folio); 1943 1944 /* 1945 * Shouldn't happen and normally this would be a BUG_ON but no point 1946 * crashing the machine for something we can survive anyway. 1947 */ 1948 if (WARN_ON(!eb)) { 1949 spin_unlock(&mapping->i_private_lock); 1950 return 0; 1951 } 1952 1953 if (eb == ctx->eb) { 1954 spin_unlock(&mapping->i_private_lock); 1955 return 0; 1956 } 1957 ret = atomic_inc_not_zero(&eb->refs); 1958 spin_unlock(&mapping->i_private_lock); 1959 if (!ret) 1960 return 0; 1961 1962 ctx->eb = eb; 1963 1964 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx); 1965 if (ret) { 1966 if (ret == -EBUSY) 1967 ret = 0; 1968 free_extent_buffer(eb); 1969 return ret; 1970 } 1971 1972 if (!lock_extent_buffer_for_io(eb, wbc)) { 1973 free_extent_buffer(eb); 1974 return 0; 1975 } 1976 /* Implies write in zoned mode. */ 1977 if (ctx->zoned_bg) { 1978 /* Mark the last eb in the block group. */ 1979 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb); 1980 ctx->zoned_bg->meta_write_pointer += eb->len; 1981 } 1982 write_one_eb(eb, wbc); 1983 free_extent_buffer(eb); 1984 return 1; 1985 } 1986 1987 int btree_write_cache_pages(struct address_space *mapping, 1988 struct writeback_control *wbc) 1989 { 1990 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 1991 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 1992 int ret = 0; 1993 int done = 0; 1994 int nr_to_write_done = 0; 1995 struct folio_batch fbatch; 1996 unsigned int nr_folios; 1997 pgoff_t index; 1998 pgoff_t end; /* Inclusive */ 1999 int scanned = 0; 2000 xa_mark_t tag; 2001 2002 folio_batch_init(&fbatch); 2003 if (wbc->range_cyclic) { 2004 index = mapping->writeback_index; /* Start from prev offset */ 2005 end = -1; 2006 /* 2007 * Start from the beginning does not need to cycle over the 2008 * range, mark it as scanned. 2009 */ 2010 scanned = (index == 0); 2011 } else { 2012 index = wbc->range_start >> PAGE_SHIFT; 2013 end = wbc->range_end >> PAGE_SHIFT; 2014 scanned = 1; 2015 } 2016 if (wbc->sync_mode == WB_SYNC_ALL) 2017 tag = PAGECACHE_TAG_TOWRITE; 2018 else 2019 tag = PAGECACHE_TAG_DIRTY; 2020 btrfs_zoned_meta_io_lock(fs_info); 2021 retry: 2022 if (wbc->sync_mode == WB_SYNC_ALL) 2023 tag_pages_for_writeback(mapping, index, end); 2024 while (!done && !nr_to_write_done && (index <= end) && 2025 (nr_folios = filemap_get_folios_tag(mapping, &index, end, 2026 tag, &fbatch))) { 2027 unsigned i; 2028 2029 for (i = 0; i < nr_folios; i++) { 2030 struct folio *folio = fbatch.folios[i]; 2031 2032 ret = submit_eb_page(folio, &ctx); 2033 if (ret == 0) 2034 continue; 2035 if (ret < 0) { 2036 done = 1; 2037 break; 2038 } 2039 2040 /* 2041 * the filesystem may choose to bump up nr_to_write. 2042 * We have to make sure to honor the new nr_to_write 2043 * at any time 2044 */ 2045 nr_to_write_done = wbc->nr_to_write <= 0; 2046 } 2047 folio_batch_release(&fbatch); 2048 cond_resched(); 2049 } 2050 if (!scanned && !done) { 2051 /* 2052 * We hit the last page and there is more work to be done: wrap 2053 * back to the start of the file 2054 */ 2055 scanned = 1; 2056 index = 0; 2057 goto retry; 2058 } 2059 /* 2060 * If something went wrong, don't allow any metadata write bio to be 2061 * submitted. 2062 * 2063 * This would prevent use-after-free if we had dirty pages not 2064 * cleaned up, which can still happen by fuzzed images. 2065 * 2066 * - Bad extent tree 2067 * Allowing existing tree block to be allocated for other trees. 2068 * 2069 * - Log tree operations 2070 * Exiting tree blocks get allocated to log tree, bumps its 2071 * generation, then get cleaned in tree re-balance. 2072 * Such tree block will not be written back, since it's clean, 2073 * thus no WRITTEN flag set. 2074 * And after log writes back, this tree block is not traced by 2075 * any dirty extent_io_tree. 2076 * 2077 * - Offending tree block gets re-dirtied from its original owner 2078 * Since it has bumped generation, no WRITTEN flag, it can be 2079 * reused without COWing. This tree block will not be traced 2080 * by btrfs_transaction::dirty_pages. 2081 * 2082 * Now such dirty tree block will not be cleaned by any dirty 2083 * extent io tree. Thus we don't want to submit such wild eb 2084 * if the fs already has error. 2085 * 2086 * We can get ret > 0 from submit_extent_folio() indicating how many ebs 2087 * were submitted. Reset it to 0 to avoid false alerts for the caller. 2088 */ 2089 if (ret > 0) 2090 ret = 0; 2091 if (!ret && BTRFS_FS_ERROR(fs_info)) 2092 ret = -EROFS; 2093 2094 if (ctx.zoned_bg) 2095 btrfs_put_block_group(ctx.zoned_bg); 2096 btrfs_zoned_meta_io_unlock(fs_info); 2097 return ret; 2098 } 2099 2100 /* 2101 * Walk the list of dirty pages of the given address space and write all of them. 2102 * 2103 * @mapping: address space structure to write 2104 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2105 * @bio_ctrl: holds context for the write, namely the bio 2106 * 2107 * If a page is already under I/O, write_cache_pages() skips it, even 2108 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2109 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2110 * and msync() need to guarantee that all the data which was dirty at the time 2111 * the call was made get new I/O started against them. If wbc->sync_mode is 2112 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2113 * existing IO to complete. 2114 */ 2115 static int extent_write_cache_pages(struct address_space *mapping, 2116 struct btrfs_bio_ctrl *bio_ctrl) 2117 { 2118 struct writeback_control *wbc = bio_ctrl->wbc; 2119 struct inode *inode = mapping->host; 2120 int ret = 0; 2121 int done = 0; 2122 int nr_to_write_done = 0; 2123 struct folio_batch fbatch; 2124 unsigned int nr_folios; 2125 pgoff_t index; 2126 pgoff_t end; /* Inclusive */ 2127 pgoff_t done_index; 2128 int range_whole = 0; 2129 int scanned = 0; 2130 xa_mark_t tag; 2131 2132 /* 2133 * We have to hold onto the inode so that ordered extents can do their 2134 * work when the IO finishes. The alternative to this is failing to add 2135 * an ordered extent if the igrab() fails there and that is a huge pain 2136 * to deal with, so instead just hold onto the inode throughout the 2137 * writepages operation. If it fails here we are freeing up the inode 2138 * anyway and we'd rather not waste our time writing out stuff that is 2139 * going to be truncated anyway. 2140 */ 2141 if (!igrab(inode)) 2142 return 0; 2143 2144 folio_batch_init(&fbatch); 2145 if (wbc->range_cyclic) { 2146 index = mapping->writeback_index; /* Start from prev offset */ 2147 end = -1; 2148 /* 2149 * Start from the beginning does not need to cycle over the 2150 * range, mark it as scanned. 2151 */ 2152 scanned = (index == 0); 2153 } else { 2154 index = wbc->range_start >> PAGE_SHIFT; 2155 end = wbc->range_end >> PAGE_SHIFT; 2156 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2157 range_whole = 1; 2158 scanned = 1; 2159 } 2160 2161 /* 2162 * We do the tagged writepage as long as the snapshot flush bit is set 2163 * and we are the first one who do the filemap_flush() on this inode. 2164 * 2165 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2166 * not race in and drop the bit. 2167 */ 2168 if (range_whole && wbc->nr_to_write == LONG_MAX && 2169 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2170 &BTRFS_I(inode)->runtime_flags)) 2171 wbc->tagged_writepages = 1; 2172 2173 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2174 tag = PAGECACHE_TAG_TOWRITE; 2175 else 2176 tag = PAGECACHE_TAG_DIRTY; 2177 retry: 2178 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2179 tag_pages_for_writeback(mapping, index, end); 2180 done_index = index; 2181 while (!done && !nr_to_write_done && (index <= end) && 2182 (nr_folios = filemap_get_folios_tag(mapping, &index, 2183 end, tag, &fbatch))) { 2184 unsigned i; 2185 2186 for (i = 0; i < nr_folios; i++) { 2187 struct folio *folio = fbatch.folios[i]; 2188 2189 done_index = folio_next_index(folio); 2190 /* 2191 * At this point we hold neither the i_pages lock nor 2192 * the page lock: the page may be truncated or 2193 * invalidated (changing page->mapping to NULL), 2194 * or even swizzled back from swapper_space to 2195 * tmpfs file mapping 2196 */ 2197 if (!folio_trylock(folio)) { 2198 submit_write_bio(bio_ctrl, 0); 2199 folio_lock(folio); 2200 } 2201 2202 if (unlikely(folio->mapping != mapping)) { 2203 folio_unlock(folio); 2204 continue; 2205 } 2206 2207 if (!folio_test_dirty(folio)) { 2208 /* Someone wrote it for us. */ 2209 folio_unlock(folio); 2210 continue; 2211 } 2212 2213 /* 2214 * For subpage case, compression can lead to mixed 2215 * writeback and dirty flags, e.g: 2216 * 0 32K 64K 96K 128K 2217 * | |//////||/////| |//| 2218 * 2219 * In above case, [32K, 96K) is asynchronously submitted 2220 * for compression, and [124K, 128K) needs to be written back. 2221 * 2222 * If we didn't wait wrtiteback for page 64K, [128K, 128K) 2223 * won't be submitted as the page still has writeback flag 2224 * and will be skipped in the next check. 2225 * 2226 * This mixed writeback and dirty case is only possible for 2227 * subpage case. 2228 * 2229 * TODO: Remove this check after migrating compression to 2230 * regular submission. 2231 */ 2232 if (wbc->sync_mode != WB_SYNC_NONE || 2233 btrfs_is_subpage(inode_to_fs_info(inode), mapping)) { 2234 if (folio_test_writeback(folio)) 2235 submit_write_bio(bio_ctrl, 0); 2236 folio_wait_writeback(folio); 2237 } 2238 2239 if (folio_test_writeback(folio) || 2240 !folio_clear_dirty_for_io(folio)) { 2241 folio_unlock(folio); 2242 continue; 2243 } 2244 2245 ret = extent_writepage(folio, bio_ctrl); 2246 if (ret < 0) { 2247 done = 1; 2248 break; 2249 } 2250 2251 /* 2252 * The filesystem may choose to bump up nr_to_write. 2253 * We have to make sure to honor the new nr_to_write 2254 * at any time. 2255 */ 2256 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2257 wbc->nr_to_write <= 0); 2258 } 2259 folio_batch_release(&fbatch); 2260 cond_resched(); 2261 } 2262 if (!scanned && !done) { 2263 /* 2264 * We hit the last page and there is more work to be done: wrap 2265 * back to the start of the file 2266 */ 2267 scanned = 1; 2268 index = 0; 2269 2270 /* 2271 * If we're looping we could run into a page that is locked by a 2272 * writer and that writer could be waiting on writeback for a 2273 * page in our current bio, and thus deadlock, so flush the 2274 * write bio here. 2275 */ 2276 submit_write_bio(bio_ctrl, 0); 2277 goto retry; 2278 } 2279 2280 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2281 mapping->writeback_index = done_index; 2282 2283 btrfs_add_delayed_iput(BTRFS_I(inode)); 2284 return ret; 2285 } 2286 2287 /* 2288 * Submit the pages in the range to bio for call sites which delalloc range has 2289 * already been ran (aka, ordered extent inserted) and all pages are still 2290 * locked. 2291 */ 2292 void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio, 2293 u64 start, u64 end, struct writeback_control *wbc, 2294 bool pages_dirty) 2295 { 2296 bool found_error = false; 2297 int ret = 0; 2298 struct address_space *mapping = inode->i_mapping; 2299 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2300 const u32 sectorsize = fs_info->sectorsize; 2301 loff_t i_size = i_size_read(inode); 2302 u64 cur = start; 2303 struct btrfs_bio_ctrl bio_ctrl = { 2304 .wbc = wbc, 2305 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2306 }; 2307 2308 if (wbc->no_cgroup_owner) 2309 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2310 2311 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2312 2313 while (cur <= end) { 2314 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2315 u32 cur_len = cur_end + 1 - cur; 2316 struct folio *folio; 2317 2318 folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT); 2319 2320 /* 2321 * This shouldn't happen, the pages are pinned and locked, this 2322 * code is just in case, but shouldn't actually be run. 2323 */ 2324 if (IS_ERR(folio)) { 2325 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL, 2326 cur, cur_len, false); 2327 mapping_set_error(mapping, PTR_ERR(folio)); 2328 cur = cur_end + 1; 2329 continue; 2330 } 2331 2332 ASSERT(folio_test_locked(folio)); 2333 if (pages_dirty && folio != locked_folio) 2334 ASSERT(folio_test_dirty(folio)); 2335 2336 /* 2337 * Set the submission bitmap to submit all sectors. 2338 * extent_writepage_io() will do the truncation correctly. 2339 */ 2340 bio_ctrl.submit_bitmap = (unsigned long)-1; 2341 ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len, 2342 &bio_ctrl, i_size); 2343 if (ret == 1) 2344 goto next_page; 2345 2346 if (ret) 2347 mapping_set_error(mapping, ret); 2348 btrfs_folio_end_lock(fs_info, folio, cur, cur_len); 2349 if (ret < 0) 2350 found_error = true; 2351 next_page: 2352 folio_put(folio); 2353 cur = cur_end + 1; 2354 } 2355 2356 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2357 } 2358 2359 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc) 2360 { 2361 struct inode *inode = mapping->host; 2362 int ret = 0; 2363 struct btrfs_bio_ctrl bio_ctrl = { 2364 .wbc = wbc, 2365 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2366 }; 2367 2368 /* 2369 * Allow only a single thread to do the reloc work in zoned mode to 2370 * protect the write pointer updates. 2371 */ 2372 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2373 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2374 submit_write_bio(&bio_ctrl, ret); 2375 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2376 return ret; 2377 } 2378 2379 void btrfs_readahead(struct readahead_control *rac) 2380 { 2381 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD }; 2382 struct folio *folio; 2383 struct extent_map *em_cached = NULL; 2384 u64 prev_em_start = (u64)-1; 2385 2386 while ((folio = readahead_folio(rac)) != NULL) 2387 btrfs_do_readpage(folio, &em_cached, &bio_ctrl, &prev_em_start); 2388 2389 if (em_cached) 2390 free_extent_map(em_cached); 2391 submit_one_bio(&bio_ctrl); 2392 } 2393 2394 /* 2395 * basic invalidate_folio code, this waits on any locked or writeback 2396 * ranges corresponding to the folio, and then deletes any extent state 2397 * records from the tree 2398 */ 2399 int extent_invalidate_folio(struct extent_io_tree *tree, 2400 struct folio *folio, size_t offset) 2401 { 2402 struct extent_state *cached_state = NULL; 2403 u64 start = folio_pos(folio); 2404 u64 end = start + folio_size(folio) - 1; 2405 size_t blocksize = folio_to_fs_info(folio)->sectorsize; 2406 2407 /* This function is only called for the btree inode */ 2408 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2409 2410 start += ALIGN(offset, blocksize); 2411 if (start > end) 2412 return 0; 2413 2414 lock_extent(tree, start, end, &cached_state); 2415 folio_wait_writeback(folio); 2416 2417 /* 2418 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2419 * so here we only need to unlock the extent range to free any 2420 * existing extent state. 2421 */ 2422 unlock_extent(tree, start, end, &cached_state); 2423 return 0; 2424 } 2425 2426 /* 2427 * a helper for release_folio, this tests for areas of the page that 2428 * are locked or under IO and drops the related state bits if it is safe 2429 * to drop the page. 2430 */ 2431 static bool try_release_extent_state(struct extent_io_tree *tree, 2432 struct folio *folio) 2433 { 2434 u64 start = folio_pos(folio); 2435 u64 end = start + PAGE_SIZE - 1; 2436 bool ret; 2437 2438 if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) { 2439 ret = false; 2440 } else { 2441 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 2442 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS | 2443 EXTENT_QGROUP_RESERVED); 2444 int ret2; 2445 2446 /* 2447 * At this point we can safely clear everything except the 2448 * locked bit, the nodatasum bit and the delalloc new bit. 2449 * The delalloc new bit will be cleared by ordered extent 2450 * completion. 2451 */ 2452 ret2 = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL); 2453 2454 /* if clear_extent_bit failed for enomem reasons, 2455 * we can't allow the release to continue. 2456 */ 2457 if (ret2 < 0) 2458 ret = false; 2459 else 2460 ret = true; 2461 } 2462 return ret; 2463 } 2464 2465 /* 2466 * a helper for release_folio. As long as there are no locked extents 2467 * in the range corresponding to the page, both state records and extent 2468 * map records are removed 2469 */ 2470 bool try_release_extent_mapping(struct folio *folio, gfp_t mask) 2471 { 2472 u64 start = folio_pos(folio); 2473 u64 end = start + PAGE_SIZE - 1; 2474 struct btrfs_inode *inode = folio_to_inode(folio); 2475 struct extent_io_tree *io_tree = &inode->io_tree; 2476 2477 while (start <= end) { 2478 const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info); 2479 const u64 len = end - start + 1; 2480 struct extent_map_tree *extent_tree = &inode->extent_tree; 2481 struct extent_map *em; 2482 2483 write_lock(&extent_tree->lock); 2484 em = lookup_extent_mapping(extent_tree, start, len); 2485 if (!em) { 2486 write_unlock(&extent_tree->lock); 2487 break; 2488 } 2489 if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) { 2490 write_unlock(&extent_tree->lock); 2491 free_extent_map(em); 2492 break; 2493 } 2494 if (test_range_bit_exists(io_tree, em->start, 2495 extent_map_end(em) - 1, EXTENT_LOCKED)) 2496 goto next; 2497 /* 2498 * If it's not in the list of modified extents, used by a fast 2499 * fsync, we can remove it. If it's being logged we can safely 2500 * remove it since fsync took an extra reference on the em. 2501 */ 2502 if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING)) 2503 goto remove_em; 2504 /* 2505 * If it's in the list of modified extents, remove it only if 2506 * its generation is older then the current one, in which case 2507 * we don't need it for a fast fsync. Otherwise don't remove it, 2508 * we could be racing with an ongoing fast fsync that could miss 2509 * the new extent. 2510 */ 2511 if (em->generation >= cur_gen) 2512 goto next; 2513 remove_em: 2514 /* 2515 * We only remove extent maps that are not in the list of 2516 * modified extents or that are in the list but with a 2517 * generation lower then the current generation, so there is no 2518 * need to set the full fsync flag on the inode (it hurts the 2519 * fsync performance for workloads with a data size that exceeds 2520 * or is close to the system's memory). 2521 */ 2522 remove_extent_mapping(inode, em); 2523 /* Once for the inode's extent map tree. */ 2524 free_extent_map(em); 2525 next: 2526 start = extent_map_end(em); 2527 write_unlock(&extent_tree->lock); 2528 2529 /* Once for us, for the lookup_extent_mapping() reference. */ 2530 free_extent_map(em); 2531 2532 if (need_resched()) { 2533 /* 2534 * If we need to resched but we can't block just exit 2535 * and leave any remaining extent maps. 2536 */ 2537 if (!gfpflags_allow_blocking(mask)) 2538 break; 2539 2540 cond_resched(); 2541 } 2542 } 2543 return try_release_extent_state(io_tree, folio); 2544 } 2545 2546 static int extent_buffer_under_io(const struct extent_buffer *eb) 2547 { 2548 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 2549 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2550 } 2551 2552 static bool folio_range_has_eb(struct folio *folio) 2553 { 2554 struct btrfs_subpage *subpage; 2555 2556 lockdep_assert_held(&folio->mapping->i_private_lock); 2557 2558 if (folio_test_private(folio)) { 2559 subpage = folio_get_private(folio); 2560 if (atomic_read(&subpage->eb_refs)) 2561 return true; 2562 } 2563 return false; 2564 } 2565 2566 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio) 2567 { 2568 struct btrfs_fs_info *fs_info = eb->fs_info; 2569 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 2570 2571 /* 2572 * For mapped eb, we're going to change the folio private, which should 2573 * be done under the i_private_lock. 2574 */ 2575 if (mapped) 2576 spin_lock(&folio->mapping->i_private_lock); 2577 2578 if (!folio_test_private(folio)) { 2579 if (mapped) 2580 spin_unlock(&folio->mapping->i_private_lock); 2581 return; 2582 } 2583 2584 if (fs_info->nodesize >= PAGE_SIZE) { 2585 /* 2586 * We do this since we'll remove the pages after we've 2587 * removed the eb from the radix tree, so we could race 2588 * and have this page now attached to the new eb. So 2589 * only clear folio if it's still connected to 2590 * this eb. 2591 */ 2592 if (folio_test_private(folio) && folio_get_private(folio) == eb) { 2593 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 2594 BUG_ON(folio_test_dirty(folio)); 2595 BUG_ON(folio_test_writeback(folio)); 2596 /* We need to make sure we haven't be attached to a new eb. */ 2597 folio_detach_private(folio); 2598 } 2599 if (mapped) 2600 spin_unlock(&folio->mapping->i_private_lock); 2601 return; 2602 } 2603 2604 /* 2605 * For subpage, we can have dummy eb with folio private attached. In 2606 * this case, we can directly detach the private as such folio is only 2607 * attached to one dummy eb, no sharing. 2608 */ 2609 if (!mapped) { 2610 btrfs_detach_subpage(fs_info, folio); 2611 return; 2612 } 2613 2614 btrfs_folio_dec_eb_refs(fs_info, folio); 2615 2616 /* 2617 * We can only detach the folio private if there are no other ebs in the 2618 * page range and no unfinished IO. 2619 */ 2620 if (!folio_range_has_eb(folio)) 2621 btrfs_detach_subpage(fs_info, folio); 2622 2623 spin_unlock(&folio->mapping->i_private_lock); 2624 } 2625 2626 /* Release all folios attached to the extent buffer */ 2627 static void btrfs_release_extent_buffer_folios(const struct extent_buffer *eb) 2628 { 2629 ASSERT(!extent_buffer_under_io(eb)); 2630 2631 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) { 2632 struct folio *folio = eb->folios[i]; 2633 2634 if (!folio) 2635 continue; 2636 2637 detach_extent_buffer_folio(eb, folio); 2638 2639 /* One for when we allocated the folio. */ 2640 folio_put(folio); 2641 } 2642 } 2643 2644 /* 2645 * Helper for releasing the extent buffer. 2646 */ 2647 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 2648 { 2649 btrfs_release_extent_buffer_folios(eb); 2650 btrfs_leak_debug_del_eb(eb); 2651 kmem_cache_free(extent_buffer_cache, eb); 2652 } 2653 2654 static struct extent_buffer * 2655 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 2656 unsigned long len) 2657 { 2658 struct extent_buffer *eb = NULL; 2659 2660 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 2661 eb->start = start; 2662 eb->len = len; 2663 eb->fs_info = fs_info; 2664 init_rwsem(&eb->lock); 2665 2666 btrfs_leak_debug_add_eb(eb); 2667 2668 spin_lock_init(&eb->refs_lock); 2669 atomic_set(&eb->refs, 1); 2670 2671 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 2672 2673 return eb; 2674 } 2675 2676 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 2677 { 2678 struct extent_buffer *new; 2679 int num_folios = num_extent_folios(src); 2680 int ret; 2681 2682 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 2683 if (new == NULL) 2684 return NULL; 2685 2686 /* 2687 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 2688 * btrfs_release_extent_buffer() have different behavior for 2689 * UNMAPPED subpage extent buffer. 2690 */ 2691 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 2692 2693 ret = alloc_eb_folio_array(new, false); 2694 if (ret) { 2695 btrfs_release_extent_buffer(new); 2696 return NULL; 2697 } 2698 2699 for (int i = 0; i < num_folios; i++) { 2700 struct folio *folio = new->folios[i]; 2701 2702 ret = attach_extent_buffer_folio(new, folio, NULL); 2703 if (ret < 0) { 2704 btrfs_release_extent_buffer(new); 2705 return NULL; 2706 } 2707 WARN_ON(folio_test_dirty(folio)); 2708 } 2709 copy_extent_buffer_full(new, src); 2710 set_extent_buffer_uptodate(new); 2711 2712 return new; 2713 } 2714 2715 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 2716 u64 start, unsigned long len) 2717 { 2718 struct extent_buffer *eb; 2719 int num_folios = 0; 2720 int ret; 2721 2722 eb = __alloc_extent_buffer(fs_info, start, len); 2723 if (!eb) 2724 return NULL; 2725 2726 ret = alloc_eb_folio_array(eb, false); 2727 if (ret) 2728 goto err; 2729 2730 num_folios = num_extent_folios(eb); 2731 for (int i = 0; i < num_folios; i++) { 2732 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL); 2733 if (ret < 0) 2734 goto err; 2735 } 2736 2737 set_extent_buffer_uptodate(eb); 2738 btrfs_set_header_nritems(eb, 0); 2739 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 2740 2741 return eb; 2742 err: 2743 for (int i = 0; i < num_folios; i++) { 2744 if (eb->folios[i]) { 2745 detach_extent_buffer_folio(eb, eb->folios[i]); 2746 folio_put(eb->folios[i]); 2747 } 2748 } 2749 kmem_cache_free(extent_buffer_cache, eb); 2750 return NULL; 2751 } 2752 2753 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 2754 u64 start) 2755 { 2756 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 2757 } 2758 2759 static void check_buffer_tree_ref(struct extent_buffer *eb) 2760 { 2761 int refs; 2762 /* 2763 * The TREE_REF bit is first set when the extent_buffer is added 2764 * to the radix tree. It is also reset, if unset, when a new reference 2765 * is created by find_extent_buffer. 2766 * 2767 * It is only cleared in two cases: freeing the last non-tree 2768 * reference to the extent_buffer when its STALE bit is set or 2769 * calling release_folio when the tree reference is the only reference. 2770 * 2771 * In both cases, care is taken to ensure that the extent_buffer's 2772 * pages are not under io. However, release_folio can be concurrently 2773 * called with creating new references, which is prone to race 2774 * conditions between the calls to check_buffer_tree_ref in those 2775 * codepaths and clearing TREE_REF in try_release_extent_buffer. 2776 * 2777 * The actual lifetime of the extent_buffer in the radix tree is 2778 * adequately protected by the refcount, but the TREE_REF bit and 2779 * its corresponding reference are not. To protect against this 2780 * class of races, we call check_buffer_tree_ref from the codepaths 2781 * which trigger io. Note that once io is initiated, TREE_REF can no 2782 * longer be cleared, so that is the moment at which any such race is 2783 * best fixed. 2784 */ 2785 refs = atomic_read(&eb->refs); 2786 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 2787 return; 2788 2789 spin_lock(&eb->refs_lock); 2790 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 2791 atomic_inc(&eb->refs); 2792 spin_unlock(&eb->refs_lock); 2793 } 2794 2795 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 2796 { 2797 int num_folios= num_extent_folios(eb); 2798 2799 check_buffer_tree_ref(eb); 2800 2801 for (int i = 0; i < num_folios; i++) 2802 folio_mark_accessed(eb->folios[i]); 2803 } 2804 2805 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 2806 u64 start) 2807 { 2808 struct extent_buffer *eb; 2809 2810 eb = find_extent_buffer_nolock(fs_info, start); 2811 if (!eb) 2812 return NULL; 2813 /* 2814 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 2815 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 2816 * another task running free_extent_buffer() might have seen that flag 2817 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 2818 * writeback flags not set) and it's still in the tree (flag 2819 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 2820 * decrementing the extent buffer's reference count twice. So here we 2821 * could race and increment the eb's reference count, clear its stale 2822 * flag, mark it as dirty and drop our reference before the other task 2823 * finishes executing free_extent_buffer, which would later result in 2824 * an attempt to free an extent buffer that is dirty. 2825 */ 2826 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 2827 spin_lock(&eb->refs_lock); 2828 spin_unlock(&eb->refs_lock); 2829 } 2830 mark_extent_buffer_accessed(eb); 2831 return eb; 2832 } 2833 2834 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 2835 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 2836 u64 start) 2837 { 2838 struct extent_buffer *eb, *exists = NULL; 2839 int ret; 2840 2841 eb = find_extent_buffer(fs_info, start); 2842 if (eb) 2843 return eb; 2844 eb = alloc_dummy_extent_buffer(fs_info, start); 2845 if (!eb) 2846 return ERR_PTR(-ENOMEM); 2847 eb->fs_info = fs_info; 2848 again: 2849 ret = radix_tree_preload(GFP_NOFS); 2850 if (ret) { 2851 exists = ERR_PTR(ret); 2852 goto free_eb; 2853 } 2854 spin_lock(&fs_info->buffer_lock); 2855 ret = radix_tree_insert(&fs_info->buffer_radix, 2856 start >> fs_info->sectorsize_bits, eb); 2857 spin_unlock(&fs_info->buffer_lock); 2858 radix_tree_preload_end(); 2859 if (ret == -EEXIST) { 2860 exists = find_extent_buffer(fs_info, start); 2861 if (exists) 2862 goto free_eb; 2863 else 2864 goto again; 2865 } 2866 check_buffer_tree_ref(eb); 2867 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 2868 2869 return eb; 2870 free_eb: 2871 btrfs_release_extent_buffer(eb); 2872 return exists; 2873 } 2874 #endif 2875 2876 static struct extent_buffer *grab_extent_buffer(struct btrfs_fs_info *fs_info, 2877 struct folio *folio) 2878 { 2879 struct extent_buffer *exists; 2880 2881 lockdep_assert_held(&folio->mapping->i_private_lock); 2882 2883 /* 2884 * For subpage case, we completely rely on radix tree to ensure we 2885 * don't try to insert two ebs for the same bytenr. So here we always 2886 * return NULL and just continue. 2887 */ 2888 if (fs_info->nodesize < PAGE_SIZE) 2889 return NULL; 2890 2891 /* Page not yet attached to an extent buffer */ 2892 if (!folio_test_private(folio)) 2893 return NULL; 2894 2895 /* 2896 * We could have already allocated an eb for this folio and attached one 2897 * so lets see if we can get a ref on the existing eb, and if we can we 2898 * know it's good and we can just return that one, else we know we can 2899 * just overwrite folio private. 2900 */ 2901 exists = folio_get_private(folio); 2902 if (atomic_inc_not_zero(&exists->refs)) 2903 return exists; 2904 2905 WARN_ON(folio_test_dirty(folio)); 2906 folio_detach_private(folio); 2907 return NULL; 2908 } 2909 2910 /* 2911 * Validate alignment constraints of eb at logical address @start. 2912 */ 2913 static bool check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 2914 { 2915 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 2916 btrfs_err(fs_info, "bad tree block start %llu", start); 2917 return true; 2918 } 2919 2920 if (fs_info->nodesize < PAGE_SIZE && 2921 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 2922 btrfs_err(fs_info, 2923 "tree block crosses page boundary, start %llu nodesize %u", 2924 start, fs_info->nodesize); 2925 return true; 2926 } 2927 if (fs_info->nodesize >= PAGE_SIZE && 2928 !PAGE_ALIGNED(start)) { 2929 btrfs_err(fs_info, 2930 "tree block is not page aligned, start %llu nodesize %u", 2931 start, fs_info->nodesize); 2932 return true; 2933 } 2934 if (!IS_ALIGNED(start, fs_info->nodesize) && 2935 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) { 2936 btrfs_warn(fs_info, 2937 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance", 2938 start, fs_info->nodesize); 2939 } 2940 return false; 2941 } 2942 2943 /* 2944 * Return 0 if eb->folios[i] is attached to btree inode successfully. 2945 * Return >0 if there is already another extent buffer for the range, 2946 * and @found_eb_ret would be updated. 2947 * Return -EAGAIN if the filemap has an existing folio but with different size 2948 * than @eb. 2949 * The caller needs to free the existing folios and retry using the same order. 2950 */ 2951 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i, 2952 struct btrfs_subpage *prealloc, 2953 struct extent_buffer **found_eb_ret) 2954 { 2955 2956 struct btrfs_fs_info *fs_info = eb->fs_info; 2957 struct address_space *mapping = fs_info->btree_inode->i_mapping; 2958 const unsigned long index = eb->start >> PAGE_SHIFT; 2959 struct folio *existing_folio = NULL; 2960 int ret; 2961 2962 ASSERT(found_eb_ret); 2963 2964 /* Caller should ensure the folio exists. */ 2965 ASSERT(eb->folios[i]); 2966 2967 retry: 2968 ret = filemap_add_folio(mapping, eb->folios[i], index + i, 2969 GFP_NOFS | __GFP_NOFAIL); 2970 if (!ret) 2971 goto finish; 2972 2973 existing_folio = filemap_lock_folio(mapping, index + i); 2974 /* The page cache only exists for a very short time, just retry. */ 2975 if (IS_ERR(existing_folio)) { 2976 existing_folio = NULL; 2977 goto retry; 2978 } 2979 2980 /* For now, we should only have single-page folios for btree inode. */ 2981 ASSERT(folio_nr_pages(existing_folio) == 1); 2982 2983 if (folio_size(existing_folio) != eb->folio_size) { 2984 folio_unlock(existing_folio); 2985 folio_put(existing_folio); 2986 return -EAGAIN; 2987 } 2988 2989 finish: 2990 spin_lock(&mapping->i_private_lock); 2991 if (existing_folio && fs_info->nodesize < PAGE_SIZE) { 2992 /* We're going to reuse the existing page, can drop our folio now. */ 2993 __free_page(folio_page(eb->folios[i], 0)); 2994 eb->folios[i] = existing_folio; 2995 } else if (existing_folio) { 2996 struct extent_buffer *existing_eb; 2997 2998 existing_eb = grab_extent_buffer(fs_info, existing_folio); 2999 if (existing_eb) { 3000 /* The extent buffer still exists, we can use it directly. */ 3001 *found_eb_ret = existing_eb; 3002 spin_unlock(&mapping->i_private_lock); 3003 folio_unlock(existing_folio); 3004 folio_put(existing_folio); 3005 return 1; 3006 } 3007 /* The extent buffer no longer exists, we can reuse the folio. */ 3008 __free_page(folio_page(eb->folios[i], 0)); 3009 eb->folios[i] = existing_folio; 3010 } 3011 eb->folio_size = folio_size(eb->folios[i]); 3012 eb->folio_shift = folio_shift(eb->folios[i]); 3013 /* Should not fail, as we have preallocated the memory. */ 3014 ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc); 3015 ASSERT(!ret); 3016 /* 3017 * To inform we have an extra eb under allocation, so that 3018 * detach_extent_buffer_page() won't release the folio private when the 3019 * eb hasn't been inserted into radix tree yet. 3020 * 3021 * The ref will be decreased when the eb releases the page, in 3022 * detach_extent_buffer_page(). Thus needs no special handling in the 3023 * error path. 3024 */ 3025 btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]); 3026 spin_unlock(&mapping->i_private_lock); 3027 return 0; 3028 } 3029 3030 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3031 u64 start, u64 owner_root, int level) 3032 { 3033 unsigned long len = fs_info->nodesize; 3034 int num_folios; 3035 int attached = 0; 3036 struct extent_buffer *eb; 3037 struct extent_buffer *existing_eb = NULL; 3038 struct btrfs_subpage *prealloc = NULL; 3039 u64 lockdep_owner = owner_root; 3040 bool page_contig = true; 3041 int uptodate = 1; 3042 int ret; 3043 3044 if (check_eb_alignment(fs_info, start)) 3045 return ERR_PTR(-EINVAL); 3046 3047 #if BITS_PER_LONG == 32 3048 if (start >= MAX_LFS_FILESIZE) { 3049 btrfs_err_rl(fs_info, 3050 "extent buffer %llu is beyond 32bit page cache limit", start); 3051 btrfs_err_32bit_limit(fs_info); 3052 return ERR_PTR(-EOVERFLOW); 3053 } 3054 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3055 btrfs_warn_32bit_limit(fs_info); 3056 #endif 3057 3058 eb = find_extent_buffer(fs_info, start); 3059 if (eb) 3060 return eb; 3061 3062 eb = __alloc_extent_buffer(fs_info, start, len); 3063 if (!eb) 3064 return ERR_PTR(-ENOMEM); 3065 3066 /* 3067 * The reloc trees are just snapshots, so we need them to appear to be 3068 * just like any other fs tree WRT lockdep. 3069 */ 3070 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3071 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3072 3073 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3074 3075 /* 3076 * Preallocate folio private for subpage case, so that we won't 3077 * allocate memory with i_private_lock nor page lock hold. 3078 * 3079 * The memory will be freed by attach_extent_buffer_page() or freed 3080 * manually if we exit earlier. 3081 */ 3082 if (fs_info->nodesize < PAGE_SIZE) { 3083 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 3084 if (IS_ERR(prealloc)) { 3085 ret = PTR_ERR(prealloc); 3086 goto out; 3087 } 3088 } 3089 3090 reallocate: 3091 /* Allocate all pages first. */ 3092 ret = alloc_eb_folio_array(eb, true); 3093 if (ret < 0) { 3094 btrfs_free_subpage(prealloc); 3095 goto out; 3096 } 3097 3098 num_folios = num_extent_folios(eb); 3099 /* Attach all pages to the filemap. */ 3100 for (int i = 0; i < num_folios; i++) { 3101 struct folio *folio; 3102 3103 ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb); 3104 if (ret > 0) { 3105 ASSERT(existing_eb); 3106 goto out; 3107 } 3108 3109 /* 3110 * TODO: Special handling for a corner case where the order of 3111 * folios mismatch between the new eb and filemap. 3112 * 3113 * This happens when: 3114 * 3115 * - the new eb is using higher order folio 3116 * 3117 * - the filemap is still using 0-order folios for the range 3118 * This can happen at the previous eb allocation, and we don't 3119 * have higher order folio for the call. 3120 * 3121 * - the existing eb has already been freed 3122 * 3123 * In this case, we have to free the existing folios first, and 3124 * re-allocate using the same order. 3125 * Thankfully this is not going to happen yet, as we're still 3126 * using 0-order folios. 3127 */ 3128 if (unlikely(ret == -EAGAIN)) { 3129 ASSERT(0); 3130 goto reallocate; 3131 } 3132 attached++; 3133 3134 /* 3135 * Only after attach_eb_folio_to_filemap(), eb->folios[] is 3136 * reliable, as we may choose to reuse the existing page cache 3137 * and free the allocated page. 3138 */ 3139 folio = eb->folios[i]; 3140 WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len)); 3141 3142 /* 3143 * Check if the current page is physically contiguous with previous eb 3144 * page. 3145 * At this stage, either we allocated a large folio, thus @i 3146 * would only be 0, or we fall back to per-page allocation. 3147 */ 3148 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0)) 3149 page_contig = false; 3150 3151 if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len)) 3152 uptodate = 0; 3153 3154 /* 3155 * We can't unlock the pages just yet since the extent buffer 3156 * hasn't been properly inserted in the radix tree, this 3157 * opens a race with btree_release_folio which can free a page 3158 * while we are still filling in all pages for the buffer and 3159 * we could crash. 3160 */ 3161 } 3162 if (uptodate) 3163 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3164 /* All pages are physically contiguous, can skip cross page handling. */ 3165 if (page_contig) 3166 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start); 3167 again: 3168 ret = radix_tree_preload(GFP_NOFS); 3169 if (ret) 3170 goto out; 3171 3172 spin_lock(&fs_info->buffer_lock); 3173 ret = radix_tree_insert(&fs_info->buffer_radix, 3174 start >> fs_info->sectorsize_bits, eb); 3175 spin_unlock(&fs_info->buffer_lock); 3176 radix_tree_preload_end(); 3177 if (ret == -EEXIST) { 3178 ret = 0; 3179 existing_eb = find_extent_buffer(fs_info, start); 3180 if (existing_eb) 3181 goto out; 3182 else 3183 goto again; 3184 } 3185 /* add one reference for the tree */ 3186 check_buffer_tree_ref(eb); 3187 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3188 3189 /* 3190 * Now it's safe to unlock the pages because any calls to 3191 * btree_release_folio will correctly detect that a page belongs to a 3192 * live buffer and won't free them prematurely. 3193 */ 3194 for (int i = 0; i < num_folios; i++) 3195 folio_unlock(eb->folios[i]); 3196 return eb; 3197 3198 out: 3199 WARN_ON(!atomic_dec_and_test(&eb->refs)); 3200 3201 /* 3202 * Any attached folios need to be detached before we unlock them. This 3203 * is because when we're inserting our new folios into the mapping, and 3204 * then attaching our eb to that folio. If we fail to insert our folio 3205 * we'll lookup the folio for that index, and grab that EB. We do not 3206 * want that to grab this eb, as we're getting ready to free it. So we 3207 * have to detach it first and then unlock it. 3208 * 3209 * We have to drop our reference and NULL it out here because in the 3210 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb. 3211 * Below when we call btrfs_release_extent_buffer() we will call 3212 * detach_extent_buffer_folio() on our remaining pages in the !subpage 3213 * case. If we left eb->folios[i] populated in the subpage case we'd 3214 * double put our reference and be super sad. 3215 */ 3216 for (int i = 0; i < attached; i++) { 3217 ASSERT(eb->folios[i]); 3218 detach_extent_buffer_folio(eb, eb->folios[i]); 3219 folio_unlock(eb->folios[i]); 3220 folio_put(eb->folios[i]); 3221 eb->folios[i] = NULL; 3222 } 3223 /* 3224 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag, 3225 * so it can be cleaned up without utilizing page->mapping. 3226 */ 3227 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3228 3229 btrfs_release_extent_buffer(eb); 3230 if (ret < 0) 3231 return ERR_PTR(ret); 3232 ASSERT(existing_eb); 3233 return existing_eb; 3234 } 3235 3236 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3237 { 3238 struct extent_buffer *eb = 3239 container_of(head, struct extent_buffer, rcu_head); 3240 3241 kmem_cache_free(extent_buffer_cache, eb); 3242 } 3243 3244 static int release_extent_buffer(struct extent_buffer *eb) 3245 __releases(&eb->refs_lock) 3246 { 3247 lockdep_assert_held(&eb->refs_lock); 3248 3249 WARN_ON(atomic_read(&eb->refs) == 0); 3250 if (atomic_dec_and_test(&eb->refs)) { 3251 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 3252 struct btrfs_fs_info *fs_info = eb->fs_info; 3253 3254 spin_unlock(&eb->refs_lock); 3255 3256 spin_lock(&fs_info->buffer_lock); 3257 radix_tree_delete(&fs_info->buffer_radix, 3258 eb->start >> fs_info->sectorsize_bits); 3259 spin_unlock(&fs_info->buffer_lock); 3260 } else { 3261 spin_unlock(&eb->refs_lock); 3262 } 3263 3264 btrfs_leak_debug_del_eb(eb); 3265 /* Should be safe to release folios at this point. */ 3266 btrfs_release_extent_buffer_folios(eb); 3267 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3268 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 3269 kmem_cache_free(extent_buffer_cache, eb); 3270 return 1; 3271 } 3272 #endif 3273 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3274 return 1; 3275 } 3276 spin_unlock(&eb->refs_lock); 3277 3278 return 0; 3279 } 3280 3281 void free_extent_buffer(struct extent_buffer *eb) 3282 { 3283 int refs; 3284 if (!eb) 3285 return; 3286 3287 refs = atomic_read(&eb->refs); 3288 while (1) { 3289 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 3290 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 3291 refs == 1)) 3292 break; 3293 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 3294 return; 3295 } 3296 3297 spin_lock(&eb->refs_lock); 3298 if (atomic_read(&eb->refs) == 2 && 3299 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 3300 !extent_buffer_under_io(eb) && 3301 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3302 atomic_dec(&eb->refs); 3303 3304 /* 3305 * I know this is terrible, but it's temporary until we stop tracking 3306 * the uptodate bits and such for the extent buffers. 3307 */ 3308 release_extent_buffer(eb); 3309 } 3310 3311 void free_extent_buffer_stale(struct extent_buffer *eb) 3312 { 3313 if (!eb) 3314 return; 3315 3316 spin_lock(&eb->refs_lock); 3317 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 3318 3319 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 3320 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3321 atomic_dec(&eb->refs); 3322 release_extent_buffer(eb); 3323 } 3324 3325 static void btree_clear_folio_dirty(struct folio *folio) 3326 { 3327 ASSERT(folio_test_dirty(folio)); 3328 ASSERT(folio_test_locked(folio)); 3329 folio_clear_dirty_for_io(folio); 3330 xa_lock_irq(&folio->mapping->i_pages); 3331 if (!folio_test_dirty(folio)) 3332 __xa_clear_mark(&folio->mapping->i_pages, 3333 folio_index(folio), PAGECACHE_TAG_DIRTY); 3334 xa_unlock_irq(&folio->mapping->i_pages); 3335 } 3336 3337 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 3338 { 3339 struct btrfs_fs_info *fs_info = eb->fs_info; 3340 struct folio *folio = eb->folios[0]; 3341 bool last; 3342 3343 /* btree_clear_folio_dirty() needs page locked. */ 3344 folio_lock(folio); 3345 last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len); 3346 if (last) 3347 btree_clear_folio_dirty(folio); 3348 folio_unlock(folio); 3349 WARN_ON(atomic_read(&eb->refs) == 0); 3350 } 3351 3352 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 3353 struct extent_buffer *eb) 3354 { 3355 struct btrfs_fs_info *fs_info = eb->fs_info; 3356 int num_folios; 3357 3358 btrfs_assert_tree_write_locked(eb); 3359 3360 if (trans && btrfs_header_generation(eb) != trans->transid) 3361 return; 3362 3363 /* 3364 * Instead of clearing the dirty flag off of the buffer, mark it as 3365 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve 3366 * write-ordering in zoned mode, without the need to later re-dirty 3367 * the extent_buffer. 3368 * 3369 * The actual zeroout of the buffer will happen later in 3370 * btree_csum_one_bio. 3371 */ 3372 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3373 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags); 3374 return; 3375 } 3376 3377 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 3378 return; 3379 3380 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 3381 fs_info->dirty_metadata_batch); 3382 3383 if (eb->fs_info->nodesize < PAGE_SIZE) 3384 return clear_subpage_extent_buffer_dirty(eb); 3385 3386 num_folios = num_extent_folios(eb); 3387 for (int i = 0; i < num_folios; i++) { 3388 struct folio *folio = eb->folios[i]; 3389 3390 if (!folio_test_dirty(folio)) 3391 continue; 3392 folio_lock(folio); 3393 btree_clear_folio_dirty(folio); 3394 folio_unlock(folio); 3395 } 3396 WARN_ON(atomic_read(&eb->refs) == 0); 3397 } 3398 3399 void set_extent_buffer_dirty(struct extent_buffer *eb) 3400 { 3401 int num_folios; 3402 bool was_dirty; 3403 3404 check_buffer_tree_ref(eb); 3405 3406 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3407 3408 num_folios = num_extent_folios(eb); 3409 WARN_ON(atomic_read(&eb->refs) == 0); 3410 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 3411 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)); 3412 3413 if (!was_dirty) { 3414 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 3415 3416 /* 3417 * For subpage case, we can have other extent buffers in the 3418 * same page, and in clear_subpage_extent_buffer_dirty() we 3419 * have to clear page dirty without subpage lock held. 3420 * This can cause race where our page gets dirty cleared after 3421 * we just set it. 3422 * 3423 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 3424 * its page for other reasons, we can use page lock to prevent 3425 * the above race. 3426 */ 3427 if (subpage) 3428 folio_lock(eb->folios[0]); 3429 for (int i = 0; i < num_folios; i++) 3430 btrfs_folio_set_dirty(eb->fs_info, eb->folios[i], 3431 eb->start, eb->len); 3432 if (subpage) 3433 folio_unlock(eb->folios[0]); 3434 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 3435 eb->len, 3436 eb->fs_info->dirty_metadata_batch); 3437 } 3438 #ifdef CONFIG_BTRFS_DEBUG 3439 for (int i = 0; i < num_folios; i++) 3440 ASSERT(folio_test_dirty(eb->folios[i])); 3441 #endif 3442 } 3443 3444 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 3445 { 3446 struct btrfs_fs_info *fs_info = eb->fs_info; 3447 int num_folios = num_extent_folios(eb); 3448 3449 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3450 for (int i = 0; i < num_folios; i++) { 3451 struct folio *folio = eb->folios[i]; 3452 3453 if (!folio) 3454 continue; 3455 3456 /* 3457 * This is special handling for metadata subpage, as regular 3458 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3459 */ 3460 if (fs_info->nodesize >= PAGE_SIZE) 3461 folio_clear_uptodate(folio); 3462 else 3463 btrfs_subpage_clear_uptodate(fs_info, folio, 3464 eb->start, eb->len); 3465 } 3466 } 3467 3468 void set_extent_buffer_uptodate(struct extent_buffer *eb) 3469 { 3470 struct btrfs_fs_info *fs_info = eb->fs_info; 3471 int num_folios = num_extent_folios(eb); 3472 3473 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3474 for (int i = 0; i < num_folios; i++) { 3475 struct folio *folio = eb->folios[i]; 3476 3477 /* 3478 * This is special handling for metadata subpage, as regular 3479 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3480 */ 3481 if (fs_info->nodesize >= PAGE_SIZE) 3482 folio_mark_uptodate(folio); 3483 else 3484 btrfs_subpage_set_uptodate(fs_info, folio, 3485 eb->start, eb->len); 3486 } 3487 } 3488 3489 static void clear_extent_buffer_reading(struct extent_buffer *eb) 3490 { 3491 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 3492 smp_mb__after_atomic(); 3493 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 3494 } 3495 3496 static void end_bbio_meta_read(struct btrfs_bio *bbio) 3497 { 3498 struct extent_buffer *eb = bbio->private; 3499 struct btrfs_fs_info *fs_info = eb->fs_info; 3500 bool uptodate = !bbio->bio.bi_status; 3501 struct folio_iter fi; 3502 u32 bio_offset = 0; 3503 3504 /* 3505 * If the extent buffer is marked UPTODATE before the read operation 3506 * completes, other calls to read_extent_buffer_pages() will return 3507 * early without waiting for the read to finish, causing data races. 3508 */ 3509 WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)); 3510 3511 eb->read_mirror = bbio->mirror_num; 3512 3513 if (uptodate && 3514 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 3515 uptodate = false; 3516 3517 if (uptodate) { 3518 set_extent_buffer_uptodate(eb); 3519 } else { 3520 clear_extent_buffer_uptodate(eb); 3521 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3522 } 3523 3524 bio_for_each_folio_all(fi, &bbio->bio) { 3525 struct folio *folio = fi.folio; 3526 u64 start = eb->start + bio_offset; 3527 u32 len = fi.length; 3528 3529 if (uptodate) 3530 btrfs_folio_set_uptodate(fs_info, folio, start, len); 3531 else 3532 btrfs_folio_clear_uptodate(fs_info, folio, start, len); 3533 3534 bio_offset += len; 3535 } 3536 3537 clear_extent_buffer_reading(eb); 3538 free_extent_buffer(eb); 3539 3540 bio_put(&bbio->bio); 3541 } 3542 3543 int read_extent_buffer_pages_nowait(struct extent_buffer *eb, int mirror_num, 3544 const struct btrfs_tree_parent_check *check) 3545 { 3546 struct btrfs_bio *bbio; 3547 bool ret; 3548 3549 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3550 return 0; 3551 3552 /* 3553 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 3554 * operation, which could potentially still be in flight. In this case 3555 * we simply want to return an error. 3556 */ 3557 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 3558 return -EIO; 3559 3560 /* Someone else is already reading the buffer, just wait for it. */ 3561 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 3562 return 0; 3563 3564 /* 3565 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above 3566 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have 3567 * started and finished reading the same eb. In this case, UPTODATE 3568 * will now be set, and we shouldn't read it in again. 3569 */ 3570 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) { 3571 clear_extent_buffer_reading(eb); 3572 return 0; 3573 } 3574 3575 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3576 eb->read_mirror = 0; 3577 check_buffer_tree_ref(eb); 3578 atomic_inc(&eb->refs); 3579 3580 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 3581 REQ_OP_READ | REQ_META, eb->fs_info, 3582 end_bbio_meta_read, eb); 3583 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 3584 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 3585 bbio->file_offset = eb->start; 3586 memcpy(&bbio->parent_check, check, sizeof(*check)); 3587 if (eb->fs_info->nodesize < PAGE_SIZE) { 3588 ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len, 3589 eb->start - folio_pos(eb->folios[0])); 3590 ASSERT(ret); 3591 } else { 3592 int num_folios = num_extent_folios(eb); 3593 3594 for (int i = 0; i < num_folios; i++) { 3595 struct folio *folio = eb->folios[i]; 3596 3597 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0); 3598 ASSERT(ret); 3599 } 3600 } 3601 btrfs_submit_bbio(bbio, mirror_num); 3602 return 0; 3603 } 3604 3605 int read_extent_buffer_pages(struct extent_buffer *eb, int mirror_num, 3606 const struct btrfs_tree_parent_check *check) 3607 { 3608 int ret; 3609 3610 ret = read_extent_buffer_pages_nowait(eb, mirror_num, check); 3611 if (ret < 0) 3612 return ret; 3613 3614 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 3615 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3616 return -EIO; 3617 return 0; 3618 } 3619 3620 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 3621 unsigned long len) 3622 { 3623 btrfs_warn(eb->fs_info, 3624 "access to eb bytenr %llu len %u out of range start %lu len %lu", 3625 eb->start, eb->len, start, len); 3626 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 3627 3628 return true; 3629 } 3630 3631 /* 3632 * Check if the [start, start + len) range is valid before reading/writing 3633 * the eb. 3634 * NOTE: @start and @len are offset inside the eb, not logical address. 3635 * 3636 * Caller should not touch the dst/src memory if this function returns error. 3637 */ 3638 static inline int check_eb_range(const struct extent_buffer *eb, 3639 unsigned long start, unsigned long len) 3640 { 3641 unsigned long offset; 3642 3643 /* start, start + len should not go beyond eb->len nor overflow */ 3644 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 3645 return report_eb_range(eb, start, len); 3646 3647 return false; 3648 } 3649 3650 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 3651 unsigned long start, unsigned long len) 3652 { 3653 const int unit_size = eb->folio_size; 3654 size_t cur; 3655 size_t offset; 3656 char *dst = (char *)dstv; 3657 unsigned long i = get_eb_folio_index(eb, start); 3658 3659 if (check_eb_range(eb, start, len)) { 3660 /* 3661 * Invalid range hit, reset the memory, so callers won't get 3662 * some random garbage for their uninitialized memory. 3663 */ 3664 memset(dstv, 0, len); 3665 return; 3666 } 3667 3668 if (eb->addr) { 3669 memcpy(dstv, eb->addr + start, len); 3670 return; 3671 } 3672 3673 offset = get_eb_offset_in_folio(eb, start); 3674 3675 while (len > 0) { 3676 char *kaddr; 3677 3678 cur = min(len, unit_size - offset); 3679 kaddr = folio_address(eb->folios[i]); 3680 memcpy(dst, kaddr + offset, cur); 3681 3682 dst += cur; 3683 len -= cur; 3684 offset = 0; 3685 i++; 3686 } 3687 } 3688 3689 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 3690 void __user *dstv, 3691 unsigned long start, unsigned long len) 3692 { 3693 const int unit_size = eb->folio_size; 3694 size_t cur; 3695 size_t offset; 3696 char __user *dst = (char __user *)dstv; 3697 unsigned long i = get_eb_folio_index(eb, start); 3698 int ret = 0; 3699 3700 WARN_ON(start > eb->len); 3701 WARN_ON(start + len > eb->start + eb->len); 3702 3703 if (eb->addr) { 3704 if (copy_to_user_nofault(dstv, eb->addr + start, len)) 3705 ret = -EFAULT; 3706 return ret; 3707 } 3708 3709 offset = get_eb_offset_in_folio(eb, start); 3710 3711 while (len > 0) { 3712 char *kaddr; 3713 3714 cur = min(len, unit_size - offset); 3715 kaddr = folio_address(eb->folios[i]); 3716 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 3717 ret = -EFAULT; 3718 break; 3719 } 3720 3721 dst += cur; 3722 len -= cur; 3723 offset = 0; 3724 i++; 3725 } 3726 3727 return ret; 3728 } 3729 3730 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 3731 unsigned long start, unsigned long len) 3732 { 3733 const int unit_size = eb->folio_size; 3734 size_t cur; 3735 size_t offset; 3736 char *kaddr; 3737 char *ptr = (char *)ptrv; 3738 unsigned long i = get_eb_folio_index(eb, start); 3739 int ret = 0; 3740 3741 if (check_eb_range(eb, start, len)) 3742 return -EINVAL; 3743 3744 if (eb->addr) 3745 return memcmp(ptrv, eb->addr + start, len); 3746 3747 offset = get_eb_offset_in_folio(eb, start); 3748 3749 while (len > 0) { 3750 cur = min(len, unit_size - offset); 3751 kaddr = folio_address(eb->folios[i]); 3752 ret = memcmp(ptr, kaddr + offset, cur); 3753 if (ret) 3754 break; 3755 3756 ptr += cur; 3757 len -= cur; 3758 offset = 0; 3759 i++; 3760 } 3761 return ret; 3762 } 3763 3764 /* 3765 * Check that the extent buffer is uptodate. 3766 * 3767 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 3768 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 3769 */ 3770 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i) 3771 { 3772 struct btrfs_fs_info *fs_info = eb->fs_info; 3773 struct folio *folio = eb->folios[i]; 3774 3775 ASSERT(folio); 3776 3777 /* 3778 * If we are using the commit root we could potentially clear a page 3779 * Uptodate while we're using the extent buffer that we've previously 3780 * looked up. We don't want to complain in this case, as the page was 3781 * valid before, we just didn't write it out. Instead we want to catch 3782 * the case where we didn't actually read the block properly, which 3783 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 3784 */ 3785 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3786 return; 3787 3788 if (fs_info->nodesize < PAGE_SIZE) { 3789 folio = eb->folios[0]; 3790 ASSERT(i == 0); 3791 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio, 3792 eb->start, eb->len))) 3793 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len); 3794 } else { 3795 WARN_ON(!folio_test_uptodate(folio)); 3796 } 3797 } 3798 3799 static void __write_extent_buffer(const struct extent_buffer *eb, 3800 const void *srcv, unsigned long start, 3801 unsigned long len, bool use_memmove) 3802 { 3803 const int unit_size = eb->folio_size; 3804 size_t cur; 3805 size_t offset; 3806 char *kaddr; 3807 const char *src = (const char *)srcv; 3808 unsigned long i = get_eb_folio_index(eb, start); 3809 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 3810 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3811 3812 if (check_eb_range(eb, start, len)) 3813 return; 3814 3815 if (eb->addr) { 3816 if (use_memmove) 3817 memmove(eb->addr + start, srcv, len); 3818 else 3819 memcpy(eb->addr + start, srcv, len); 3820 return; 3821 } 3822 3823 offset = get_eb_offset_in_folio(eb, start); 3824 3825 while (len > 0) { 3826 if (check_uptodate) 3827 assert_eb_folio_uptodate(eb, i); 3828 3829 cur = min(len, unit_size - offset); 3830 kaddr = folio_address(eb->folios[i]); 3831 if (use_memmove) 3832 memmove(kaddr + offset, src, cur); 3833 else 3834 memcpy(kaddr + offset, src, cur); 3835 3836 src += cur; 3837 len -= cur; 3838 offset = 0; 3839 i++; 3840 } 3841 } 3842 3843 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 3844 unsigned long start, unsigned long len) 3845 { 3846 return __write_extent_buffer(eb, srcv, start, len, false); 3847 } 3848 3849 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 3850 unsigned long start, unsigned long len) 3851 { 3852 const int unit_size = eb->folio_size; 3853 unsigned long cur = start; 3854 3855 if (eb->addr) { 3856 memset(eb->addr + start, c, len); 3857 return; 3858 } 3859 3860 while (cur < start + len) { 3861 unsigned long index = get_eb_folio_index(eb, cur); 3862 unsigned int offset = get_eb_offset_in_folio(eb, cur); 3863 unsigned int cur_len = min(start + len - cur, unit_size - offset); 3864 3865 assert_eb_folio_uptodate(eb, index); 3866 memset(folio_address(eb->folios[index]) + offset, c, cur_len); 3867 3868 cur += cur_len; 3869 } 3870 } 3871 3872 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 3873 unsigned long len) 3874 { 3875 if (check_eb_range(eb, start, len)) 3876 return; 3877 return memset_extent_buffer(eb, 0, start, len); 3878 } 3879 3880 void copy_extent_buffer_full(const struct extent_buffer *dst, 3881 const struct extent_buffer *src) 3882 { 3883 const int unit_size = src->folio_size; 3884 unsigned long cur = 0; 3885 3886 ASSERT(dst->len == src->len); 3887 3888 while (cur < src->len) { 3889 unsigned long index = get_eb_folio_index(src, cur); 3890 unsigned long offset = get_eb_offset_in_folio(src, cur); 3891 unsigned long cur_len = min(src->len, unit_size - offset); 3892 void *addr = folio_address(src->folios[index]) + offset; 3893 3894 write_extent_buffer(dst, addr, cur, cur_len); 3895 3896 cur += cur_len; 3897 } 3898 } 3899 3900 void copy_extent_buffer(const struct extent_buffer *dst, 3901 const struct extent_buffer *src, 3902 unsigned long dst_offset, unsigned long src_offset, 3903 unsigned long len) 3904 { 3905 const int unit_size = dst->folio_size; 3906 u64 dst_len = dst->len; 3907 size_t cur; 3908 size_t offset; 3909 char *kaddr; 3910 unsigned long i = get_eb_folio_index(dst, dst_offset); 3911 3912 if (check_eb_range(dst, dst_offset, len) || 3913 check_eb_range(src, src_offset, len)) 3914 return; 3915 3916 WARN_ON(src->len != dst_len); 3917 3918 offset = get_eb_offset_in_folio(dst, dst_offset); 3919 3920 while (len > 0) { 3921 assert_eb_folio_uptodate(dst, i); 3922 3923 cur = min(len, (unsigned long)(unit_size - offset)); 3924 3925 kaddr = folio_address(dst->folios[i]); 3926 read_extent_buffer(src, kaddr + offset, src_offset, cur); 3927 3928 src_offset += cur; 3929 len -= cur; 3930 offset = 0; 3931 i++; 3932 } 3933 } 3934 3935 /* 3936 * Calculate the folio and offset of the byte containing the given bit number. 3937 * 3938 * @eb: the extent buffer 3939 * @start: offset of the bitmap item in the extent buffer 3940 * @nr: bit number 3941 * @folio_index: return index of the folio in the extent buffer that contains 3942 * the given bit number 3943 * @folio_offset: return offset into the folio given by folio_index 3944 * 3945 * This helper hides the ugliness of finding the byte in an extent buffer which 3946 * contains a given bit. 3947 */ 3948 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 3949 unsigned long start, unsigned long nr, 3950 unsigned long *folio_index, 3951 size_t *folio_offset) 3952 { 3953 size_t byte_offset = BIT_BYTE(nr); 3954 size_t offset; 3955 3956 /* 3957 * The byte we want is the offset of the extent buffer + the offset of 3958 * the bitmap item in the extent buffer + the offset of the byte in the 3959 * bitmap item. 3960 */ 3961 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset; 3962 3963 *folio_index = offset >> eb->folio_shift; 3964 *folio_offset = offset_in_eb_folio(eb, offset); 3965 } 3966 3967 /* 3968 * Determine whether a bit in a bitmap item is set. 3969 * 3970 * @eb: the extent buffer 3971 * @start: offset of the bitmap item in the extent buffer 3972 * @nr: bit number to test 3973 */ 3974 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 3975 unsigned long nr) 3976 { 3977 unsigned long i; 3978 size_t offset; 3979 u8 *kaddr; 3980 3981 eb_bitmap_offset(eb, start, nr, &i, &offset); 3982 assert_eb_folio_uptodate(eb, i); 3983 kaddr = folio_address(eb->folios[i]); 3984 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 3985 } 3986 3987 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 3988 { 3989 unsigned long index = get_eb_folio_index(eb, bytenr); 3990 3991 if (check_eb_range(eb, bytenr, 1)) 3992 return NULL; 3993 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr); 3994 } 3995 3996 /* 3997 * Set an area of a bitmap to 1. 3998 * 3999 * @eb: the extent buffer 4000 * @start: offset of the bitmap item in the extent buffer 4001 * @pos: bit number of the first bit 4002 * @len: number of bits to set 4003 */ 4004 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4005 unsigned long pos, unsigned long len) 4006 { 4007 unsigned int first_byte = start + BIT_BYTE(pos); 4008 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4009 const bool same_byte = (first_byte == last_byte); 4010 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4011 u8 *kaddr; 4012 4013 if (same_byte) 4014 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4015 4016 /* Handle the first byte. */ 4017 kaddr = extent_buffer_get_byte(eb, first_byte); 4018 *kaddr |= mask; 4019 if (same_byte) 4020 return; 4021 4022 /* Handle the byte aligned part. */ 4023 ASSERT(first_byte + 1 <= last_byte); 4024 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 4025 4026 /* Handle the last byte. */ 4027 kaddr = extent_buffer_get_byte(eb, last_byte); 4028 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 4029 } 4030 4031 4032 /* 4033 * Clear an area of a bitmap. 4034 * 4035 * @eb: the extent buffer 4036 * @start: offset of the bitmap item in the extent buffer 4037 * @pos: bit number of the first bit 4038 * @len: number of bits to clear 4039 */ 4040 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4041 unsigned long start, unsigned long pos, 4042 unsigned long len) 4043 { 4044 unsigned int first_byte = start + BIT_BYTE(pos); 4045 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4046 const bool same_byte = (first_byte == last_byte); 4047 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4048 u8 *kaddr; 4049 4050 if (same_byte) 4051 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4052 4053 /* Handle the first byte. */ 4054 kaddr = extent_buffer_get_byte(eb, first_byte); 4055 *kaddr &= ~mask; 4056 if (same_byte) 4057 return; 4058 4059 /* Handle the byte aligned part. */ 4060 ASSERT(first_byte + 1 <= last_byte); 4061 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 4062 4063 /* Handle the last byte. */ 4064 kaddr = extent_buffer_get_byte(eb, last_byte); 4065 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 4066 } 4067 4068 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4069 { 4070 unsigned long distance = (src > dst) ? src - dst : dst - src; 4071 return distance < len; 4072 } 4073 4074 void memcpy_extent_buffer(const struct extent_buffer *dst, 4075 unsigned long dst_offset, unsigned long src_offset, 4076 unsigned long len) 4077 { 4078 const int unit_size = dst->folio_size; 4079 unsigned long cur_off = 0; 4080 4081 if (check_eb_range(dst, dst_offset, len) || 4082 check_eb_range(dst, src_offset, len)) 4083 return; 4084 4085 if (dst->addr) { 4086 const bool use_memmove = areas_overlap(src_offset, dst_offset, len); 4087 4088 if (use_memmove) 4089 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4090 else 4091 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len); 4092 return; 4093 } 4094 4095 while (cur_off < len) { 4096 unsigned long cur_src = cur_off + src_offset; 4097 unsigned long folio_index = get_eb_folio_index(dst, cur_src); 4098 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src); 4099 unsigned long cur_len = min(src_offset + len - cur_src, 4100 unit_size - folio_off); 4101 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off; 4102 const bool use_memmove = areas_overlap(src_offset + cur_off, 4103 dst_offset + cur_off, cur_len); 4104 4105 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 4106 use_memmove); 4107 cur_off += cur_len; 4108 } 4109 } 4110 4111 void memmove_extent_buffer(const struct extent_buffer *dst, 4112 unsigned long dst_offset, unsigned long src_offset, 4113 unsigned long len) 4114 { 4115 unsigned long dst_end = dst_offset + len - 1; 4116 unsigned long src_end = src_offset + len - 1; 4117 4118 if (check_eb_range(dst, dst_offset, len) || 4119 check_eb_range(dst, src_offset, len)) 4120 return; 4121 4122 if (dst_offset < src_offset) { 4123 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4124 return; 4125 } 4126 4127 if (dst->addr) { 4128 memmove(dst->addr + dst_offset, dst->addr + src_offset, len); 4129 return; 4130 } 4131 4132 while (len > 0) { 4133 unsigned long src_i; 4134 size_t cur; 4135 size_t dst_off_in_folio; 4136 size_t src_off_in_folio; 4137 void *src_addr; 4138 bool use_memmove; 4139 4140 src_i = get_eb_folio_index(dst, src_end); 4141 4142 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end); 4143 src_off_in_folio = get_eb_offset_in_folio(dst, src_end); 4144 4145 cur = min_t(unsigned long, len, src_off_in_folio + 1); 4146 cur = min(cur, dst_off_in_folio + 1); 4147 4148 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio - 4149 cur + 1; 4150 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4151 cur); 4152 4153 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4154 use_memmove); 4155 4156 dst_end -= cur; 4157 src_end -= cur; 4158 len -= cur; 4159 } 4160 } 4161 4162 #define GANG_LOOKUP_SIZE 16 4163 static struct extent_buffer *get_next_extent_buffer( 4164 const struct btrfs_fs_info *fs_info, struct folio *folio, u64 bytenr) 4165 { 4166 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 4167 struct extent_buffer *found = NULL; 4168 u64 folio_start = folio_pos(folio); 4169 u64 cur = folio_start; 4170 4171 ASSERT(in_range(bytenr, folio_start, PAGE_SIZE)); 4172 lockdep_assert_held(&fs_info->buffer_lock); 4173 4174 while (cur < folio_start + PAGE_SIZE) { 4175 int ret; 4176 int i; 4177 4178 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 4179 (void **)gang, cur >> fs_info->sectorsize_bits, 4180 min_t(unsigned int, GANG_LOOKUP_SIZE, 4181 PAGE_SIZE / fs_info->nodesize)); 4182 if (ret == 0) 4183 goto out; 4184 for (i = 0; i < ret; i++) { 4185 /* Already beyond page end */ 4186 if (gang[i]->start >= folio_start + PAGE_SIZE) 4187 goto out; 4188 /* Found one */ 4189 if (gang[i]->start >= bytenr) { 4190 found = gang[i]; 4191 goto out; 4192 } 4193 } 4194 cur = gang[ret - 1]->start + gang[ret - 1]->len; 4195 } 4196 out: 4197 return found; 4198 } 4199 4200 static int try_release_subpage_extent_buffer(struct folio *folio) 4201 { 4202 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 4203 u64 cur = folio_pos(folio); 4204 const u64 end = cur + PAGE_SIZE; 4205 int ret; 4206 4207 while (cur < end) { 4208 struct extent_buffer *eb = NULL; 4209 4210 /* 4211 * Unlike try_release_extent_buffer() which uses folio private 4212 * to grab buffer, for subpage case we rely on radix tree, thus 4213 * we need to ensure radix tree consistency. 4214 * 4215 * We also want an atomic snapshot of the radix tree, thus go 4216 * with spinlock rather than RCU. 4217 */ 4218 spin_lock(&fs_info->buffer_lock); 4219 eb = get_next_extent_buffer(fs_info, folio, cur); 4220 if (!eb) { 4221 /* No more eb in the page range after or at cur */ 4222 spin_unlock(&fs_info->buffer_lock); 4223 break; 4224 } 4225 cur = eb->start + eb->len; 4226 4227 /* 4228 * The same as try_release_extent_buffer(), to ensure the eb 4229 * won't disappear out from under us. 4230 */ 4231 spin_lock(&eb->refs_lock); 4232 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4233 spin_unlock(&eb->refs_lock); 4234 spin_unlock(&fs_info->buffer_lock); 4235 break; 4236 } 4237 spin_unlock(&fs_info->buffer_lock); 4238 4239 /* 4240 * If tree ref isn't set then we know the ref on this eb is a 4241 * real ref, so just return, this eb will likely be freed soon 4242 * anyway. 4243 */ 4244 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4245 spin_unlock(&eb->refs_lock); 4246 break; 4247 } 4248 4249 /* 4250 * Here we don't care about the return value, we will always 4251 * check the folio private at the end. And 4252 * release_extent_buffer() will release the refs_lock. 4253 */ 4254 release_extent_buffer(eb); 4255 } 4256 /* 4257 * Finally to check if we have cleared folio private, as if we have 4258 * released all ebs in the page, the folio private should be cleared now. 4259 */ 4260 spin_lock(&folio->mapping->i_private_lock); 4261 if (!folio_test_private(folio)) 4262 ret = 1; 4263 else 4264 ret = 0; 4265 spin_unlock(&folio->mapping->i_private_lock); 4266 return ret; 4267 4268 } 4269 4270 int try_release_extent_buffer(struct folio *folio) 4271 { 4272 struct extent_buffer *eb; 4273 4274 if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE) 4275 return try_release_subpage_extent_buffer(folio); 4276 4277 /* 4278 * We need to make sure nobody is changing folio private, as we rely on 4279 * folio private as the pointer to extent buffer. 4280 */ 4281 spin_lock(&folio->mapping->i_private_lock); 4282 if (!folio_test_private(folio)) { 4283 spin_unlock(&folio->mapping->i_private_lock); 4284 return 1; 4285 } 4286 4287 eb = folio_get_private(folio); 4288 BUG_ON(!eb); 4289 4290 /* 4291 * This is a little awful but should be ok, we need to make sure that 4292 * the eb doesn't disappear out from under us while we're looking at 4293 * this page. 4294 */ 4295 spin_lock(&eb->refs_lock); 4296 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4297 spin_unlock(&eb->refs_lock); 4298 spin_unlock(&folio->mapping->i_private_lock); 4299 return 0; 4300 } 4301 spin_unlock(&folio->mapping->i_private_lock); 4302 4303 /* 4304 * If tree ref isn't set then we know the ref on this eb is a real ref, 4305 * so just return, this page will likely be freed soon anyway. 4306 */ 4307 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4308 spin_unlock(&eb->refs_lock); 4309 return 0; 4310 } 4311 4312 return release_extent_buffer(eb); 4313 } 4314 4315 /* 4316 * Attempt to readahead a child block. 4317 * 4318 * @fs_info: the fs_info 4319 * @bytenr: bytenr to read 4320 * @owner_root: objectid of the root that owns this eb 4321 * @gen: generation for the uptodate check, can be 0 4322 * @level: level for the eb 4323 * 4324 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 4325 * normal uptodate check of the eb, without checking the generation. If we have 4326 * to read the block we will not block on anything. 4327 */ 4328 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 4329 u64 bytenr, u64 owner_root, u64 gen, int level) 4330 { 4331 struct btrfs_tree_parent_check check = { 4332 .level = level, 4333 .transid = gen 4334 }; 4335 struct extent_buffer *eb; 4336 int ret; 4337 4338 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 4339 if (IS_ERR(eb)) 4340 return; 4341 4342 if (btrfs_buffer_uptodate(eb, gen, 1)) { 4343 free_extent_buffer(eb); 4344 return; 4345 } 4346 4347 ret = read_extent_buffer_pages_nowait(eb, 0, &check); 4348 if (ret < 0) 4349 free_extent_buffer_stale(eb); 4350 else 4351 free_extent_buffer(eb); 4352 } 4353 4354 /* 4355 * Readahead a node's child block. 4356 * 4357 * @node: parent node we're reading from 4358 * @slot: slot in the parent node for the child we want to read 4359 * 4360 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 4361 * the slot in the node provided. 4362 */ 4363 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 4364 { 4365 btrfs_readahead_tree_block(node->fs_info, 4366 btrfs_node_blockptr(node, slot), 4367 btrfs_header_owner(node), 4368 btrfs_node_ptr_generation(node, slot), 4369 btrfs_header_level(node) - 1); 4370 } 4371