1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "ctree.h" 17 #include "btrfs_inode.h" 18 #include "volumes.h" 19 #include "check-integrity.h" 20 #include "locking.h" 21 #include "rcu-string.h" 22 #include "backref.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 #ifdef CONFIG_BTRFS_DEBUG 29 static LIST_HEAD(buffers); 30 static LIST_HEAD(states); 31 32 static DEFINE_SPINLOCK(leak_lock); 33 34 static inline 35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 36 { 37 unsigned long flags; 38 39 spin_lock_irqsave(&leak_lock, flags); 40 list_add(new, head); 41 spin_unlock_irqrestore(&leak_lock, flags); 42 } 43 44 static inline 45 void btrfs_leak_debug_del(struct list_head *entry) 46 { 47 unsigned long flags; 48 49 spin_lock_irqsave(&leak_lock, flags); 50 list_del(entry); 51 spin_unlock_irqrestore(&leak_lock, flags); 52 } 53 54 static inline 55 void btrfs_leak_debug_check(void) 56 { 57 struct extent_state *state; 58 struct extent_buffer *eb; 59 60 while (!list_empty(&states)) { 61 state = list_entry(states.next, struct extent_state, leak_list); 62 printk(KERN_ERR "btrfs state leak: start %llu end %llu " 63 "state %lu in tree %p refs %d\n", 64 state->start, state->end, state->state, state->tree, 65 atomic_read(&state->refs)); 66 list_del(&state->leak_list); 67 kmem_cache_free(extent_state_cache, state); 68 } 69 70 while (!list_empty(&buffers)) { 71 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 72 printk(KERN_ERR "btrfs buffer leak start %llu len %lu " 73 "refs %d\n", 74 eb->start, eb->len, atomic_read(&eb->refs)); 75 list_del(&eb->leak_list); 76 kmem_cache_free(extent_buffer_cache, eb); 77 } 78 } 79 80 #define btrfs_debug_check_extent_io_range(inode, start, end) \ 81 __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end)) 82 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 83 struct inode *inode, u64 start, u64 end) 84 { 85 u64 isize = i_size_read(inode); 86 87 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 88 printk_ratelimited(KERN_DEBUG 89 "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n", 90 caller, btrfs_ino(inode), isize, start, end); 91 } 92 } 93 #else 94 #define btrfs_leak_debug_add(new, head) do {} while (0) 95 #define btrfs_leak_debug_del(entry) do {} while (0) 96 #define btrfs_leak_debug_check() do {} while (0) 97 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 98 #endif 99 100 #define BUFFER_LRU_MAX 64 101 102 struct tree_entry { 103 u64 start; 104 u64 end; 105 struct rb_node rb_node; 106 }; 107 108 struct extent_page_data { 109 struct bio *bio; 110 struct extent_io_tree *tree; 111 get_extent_t *get_extent; 112 unsigned long bio_flags; 113 114 /* tells writepage not to lock the state bits for this range 115 * it still does the unlocking 116 */ 117 unsigned int extent_locked:1; 118 119 /* tells the submit_bio code to use a WRITE_SYNC */ 120 unsigned int sync_io:1; 121 }; 122 123 static noinline void flush_write_bio(void *data); 124 static inline struct btrfs_fs_info * 125 tree_fs_info(struct extent_io_tree *tree) 126 { 127 return btrfs_sb(tree->mapping->host->i_sb); 128 } 129 130 int __init extent_io_init(void) 131 { 132 extent_state_cache = kmem_cache_create("btrfs_extent_state", 133 sizeof(struct extent_state), 0, 134 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 135 if (!extent_state_cache) 136 return -ENOMEM; 137 138 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 139 sizeof(struct extent_buffer), 0, 140 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 141 if (!extent_buffer_cache) 142 goto free_state_cache; 143 144 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 145 offsetof(struct btrfs_io_bio, bio)); 146 if (!btrfs_bioset) 147 goto free_buffer_cache; 148 149 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 150 goto free_bioset; 151 152 return 0; 153 154 free_bioset: 155 bioset_free(btrfs_bioset); 156 btrfs_bioset = NULL; 157 158 free_buffer_cache: 159 kmem_cache_destroy(extent_buffer_cache); 160 extent_buffer_cache = NULL; 161 162 free_state_cache: 163 kmem_cache_destroy(extent_state_cache); 164 extent_state_cache = NULL; 165 return -ENOMEM; 166 } 167 168 void extent_io_exit(void) 169 { 170 btrfs_leak_debug_check(); 171 172 /* 173 * Make sure all delayed rcu free are flushed before we 174 * destroy caches. 175 */ 176 rcu_barrier(); 177 if (extent_state_cache) 178 kmem_cache_destroy(extent_state_cache); 179 if (extent_buffer_cache) 180 kmem_cache_destroy(extent_buffer_cache); 181 if (btrfs_bioset) 182 bioset_free(btrfs_bioset); 183 } 184 185 void extent_io_tree_init(struct extent_io_tree *tree, 186 struct address_space *mapping) 187 { 188 tree->state = RB_ROOT; 189 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC); 190 tree->ops = NULL; 191 tree->dirty_bytes = 0; 192 spin_lock_init(&tree->lock); 193 spin_lock_init(&tree->buffer_lock); 194 tree->mapping = mapping; 195 } 196 197 static struct extent_state *alloc_extent_state(gfp_t mask) 198 { 199 struct extent_state *state; 200 201 state = kmem_cache_alloc(extent_state_cache, mask); 202 if (!state) 203 return state; 204 state->state = 0; 205 state->private = 0; 206 state->tree = NULL; 207 btrfs_leak_debug_add(&state->leak_list, &states); 208 atomic_set(&state->refs, 1); 209 init_waitqueue_head(&state->wq); 210 trace_alloc_extent_state(state, mask, _RET_IP_); 211 return state; 212 } 213 214 void free_extent_state(struct extent_state *state) 215 { 216 if (!state) 217 return; 218 if (atomic_dec_and_test(&state->refs)) { 219 WARN_ON(state->tree); 220 btrfs_leak_debug_del(&state->leak_list); 221 trace_free_extent_state(state, _RET_IP_); 222 kmem_cache_free(extent_state_cache, state); 223 } 224 } 225 226 static struct rb_node *tree_insert(struct rb_root *root, u64 offset, 227 struct rb_node *node) 228 { 229 struct rb_node **p = &root->rb_node; 230 struct rb_node *parent = NULL; 231 struct tree_entry *entry; 232 233 while (*p) { 234 parent = *p; 235 entry = rb_entry(parent, struct tree_entry, rb_node); 236 237 if (offset < entry->start) 238 p = &(*p)->rb_left; 239 else if (offset > entry->end) 240 p = &(*p)->rb_right; 241 else 242 return parent; 243 } 244 245 rb_link_node(node, parent, p); 246 rb_insert_color(node, root); 247 return NULL; 248 } 249 250 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 251 struct rb_node **prev_ret, 252 struct rb_node **next_ret) 253 { 254 struct rb_root *root = &tree->state; 255 struct rb_node *n = root->rb_node; 256 struct rb_node *prev = NULL; 257 struct rb_node *orig_prev = NULL; 258 struct tree_entry *entry; 259 struct tree_entry *prev_entry = NULL; 260 261 while (n) { 262 entry = rb_entry(n, struct tree_entry, rb_node); 263 prev = n; 264 prev_entry = entry; 265 266 if (offset < entry->start) 267 n = n->rb_left; 268 else if (offset > entry->end) 269 n = n->rb_right; 270 else 271 return n; 272 } 273 274 if (prev_ret) { 275 orig_prev = prev; 276 while (prev && offset > prev_entry->end) { 277 prev = rb_next(prev); 278 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 279 } 280 *prev_ret = prev; 281 prev = orig_prev; 282 } 283 284 if (next_ret) { 285 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 286 while (prev && offset < prev_entry->start) { 287 prev = rb_prev(prev); 288 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 289 } 290 *next_ret = prev; 291 } 292 return NULL; 293 } 294 295 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 296 u64 offset) 297 { 298 struct rb_node *prev = NULL; 299 struct rb_node *ret; 300 301 ret = __etree_search(tree, offset, &prev, NULL); 302 if (!ret) 303 return prev; 304 return ret; 305 } 306 307 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 308 struct extent_state *other) 309 { 310 if (tree->ops && tree->ops->merge_extent_hook) 311 tree->ops->merge_extent_hook(tree->mapping->host, new, 312 other); 313 } 314 315 /* 316 * utility function to look for merge candidates inside a given range. 317 * Any extents with matching state are merged together into a single 318 * extent in the tree. Extents with EXTENT_IO in their state field 319 * are not merged because the end_io handlers need to be able to do 320 * operations on them without sleeping (or doing allocations/splits). 321 * 322 * This should be called with the tree lock held. 323 */ 324 static void merge_state(struct extent_io_tree *tree, 325 struct extent_state *state) 326 { 327 struct extent_state *other; 328 struct rb_node *other_node; 329 330 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 331 return; 332 333 other_node = rb_prev(&state->rb_node); 334 if (other_node) { 335 other = rb_entry(other_node, struct extent_state, rb_node); 336 if (other->end == state->start - 1 && 337 other->state == state->state) { 338 merge_cb(tree, state, other); 339 state->start = other->start; 340 other->tree = NULL; 341 rb_erase(&other->rb_node, &tree->state); 342 free_extent_state(other); 343 } 344 } 345 other_node = rb_next(&state->rb_node); 346 if (other_node) { 347 other = rb_entry(other_node, struct extent_state, rb_node); 348 if (other->start == state->end + 1 && 349 other->state == state->state) { 350 merge_cb(tree, state, other); 351 state->end = other->end; 352 other->tree = NULL; 353 rb_erase(&other->rb_node, &tree->state); 354 free_extent_state(other); 355 } 356 } 357 } 358 359 static void set_state_cb(struct extent_io_tree *tree, 360 struct extent_state *state, unsigned long *bits) 361 { 362 if (tree->ops && tree->ops->set_bit_hook) 363 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 364 } 365 366 static void clear_state_cb(struct extent_io_tree *tree, 367 struct extent_state *state, unsigned long *bits) 368 { 369 if (tree->ops && tree->ops->clear_bit_hook) 370 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 371 } 372 373 static void set_state_bits(struct extent_io_tree *tree, 374 struct extent_state *state, unsigned long *bits); 375 376 /* 377 * insert an extent_state struct into the tree. 'bits' are set on the 378 * struct before it is inserted. 379 * 380 * This may return -EEXIST if the extent is already there, in which case the 381 * state struct is freed. 382 * 383 * The tree lock is not taken internally. This is a utility function and 384 * probably isn't what you want to call (see set/clear_extent_bit). 385 */ 386 static int insert_state(struct extent_io_tree *tree, 387 struct extent_state *state, u64 start, u64 end, 388 unsigned long *bits) 389 { 390 struct rb_node *node; 391 392 if (end < start) 393 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n", 394 end, start); 395 state->start = start; 396 state->end = end; 397 398 set_state_bits(tree, state, bits); 399 400 node = tree_insert(&tree->state, end, &state->rb_node); 401 if (node) { 402 struct extent_state *found; 403 found = rb_entry(node, struct extent_state, rb_node); 404 printk(KERN_ERR "btrfs found node %llu %llu on insert of " 405 "%llu %llu\n", 406 found->start, found->end, start, end); 407 return -EEXIST; 408 } 409 state->tree = tree; 410 merge_state(tree, state); 411 return 0; 412 } 413 414 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 415 u64 split) 416 { 417 if (tree->ops && tree->ops->split_extent_hook) 418 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 419 } 420 421 /* 422 * split a given extent state struct in two, inserting the preallocated 423 * struct 'prealloc' as the newly created second half. 'split' indicates an 424 * offset inside 'orig' where it should be split. 425 * 426 * Before calling, 427 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 428 * are two extent state structs in the tree: 429 * prealloc: [orig->start, split - 1] 430 * orig: [ split, orig->end ] 431 * 432 * The tree locks are not taken by this function. They need to be held 433 * by the caller. 434 */ 435 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 436 struct extent_state *prealloc, u64 split) 437 { 438 struct rb_node *node; 439 440 split_cb(tree, orig, split); 441 442 prealloc->start = orig->start; 443 prealloc->end = split - 1; 444 prealloc->state = orig->state; 445 orig->start = split; 446 447 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node); 448 if (node) { 449 free_extent_state(prealloc); 450 return -EEXIST; 451 } 452 prealloc->tree = tree; 453 return 0; 454 } 455 456 static struct extent_state *next_state(struct extent_state *state) 457 { 458 struct rb_node *next = rb_next(&state->rb_node); 459 if (next) 460 return rb_entry(next, struct extent_state, rb_node); 461 else 462 return NULL; 463 } 464 465 /* 466 * utility function to clear some bits in an extent state struct. 467 * it will optionally wake up any one waiting on this state (wake == 1). 468 * 469 * If no bits are set on the state struct after clearing things, the 470 * struct is freed and removed from the tree 471 */ 472 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 473 struct extent_state *state, 474 unsigned long *bits, int wake) 475 { 476 struct extent_state *next; 477 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS; 478 479 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 480 u64 range = state->end - state->start + 1; 481 WARN_ON(range > tree->dirty_bytes); 482 tree->dirty_bytes -= range; 483 } 484 clear_state_cb(tree, state, bits); 485 state->state &= ~bits_to_clear; 486 if (wake) 487 wake_up(&state->wq); 488 if (state->state == 0) { 489 next = next_state(state); 490 if (state->tree) { 491 rb_erase(&state->rb_node, &tree->state); 492 state->tree = NULL; 493 free_extent_state(state); 494 } else { 495 WARN_ON(1); 496 } 497 } else { 498 merge_state(tree, state); 499 next = next_state(state); 500 } 501 return next; 502 } 503 504 static struct extent_state * 505 alloc_extent_state_atomic(struct extent_state *prealloc) 506 { 507 if (!prealloc) 508 prealloc = alloc_extent_state(GFP_ATOMIC); 509 510 return prealloc; 511 } 512 513 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 514 { 515 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 516 "Extent tree was modified by another " 517 "thread while locked."); 518 } 519 520 /* 521 * clear some bits on a range in the tree. This may require splitting 522 * or inserting elements in the tree, so the gfp mask is used to 523 * indicate which allocations or sleeping are allowed. 524 * 525 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 526 * the given range from the tree regardless of state (ie for truncate). 527 * 528 * the range [start, end] is inclusive. 529 * 530 * This takes the tree lock, and returns 0 on success and < 0 on error. 531 */ 532 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 533 unsigned long bits, int wake, int delete, 534 struct extent_state **cached_state, 535 gfp_t mask) 536 { 537 struct extent_state *state; 538 struct extent_state *cached; 539 struct extent_state *prealloc = NULL; 540 struct rb_node *node; 541 u64 last_end; 542 int err; 543 int clear = 0; 544 545 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 546 547 if (bits & EXTENT_DELALLOC) 548 bits |= EXTENT_NORESERVE; 549 550 if (delete) 551 bits |= ~EXTENT_CTLBITS; 552 bits |= EXTENT_FIRST_DELALLOC; 553 554 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 555 clear = 1; 556 again: 557 if (!prealloc && (mask & __GFP_WAIT)) { 558 prealloc = alloc_extent_state(mask); 559 if (!prealloc) 560 return -ENOMEM; 561 } 562 563 spin_lock(&tree->lock); 564 if (cached_state) { 565 cached = *cached_state; 566 567 if (clear) { 568 *cached_state = NULL; 569 cached_state = NULL; 570 } 571 572 if (cached && cached->tree && cached->start <= start && 573 cached->end > start) { 574 if (clear) 575 atomic_dec(&cached->refs); 576 state = cached; 577 goto hit_next; 578 } 579 if (clear) 580 free_extent_state(cached); 581 } 582 /* 583 * this search will find the extents that end after 584 * our range starts 585 */ 586 node = tree_search(tree, start); 587 if (!node) 588 goto out; 589 state = rb_entry(node, struct extent_state, rb_node); 590 hit_next: 591 if (state->start > end) 592 goto out; 593 WARN_ON(state->end < start); 594 last_end = state->end; 595 596 /* the state doesn't have the wanted bits, go ahead */ 597 if (!(state->state & bits)) { 598 state = next_state(state); 599 goto next; 600 } 601 602 /* 603 * | ---- desired range ---- | 604 * | state | or 605 * | ------------- state -------------- | 606 * 607 * We need to split the extent we found, and may flip 608 * bits on second half. 609 * 610 * If the extent we found extends past our range, we 611 * just split and search again. It'll get split again 612 * the next time though. 613 * 614 * If the extent we found is inside our range, we clear 615 * the desired bit on it. 616 */ 617 618 if (state->start < start) { 619 prealloc = alloc_extent_state_atomic(prealloc); 620 BUG_ON(!prealloc); 621 err = split_state(tree, state, prealloc, start); 622 if (err) 623 extent_io_tree_panic(tree, err); 624 625 prealloc = NULL; 626 if (err) 627 goto out; 628 if (state->end <= end) { 629 state = clear_state_bit(tree, state, &bits, wake); 630 goto next; 631 } 632 goto search_again; 633 } 634 /* 635 * | ---- desired range ---- | 636 * | state | 637 * We need to split the extent, and clear the bit 638 * on the first half 639 */ 640 if (state->start <= end && state->end > end) { 641 prealloc = alloc_extent_state_atomic(prealloc); 642 BUG_ON(!prealloc); 643 err = split_state(tree, state, prealloc, end + 1); 644 if (err) 645 extent_io_tree_panic(tree, err); 646 647 if (wake) 648 wake_up(&state->wq); 649 650 clear_state_bit(tree, prealloc, &bits, wake); 651 652 prealloc = NULL; 653 goto out; 654 } 655 656 state = clear_state_bit(tree, state, &bits, wake); 657 next: 658 if (last_end == (u64)-1) 659 goto out; 660 start = last_end + 1; 661 if (start <= end && state && !need_resched()) 662 goto hit_next; 663 goto search_again; 664 665 out: 666 spin_unlock(&tree->lock); 667 if (prealloc) 668 free_extent_state(prealloc); 669 670 return 0; 671 672 search_again: 673 if (start > end) 674 goto out; 675 spin_unlock(&tree->lock); 676 if (mask & __GFP_WAIT) 677 cond_resched(); 678 goto again; 679 } 680 681 static void wait_on_state(struct extent_io_tree *tree, 682 struct extent_state *state) 683 __releases(tree->lock) 684 __acquires(tree->lock) 685 { 686 DEFINE_WAIT(wait); 687 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 688 spin_unlock(&tree->lock); 689 schedule(); 690 spin_lock(&tree->lock); 691 finish_wait(&state->wq, &wait); 692 } 693 694 /* 695 * waits for one or more bits to clear on a range in the state tree. 696 * The range [start, end] is inclusive. 697 * The tree lock is taken by this function 698 */ 699 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 700 unsigned long bits) 701 { 702 struct extent_state *state; 703 struct rb_node *node; 704 705 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 706 707 spin_lock(&tree->lock); 708 again: 709 while (1) { 710 /* 711 * this search will find all the extents that end after 712 * our range starts 713 */ 714 node = tree_search(tree, start); 715 if (!node) 716 break; 717 718 state = rb_entry(node, struct extent_state, rb_node); 719 720 if (state->start > end) 721 goto out; 722 723 if (state->state & bits) { 724 start = state->start; 725 atomic_inc(&state->refs); 726 wait_on_state(tree, state); 727 free_extent_state(state); 728 goto again; 729 } 730 start = state->end + 1; 731 732 if (start > end) 733 break; 734 735 cond_resched_lock(&tree->lock); 736 } 737 out: 738 spin_unlock(&tree->lock); 739 } 740 741 static void set_state_bits(struct extent_io_tree *tree, 742 struct extent_state *state, 743 unsigned long *bits) 744 { 745 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS; 746 747 set_state_cb(tree, state, bits); 748 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 749 u64 range = state->end - state->start + 1; 750 tree->dirty_bytes += range; 751 } 752 state->state |= bits_to_set; 753 } 754 755 static void cache_state(struct extent_state *state, 756 struct extent_state **cached_ptr) 757 { 758 if (cached_ptr && !(*cached_ptr)) { 759 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) { 760 *cached_ptr = state; 761 atomic_inc(&state->refs); 762 } 763 } 764 } 765 766 /* 767 * set some bits on a range in the tree. This may require allocations or 768 * sleeping, so the gfp mask is used to indicate what is allowed. 769 * 770 * If any of the exclusive bits are set, this will fail with -EEXIST if some 771 * part of the range already has the desired bits set. The start of the 772 * existing range is returned in failed_start in this case. 773 * 774 * [start, end] is inclusive This takes the tree lock. 775 */ 776 777 static int __must_check 778 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 779 unsigned long bits, unsigned long exclusive_bits, 780 u64 *failed_start, struct extent_state **cached_state, 781 gfp_t mask) 782 { 783 struct extent_state *state; 784 struct extent_state *prealloc = NULL; 785 struct rb_node *node; 786 int err = 0; 787 u64 last_start; 788 u64 last_end; 789 790 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 791 792 bits |= EXTENT_FIRST_DELALLOC; 793 again: 794 if (!prealloc && (mask & __GFP_WAIT)) { 795 prealloc = alloc_extent_state(mask); 796 BUG_ON(!prealloc); 797 } 798 799 spin_lock(&tree->lock); 800 if (cached_state && *cached_state) { 801 state = *cached_state; 802 if (state->start <= start && state->end > start && 803 state->tree) { 804 node = &state->rb_node; 805 goto hit_next; 806 } 807 } 808 /* 809 * this search will find all the extents that end after 810 * our range starts. 811 */ 812 node = tree_search(tree, start); 813 if (!node) { 814 prealloc = alloc_extent_state_atomic(prealloc); 815 BUG_ON(!prealloc); 816 err = insert_state(tree, prealloc, start, end, &bits); 817 if (err) 818 extent_io_tree_panic(tree, err); 819 820 prealloc = NULL; 821 goto out; 822 } 823 state = rb_entry(node, struct extent_state, rb_node); 824 hit_next: 825 last_start = state->start; 826 last_end = state->end; 827 828 /* 829 * | ---- desired range ---- | 830 * | state | 831 * 832 * Just lock what we found and keep going 833 */ 834 if (state->start == start && state->end <= end) { 835 if (state->state & exclusive_bits) { 836 *failed_start = state->start; 837 err = -EEXIST; 838 goto out; 839 } 840 841 set_state_bits(tree, state, &bits); 842 cache_state(state, cached_state); 843 merge_state(tree, state); 844 if (last_end == (u64)-1) 845 goto out; 846 start = last_end + 1; 847 state = next_state(state); 848 if (start < end && state && state->start == start && 849 !need_resched()) 850 goto hit_next; 851 goto search_again; 852 } 853 854 /* 855 * | ---- desired range ---- | 856 * | state | 857 * or 858 * | ------------- state -------------- | 859 * 860 * We need to split the extent we found, and may flip bits on 861 * second half. 862 * 863 * If the extent we found extends past our 864 * range, we just split and search again. It'll get split 865 * again the next time though. 866 * 867 * If the extent we found is inside our range, we set the 868 * desired bit on it. 869 */ 870 if (state->start < start) { 871 if (state->state & exclusive_bits) { 872 *failed_start = start; 873 err = -EEXIST; 874 goto out; 875 } 876 877 prealloc = alloc_extent_state_atomic(prealloc); 878 BUG_ON(!prealloc); 879 err = split_state(tree, state, prealloc, start); 880 if (err) 881 extent_io_tree_panic(tree, err); 882 883 prealloc = NULL; 884 if (err) 885 goto out; 886 if (state->end <= end) { 887 set_state_bits(tree, state, &bits); 888 cache_state(state, cached_state); 889 merge_state(tree, state); 890 if (last_end == (u64)-1) 891 goto out; 892 start = last_end + 1; 893 state = next_state(state); 894 if (start < end && state && state->start == start && 895 !need_resched()) 896 goto hit_next; 897 } 898 goto search_again; 899 } 900 /* 901 * | ---- desired range ---- | 902 * | state | or | state | 903 * 904 * There's a hole, we need to insert something in it and 905 * ignore the extent we found. 906 */ 907 if (state->start > start) { 908 u64 this_end; 909 if (end < last_start) 910 this_end = end; 911 else 912 this_end = last_start - 1; 913 914 prealloc = alloc_extent_state_atomic(prealloc); 915 BUG_ON(!prealloc); 916 917 /* 918 * Avoid to free 'prealloc' if it can be merged with 919 * the later extent. 920 */ 921 err = insert_state(tree, prealloc, start, this_end, 922 &bits); 923 if (err) 924 extent_io_tree_panic(tree, err); 925 926 cache_state(prealloc, cached_state); 927 prealloc = NULL; 928 start = this_end + 1; 929 goto search_again; 930 } 931 /* 932 * | ---- desired range ---- | 933 * | state | 934 * We need to split the extent, and set the bit 935 * on the first half 936 */ 937 if (state->start <= end && state->end > end) { 938 if (state->state & exclusive_bits) { 939 *failed_start = start; 940 err = -EEXIST; 941 goto out; 942 } 943 944 prealloc = alloc_extent_state_atomic(prealloc); 945 BUG_ON(!prealloc); 946 err = split_state(tree, state, prealloc, end + 1); 947 if (err) 948 extent_io_tree_panic(tree, err); 949 950 set_state_bits(tree, prealloc, &bits); 951 cache_state(prealloc, cached_state); 952 merge_state(tree, prealloc); 953 prealloc = NULL; 954 goto out; 955 } 956 957 goto search_again; 958 959 out: 960 spin_unlock(&tree->lock); 961 if (prealloc) 962 free_extent_state(prealloc); 963 964 return err; 965 966 search_again: 967 if (start > end) 968 goto out; 969 spin_unlock(&tree->lock); 970 if (mask & __GFP_WAIT) 971 cond_resched(); 972 goto again; 973 } 974 975 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 976 unsigned long bits, u64 * failed_start, 977 struct extent_state **cached_state, gfp_t mask) 978 { 979 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 980 cached_state, mask); 981 } 982 983 984 /** 985 * convert_extent_bit - convert all bits in a given range from one bit to 986 * another 987 * @tree: the io tree to search 988 * @start: the start offset in bytes 989 * @end: the end offset in bytes (inclusive) 990 * @bits: the bits to set in this range 991 * @clear_bits: the bits to clear in this range 992 * @cached_state: state that we're going to cache 993 * @mask: the allocation mask 994 * 995 * This will go through and set bits for the given range. If any states exist 996 * already in this range they are set with the given bit and cleared of the 997 * clear_bits. This is only meant to be used by things that are mergeable, ie 998 * converting from say DELALLOC to DIRTY. This is not meant to be used with 999 * boundary bits like LOCK. 1000 */ 1001 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1002 unsigned long bits, unsigned long clear_bits, 1003 struct extent_state **cached_state, gfp_t mask) 1004 { 1005 struct extent_state *state; 1006 struct extent_state *prealloc = NULL; 1007 struct rb_node *node; 1008 int err = 0; 1009 u64 last_start; 1010 u64 last_end; 1011 1012 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 1013 1014 again: 1015 if (!prealloc && (mask & __GFP_WAIT)) { 1016 prealloc = alloc_extent_state(mask); 1017 if (!prealloc) 1018 return -ENOMEM; 1019 } 1020 1021 spin_lock(&tree->lock); 1022 if (cached_state && *cached_state) { 1023 state = *cached_state; 1024 if (state->start <= start && state->end > start && 1025 state->tree) { 1026 node = &state->rb_node; 1027 goto hit_next; 1028 } 1029 } 1030 1031 /* 1032 * this search will find all the extents that end after 1033 * our range starts. 1034 */ 1035 node = tree_search(tree, start); 1036 if (!node) { 1037 prealloc = alloc_extent_state_atomic(prealloc); 1038 if (!prealloc) { 1039 err = -ENOMEM; 1040 goto out; 1041 } 1042 err = insert_state(tree, prealloc, start, end, &bits); 1043 prealloc = NULL; 1044 if (err) 1045 extent_io_tree_panic(tree, err); 1046 goto out; 1047 } 1048 state = rb_entry(node, struct extent_state, rb_node); 1049 hit_next: 1050 last_start = state->start; 1051 last_end = state->end; 1052 1053 /* 1054 * | ---- desired range ---- | 1055 * | state | 1056 * 1057 * Just lock what we found and keep going 1058 */ 1059 if (state->start == start && state->end <= end) { 1060 set_state_bits(tree, state, &bits); 1061 cache_state(state, cached_state); 1062 state = clear_state_bit(tree, state, &clear_bits, 0); 1063 if (last_end == (u64)-1) 1064 goto out; 1065 start = last_end + 1; 1066 if (start < end && state && state->start == start && 1067 !need_resched()) 1068 goto hit_next; 1069 goto search_again; 1070 } 1071 1072 /* 1073 * | ---- desired range ---- | 1074 * | state | 1075 * or 1076 * | ------------- state -------------- | 1077 * 1078 * We need to split the extent we found, and may flip bits on 1079 * second half. 1080 * 1081 * If the extent we found extends past our 1082 * range, we just split and search again. It'll get split 1083 * again the next time though. 1084 * 1085 * If the extent we found is inside our range, we set the 1086 * desired bit on it. 1087 */ 1088 if (state->start < start) { 1089 prealloc = alloc_extent_state_atomic(prealloc); 1090 if (!prealloc) { 1091 err = -ENOMEM; 1092 goto out; 1093 } 1094 err = split_state(tree, state, prealloc, start); 1095 if (err) 1096 extent_io_tree_panic(tree, err); 1097 prealloc = NULL; 1098 if (err) 1099 goto out; 1100 if (state->end <= end) { 1101 set_state_bits(tree, state, &bits); 1102 cache_state(state, cached_state); 1103 state = clear_state_bit(tree, state, &clear_bits, 0); 1104 if (last_end == (u64)-1) 1105 goto out; 1106 start = last_end + 1; 1107 if (start < end && state && state->start == start && 1108 !need_resched()) 1109 goto hit_next; 1110 } 1111 goto search_again; 1112 } 1113 /* 1114 * | ---- desired range ---- | 1115 * | state | or | state | 1116 * 1117 * There's a hole, we need to insert something in it and 1118 * ignore the extent we found. 1119 */ 1120 if (state->start > start) { 1121 u64 this_end; 1122 if (end < last_start) 1123 this_end = end; 1124 else 1125 this_end = last_start - 1; 1126 1127 prealloc = alloc_extent_state_atomic(prealloc); 1128 if (!prealloc) { 1129 err = -ENOMEM; 1130 goto out; 1131 } 1132 1133 /* 1134 * Avoid to free 'prealloc' if it can be merged with 1135 * the later extent. 1136 */ 1137 err = insert_state(tree, prealloc, start, this_end, 1138 &bits); 1139 if (err) 1140 extent_io_tree_panic(tree, err); 1141 cache_state(prealloc, cached_state); 1142 prealloc = NULL; 1143 start = this_end + 1; 1144 goto search_again; 1145 } 1146 /* 1147 * | ---- desired range ---- | 1148 * | state | 1149 * We need to split the extent, and set the bit 1150 * on the first half 1151 */ 1152 if (state->start <= end && state->end > end) { 1153 prealloc = alloc_extent_state_atomic(prealloc); 1154 if (!prealloc) { 1155 err = -ENOMEM; 1156 goto out; 1157 } 1158 1159 err = split_state(tree, state, prealloc, end + 1); 1160 if (err) 1161 extent_io_tree_panic(tree, err); 1162 1163 set_state_bits(tree, prealloc, &bits); 1164 cache_state(prealloc, cached_state); 1165 clear_state_bit(tree, prealloc, &clear_bits, 0); 1166 prealloc = NULL; 1167 goto out; 1168 } 1169 1170 goto search_again; 1171 1172 out: 1173 spin_unlock(&tree->lock); 1174 if (prealloc) 1175 free_extent_state(prealloc); 1176 1177 return err; 1178 1179 search_again: 1180 if (start > end) 1181 goto out; 1182 spin_unlock(&tree->lock); 1183 if (mask & __GFP_WAIT) 1184 cond_resched(); 1185 goto again; 1186 } 1187 1188 /* wrappers around set/clear extent bit */ 1189 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1190 gfp_t mask) 1191 { 1192 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, 1193 NULL, mask); 1194 } 1195 1196 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1197 unsigned long bits, gfp_t mask) 1198 { 1199 return set_extent_bit(tree, start, end, bits, NULL, 1200 NULL, mask); 1201 } 1202 1203 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1204 unsigned long bits, gfp_t mask) 1205 { 1206 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); 1207 } 1208 1209 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 1210 struct extent_state **cached_state, gfp_t mask) 1211 { 1212 return set_extent_bit(tree, start, end, 1213 EXTENT_DELALLOC | EXTENT_UPTODATE, 1214 NULL, cached_state, mask); 1215 } 1216 1217 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end, 1218 struct extent_state **cached_state, gfp_t mask) 1219 { 1220 return set_extent_bit(tree, start, end, 1221 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG, 1222 NULL, cached_state, mask); 1223 } 1224 1225 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1226 gfp_t mask) 1227 { 1228 return clear_extent_bit(tree, start, end, 1229 EXTENT_DIRTY | EXTENT_DELALLOC | 1230 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 1231 } 1232 1233 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 1234 gfp_t mask) 1235 { 1236 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, 1237 NULL, mask); 1238 } 1239 1240 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1241 struct extent_state **cached_state, gfp_t mask) 1242 { 1243 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL, 1244 cached_state, mask); 1245 } 1246 1247 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1248 struct extent_state **cached_state, gfp_t mask) 1249 { 1250 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 1251 cached_state, mask); 1252 } 1253 1254 /* 1255 * either insert or lock state struct between start and end use mask to tell 1256 * us if waiting is desired. 1257 */ 1258 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1259 unsigned long bits, struct extent_state **cached_state) 1260 { 1261 int err; 1262 u64 failed_start; 1263 while (1) { 1264 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1265 EXTENT_LOCKED, &failed_start, 1266 cached_state, GFP_NOFS); 1267 if (err == -EEXIST) { 1268 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1269 start = failed_start; 1270 } else 1271 break; 1272 WARN_ON(start > end); 1273 } 1274 return err; 1275 } 1276 1277 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1278 { 1279 return lock_extent_bits(tree, start, end, 0, NULL); 1280 } 1281 1282 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1283 { 1284 int err; 1285 u64 failed_start; 1286 1287 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1288 &failed_start, NULL, GFP_NOFS); 1289 if (err == -EEXIST) { 1290 if (failed_start > start) 1291 clear_extent_bit(tree, start, failed_start - 1, 1292 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1293 return 0; 1294 } 1295 return 1; 1296 } 1297 1298 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1299 struct extent_state **cached, gfp_t mask) 1300 { 1301 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1302 mask); 1303 } 1304 1305 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1306 { 1307 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1308 GFP_NOFS); 1309 } 1310 1311 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1312 { 1313 unsigned long index = start >> PAGE_CACHE_SHIFT; 1314 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1315 struct page *page; 1316 1317 while (index <= end_index) { 1318 page = find_get_page(inode->i_mapping, index); 1319 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1320 clear_page_dirty_for_io(page); 1321 page_cache_release(page); 1322 index++; 1323 } 1324 return 0; 1325 } 1326 1327 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1328 { 1329 unsigned long index = start >> PAGE_CACHE_SHIFT; 1330 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1331 struct page *page; 1332 1333 while (index <= end_index) { 1334 page = find_get_page(inode->i_mapping, index); 1335 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1336 account_page_redirty(page); 1337 __set_page_dirty_nobuffers(page); 1338 page_cache_release(page); 1339 index++; 1340 } 1341 return 0; 1342 } 1343 1344 /* 1345 * helper function to set both pages and extents in the tree writeback 1346 */ 1347 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1348 { 1349 unsigned long index = start >> PAGE_CACHE_SHIFT; 1350 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1351 struct page *page; 1352 1353 while (index <= end_index) { 1354 page = find_get_page(tree->mapping, index); 1355 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1356 set_page_writeback(page); 1357 page_cache_release(page); 1358 index++; 1359 } 1360 return 0; 1361 } 1362 1363 /* find the first state struct with 'bits' set after 'start', and 1364 * return it. tree->lock must be held. NULL will returned if 1365 * nothing was found after 'start' 1366 */ 1367 static struct extent_state * 1368 find_first_extent_bit_state(struct extent_io_tree *tree, 1369 u64 start, unsigned long bits) 1370 { 1371 struct rb_node *node; 1372 struct extent_state *state; 1373 1374 /* 1375 * this search will find all the extents that end after 1376 * our range starts. 1377 */ 1378 node = tree_search(tree, start); 1379 if (!node) 1380 goto out; 1381 1382 while (1) { 1383 state = rb_entry(node, struct extent_state, rb_node); 1384 if (state->end >= start && (state->state & bits)) 1385 return state; 1386 1387 node = rb_next(node); 1388 if (!node) 1389 break; 1390 } 1391 out: 1392 return NULL; 1393 } 1394 1395 /* 1396 * find the first offset in the io tree with 'bits' set. zero is 1397 * returned if we find something, and *start_ret and *end_ret are 1398 * set to reflect the state struct that was found. 1399 * 1400 * If nothing was found, 1 is returned. If found something, return 0. 1401 */ 1402 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1403 u64 *start_ret, u64 *end_ret, unsigned long bits, 1404 struct extent_state **cached_state) 1405 { 1406 struct extent_state *state; 1407 struct rb_node *n; 1408 int ret = 1; 1409 1410 spin_lock(&tree->lock); 1411 if (cached_state && *cached_state) { 1412 state = *cached_state; 1413 if (state->end == start - 1 && state->tree) { 1414 n = rb_next(&state->rb_node); 1415 while (n) { 1416 state = rb_entry(n, struct extent_state, 1417 rb_node); 1418 if (state->state & bits) 1419 goto got_it; 1420 n = rb_next(n); 1421 } 1422 free_extent_state(*cached_state); 1423 *cached_state = NULL; 1424 goto out; 1425 } 1426 free_extent_state(*cached_state); 1427 *cached_state = NULL; 1428 } 1429 1430 state = find_first_extent_bit_state(tree, start, bits); 1431 got_it: 1432 if (state) { 1433 cache_state(state, cached_state); 1434 *start_ret = state->start; 1435 *end_ret = state->end; 1436 ret = 0; 1437 } 1438 out: 1439 spin_unlock(&tree->lock); 1440 return ret; 1441 } 1442 1443 /* 1444 * find a contiguous range of bytes in the file marked as delalloc, not 1445 * more than 'max_bytes'. start and end are used to return the range, 1446 * 1447 * 1 is returned if we find something, 0 if nothing was in the tree 1448 */ 1449 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1450 u64 *start, u64 *end, u64 max_bytes, 1451 struct extent_state **cached_state) 1452 { 1453 struct rb_node *node; 1454 struct extent_state *state; 1455 u64 cur_start = *start; 1456 u64 found = 0; 1457 u64 total_bytes = 0; 1458 1459 spin_lock(&tree->lock); 1460 1461 /* 1462 * this search will find all the extents that end after 1463 * our range starts. 1464 */ 1465 node = tree_search(tree, cur_start); 1466 if (!node) { 1467 if (!found) 1468 *end = (u64)-1; 1469 goto out; 1470 } 1471 1472 while (1) { 1473 state = rb_entry(node, struct extent_state, rb_node); 1474 if (found && (state->start != cur_start || 1475 (state->state & EXTENT_BOUNDARY))) { 1476 goto out; 1477 } 1478 if (!(state->state & EXTENT_DELALLOC)) { 1479 if (!found) 1480 *end = state->end; 1481 goto out; 1482 } 1483 if (!found) { 1484 *start = state->start; 1485 *cached_state = state; 1486 atomic_inc(&state->refs); 1487 } 1488 found++; 1489 *end = state->end; 1490 cur_start = state->end + 1; 1491 node = rb_next(node); 1492 total_bytes += state->end - state->start + 1; 1493 if (total_bytes >= max_bytes) 1494 break; 1495 if (!node) 1496 break; 1497 } 1498 out: 1499 spin_unlock(&tree->lock); 1500 return found; 1501 } 1502 1503 static noinline void __unlock_for_delalloc(struct inode *inode, 1504 struct page *locked_page, 1505 u64 start, u64 end) 1506 { 1507 int ret; 1508 struct page *pages[16]; 1509 unsigned long index = start >> PAGE_CACHE_SHIFT; 1510 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1511 unsigned long nr_pages = end_index - index + 1; 1512 int i; 1513 1514 if (index == locked_page->index && end_index == index) 1515 return; 1516 1517 while (nr_pages > 0) { 1518 ret = find_get_pages_contig(inode->i_mapping, index, 1519 min_t(unsigned long, nr_pages, 1520 ARRAY_SIZE(pages)), pages); 1521 for (i = 0; i < ret; i++) { 1522 if (pages[i] != locked_page) 1523 unlock_page(pages[i]); 1524 page_cache_release(pages[i]); 1525 } 1526 nr_pages -= ret; 1527 index += ret; 1528 cond_resched(); 1529 } 1530 } 1531 1532 static noinline int lock_delalloc_pages(struct inode *inode, 1533 struct page *locked_page, 1534 u64 delalloc_start, 1535 u64 delalloc_end) 1536 { 1537 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1538 unsigned long start_index = index; 1539 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1540 unsigned long pages_locked = 0; 1541 struct page *pages[16]; 1542 unsigned long nrpages; 1543 int ret; 1544 int i; 1545 1546 /* the caller is responsible for locking the start index */ 1547 if (index == locked_page->index && index == end_index) 1548 return 0; 1549 1550 /* skip the page at the start index */ 1551 nrpages = end_index - index + 1; 1552 while (nrpages > 0) { 1553 ret = find_get_pages_contig(inode->i_mapping, index, 1554 min_t(unsigned long, 1555 nrpages, ARRAY_SIZE(pages)), pages); 1556 if (ret == 0) { 1557 ret = -EAGAIN; 1558 goto done; 1559 } 1560 /* now we have an array of pages, lock them all */ 1561 for (i = 0; i < ret; i++) { 1562 /* 1563 * the caller is taking responsibility for 1564 * locked_page 1565 */ 1566 if (pages[i] != locked_page) { 1567 lock_page(pages[i]); 1568 if (!PageDirty(pages[i]) || 1569 pages[i]->mapping != inode->i_mapping) { 1570 ret = -EAGAIN; 1571 unlock_page(pages[i]); 1572 page_cache_release(pages[i]); 1573 goto done; 1574 } 1575 } 1576 page_cache_release(pages[i]); 1577 pages_locked++; 1578 } 1579 nrpages -= ret; 1580 index += ret; 1581 cond_resched(); 1582 } 1583 ret = 0; 1584 done: 1585 if (ret && pages_locked) { 1586 __unlock_for_delalloc(inode, locked_page, 1587 delalloc_start, 1588 ((u64)(start_index + pages_locked - 1)) << 1589 PAGE_CACHE_SHIFT); 1590 } 1591 return ret; 1592 } 1593 1594 /* 1595 * find a contiguous range of bytes in the file marked as delalloc, not 1596 * more than 'max_bytes'. start and end are used to return the range, 1597 * 1598 * 1 is returned if we find something, 0 if nothing was in the tree 1599 */ 1600 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1601 struct extent_io_tree *tree, 1602 struct page *locked_page, u64 *start, 1603 u64 *end, u64 max_bytes) 1604 { 1605 u64 delalloc_start; 1606 u64 delalloc_end; 1607 u64 found; 1608 struct extent_state *cached_state = NULL; 1609 int ret; 1610 int loops = 0; 1611 1612 again: 1613 /* step one, find a bunch of delalloc bytes starting at start */ 1614 delalloc_start = *start; 1615 delalloc_end = 0; 1616 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1617 max_bytes, &cached_state); 1618 if (!found || delalloc_end <= *start) { 1619 *start = delalloc_start; 1620 *end = delalloc_end; 1621 free_extent_state(cached_state); 1622 return 0; 1623 } 1624 1625 /* 1626 * start comes from the offset of locked_page. We have to lock 1627 * pages in order, so we can't process delalloc bytes before 1628 * locked_page 1629 */ 1630 if (delalloc_start < *start) 1631 delalloc_start = *start; 1632 1633 /* 1634 * make sure to limit the number of pages we try to lock down 1635 */ 1636 if (delalloc_end + 1 - delalloc_start > max_bytes) 1637 delalloc_end = delalloc_start + max_bytes - 1; 1638 1639 /* step two, lock all the pages after the page that has start */ 1640 ret = lock_delalloc_pages(inode, locked_page, 1641 delalloc_start, delalloc_end); 1642 if (ret == -EAGAIN) { 1643 /* some of the pages are gone, lets avoid looping by 1644 * shortening the size of the delalloc range we're searching 1645 */ 1646 free_extent_state(cached_state); 1647 if (!loops) { 1648 max_bytes = PAGE_CACHE_SIZE; 1649 loops = 1; 1650 goto again; 1651 } else { 1652 found = 0; 1653 goto out_failed; 1654 } 1655 } 1656 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1657 1658 /* step three, lock the state bits for the whole range */ 1659 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); 1660 1661 /* then test to make sure it is all still delalloc */ 1662 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1663 EXTENT_DELALLOC, 1, cached_state); 1664 if (!ret) { 1665 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1666 &cached_state, GFP_NOFS); 1667 __unlock_for_delalloc(inode, locked_page, 1668 delalloc_start, delalloc_end); 1669 cond_resched(); 1670 goto again; 1671 } 1672 free_extent_state(cached_state); 1673 *start = delalloc_start; 1674 *end = delalloc_end; 1675 out_failed: 1676 return found; 1677 } 1678 1679 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1680 struct page *locked_page, 1681 unsigned long clear_bits, 1682 unsigned long page_ops) 1683 { 1684 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1685 int ret; 1686 struct page *pages[16]; 1687 unsigned long index = start >> PAGE_CACHE_SHIFT; 1688 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1689 unsigned long nr_pages = end_index - index + 1; 1690 int i; 1691 1692 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1693 if (page_ops == 0) 1694 return 0; 1695 1696 while (nr_pages > 0) { 1697 ret = find_get_pages_contig(inode->i_mapping, index, 1698 min_t(unsigned long, 1699 nr_pages, ARRAY_SIZE(pages)), pages); 1700 for (i = 0; i < ret; i++) { 1701 1702 if (page_ops & PAGE_SET_PRIVATE2) 1703 SetPagePrivate2(pages[i]); 1704 1705 if (pages[i] == locked_page) { 1706 page_cache_release(pages[i]); 1707 continue; 1708 } 1709 if (page_ops & PAGE_CLEAR_DIRTY) 1710 clear_page_dirty_for_io(pages[i]); 1711 if (page_ops & PAGE_SET_WRITEBACK) 1712 set_page_writeback(pages[i]); 1713 if (page_ops & PAGE_END_WRITEBACK) 1714 end_page_writeback(pages[i]); 1715 if (page_ops & PAGE_UNLOCK) 1716 unlock_page(pages[i]); 1717 page_cache_release(pages[i]); 1718 } 1719 nr_pages -= ret; 1720 index += ret; 1721 cond_resched(); 1722 } 1723 return 0; 1724 } 1725 1726 /* 1727 * count the number of bytes in the tree that have a given bit(s) 1728 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1729 * cached. The total number found is returned. 1730 */ 1731 u64 count_range_bits(struct extent_io_tree *tree, 1732 u64 *start, u64 search_end, u64 max_bytes, 1733 unsigned long bits, int contig) 1734 { 1735 struct rb_node *node; 1736 struct extent_state *state; 1737 u64 cur_start = *start; 1738 u64 total_bytes = 0; 1739 u64 last = 0; 1740 int found = 0; 1741 1742 if (WARN_ON(search_end <= cur_start)) 1743 return 0; 1744 1745 spin_lock(&tree->lock); 1746 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1747 total_bytes = tree->dirty_bytes; 1748 goto out; 1749 } 1750 /* 1751 * this search will find all the extents that end after 1752 * our range starts. 1753 */ 1754 node = tree_search(tree, cur_start); 1755 if (!node) 1756 goto out; 1757 1758 while (1) { 1759 state = rb_entry(node, struct extent_state, rb_node); 1760 if (state->start > search_end) 1761 break; 1762 if (contig && found && state->start > last + 1) 1763 break; 1764 if (state->end >= cur_start && (state->state & bits) == bits) { 1765 total_bytes += min(search_end, state->end) + 1 - 1766 max(cur_start, state->start); 1767 if (total_bytes >= max_bytes) 1768 break; 1769 if (!found) { 1770 *start = max(cur_start, state->start); 1771 found = 1; 1772 } 1773 last = state->end; 1774 } else if (contig && found) { 1775 break; 1776 } 1777 node = rb_next(node); 1778 if (!node) 1779 break; 1780 } 1781 out: 1782 spin_unlock(&tree->lock); 1783 return total_bytes; 1784 } 1785 1786 /* 1787 * set the private field for a given byte offset in the tree. If there isn't 1788 * an extent_state there already, this does nothing. 1789 */ 1790 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1791 { 1792 struct rb_node *node; 1793 struct extent_state *state; 1794 int ret = 0; 1795 1796 spin_lock(&tree->lock); 1797 /* 1798 * this search will find all the extents that end after 1799 * our range starts. 1800 */ 1801 node = tree_search(tree, start); 1802 if (!node) { 1803 ret = -ENOENT; 1804 goto out; 1805 } 1806 state = rb_entry(node, struct extent_state, rb_node); 1807 if (state->start != start) { 1808 ret = -ENOENT; 1809 goto out; 1810 } 1811 state->private = private; 1812 out: 1813 spin_unlock(&tree->lock); 1814 return ret; 1815 } 1816 1817 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1818 { 1819 struct rb_node *node; 1820 struct extent_state *state; 1821 int ret = 0; 1822 1823 spin_lock(&tree->lock); 1824 /* 1825 * this search will find all the extents that end after 1826 * our range starts. 1827 */ 1828 node = tree_search(tree, start); 1829 if (!node) { 1830 ret = -ENOENT; 1831 goto out; 1832 } 1833 state = rb_entry(node, struct extent_state, rb_node); 1834 if (state->start != start) { 1835 ret = -ENOENT; 1836 goto out; 1837 } 1838 *private = state->private; 1839 out: 1840 spin_unlock(&tree->lock); 1841 return ret; 1842 } 1843 1844 /* 1845 * searches a range in the state tree for a given mask. 1846 * If 'filled' == 1, this returns 1 only if every extent in the tree 1847 * has the bits set. Otherwise, 1 is returned if any bit in the 1848 * range is found set. 1849 */ 1850 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1851 unsigned long bits, int filled, struct extent_state *cached) 1852 { 1853 struct extent_state *state = NULL; 1854 struct rb_node *node; 1855 int bitset = 0; 1856 1857 spin_lock(&tree->lock); 1858 if (cached && cached->tree && cached->start <= start && 1859 cached->end > start) 1860 node = &cached->rb_node; 1861 else 1862 node = tree_search(tree, start); 1863 while (node && start <= end) { 1864 state = rb_entry(node, struct extent_state, rb_node); 1865 1866 if (filled && state->start > start) { 1867 bitset = 0; 1868 break; 1869 } 1870 1871 if (state->start > end) 1872 break; 1873 1874 if (state->state & bits) { 1875 bitset = 1; 1876 if (!filled) 1877 break; 1878 } else if (filled) { 1879 bitset = 0; 1880 break; 1881 } 1882 1883 if (state->end == (u64)-1) 1884 break; 1885 1886 start = state->end + 1; 1887 if (start > end) 1888 break; 1889 node = rb_next(node); 1890 if (!node) { 1891 if (filled) 1892 bitset = 0; 1893 break; 1894 } 1895 } 1896 spin_unlock(&tree->lock); 1897 return bitset; 1898 } 1899 1900 /* 1901 * helper function to set a given page up to date if all the 1902 * extents in the tree for that page are up to date 1903 */ 1904 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1905 { 1906 u64 start = page_offset(page); 1907 u64 end = start + PAGE_CACHE_SIZE - 1; 1908 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1909 SetPageUptodate(page); 1910 } 1911 1912 /* 1913 * When IO fails, either with EIO or csum verification fails, we 1914 * try other mirrors that might have a good copy of the data. This 1915 * io_failure_record is used to record state as we go through all the 1916 * mirrors. If another mirror has good data, the page is set up to date 1917 * and things continue. If a good mirror can't be found, the original 1918 * bio end_io callback is called to indicate things have failed. 1919 */ 1920 struct io_failure_record { 1921 struct page *page; 1922 u64 start; 1923 u64 len; 1924 u64 logical; 1925 unsigned long bio_flags; 1926 int this_mirror; 1927 int failed_mirror; 1928 int in_validation; 1929 }; 1930 1931 static int free_io_failure(struct inode *inode, struct io_failure_record *rec, 1932 int did_repair) 1933 { 1934 int ret; 1935 int err = 0; 1936 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1937 1938 set_state_private(failure_tree, rec->start, 0); 1939 ret = clear_extent_bits(failure_tree, rec->start, 1940 rec->start + rec->len - 1, 1941 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1942 if (ret) 1943 err = ret; 1944 1945 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 1946 rec->start + rec->len - 1, 1947 EXTENT_DAMAGED, GFP_NOFS); 1948 if (ret && !err) 1949 err = ret; 1950 1951 kfree(rec); 1952 return err; 1953 } 1954 1955 static void repair_io_failure_callback(struct bio *bio, int err) 1956 { 1957 complete(bio->bi_private); 1958 } 1959 1960 /* 1961 * this bypasses the standard btrfs submit functions deliberately, as 1962 * the standard behavior is to write all copies in a raid setup. here we only 1963 * want to write the one bad copy. so we do the mapping for ourselves and issue 1964 * submit_bio directly. 1965 * to avoid any synchronization issues, wait for the data after writing, which 1966 * actually prevents the read that triggered the error from finishing. 1967 * currently, there can be no more than two copies of every data bit. thus, 1968 * exactly one rewrite is required. 1969 */ 1970 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start, 1971 u64 length, u64 logical, struct page *page, 1972 int mirror_num) 1973 { 1974 struct bio *bio; 1975 struct btrfs_device *dev; 1976 DECLARE_COMPLETION_ONSTACK(compl); 1977 u64 map_length = 0; 1978 u64 sector; 1979 struct btrfs_bio *bbio = NULL; 1980 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 1981 int ret; 1982 1983 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY)); 1984 BUG_ON(!mirror_num); 1985 1986 /* we can't repair anything in raid56 yet */ 1987 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 1988 return 0; 1989 1990 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1991 if (!bio) 1992 return -EIO; 1993 bio->bi_private = &compl; 1994 bio->bi_end_io = repair_io_failure_callback; 1995 bio->bi_size = 0; 1996 map_length = length; 1997 1998 ret = btrfs_map_block(fs_info, WRITE, logical, 1999 &map_length, &bbio, mirror_num); 2000 if (ret) { 2001 bio_put(bio); 2002 return -EIO; 2003 } 2004 BUG_ON(mirror_num != bbio->mirror_num); 2005 sector = bbio->stripes[mirror_num-1].physical >> 9; 2006 bio->bi_sector = sector; 2007 dev = bbio->stripes[mirror_num-1].dev; 2008 kfree(bbio); 2009 if (!dev || !dev->bdev || !dev->writeable) { 2010 bio_put(bio); 2011 return -EIO; 2012 } 2013 bio->bi_bdev = dev->bdev; 2014 bio_add_page(bio, page, length, start - page_offset(page)); 2015 btrfsic_submit_bio(WRITE_SYNC, bio); 2016 wait_for_completion(&compl); 2017 2018 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2019 /* try to remap that extent elsewhere? */ 2020 bio_put(bio); 2021 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2022 return -EIO; 2023 } 2024 2025 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu " 2026 "(dev %s sector %llu)\n", page->mapping->host->i_ino, 2027 start, rcu_str_deref(dev->name), sector); 2028 2029 bio_put(bio); 2030 return 0; 2031 } 2032 2033 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2034 int mirror_num) 2035 { 2036 u64 start = eb->start; 2037 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2038 int ret = 0; 2039 2040 if (root->fs_info->sb->s_flags & MS_RDONLY) 2041 return -EROFS; 2042 2043 for (i = 0; i < num_pages; i++) { 2044 struct page *p = extent_buffer_page(eb, i); 2045 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE, 2046 start, p, mirror_num); 2047 if (ret) 2048 break; 2049 start += PAGE_CACHE_SIZE; 2050 } 2051 2052 return ret; 2053 } 2054 2055 /* 2056 * each time an IO finishes, we do a fast check in the IO failure tree 2057 * to see if we need to process or clean up an io_failure_record 2058 */ 2059 static int clean_io_failure(u64 start, struct page *page) 2060 { 2061 u64 private; 2062 u64 private_failure; 2063 struct io_failure_record *failrec; 2064 struct inode *inode = page->mapping->host; 2065 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2066 struct extent_state *state; 2067 int num_copies; 2068 int did_repair = 0; 2069 int ret; 2070 2071 private = 0; 2072 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2073 (u64)-1, 1, EXTENT_DIRTY, 0); 2074 if (!ret) 2075 return 0; 2076 2077 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 2078 &private_failure); 2079 if (ret) 2080 return 0; 2081 2082 failrec = (struct io_failure_record *)(unsigned long) private_failure; 2083 BUG_ON(!failrec->this_mirror); 2084 2085 if (failrec->in_validation) { 2086 /* there was no real error, just free the record */ 2087 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2088 failrec->start); 2089 did_repair = 1; 2090 goto out; 2091 } 2092 if (fs_info->sb->s_flags & MS_RDONLY) 2093 goto out; 2094 2095 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2096 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2097 failrec->start, 2098 EXTENT_LOCKED); 2099 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2100 2101 if (state && state->start <= failrec->start && 2102 state->end >= failrec->start + failrec->len - 1) { 2103 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2104 failrec->len); 2105 if (num_copies > 1) { 2106 ret = repair_io_failure(fs_info, start, failrec->len, 2107 failrec->logical, page, 2108 failrec->failed_mirror); 2109 did_repair = !ret; 2110 } 2111 ret = 0; 2112 } 2113 2114 out: 2115 if (!ret) 2116 ret = free_io_failure(inode, failrec, did_repair); 2117 2118 return ret; 2119 } 2120 2121 /* 2122 * this is a generic handler for readpage errors (default 2123 * readpage_io_failed_hook). if other copies exist, read those and write back 2124 * good data to the failed position. does not investigate in remapping the 2125 * failed extent elsewhere, hoping the device will be smart enough to do this as 2126 * needed 2127 */ 2128 2129 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2130 struct page *page, u64 start, u64 end, 2131 int failed_mirror) 2132 { 2133 struct io_failure_record *failrec = NULL; 2134 u64 private; 2135 struct extent_map *em; 2136 struct inode *inode = page->mapping->host; 2137 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2138 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2139 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2140 struct bio *bio; 2141 struct btrfs_io_bio *btrfs_failed_bio; 2142 struct btrfs_io_bio *btrfs_bio; 2143 int num_copies; 2144 int ret; 2145 int read_mode; 2146 u64 logical; 2147 2148 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2149 2150 ret = get_state_private(failure_tree, start, &private); 2151 if (ret) { 2152 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2153 if (!failrec) 2154 return -ENOMEM; 2155 failrec->start = start; 2156 failrec->len = end - start + 1; 2157 failrec->this_mirror = 0; 2158 failrec->bio_flags = 0; 2159 failrec->in_validation = 0; 2160 2161 read_lock(&em_tree->lock); 2162 em = lookup_extent_mapping(em_tree, start, failrec->len); 2163 if (!em) { 2164 read_unlock(&em_tree->lock); 2165 kfree(failrec); 2166 return -EIO; 2167 } 2168 2169 if (em->start > start || em->start + em->len < start) { 2170 free_extent_map(em); 2171 em = NULL; 2172 } 2173 read_unlock(&em_tree->lock); 2174 2175 if (!em) { 2176 kfree(failrec); 2177 return -EIO; 2178 } 2179 logical = start - em->start; 2180 logical = em->block_start + logical; 2181 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2182 logical = em->block_start; 2183 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2184 extent_set_compress_type(&failrec->bio_flags, 2185 em->compress_type); 2186 } 2187 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, " 2188 "len=%llu\n", logical, start, failrec->len); 2189 failrec->logical = logical; 2190 free_extent_map(em); 2191 2192 /* set the bits in the private failure tree */ 2193 ret = set_extent_bits(failure_tree, start, end, 2194 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2195 if (ret >= 0) 2196 ret = set_state_private(failure_tree, start, 2197 (u64)(unsigned long)failrec); 2198 /* set the bits in the inode's tree */ 2199 if (ret >= 0) 2200 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2201 GFP_NOFS); 2202 if (ret < 0) { 2203 kfree(failrec); 2204 return ret; 2205 } 2206 } else { 2207 failrec = (struct io_failure_record *)(unsigned long)private; 2208 pr_debug("bio_readpage_error: (found) logical=%llu, " 2209 "start=%llu, len=%llu, validation=%d\n", 2210 failrec->logical, failrec->start, failrec->len, 2211 failrec->in_validation); 2212 /* 2213 * when data can be on disk more than twice, add to failrec here 2214 * (e.g. with a list for failed_mirror) to make 2215 * clean_io_failure() clean all those errors at once. 2216 */ 2217 } 2218 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2219 failrec->logical, failrec->len); 2220 if (num_copies == 1) { 2221 /* 2222 * we only have a single copy of the data, so don't bother with 2223 * all the retry and error correction code that follows. no 2224 * matter what the error is, it is very likely to persist. 2225 */ 2226 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 2227 num_copies, failrec->this_mirror, failed_mirror); 2228 free_io_failure(inode, failrec, 0); 2229 return -EIO; 2230 } 2231 2232 /* 2233 * there are two premises: 2234 * a) deliver good data to the caller 2235 * b) correct the bad sectors on disk 2236 */ 2237 if (failed_bio->bi_vcnt > 1) { 2238 /* 2239 * to fulfill b), we need to know the exact failing sectors, as 2240 * we don't want to rewrite any more than the failed ones. thus, 2241 * we need separate read requests for the failed bio 2242 * 2243 * if the following BUG_ON triggers, our validation request got 2244 * merged. we need separate requests for our algorithm to work. 2245 */ 2246 BUG_ON(failrec->in_validation); 2247 failrec->in_validation = 1; 2248 failrec->this_mirror = failed_mirror; 2249 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2250 } else { 2251 /* 2252 * we're ready to fulfill a) and b) alongside. get a good copy 2253 * of the failed sector and if we succeed, we have setup 2254 * everything for repair_io_failure to do the rest for us. 2255 */ 2256 if (failrec->in_validation) { 2257 BUG_ON(failrec->this_mirror != failed_mirror); 2258 failrec->in_validation = 0; 2259 failrec->this_mirror = 0; 2260 } 2261 failrec->failed_mirror = failed_mirror; 2262 failrec->this_mirror++; 2263 if (failrec->this_mirror == failed_mirror) 2264 failrec->this_mirror++; 2265 read_mode = READ_SYNC; 2266 } 2267 2268 if (failrec->this_mirror > num_copies) { 2269 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 2270 num_copies, failrec->this_mirror, failed_mirror); 2271 free_io_failure(inode, failrec, 0); 2272 return -EIO; 2273 } 2274 2275 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2276 if (!bio) { 2277 free_io_failure(inode, failrec, 0); 2278 return -EIO; 2279 } 2280 bio->bi_end_io = failed_bio->bi_end_io; 2281 bio->bi_sector = failrec->logical >> 9; 2282 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2283 bio->bi_size = 0; 2284 2285 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2286 if (btrfs_failed_bio->csum) { 2287 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2288 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2289 2290 btrfs_bio = btrfs_io_bio(bio); 2291 btrfs_bio->csum = btrfs_bio->csum_inline; 2292 phy_offset >>= inode->i_sb->s_blocksize_bits; 2293 phy_offset *= csum_size; 2294 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset, 2295 csum_size); 2296 } 2297 2298 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 2299 2300 pr_debug("bio_readpage_error: submitting new read[%#x] to " 2301 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode, 2302 failrec->this_mirror, num_copies, failrec->in_validation); 2303 2304 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2305 failrec->this_mirror, 2306 failrec->bio_flags, 0); 2307 return ret; 2308 } 2309 2310 /* lots and lots of room for performance fixes in the end_bio funcs */ 2311 2312 int end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2313 { 2314 int uptodate = (err == 0); 2315 struct extent_io_tree *tree; 2316 int ret; 2317 2318 tree = &BTRFS_I(page->mapping->host)->io_tree; 2319 2320 if (tree->ops && tree->ops->writepage_end_io_hook) { 2321 ret = tree->ops->writepage_end_io_hook(page, start, 2322 end, NULL, uptodate); 2323 if (ret) 2324 uptodate = 0; 2325 } 2326 2327 if (!uptodate) { 2328 ClearPageUptodate(page); 2329 SetPageError(page); 2330 } 2331 return 0; 2332 } 2333 2334 /* 2335 * after a writepage IO is done, we need to: 2336 * clear the uptodate bits on error 2337 * clear the writeback bits in the extent tree for this IO 2338 * end_page_writeback if the page has no more pending IO 2339 * 2340 * Scheduling is not allowed, so the extent state tree is expected 2341 * to have one and only one object corresponding to this IO. 2342 */ 2343 static void end_bio_extent_writepage(struct bio *bio, int err) 2344 { 2345 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2346 struct extent_io_tree *tree; 2347 u64 start; 2348 u64 end; 2349 2350 do { 2351 struct page *page = bvec->bv_page; 2352 tree = &BTRFS_I(page->mapping->host)->io_tree; 2353 2354 /* We always issue full-page reads, but if some block 2355 * in a page fails to read, blk_update_request() will 2356 * advance bv_offset and adjust bv_len to compensate. 2357 * Print a warning for nonzero offsets, and an error 2358 * if they don't add up to a full page. */ 2359 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) 2360 printk("%s page write in btrfs with offset %u and length %u\n", 2361 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE 2362 ? KERN_ERR "partial" : KERN_INFO "incomplete", 2363 bvec->bv_offset, bvec->bv_len); 2364 2365 start = page_offset(page); 2366 end = start + bvec->bv_offset + bvec->bv_len - 1; 2367 2368 if (--bvec >= bio->bi_io_vec) 2369 prefetchw(&bvec->bv_page->flags); 2370 2371 if (end_extent_writepage(page, err, start, end)) 2372 continue; 2373 2374 end_page_writeback(page); 2375 } while (bvec >= bio->bi_io_vec); 2376 2377 bio_put(bio); 2378 } 2379 2380 static void 2381 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2382 int uptodate) 2383 { 2384 struct extent_state *cached = NULL; 2385 u64 end = start + len - 1; 2386 2387 if (uptodate && tree->track_uptodate) 2388 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2389 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2390 } 2391 2392 /* 2393 * after a readpage IO is done, we need to: 2394 * clear the uptodate bits on error 2395 * set the uptodate bits if things worked 2396 * set the page up to date if all extents in the tree are uptodate 2397 * clear the lock bit in the extent tree 2398 * unlock the page if there are no other extents locked for it 2399 * 2400 * Scheduling is not allowed, so the extent state tree is expected 2401 * to have one and only one object corresponding to this IO. 2402 */ 2403 static void end_bio_extent_readpage(struct bio *bio, int err) 2404 { 2405 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 2406 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 2407 struct bio_vec *bvec = bio->bi_io_vec; 2408 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2409 struct extent_io_tree *tree; 2410 u64 offset = 0; 2411 u64 start; 2412 u64 end; 2413 u64 len; 2414 u64 extent_start = 0; 2415 u64 extent_len = 0; 2416 int mirror; 2417 int ret; 2418 2419 if (err) 2420 uptodate = 0; 2421 2422 do { 2423 struct page *page = bvec->bv_page; 2424 struct inode *inode = page->mapping->host; 2425 2426 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2427 "mirror=%lu\n", (u64)bio->bi_sector, err, 2428 io_bio->mirror_num); 2429 tree = &BTRFS_I(inode)->io_tree; 2430 2431 /* We always issue full-page reads, but if some block 2432 * in a page fails to read, blk_update_request() will 2433 * advance bv_offset and adjust bv_len to compensate. 2434 * Print a warning for nonzero offsets, and an error 2435 * if they don't add up to a full page. */ 2436 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) 2437 printk("%s page read in btrfs with offset %u and length %u\n", 2438 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE 2439 ? KERN_ERR "partial" : KERN_INFO "incomplete", 2440 bvec->bv_offset, bvec->bv_len); 2441 2442 start = page_offset(page); 2443 end = start + bvec->bv_offset + bvec->bv_len - 1; 2444 len = bvec->bv_len; 2445 2446 if (++bvec <= bvec_end) 2447 prefetchw(&bvec->bv_page->flags); 2448 2449 mirror = io_bio->mirror_num; 2450 if (likely(uptodate && tree->ops && 2451 tree->ops->readpage_end_io_hook)) { 2452 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2453 page, start, end, 2454 mirror); 2455 if (ret) 2456 uptodate = 0; 2457 else 2458 clean_io_failure(start, page); 2459 } 2460 2461 if (likely(uptodate)) 2462 goto readpage_ok; 2463 2464 if (tree->ops && tree->ops->readpage_io_failed_hook) { 2465 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2466 if (!ret && !err && 2467 test_bit(BIO_UPTODATE, &bio->bi_flags)) 2468 uptodate = 1; 2469 } else { 2470 /* 2471 * The generic bio_readpage_error handles errors the 2472 * following way: If possible, new read requests are 2473 * created and submitted and will end up in 2474 * end_bio_extent_readpage as well (if we're lucky, not 2475 * in the !uptodate case). In that case it returns 0 and 2476 * we just go on with the next page in our bio. If it 2477 * can't handle the error it will return -EIO and we 2478 * remain responsible for that page. 2479 */ 2480 ret = bio_readpage_error(bio, offset, page, start, end, 2481 mirror); 2482 if (ret == 0) { 2483 uptodate = 2484 test_bit(BIO_UPTODATE, &bio->bi_flags); 2485 if (err) 2486 uptodate = 0; 2487 continue; 2488 } 2489 } 2490 readpage_ok: 2491 if (likely(uptodate)) { 2492 loff_t i_size = i_size_read(inode); 2493 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2494 unsigned offset; 2495 2496 /* Zero out the end if this page straddles i_size */ 2497 offset = i_size & (PAGE_CACHE_SIZE-1); 2498 if (page->index == end_index && offset) 2499 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2500 SetPageUptodate(page); 2501 } else { 2502 ClearPageUptodate(page); 2503 SetPageError(page); 2504 } 2505 unlock_page(page); 2506 offset += len; 2507 2508 if (unlikely(!uptodate)) { 2509 if (extent_len) { 2510 endio_readpage_release_extent(tree, 2511 extent_start, 2512 extent_len, 1); 2513 extent_start = 0; 2514 extent_len = 0; 2515 } 2516 endio_readpage_release_extent(tree, start, 2517 end - start + 1, 0); 2518 } else if (!extent_len) { 2519 extent_start = start; 2520 extent_len = end + 1 - start; 2521 } else if (extent_start + extent_len == start) { 2522 extent_len += end + 1 - start; 2523 } else { 2524 endio_readpage_release_extent(tree, extent_start, 2525 extent_len, uptodate); 2526 extent_start = start; 2527 extent_len = end + 1 - start; 2528 } 2529 } while (bvec <= bvec_end); 2530 2531 if (extent_len) 2532 endio_readpage_release_extent(tree, extent_start, extent_len, 2533 uptodate); 2534 if (io_bio->end_io) 2535 io_bio->end_io(io_bio, err); 2536 bio_put(bio); 2537 } 2538 2539 /* 2540 * this allocates from the btrfs_bioset. We're returning a bio right now 2541 * but you can call btrfs_io_bio for the appropriate container_of magic 2542 */ 2543 struct bio * 2544 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2545 gfp_t gfp_flags) 2546 { 2547 struct btrfs_io_bio *btrfs_bio; 2548 struct bio *bio; 2549 2550 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2551 2552 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2553 while (!bio && (nr_vecs /= 2)) { 2554 bio = bio_alloc_bioset(gfp_flags, 2555 nr_vecs, btrfs_bioset); 2556 } 2557 } 2558 2559 if (bio) { 2560 bio->bi_size = 0; 2561 bio->bi_bdev = bdev; 2562 bio->bi_sector = first_sector; 2563 btrfs_bio = btrfs_io_bio(bio); 2564 btrfs_bio->csum = NULL; 2565 btrfs_bio->csum_allocated = NULL; 2566 btrfs_bio->end_io = NULL; 2567 } 2568 return bio; 2569 } 2570 2571 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2572 { 2573 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2574 } 2575 2576 2577 /* this also allocates from the btrfs_bioset */ 2578 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2579 { 2580 struct btrfs_io_bio *btrfs_bio; 2581 struct bio *bio; 2582 2583 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2584 if (bio) { 2585 btrfs_bio = btrfs_io_bio(bio); 2586 btrfs_bio->csum = NULL; 2587 btrfs_bio->csum_allocated = NULL; 2588 btrfs_bio->end_io = NULL; 2589 } 2590 return bio; 2591 } 2592 2593 2594 static int __must_check submit_one_bio(int rw, struct bio *bio, 2595 int mirror_num, unsigned long bio_flags) 2596 { 2597 int ret = 0; 2598 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2599 struct page *page = bvec->bv_page; 2600 struct extent_io_tree *tree = bio->bi_private; 2601 u64 start; 2602 2603 start = page_offset(page) + bvec->bv_offset; 2604 2605 bio->bi_private = NULL; 2606 2607 bio_get(bio); 2608 2609 if (tree->ops && tree->ops->submit_bio_hook) 2610 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2611 mirror_num, bio_flags, start); 2612 else 2613 btrfsic_submit_bio(rw, bio); 2614 2615 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2616 ret = -EOPNOTSUPP; 2617 bio_put(bio); 2618 return ret; 2619 } 2620 2621 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2622 unsigned long offset, size_t size, struct bio *bio, 2623 unsigned long bio_flags) 2624 { 2625 int ret = 0; 2626 if (tree->ops && tree->ops->merge_bio_hook) 2627 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2628 bio_flags); 2629 BUG_ON(ret < 0); 2630 return ret; 2631 2632 } 2633 2634 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2635 struct page *page, sector_t sector, 2636 size_t size, unsigned long offset, 2637 struct block_device *bdev, 2638 struct bio **bio_ret, 2639 unsigned long max_pages, 2640 bio_end_io_t end_io_func, 2641 int mirror_num, 2642 unsigned long prev_bio_flags, 2643 unsigned long bio_flags) 2644 { 2645 int ret = 0; 2646 struct bio *bio; 2647 int nr; 2648 int contig = 0; 2649 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 2650 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2651 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2652 2653 if (bio_ret && *bio_ret) { 2654 bio = *bio_ret; 2655 if (old_compressed) 2656 contig = bio->bi_sector == sector; 2657 else 2658 contig = bio_end_sector(bio) == sector; 2659 2660 if (prev_bio_flags != bio_flags || !contig || 2661 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2662 bio_add_page(bio, page, page_size, offset) < page_size) { 2663 ret = submit_one_bio(rw, bio, mirror_num, 2664 prev_bio_flags); 2665 if (ret < 0) 2666 return ret; 2667 bio = NULL; 2668 } else { 2669 return 0; 2670 } 2671 } 2672 if (this_compressed) 2673 nr = BIO_MAX_PAGES; 2674 else 2675 nr = bio_get_nr_vecs(bdev); 2676 2677 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 2678 if (!bio) 2679 return -ENOMEM; 2680 2681 bio_add_page(bio, page, page_size, offset); 2682 bio->bi_end_io = end_io_func; 2683 bio->bi_private = tree; 2684 2685 if (bio_ret) 2686 *bio_ret = bio; 2687 else 2688 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2689 2690 return ret; 2691 } 2692 2693 static void attach_extent_buffer_page(struct extent_buffer *eb, 2694 struct page *page) 2695 { 2696 if (!PagePrivate(page)) { 2697 SetPagePrivate(page); 2698 page_cache_get(page); 2699 set_page_private(page, (unsigned long)eb); 2700 } else { 2701 WARN_ON(page->private != (unsigned long)eb); 2702 } 2703 } 2704 2705 void set_page_extent_mapped(struct page *page) 2706 { 2707 if (!PagePrivate(page)) { 2708 SetPagePrivate(page); 2709 page_cache_get(page); 2710 set_page_private(page, EXTENT_PAGE_PRIVATE); 2711 } 2712 } 2713 2714 static struct extent_map * 2715 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2716 u64 start, u64 len, get_extent_t *get_extent, 2717 struct extent_map **em_cached) 2718 { 2719 struct extent_map *em; 2720 2721 if (em_cached && *em_cached) { 2722 em = *em_cached; 2723 if (em->in_tree && start >= em->start && 2724 start < extent_map_end(em)) { 2725 atomic_inc(&em->refs); 2726 return em; 2727 } 2728 2729 free_extent_map(em); 2730 *em_cached = NULL; 2731 } 2732 2733 em = get_extent(inode, page, pg_offset, start, len, 0); 2734 if (em_cached && !IS_ERR_OR_NULL(em)) { 2735 BUG_ON(*em_cached); 2736 atomic_inc(&em->refs); 2737 *em_cached = em; 2738 } 2739 return em; 2740 } 2741 /* 2742 * basic readpage implementation. Locked extent state structs are inserted 2743 * into the tree that are removed when the IO is done (by the end_io 2744 * handlers) 2745 * XXX JDM: This needs looking at to ensure proper page locking 2746 */ 2747 static int __do_readpage(struct extent_io_tree *tree, 2748 struct page *page, 2749 get_extent_t *get_extent, 2750 struct extent_map **em_cached, 2751 struct bio **bio, int mirror_num, 2752 unsigned long *bio_flags, int rw) 2753 { 2754 struct inode *inode = page->mapping->host; 2755 u64 start = page_offset(page); 2756 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2757 u64 end; 2758 u64 cur = start; 2759 u64 extent_offset; 2760 u64 last_byte = i_size_read(inode); 2761 u64 block_start; 2762 u64 cur_end; 2763 sector_t sector; 2764 struct extent_map *em; 2765 struct block_device *bdev; 2766 int ret; 2767 int nr = 0; 2768 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2769 size_t pg_offset = 0; 2770 size_t iosize; 2771 size_t disk_io_size; 2772 size_t blocksize = inode->i_sb->s_blocksize; 2773 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2774 2775 set_page_extent_mapped(page); 2776 2777 end = page_end; 2778 if (!PageUptodate(page)) { 2779 if (cleancache_get_page(page) == 0) { 2780 BUG_ON(blocksize != PAGE_SIZE); 2781 unlock_extent(tree, start, end); 2782 goto out; 2783 } 2784 } 2785 2786 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2787 char *userpage; 2788 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2789 2790 if (zero_offset) { 2791 iosize = PAGE_CACHE_SIZE - zero_offset; 2792 userpage = kmap_atomic(page); 2793 memset(userpage + zero_offset, 0, iosize); 2794 flush_dcache_page(page); 2795 kunmap_atomic(userpage); 2796 } 2797 } 2798 while (cur <= end) { 2799 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2800 2801 if (cur >= last_byte) { 2802 char *userpage; 2803 struct extent_state *cached = NULL; 2804 2805 iosize = PAGE_CACHE_SIZE - pg_offset; 2806 userpage = kmap_atomic(page); 2807 memset(userpage + pg_offset, 0, iosize); 2808 flush_dcache_page(page); 2809 kunmap_atomic(userpage); 2810 set_extent_uptodate(tree, cur, cur + iosize - 1, 2811 &cached, GFP_NOFS); 2812 if (!parent_locked) 2813 unlock_extent_cached(tree, cur, 2814 cur + iosize - 1, 2815 &cached, GFP_NOFS); 2816 break; 2817 } 2818 em = __get_extent_map(inode, page, pg_offset, cur, 2819 end - cur + 1, get_extent, em_cached); 2820 if (IS_ERR_OR_NULL(em)) { 2821 SetPageError(page); 2822 if (!parent_locked) 2823 unlock_extent(tree, cur, end); 2824 break; 2825 } 2826 extent_offset = cur - em->start; 2827 BUG_ON(extent_map_end(em) <= cur); 2828 BUG_ON(end < cur); 2829 2830 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2831 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2832 extent_set_compress_type(&this_bio_flag, 2833 em->compress_type); 2834 } 2835 2836 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2837 cur_end = min(extent_map_end(em) - 1, end); 2838 iosize = ALIGN(iosize, blocksize); 2839 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2840 disk_io_size = em->block_len; 2841 sector = em->block_start >> 9; 2842 } else { 2843 sector = (em->block_start + extent_offset) >> 9; 2844 disk_io_size = iosize; 2845 } 2846 bdev = em->bdev; 2847 block_start = em->block_start; 2848 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2849 block_start = EXTENT_MAP_HOLE; 2850 free_extent_map(em); 2851 em = NULL; 2852 2853 /* we've found a hole, just zero and go on */ 2854 if (block_start == EXTENT_MAP_HOLE) { 2855 char *userpage; 2856 struct extent_state *cached = NULL; 2857 2858 userpage = kmap_atomic(page); 2859 memset(userpage + pg_offset, 0, iosize); 2860 flush_dcache_page(page); 2861 kunmap_atomic(userpage); 2862 2863 set_extent_uptodate(tree, cur, cur + iosize - 1, 2864 &cached, GFP_NOFS); 2865 unlock_extent_cached(tree, cur, cur + iosize - 1, 2866 &cached, GFP_NOFS); 2867 cur = cur + iosize; 2868 pg_offset += iosize; 2869 continue; 2870 } 2871 /* the get_extent function already copied into the page */ 2872 if (test_range_bit(tree, cur, cur_end, 2873 EXTENT_UPTODATE, 1, NULL)) { 2874 check_page_uptodate(tree, page); 2875 if (!parent_locked) 2876 unlock_extent(tree, cur, cur + iosize - 1); 2877 cur = cur + iosize; 2878 pg_offset += iosize; 2879 continue; 2880 } 2881 /* we have an inline extent but it didn't get marked up 2882 * to date. Error out 2883 */ 2884 if (block_start == EXTENT_MAP_INLINE) { 2885 SetPageError(page); 2886 if (!parent_locked) 2887 unlock_extent(tree, cur, cur + iosize - 1); 2888 cur = cur + iosize; 2889 pg_offset += iosize; 2890 continue; 2891 } 2892 2893 pnr -= page->index; 2894 ret = submit_extent_page(rw, tree, page, 2895 sector, disk_io_size, pg_offset, 2896 bdev, bio, pnr, 2897 end_bio_extent_readpage, mirror_num, 2898 *bio_flags, 2899 this_bio_flag); 2900 if (!ret) { 2901 nr++; 2902 *bio_flags = this_bio_flag; 2903 } else { 2904 SetPageError(page); 2905 if (!parent_locked) 2906 unlock_extent(tree, cur, cur + iosize - 1); 2907 } 2908 cur = cur + iosize; 2909 pg_offset += iosize; 2910 } 2911 out: 2912 if (!nr) { 2913 if (!PageError(page)) 2914 SetPageUptodate(page); 2915 unlock_page(page); 2916 } 2917 return 0; 2918 } 2919 2920 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 2921 struct page *pages[], int nr_pages, 2922 u64 start, u64 end, 2923 get_extent_t *get_extent, 2924 struct extent_map **em_cached, 2925 struct bio **bio, int mirror_num, 2926 unsigned long *bio_flags, int rw) 2927 { 2928 struct inode *inode; 2929 struct btrfs_ordered_extent *ordered; 2930 int index; 2931 2932 inode = pages[0]->mapping->host; 2933 while (1) { 2934 lock_extent(tree, start, end); 2935 ordered = btrfs_lookup_ordered_range(inode, start, 2936 end - start + 1); 2937 if (!ordered) 2938 break; 2939 unlock_extent(tree, start, end); 2940 btrfs_start_ordered_extent(inode, ordered, 1); 2941 btrfs_put_ordered_extent(ordered); 2942 } 2943 2944 for (index = 0; index < nr_pages; index++) { 2945 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 2946 mirror_num, bio_flags, rw); 2947 page_cache_release(pages[index]); 2948 } 2949 } 2950 2951 static void __extent_readpages(struct extent_io_tree *tree, 2952 struct page *pages[], 2953 int nr_pages, get_extent_t *get_extent, 2954 struct extent_map **em_cached, 2955 struct bio **bio, int mirror_num, 2956 unsigned long *bio_flags, int rw) 2957 { 2958 u64 start = 0; 2959 u64 end = 0; 2960 u64 page_start; 2961 int index; 2962 int first_index = 0; 2963 2964 for (index = 0; index < nr_pages; index++) { 2965 page_start = page_offset(pages[index]); 2966 if (!end) { 2967 start = page_start; 2968 end = start + PAGE_CACHE_SIZE - 1; 2969 first_index = index; 2970 } else if (end + 1 == page_start) { 2971 end += PAGE_CACHE_SIZE; 2972 } else { 2973 __do_contiguous_readpages(tree, &pages[first_index], 2974 index - first_index, start, 2975 end, get_extent, em_cached, 2976 bio, mirror_num, bio_flags, 2977 rw); 2978 start = page_start; 2979 end = start + PAGE_CACHE_SIZE - 1; 2980 first_index = index; 2981 } 2982 } 2983 2984 if (end) 2985 __do_contiguous_readpages(tree, &pages[first_index], 2986 index - first_index, start, 2987 end, get_extent, em_cached, bio, 2988 mirror_num, bio_flags, rw); 2989 } 2990 2991 static int __extent_read_full_page(struct extent_io_tree *tree, 2992 struct page *page, 2993 get_extent_t *get_extent, 2994 struct bio **bio, int mirror_num, 2995 unsigned long *bio_flags, int rw) 2996 { 2997 struct inode *inode = page->mapping->host; 2998 struct btrfs_ordered_extent *ordered; 2999 u64 start = page_offset(page); 3000 u64 end = start + PAGE_CACHE_SIZE - 1; 3001 int ret; 3002 3003 while (1) { 3004 lock_extent(tree, start, end); 3005 ordered = btrfs_lookup_ordered_extent(inode, start); 3006 if (!ordered) 3007 break; 3008 unlock_extent(tree, start, end); 3009 btrfs_start_ordered_extent(inode, ordered, 1); 3010 btrfs_put_ordered_extent(ordered); 3011 } 3012 3013 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3014 bio_flags, rw); 3015 return ret; 3016 } 3017 3018 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3019 get_extent_t *get_extent, int mirror_num) 3020 { 3021 struct bio *bio = NULL; 3022 unsigned long bio_flags = 0; 3023 int ret; 3024 3025 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3026 &bio_flags, READ); 3027 if (bio) 3028 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3029 return ret; 3030 } 3031 3032 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page, 3033 get_extent_t *get_extent, int mirror_num) 3034 { 3035 struct bio *bio = NULL; 3036 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED; 3037 int ret; 3038 3039 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num, 3040 &bio_flags, READ); 3041 if (bio) 3042 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3043 return ret; 3044 } 3045 3046 static noinline void update_nr_written(struct page *page, 3047 struct writeback_control *wbc, 3048 unsigned long nr_written) 3049 { 3050 wbc->nr_to_write -= nr_written; 3051 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 3052 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 3053 page->mapping->writeback_index = page->index + nr_written; 3054 } 3055 3056 /* 3057 * the writepage semantics are similar to regular writepage. extent 3058 * records are inserted to lock ranges in the tree, and as dirty areas 3059 * are found, they are marked writeback. Then the lock bits are removed 3060 * and the end_io handler clears the writeback ranges 3061 */ 3062 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3063 void *data) 3064 { 3065 struct inode *inode = page->mapping->host; 3066 struct extent_page_data *epd = data; 3067 struct extent_io_tree *tree = epd->tree; 3068 u64 start = page_offset(page); 3069 u64 delalloc_start; 3070 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3071 u64 end; 3072 u64 cur = start; 3073 u64 extent_offset; 3074 u64 last_byte = i_size_read(inode); 3075 u64 block_start; 3076 u64 iosize; 3077 sector_t sector; 3078 struct extent_state *cached_state = NULL; 3079 struct extent_map *em; 3080 struct block_device *bdev; 3081 int ret; 3082 int nr = 0; 3083 size_t pg_offset = 0; 3084 size_t blocksize; 3085 loff_t i_size = i_size_read(inode); 3086 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 3087 u64 nr_delalloc; 3088 u64 delalloc_end; 3089 int page_started; 3090 int compressed; 3091 int write_flags; 3092 unsigned long nr_written = 0; 3093 bool fill_delalloc = true; 3094 3095 if (wbc->sync_mode == WB_SYNC_ALL) 3096 write_flags = WRITE_SYNC; 3097 else 3098 write_flags = WRITE; 3099 3100 trace___extent_writepage(page, inode, wbc); 3101 3102 WARN_ON(!PageLocked(page)); 3103 3104 ClearPageError(page); 3105 3106 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 3107 if (page->index > end_index || 3108 (page->index == end_index && !pg_offset)) { 3109 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE); 3110 unlock_page(page); 3111 return 0; 3112 } 3113 3114 if (page->index == end_index) { 3115 char *userpage; 3116 3117 userpage = kmap_atomic(page); 3118 memset(userpage + pg_offset, 0, 3119 PAGE_CACHE_SIZE - pg_offset); 3120 kunmap_atomic(userpage); 3121 flush_dcache_page(page); 3122 } 3123 pg_offset = 0; 3124 3125 set_page_extent_mapped(page); 3126 3127 if (!tree->ops || !tree->ops->fill_delalloc) 3128 fill_delalloc = false; 3129 3130 delalloc_start = start; 3131 delalloc_end = 0; 3132 page_started = 0; 3133 if (!epd->extent_locked && fill_delalloc) { 3134 u64 delalloc_to_write = 0; 3135 /* 3136 * make sure the wbc mapping index is at least updated 3137 * to this page. 3138 */ 3139 update_nr_written(page, wbc, 0); 3140 3141 while (delalloc_end < page_end) { 3142 nr_delalloc = find_lock_delalloc_range(inode, tree, 3143 page, 3144 &delalloc_start, 3145 &delalloc_end, 3146 128 * 1024 * 1024); 3147 if (nr_delalloc == 0) { 3148 delalloc_start = delalloc_end + 1; 3149 continue; 3150 } 3151 ret = tree->ops->fill_delalloc(inode, page, 3152 delalloc_start, 3153 delalloc_end, 3154 &page_started, 3155 &nr_written); 3156 /* File system has been set read-only */ 3157 if (ret) { 3158 SetPageError(page); 3159 goto done; 3160 } 3161 /* 3162 * delalloc_end is already one less than the total 3163 * length, so we don't subtract one from 3164 * PAGE_CACHE_SIZE 3165 */ 3166 delalloc_to_write += (delalloc_end - delalloc_start + 3167 PAGE_CACHE_SIZE) >> 3168 PAGE_CACHE_SHIFT; 3169 delalloc_start = delalloc_end + 1; 3170 } 3171 if (wbc->nr_to_write < delalloc_to_write) { 3172 int thresh = 8192; 3173 3174 if (delalloc_to_write < thresh * 2) 3175 thresh = delalloc_to_write; 3176 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3177 thresh); 3178 } 3179 3180 /* did the fill delalloc function already unlock and start 3181 * the IO? 3182 */ 3183 if (page_started) { 3184 ret = 0; 3185 /* 3186 * we've unlocked the page, so we can't update 3187 * the mapping's writeback index, just update 3188 * nr_to_write. 3189 */ 3190 wbc->nr_to_write -= nr_written; 3191 goto done_unlocked; 3192 } 3193 } 3194 if (tree->ops && tree->ops->writepage_start_hook) { 3195 ret = tree->ops->writepage_start_hook(page, start, 3196 page_end); 3197 if (ret) { 3198 /* Fixup worker will requeue */ 3199 if (ret == -EBUSY) 3200 wbc->pages_skipped++; 3201 else 3202 redirty_page_for_writepage(wbc, page); 3203 update_nr_written(page, wbc, nr_written); 3204 unlock_page(page); 3205 ret = 0; 3206 goto done_unlocked; 3207 } 3208 } 3209 3210 /* 3211 * we don't want to touch the inode after unlocking the page, 3212 * so we update the mapping writeback index now 3213 */ 3214 update_nr_written(page, wbc, nr_written + 1); 3215 3216 end = page_end; 3217 if (last_byte <= start) { 3218 if (tree->ops && tree->ops->writepage_end_io_hook) 3219 tree->ops->writepage_end_io_hook(page, start, 3220 page_end, NULL, 1); 3221 goto done; 3222 } 3223 3224 blocksize = inode->i_sb->s_blocksize; 3225 3226 while (cur <= end) { 3227 if (cur >= last_byte) { 3228 if (tree->ops && tree->ops->writepage_end_io_hook) 3229 tree->ops->writepage_end_io_hook(page, cur, 3230 page_end, NULL, 1); 3231 break; 3232 } 3233 em = epd->get_extent(inode, page, pg_offset, cur, 3234 end - cur + 1, 1); 3235 if (IS_ERR_OR_NULL(em)) { 3236 SetPageError(page); 3237 break; 3238 } 3239 3240 extent_offset = cur - em->start; 3241 BUG_ON(extent_map_end(em) <= cur); 3242 BUG_ON(end < cur); 3243 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3244 iosize = ALIGN(iosize, blocksize); 3245 sector = (em->block_start + extent_offset) >> 9; 3246 bdev = em->bdev; 3247 block_start = em->block_start; 3248 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3249 free_extent_map(em); 3250 em = NULL; 3251 3252 /* 3253 * compressed and inline extents are written through other 3254 * paths in the FS 3255 */ 3256 if (compressed || block_start == EXTENT_MAP_HOLE || 3257 block_start == EXTENT_MAP_INLINE) { 3258 /* 3259 * end_io notification does not happen here for 3260 * compressed extents 3261 */ 3262 if (!compressed && tree->ops && 3263 tree->ops->writepage_end_io_hook) 3264 tree->ops->writepage_end_io_hook(page, cur, 3265 cur + iosize - 1, 3266 NULL, 1); 3267 else if (compressed) { 3268 /* we don't want to end_page_writeback on 3269 * a compressed extent. this happens 3270 * elsewhere 3271 */ 3272 nr++; 3273 } 3274 3275 cur += iosize; 3276 pg_offset += iosize; 3277 continue; 3278 } 3279 /* leave this out until we have a page_mkwrite call */ 3280 if (0 && !test_range_bit(tree, cur, cur + iosize - 1, 3281 EXTENT_DIRTY, 0, NULL)) { 3282 cur = cur + iosize; 3283 pg_offset += iosize; 3284 continue; 3285 } 3286 3287 if (tree->ops && tree->ops->writepage_io_hook) { 3288 ret = tree->ops->writepage_io_hook(page, cur, 3289 cur + iosize - 1); 3290 } else { 3291 ret = 0; 3292 } 3293 if (ret) { 3294 SetPageError(page); 3295 } else { 3296 unsigned long max_nr = end_index + 1; 3297 3298 set_range_writeback(tree, cur, cur + iosize - 1); 3299 if (!PageWriteback(page)) { 3300 printk(KERN_ERR "btrfs warning page %lu not " 3301 "writeback, cur %llu end %llu\n", 3302 page->index, cur, end); 3303 } 3304 3305 ret = submit_extent_page(write_flags, tree, page, 3306 sector, iosize, pg_offset, 3307 bdev, &epd->bio, max_nr, 3308 end_bio_extent_writepage, 3309 0, 0, 0); 3310 if (ret) 3311 SetPageError(page); 3312 } 3313 cur = cur + iosize; 3314 pg_offset += iosize; 3315 nr++; 3316 } 3317 done: 3318 if (nr == 0) { 3319 /* make sure the mapping tag for page dirty gets cleared */ 3320 set_page_writeback(page); 3321 end_page_writeback(page); 3322 } 3323 unlock_page(page); 3324 3325 done_unlocked: 3326 3327 /* drop our reference on any cached states */ 3328 free_extent_state(cached_state); 3329 return 0; 3330 } 3331 3332 static int eb_wait(void *word) 3333 { 3334 io_schedule(); 3335 return 0; 3336 } 3337 3338 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3339 { 3340 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait, 3341 TASK_UNINTERRUPTIBLE); 3342 } 3343 3344 static int lock_extent_buffer_for_io(struct extent_buffer *eb, 3345 struct btrfs_fs_info *fs_info, 3346 struct extent_page_data *epd) 3347 { 3348 unsigned long i, num_pages; 3349 int flush = 0; 3350 int ret = 0; 3351 3352 if (!btrfs_try_tree_write_lock(eb)) { 3353 flush = 1; 3354 flush_write_bio(epd); 3355 btrfs_tree_lock(eb); 3356 } 3357 3358 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3359 btrfs_tree_unlock(eb); 3360 if (!epd->sync_io) 3361 return 0; 3362 if (!flush) { 3363 flush_write_bio(epd); 3364 flush = 1; 3365 } 3366 while (1) { 3367 wait_on_extent_buffer_writeback(eb); 3368 btrfs_tree_lock(eb); 3369 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3370 break; 3371 btrfs_tree_unlock(eb); 3372 } 3373 } 3374 3375 /* 3376 * We need to do this to prevent races in people who check if the eb is 3377 * under IO since we can end up having no IO bits set for a short period 3378 * of time. 3379 */ 3380 spin_lock(&eb->refs_lock); 3381 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3382 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3383 spin_unlock(&eb->refs_lock); 3384 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3385 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3386 -eb->len, 3387 fs_info->dirty_metadata_batch); 3388 ret = 1; 3389 } else { 3390 spin_unlock(&eb->refs_lock); 3391 } 3392 3393 btrfs_tree_unlock(eb); 3394 3395 if (!ret) 3396 return ret; 3397 3398 num_pages = num_extent_pages(eb->start, eb->len); 3399 for (i = 0; i < num_pages; i++) { 3400 struct page *p = extent_buffer_page(eb, i); 3401 3402 if (!trylock_page(p)) { 3403 if (!flush) { 3404 flush_write_bio(epd); 3405 flush = 1; 3406 } 3407 lock_page(p); 3408 } 3409 } 3410 3411 return ret; 3412 } 3413 3414 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3415 { 3416 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3417 smp_mb__after_clear_bit(); 3418 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3419 } 3420 3421 static void end_bio_extent_buffer_writepage(struct bio *bio, int err) 3422 { 3423 int uptodate = err == 0; 3424 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 3425 struct extent_buffer *eb; 3426 int done; 3427 3428 do { 3429 struct page *page = bvec->bv_page; 3430 3431 bvec--; 3432 eb = (struct extent_buffer *)page->private; 3433 BUG_ON(!eb); 3434 done = atomic_dec_and_test(&eb->io_pages); 3435 3436 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 3437 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3438 ClearPageUptodate(page); 3439 SetPageError(page); 3440 } 3441 3442 end_page_writeback(page); 3443 3444 if (!done) 3445 continue; 3446 3447 end_extent_buffer_writeback(eb); 3448 } while (bvec >= bio->bi_io_vec); 3449 3450 bio_put(bio); 3451 3452 } 3453 3454 static int write_one_eb(struct extent_buffer *eb, 3455 struct btrfs_fs_info *fs_info, 3456 struct writeback_control *wbc, 3457 struct extent_page_data *epd) 3458 { 3459 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3460 u64 offset = eb->start; 3461 unsigned long i, num_pages; 3462 unsigned long bio_flags = 0; 3463 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META; 3464 int ret = 0; 3465 3466 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3467 num_pages = num_extent_pages(eb->start, eb->len); 3468 atomic_set(&eb->io_pages, num_pages); 3469 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3470 bio_flags = EXTENT_BIO_TREE_LOG; 3471 3472 for (i = 0; i < num_pages; i++) { 3473 struct page *p = extent_buffer_page(eb, i); 3474 3475 clear_page_dirty_for_io(p); 3476 set_page_writeback(p); 3477 ret = submit_extent_page(rw, eb->tree, p, offset >> 9, 3478 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3479 -1, end_bio_extent_buffer_writepage, 3480 0, epd->bio_flags, bio_flags); 3481 epd->bio_flags = bio_flags; 3482 if (ret) { 3483 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3484 SetPageError(p); 3485 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3486 end_extent_buffer_writeback(eb); 3487 ret = -EIO; 3488 break; 3489 } 3490 offset += PAGE_CACHE_SIZE; 3491 update_nr_written(p, wbc, 1); 3492 unlock_page(p); 3493 } 3494 3495 if (unlikely(ret)) { 3496 for (; i < num_pages; i++) { 3497 struct page *p = extent_buffer_page(eb, i); 3498 unlock_page(p); 3499 } 3500 } 3501 3502 return ret; 3503 } 3504 3505 int btree_write_cache_pages(struct address_space *mapping, 3506 struct writeback_control *wbc) 3507 { 3508 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3509 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3510 struct extent_buffer *eb, *prev_eb = NULL; 3511 struct extent_page_data epd = { 3512 .bio = NULL, 3513 .tree = tree, 3514 .extent_locked = 0, 3515 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3516 .bio_flags = 0, 3517 }; 3518 int ret = 0; 3519 int done = 0; 3520 int nr_to_write_done = 0; 3521 struct pagevec pvec; 3522 int nr_pages; 3523 pgoff_t index; 3524 pgoff_t end; /* Inclusive */ 3525 int scanned = 0; 3526 int tag; 3527 3528 pagevec_init(&pvec, 0); 3529 if (wbc->range_cyclic) { 3530 index = mapping->writeback_index; /* Start from prev offset */ 3531 end = -1; 3532 } else { 3533 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3534 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3535 scanned = 1; 3536 } 3537 if (wbc->sync_mode == WB_SYNC_ALL) 3538 tag = PAGECACHE_TAG_TOWRITE; 3539 else 3540 tag = PAGECACHE_TAG_DIRTY; 3541 retry: 3542 if (wbc->sync_mode == WB_SYNC_ALL) 3543 tag_pages_for_writeback(mapping, index, end); 3544 while (!done && !nr_to_write_done && (index <= end) && 3545 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3546 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3547 unsigned i; 3548 3549 scanned = 1; 3550 for (i = 0; i < nr_pages; i++) { 3551 struct page *page = pvec.pages[i]; 3552 3553 if (!PagePrivate(page)) 3554 continue; 3555 3556 if (!wbc->range_cyclic && page->index > end) { 3557 done = 1; 3558 break; 3559 } 3560 3561 spin_lock(&mapping->private_lock); 3562 if (!PagePrivate(page)) { 3563 spin_unlock(&mapping->private_lock); 3564 continue; 3565 } 3566 3567 eb = (struct extent_buffer *)page->private; 3568 3569 /* 3570 * Shouldn't happen and normally this would be a BUG_ON 3571 * but no sense in crashing the users box for something 3572 * we can survive anyway. 3573 */ 3574 if (WARN_ON(!eb)) { 3575 spin_unlock(&mapping->private_lock); 3576 continue; 3577 } 3578 3579 if (eb == prev_eb) { 3580 spin_unlock(&mapping->private_lock); 3581 continue; 3582 } 3583 3584 ret = atomic_inc_not_zero(&eb->refs); 3585 spin_unlock(&mapping->private_lock); 3586 if (!ret) 3587 continue; 3588 3589 prev_eb = eb; 3590 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3591 if (!ret) { 3592 free_extent_buffer(eb); 3593 continue; 3594 } 3595 3596 ret = write_one_eb(eb, fs_info, wbc, &epd); 3597 if (ret) { 3598 done = 1; 3599 free_extent_buffer(eb); 3600 break; 3601 } 3602 free_extent_buffer(eb); 3603 3604 /* 3605 * the filesystem may choose to bump up nr_to_write. 3606 * We have to make sure to honor the new nr_to_write 3607 * at any time 3608 */ 3609 nr_to_write_done = wbc->nr_to_write <= 0; 3610 } 3611 pagevec_release(&pvec); 3612 cond_resched(); 3613 } 3614 if (!scanned && !done) { 3615 /* 3616 * We hit the last page and there is more work to be done: wrap 3617 * back to the start of the file 3618 */ 3619 scanned = 1; 3620 index = 0; 3621 goto retry; 3622 } 3623 flush_write_bio(&epd); 3624 return ret; 3625 } 3626 3627 /** 3628 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3629 * @mapping: address space structure to write 3630 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3631 * @writepage: function called for each page 3632 * @data: data passed to writepage function 3633 * 3634 * If a page is already under I/O, write_cache_pages() skips it, even 3635 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3636 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3637 * and msync() need to guarantee that all the data which was dirty at the time 3638 * the call was made get new I/O started against them. If wbc->sync_mode is 3639 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3640 * existing IO to complete. 3641 */ 3642 static int extent_write_cache_pages(struct extent_io_tree *tree, 3643 struct address_space *mapping, 3644 struct writeback_control *wbc, 3645 writepage_t writepage, void *data, 3646 void (*flush_fn)(void *)) 3647 { 3648 struct inode *inode = mapping->host; 3649 int ret = 0; 3650 int done = 0; 3651 int nr_to_write_done = 0; 3652 struct pagevec pvec; 3653 int nr_pages; 3654 pgoff_t index; 3655 pgoff_t end; /* Inclusive */ 3656 int scanned = 0; 3657 int tag; 3658 3659 /* 3660 * We have to hold onto the inode so that ordered extents can do their 3661 * work when the IO finishes. The alternative to this is failing to add 3662 * an ordered extent if the igrab() fails there and that is a huge pain 3663 * to deal with, so instead just hold onto the inode throughout the 3664 * writepages operation. If it fails here we are freeing up the inode 3665 * anyway and we'd rather not waste our time writing out stuff that is 3666 * going to be truncated anyway. 3667 */ 3668 if (!igrab(inode)) 3669 return 0; 3670 3671 pagevec_init(&pvec, 0); 3672 if (wbc->range_cyclic) { 3673 index = mapping->writeback_index; /* Start from prev offset */ 3674 end = -1; 3675 } else { 3676 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3677 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3678 scanned = 1; 3679 } 3680 if (wbc->sync_mode == WB_SYNC_ALL) 3681 tag = PAGECACHE_TAG_TOWRITE; 3682 else 3683 tag = PAGECACHE_TAG_DIRTY; 3684 retry: 3685 if (wbc->sync_mode == WB_SYNC_ALL) 3686 tag_pages_for_writeback(mapping, index, end); 3687 while (!done && !nr_to_write_done && (index <= end) && 3688 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3689 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3690 unsigned i; 3691 3692 scanned = 1; 3693 for (i = 0; i < nr_pages; i++) { 3694 struct page *page = pvec.pages[i]; 3695 3696 /* 3697 * At this point we hold neither mapping->tree_lock nor 3698 * lock on the page itself: the page may be truncated or 3699 * invalidated (changing page->mapping to NULL), or even 3700 * swizzled back from swapper_space to tmpfs file 3701 * mapping 3702 */ 3703 if (!trylock_page(page)) { 3704 flush_fn(data); 3705 lock_page(page); 3706 } 3707 3708 if (unlikely(page->mapping != mapping)) { 3709 unlock_page(page); 3710 continue; 3711 } 3712 3713 if (!wbc->range_cyclic && page->index > end) { 3714 done = 1; 3715 unlock_page(page); 3716 continue; 3717 } 3718 3719 if (wbc->sync_mode != WB_SYNC_NONE) { 3720 if (PageWriteback(page)) 3721 flush_fn(data); 3722 wait_on_page_writeback(page); 3723 } 3724 3725 if (PageWriteback(page) || 3726 !clear_page_dirty_for_io(page)) { 3727 unlock_page(page); 3728 continue; 3729 } 3730 3731 ret = (*writepage)(page, wbc, data); 3732 3733 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 3734 unlock_page(page); 3735 ret = 0; 3736 } 3737 if (ret) 3738 done = 1; 3739 3740 /* 3741 * the filesystem may choose to bump up nr_to_write. 3742 * We have to make sure to honor the new nr_to_write 3743 * at any time 3744 */ 3745 nr_to_write_done = wbc->nr_to_write <= 0; 3746 } 3747 pagevec_release(&pvec); 3748 cond_resched(); 3749 } 3750 if (!scanned && !done) { 3751 /* 3752 * We hit the last page and there is more work to be done: wrap 3753 * back to the start of the file 3754 */ 3755 scanned = 1; 3756 index = 0; 3757 goto retry; 3758 } 3759 btrfs_add_delayed_iput(inode); 3760 return ret; 3761 } 3762 3763 static void flush_epd_write_bio(struct extent_page_data *epd) 3764 { 3765 if (epd->bio) { 3766 int rw = WRITE; 3767 int ret; 3768 3769 if (epd->sync_io) 3770 rw = WRITE_SYNC; 3771 3772 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 3773 BUG_ON(ret < 0); /* -ENOMEM */ 3774 epd->bio = NULL; 3775 } 3776 } 3777 3778 static noinline void flush_write_bio(void *data) 3779 { 3780 struct extent_page_data *epd = data; 3781 flush_epd_write_bio(epd); 3782 } 3783 3784 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 3785 get_extent_t *get_extent, 3786 struct writeback_control *wbc) 3787 { 3788 int ret; 3789 struct extent_page_data epd = { 3790 .bio = NULL, 3791 .tree = tree, 3792 .get_extent = get_extent, 3793 .extent_locked = 0, 3794 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3795 .bio_flags = 0, 3796 }; 3797 3798 ret = __extent_writepage(page, wbc, &epd); 3799 3800 flush_epd_write_bio(&epd); 3801 return ret; 3802 } 3803 3804 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 3805 u64 start, u64 end, get_extent_t *get_extent, 3806 int mode) 3807 { 3808 int ret = 0; 3809 struct address_space *mapping = inode->i_mapping; 3810 struct page *page; 3811 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 3812 PAGE_CACHE_SHIFT; 3813 3814 struct extent_page_data epd = { 3815 .bio = NULL, 3816 .tree = tree, 3817 .get_extent = get_extent, 3818 .extent_locked = 1, 3819 .sync_io = mode == WB_SYNC_ALL, 3820 .bio_flags = 0, 3821 }; 3822 struct writeback_control wbc_writepages = { 3823 .sync_mode = mode, 3824 .nr_to_write = nr_pages * 2, 3825 .range_start = start, 3826 .range_end = end + 1, 3827 }; 3828 3829 while (start <= end) { 3830 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 3831 if (clear_page_dirty_for_io(page)) 3832 ret = __extent_writepage(page, &wbc_writepages, &epd); 3833 else { 3834 if (tree->ops && tree->ops->writepage_end_io_hook) 3835 tree->ops->writepage_end_io_hook(page, start, 3836 start + PAGE_CACHE_SIZE - 1, 3837 NULL, 1); 3838 unlock_page(page); 3839 } 3840 page_cache_release(page); 3841 start += PAGE_CACHE_SIZE; 3842 } 3843 3844 flush_epd_write_bio(&epd); 3845 return ret; 3846 } 3847 3848 int extent_writepages(struct extent_io_tree *tree, 3849 struct address_space *mapping, 3850 get_extent_t *get_extent, 3851 struct writeback_control *wbc) 3852 { 3853 int ret = 0; 3854 struct extent_page_data epd = { 3855 .bio = NULL, 3856 .tree = tree, 3857 .get_extent = get_extent, 3858 .extent_locked = 0, 3859 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3860 .bio_flags = 0, 3861 }; 3862 3863 ret = extent_write_cache_pages(tree, mapping, wbc, 3864 __extent_writepage, &epd, 3865 flush_write_bio); 3866 flush_epd_write_bio(&epd); 3867 return ret; 3868 } 3869 3870 int extent_readpages(struct extent_io_tree *tree, 3871 struct address_space *mapping, 3872 struct list_head *pages, unsigned nr_pages, 3873 get_extent_t get_extent) 3874 { 3875 struct bio *bio = NULL; 3876 unsigned page_idx; 3877 unsigned long bio_flags = 0; 3878 struct page *pagepool[16]; 3879 struct page *page; 3880 struct extent_map *em_cached = NULL; 3881 int nr = 0; 3882 3883 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 3884 page = list_entry(pages->prev, struct page, lru); 3885 3886 prefetchw(&page->flags); 3887 list_del(&page->lru); 3888 if (add_to_page_cache_lru(page, mapping, 3889 page->index, GFP_NOFS)) { 3890 page_cache_release(page); 3891 continue; 3892 } 3893 3894 pagepool[nr++] = page; 3895 if (nr < ARRAY_SIZE(pagepool)) 3896 continue; 3897 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 3898 &bio, 0, &bio_flags, READ); 3899 nr = 0; 3900 } 3901 if (nr) 3902 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 3903 &bio, 0, &bio_flags, READ); 3904 3905 if (em_cached) 3906 free_extent_map(em_cached); 3907 3908 BUG_ON(!list_empty(pages)); 3909 if (bio) 3910 return submit_one_bio(READ, bio, 0, bio_flags); 3911 return 0; 3912 } 3913 3914 /* 3915 * basic invalidatepage code, this waits on any locked or writeback 3916 * ranges corresponding to the page, and then deletes any extent state 3917 * records from the tree 3918 */ 3919 int extent_invalidatepage(struct extent_io_tree *tree, 3920 struct page *page, unsigned long offset) 3921 { 3922 struct extent_state *cached_state = NULL; 3923 u64 start = page_offset(page); 3924 u64 end = start + PAGE_CACHE_SIZE - 1; 3925 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 3926 3927 start += ALIGN(offset, blocksize); 3928 if (start > end) 3929 return 0; 3930 3931 lock_extent_bits(tree, start, end, 0, &cached_state); 3932 wait_on_page_writeback(page); 3933 clear_extent_bit(tree, start, end, 3934 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 3935 EXTENT_DO_ACCOUNTING, 3936 1, 1, &cached_state, GFP_NOFS); 3937 return 0; 3938 } 3939 3940 /* 3941 * a helper for releasepage, this tests for areas of the page that 3942 * are locked or under IO and drops the related state bits if it is safe 3943 * to drop the page. 3944 */ 3945 static int try_release_extent_state(struct extent_map_tree *map, 3946 struct extent_io_tree *tree, 3947 struct page *page, gfp_t mask) 3948 { 3949 u64 start = page_offset(page); 3950 u64 end = start + PAGE_CACHE_SIZE - 1; 3951 int ret = 1; 3952 3953 if (test_range_bit(tree, start, end, 3954 EXTENT_IOBITS, 0, NULL)) 3955 ret = 0; 3956 else { 3957 if ((mask & GFP_NOFS) == GFP_NOFS) 3958 mask = GFP_NOFS; 3959 /* 3960 * at this point we can safely clear everything except the 3961 * locked bit and the nodatasum bit 3962 */ 3963 ret = clear_extent_bit(tree, start, end, 3964 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 3965 0, 0, NULL, mask); 3966 3967 /* if clear_extent_bit failed for enomem reasons, 3968 * we can't allow the release to continue. 3969 */ 3970 if (ret < 0) 3971 ret = 0; 3972 else 3973 ret = 1; 3974 } 3975 return ret; 3976 } 3977 3978 /* 3979 * a helper for releasepage. As long as there are no locked extents 3980 * in the range corresponding to the page, both state records and extent 3981 * map records are removed 3982 */ 3983 int try_release_extent_mapping(struct extent_map_tree *map, 3984 struct extent_io_tree *tree, struct page *page, 3985 gfp_t mask) 3986 { 3987 struct extent_map *em; 3988 u64 start = page_offset(page); 3989 u64 end = start + PAGE_CACHE_SIZE - 1; 3990 3991 if ((mask & __GFP_WAIT) && 3992 page->mapping->host->i_size > 16 * 1024 * 1024) { 3993 u64 len; 3994 while (start <= end) { 3995 len = end - start + 1; 3996 write_lock(&map->lock); 3997 em = lookup_extent_mapping(map, start, len); 3998 if (!em) { 3999 write_unlock(&map->lock); 4000 break; 4001 } 4002 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4003 em->start != start) { 4004 write_unlock(&map->lock); 4005 free_extent_map(em); 4006 break; 4007 } 4008 if (!test_range_bit(tree, em->start, 4009 extent_map_end(em) - 1, 4010 EXTENT_LOCKED | EXTENT_WRITEBACK, 4011 0, NULL)) { 4012 remove_extent_mapping(map, em); 4013 /* once for the rb tree */ 4014 free_extent_map(em); 4015 } 4016 start = extent_map_end(em); 4017 write_unlock(&map->lock); 4018 4019 /* once for us */ 4020 free_extent_map(em); 4021 } 4022 } 4023 return try_release_extent_state(map, tree, page, mask); 4024 } 4025 4026 /* 4027 * helper function for fiemap, which doesn't want to see any holes. 4028 * This maps until we find something past 'last' 4029 */ 4030 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4031 u64 offset, 4032 u64 last, 4033 get_extent_t *get_extent) 4034 { 4035 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 4036 struct extent_map *em; 4037 u64 len; 4038 4039 if (offset >= last) 4040 return NULL; 4041 4042 while (1) { 4043 len = last - offset; 4044 if (len == 0) 4045 break; 4046 len = ALIGN(len, sectorsize); 4047 em = get_extent(inode, NULL, 0, offset, len, 0); 4048 if (IS_ERR_OR_NULL(em)) 4049 return em; 4050 4051 /* if this isn't a hole return it */ 4052 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4053 em->block_start != EXTENT_MAP_HOLE) { 4054 return em; 4055 } 4056 4057 /* this is a hole, advance to the next extent */ 4058 offset = extent_map_end(em); 4059 free_extent_map(em); 4060 if (offset >= last) 4061 break; 4062 } 4063 return NULL; 4064 } 4065 4066 static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx) 4067 { 4068 unsigned long cnt = *((unsigned long *)ctx); 4069 4070 cnt++; 4071 *((unsigned long *)ctx) = cnt; 4072 4073 /* Now we're sure that the extent is shared. */ 4074 if (cnt > 1) 4075 return 1; 4076 return 0; 4077 } 4078 4079 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4080 __u64 start, __u64 len, get_extent_t *get_extent) 4081 { 4082 int ret = 0; 4083 u64 off = start; 4084 u64 max = start + len; 4085 u32 flags = 0; 4086 u32 found_type; 4087 u64 last; 4088 u64 last_for_get_extent = 0; 4089 u64 disko = 0; 4090 u64 isize = i_size_read(inode); 4091 struct btrfs_key found_key; 4092 struct extent_map *em = NULL; 4093 struct extent_state *cached_state = NULL; 4094 struct btrfs_path *path; 4095 struct btrfs_file_extent_item *item; 4096 int end = 0; 4097 u64 em_start = 0; 4098 u64 em_len = 0; 4099 u64 em_end = 0; 4100 unsigned long emflags; 4101 4102 if (len == 0) 4103 return -EINVAL; 4104 4105 path = btrfs_alloc_path(); 4106 if (!path) 4107 return -ENOMEM; 4108 path->leave_spinning = 1; 4109 4110 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize); 4111 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize); 4112 4113 /* 4114 * lookup the last file extent. We're not using i_size here 4115 * because there might be preallocation past i_size 4116 */ 4117 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root, 4118 path, btrfs_ino(inode), -1, 0); 4119 if (ret < 0) { 4120 btrfs_free_path(path); 4121 return ret; 4122 } 4123 WARN_ON(!ret); 4124 path->slots[0]--; 4125 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4126 struct btrfs_file_extent_item); 4127 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4128 found_type = btrfs_key_type(&found_key); 4129 4130 /* No extents, but there might be delalloc bits */ 4131 if (found_key.objectid != btrfs_ino(inode) || 4132 found_type != BTRFS_EXTENT_DATA_KEY) { 4133 /* have to trust i_size as the end */ 4134 last = (u64)-1; 4135 last_for_get_extent = isize; 4136 } else { 4137 /* 4138 * remember the start of the last extent. There are a 4139 * bunch of different factors that go into the length of the 4140 * extent, so its much less complex to remember where it started 4141 */ 4142 last = found_key.offset; 4143 last_for_get_extent = last + 1; 4144 } 4145 btrfs_release_path(path); 4146 4147 /* 4148 * we might have some extents allocated but more delalloc past those 4149 * extents. so, we trust isize unless the start of the last extent is 4150 * beyond isize 4151 */ 4152 if (last < isize) { 4153 last = (u64)-1; 4154 last_for_get_extent = isize; 4155 } 4156 4157 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0, 4158 &cached_state); 4159 4160 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4161 get_extent); 4162 if (!em) 4163 goto out; 4164 if (IS_ERR(em)) { 4165 ret = PTR_ERR(em); 4166 goto out; 4167 } 4168 4169 while (!end) { 4170 u64 offset_in_extent = 0; 4171 4172 /* break if the extent we found is outside the range */ 4173 if (em->start >= max || extent_map_end(em) < off) 4174 break; 4175 4176 /* 4177 * get_extent may return an extent that starts before our 4178 * requested range. We have to make sure the ranges 4179 * we return to fiemap always move forward and don't 4180 * overlap, so adjust the offsets here 4181 */ 4182 em_start = max(em->start, off); 4183 4184 /* 4185 * record the offset from the start of the extent 4186 * for adjusting the disk offset below. Only do this if the 4187 * extent isn't compressed since our in ram offset may be past 4188 * what we have actually allocated on disk. 4189 */ 4190 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4191 offset_in_extent = em_start - em->start; 4192 em_end = extent_map_end(em); 4193 em_len = em_end - em_start; 4194 emflags = em->flags; 4195 disko = 0; 4196 flags = 0; 4197 4198 /* 4199 * bump off for our next call to get_extent 4200 */ 4201 off = extent_map_end(em); 4202 if (off >= max) 4203 end = 1; 4204 4205 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4206 end = 1; 4207 flags |= FIEMAP_EXTENT_LAST; 4208 } else if (em->block_start == EXTENT_MAP_INLINE) { 4209 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4210 FIEMAP_EXTENT_NOT_ALIGNED); 4211 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4212 flags |= (FIEMAP_EXTENT_DELALLOC | 4213 FIEMAP_EXTENT_UNKNOWN); 4214 } else { 4215 unsigned long ref_cnt = 0; 4216 4217 disko = em->block_start + offset_in_extent; 4218 4219 /* 4220 * As btrfs supports shared space, this information 4221 * can be exported to userspace tools via 4222 * flag FIEMAP_EXTENT_SHARED. 4223 */ 4224 ret = iterate_inodes_from_logical( 4225 em->block_start, 4226 BTRFS_I(inode)->root->fs_info, 4227 path, count_ext_ref, &ref_cnt); 4228 if (ret < 0 && ret != -ENOENT) 4229 goto out_free; 4230 4231 if (ref_cnt > 1) 4232 flags |= FIEMAP_EXTENT_SHARED; 4233 } 4234 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4235 flags |= FIEMAP_EXTENT_ENCODED; 4236 4237 free_extent_map(em); 4238 em = NULL; 4239 if ((em_start >= last) || em_len == (u64)-1 || 4240 (last == (u64)-1 && isize <= em_end)) { 4241 flags |= FIEMAP_EXTENT_LAST; 4242 end = 1; 4243 } 4244 4245 /* now scan forward to see if this is really the last extent. */ 4246 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4247 get_extent); 4248 if (IS_ERR(em)) { 4249 ret = PTR_ERR(em); 4250 goto out; 4251 } 4252 if (!em) { 4253 flags |= FIEMAP_EXTENT_LAST; 4254 end = 1; 4255 } 4256 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4257 em_len, flags); 4258 if (ret) 4259 goto out_free; 4260 } 4261 out_free: 4262 free_extent_map(em); 4263 out: 4264 btrfs_free_path(path); 4265 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4266 &cached_state, GFP_NOFS); 4267 return ret; 4268 } 4269 4270 static void __free_extent_buffer(struct extent_buffer *eb) 4271 { 4272 btrfs_leak_debug_del(&eb->leak_list); 4273 kmem_cache_free(extent_buffer_cache, eb); 4274 } 4275 4276 static int extent_buffer_under_io(struct extent_buffer *eb) 4277 { 4278 return (atomic_read(&eb->io_pages) || 4279 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4280 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4281 } 4282 4283 /* 4284 * Helper for releasing extent buffer page. 4285 */ 4286 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb, 4287 unsigned long start_idx) 4288 { 4289 unsigned long index; 4290 unsigned long num_pages; 4291 struct page *page; 4292 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4293 4294 BUG_ON(extent_buffer_under_io(eb)); 4295 4296 num_pages = num_extent_pages(eb->start, eb->len); 4297 index = start_idx + num_pages; 4298 if (start_idx >= index) 4299 return; 4300 4301 do { 4302 index--; 4303 page = extent_buffer_page(eb, index); 4304 if (page && mapped) { 4305 spin_lock(&page->mapping->private_lock); 4306 /* 4307 * We do this since we'll remove the pages after we've 4308 * removed the eb from the radix tree, so we could race 4309 * and have this page now attached to the new eb. So 4310 * only clear page_private if it's still connected to 4311 * this eb. 4312 */ 4313 if (PagePrivate(page) && 4314 page->private == (unsigned long)eb) { 4315 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4316 BUG_ON(PageDirty(page)); 4317 BUG_ON(PageWriteback(page)); 4318 /* 4319 * We need to make sure we haven't be attached 4320 * to a new eb. 4321 */ 4322 ClearPagePrivate(page); 4323 set_page_private(page, 0); 4324 /* One for the page private */ 4325 page_cache_release(page); 4326 } 4327 spin_unlock(&page->mapping->private_lock); 4328 4329 } 4330 if (page) { 4331 /* One for when we alloced the page */ 4332 page_cache_release(page); 4333 } 4334 } while (index != start_idx); 4335 } 4336 4337 /* 4338 * Helper for releasing the extent buffer. 4339 */ 4340 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4341 { 4342 btrfs_release_extent_buffer_page(eb, 0); 4343 __free_extent_buffer(eb); 4344 } 4345 4346 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree, 4347 u64 start, 4348 unsigned long len, 4349 gfp_t mask) 4350 { 4351 struct extent_buffer *eb = NULL; 4352 4353 eb = kmem_cache_zalloc(extent_buffer_cache, mask); 4354 if (eb == NULL) 4355 return NULL; 4356 eb->start = start; 4357 eb->len = len; 4358 eb->tree = tree; 4359 eb->bflags = 0; 4360 rwlock_init(&eb->lock); 4361 atomic_set(&eb->write_locks, 0); 4362 atomic_set(&eb->read_locks, 0); 4363 atomic_set(&eb->blocking_readers, 0); 4364 atomic_set(&eb->blocking_writers, 0); 4365 atomic_set(&eb->spinning_readers, 0); 4366 atomic_set(&eb->spinning_writers, 0); 4367 eb->lock_nested = 0; 4368 init_waitqueue_head(&eb->write_lock_wq); 4369 init_waitqueue_head(&eb->read_lock_wq); 4370 4371 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4372 4373 spin_lock_init(&eb->refs_lock); 4374 atomic_set(&eb->refs, 1); 4375 atomic_set(&eb->io_pages, 0); 4376 4377 /* 4378 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4379 */ 4380 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4381 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4382 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4383 4384 return eb; 4385 } 4386 4387 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4388 { 4389 unsigned long i; 4390 struct page *p; 4391 struct extent_buffer *new; 4392 unsigned long num_pages = num_extent_pages(src->start, src->len); 4393 4394 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS); 4395 if (new == NULL) 4396 return NULL; 4397 4398 for (i = 0; i < num_pages; i++) { 4399 p = alloc_page(GFP_NOFS); 4400 if (!p) { 4401 btrfs_release_extent_buffer(new); 4402 return NULL; 4403 } 4404 attach_extent_buffer_page(new, p); 4405 WARN_ON(PageDirty(p)); 4406 SetPageUptodate(p); 4407 new->pages[i] = p; 4408 } 4409 4410 copy_extent_buffer(new, src, 0, 0, src->len); 4411 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4412 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4413 4414 return new; 4415 } 4416 4417 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len) 4418 { 4419 struct extent_buffer *eb; 4420 unsigned long num_pages = num_extent_pages(0, len); 4421 unsigned long i; 4422 4423 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS); 4424 if (!eb) 4425 return NULL; 4426 4427 for (i = 0; i < num_pages; i++) { 4428 eb->pages[i] = alloc_page(GFP_NOFS); 4429 if (!eb->pages[i]) 4430 goto err; 4431 } 4432 set_extent_buffer_uptodate(eb); 4433 btrfs_set_header_nritems(eb, 0); 4434 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4435 4436 return eb; 4437 err: 4438 for (; i > 0; i--) 4439 __free_page(eb->pages[i - 1]); 4440 __free_extent_buffer(eb); 4441 return NULL; 4442 } 4443 4444 static void check_buffer_tree_ref(struct extent_buffer *eb) 4445 { 4446 int refs; 4447 /* the ref bit is tricky. We have to make sure it is set 4448 * if we have the buffer dirty. Otherwise the 4449 * code to free a buffer can end up dropping a dirty 4450 * page 4451 * 4452 * Once the ref bit is set, it won't go away while the 4453 * buffer is dirty or in writeback, and it also won't 4454 * go away while we have the reference count on the 4455 * eb bumped. 4456 * 4457 * We can't just set the ref bit without bumping the 4458 * ref on the eb because free_extent_buffer might 4459 * see the ref bit and try to clear it. If this happens 4460 * free_extent_buffer might end up dropping our original 4461 * ref by mistake and freeing the page before we are able 4462 * to add one more ref. 4463 * 4464 * So bump the ref count first, then set the bit. If someone 4465 * beat us to it, drop the ref we added. 4466 */ 4467 refs = atomic_read(&eb->refs); 4468 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4469 return; 4470 4471 spin_lock(&eb->refs_lock); 4472 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4473 atomic_inc(&eb->refs); 4474 spin_unlock(&eb->refs_lock); 4475 } 4476 4477 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 4478 { 4479 unsigned long num_pages, i; 4480 4481 check_buffer_tree_ref(eb); 4482 4483 num_pages = num_extent_pages(eb->start, eb->len); 4484 for (i = 0; i < num_pages; i++) { 4485 struct page *p = extent_buffer_page(eb, i); 4486 mark_page_accessed(p); 4487 } 4488 } 4489 4490 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree, 4491 u64 start) 4492 { 4493 struct extent_buffer *eb; 4494 4495 rcu_read_lock(); 4496 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); 4497 if (eb && atomic_inc_not_zero(&eb->refs)) { 4498 rcu_read_unlock(); 4499 mark_extent_buffer_accessed(eb); 4500 return eb; 4501 } 4502 rcu_read_unlock(); 4503 4504 return NULL; 4505 } 4506 4507 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree, 4508 u64 start, unsigned long len) 4509 { 4510 unsigned long num_pages = num_extent_pages(start, len); 4511 unsigned long i; 4512 unsigned long index = start >> PAGE_CACHE_SHIFT; 4513 struct extent_buffer *eb; 4514 struct extent_buffer *exists = NULL; 4515 struct page *p; 4516 struct address_space *mapping = tree->mapping; 4517 int uptodate = 1; 4518 int ret; 4519 4520 4521 eb = find_extent_buffer(tree, start); 4522 if (eb) 4523 return eb; 4524 4525 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS); 4526 if (!eb) 4527 return NULL; 4528 4529 for (i = 0; i < num_pages; i++, index++) { 4530 p = find_or_create_page(mapping, index, GFP_NOFS); 4531 if (!p) 4532 goto free_eb; 4533 4534 spin_lock(&mapping->private_lock); 4535 if (PagePrivate(p)) { 4536 /* 4537 * We could have already allocated an eb for this page 4538 * and attached one so lets see if we can get a ref on 4539 * the existing eb, and if we can we know it's good and 4540 * we can just return that one, else we know we can just 4541 * overwrite page->private. 4542 */ 4543 exists = (struct extent_buffer *)p->private; 4544 if (atomic_inc_not_zero(&exists->refs)) { 4545 spin_unlock(&mapping->private_lock); 4546 unlock_page(p); 4547 page_cache_release(p); 4548 mark_extent_buffer_accessed(exists); 4549 goto free_eb; 4550 } 4551 4552 /* 4553 * Do this so attach doesn't complain and we need to 4554 * drop the ref the old guy had. 4555 */ 4556 ClearPagePrivate(p); 4557 WARN_ON(PageDirty(p)); 4558 page_cache_release(p); 4559 } 4560 attach_extent_buffer_page(eb, p); 4561 spin_unlock(&mapping->private_lock); 4562 WARN_ON(PageDirty(p)); 4563 mark_page_accessed(p); 4564 eb->pages[i] = p; 4565 if (!PageUptodate(p)) 4566 uptodate = 0; 4567 4568 /* 4569 * see below about how we avoid a nasty race with release page 4570 * and why we unlock later 4571 */ 4572 } 4573 if (uptodate) 4574 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4575 again: 4576 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4577 if (ret) 4578 goto free_eb; 4579 4580 spin_lock(&tree->buffer_lock); 4581 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb); 4582 spin_unlock(&tree->buffer_lock); 4583 radix_tree_preload_end(); 4584 if (ret == -EEXIST) { 4585 exists = find_extent_buffer(tree, start); 4586 if (exists) 4587 goto free_eb; 4588 else 4589 goto again; 4590 } 4591 /* add one reference for the tree */ 4592 check_buffer_tree_ref(eb); 4593 4594 /* 4595 * there is a race where release page may have 4596 * tried to find this extent buffer in the radix 4597 * but failed. It will tell the VM it is safe to 4598 * reclaim the, and it will clear the page private bit. 4599 * We must make sure to set the page private bit properly 4600 * after the extent buffer is in the radix tree so 4601 * it doesn't get lost 4602 */ 4603 SetPageChecked(eb->pages[0]); 4604 for (i = 1; i < num_pages; i++) { 4605 p = extent_buffer_page(eb, i); 4606 ClearPageChecked(p); 4607 unlock_page(p); 4608 } 4609 unlock_page(eb->pages[0]); 4610 return eb; 4611 4612 free_eb: 4613 for (i = 0; i < num_pages; i++) { 4614 if (eb->pages[i]) 4615 unlock_page(eb->pages[i]); 4616 } 4617 4618 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4619 btrfs_release_extent_buffer(eb); 4620 return exists; 4621 } 4622 4623 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4624 { 4625 struct extent_buffer *eb = 4626 container_of(head, struct extent_buffer, rcu_head); 4627 4628 __free_extent_buffer(eb); 4629 } 4630 4631 /* Expects to have eb->eb_lock already held */ 4632 static int release_extent_buffer(struct extent_buffer *eb) 4633 { 4634 WARN_ON(atomic_read(&eb->refs) == 0); 4635 if (atomic_dec_and_test(&eb->refs)) { 4636 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) { 4637 spin_unlock(&eb->refs_lock); 4638 } else { 4639 struct extent_io_tree *tree = eb->tree; 4640 4641 spin_unlock(&eb->refs_lock); 4642 4643 spin_lock(&tree->buffer_lock); 4644 radix_tree_delete(&tree->buffer, 4645 eb->start >> PAGE_CACHE_SHIFT); 4646 spin_unlock(&tree->buffer_lock); 4647 } 4648 4649 /* Should be safe to release our pages at this point */ 4650 btrfs_release_extent_buffer_page(eb, 0); 4651 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4652 return 1; 4653 } 4654 spin_unlock(&eb->refs_lock); 4655 4656 return 0; 4657 } 4658 4659 void free_extent_buffer(struct extent_buffer *eb) 4660 { 4661 int refs; 4662 int old; 4663 if (!eb) 4664 return; 4665 4666 while (1) { 4667 refs = atomic_read(&eb->refs); 4668 if (refs <= 3) 4669 break; 4670 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 4671 if (old == refs) 4672 return; 4673 } 4674 4675 spin_lock(&eb->refs_lock); 4676 if (atomic_read(&eb->refs) == 2 && 4677 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 4678 atomic_dec(&eb->refs); 4679 4680 if (atomic_read(&eb->refs) == 2 && 4681 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4682 !extent_buffer_under_io(eb) && 4683 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4684 atomic_dec(&eb->refs); 4685 4686 /* 4687 * I know this is terrible, but it's temporary until we stop tracking 4688 * the uptodate bits and such for the extent buffers. 4689 */ 4690 release_extent_buffer(eb); 4691 } 4692 4693 void free_extent_buffer_stale(struct extent_buffer *eb) 4694 { 4695 if (!eb) 4696 return; 4697 4698 spin_lock(&eb->refs_lock); 4699 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4700 4701 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4702 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4703 atomic_dec(&eb->refs); 4704 release_extent_buffer(eb); 4705 } 4706 4707 void clear_extent_buffer_dirty(struct extent_buffer *eb) 4708 { 4709 unsigned long i; 4710 unsigned long num_pages; 4711 struct page *page; 4712 4713 num_pages = num_extent_pages(eb->start, eb->len); 4714 4715 for (i = 0; i < num_pages; i++) { 4716 page = extent_buffer_page(eb, i); 4717 if (!PageDirty(page)) 4718 continue; 4719 4720 lock_page(page); 4721 WARN_ON(!PagePrivate(page)); 4722 4723 clear_page_dirty_for_io(page); 4724 spin_lock_irq(&page->mapping->tree_lock); 4725 if (!PageDirty(page)) { 4726 radix_tree_tag_clear(&page->mapping->page_tree, 4727 page_index(page), 4728 PAGECACHE_TAG_DIRTY); 4729 } 4730 spin_unlock_irq(&page->mapping->tree_lock); 4731 ClearPageError(page); 4732 unlock_page(page); 4733 } 4734 WARN_ON(atomic_read(&eb->refs) == 0); 4735 } 4736 4737 int set_extent_buffer_dirty(struct extent_buffer *eb) 4738 { 4739 unsigned long i; 4740 unsigned long num_pages; 4741 int was_dirty = 0; 4742 4743 check_buffer_tree_ref(eb); 4744 4745 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4746 4747 num_pages = num_extent_pages(eb->start, eb->len); 4748 WARN_ON(atomic_read(&eb->refs) == 0); 4749 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4750 4751 for (i = 0; i < num_pages; i++) 4752 set_page_dirty(extent_buffer_page(eb, i)); 4753 return was_dirty; 4754 } 4755 4756 int clear_extent_buffer_uptodate(struct extent_buffer *eb) 4757 { 4758 unsigned long i; 4759 struct page *page; 4760 unsigned long num_pages; 4761 4762 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4763 num_pages = num_extent_pages(eb->start, eb->len); 4764 for (i = 0; i < num_pages; i++) { 4765 page = extent_buffer_page(eb, i); 4766 if (page) 4767 ClearPageUptodate(page); 4768 } 4769 return 0; 4770 } 4771 4772 int set_extent_buffer_uptodate(struct extent_buffer *eb) 4773 { 4774 unsigned long i; 4775 struct page *page; 4776 unsigned long num_pages; 4777 4778 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4779 num_pages = num_extent_pages(eb->start, eb->len); 4780 for (i = 0; i < num_pages; i++) { 4781 page = extent_buffer_page(eb, i); 4782 SetPageUptodate(page); 4783 } 4784 return 0; 4785 } 4786 4787 int extent_buffer_uptodate(struct extent_buffer *eb) 4788 { 4789 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4790 } 4791 4792 int read_extent_buffer_pages(struct extent_io_tree *tree, 4793 struct extent_buffer *eb, u64 start, int wait, 4794 get_extent_t *get_extent, int mirror_num) 4795 { 4796 unsigned long i; 4797 unsigned long start_i; 4798 struct page *page; 4799 int err; 4800 int ret = 0; 4801 int locked_pages = 0; 4802 int all_uptodate = 1; 4803 unsigned long num_pages; 4804 unsigned long num_reads = 0; 4805 struct bio *bio = NULL; 4806 unsigned long bio_flags = 0; 4807 4808 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4809 return 0; 4810 4811 if (start) { 4812 WARN_ON(start < eb->start); 4813 start_i = (start >> PAGE_CACHE_SHIFT) - 4814 (eb->start >> PAGE_CACHE_SHIFT); 4815 } else { 4816 start_i = 0; 4817 } 4818 4819 num_pages = num_extent_pages(eb->start, eb->len); 4820 for (i = start_i; i < num_pages; i++) { 4821 page = extent_buffer_page(eb, i); 4822 if (wait == WAIT_NONE) { 4823 if (!trylock_page(page)) 4824 goto unlock_exit; 4825 } else { 4826 lock_page(page); 4827 } 4828 locked_pages++; 4829 if (!PageUptodate(page)) { 4830 num_reads++; 4831 all_uptodate = 0; 4832 } 4833 } 4834 if (all_uptodate) { 4835 if (start_i == 0) 4836 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4837 goto unlock_exit; 4838 } 4839 4840 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 4841 eb->read_mirror = 0; 4842 atomic_set(&eb->io_pages, num_reads); 4843 for (i = start_i; i < num_pages; i++) { 4844 page = extent_buffer_page(eb, i); 4845 if (!PageUptodate(page)) { 4846 ClearPageError(page); 4847 err = __extent_read_full_page(tree, page, 4848 get_extent, &bio, 4849 mirror_num, &bio_flags, 4850 READ | REQ_META); 4851 if (err) 4852 ret = err; 4853 } else { 4854 unlock_page(page); 4855 } 4856 } 4857 4858 if (bio) { 4859 err = submit_one_bio(READ | REQ_META, bio, mirror_num, 4860 bio_flags); 4861 if (err) 4862 return err; 4863 } 4864 4865 if (ret || wait != WAIT_COMPLETE) 4866 return ret; 4867 4868 for (i = start_i; i < num_pages; i++) { 4869 page = extent_buffer_page(eb, i); 4870 wait_on_page_locked(page); 4871 if (!PageUptodate(page)) 4872 ret = -EIO; 4873 } 4874 4875 return ret; 4876 4877 unlock_exit: 4878 i = start_i; 4879 while (locked_pages > 0) { 4880 page = extent_buffer_page(eb, i); 4881 i++; 4882 unlock_page(page); 4883 locked_pages--; 4884 } 4885 return ret; 4886 } 4887 4888 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 4889 unsigned long start, 4890 unsigned long len) 4891 { 4892 size_t cur; 4893 size_t offset; 4894 struct page *page; 4895 char *kaddr; 4896 char *dst = (char *)dstv; 4897 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4898 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4899 4900 WARN_ON(start > eb->len); 4901 WARN_ON(start + len > eb->start + eb->len); 4902 4903 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 4904 4905 while (len > 0) { 4906 page = extent_buffer_page(eb, i); 4907 4908 cur = min(len, (PAGE_CACHE_SIZE - offset)); 4909 kaddr = page_address(page); 4910 memcpy(dst, kaddr + offset, cur); 4911 4912 dst += cur; 4913 len -= cur; 4914 offset = 0; 4915 i++; 4916 } 4917 } 4918 4919 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 4920 unsigned long min_len, char **map, 4921 unsigned long *map_start, 4922 unsigned long *map_len) 4923 { 4924 size_t offset = start & (PAGE_CACHE_SIZE - 1); 4925 char *kaddr; 4926 struct page *p; 4927 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4928 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4929 unsigned long end_i = (start_offset + start + min_len - 1) >> 4930 PAGE_CACHE_SHIFT; 4931 4932 if (i != end_i) 4933 return -EINVAL; 4934 4935 if (i == 0) { 4936 offset = start_offset; 4937 *map_start = 0; 4938 } else { 4939 offset = 0; 4940 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 4941 } 4942 4943 if (start + min_len > eb->len) { 4944 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 4945 "wanted %lu %lu\n", 4946 eb->start, eb->len, start, min_len); 4947 return -EINVAL; 4948 } 4949 4950 p = extent_buffer_page(eb, i); 4951 kaddr = page_address(p); 4952 *map = kaddr + offset; 4953 *map_len = PAGE_CACHE_SIZE - offset; 4954 return 0; 4955 } 4956 4957 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 4958 unsigned long start, 4959 unsigned long len) 4960 { 4961 size_t cur; 4962 size_t offset; 4963 struct page *page; 4964 char *kaddr; 4965 char *ptr = (char *)ptrv; 4966 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4967 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4968 int ret = 0; 4969 4970 WARN_ON(start > eb->len); 4971 WARN_ON(start + len > eb->start + eb->len); 4972 4973 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 4974 4975 while (len > 0) { 4976 page = extent_buffer_page(eb, i); 4977 4978 cur = min(len, (PAGE_CACHE_SIZE - offset)); 4979 4980 kaddr = page_address(page); 4981 ret = memcmp(ptr, kaddr + offset, cur); 4982 if (ret) 4983 break; 4984 4985 ptr += cur; 4986 len -= cur; 4987 offset = 0; 4988 i++; 4989 } 4990 return ret; 4991 } 4992 4993 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 4994 unsigned long start, unsigned long len) 4995 { 4996 size_t cur; 4997 size_t offset; 4998 struct page *page; 4999 char *kaddr; 5000 char *src = (char *)srcv; 5001 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5002 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5003 5004 WARN_ON(start > eb->len); 5005 WARN_ON(start + len > eb->start + eb->len); 5006 5007 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5008 5009 while (len > 0) { 5010 page = extent_buffer_page(eb, i); 5011 WARN_ON(!PageUptodate(page)); 5012 5013 cur = min(len, PAGE_CACHE_SIZE - offset); 5014 kaddr = page_address(page); 5015 memcpy(kaddr + offset, src, cur); 5016 5017 src += cur; 5018 len -= cur; 5019 offset = 0; 5020 i++; 5021 } 5022 } 5023 5024 void memset_extent_buffer(struct extent_buffer *eb, char c, 5025 unsigned long start, unsigned long len) 5026 { 5027 size_t cur; 5028 size_t offset; 5029 struct page *page; 5030 char *kaddr; 5031 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5032 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5033 5034 WARN_ON(start > eb->len); 5035 WARN_ON(start + len > eb->start + eb->len); 5036 5037 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5038 5039 while (len > 0) { 5040 page = extent_buffer_page(eb, i); 5041 WARN_ON(!PageUptodate(page)); 5042 5043 cur = min(len, PAGE_CACHE_SIZE - offset); 5044 kaddr = page_address(page); 5045 memset(kaddr + offset, c, cur); 5046 5047 len -= cur; 5048 offset = 0; 5049 i++; 5050 } 5051 } 5052 5053 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5054 unsigned long dst_offset, unsigned long src_offset, 5055 unsigned long len) 5056 { 5057 u64 dst_len = dst->len; 5058 size_t cur; 5059 size_t offset; 5060 struct page *page; 5061 char *kaddr; 5062 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5063 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5064 5065 WARN_ON(src->len != dst_len); 5066 5067 offset = (start_offset + dst_offset) & 5068 (PAGE_CACHE_SIZE - 1); 5069 5070 while (len > 0) { 5071 page = extent_buffer_page(dst, i); 5072 WARN_ON(!PageUptodate(page)); 5073 5074 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 5075 5076 kaddr = page_address(page); 5077 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5078 5079 src_offset += cur; 5080 len -= cur; 5081 offset = 0; 5082 i++; 5083 } 5084 } 5085 5086 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5087 { 5088 unsigned long distance = (src > dst) ? src - dst : dst - src; 5089 return distance < len; 5090 } 5091 5092 static void copy_pages(struct page *dst_page, struct page *src_page, 5093 unsigned long dst_off, unsigned long src_off, 5094 unsigned long len) 5095 { 5096 char *dst_kaddr = page_address(dst_page); 5097 char *src_kaddr; 5098 int must_memmove = 0; 5099 5100 if (dst_page != src_page) { 5101 src_kaddr = page_address(src_page); 5102 } else { 5103 src_kaddr = dst_kaddr; 5104 if (areas_overlap(src_off, dst_off, len)) 5105 must_memmove = 1; 5106 } 5107 5108 if (must_memmove) 5109 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5110 else 5111 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5112 } 5113 5114 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5115 unsigned long src_offset, unsigned long len) 5116 { 5117 size_t cur; 5118 size_t dst_off_in_page; 5119 size_t src_off_in_page; 5120 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5121 unsigned long dst_i; 5122 unsigned long src_i; 5123 5124 if (src_offset + len > dst->len) { 5125 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 5126 "len %lu dst len %lu\n", src_offset, len, dst->len); 5127 BUG_ON(1); 5128 } 5129 if (dst_offset + len > dst->len) { 5130 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 5131 "len %lu dst len %lu\n", dst_offset, len, dst->len); 5132 BUG_ON(1); 5133 } 5134 5135 while (len > 0) { 5136 dst_off_in_page = (start_offset + dst_offset) & 5137 (PAGE_CACHE_SIZE - 1); 5138 src_off_in_page = (start_offset + src_offset) & 5139 (PAGE_CACHE_SIZE - 1); 5140 5141 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5142 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 5143 5144 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 5145 src_off_in_page)); 5146 cur = min_t(unsigned long, cur, 5147 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 5148 5149 copy_pages(extent_buffer_page(dst, dst_i), 5150 extent_buffer_page(dst, src_i), 5151 dst_off_in_page, src_off_in_page, cur); 5152 5153 src_offset += cur; 5154 dst_offset += cur; 5155 len -= cur; 5156 } 5157 } 5158 5159 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5160 unsigned long src_offset, unsigned long len) 5161 { 5162 size_t cur; 5163 size_t dst_off_in_page; 5164 size_t src_off_in_page; 5165 unsigned long dst_end = dst_offset + len - 1; 5166 unsigned long src_end = src_offset + len - 1; 5167 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5168 unsigned long dst_i; 5169 unsigned long src_i; 5170 5171 if (src_offset + len > dst->len) { 5172 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 5173 "len %lu len %lu\n", src_offset, len, dst->len); 5174 BUG_ON(1); 5175 } 5176 if (dst_offset + len > dst->len) { 5177 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 5178 "len %lu len %lu\n", dst_offset, len, dst->len); 5179 BUG_ON(1); 5180 } 5181 if (dst_offset < src_offset) { 5182 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5183 return; 5184 } 5185 while (len > 0) { 5186 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 5187 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 5188 5189 dst_off_in_page = (start_offset + dst_end) & 5190 (PAGE_CACHE_SIZE - 1); 5191 src_off_in_page = (start_offset + src_end) & 5192 (PAGE_CACHE_SIZE - 1); 5193 5194 cur = min_t(unsigned long, len, src_off_in_page + 1); 5195 cur = min(cur, dst_off_in_page + 1); 5196 copy_pages(extent_buffer_page(dst, dst_i), 5197 extent_buffer_page(dst, src_i), 5198 dst_off_in_page - cur + 1, 5199 src_off_in_page - cur + 1, cur); 5200 5201 dst_end -= cur; 5202 src_end -= cur; 5203 len -= cur; 5204 } 5205 } 5206 5207 int try_release_extent_buffer(struct page *page) 5208 { 5209 struct extent_buffer *eb; 5210 5211 /* 5212 * We need to make sure noboody is attaching this page to an eb right 5213 * now. 5214 */ 5215 spin_lock(&page->mapping->private_lock); 5216 if (!PagePrivate(page)) { 5217 spin_unlock(&page->mapping->private_lock); 5218 return 1; 5219 } 5220 5221 eb = (struct extent_buffer *)page->private; 5222 BUG_ON(!eb); 5223 5224 /* 5225 * This is a little awful but should be ok, we need to make sure that 5226 * the eb doesn't disappear out from under us while we're looking at 5227 * this page. 5228 */ 5229 spin_lock(&eb->refs_lock); 5230 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5231 spin_unlock(&eb->refs_lock); 5232 spin_unlock(&page->mapping->private_lock); 5233 return 0; 5234 } 5235 spin_unlock(&page->mapping->private_lock); 5236 5237 /* 5238 * If tree ref isn't set then we know the ref on this eb is a real ref, 5239 * so just return, this page will likely be freed soon anyway. 5240 */ 5241 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5242 spin_unlock(&eb->refs_lock); 5243 return 0; 5244 } 5245 5246 return release_extent_buffer(eb); 5247 } 5248