xref: /linux/fs/btrfs/extent_io.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 #include "transaction.h"
24 
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 static struct bio_set *btrfs_bioset;
28 
29 static inline bool extent_state_in_tree(const struct extent_state *state)
30 {
31 	return !RB_EMPTY_NODE(&state->rb_node);
32 }
33 
34 #ifdef CONFIG_BTRFS_DEBUG
35 static LIST_HEAD(buffers);
36 static LIST_HEAD(states);
37 
38 static DEFINE_SPINLOCK(leak_lock);
39 
40 static inline
41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42 {
43 	unsigned long flags;
44 
45 	spin_lock_irqsave(&leak_lock, flags);
46 	list_add(new, head);
47 	spin_unlock_irqrestore(&leak_lock, flags);
48 }
49 
50 static inline
51 void btrfs_leak_debug_del(struct list_head *entry)
52 {
53 	unsigned long flags;
54 
55 	spin_lock_irqsave(&leak_lock, flags);
56 	list_del(entry);
57 	spin_unlock_irqrestore(&leak_lock, flags);
58 }
59 
60 static inline
61 void btrfs_leak_debug_check(void)
62 {
63 	struct extent_state *state;
64 	struct extent_buffer *eb;
65 
66 	while (!list_empty(&states)) {
67 		state = list_entry(states.next, struct extent_state, leak_list);
68 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 		       state->start, state->end, state->state,
70 		       extent_state_in_tree(state),
71 		       refcount_read(&state->refs));
72 		list_del(&state->leak_list);
73 		kmem_cache_free(extent_state_cache, state);
74 	}
75 
76 	while (!list_empty(&buffers)) {
77 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 		pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 		       eb->start, eb->len, atomic_read(&eb->refs));
80 		list_del(&eb->leak_list);
81 		kmem_cache_free(extent_buffer_cache, eb);
82 	}
83 }
84 
85 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
86 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 		struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 	struct inode *inode;
91 	u64 isize;
92 
93 	if (!tree->mapping)
94 		return;
95 
96 	inode = tree->mapping->host;
97 	isize = i_size_read(inode);
98 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
102 	}
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head)	do {} while (0)
106 #define btrfs_leak_debug_del(entry)	do {} while (0)
107 #define btrfs_leak_debug_check()	do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
109 #endif
110 
111 #define BUFFER_LRU_MAX 64
112 
113 struct tree_entry {
114 	u64 start;
115 	u64 end;
116 	struct rb_node rb_node;
117 };
118 
119 struct extent_page_data {
120 	struct bio *bio;
121 	struct extent_io_tree *tree;
122 	get_extent_t *get_extent;
123 	unsigned long bio_flags;
124 
125 	/* tells writepage not to lock the state bits for this range
126 	 * it still does the unlocking
127 	 */
128 	unsigned int extent_locked:1;
129 
130 	/* tells the submit_bio code to use REQ_SYNC */
131 	unsigned int sync_io:1;
132 };
133 
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 				 struct extent_changeset *changeset,
136 				 int set)
137 {
138 	int ret;
139 
140 	if (!changeset)
141 		return;
142 	if (set && (state->state & bits) == bits)
143 		return;
144 	if (!set && (state->state & bits) == 0)
145 		return;
146 	changeset->bytes_changed += state->end - state->start + 1;
147 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
148 			GFP_ATOMIC);
149 	/* ENOMEM */
150 	BUG_ON(ret < 0);
151 }
152 
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 	if (!tree->mapping)
158 		return NULL;
159 	return btrfs_sb(tree->mapping->host->i_sb);
160 }
161 
162 int __init extent_io_init(void)
163 {
164 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 			sizeof(struct extent_state), 0,
166 			SLAB_MEM_SPREAD, NULL);
167 	if (!extent_state_cache)
168 		return -ENOMEM;
169 
170 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 			sizeof(struct extent_buffer), 0,
172 			SLAB_MEM_SPREAD, NULL);
173 	if (!extent_buffer_cache)
174 		goto free_state_cache;
175 
176 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 				     offsetof(struct btrfs_io_bio, bio));
178 	if (!btrfs_bioset)
179 		goto free_buffer_cache;
180 
181 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 		goto free_bioset;
183 
184 	return 0;
185 
186 free_bioset:
187 	bioset_free(btrfs_bioset);
188 	btrfs_bioset = NULL;
189 
190 free_buffer_cache:
191 	kmem_cache_destroy(extent_buffer_cache);
192 	extent_buffer_cache = NULL;
193 
194 free_state_cache:
195 	kmem_cache_destroy(extent_state_cache);
196 	extent_state_cache = NULL;
197 	return -ENOMEM;
198 }
199 
200 void extent_io_exit(void)
201 {
202 	btrfs_leak_debug_check();
203 
204 	/*
205 	 * Make sure all delayed rcu free are flushed before we
206 	 * destroy caches.
207 	 */
208 	rcu_barrier();
209 	kmem_cache_destroy(extent_state_cache);
210 	kmem_cache_destroy(extent_buffer_cache);
211 	if (btrfs_bioset)
212 		bioset_free(btrfs_bioset);
213 }
214 
215 void extent_io_tree_init(struct extent_io_tree *tree,
216 			 struct address_space *mapping)
217 {
218 	tree->state = RB_ROOT;
219 	tree->ops = NULL;
220 	tree->dirty_bytes = 0;
221 	spin_lock_init(&tree->lock);
222 	tree->mapping = mapping;
223 }
224 
225 static struct extent_state *alloc_extent_state(gfp_t mask)
226 {
227 	struct extent_state *state;
228 
229 	/*
230 	 * The given mask might be not appropriate for the slab allocator,
231 	 * drop the unsupported bits
232 	 */
233 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
234 	state = kmem_cache_alloc(extent_state_cache, mask);
235 	if (!state)
236 		return state;
237 	state->state = 0;
238 	state->failrec = NULL;
239 	RB_CLEAR_NODE(&state->rb_node);
240 	btrfs_leak_debug_add(&state->leak_list, &states);
241 	refcount_set(&state->refs, 1);
242 	init_waitqueue_head(&state->wq);
243 	trace_alloc_extent_state(state, mask, _RET_IP_);
244 	return state;
245 }
246 
247 void free_extent_state(struct extent_state *state)
248 {
249 	if (!state)
250 		return;
251 	if (refcount_dec_and_test(&state->refs)) {
252 		WARN_ON(extent_state_in_tree(state));
253 		btrfs_leak_debug_del(&state->leak_list);
254 		trace_free_extent_state(state, _RET_IP_);
255 		kmem_cache_free(extent_state_cache, state);
256 	}
257 }
258 
259 static struct rb_node *tree_insert(struct rb_root *root,
260 				   struct rb_node *search_start,
261 				   u64 offset,
262 				   struct rb_node *node,
263 				   struct rb_node ***p_in,
264 				   struct rb_node **parent_in)
265 {
266 	struct rb_node **p;
267 	struct rb_node *parent = NULL;
268 	struct tree_entry *entry;
269 
270 	if (p_in && parent_in) {
271 		p = *p_in;
272 		parent = *parent_in;
273 		goto do_insert;
274 	}
275 
276 	p = search_start ? &search_start : &root->rb_node;
277 	while (*p) {
278 		parent = *p;
279 		entry = rb_entry(parent, struct tree_entry, rb_node);
280 
281 		if (offset < entry->start)
282 			p = &(*p)->rb_left;
283 		else if (offset > entry->end)
284 			p = &(*p)->rb_right;
285 		else
286 			return parent;
287 	}
288 
289 do_insert:
290 	rb_link_node(node, parent, p);
291 	rb_insert_color(node, root);
292 	return NULL;
293 }
294 
295 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
296 				      struct rb_node **prev_ret,
297 				      struct rb_node **next_ret,
298 				      struct rb_node ***p_ret,
299 				      struct rb_node **parent_ret)
300 {
301 	struct rb_root *root = &tree->state;
302 	struct rb_node **n = &root->rb_node;
303 	struct rb_node *prev = NULL;
304 	struct rb_node *orig_prev = NULL;
305 	struct tree_entry *entry;
306 	struct tree_entry *prev_entry = NULL;
307 
308 	while (*n) {
309 		prev = *n;
310 		entry = rb_entry(prev, struct tree_entry, rb_node);
311 		prev_entry = entry;
312 
313 		if (offset < entry->start)
314 			n = &(*n)->rb_left;
315 		else if (offset > entry->end)
316 			n = &(*n)->rb_right;
317 		else
318 			return *n;
319 	}
320 
321 	if (p_ret)
322 		*p_ret = n;
323 	if (parent_ret)
324 		*parent_ret = prev;
325 
326 	if (prev_ret) {
327 		orig_prev = prev;
328 		while (prev && offset > prev_entry->end) {
329 			prev = rb_next(prev);
330 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 		}
332 		*prev_ret = prev;
333 		prev = orig_prev;
334 	}
335 
336 	if (next_ret) {
337 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
338 		while (prev && offset < prev_entry->start) {
339 			prev = rb_prev(prev);
340 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
341 		}
342 		*next_ret = prev;
343 	}
344 	return NULL;
345 }
346 
347 static inline struct rb_node *
348 tree_search_for_insert(struct extent_io_tree *tree,
349 		       u64 offset,
350 		       struct rb_node ***p_ret,
351 		       struct rb_node **parent_ret)
352 {
353 	struct rb_node *prev = NULL;
354 	struct rb_node *ret;
355 
356 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
357 	if (!ret)
358 		return prev;
359 	return ret;
360 }
361 
362 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
363 					  u64 offset)
364 {
365 	return tree_search_for_insert(tree, offset, NULL, NULL);
366 }
367 
368 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
369 		     struct extent_state *other)
370 {
371 	if (tree->ops && tree->ops->merge_extent_hook)
372 		tree->ops->merge_extent_hook(tree->mapping->host, new,
373 					     other);
374 }
375 
376 /*
377  * utility function to look for merge candidates inside a given range.
378  * Any extents with matching state are merged together into a single
379  * extent in the tree.  Extents with EXTENT_IO in their state field
380  * are not merged because the end_io handlers need to be able to do
381  * operations on them without sleeping (or doing allocations/splits).
382  *
383  * This should be called with the tree lock held.
384  */
385 static void merge_state(struct extent_io_tree *tree,
386 		        struct extent_state *state)
387 {
388 	struct extent_state *other;
389 	struct rb_node *other_node;
390 
391 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
392 		return;
393 
394 	other_node = rb_prev(&state->rb_node);
395 	if (other_node) {
396 		other = rb_entry(other_node, struct extent_state, rb_node);
397 		if (other->end == state->start - 1 &&
398 		    other->state == state->state) {
399 			merge_cb(tree, state, other);
400 			state->start = other->start;
401 			rb_erase(&other->rb_node, &tree->state);
402 			RB_CLEAR_NODE(&other->rb_node);
403 			free_extent_state(other);
404 		}
405 	}
406 	other_node = rb_next(&state->rb_node);
407 	if (other_node) {
408 		other = rb_entry(other_node, struct extent_state, rb_node);
409 		if (other->start == state->end + 1 &&
410 		    other->state == state->state) {
411 			merge_cb(tree, state, other);
412 			state->end = other->end;
413 			rb_erase(&other->rb_node, &tree->state);
414 			RB_CLEAR_NODE(&other->rb_node);
415 			free_extent_state(other);
416 		}
417 	}
418 }
419 
420 static void set_state_cb(struct extent_io_tree *tree,
421 			 struct extent_state *state, unsigned *bits)
422 {
423 	if (tree->ops && tree->ops->set_bit_hook)
424 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
425 }
426 
427 static void clear_state_cb(struct extent_io_tree *tree,
428 			   struct extent_state *state, unsigned *bits)
429 {
430 	if (tree->ops && tree->ops->clear_bit_hook)
431 		tree->ops->clear_bit_hook(BTRFS_I(tree->mapping->host),
432 				state, bits);
433 }
434 
435 static void set_state_bits(struct extent_io_tree *tree,
436 			   struct extent_state *state, unsigned *bits,
437 			   struct extent_changeset *changeset);
438 
439 /*
440  * insert an extent_state struct into the tree.  'bits' are set on the
441  * struct before it is inserted.
442  *
443  * This may return -EEXIST if the extent is already there, in which case the
444  * state struct is freed.
445  *
446  * The tree lock is not taken internally.  This is a utility function and
447  * probably isn't what you want to call (see set/clear_extent_bit).
448  */
449 static int insert_state(struct extent_io_tree *tree,
450 			struct extent_state *state, u64 start, u64 end,
451 			struct rb_node ***p,
452 			struct rb_node **parent,
453 			unsigned *bits, struct extent_changeset *changeset)
454 {
455 	struct rb_node *node;
456 
457 	if (end < start)
458 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
459 		       end, start);
460 	state->start = start;
461 	state->end = end;
462 
463 	set_state_bits(tree, state, bits, changeset);
464 
465 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
466 	if (node) {
467 		struct extent_state *found;
468 		found = rb_entry(node, struct extent_state, rb_node);
469 		pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
470 		       found->start, found->end, start, end);
471 		return -EEXIST;
472 	}
473 	merge_state(tree, state);
474 	return 0;
475 }
476 
477 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
478 		     u64 split)
479 {
480 	if (tree->ops && tree->ops->split_extent_hook)
481 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
482 }
483 
484 /*
485  * split a given extent state struct in two, inserting the preallocated
486  * struct 'prealloc' as the newly created second half.  'split' indicates an
487  * offset inside 'orig' where it should be split.
488  *
489  * Before calling,
490  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
491  * are two extent state structs in the tree:
492  * prealloc: [orig->start, split - 1]
493  * orig: [ split, orig->end ]
494  *
495  * The tree locks are not taken by this function. They need to be held
496  * by the caller.
497  */
498 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
499 		       struct extent_state *prealloc, u64 split)
500 {
501 	struct rb_node *node;
502 
503 	split_cb(tree, orig, split);
504 
505 	prealloc->start = orig->start;
506 	prealloc->end = split - 1;
507 	prealloc->state = orig->state;
508 	orig->start = split;
509 
510 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
511 			   &prealloc->rb_node, NULL, NULL);
512 	if (node) {
513 		free_extent_state(prealloc);
514 		return -EEXIST;
515 	}
516 	return 0;
517 }
518 
519 static struct extent_state *next_state(struct extent_state *state)
520 {
521 	struct rb_node *next = rb_next(&state->rb_node);
522 	if (next)
523 		return rb_entry(next, struct extent_state, rb_node);
524 	else
525 		return NULL;
526 }
527 
528 /*
529  * utility function to clear some bits in an extent state struct.
530  * it will optionally wake up any one waiting on this state (wake == 1).
531  *
532  * If no bits are set on the state struct after clearing things, the
533  * struct is freed and removed from the tree
534  */
535 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
536 					    struct extent_state *state,
537 					    unsigned *bits, int wake,
538 					    struct extent_changeset *changeset)
539 {
540 	struct extent_state *next;
541 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
542 
543 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
544 		u64 range = state->end - state->start + 1;
545 		WARN_ON(range > tree->dirty_bytes);
546 		tree->dirty_bytes -= range;
547 	}
548 	clear_state_cb(tree, state, bits);
549 	add_extent_changeset(state, bits_to_clear, changeset, 0);
550 	state->state &= ~bits_to_clear;
551 	if (wake)
552 		wake_up(&state->wq);
553 	if (state->state == 0) {
554 		next = next_state(state);
555 		if (extent_state_in_tree(state)) {
556 			rb_erase(&state->rb_node, &tree->state);
557 			RB_CLEAR_NODE(&state->rb_node);
558 			free_extent_state(state);
559 		} else {
560 			WARN_ON(1);
561 		}
562 	} else {
563 		merge_state(tree, state);
564 		next = next_state(state);
565 	}
566 	return next;
567 }
568 
569 static struct extent_state *
570 alloc_extent_state_atomic(struct extent_state *prealloc)
571 {
572 	if (!prealloc)
573 		prealloc = alloc_extent_state(GFP_ATOMIC);
574 
575 	return prealloc;
576 }
577 
578 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
579 {
580 	btrfs_panic(tree_fs_info(tree), err,
581 		    "Locking error: Extent tree was modified by another thread while locked.");
582 }
583 
584 /*
585  * clear some bits on a range in the tree.  This may require splitting
586  * or inserting elements in the tree, so the gfp mask is used to
587  * indicate which allocations or sleeping are allowed.
588  *
589  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
590  * the given range from the tree regardless of state (ie for truncate).
591  *
592  * the range [start, end] is inclusive.
593  *
594  * This takes the tree lock, and returns 0 on success and < 0 on error.
595  */
596 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
597 			      unsigned bits, int wake, int delete,
598 			      struct extent_state **cached_state,
599 			      gfp_t mask, struct extent_changeset *changeset)
600 {
601 	struct extent_state *state;
602 	struct extent_state *cached;
603 	struct extent_state *prealloc = NULL;
604 	struct rb_node *node;
605 	u64 last_end;
606 	int err;
607 	int clear = 0;
608 
609 	btrfs_debug_check_extent_io_range(tree, start, end);
610 
611 	if (bits & EXTENT_DELALLOC)
612 		bits |= EXTENT_NORESERVE;
613 
614 	if (delete)
615 		bits |= ~EXTENT_CTLBITS;
616 	bits |= EXTENT_FIRST_DELALLOC;
617 
618 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
619 		clear = 1;
620 again:
621 	if (!prealloc && gfpflags_allow_blocking(mask)) {
622 		/*
623 		 * Don't care for allocation failure here because we might end
624 		 * up not needing the pre-allocated extent state at all, which
625 		 * is the case if we only have in the tree extent states that
626 		 * cover our input range and don't cover too any other range.
627 		 * If we end up needing a new extent state we allocate it later.
628 		 */
629 		prealloc = alloc_extent_state(mask);
630 	}
631 
632 	spin_lock(&tree->lock);
633 	if (cached_state) {
634 		cached = *cached_state;
635 
636 		if (clear) {
637 			*cached_state = NULL;
638 			cached_state = NULL;
639 		}
640 
641 		if (cached && extent_state_in_tree(cached) &&
642 		    cached->start <= start && cached->end > start) {
643 			if (clear)
644 				refcount_dec(&cached->refs);
645 			state = cached;
646 			goto hit_next;
647 		}
648 		if (clear)
649 			free_extent_state(cached);
650 	}
651 	/*
652 	 * this search will find the extents that end after
653 	 * our range starts
654 	 */
655 	node = tree_search(tree, start);
656 	if (!node)
657 		goto out;
658 	state = rb_entry(node, struct extent_state, rb_node);
659 hit_next:
660 	if (state->start > end)
661 		goto out;
662 	WARN_ON(state->end < start);
663 	last_end = state->end;
664 
665 	/* the state doesn't have the wanted bits, go ahead */
666 	if (!(state->state & bits)) {
667 		state = next_state(state);
668 		goto next;
669 	}
670 
671 	/*
672 	 *     | ---- desired range ---- |
673 	 *  | state | or
674 	 *  | ------------- state -------------- |
675 	 *
676 	 * We need to split the extent we found, and may flip
677 	 * bits on second half.
678 	 *
679 	 * If the extent we found extends past our range, we
680 	 * just split and search again.  It'll get split again
681 	 * the next time though.
682 	 *
683 	 * If the extent we found is inside our range, we clear
684 	 * the desired bit on it.
685 	 */
686 
687 	if (state->start < start) {
688 		prealloc = alloc_extent_state_atomic(prealloc);
689 		BUG_ON(!prealloc);
690 		err = split_state(tree, state, prealloc, start);
691 		if (err)
692 			extent_io_tree_panic(tree, err);
693 
694 		prealloc = NULL;
695 		if (err)
696 			goto out;
697 		if (state->end <= end) {
698 			state = clear_state_bit(tree, state, &bits, wake,
699 						changeset);
700 			goto next;
701 		}
702 		goto search_again;
703 	}
704 	/*
705 	 * | ---- desired range ---- |
706 	 *                        | state |
707 	 * We need to split the extent, and clear the bit
708 	 * on the first half
709 	 */
710 	if (state->start <= end && state->end > end) {
711 		prealloc = alloc_extent_state_atomic(prealloc);
712 		BUG_ON(!prealloc);
713 		err = split_state(tree, state, prealloc, end + 1);
714 		if (err)
715 			extent_io_tree_panic(tree, err);
716 
717 		if (wake)
718 			wake_up(&state->wq);
719 
720 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
721 
722 		prealloc = NULL;
723 		goto out;
724 	}
725 
726 	state = clear_state_bit(tree, state, &bits, wake, changeset);
727 next:
728 	if (last_end == (u64)-1)
729 		goto out;
730 	start = last_end + 1;
731 	if (start <= end && state && !need_resched())
732 		goto hit_next;
733 
734 search_again:
735 	if (start > end)
736 		goto out;
737 	spin_unlock(&tree->lock);
738 	if (gfpflags_allow_blocking(mask))
739 		cond_resched();
740 	goto again;
741 
742 out:
743 	spin_unlock(&tree->lock);
744 	if (prealloc)
745 		free_extent_state(prealloc);
746 
747 	return 0;
748 
749 }
750 
751 static void wait_on_state(struct extent_io_tree *tree,
752 			  struct extent_state *state)
753 		__releases(tree->lock)
754 		__acquires(tree->lock)
755 {
756 	DEFINE_WAIT(wait);
757 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
758 	spin_unlock(&tree->lock);
759 	schedule();
760 	spin_lock(&tree->lock);
761 	finish_wait(&state->wq, &wait);
762 }
763 
764 /*
765  * waits for one or more bits to clear on a range in the state tree.
766  * The range [start, end] is inclusive.
767  * The tree lock is taken by this function
768  */
769 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
770 			    unsigned long bits)
771 {
772 	struct extent_state *state;
773 	struct rb_node *node;
774 
775 	btrfs_debug_check_extent_io_range(tree, start, end);
776 
777 	spin_lock(&tree->lock);
778 again:
779 	while (1) {
780 		/*
781 		 * this search will find all the extents that end after
782 		 * our range starts
783 		 */
784 		node = tree_search(tree, start);
785 process_node:
786 		if (!node)
787 			break;
788 
789 		state = rb_entry(node, struct extent_state, rb_node);
790 
791 		if (state->start > end)
792 			goto out;
793 
794 		if (state->state & bits) {
795 			start = state->start;
796 			refcount_inc(&state->refs);
797 			wait_on_state(tree, state);
798 			free_extent_state(state);
799 			goto again;
800 		}
801 		start = state->end + 1;
802 
803 		if (start > end)
804 			break;
805 
806 		if (!cond_resched_lock(&tree->lock)) {
807 			node = rb_next(node);
808 			goto process_node;
809 		}
810 	}
811 out:
812 	spin_unlock(&tree->lock);
813 }
814 
815 static void set_state_bits(struct extent_io_tree *tree,
816 			   struct extent_state *state,
817 			   unsigned *bits, struct extent_changeset *changeset)
818 {
819 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
820 
821 	set_state_cb(tree, state, bits);
822 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
823 		u64 range = state->end - state->start + 1;
824 		tree->dirty_bytes += range;
825 	}
826 	add_extent_changeset(state, bits_to_set, changeset, 1);
827 	state->state |= bits_to_set;
828 }
829 
830 static void cache_state_if_flags(struct extent_state *state,
831 				 struct extent_state **cached_ptr,
832 				 unsigned flags)
833 {
834 	if (cached_ptr && !(*cached_ptr)) {
835 		if (!flags || (state->state & flags)) {
836 			*cached_ptr = state;
837 			refcount_inc(&state->refs);
838 		}
839 	}
840 }
841 
842 static void cache_state(struct extent_state *state,
843 			struct extent_state **cached_ptr)
844 {
845 	return cache_state_if_flags(state, cached_ptr,
846 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
847 }
848 
849 /*
850  * set some bits on a range in the tree.  This may require allocations or
851  * sleeping, so the gfp mask is used to indicate what is allowed.
852  *
853  * If any of the exclusive bits are set, this will fail with -EEXIST if some
854  * part of the range already has the desired bits set.  The start of the
855  * existing range is returned in failed_start in this case.
856  *
857  * [start, end] is inclusive This takes the tree lock.
858  */
859 
860 static int __must_check
861 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
862 		 unsigned bits, unsigned exclusive_bits,
863 		 u64 *failed_start, struct extent_state **cached_state,
864 		 gfp_t mask, struct extent_changeset *changeset)
865 {
866 	struct extent_state *state;
867 	struct extent_state *prealloc = NULL;
868 	struct rb_node *node;
869 	struct rb_node **p;
870 	struct rb_node *parent;
871 	int err = 0;
872 	u64 last_start;
873 	u64 last_end;
874 
875 	btrfs_debug_check_extent_io_range(tree, start, end);
876 
877 	bits |= EXTENT_FIRST_DELALLOC;
878 again:
879 	if (!prealloc && gfpflags_allow_blocking(mask)) {
880 		/*
881 		 * Don't care for allocation failure here because we might end
882 		 * up not needing the pre-allocated extent state at all, which
883 		 * is the case if we only have in the tree extent states that
884 		 * cover our input range and don't cover too any other range.
885 		 * If we end up needing a new extent state we allocate it later.
886 		 */
887 		prealloc = alloc_extent_state(mask);
888 	}
889 
890 	spin_lock(&tree->lock);
891 	if (cached_state && *cached_state) {
892 		state = *cached_state;
893 		if (state->start <= start && state->end > start &&
894 		    extent_state_in_tree(state)) {
895 			node = &state->rb_node;
896 			goto hit_next;
897 		}
898 	}
899 	/*
900 	 * this search will find all the extents that end after
901 	 * our range starts.
902 	 */
903 	node = tree_search_for_insert(tree, start, &p, &parent);
904 	if (!node) {
905 		prealloc = alloc_extent_state_atomic(prealloc);
906 		BUG_ON(!prealloc);
907 		err = insert_state(tree, prealloc, start, end,
908 				   &p, &parent, &bits, changeset);
909 		if (err)
910 			extent_io_tree_panic(tree, err);
911 
912 		cache_state(prealloc, cached_state);
913 		prealloc = NULL;
914 		goto out;
915 	}
916 	state = rb_entry(node, struct extent_state, rb_node);
917 hit_next:
918 	last_start = state->start;
919 	last_end = state->end;
920 
921 	/*
922 	 * | ---- desired range ---- |
923 	 * | state |
924 	 *
925 	 * Just lock what we found and keep going
926 	 */
927 	if (state->start == start && state->end <= end) {
928 		if (state->state & exclusive_bits) {
929 			*failed_start = state->start;
930 			err = -EEXIST;
931 			goto out;
932 		}
933 
934 		set_state_bits(tree, state, &bits, changeset);
935 		cache_state(state, cached_state);
936 		merge_state(tree, state);
937 		if (last_end == (u64)-1)
938 			goto out;
939 		start = last_end + 1;
940 		state = next_state(state);
941 		if (start < end && state && state->start == start &&
942 		    !need_resched())
943 			goto hit_next;
944 		goto search_again;
945 	}
946 
947 	/*
948 	 *     | ---- desired range ---- |
949 	 * | state |
950 	 *   or
951 	 * | ------------- state -------------- |
952 	 *
953 	 * We need to split the extent we found, and may flip bits on
954 	 * second half.
955 	 *
956 	 * If the extent we found extends past our
957 	 * range, we just split and search again.  It'll get split
958 	 * again the next time though.
959 	 *
960 	 * If the extent we found is inside our range, we set the
961 	 * desired bit on it.
962 	 */
963 	if (state->start < start) {
964 		if (state->state & exclusive_bits) {
965 			*failed_start = start;
966 			err = -EEXIST;
967 			goto out;
968 		}
969 
970 		prealloc = alloc_extent_state_atomic(prealloc);
971 		BUG_ON(!prealloc);
972 		err = split_state(tree, state, prealloc, start);
973 		if (err)
974 			extent_io_tree_panic(tree, err);
975 
976 		prealloc = NULL;
977 		if (err)
978 			goto out;
979 		if (state->end <= end) {
980 			set_state_bits(tree, state, &bits, changeset);
981 			cache_state(state, cached_state);
982 			merge_state(tree, state);
983 			if (last_end == (u64)-1)
984 				goto out;
985 			start = last_end + 1;
986 			state = next_state(state);
987 			if (start < end && state && state->start == start &&
988 			    !need_resched())
989 				goto hit_next;
990 		}
991 		goto search_again;
992 	}
993 	/*
994 	 * | ---- desired range ---- |
995 	 *     | state | or               | state |
996 	 *
997 	 * There's a hole, we need to insert something in it and
998 	 * ignore the extent we found.
999 	 */
1000 	if (state->start > start) {
1001 		u64 this_end;
1002 		if (end < last_start)
1003 			this_end = end;
1004 		else
1005 			this_end = last_start - 1;
1006 
1007 		prealloc = alloc_extent_state_atomic(prealloc);
1008 		BUG_ON(!prealloc);
1009 
1010 		/*
1011 		 * Avoid to free 'prealloc' if it can be merged with
1012 		 * the later extent.
1013 		 */
1014 		err = insert_state(tree, prealloc, start, this_end,
1015 				   NULL, NULL, &bits, changeset);
1016 		if (err)
1017 			extent_io_tree_panic(tree, err);
1018 
1019 		cache_state(prealloc, cached_state);
1020 		prealloc = NULL;
1021 		start = this_end + 1;
1022 		goto search_again;
1023 	}
1024 	/*
1025 	 * | ---- desired range ---- |
1026 	 *                        | state |
1027 	 * We need to split the extent, and set the bit
1028 	 * on the first half
1029 	 */
1030 	if (state->start <= end && state->end > end) {
1031 		if (state->state & exclusive_bits) {
1032 			*failed_start = start;
1033 			err = -EEXIST;
1034 			goto out;
1035 		}
1036 
1037 		prealloc = alloc_extent_state_atomic(prealloc);
1038 		BUG_ON(!prealloc);
1039 		err = split_state(tree, state, prealloc, end + 1);
1040 		if (err)
1041 			extent_io_tree_panic(tree, err);
1042 
1043 		set_state_bits(tree, prealloc, &bits, changeset);
1044 		cache_state(prealloc, cached_state);
1045 		merge_state(tree, prealloc);
1046 		prealloc = NULL;
1047 		goto out;
1048 	}
1049 
1050 search_again:
1051 	if (start > end)
1052 		goto out;
1053 	spin_unlock(&tree->lock);
1054 	if (gfpflags_allow_blocking(mask))
1055 		cond_resched();
1056 	goto again;
1057 
1058 out:
1059 	spin_unlock(&tree->lock);
1060 	if (prealloc)
1061 		free_extent_state(prealloc);
1062 
1063 	return err;
1064 
1065 }
1066 
1067 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1068 		   unsigned bits, u64 * failed_start,
1069 		   struct extent_state **cached_state, gfp_t mask)
1070 {
1071 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1072 				cached_state, mask, NULL);
1073 }
1074 
1075 
1076 /**
1077  * convert_extent_bit - convert all bits in a given range from one bit to
1078  * 			another
1079  * @tree:	the io tree to search
1080  * @start:	the start offset in bytes
1081  * @end:	the end offset in bytes (inclusive)
1082  * @bits:	the bits to set in this range
1083  * @clear_bits:	the bits to clear in this range
1084  * @cached_state:	state that we're going to cache
1085  *
1086  * This will go through and set bits for the given range.  If any states exist
1087  * already in this range they are set with the given bit and cleared of the
1088  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1089  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1090  * boundary bits like LOCK.
1091  *
1092  * All allocations are done with GFP_NOFS.
1093  */
1094 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1095 		       unsigned bits, unsigned clear_bits,
1096 		       struct extent_state **cached_state)
1097 {
1098 	struct extent_state *state;
1099 	struct extent_state *prealloc = NULL;
1100 	struct rb_node *node;
1101 	struct rb_node **p;
1102 	struct rb_node *parent;
1103 	int err = 0;
1104 	u64 last_start;
1105 	u64 last_end;
1106 	bool first_iteration = true;
1107 
1108 	btrfs_debug_check_extent_io_range(tree, start, end);
1109 
1110 again:
1111 	if (!prealloc) {
1112 		/*
1113 		 * Best effort, don't worry if extent state allocation fails
1114 		 * here for the first iteration. We might have a cached state
1115 		 * that matches exactly the target range, in which case no
1116 		 * extent state allocations are needed. We'll only know this
1117 		 * after locking the tree.
1118 		 */
1119 		prealloc = alloc_extent_state(GFP_NOFS);
1120 		if (!prealloc && !first_iteration)
1121 			return -ENOMEM;
1122 	}
1123 
1124 	spin_lock(&tree->lock);
1125 	if (cached_state && *cached_state) {
1126 		state = *cached_state;
1127 		if (state->start <= start && state->end > start &&
1128 		    extent_state_in_tree(state)) {
1129 			node = &state->rb_node;
1130 			goto hit_next;
1131 		}
1132 	}
1133 
1134 	/*
1135 	 * this search will find all the extents that end after
1136 	 * our range starts.
1137 	 */
1138 	node = tree_search_for_insert(tree, start, &p, &parent);
1139 	if (!node) {
1140 		prealloc = alloc_extent_state_atomic(prealloc);
1141 		if (!prealloc) {
1142 			err = -ENOMEM;
1143 			goto out;
1144 		}
1145 		err = insert_state(tree, prealloc, start, end,
1146 				   &p, &parent, &bits, NULL);
1147 		if (err)
1148 			extent_io_tree_panic(tree, err);
1149 		cache_state(prealloc, cached_state);
1150 		prealloc = NULL;
1151 		goto out;
1152 	}
1153 	state = rb_entry(node, struct extent_state, rb_node);
1154 hit_next:
1155 	last_start = state->start;
1156 	last_end = state->end;
1157 
1158 	/*
1159 	 * | ---- desired range ---- |
1160 	 * | state |
1161 	 *
1162 	 * Just lock what we found and keep going
1163 	 */
1164 	if (state->start == start && state->end <= end) {
1165 		set_state_bits(tree, state, &bits, NULL);
1166 		cache_state(state, cached_state);
1167 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1168 		if (last_end == (u64)-1)
1169 			goto out;
1170 		start = last_end + 1;
1171 		if (start < end && state && state->start == start &&
1172 		    !need_resched())
1173 			goto hit_next;
1174 		goto search_again;
1175 	}
1176 
1177 	/*
1178 	 *     | ---- desired range ---- |
1179 	 * | state |
1180 	 *   or
1181 	 * | ------------- state -------------- |
1182 	 *
1183 	 * We need to split the extent we found, and may flip bits on
1184 	 * second half.
1185 	 *
1186 	 * If the extent we found extends past our
1187 	 * range, we just split and search again.  It'll get split
1188 	 * again the next time though.
1189 	 *
1190 	 * If the extent we found is inside our range, we set the
1191 	 * desired bit on it.
1192 	 */
1193 	if (state->start < start) {
1194 		prealloc = alloc_extent_state_atomic(prealloc);
1195 		if (!prealloc) {
1196 			err = -ENOMEM;
1197 			goto out;
1198 		}
1199 		err = split_state(tree, state, prealloc, start);
1200 		if (err)
1201 			extent_io_tree_panic(tree, err);
1202 		prealloc = NULL;
1203 		if (err)
1204 			goto out;
1205 		if (state->end <= end) {
1206 			set_state_bits(tree, state, &bits, NULL);
1207 			cache_state(state, cached_state);
1208 			state = clear_state_bit(tree, state, &clear_bits, 0,
1209 						NULL);
1210 			if (last_end == (u64)-1)
1211 				goto out;
1212 			start = last_end + 1;
1213 			if (start < end && state && state->start == start &&
1214 			    !need_resched())
1215 				goto hit_next;
1216 		}
1217 		goto search_again;
1218 	}
1219 	/*
1220 	 * | ---- desired range ---- |
1221 	 *     | state | or               | state |
1222 	 *
1223 	 * There's a hole, we need to insert something in it and
1224 	 * ignore the extent we found.
1225 	 */
1226 	if (state->start > start) {
1227 		u64 this_end;
1228 		if (end < last_start)
1229 			this_end = end;
1230 		else
1231 			this_end = last_start - 1;
1232 
1233 		prealloc = alloc_extent_state_atomic(prealloc);
1234 		if (!prealloc) {
1235 			err = -ENOMEM;
1236 			goto out;
1237 		}
1238 
1239 		/*
1240 		 * Avoid to free 'prealloc' if it can be merged with
1241 		 * the later extent.
1242 		 */
1243 		err = insert_state(tree, prealloc, start, this_end,
1244 				   NULL, NULL, &bits, NULL);
1245 		if (err)
1246 			extent_io_tree_panic(tree, err);
1247 		cache_state(prealloc, cached_state);
1248 		prealloc = NULL;
1249 		start = this_end + 1;
1250 		goto search_again;
1251 	}
1252 	/*
1253 	 * | ---- desired range ---- |
1254 	 *                        | state |
1255 	 * We need to split the extent, and set the bit
1256 	 * on the first half
1257 	 */
1258 	if (state->start <= end && state->end > end) {
1259 		prealloc = alloc_extent_state_atomic(prealloc);
1260 		if (!prealloc) {
1261 			err = -ENOMEM;
1262 			goto out;
1263 		}
1264 
1265 		err = split_state(tree, state, prealloc, end + 1);
1266 		if (err)
1267 			extent_io_tree_panic(tree, err);
1268 
1269 		set_state_bits(tree, prealloc, &bits, NULL);
1270 		cache_state(prealloc, cached_state);
1271 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1272 		prealloc = NULL;
1273 		goto out;
1274 	}
1275 
1276 search_again:
1277 	if (start > end)
1278 		goto out;
1279 	spin_unlock(&tree->lock);
1280 	cond_resched();
1281 	first_iteration = false;
1282 	goto again;
1283 
1284 out:
1285 	spin_unlock(&tree->lock);
1286 	if (prealloc)
1287 		free_extent_state(prealloc);
1288 
1289 	return err;
1290 }
1291 
1292 /* wrappers around set/clear extent bit */
1293 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1294 			   unsigned bits, struct extent_changeset *changeset)
1295 {
1296 	/*
1297 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1298 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1299 	 * either fail with -EEXIST or changeset will record the whole
1300 	 * range.
1301 	 */
1302 	BUG_ON(bits & EXTENT_LOCKED);
1303 
1304 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1305 				changeset);
1306 }
1307 
1308 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1309 		     unsigned bits, int wake, int delete,
1310 		     struct extent_state **cached, gfp_t mask)
1311 {
1312 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1313 				  cached, mask, NULL);
1314 }
1315 
1316 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1317 		unsigned bits, struct extent_changeset *changeset)
1318 {
1319 	/*
1320 	 * Don't support EXTENT_LOCKED case, same reason as
1321 	 * set_record_extent_bits().
1322 	 */
1323 	BUG_ON(bits & EXTENT_LOCKED);
1324 
1325 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1326 				  changeset);
1327 }
1328 
1329 /*
1330  * either insert or lock state struct between start and end use mask to tell
1331  * us if waiting is desired.
1332  */
1333 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1334 		     struct extent_state **cached_state)
1335 {
1336 	int err;
1337 	u64 failed_start;
1338 
1339 	while (1) {
1340 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1341 				       EXTENT_LOCKED, &failed_start,
1342 				       cached_state, GFP_NOFS, NULL);
1343 		if (err == -EEXIST) {
1344 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1345 			start = failed_start;
1346 		} else
1347 			break;
1348 		WARN_ON(start > end);
1349 	}
1350 	return err;
1351 }
1352 
1353 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1354 {
1355 	int err;
1356 	u64 failed_start;
1357 
1358 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1359 			       &failed_start, NULL, GFP_NOFS, NULL);
1360 	if (err == -EEXIST) {
1361 		if (failed_start > start)
1362 			clear_extent_bit(tree, start, failed_start - 1,
1363 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1364 		return 0;
1365 	}
1366 	return 1;
1367 }
1368 
1369 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1370 {
1371 	unsigned long index = start >> PAGE_SHIFT;
1372 	unsigned long end_index = end >> PAGE_SHIFT;
1373 	struct page *page;
1374 
1375 	while (index <= end_index) {
1376 		page = find_get_page(inode->i_mapping, index);
1377 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1378 		clear_page_dirty_for_io(page);
1379 		put_page(page);
1380 		index++;
1381 	}
1382 }
1383 
1384 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1385 {
1386 	unsigned long index = start >> PAGE_SHIFT;
1387 	unsigned long end_index = end >> PAGE_SHIFT;
1388 	struct page *page;
1389 
1390 	while (index <= end_index) {
1391 		page = find_get_page(inode->i_mapping, index);
1392 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1393 		__set_page_dirty_nobuffers(page);
1394 		account_page_redirty(page);
1395 		put_page(page);
1396 		index++;
1397 	}
1398 }
1399 
1400 /*
1401  * helper function to set both pages and extents in the tree writeback
1402  */
1403 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1404 {
1405 	unsigned long index = start >> PAGE_SHIFT;
1406 	unsigned long end_index = end >> PAGE_SHIFT;
1407 	struct page *page;
1408 
1409 	while (index <= end_index) {
1410 		page = find_get_page(tree->mapping, index);
1411 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1412 		set_page_writeback(page);
1413 		put_page(page);
1414 		index++;
1415 	}
1416 }
1417 
1418 /* find the first state struct with 'bits' set after 'start', and
1419  * return it.  tree->lock must be held.  NULL will returned if
1420  * nothing was found after 'start'
1421  */
1422 static struct extent_state *
1423 find_first_extent_bit_state(struct extent_io_tree *tree,
1424 			    u64 start, unsigned bits)
1425 {
1426 	struct rb_node *node;
1427 	struct extent_state *state;
1428 
1429 	/*
1430 	 * this search will find all the extents that end after
1431 	 * our range starts.
1432 	 */
1433 	node = tree_search(tree, start);
1434 	if (!node)
1435 		goto out;
1436 
1437 	while (1) {
1438 		state = rb_entry(node, struct extent_state, rb_node);
1439 		if (state->end >= start && (state->state & bits))
1440 			return state;
1441 
1442 		node = rb_next(node);
1443 		if (!node)
1444 			break;
1445 	}
1446 out:
1447 	return NULL;
1448 }
1449 
1450 /*
1451  * find the first offset in the io tree with 'bits' set. zero is
1452  * returned if we find something, and *start_ret and *end_ret are
1453  * set to reflect the state struct that was found.
1454  *
1455  * If nothing was found, 1 is returned. If found something, return 0.
1456  */
1457 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1458 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1459 			  struct extent_state **cached_state)
1460 {
1461 	struct extent_state *state;
1462 	struct rb_node *n;
1463 	int ret = 1;
1464 
1465 	spin_lock(&tree->lock);
1466 	if (cached_state && *cached_state) {
1467 		state = *cached_state;
1468 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1469 			n = rb_next(&state->rb_node);
1470 			while (n) {
1471 				state = rb_entry(n, struct extent_state,
1472 						 rb_node);
1473 				if (state->state & bits)
1474 					goto got_it;
1475 				n = rb_next(n);
1476 			}
1477 			free_extent_state(*cached_state);
1478 			*cached_state = NULL;
1479 			goto out;
1480 		}
1481 		free_extent_state(*cached_state);
1482 		*cached_state = NULL;
1483 	}
1484 
1485 	state = find_first_extent_bit_state(tree, start, bits);
1486 got_it:
1487 	if (state) {
1488 		cache_state_if_flags(state, cached_state, 0);
1489 		*start_ret = state->start;
1490 		*end_ret = state->end;
1491 		ret = 0;
1492 	}
1493 out:
1494 	spin_unlock(&tree->lock);
1495 	return ret;
1496 }
1497 
1498 /*
1499  * find a contiguous range of bytes in the file marked as delalloc, not
1500  * more than 'max_bytes'.  start and end are used to return the range,
1501  *
1502  * 1 is returned if we find something, 0 if nothing was in the tree
1503  */
1504 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1505 					u64 *start, u64 *end, u64 max_bytes,
1506 					struct extent_state **cached_state)
1507 {
1508 	struct rb_node *node;
1509 	struct extent_state *state;
1510 	u64 cur_start = *start;
1511 	u64 found = 0;
1512 	u64 total_bytes = 0;
1513 
1514 	spin_lock(&tree->lock);
1515 
1516 	/*
1517 	 * this search will find all the extents that end after
1518 	 * our range starts.
1519 	 */
1520 	node = tree_search(tree, cur_start);
1521 	if (!node) {
1522 		if (!found)
1523 			*end = (u64)-1;
1524 		goto out;
1525 	}
1526 
1527 	while (1) {
1528 		state = rb_entry(node, struct extent_state, rb_node);
1529 		if (found && (state->start != cur_start ||
1530 			      (state->state & EXTENT_BOUNDARY))) {
1531 			goto out;
1532 		}
1533 		if (!(state->state & EXTENT_DELALLOC)) {
1534 			if (!found)
1535 				*end = state->end;
1536 			goto out;
1537 		}
1538 		if (!found) {
1539 			*start = state->start;
1540 			*cached_state = state;
1541 			refcount_inc(&state->refs);
1542 		}
1543 		found++;
1544 		*end = state->end;
1545 		cur_start = state->end + 1;
1546 		node = rb_next(node);
1547 		total_bytes += state->end - state->start + 1;
1548 		if (total_bytes >= max_bytes)
1549 			break;
1550 		if (!node)
1551 			break;
1552 	}
1553 out:
1554 	spin_unlock(&tree->lock);
1555 	return found;
1556 }
1557 
1558 static int __process_pages_contig(struct address_space *mapping,
1559 				  struct page *locked_page,
1560 				  pgoff_t start_index, pgoff_t end_index,
1561 				  unsigned long page_ops, pgoff_t *index_ret);
1562 
1563 static noinline void __unlock_for_delalloc(struct inode *inode,
1564 					   struct page *locked_page,
1565 					   u64 start, u64 end)
1566 {
1567 	unsigned long index = start >> PAGE_SHIFT;
1568 	unsigned long end_index = end >> PAGE_SHIFT;
1569 
1570 	ASSERT(locked_page);
1571 	if (index == locked_page->index && end_index == index)
1572 		return;
1573 
1574 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1575 			       PAGE_UNLOCK, NULL);
1576 }
1577 
1578 static noinline int lock_delalloc_pages(struct inode *inode,
1579 					struct page *locked_page,
1580 					u64 delalloc_start,
1581 					u64 delalloc_end)
1582 {
1583 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1584 	unsigned long index_ret = index;
1585 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1586 	int ret;
1587 
1588 	ASSERT(locked_page);
1589 	if (index == locked_page->index && index == end_index)
1590 		return 0;
1591 
1592 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1593 				     end_index, PAGE_LOCK, &index_ret);
1594 	if (ret == -EAGAIN)
1595 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1596 				      (u64)index_ret << PAGE_SHIFT);
1597 	return ret;
1598 }
1599 
1600 /*
1601  * find a contiguous range of bytes in the file marked as delalloc, not
1602  * more than 'max_bytes'.  start and end are used to return the range,
1603  *
1604  * 1 is returned if we find something, 0 if nothing was in the tree
1605  */
1606 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1607 				    struct extent_io_tree *tree,
1608 				    struct page *locked_page, u64 *start,
1609 				    u64 *end, u64 max_bytes)
1610 {
1611 	u64 delalloc_start;
1612 	u64 delalloc_end;
1613 	u64 found;
1614 	struct extent_state *cached_state = NULL;
1615 	int ret;
1616 	int loops = 0;
1617 
1618 again:
1619 	/* step one, find a bunch of delalloc bytes starting at start */
1620 	delalloc_start = *start;
1621 	delalloc_end = 0;
1622 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1623 				    max_bytes, &cached_state);
1624 	if (!found || delalloc_end <= *start) {
1625 		*start = delalloc_start;
1626 		*end = delalloc_end;
1627 		free_extent_state(cached_state);
1628 		return 0;
1629 	}
1630 
1631 	/*
1632 	 * start comes from the offset of locked_page.  We have to lock
1633 	 * pages in order, so we can't process delalloc bytes before
1634 	 * locked_page
1635 	 */
1636 	if (delalloc_start < *start)
1637 		delalloc_start = *start;
1638 
1639 	/*
1640 	 * make sure to limit the number of pages we try to lock down
1641 	 */
1642 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1643 		delalloc_end = delalloc_start + max_bytes - 1;
1644 
1645 	/* step two, lock all the pages after the page that has start */
1646 	ret = lock_delalloc_pages(inode, locked_page,
1647 				  delalloc_start, delalloc_end);
1648 	if (ret == -EAGAIN) {
1649 		/* some of the pages are gone, lets avoid looping by
1650 		 * shortening the size of the delalloc range we're searching
1651 		 */
1652 		free_extent_state(cached_state);
1653 		cached_state = NULL;
1654 		if (!loops) {
1655 			max_bytes = PAGE_SIZE;
1656 			loops = 1;
1657 			goto again;
1658 		} else {
1659 			found = 0;
1660 			goto out_failed;
1661 		}
1662 	}
1663 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1664 
1665 	/* step three, lock the state bits for the whole range */
1666 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1667 
1668 	/* then test to make sure it is all still delalloc */
1669 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1670 			     EXTENT_DELALLOC, 1, cached_state);
1671 	if (!ret) {
1672 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1673 				     &cached_state, GFP_NOFS);
1674 		__unlock_for_delalloc(inode, locked_page,
1675 			      delalloc_start, delalloc_end);
1676 		cond_resched();
1677 		goto again;
1678 	}
1679 	free_extent_state(cached_state);
1680 	*start = delalloc_start;
1681 	*end = delalloc_end;
1682 out_failed:
1683 	return found;
1684 }
1685 
1686 static int __process_pages_contig(struct address_space *mapping,
1687 				  struct page *locked_page,
1688 				  pgoff_t start_index, pgoff_t end_index,
1689 				  unsigned long page_ops, pgoff_t *index_ret)
1690 {
1691 	unsigned long nr_pages = end_index - start_index + 1;
1692 	unsigned long pages_locked = 0;
1693 	pgoff_t index = start_index;
1694 	struct page *pages[16];
1695 	unsigned ret;
1696 	int err = 0;
1697 	int i;
1698 
1699 	if (page_ops & PAGE_LOCK) {
1700 		ASSERT(page_ops == PAGE_LOCK);
1701 		ASSERT(index_ret && *index_ret == start_index);
1702 	}
1703 
1704 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1705 		mapping_set_error(mapping, -EIO);
1706 
1707 	while (nr_pages > 0) {
1708 		ret = find_get_pages_contig(mapping, index,
1709 				     min_t(unsigned long,
1710 				     nr_pages, ARRAY_SIZE(pages)), pages);
1711 		if (ret == 0) {
1712 			/*
1713 			 * Only if we're going to lock these pages,
1714 			 * can we find nothing at @index.
1715 			 */
1716 			ASSERT(page_ops & PAGE_LOCK);
1717 			err = -EAGAIN;
1718 			goto out;
1719 		}
1720 
1721 		for (i = 0; i < ret; i++) {
1722 			if (page_ops & PAGE_SET_PRIVATE2)
1723 				SetPagePrivate2(pages[i]);
1724 
1725 			if (pages[i] == locked_page) {
1726 				put_page(pages[i]);
1727 				pages_locked++;
1728 				continue;
1729 			}
1730 			if (page_ops & PAGE_CLEAR_DIRTY)
1731 				clear_page_dirty_for_io(pages[i]);
1732 			if (page_ops & PAGE_SET_WRITEBACK)
1733 				set_page_writeback(pages[i]);
1734 			if (page_ops & PAGE_SET_ERROR)
1735 				SetPageError(pages[i]);
1736 			if (page_ops & PAGE_END_WRITEBACK)
1737 				end_page_writeback(pages[i]);
1738 			if (page_ops & PAGE_UNLOCK)
1739 				unlock_page(pages[i]);
1740 			if (page_ops & PAGE_LOCK) {
1741 				lock_page(pages[i]);
1742 				if (!PageDirty(pages[i]) ||
1743 				    pages[i]->mapping != mapping) {
1744 					unlock_page(pages[i]);
1745 					put_page(pages[i]);
1746 					err = -EAGAIN;
1747 					goto out;
1748 				}
1749 			}
1750 			put_page(pages[i]);
1751 			pages_locked++;
1752 		}
1753 		nr_pages -= ret;
1754 		index += ret;
1755 		cond_resched();
1756 	}
1757 out:
1758 	if (err && index_ret)
1759 		*index_ret = start_index + pages_locked - 1;
1760 	return err;
1761 }
1762 
1763 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1764 				 u64 delalloc_end, struct page *locked_page,
1765 				 unsigned clear_bits,
1766 				 unsigned long page_ops)
1767 {
1768 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1769 			 NULL, GFP_NOFS);
1770 
1771 	__process_pages_contig(inode->i_mapping, locked_page,
1772 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1773 			       page_ops, NULL);
1774 }
1775 
1776 /*
1777  * count the number of bytes in the tree that have a given bit(s)
1778  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1779  * cached.  The total number found is returned.
1780  */
1781 u64 count_range_bits(struct extent_io_tree *tree,
1782 		     u64 *start, u64 search_end, u64 max_bytes,
1783 		     unsigned bits, int contig)
1784 {
1785 	struct rb_node *node;
1786 	struct extent_state *state;
1787 	u64 cur_start = *start;
1788 	u64 total_bytes = 0;
1789 	u64 last = 0;
1790 	int found = 0;
1791 
1792 	if (WARN_ON(search_end <= cur_start))
1793 		return 0;
1794 
1795 	spin_lock(&tree->lock);
1796 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1797 		total_bytes = tree->dirty_bytes;
1798 		goto out;
1799 	}
1800 	/*
1801 	 * this search will find all the extents that end after
1802 	 * our range starts.
1803 	 */
1804 	node = tree_search(tree, cur_start);
1805 	if (!node)
1806 		goto out;
1807 
1808 	while (1) {
1809 		state = rb_entry(node, struct extent_state, rb_node);
1810 		if (state->start > search_end)
1811 			break;
1812 		if (contig && found && state->start > last + 1)
1813 			break;
1814 		if (state->end >= cur_start && (state->state & bits) == bits) {
1815 			total_bytes += min(search_end, state->end) + 1 -
1816 				       max(cur_start, state->start);
1817 			if (total_bytes >= max_bytes)
1818 				break;
1819 			if (!found) {
1820 				*start = max(cur_start, state->start);
1821 				found = 1;
1822 			}
1823 			last = state->end;
1824 		} else if (contig && found) {
1825 			break;
1826 		}
1827 		node = rb_next(node);
1828 		if (!node)
1829 			break;
1830 	}
1831 out:
1832 	spin_unlock(&tree->lock);
1833 	return total_bytes;
1834 }
1835 
1836 /*
1837  * set the private field for a given byte offset in the tree.  If there isn't
1838  * an extent_state there already, this does nothing.
1839  */
1840 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1841 		struct io_failure_record *failrec)
1842 {
1843 	struct rb_node *node;
1844 	struct extent_state *state;
1845 	int ret = 0;
1846 
1847 	spin_lock(&tree->lock);
1848 	/*
1849 	 * this search will find all the extents that end after
1850 	 * our range starts.
1851 	 */
1852 	node = tree_search(tree, start);
1853 	if (!node) {
1854 		ret = -ENOENT;
1855 		goto out;
1856 	}
1857 	state = rb_entry(node, struct extent_state, rb_node);
1858 	if (state->start != start) {
1859 		ret = -ENOENT;
1860 		goto out;
1861 	}
1862 	state->failrec = failrec;
1863 out:
1864 	spin_unlock(&tree->lock);
1865 	return ret;
1866 }
1867 
1868 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1869 		struct io_failure_record **failrec)
1870 {
1871 	struct rb_node *node;
1872 	struct extent_state *state;
1873 	int ret = 0;
1874 
1875 	spin_lock(&tree->lock);
1876 	/*
1877 	 * this search will find all the extents that end after
1878 	 * our range starts.
1879 	 */
1880 	node = tree_search(tree, start);
1881 	if (!node) {
1882 		ret = -ENOENT;
1883 		goto out;
1884 	}
1885 	state = rb_entry(node, struct extent_state, rb_node);
1886 	if (state->start != start) {
1887 		ret = -ENOENT;
1888 		goto out;
1889 	}
1890 	*failrec = state->failrec;
1891 out:
1892 	spin_unlock(&tree->lock);
1893 	return ret;
1894 }
1895 
1896 /*
1897  * searches a range in the state tree for a given mask.
1898  * If 'filled' == 1, this returns 1 only if every extent in the tree
1899  * has the bits set.  Otherwise, 1 is returned if any bit in the
1900  * range is found set.
1901  */
1902 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1903 		   unsigned bits, int filled, struct extent_state *cached)
1904 {
1905 	struct extent_state *state = NULL;
1906 	struct rb_node *node;
1907 	int bitset = 0;
1908 
1909 	spin_lock(&tree->lock);
1910 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1911 	    cached->end > start)
1912 		node = &cached->rb_node;
1913 	else
1914 		node = tree_search(tree, start);
1915 	while (node && start <= end) {
1916 		state = rb_entry(node, struct extent_state, rb_node);
1917 
1918 		if (filled && state->start > start) {
1919 			bitset = 0;
1920 			break;
1921 		}
1922 
1923 		if (state->start > end)
1924 			break;
1925 
1926 		if (state->state & bits) {
1927 			bitset = 1;
1928 			if (!filled)
1929 				break;
1930 		} else if (filled) {
1931 			bitset = 0;
1932 			break;
1933 		}
1934 
1935 		if (state->end == (u64)-1)
1936 			break;
1937 
1938 		start = state->end + 1;
1939 		if (start > end)
1940 			break;
1941 		node = rb_next(node);
1942 		if (!node) {
1943 			if (filled)
1944 				bitset = 0;
1945 			break;
1946 		}
1947 	}
1948 	spin_unlock(&tree->lock);
1949 	return bitset;
1950 }
1951 
1952 /*
1953  * helper function to set a given page up to date if all the
1954  * extents in the tree for that page are up to date
1955  */
1956 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1957 {
1958 	u64 start = page_offset(page);
1959 	u64 end = start + PAGE_SIZE - 1;
1960 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1961 		SetPageUptodate(page);
1962 }
1963 
1964 int free_io_failure(struct btrfs_inode *inode, struct io_failure_record *rec)
1965 {
1966 	int ret;
1967 	int err = 0;
1968 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
1969 
1970 	set_state_failrec(failure_tree, rec->start, NULL);
1971 	ret = clear_extent_bits(failure_tree, rec->start,
1972 				rec->start + rec->len - 1,
1973 				EXTENT_LOCKED | EXTENT_DIRTY);
1974 	if (ret)
1975 		err = ret;
1976 
1977 	ret = clear_extent_bits(&inode->io_tree, rec->start,
1978 				rec->start + rec->len - 1,
1979 				EXTENT_DAMAGED);
1980 	if (ret && !err)
1981 		err = ret;
1982 
1983 	kfree(rec);
1984 	return err;
1985 }
1986 
1987 /*
1988  * this bypasses the standard btrfs submit functions deliberately, as
1989  * the standard behavior is to write all copies in a raid setup. here we only
1990  * want to write the one bad copy. so we do the mapping for ourselves and issue
1991  * submit_bio directly.
1992  * to avoid any synchronization issues, wait for the data after writing, which
1993  * actually prevents the read that triggered the error from finishing.
1994  * currently, there can be no more than two copies of every data bit. thus,
1995  * exactly one rewrite is required.
1996  */
1997 int repair_io_failure(struct btrfs_inode *inode, u64 start, u64 length,
1998 		u64 logical, struct page *page,
1999 		unsigned int pg_offset, int mirror_num)
2000 {
2001 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2002 	struct bio *bio;
2003 	struct btrfs_device *dev;
2004 	u64 map_length = 0;
2005 	u64 sector;
2006 	struct btrfs_bio *bbio = NULL;
2007 	int ret;
2008 
2009 	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2010 	BUG_ON(!mirror_num);
2011 
2012 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2013 	if (!bio)
2014 		return -EIO;
2015 	bio->bi_iter.bi_size = 0;
2016 	map_length = length;
2017 
2018 	/*
2019 	 * Avoid races with device replace and make sure our bbio has devices
2020 	 * associated to its stripes that don't go away while we are doing the
2021 	 * read repair operation.
2022 	 */
2023 	btrfs_bio_counter_inc_blocked(fs_info);
2024 	if (btrfs_is_parity_mirror(fs_info, logical, length, mirror_num)) {
2025 		/*
2026 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2027 		 * to update all raid stripes, but here we just want to correct
2028 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2029 		 * stripe's dev and sector.
2030 		 */
2031 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2032 				      &map_length, &bbio, 0);
2033 		if (ret) {
2034 			btrfs_bio_counter_dec(fs_info);
2035 			bio_put(bio);
2036 			return -EIO;
2037 		}
2038 		ASSERT(bbio->mirror_num == 1);
2039 	} else {
2040 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2041 				      &map_length, &bbio, mirror_num);
2042 		if (ret) {
2043 			btrfs_bio_counter_dec(fs_info);
2044 			bio_put(bio);
2045 			return -EIO;
2046 		}
2047 		BUG_ON(mirror_num != bbio->mirror_num);
2048 	}
2049 
2050 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2051 	bio->bi_iter.bi_sector = sector;
2052 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2053 	btrfs_put_bbio(bbio);
2054 	if (!dev || !dev->bdev || !dev->writeable) {
2055 		btrfs_bio_counter_dec(fs_info);
2056 		bio_put(bio);
2057 		return -EIO;
2058 	}
2059 	bio->bi_bdev = dev->bdev;
2060 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2061 	bio_add_page(bio, page, length, pg_offset);
2062 
2063 	if (btrfsic_submit_bio_wait(bio)) {
2064 		/* try to remap that extent elsewhere? */
2065 		btrfs_bio_counter_dec(fs_info);
2066 		bio_put(bio);
2067 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2068 		return -EIO;
2069 	}
2070 
2071 	btrfs_info_rl_in_rcu(fs_info,
2072 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2073 				  btrfs_ino(inode), start,
2074 				  rcu_str_deref(dev->name), sector);
2075 	btrfs_bio_counter_dec(fs_info);
2076 	bio_put(bio);
2077 	return 0;
2078 }
2079 
2080 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2081 			 struct extent_buffer *eb, int mirror_num)
2082 {
2083 	u64 start = eb->start;
2084 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2085 	int ret = 0;
2086 
2087 	if (fs_info->sb->s_flags & MS_RDONLY)
2088 		return -EROFS;
2089 
2090 	for (i = 0; i < num_pages; i++) {
2091 		struct page *p = eb->pages[i];
2092 
2093 		ret = repair_io_failure(BTRFS_I(fs_info->btree_inode), start,
2094 					PAGE_SIZE, start, p,
2095 					start - page_offset(p), mirror_num);
2096 		if (ret)
2097 			break;
2098 		start += PAGE_SIZE;
2099 	}
2100 
2101 	return ret;
2102 }
2103 
2104 /*
2105  * each time an IO finishes, we do a fast check in the IO failure tree
2106  * to see if we need to process or clean up an io_failure_record
2107  */
2108 int clean_io_failure(struct btrfs_inode *inode, u64 start, struct page *page,
2109 		     unsigned int pg_offset)
2110 {
2111 	u64 private;
2112 	struct io_failure_record *failrec;
2113 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2114 	struct extent_state *state;
2115 	int num_copies;
2116 	int ret;
2117 
2118 	private = 0;
2119 	ret = count_range_bits(&inode->io_failure_tree, &private,
2120 				(u64)-1, 1, EXTENT_DIRTY, 0);
2121 	if (!ret)
2122 		return 0;
2123 
2124 	ret = get_state_failrec(&inode->io_failure_tree, start,
2125 			&failrec);
2126 	if (ret)
2127 		return 0;
2128 
2129 	BUG_ON(!failrec->this_mirror);
2130 
2131 	if (failrec->in_validation) {
2132 		/* there was no real error, just free the record */
2133 		btrfs_debug(fs_info,
2134 			"clean_io_failure: freeing dummy error at %llu",
2135 			failrec->start);
2136 		goto out;
2137 	}
2138 	if (fs_info->sb->s_flags & MS_RDONLY)
2139 		goto out;
2140 
2141 	spin_lock(&inode->io_tree.lock);
2142 	state = find_first_extent_bit_state(&inode->io_tree,
2143 					    failrec->start,
2144 					    EXTENT_LOCKED);
2145 	spin_unlock(&inode->io_tree.lock);
2146 
2147 	if (state && state->start <= failrec->start &&
2148 	    state->end >= failrec->start + failrec->len - 1) {
2149 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2150 					      failrec->len);
2151 		if (num_copies > 1)  {
2152 			repair_io_failure(inode, start, failrec->len,
2153 					  failrec->logical, page,
2154 					  pg_offset, failrec->failed_mirror);
2155 		}
2156 	}
2157 
2158 out:
2159 	free_io_failure(inode, failrec);
2160 
2161 	return 0;
2162 }
2163 
2164 /*
2165  * Can be called when
2166  * - hold extent lock
2167  * - under ordered extent
2168  * - the inode is freeing
2169  */
2170 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2171 {
2172 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2173 	struct io_failure_record *failrec;
2174 	struct extent_state *state, *next;
2175 
2176 	if (RB_EMPTY_ROOT(&failure_tree->state))
2177 		return;
2178 
2179 	spin_lock(&failure_tree->lock);
2180 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2181 	while (state) {
2182 		if (state->start > end)
2183 			break;
2184 
2185 		ASSERT(state->end <= end);
2186 
2187 		next = next_state(state);
2188 
2189 		failrec = state->failrec;
2190 		free_extent_state(state);
2191 		kfree(failrec);
2192 
2193 		state = next;
2194 	}
2195 	spin_unlock(&failure_tree->lock);
2196 }
2197 
2198 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2199 		struct io_failure_record **failrec_ret)
2200 {
2201 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2202 	struct io_failure_record *failrec;
2203 	struct extent_map *em;
2204 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2205 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2206 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2207 	int ret;
2208 	u64 logical;
2209 
2210 	ret = get_state_failrec(failure_tree, start, &failrec);
2211 	if (ret) {
2212 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2213 		if (!failrec)
2214 			return -ENOMEM;
2215 
2216 		failrec->start = start;
2217 		failrec->len = end - start + 1;
2218 		failrec->this_mirror = 0;
2219 		failrec->bio_flags = 0;
2220 		failrec->in_validation = 0;
2221 
2222 		read_lock(&em_tree->lock);
2223 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2224 		if (!em) {
2225 			read_unlock(&em_tree->lock);
2226 			kfree(failrec);
2227 			return -EIO;
2228 		}
2229 
2230 		if (em->start > start || em->start + em->len <= start) {
2231 			free_extent_map(em);
2232 			em = NULL;
2233 		}
2234 		read_unlock(&em_tree->lock);
2235 		if (!em) {
2236 			kfree(failrec);
2237 			return -EIO;
2238 		}
2239 
2240 		logical = start - em->start;
2241 		logical = em->block_start + logical;
2242 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2243 			logical = em->block_start;
2244 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2245 			extent_set_compress_type(&failrec->bio_flags,
2246 						 em->compress_type);
2247 		}
2248 
2249 		btrfs_debug(fs_info,
2250 			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2251 			logical, start, failrec->len);
2252 
2253 		failrec->logical = logical;
2254 		free_extent_map(em);
2255 
2256 		/* set the bits in the private failure tree */
2257 		ret = set_extent_bits(failure_tree, start, end,
2258 					EXTENT_LOCKED | EXTENT_DIRTY);
2259 		if (ret >= 0)
2260 			ret = set_state_failrec(failure_tree, start, failrec);
2261 		/* set the bits in the inode's tree */
2262 		if (ret >= 0)
2263 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2264 		if (ret < 0) {
2265 			kfree(failrec);
2266 			return ret;
2267 		}
2268 	} else {
2269 		btrfs_debug(fs_info,
2270 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2271 			failrec->logical, failrec->start, failrec->len,
2272 			failrec->in_validation);
2273 		/*
2274 		 * when data can be on disk more than twice, add to failrec here
2275 		 * (e.g. with a list for failed_mirror) to make
2276 		 * clean_io_failure() clean all those errors at once.
2277 		 */
2278 	}
2279 
2280 	*failrec_ret = failrec;
2281 
2282 	return 0;
2283 }
2284 
2285 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2286 			   struct io_failure_record *failrec, int failed_mirror)
2287 {
2288 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2289 	int num_copies;
2290 
2291 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2292 	if (num_copies == 1) {
2293 		/*
2294 		 * we only have a single copy of the data, so don't bother with
2295 		 * all the retry and error correction code that follows. no
2296 		 * matter what the error is, it is very likely to persist.
2297 		 */
2298 		btrfs_debug(fs_info,
2299 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2300 			num_copies, failrec->this_mirror, failed_mirror);
2301 		return 0;
2302 	}
2303 
2304 	/*
2305 	 * there are two premises:
2306 	 *	a) deliver good data to the caller
2307 	 *	b) correct the bad sectors on disk
2308 	 */
2309 	if (failed_bio->bi_vcnt > 1) {
2310 		/*
2311 		 * to fulfill b), we need to know the exact failing sectors, as
2312 		 * we don't want to rewrite any more than the failed ones. thus,
2313 		 * we need separate read requests for the failed bio
2314 		 *
2315 		 * if the following BUG_ON triggers, our validation request got
2316 		 * merged. we need separate requests for our algorithm to work.
2317 		 */
2318 		BUG_ON(failrec->in_validation);
2319 		failrec->in_validation = 1;
2320 		failrec->this_mirror = failed_mirror;
2321 	} else {
2322 		/*
2323 		 * we're ready to fulfill a) and b) alongside. get a good copy
2324 		 * of the failed sector and if we succeed, we have setup
2325 		 * everything for repair_io_failure to do the rest for us.
2326 		 */
2327 		if (failrec->in_validation) {
2328 			BUG_ON(failrec->this_mirror != failed_mirror);
2329 			failrec->in_validation = 0;
2330 			failrec->this_mirror = 0;
2331 		}
2332 		failrec->failed_mirror = failed_mirror;
2333 		failrec->this_mirror++;
2334 		if (failrec->this_mirror == failed_mirror)
2335 			failrec->this_mirror++;
2336 	}
2337 
2338 	if (failrec->this_mirror > num_copies) {
2339 		btrfs_debug(fs_info,
2340 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2341 			num_copies, failrec->this_mirror, failed_mirror);
2342 		return 0;
2343 	}
2344 
2345 	return 1;
2346 }
2347 
2348 
2349 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2350 				    struct io_failure_record *failrec,
2351 				    struct page *page, int pg_offset, int icsum,
2352 				    bio_end_io_t *endio_func, void *data)
2353 {
2354 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2355 	struct bio *bio;
2356 	struct btrfs_io_bio *btrfs_failed_bio;
2357 	struct btrfs_io_bio *btrfs_bio;
2358 
2359 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2360 	if (!bio)
2361 		return NULL;
2362 
2363 	bio->bi_end_io = endio_func;
2364 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2365 	bio->bi_bdev = fs_info->fs_devices->latest_bdev;
2366 	bio->bi_iter.bi_size = 0;
2367 	bio->bi_private = data;
2368 
2369 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2370 	if (btrfs_failed_bio->csum) {
2371 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2372 
2373 		btrfs_bio = btrfs_io_bio(bio);
2374 		btrfs_bio->csum = btrfs_bio->csum_inline;
2375 		icsum *= csum_size;
2376 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2377 		       csum_size);
2378 	}
2379 
2380 	bio_add_page(bio, page, failrec->len, pg_offset);
2381 
2382 	return bio;
2383 }
2384 
2385 /*
2386  * this is a generic handler for readpage errors (default
2387  * readpage_io_failed_hook). if other copies exist, read those and write back
2388  * good data to the failed position. does not investigate in remapping the
2389  * failed extent elsewhere, hoping the device will be smart enough to do this as
2390  * needed
2391  */
2392 
2393 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2394 			      struct page *page, u64 start, u64 end,
2395 			      int failed_mirror)
2396 {
2397 	struct io_failure_record *failrec;
2398 	struct inode *inode = page->mapping->host;
2399 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2400 	struct bio *bio;
2401 	int read_mode = 0;
2402 	int ret;
2403 
2404 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2405 
2406 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2407 	if (ret)
2408 		return ret;
2409 
2410 	ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2411 	if (!ret) {
2412 		free_io_failure(BTRFS_I(inode), failrec);
2413 		return -EIO;
2414 	}
2415 
2416 	if (failed_bio->bi_vcnt > 1)
2417 		read_mode |= REQ_FAILFAST_DEV;
2418 
2419 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2420 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2421 				      start - page_offset(page),
2422 				      (int)phy_offset, failed_bio->bi_end_io,
2423 				      NULL);
2424 	if (!bio) {
2425 		free_io_failure(BTRFS_I(inode), failrec);
2426 		return -EIO;
2427 	}
2428 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2429 
2430 	btrfs_debug(btrfs_sb(inode->i_sb),
2431 		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2432 		read_mode, failrec->this_mirror, failrec->in_validation);
2433 
2434 	ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
2435 					 failrec->bio_flags, 0);
2436 	if (ret) {
2437 		free_io_failure(BTRFS_I(inode), failrec);
2438 		bio_put(bio);
2439 	}
2440 
2441 	return ret;
2442 }
2443 
2444 /* lots and lots of room for performance fixes in the end_bio funcs */
2445 
2446 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2447 {
2448 	int uptodate = (err == 0);
2449 	struct extent_io_tree *tree;
2450 	int ret = 0;
2451 
2452 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2453 
2454 	if (tree->ops && tree->ops->writepage_end_io_hook)
2455 		tree->ops->writepage_end_io_hook(page, start, end, NULL,
2456 				uptodate);
2457 
2458 	if (!uptodate) {
2459 		ClearPageUptodate(page);
2460 		SetPageError(page);
2461 		ret = ret < 0 ? ret : -EIO;
2462 		mapping_set_error(page->mapping, ret);
2463 	}
2464 }
2465 
2466 /*
2467  * after a writepage IO is done, we need to:
2468  * clear the uptodate bits on error
2469  * clear the writeback bits in the extent tree for this IO
2470  * end_page_writeback if the page has no more pending IO
2471  *
2472  * Scheduling is not allowed, so the extent state tree is expected
2473  * to have one and only one object corresponding to this IO.
2474  */
2475 static void end_bio_extent_writepage(struct bio *bio)
2476 {
2477 	struct bio_vec *bvec;
2478 	u64 start;
2479 	u64 end;
2480 	int i;
2481 
2482 	bio_for_each_segment_all(bvec, bio, i) {
2483 		struct page *page = bvec->bv_page;
2484 		struct inode *inode = page->mapping->host;
2485 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2486 
2487 		/* We always issue full-page reads, but if some block
2488 		 * in a page fails to read, blk_update_request() will
2489 		 * advance bv_offset and adjust bv_len to compensate.
2490 		 * Print a warning for nonzero offsets, and an error
2491 		 * if they don't add up to a full page.  */
2492 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2493 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2494 				btrfs_err(fs_info,
2495 				   "partial page write in btrfs with offset %u and length %u",
2496 					bvec->bv_offset, bvec->bv_len);
2497 			else
2498 				btrfs_info(fs_info,
2499 				   "incomplete page write in btrfs with offset %u and length %u",
2500 					bvec->bv_offset, bvec->bv_len);
2501 		}
2502 
2503 		start = page_offset(page);
2504 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2505 
2506 		end_extent_writepage(page, bio->bi_error, start, end);
2507 		end_page_writeback(page);
2508 	}
2509 
2510 	bio_put(bio);
2511 }
2512 
2513 static void
2514 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2515 			      int uptodate)
2516 {
2517 	struct extent_state *cached = NULL;
2518 	u64 end = start + len - 1;
2519 
2520 	if (uptodate && tree->track_uptodate)
2521 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2522 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2523 }
2524 
2525 /*
2526  * after a readpage IO is done, we need to:
2527  * clear the uptodate bits on error
2528  * set the uptodate bits if things worked
2529  * set the page up to date if all extents in the tree are uptodate
2530  * clear the lock bit in the extent tree
2531  * unlock the page if there are no other extents locked for it
2532  *
2533  * Scheduling is not allowed, so the extent state tree is expected
2534  * to have one and only one object corresponding to this IO.
2535  */
2536 static void end_bio_extent_readpage(struct bio *bio)
2537 {
2538 	struct bio_vec *bvec;
2539 	int uptodate = !bio->bi_error;
2540 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2541 	struct extent_io_tree *tree;
2542 	u64 offset = 0;
2543 	u64 start;
2544 	u64 end;
2545 	u64 len;
2546 	u64 extent_start = 0;
2547 	u64 extent_len = 0;
2548 	int mirror;
2549 	int ret;
2550 	int i;
2551 
2552 	bio_for_each_segment_all(bvec, bio, i) {
2553 		struct page *page = bvec->bv_page;
2554 		struct inode *inode = page->mapping->host;
2555 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2556 
2557 		btrfs_debug(fs_info,
2558 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2559 			(u64)bio->bi_iter.bi_sector, bio->bi_error,
2560 			io_bio->mirror_num);
2561 		tree = &BTRFS_I(inode)->io_tree;
2562 
2563 		/* We always issue full-page reads, but if some block
2564 		 * in a page fails to read, blk_update_request() will
2565 		 * advance bv_offset and adjust bv_len to compensate.
2566 		 * Print a warning for nonzero offsets, and an error
2567 		 * if they don't add up to a full page.  */
2568 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2569 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2570 				btrfs_err(fs_info,
2571 					"partial page read in btrfs with offset %u and length %u",
2572 					bvec->bv_offset, bvec->bv_len);
2573 			else
2574 				btrfs_info(fs_info,
2575 					"incomplete page read in btrfs with offset %u and length %u",
2576 					bvec->bv_offset, bvec->bv_len);
2577 		}
2578 
2579 		start = page_offset(page);
2580 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2581 		len = bvec->bv_len;
2582 
2583 		mirror = io_bio->mirror_num;
2584 		if (likely(uptodate && tree->ops)) {
2585 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2586 							      page, start, end,
2587 							      mirror);
2588 			if (ret)
2589 				uptodate = 0;
2590 			else
2591 				clean_io_failure(BTRFS_I(inode), start,
2592 						page, 0);
2593 		}
2594 
2595 		if (likely(uptodate))
2596 			goto readpage_ok;
2597 
2598 		if (tree->ops) {
2599 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2600 			if (ret == -EAGAIN) {
2601 				/*
2602 				 * Data inode's readpage_io_failed_hook() always
2603 				 * returns -EAGAIN.
2604 				 *
2605 				 * The generic bio_readpage_error handles errors
2606 				 * the following way: If possible, new read
2607 				 * requests are created and submitted and will
2608 				 * end up in end_bio_extent_readpage as well (if
2609 				 * we're lucky, not in the !uptodate case). In
2610 				 * that case it returns 0 and we just go on with
2611 				 * the next page in our bio. If it can't handle
2612 				 * the error it will return -EIO and we remain
2613 				 * responsible for that page.
2614 				 */
2615 				ret = bio_readpage_error(bio, offset, page,
2616 							 start, end, mirror);
2617 				if (ret == 0) {
2618 					uptodate = !bio->bi_error;
2619 					offset += len;
2620 					continue;
2621 				}
2622 			}
2623 
2624 			/*
2625 			 * metadata's readpage_io_failed_hook() always returns
2626 			 * -EIO and fixes nothing.  -EIO is also returned if
2627 			 * data inode error could not be fixed.
2628 			 */
2629 			ASSERT(ret == -EIO);
2630 		}
2631 readpage_ok:
2632 		if (likely(uptodate)) {
2633 			loff_t i_size = i_size_read(inode);
2634 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2635 			unsigned off;
2636 
2637 			/* Zero out the end if this page straddles i_size */
2638 			off = i_size & (PAGE_SIZE-1);
2639 			if (page->index == end_index && off)
2640 				zero_user_segment(page, off, PAGE_SIZE);
2641 			SetPageUptodate(page);
2642 		} else {
2643 			ClearPageUptodate(page);
2644 			SetPageError(page);
2645 		}
2646 		unlock_page(page);
2647 		offset += len;
2648 
2649 		if (unlikely(!uptodate)) {
2650 			if (extent_len) {
2651 				endio_readpage_release_extent(tree,
2652 							      extent_start,
2653 							      extent_len, 1);
2654 				extent_start = 0;
2655 				extent_len = 0;
2656 			}
2657 			endio_readpage_release_extent(tree, start,
2658 						      end - start + 1, 0);
2659 		} else if (!extent_len) {
2660 			extent_start = start;
2661 			extent_len = end + 1 - start;
2662 		} else if (extent_start + extent_len == start) {
2663 			extent_len += end + 1 - start;
2664 		} else {
2665 			endio_readpage_release_extent(tree, extent_start,
2666 						      extent_len, uptodate);
2667 			extent_start = start;
2668 			extent_len = end + 1 - start;
2669 		}
2670 	}
2671 
2672 	if (extent_len)
2673 		endio_readpage_release_extent(tree, extent_start, extent_len,
2674 					      uptodate);
2675 	if (io_bio->end_io)
2676 		io_bio->end_io(io_bio, bio->bi_error);
2677 	bio_put(bio);
2678 }
2679 
2680 /*
2681  * this allocates from the btrfs_bioset.  We're returning a bio right now
2682  * but you can call btrfs_io_bio for the appropriate container_of magic
2683  */
2684 struct bio *
2685 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2686 		gfp_t gfp_flags)
2687 {
2688 	struct btrfs_io_bio *btrfs_bio;
2689 	struct bio *bio;
2690 
2691 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2692 
2693 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2694 		while (!bio && (nr_vecs /= 2)) {
2695 			bio = bio_alloc_bioset(gfp_flags,
2696 					       nr_vecs, btrfs_bioset);
2697 		}
2698 	}
2699 
2700 	if (bio) {
2701 		bio->bi_bdev = bdev;
2702 		bio->bi_iter.bi_sector = first_sector;
2703 		btrfs_bio = btrfs_io_bio(bio);
2704 		btrfs_bio->csum = NULL;
2705 		btrfs_bio->csum_allocated = NULL;
2706 		btrfs_bio->end_io = NULL;
2707 	}
2708 	return bio;
2709 }
2710 
2711 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2712 {
2713 	struct btrfs_io_bio *btrfs_bio;
2714 	struct bio *new;
2715 
2716 	new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2717 	if (new) {
2718 		btrfs_bio = btrfs_io_bio(new);
2719 		btrfs_bio->csum = NULL;
2720 		btrfs_bio->csum_allocated = NULL;
2721 		btrfs_bio->end_io = NULL;
2722 	}
2723 	return new;
2724 }
2725 
2726 /* this also allocates from the btrfs_bioset */
2727 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2728 {
2729 	struct btrfs_io_bio *btrfs_bio;
2730 	struct bio *bio;
2731 
2732 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2733 	if (bio) {
2734 		btrfs_bio = btrfs_io_bio(bio);
2735 		btrfs_bio->csum = NULL;
2736 		btrfs_bio->csum_allocated = NULL;
2737 		btrfs_bio->end_io = NULL;
2738 	}
2739 	return bio;
2740 }
2741 
2742 
2743 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2744 				       unsigned long bio_flags)
2745 {
2746 	int ret = 0;
2747 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2748 	struct page *page = bvec->bv_page;
2749 	struct extent_io_tree *tree = bio->bi_private;
2750 	u64 start;
2751 
2752 	start = page_offset(page) + bvec->bv_offset;
2753 
2754 	bio->bi_private = NULL;
2755 	bio_get(bio);
2756 
2757 	if (tree->ops)
2758 		ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2759 					   mirror_num, bio_flags, start);
2760 	else
2761 		btrfsic_submit_bio(bio);
2762 
2763 	bio_put(bio);
2764 	return ret;
2765 }
2766 
2767 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2768 		     unsigned long offset, size_t size, struct bio *bio,
2769 		     unsigned long bio_flags)
2770 {
2771 	int ret = 0;
2772 	if (tree->ops)
2773 		ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2774 						bio_flags);
2775 	return ret;
2776 
2777 }
2778 
2779 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2780 			      struct writeback_control *wbc,
2781 			      struct page *page, sector_t sector,
2782 			      size_t size, unsigned long offset,
2783 			      struct block_device *bdev,
2784 			      struct bio **bio_ret,
2785 			      bio_end_io_t end_io_func,
2786 			      int mirror_num,
2787 			      unsigned long prev_bio_flags,
2788 			      unsigned long bio_flags,
2789 			      bool force_bio_submit)
2790 {
2791 	int ret = 0;
2792 	struct bio *bio;
2793 	int contig = 0;
2794 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2795 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2796 
2797 	if (bio_ret && *bio_ret) {
2798 		bio = *bio_ret;
2799 		if (old_compressed)
2800 			contig = bio->bi_iter.bi_sector == sector;
2801 		else
2802 			contig = bio_end_sector(bio) == sector;
2803 
2804 		if (prev_bio_flags != bio_flags || !contig ||
2805 		    force_bio_submit ||
2806 		    merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2807 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2808 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2809 			if (ret < 0) {
2810 				*bio_ret = NULL;
2811 				return ret;
2812 			}
2813 			bio = NULL;
2814 		} else {
2815 			if (wbc)
2816 				wbc_account_io(wbc, page, page_size);
2817 			return 0;
2818 		}
2819 	}
2820 
2821 	bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2822 			GFP_NOFS | __GFP_HIGH);
2823 	if (!bio)
2824 		return -ENOMEM;
2825 
2826 	bio_add_page(bio, page, page_size, offset);
2827 	bio->bi_end_io = end_io_func;
2828 	bio->bi_private = tree;
2829 	bio_set_op_attrs(bio, op, op_flags);
2830 	if (wbc) {
2831 		wbc_init_bio(wbc, bio);
2832 		wbc_account_io(wbc, page, page_size);
2833 	}
2834 
2835 	if (bio_ret)
2836 		*bio_ret = bio;
2837 	else
2838 		ret = submit_one_bio(bio, mirror_num, bio_flags);
2839 
2840 	return ret;
2841 }
2842 
2843 static void attach_extent_buffer_page(struct extent_buffer *eb,
2844 				      struct page *page)
2845 {
2846 	if (!PagePrivate(page)) {
2847 		SetPagePrivate(page);
2848 		get_page(page);
2849 		set_page_private(page, (unsigned long)eb);
2850 	} else {
2851 		WARN_ON(page->private != (unsigned long)eb);
2852 	}
2853 }
2854 
2855 void set_page_extent_mapped(struct page *page)
2856 {
2857 	if (!PagePrivate(page)) {
2858 		SetPagePrivate(page);
2859 		get_page(page);
2860 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2861 	}
2862 }
2863 
2864 static struct extent_map *
2865 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2866 		 u64 start, u64 len, get_extent_t *get_extent,
2867 		 struct extent_map **em_cached)
2868 {
2869 	struct extent_map *em;
2870 
2871 	if (em_cached && *em_cached) {
2872 		em = *em_cached;
2873 		if (extent_map_in_tree(em) && start >= em->start &&
2874 		    start < extent_map_end(em)) {
2875 			refcount_inc(&em->refs);
2876 			return em;
2877 		}
2878 
2879 		free_extent_map(em);
2880 		*em_cached = NULL;
2881 	}
2882 
2883 	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2884 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2885 		BUG_ON(*em_cached);
2886 		refcount_inc(&em->refs);
2887 		*em_cached = em;
2888 	}
2889 	return em;
2890 }
2891 /*
2892  * basic readpage implementation.  Locked extent state structs are inserted
2893  * into the tree that are removed when the IO is done (by the end_io
2894  * handlers)
2895  * XXX JDM: This needs looking at to ensure proper page locking
2896  * return 0 on success, otherwise return error
2897  */
2898 static int __do_readpage(struct extent_io_tree *tree,
2899 			 struct page *page,
2900 			 get_extent_t *get_extent,
2901 			 struct extent_map **em_cached,
2902 			 struct bio **bio, int mirror_num,
2903 			 unsigned long *bio_flags, int read_flags,
2904 			 u64 *prev_em_start)
2905 {
2906 	struct inode *inode = page->mapping->host;
2907 	u64 start = page_offset(page);
2908 	u64 page_end = start + PAGE_SIZE - 1;
2909 	u64 end;
2910 	u64 cur = start;
2911 	u64 extent_offset;
2912 	u64 last_byte = i_size_read(inode);
2913 	u64 block_start;
2914 	u64 cur_end;
2915 	sector_t sector;
2916 	struct extent_map *em;
2917 	struct block_device *bdev;
2918 	int ret = 0;
2919 	int nr = 0;
2920 	size_t pg_offset = 0;
2921 	size_t iosize;
2922 	size_t disk_io_size;
2923 	size_t blocksize = inode->i_sb->s_blocksize;
2924 	unsigned long this_bio_flag = 0;
2925 
2926 	set_page_extent_mapped(page);
2927 
2928 	end = page_end;
2929 	if (!PageUptodate(page)) {
2930 		if (cleancache_get_page(page) == 0) {
2931 			BUG_ON(blocksize != PAGE_SIZE);
2932 			unlock_extent(tree, start, end);
2933 			goto out;
2934 		}
2935 	}
2936 
2937 	if (page->index == last_byte >> PAGE_SHIFT) {
2938 		char *userpage;
2939 		size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2940 
2941 		if (zero_offset) {
2942 			iosize = PAGE_SIZE - zero_offset;
2943 			userpage = kmap_atomic(page);
2944 			memset(userpage + zero_offset, 0, iosize);
2945 			flush_dcache_page(page);
2946 			kunmap_atomic(userpage);
2947 		}
2948 	}
2949 	while (cur <= end) {
2950 		bool force_bio_submit = false;
2951 
2952 		if (cur >= last_byte) {
2953 			char *userpage;
2954 			struct extent_state *cached = NULL;
2955 
2956 			iosize = PAGE_SIZE - pg_offset;
2957 			userpage = kmap_atomic(page);
2958 			memset(userpage + pg_offset, 0, iosize);
2959 			flush_dcache_page(page);
2960 			kunmap_atomic(userpage);
2961 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2962 					    &cached, GFP_NOFS);
2963 			unlock_extent_cached(tree, cur,
2964 					     cur + iosize - 1,
2965 					     &cached, GFP_NOFS);
2966 			break;
2967 		}
2968 		em = __get_extent_map(inode, page, pg_offset, cur,
2969 				      end - cur + 1, get_extent, em_cached);
2970 		if (IS_ERR_OR_NULL(em)) {
2971 			SetPageError(page);
2972 			unlock_extent(tree, cur, end);
2973 			break;
2974 		}
2975 		extent_offset = cur - em->start;
2976 		BUG_ON(extent_map_end(em) <= cur);
2977 		BUG_ON(end < cur);
2978 
2979 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2980 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2981 			extent_set_compress_type(&this_bio_flag,
2982 						 em->compress_type);
2983 		}
2984 
2985 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2986 		cur_end = min(extent_map_end(em) - 1, end);
2987 		iosize = ALIGN(iosize, blocksize);
2988 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2989 			disk_io_size = em->block_len;
2990 			sector = em->block_start >> 9;
2991 		} else {
2992 			sector = (em->block_start + extent_offset) >> 9;
2993 			disk_io_size = iosize;
2994 		}
2995 		bdev = em->bdev;
2996 		block_start = em->block_start;
2997 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2998 			block_start = EXTENT_MAP_HOLE;
2999 
3000 		/*
3001 		 * If we have a file range that points to a compressed extent
3002 		 * and it's followed by a consecutive file range that points to
3003 		 * to the same compressed extent (possibly with a different
3004 		 * offset and/or length, so it either points to the whole extent
3005 		 * or only part of it), we must make sure we do not submit a
3006 		 * single bio to populate the pages for the 2 ranges because
3007 		 * this makes the compressed extent read zero out the pages
3008 		 * belonging to the 2nd range. Imagine the following scenario:
3009 		 *
3010 		 *  File layout
3011 		 *  [0 - 8K]                     [8K - 24K]
3012 		 *    |                               |
3013 		 *    |                               |
3014 		 * points to extent X,         points to extent X,
3015 		 * offset 4K, length of 8K     offset 0, length 16K
3016 		 *
3017 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3018 		 *
3019 		 * If the bio to read the compressed extent covers both ranges,
3020 		 * it will decompress extent X into the pages belonging to the
3021 		 * first range and then it will stop, zeroing out the remaining
3022 		 * pages that belong to the other range that points to extent X.
3023 		 * So here we make sure we submit 2 bios, one for the first
3024 		 * range and another one for the third range. Both will target
3025 		 * the same physical extent from disk, but we can't currently
3026 		 * make the compressed bio endio callback populate the pages
3027 		 * for both ranges because each compressed bio is tightly
3028 		 * coupled with a single extent map, and each range can have
3029 		 * an extent map with a different offset value relative to the
3030 		 * uncompressed data of our extent and different lengths. This
3031 		 * is a corner case so we prioritize correctness over
3032 		 * non-optimal behavior (submitting 2 bios for the same extent).
3033 		 */
3034 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3035 		    prev_em_start && *prev_em_start != (u64)-1 &&
3036 		    *prev_em_start != em->orig_start)
3037 			force_bio_submit = true;
3038 
3039 		if (prev_em_start)
3040 			*prev_em_start = em->orig_start;
3041 
3042 		free_extent_map(em);
3043 		em = NULL;
3044 
3045 		/* we've found a hole, just zero and go on */
3046 		if (block_start == EXTENT_MAP_HOLE) {
3047 			char *userpage;
3048 			struct extent_state *cached = NULL;
3049 
3050 			userpage = kmap_atomic(page);
3051 			memset(userpage + pg_offset, 0, iosize);
3052 			flush_dcache_page(page);
3053 			kunmap_atomic(userpage);
3054 
3055 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3056 					    &cached, GFP_NOFS);
3057 			unlock_extent_cached(tree, cur,
3058 					     cur + iosize - 1,
3059 					     &cached, GFP_NOFS);
3060 			cur = cur + iosize;
3061 			pg_offset += iosize;
3062 			continue;
3063 		}
3064 		/* the get_extent function already copied into the page */
3065 		if (test_range_bit(tree, cur, cur_end,
3066 				   EXTENT_UPTODATE, 1, NULL)) {
3067 			check_page_uptodate(tree, page);
3068 			unlock_extent(tree, cur, cur + iosize - 1);
3069 			cur = cur + iosize;
3070 			pg_offset += iosize;
3071 			continue;
3072 		}
3073 		/* we have an inline extent but it didn't get marked up
3074 		 * to date.  Error out
3075 		 */
3076 		if (block_start == EXTENT_MAP_INLINE) {
3077 			SetPageError(page);
3078 			unlock_extent(tree, cur, cur + iosize - 1);
3079 			cur = cur + iosize;
3080 			pg_offset += iosize;
3081 			continue;
3082 		}
3083 
3084 		ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3085 					 page, sector, disk_io_size, pg_offset,
3086 					 bdev, bio,
3087 					 end_bio_extent_readpage, mirror_num,
3088 					 *bio_flags,
3089 					 this_bio_flag,
3090 					 force_bio_submit);
3091 		if (!ret) {
3092 			nr++;
3093 			*bio_flags = this_bio_flag;
3094 		} else {
3095 			SetPageError(page);
3096 			unlock_extent(tree, cur, cur + iosize - 1);
3097 			goto out;
3098 		}
3099 		cur = cur + iosize;
3100 		pg_offset += iosize;
3101 	}
3102 out:
3103 	if (!nr) {
3104 		if (!PageError(page))
3105 			SetPageUptodate(page);
3106 		unlock_page(page);
3107 	}
3108 	return ret;
3109 }
3110 
3111 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3112 					     struct page *pages[], int nr_pages,
3113 					     u64 start, u64 end,
3114 					     get_extent_t *get_extent,
3115 					     struct extent_map **em_cached,
3116 					     struct bio **bio, int mirror_num,
3117 					     unsigned long *bio_flags,
3118 					     u64 *prev_em_start)
3119 {
3120 	struct inode *inode;
3121 	struct btrfs_ordered_extent *ordered;
3122 	int index;
3123 
3124 	inode = pages[0]->mapping->host;
3125 	while (1) {
3126 		lock_extent(tree, start, end);
3127 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3128 						     end - start + 1);
3129 		if (!ordered)
3130 			break;
3131 		unlock_extent(tree, start, end);
3132 		btrfs_start_ordered_extent(inode, ordered, 1);
3133 		btrfs_put_ordered_extent(ordered);
3134 	}
3135 
3136 	for (index = 0; index < nr_pages; index++) {
3137 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
3138 			      mirror_num, bio_flags, 0, prev_em_start);
3139 		put_page(pages[index]);
3140 	}
3141 }
3142 
3143 static void __extent_readpages(struct extent_io_tree *tree,
3144 			       struct page *pages[],
3145 			       int nr_pages, get_extent_t *get_extent,
3146 			       struct extent_map **em_cached,
3147 			       struct bio **bio, int mirror_num,
3148 			       unsigned long *bio_flags,
3149 			       u64 *prev_em_start)
3150 {
3151 	u64 start = 0;
3152 	u64 end = 0;
3153 	u64 page_start;
3154 	int index;
3155 	int first_index = 0;
3156 
3157 	for (index = 0; index < nr_pages; index++) {
3158 		page_start = page_offset(pages[index]);
3159 		if (!end) {
3160 			start = page_start;
3161 			end = start + PAGE_SIZE - 1;
3162 			first_index = index;
3163 		} else if (end + 1 == page_start) {
3164 			end += PAGE_SIZE;
3165 		} else {
3166 			__do_contiguous_readpages(tree, &pages[first_index],
3167 						  index - first_index, start,
3168 						  end, get_extent, em_cached,
3169 						  bio, mirror_num, bio_flags,
3170 						  prev_em_start);
3171 			start = page_start;
3172 			end = start + PAGE_SIZE - 1;
3173 			first_index = index;
3174 		}
3175 	}
3176 
3177 	if (end)
3178 		__do_contiguous_readpages(tree, &pages[first_index],
3179 					  index - first_index, start,
3180 					  end, get_extent, em_cached, bio,
3181 					  mirror_num, bio_flags,
3182 					  prev_em_start);
3183 }
3184 
3185 static int __extent_read_full_page(struct extent_io_tree *tree,
3186 				   struct page *page,
3187 				   get_extent_t *get_extent,
3188 				   struct bio **bio, int mirror_num,
3189 				   unsigned long *bio_flags, int read_flags)
3190 {
3191 	struct inode *inode = page->mapping->host;
3192 	struct btrfs_ordered_extent *ordered;
3193 	u64 start = page_offset(page);
3194 	u64 end = start + PAGE_SIZE - 1;
3195 	int ret;
3196 
3197 	while (1) {
3198 		lock_extent(tree, start, end);
3199 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3200 						PAGE_SIZE);
3201 		if (!ordered)
3202 			break;
3203 		unlock_extent(tree, start, end);
3204 		btrfs_start_ordered_extent(inode, ordered, 1);
3205 		btrfs_put_ordered_extent(ordered);
3206 	}
3207 
3208 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3209 			    bio_flags, read_flags, NULL);
3210 	return ret;
3211 }
3212 
3213 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3214 			    get_extent_t *get_extent, int mirror_num)
3215 {
3216 	struct bio *bio = NULL;
3217 	unsigned long bio_flags = 0;
3218 	int ret;
3219 
3220 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3221 				      &bio_flags, 0);
3222 	if (bio)
3223 		ret = submit_one_bio(bio, mirror_num, bio_flags);
3224 	return ret;
3225 }
3226 
3227 static void update_nr_written(struct writeback_control *wbc,
3228 			      unsigned long nr_written)
3229 {
3230 	wbc->nr_to_write -= nr_written;
3231 }
3232 
3233 /*
3234  * helper for __extent_writepage, doing all of the delayed allocation setup.
3235  *
3236  * This returns 1 if our fill_delalloc function did all the work required
3237  * to write the page (copy into inline extent).  In this case the IO has
3238  * been started and the page is already unlocked.
3239  *
3240  * This returns 0 if all went well (page still locked)
3241  * This returns < 0 if there were errors (page still locked)
3242  */
3243 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3244 			      struct page *page, struct writeback_control *wbc,
3245 			      struct extent_page_data *epd,
3246 			      u64 delalloc_start,
3247 			      unsigned long *nr_written)
3248 {
3249 	struct extent_io_tree *tree = epd->tree;
3250 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3251 	u64 nr_delalloc;
3252 	u64 delalloc_to_write = 0;
3253 	u64 delalloc_end = 0;
3254 	int ret;
3255 	int page_started = 0;
3256 
3257 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3258 		return 0;
3259 
3260 	while (delalloc_end < page_end) {
3261 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3262 					       page,
3263 					       &delalloc_start,
3264 					       &delalloc_end,
3265 					       BTRFS_MAX_EXTENT_SIZE);
3266 		if (nr_delalloc == 0) {
3267 			delalloc_start = delalloc_end + 1;
3268 			continue;
3269 		}
3270 		ret = tree->ops->fill_delalloc(inode, page,
3271 					       delalloc_start,
3272 					       delalloc_end,
3273 					       &page_started,
3274 					       nr_written);
3275 		/* File system has been set read-only */
3276 		if (ret) {
3277 			SetPageError(page);
3278 			/* fill_delalloc should be return < 0 for error
3279 			 * but just in case, we use > 0 here meaning the
3280 			 * IO is started, so we don't want to return > 0
3281 			 * unless things are going well.
3282 			 */
3283 			ret = ret < 0 ? ret : -EIO;
3284 			goto done;
3285 		}
3286 		/*
3287 		 * delalloc_end is already one less than the total length, so
3288 		 * we don't subtract one from PAGE_SIZE
3289 		 */
3290 		delalloc_to_write += (delalloc_end - delalloc_start +
3291 				      PAGE_SIZE) >> PAGE_SHIFT;
3292 		delalloc_start = delalloc_end + 1;
3293 	}
3294 	if (wbc->nr_to_write < delalloc_to_write) {
3295 		int thresh = 8192;
3296 
3297 		if (delalloc_to_write < thresh * 2)
3298 			thresh = delalloc_to_write;
3299 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3300 					 thresh);
3301 	}
3302 
3303 	/* did the fill delalloc function already unlock and start
3304 	 * the IO?
3305 	 */
3306 	if (page_started) {
3307 		/*
3308 		 * we've unlocked the page, so we can't update
3309 		 * the mapping's writeback index, just update
3310 		 * nr_to_write.
3311 		 */
3312 		wbc->nr_to_write -= *nr_written;
3313 		return 1;
3314 	}
3315 
3316 	ret = 0;
3317 
3318 done:
3319 	return ret;
3320 }
3321 
3322 /*
3323  * helper for __extent_writepage.  This calls the writepage start hooks,
3324  * and does the loop to map the page into extents and bios.
3325  *
3326  * We return 1 if the IO is started and the page is unlocked,
3327  * 0 if all went well (page still locked)
3328  * < 0 if there were errors (page still locked)
3329  */
3330 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3331 				 struct page *page,
3332 				 struct writeback_control *wbc,
3333 				 struct extent_page_data *epd,
3334 				 loff_t i_size,
3335 				 unsigned long nr_written,
3336 				 int write_flags, int *nr_ret)
3337 {
3338 	struct extent_io_tree *tree = epd->tree;
3339 	u64 start = page_offset(page);
3340 	u64 page_end = start + PAGE_SIZE - 1;
3341 	u64 end;
3342 	u64 cur = start;
3343 	u64 extent_offset;
3344 	u64 block_start;
3345 	u64 iosize;
3346 	sector_t sector;
3347 	struct extent_map *em;
3348 	struct block_device *bdev;
3349 	size_t pg_offset = 0;
3350 	size_t blocksize;
3351 	int ret = 0;
3352 	int nr = 0;
3353 	bool compressed;
3354 
3355 	if (tree->ops && tree->ops->writepage_start_hook) {
3356 		ret = tree->ops->writepage_start_hook(page, start,
3357 						      page_end);
3358 		if (ret) {
3359 			/* Fixup worker will requeue */
3360 			if (ret == -EBUSY)
3361 				wbc->pages_skipped++;
3362 			else
3363 				redirty_page_for_writepage(wbc, page);
3364 
3365 			update_nr_written(wbc, nr_written);
3366 			unlock_page(page);
3367 			return 1;
3368 		}
3369 	}
3370 
3371 	/*
3372 	 * we don't want to touch the inode after unlocking the page,
3373 	 * so we update the mapping writeback index now
3374 	 */
3375 	update_nr_written(wbc, nr_written + 1);
3376 
3377 	end = page_end;
3378 	if (i_size <= start) {
3379 		if (tree->ops && tree->ops->writepage_end_io_hook)
3380 			tree->ops->writepage_end_io_hook(page, start,
3381 							 page_end, NULL, 1);
3382 		goto done;
3383 	}
3384 
3385 	blocksize = inode->i_sb->s_blocksize;
3386 
3387 	while (cur <= end) {
3388 		u64 em_end;
3389 
3390 		if (cur >= i_size) {
3391 			if (tree->ops && tree->ops->writepage_end_io_hook)
3392 				tree->ops->writepage_end_io_hook(page, cur,
3393 							 page_end, NULL, 1);
3394 			break;
3395 		}
3396 		em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
3397 				     end - cur + 1, 1);
3398 		if (IS_ERR_OR_NULL(em)) {
3399 			SetPageError(page);
3400 			ret = PTR_ERR_OR_ZERO(em);
3401 			break;
3402 		}
3403 
3404 		extent_offset = cur - em->start;
3405 		em_end = extent_map_end(em);
3406 		BUG_ON(em_end <= cur);
3407 		BUG_ON(end < cur);
3408 		iosize = min(em_end - cur, end - cur + 1);
3409 		iosize = ALIGN(iosize, blocksize);
3410 		sector = (em->block_start + extent_offset) >> 9;
3411 		bdev = em->bdev;
3412 		block_start = em->block_start;
3413 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3414 		free_extent_map(em);
3415 		em = NULL;
3416 
3417 		/*
3418 		 * compressed and inline extents are written through other
3419 		 * paths in the FS
3420 		 */
3421 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3422 		    block_start == EXTENT_MAP_INLINE) {
3423 			/*
3424 			 * end_io notification does not happen here for
3425 			 * compressed extents
3426 			 */
3427 			if (!compressed && tree->ops &&
3428 			    tree->ops->writepage_end_io_hook)
3429 				tree->ops->writepage_end_io_hook(page, cur,
3430 							 cur + iosize - 1,
3431 							 NULL, 1);
3432 			else if (compressed) {
3433 				/* we don't want to end_page_writeback on
3434 				 * a compressed extent.  this happens
3435 				 * elsewhere
3436 				 */
3437 				nr++;
3438 			}
3439 
3440 			cur += iosize;
3441 			pg_offset += iosize;
3442 			continue;
3443 		}
3444 
3445 		set_range_writeback(tree, cur, cur + iosize - 1);
3446 		if (!PageWriteback(page)) {
3447 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3448 				   "page %lu not writeback, cur %llu end %llu",
3449 			       page->index, cur, end);
3450 		}
3451 
3452 		ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3453 					 page, sector, iosize, pg_offset,
3454 					 bdev, &epd->bio,
3455 					 end_bio_extent_writepage,
3456 					 0, 0, 0, false);
3457 		if (ret) {
3458 			SetPageError(page);
3459 			if (PageWriteback(page))
3460 				end_page_writeback(page);
3461 		}
3462 
3463 		cur = cur + iosize;
3464 		pg_offset += iosize;
3465 		nr++;
3466 	}
3467 done:
3468 	*nr_ret = nr;
3469 	return ret;
3470 }
3471 
3472 /*
3473  * the writepage semantics are similar to regular writepage.  extent
3474  * records are inserted to lock ranges in the tree, and as dirty areas
3475  * are found, they are marked writeback.  Then the lock bits are removed
3476  * and the end_io handler clears the writeback ranges
3477  */
3478 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3479 			      void *data)
3480 {
3481 	struct inode *inode = page->mapping->host;
3482 	struct extent_page_data *epd = data;
3483 	u64 start = page_offset(page);
3484 	u64 page_end = start + PAGE_SIZE - 1;
3485 	int ret;
3486 	int nr = 0;
3487 	size_t pg_offset = 0;
3488 	loff_t i_size = i_size_read(inode);
3489 	unsigned long end_index = i_size >> PAGE_SHIFT;
3490 	int write_flags = 0;
3491 	unsigned long nr_written = 0;
3492 
3493 	if (wbc->sync_mode == WB_SYNC_ALL)
3494 		write_flags = REQ_SYNC;
3495 
3496 	trace___extent_writepage(page, inode, wbc);
3497 
3498 	WARN_ON(!PageLocked(page));
3499 
3500 	ClearPageError(page);
3501 
3502 	pg_offset = i_size & (PAGE_SIZE - 1);
3503 	if (page->index > end_index ||
3504 	   (page->index == end_index && !pg_offset)) {
3505 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3506 		unlock_page(page);
3507 		return 0;
3508 	}
3509 
3510 	if (page->index == end_index) {
3511 		char *userpage;
3512 
3513 		userpage = kmap_atomic(page);
3514 		memset(userpage + pg_offset, 0,
3515 		       PAGE_SIZE - pg_offset);
3516 		kunmap_atomic(userpage);
3517 		flush_dcache_page(page);
3518 	}
3519 
3520 	pg_offset = 0;
3521 
3522 	set_page_extent_mapped(page);
3523 
3524 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3525 	if (ret == 1)
3526 		goto done_unlocked;
3527 	if (ret)
3528 		goto done;
3529 
3530 	ret = __extent_writepage_io(inode, page, wbc, epd,
3531 				    i_size, nr_written, write_flags, &nr);
3532 	if (ret == 1)
3533 		goto done_unlocked;
3534 
3535 done:
3536 	if (nr == 0) {
3537 		/* make sure the mapping tag for page dirty gets cleared */
3538 		set_page_writeback(page);
3539 		end_page_writeback(page);
3540 	}
3541 	if (PageError(page)) {
3542 		ret = ret < 0 ? ret : -EIO;
3543 		end_extent_writepage(page, ret, start, page_end);
3544 	}
3545 	unlock_page(page);
3546 	return ret;
3547 
3548 done_unlocked:
3549 	return 0;
3550 }
3551 
3552 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3553 {
3554 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3555 		       TASK_UNINTERRUPTIBLE);
3556 }
3557 
3558 static noinline_for_stack int
3559 lock_extent_buffer_for_io(struct extent_buffer *eb,
3560 			  struct btrfs_fs_info *fs_info,
3561 			  struct extent_page_data *epd)
3562 {
3563 	unsigned long i, num_pages;
3564 	int flush = 0;
3565 	int ret = 0;
3566 
3567 	if (!btrfs_try_tree_write_lock(eb)) {
3568 		flush = 1;
3569 		flush_write_bio(epd);
3570 		btrfs_tree_lock(eb);
3571 	}
3572 
3573 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3574 		btrfs_tree_unlock(eb);
3575 		if (!epd->sync_io)
3576 			return 0;
3577 		if (!flush) {
3578 			flush_write_bio(epd);
3579 			flush = 1;
3580 		}
3581 		while (1) {
3582 			wait_on_extent_buffer_writeback(eb);
3583 			btrfs_tree_lock(eb);
3584 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3585 				break;
3586 			btrfs_tree_unlock(eb);
3587 		}
3588 	}
3589 
3590 	/*
3591 	 * We need to do this to prevent races in people who check if the eb is
3592 	 * under IO since we can end up having no IO bits set for a short period
3593 	 * of time.
3594 	 */
3595 	spin_lock(&eb->refs_lock);
3596 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3597 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3598 		spin_unlock(&eb->refs_lock);
3599 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3600 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3601 				     -eb->len,
3602 				     fs_info->dirty_metadata_batch);
3603 		ret = 1;
3604 	} else {
3605 		spin_unlock(&eb->refs_lock);
3606 	}
3607 
3608 	btrfs_tree_unlock(eb);
3609 
3610 	if (!ret)
3611 		return ret;
3612 
3613 	num_pages = num_extent_pages(eb->start, eb->len);
3614 	for (i = 0; i < num_pages; i++) {
3615 		struct page *p = eb->pages[i];
3616 
3617 		if (!trylock_page(p)) {
3618 			if (!flush) {
3619 				flush_write_bio(epd);
3620 				flush = 1;
3621 			}
3622 			lock_page(p);
3623 		}
3624 	}
3625 
3626 	return ret;
3627 }
3628 
3629 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3630 {
3631 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3632 	smp_mb__after_atomic();
3633 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3634 }
3635 
3636 static void set_btree_ioerr(struct page *page)
3637 {
3638 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3639 
3640 	SetPageError(page);
3641 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3642 		return;
3643 
3644 	/*
3645 	 * If writeback for a btree extent that doesn't belong to a log tree
3646 	 * failed, increment the counter transaction->eb_write_errors.
3647 	 * We do this because while the transaction is running and before it's
3648 	 * committing (when we call filemap_fdata[write|wait]_range against
3649 	 * the btree inode), we might have
3650 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3651 	 * returns an error or an error happens during writeback, when we're
3652 	 * committing the transaction we wouldn't know about it, since the pages
3653 	 * can be no longer dirty nor marked anymore for writeback (if a
3654 	 * subsequent modification to the extent buffer didn't happen before the
3655 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3656 	 * able to find the pages tagged with SetPageError at transaction
3657 	 * commit time. So if this happens we must abort the transaction,
3658 	 * otherwise we commit a super block with btree roots that point to
3659 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3660 	 * or the content of some node/leaf from a past generation that got
3661 	 * cowed or deleted and is no longer valid.
3662 	 *
3663 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3664 	 * not be enough - we need to distinguish between log tree extents vs
3665 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3666 	 * will catch and clear such errors in the mapping - and that call might
3667 	 * be from a log sync and not from a transaction commit. Also, checking
3668 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3669 	 * not done and would not be reliable - the eb might have been released
3670 	 * from memory and reading it back again means that flag would not be
3671 	 * set (since it's a runtime flag, not persisted on disk).
3672 	 *
3673 	 * Using the flags below in the btree inode also makes us achieve the
3674 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3675 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3676 	 * is called, the writeback for all dirty pages had already finished
3677 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3678 	 * filemap_fdatawait_range() would return success, as it could not know
3679 	 * that writeback errors happened (the pages were no longer tagged for
3680 	 * writeback).
3681 	 */
3682 	switch (eb->log_index) {
3683 	case -1:
3684 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3685 		break;
3686 	case 0:
3687 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3688 		break;
3689 	case 1:
3690 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3691 		break;
3692 	default:
3693 		BUG(); /* unexpected, logic error */
3694 	}
3695 }
3696 
3697 static void end_bio_extent_buffer_writepage(struct bio *bio)
3698 {
3699 	struct bio_vec *bvec;
3700 	struct extent_buffer *eb;
3701 	int i, done;
3702 
3703 	bio_for_each_segment_all(bvec, bio, i) {
3704 		struct page *page = bvec->bv_page;
3705 
3706 		eb = (struct extent_buffer *)page->private;
3707 		BUG_ON(!eb);
3708 		done = atomic_dec_and_test(&eb->io_pages);
3709 
3710 		if (bio->bi_error ||
3711 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3712 			ClearPageUptodate(page);
3713 			set_btree_ioerr(page);
3714 		}
3715 
3716 		end_page_writeback(page);
3717 
3718 		if (!done)
3719 			continue;
3720 
3721 		end_extent_buffer_writeback(eb);
3722 	}
3723 
3724 	bio_put(bio);
3725 }
3726 
3727 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3728 			struct btrfs_fs_info *fs_info,
3729 			struct writeback_control *wbc,
3730 			struct extent_page_data *epd)
3731 {
3732 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3733 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3734 	u64 offset = eb->start;
3735 	u32 nritems;
3736 	unsigned long i, num_pages;
3737 	unsigned long bio_flags = 0;
3738 	unsigned long start, end;
3739 	int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
3740 	int ret = 0;
3741 
3742 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3743 	num_pages = num_extent_pages(eb->start, eb->len);
3744 	atomic_set(&eb->io_pages, num_pages);
3745 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3746 		bio_flags = EXTENT_BIO_TREE_LOG;
3747 
3748 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3749 	nritems = btrfs_header_nritems(eb);
3750 	if (btrfs_header_level(eb) > 0) {
3751 		end = btrfs_node_key_ptr_offset(nritems);
3752 
3753 		memzero_extent_buffer(eb, end, eb->len - end);
3754 	} else {
3755 		/*
3756 		 * leaf:
3757 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3758 		 */
3759 		start = btrfs_item_nr_offset(nritems);
3760 		end = btrfs_leaf_data(eb) + leaf_data_end(fs_info, eb);
3761 		memzero_extent_buffer(eb, start, end - start);
3762 	}
3763 
3764 	for (i = 0; i < num_pages; i++) {
3765 		struct page *p = eb->pages[i];
3766 
3767 		clear_page_dirty_for_io(p);
3768 		set_page_writeback(p);
3769 		ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3770 					 p, offset >> 9, PAGE_SIZE, 0, bdev,
3771 					 &epd->bio,
3772 					 end_bio_extent_buffer_writepage,
3773 					 0, epd->bio_flags, bio_flags, false);
3774 		epd->bio_flags = bio_flags;
3775 		if (ret) {
3776 			set_btree_ioerr(p);
3777 			if (PageWriteback(p))
3778 				end_page_writeback(p);
3779 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3780 				end_extent_buffer_writeback(eb);
3781 			ret = -EIO;
3782 			break;
3783 		}
3784 		offset += PAGE_SIZE;
3785 		update_nr_written(wbc, 1);
3786 		unlock_page(p);
3787 	}
3788 
3789 	if (unlikely(ret)) {
3790 		for (; i < num_pages; i++) {
3791 			struct page *p = eb->pages[i];
3792 			clear_page_dirty_for_io(p);
3793 			unlock_page(p);
3794 		}
3795 	}
3796 
3797 	return ret;
3798 }
3799 
3800 int btree_write_cache_pages(struct address_space *mapping,
3801 				   struct writeback_control *wbc)
3802 {
3803 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3804 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3805 	struct extent_buffer *eb, *prev_eb = NULL;
3806 	struct extent_page_data epd = {
3807 		.bio = NULL,
3808 		.tree = tree,
3809 		.extent_locked = 0,
3810 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3811 		.bio_flags = 0,
3812 	};
3813 	int ret = 0;
3814 	int done = 0;
3815 	int nr_to_write_done = 0;
3816 	struct pagevec pvec;
3817 	int nr_pages;
3818 	pgoff_t index;
3819 	pgoff_t end;		/* Inclusive */
3820 	int scanned = 0;
3821 	int tag;
3822 
3823 	pagevec_init(&pvec, 0);
3824 	if (wbc->range_cyclic) {
3825 		index = mapping->writeback_index; /* Start from prev offset */
3826 		end = -1;
3827 	} else {
3828 		index = wbc->range_start >> PAGE_SHIFT;
3829 		end = wbc->range_end >> PAGE_SHIFT;
3830 		scanned = 1;
3831 	}
3832 	if (wbc->sync_mode == WB_SYNC_ALL)
3833 		tag = PAGECACHE_TAG_TOWRITE;
3834 	else
3835 		tag = PAGECACHE_TAG_DIRTY;
3836 retry:
3837 	if (wbc->sync_mode == WB_SYNC_ALL)
3838 		tag_pages_for_writeback(mapping, index, end);
3839 	while (!done && !nr_to_write_done && (index <= end) &&
3840 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3841 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3842 		unsigned i;
3843 
3844 		scanned = 1;
3845 		for (i = 0; i < nr_pages; i++) {
3846 			struct page *page = pvec.pages[i];
3847 
3848 			if (!PagePrivate(page))
3849 				continue;
3850 
3851 			if (!wbc->range_cyclic && page->index > end) {
3852 				done = 1;
3853 				break;
3854 			}
3855 
3856 			spin_lock(&mapping->private_lock);
3857 			if (!PagePrivate(page)) {
3858 				spin_unlock(&mapping->private_lock);
3859 				continue;
3860 			}
3861 
3862 			eb = (struct extent_buffer *)page->private;
3863 
3864 			/*
3865 			 * Shouldn't happen and normally this would be a BUG_ON
3866 			 * but no sense in crashing the users box for something
3867 			 * we can survive anyway.
3868 			 */
3869 			if (WARN_ON(!eb)) {
3870 				spin_unlock(&mapping->private_lock);
3871 				continue;
3872 			}
3873 
3874 			if (eb == prev_eb) {
3875 				spin_unlock(&mapping->private_lock);
3876 				continue;
3877 			}
3878 
3879 			ret = atomic_inc_not_zero(&eb->refs);
3880 			spin_unlock(&mapping->private_lock);
3881 			if (!ret)
3882 				continue;
3883 
3884 			prev_eb = eb;
3885 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3886 			if (!ret) {
3887 				free_extent_buffer(eb);
3888 				continue;
3889 			}
3890 
3891 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3892 			if (ret) {
3893 				done = 1;
3894 				free_extent_buffer(eb);
3895 				break;
3896 			}
3897 			free_extent_buffer(eb);
3898 
3899 			/*
3900 			 * the filesystem may choose to bump up nr_to_write.
3901 			 * We have to make sure to honor the new nr_to_write
3902 			 * at any time
3903 			 */
3904 			nr_to_write_done = wbc->nr_to_write <= 0;
3905 		}
3906 		pagevec_release(&pvec);
3907 		cond_resched();
3908 	}
3909 	if (!scanned && !done) {
3910 		/*
3911 		 * We hit the last page and there is more work to be done: wrap
3912 		 * back to the start of the file
3913 		 */
3914 		scanned = 1;
3915 		index = 0;
3916 		goto retry;
3917 	}
3918 	flush_write_bio(&epd);
3919 	return ret;
3920 }
3921 
3922 /**
3923  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3924  * @mapping: address space structure to write
3925  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3926  * @writepage: function called for each page
3927  * @data: data passed to writepage function
3928  *
3929  * If a page is already under I/O, write_cache_pages() skips it, even
3930  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3931  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3932  * and msync() need to guarantee that all the data which was dirty at the time
3933  * the call was made get new I/O started against them.  If wbc->sync_mode is
3934  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3935  * existing IO to complete.
3936  */
3937 static int extent_write_cache_pages(struct address_space *mapping,
3938 			     struct writeback_control *wbc,
3939 			     writepage_t writepage, void *data,
3940 			     void (*flush_fn)(void *))
3941 {
3942 	struct inode *inode = mapping->host;
3943 	int ret = 0;
3944 	int done = 0;
3945 	int nr_to_write_done = 0;
3946 	struct pagevec pvec;
3947 	int nr_pages;
3948 	pgoff_t index;
3949 	pgoff_t end;		/* Inclusive */
3950 	pgoff_t done_index;
3951 	int range_whole = 0;
3952 	int scanned = 0;
3953 	int tag;
3954 
3955 	/*
3956 	 * We have to hold onto the inode so that ordered extents can do their
3957 	 * work when the IO finishes.  The alternative to this is failing to add
3958 	 * an ordered extent if the igrab() fails there and that is a huge pain
3959 	 * to deal with, so instead just hold onto the inode throughout the
3960 	 * writepages operation.  If it fails here we are freeing up the inode
3961 	 * anyway and we'd rather not waste our time writing out stuff that is
3962 	 * going to be truncated anyway.
3963 	 */
3964 	if (!igrab(inode))
3965 		return 0;
3966 
3967 	pagevec_init(&pvec, 0);
3968 	if (wbc->range_cyclic) {
3969 		index = mapping->writeback_index; /* Start from prev offset */
3970 		end = -1;
3971 	} else {
3972 		index = wbc->range_start >> PAGE_SHIFT;
3973 		end = wbc->range_end >> PAGE_SHIFT;
3974 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3975 			range_whole = 1;
3976 		scanned = 1;
3977 	}
3978 	if (wbc->sync_mode == WB_SYNC_ALL)
3979 		tag = PAGECACHE_TAG_TOWRITE;
3980 	else
3981 		tag = PAGECACHE_TAG_DIRTY;
3982 retry:
3983 	if (wbc->sync_mode == WB_SYNC_ALL)
3984 		tag_pages_for_writeback(mapping, index, end);
3985 	done_index = index;
3986 	while (!done && !nr_to_write_done && (index <= end) &&
3987 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3988 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3989 		unsigned i;
3990 
3991 		scanned = 1;
3992 		for (i = 0; i < nr_pages; i++) {
3993 			struct page *page = pvec.pages[i];
3994 
3995 			done_index = page->index;
3996 			/*
3997 			 * At this point we hold neither mapping->tree_lock nor
3998 			 * lock on the page itself: the page may be truncated or
3999 			 * invalidated (changing page->mapping to NULL), or even
4000 			 * swizzled back from swapper_space to tmpfs file
4001 			 * mapping
4002 			 */
4003 			if (!trylock_page(page)) {
4004 				flush_fn(data);
4005 				lock_page(page);
4006 			}
4007 
4008 			if (unlikely(page->mapping != mapping)) {
4009 				unlock_page(page);
4010 				continue;
4011 			}
4012 
4013 			if (!wbc->range_cyclic && page->index > end) {
4014 				done = 1;
4015 				unlock_page(page);
4016 				continue;
4017 			}
4018 
4019 			if (wbc->sync_mode != WB_SYNC_NONE) {
4020 				if (PageWriteback(page))
4021 					flush_fn(data);
4022 				wait_on_page_writeback(page);
4023 			}
4024 
4025 			if (PageWriteback(page) ||
4026 			    !clear_page_dirty_for_io(page)) {
4027 				unlock_page(page);
4028 				continue;
4029 			}
4030 
4031 			ret = (*writepage)(page, wbc, data);
4032 
4033 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4034 				unlock_page(page);
4035 				ret = 0;
4036 			}
4037 			if (ret < 0) {
4038 				/*
4039 				 * done_index is set past this page,
4040 				 * so media errors will not choke
4041 				 * background writeout for the entire
4042 				 * file. This has consequences for
4043 				 * range_cyclic semantics (ie. it may
4044 				 * not be suitable for data integrity
4045 				 * writeout).
4046 				 */
4047 				done_index = page->index + 1;
4048 				done = 1;
4049 				break;
4050 			}
4051 
4052 			/*
4053 			 * the filesystem may choose to bump up nr_to_write.
4054 			 * We have to make sure to honor the new nr_to_write
4055 			 * at any time
4056 			 */
4057 			nr_to_write_done = wbc->nr_to_write <= 0;
4058 		}
4059 		pagevec_release(&pvec);
4060 		cond_resched();
4061 	}
4062 	if (!scanned && !done) {
4063 		/*
4064 		 * We hit the last page and there is more work to be done: wrap
4065 		 * back to the start of the file
4066 		 */
4067 		scanned = 1;
4068 		index = 0;
4069 		goto retry;
4070 	}
4071 
4072 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4073 		mapping->writeback_index = done_index;
4074 
4075 	btrfs_add_delayed_iput(inode);
4076 	return ret;
4077 }
4078 
4079 static void flush_epd_write_bio(struct extent_page_data *epd)
4080 {
4081 	if (epd->bio) {
4082 		int ret;
4083 
4084 		bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4085 				 epd->sync_io ? REQ_SYNC : 0);
4086 
4087 		ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4088 		BUG_ON(ret < 0); /* -ENOMEM */
4089 		epd->bio = NULL;
4090 	}
4091 }
4092 
4093 static noinline void flush_write_bio(void *data)
4094 {
4095 	struct extent_page_data *epd = data;
4096 	flush_epd_write_bio(epd);
4097 }
4098 
4099 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4100 			  get_extent_t *get_extent,
4101 			  struct writeback_control *wbc)
4102 {
4103 	int ret;
4104 	struct extent_page_data epd = {
4105 		.bio = NULL,
4106 		.tree = tree,
4107 		.get_extent = get_extent,
4108 		.extent_locked = 0,
4109 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4110 		.bio_flags = 0,
4111 	};
4112 
4113 	ret = __extent_writepage(page, wbc, &epd);
4114 
4115 	flush_epd_write_bio(&epd);
4116 	return ret;
4117 }
4118 
4119 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4120 			      u64 start, u64 end, get_extent_t *get_extent,
4121 			      int mode)
4122 {
4123 	int ret = 0;
4124 	struct address_space *mapping = inode->i_mapping;
4125 	struct page *page;
4126 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4127 		PAGE_SHIFT;
4128 
4129 	struct extent_page_data epd = {
4130 		.bio = NULL,
4131 		.tree = tree,
4132 		.get_extent = get_extent,
4133 		.extent_locked = 1,
4134 		.sync_io = mode == WB_SYNC_ALL,
4135 		.bio_flags = 0,
4136 	};
4137 	struct writeback_control wbc_writepages = {
4138 		.sync_mode	= mode,
4139 		.nr_to_write	= nr_pages * 2,
4140 		.range_start	= start,
4141 		.range_end	= end + 1,
4142 	};
4143 
4144 	while (start <= end) {
4145 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4146 		if (clear_page_dirty_for_io(page))
4147 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4148 		else {
4149 			if (tree->ops && tree->ops->writepage_end_io_hook)
4150 				tree->ops->writepage_end_io_hook(page, start,
4151 						 start + PAGE_SIZE - 1,
4152 						 NULL, 1);
4153 			unlock_page(page);
4154 		}
4155 		put_page(page);
4156 		start += PAGE_SIZE;
4157 	}
4158 
4159 	flush_epd_write_bio(&epd);
4160 	return ret;
4161 }
4162 
4163 int extent_writepages(struct extent_io_tree *tree,
4164 		      struct address_space *mapping,
4165 		      get_extent_t *get_extent,
4166 		      struct writeback_control *wbc)
4167 {
4168 	int ret = 0;
4169 	struct extent_page_data epd = {
4170 		.bio = NULL,
4171 		.tree = tree,
4172 		.get_extent = get_extent,
4173 		.extent_locked = 0,
4174 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4175 		.bio_flags = 0,
4176 	};
4177 
4178 	ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
4179 				       flush_write_bio);
4180 	flush_epd_write_bio(&epd);
4181 	return ret;
4182 }
4183 
4184 int extent_readpages(struct extent_io_tree *tree,
4185 		     struct address_space *mapping,
4186 		     struct list_head *pages, unsigned nr_pages,
4187 		     get_extent_t get_extent)
4188 {
4189 	struct bio *bio = NULL;
4190 	unsigned page_idx;
4191 	unsigned long bio_flags = 0;
4192 	struct page *pagepool[16];
4193 	struct page *page;
4194 	struct extent_map *em_cached = NULL;
4195 	int nr = 0;
4196 	u64 prev_em_start = (u64)-1;
4197 
4198 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4199 		page = list_entry(pages->prev, struct page, lru);
4200 
4201 		prefetchw(&page->flags);
4202 		list_del(&page->lru);
4203 		if (add_to_page_cache_lru(page, mapping,
4204 					page->index,
4205 					readahead_gfp_mask(mapping))) {
4206 			put_page(page);
4207 			continue;
4208 		}
4209 
4210 		pagepool[nr++] = page;
4211 		if (nr < ARRAY_SIZE(pagepool))
4212 			continue;
4213 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4214 				   &bio, 0, &bio_flags, &prev_em_start);
4215 		nr = 0;
4216 	}
4217 	if (nr)
4218 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4219 				   &bio, 0, &bio_flags, &prev_em_start);
4220 
4221 	if (em_cached)
4222 		free_extent_map(em_cached);
4223 
4224 	BUG_ON(!list_empty(pages));
4225 	if (bio)
4226 		return submit_one_bio(bio, 0, bio_flags);
4227 	return 0;
4228 }
4229 
4230 /*
4231  * basic invalidatepage code, this waits on any locked or writeback
4232  * ranges corresponding to the page, and then deletes any extent state
4233  * records from the tree
4234  */
4235 int extent_invalidatepage(struct extent_io_tree *tree,
4236 			  struct page *page, unsigned long offset)
4237 {
4238 	struct extent_state *cached_state = NULL;
4239 	u64 start = page_offset(page);
4240 	u64 end = start + PAGE_SIZE - 1;
4241 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4242 
4243 	start += ALIGN(offset, blocksize);
4244 	if (start > end)
4245 		return 0;
4246 
4247 	lock_extent_bits(tree, start, end, &cached_state);
4248 	wait_on_page_writeback(page);
4249 	clear_extent_bit(tree, start, end,
4250 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4251 			 EXTENT_DO_ACCOUNTING,
4252 			 1, 1, &cached_state, GFP_NOFS);
4253 	return 0;
4254 }
4255 
4256 /*
4257  * a helper for releasepage, this tests for areas of the page that
4258  * are locked or under IO and drops the related state bits if it is safe
4259  * to drop the page.
4260  */
4261 static int try_release_extent_state(struct extent_map_tree *map,
4262 				    struct extent_io_tree *tree,
4263 				    struct page *page, gfp_t mask)
4264 {
4265 	u64 start = page_offset(page);
4266 	u64 end = start + PAGE_SIZE - 1;
4267 	int ret = 1;
4268 
4269 	if (test_range_bit(tree, start, end,
4270 			   EXTENT_IOBITS, 0, NULL))
4271 		ret = 0;
4272 	else {
4273 		/*
4274 		 * at this point we can safely clear everything except the
4275 		 * locked bit and the nodatasum bit
4276 		 */
4277 		ret = clear_extent_bit(tree, start, end,
4278 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4279 				 0, 0, NULL, mask);
4280 
4281 		/* if clear_extent_bit failed for enomem reasons,
4282 		 * we can't allow the release to continue.
4283 		 */
4284 		if (ret < 0)
4285 			ret = 0;
4286 		else
4287 			ret = 1;
4288 	}
4289 	return ret;
4290 }
4291 
4292 /*
4293  * a helper for releasepage.  As long as there are no locked extents
4294  * in the range corresponding to the page, both state records and extent
4295  * map records are removed
4296  */
4297 int try_release_extent_mapping(struct extent_map_tree *map,
4298 			       struct extent_io_tree *tree, struct page *page,
4299 			       gfp_t mask)
4300 {
4301 	struct extent_map *em;
4302 	u64 start = page_offset(page);
4303 	u64 end = start + PAGE_SIZE - 1;
4304 
4305 	if (gfpflags_allow_blocking(mask) &&
4306 	    page->mapping->host->i_size > SZ_16M) {
4307 		u64 len;
4308 		while (start <= end) {
4309 			len = end - start + 1;
4310 			write_lock(&map->lock);
4311 			em = lookup_extent_mapping(map, start, len);
4312 			if (!em) {
4313 				write_unlock(&map->lock);
4314 				break;
4315 			}
4316 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4317 			    em->start != start) {
4318 				write_unlock(&map->lock);
4319 				free_extent_map(em);
4320 				break;
4321 			}
4322 			if (!test_range_bit(tree, em->start,
4323 					    extent_map_end(em) - 1,
4324 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4325 					    0, NULL)) {
4326 				remove_extent_mapping(map, em);
4327 				/* once for the rb tree */
4328 				free_extent_map(em);
4329 			}
4330 			start = extent_map_end(em);
4331 			write_unlock(&map->lock);
4332 
4333 			/* once for us */
4334 			free_extent_map(em);
4335 		}
4336 	}
4337 	return try_release_extent_state(map, tree, page, mask);
4338 }
4339 
4340 /*
4341  * helper function for fiemap, which doesn't want to see any holes.
4342  * This maps until we find something past 'last'
4343  */
4344 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4345 						u64 offset,
4346 						u64 last,
4347 						get_extent_t *get_extent)
4348 {
4349 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4350 	struct extent_map *em;
4351 	u64 len;
4352 
4353 	if (offset >= last)
4354 		return NULL;
4355 
4356 	while (1) {
4357 		len = last - offset;
4358 		if (len == 0)
4359 			break;
4360 		len = ALIGN(len, sectorsize);
4361 		em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
4362 		if (IS_ERR_OR_NULL(em))
4363 			return em;
4364 
4365 		/* if this isn't a hole return it */
4366 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4367 		    em->block_start != EXTENT_MAP_HOLE) {
4368 			return em;
4369 		}
4370 
4371 		/* this is a hole, advance to the next extent */
4372 		offset = extent_map_end(em);
4373 		free_extent_map(em);
4374 		if (offset >= last)
4375 			break;
4376 	}
4377 	return NULL;
4378 }
4379 
4380 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4381 		__u64 start, __u64 len, get_extent_t *get_extent)
4382 {
4383 	int ret = 0;
4384 	u64 off = start;
4385 	u64 max = start + len;
4386 	u32 flags = 0;
4387 	u32 found_type;
4388 	u64 last;
4389 	u64 last_for_get_extent = 0;
4390 	u64 disko = 0;
4391 	u64 isize = i_size_read(inode);
4392 	struct btrfs_key found_key;
4393 	struct extent_map *em = NULL;
4394 	struct extent_state *cached_state = NULL;
4395 	struct btrfs_path *path;
4396 	struct btrfs_root *root = BTRFS_I(inode)->root;
4397 	int end = 0;
4398 	u64 em_start = 0;
4399 	u64 em_len = 0;
4400 	u64 em_end = 0;
4401 
4402 	if (len == 0)
4403 		return -EINVAL;
4404 
4405 	path = btrfs_alloc_path();
4406 	if (!path)
4407 		return -ENOMEM;
4408 	path->leave_spinning = 1;
4409 
4410 	start = round_down(start, btrfs_inode_sectorsize(inode));
4411 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4412 
4413 	/*
4414 	 * lookup the last file extent.  We're not using i_size here
4415 	 * because there might be preallocation past i_size
4416 	 */
4417 	ret = btrfs_lookup_file_extent(NULL, root, path,
4418 			btrfs_ino(BTRFS_I(inode)), -1, 0);
4419 	if (ret < 0) {
4420 		btrfs_free_path(path);
4421 		return ret;
4422 	} else {
4423 		WARN_ON(!ret);
4424 		if (ret == 1)
4425 			ret = 0;
4426 	}
4427 
4428 	path->slots[0]--;
4429 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4430 	found_type = found_key.type;
4431 
4432 	/* No extents, but there might be delalloc bits */
4433 	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4434 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4435 		/* have to trust i_size as the end */
4436 		last = (u64)-1;
4437 		last_for_get_extent = isize;
4438 	} else {
4439 		/*
4440 		 * remember the start of the last extent.  There are a
4441 		 * bunch of different factors that go into the length of the
4442 		 * extent, so its much less complex to remember where it started
4443 		 */
4444 		last = found_key.offset;
4445 		last_for_get_extent = last + 1;
4446 	}
4447 	btrfs_release_path(path);
4448 
4449 	/*
4450 	 * we might have some extents allocated but more delalloc past those
4451 	 * extents.  so, we trust isize unless the start of the last extent is
4452 	 * beyond isize
4453 	 */
4454 	if (last < isize) {
4455 		last = (u64)-1;
4456 		last_for_get_extent = isize;
4457 	}
4458 
4459 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4460 			 &cached_state);
4461 
4462 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4463 				   get_extent);
4464 	if (!em)
4465 		goto out;
4466 	if (IS_ERR(em)) {
4467 		ret = PTR_ERR(em);
4468 		goto out;
4469 	}
4470 
4471 	while (!end) {
4472 		u64 offset_in_extent = 0;
4473 
4474 		/* break if the extent we found is outside the range */
4475 		if (em->start >= max || extent_map_end(em) < off)
4476 			break;
4477 
4478 		/*
4479 		 * get_extent may return an extent that starts before our
4480 		 * requested range.  We have to make sure the ranges
4481 		 * we return to fiemap always move forward and don't
4482 		 * overlap, so adjust the offsets here
4483 		 */
4484 		em_start = max(em->start, off);
4485 
4486 		/*
4487 		 * record the offset from the start of the extent
4488 		 * for adjusting the disk offset below.  Only do this if the
4489 		 * extent isn't compressed since our in ram offset may be past
4490 		 * what we have actually allocated on disk.
4491 		 */
4492 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4493 			offset_in_extent = em_start - em->start;
4494 		em_end = extent_map_end(em);
4495 		em_len = em_end - em_start;
4496 		disko = 0;
4497 		flags = 0;
4498 
4499 		/*
4500 		 * bump off for our next call to get_extent
4501 		 */
4502 		off = extent_map_end(em);
4503 		if (off >= max)
4504 			end = 1;
4505 
4506 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4507 			end = 1;
4508 			flags |= FIEMAP_EXTENT_LAST;
4509 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4510 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4511 				  FIEMAP_EXTENT_NOT_ALIGNED);
4512 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4513 			flags |= (FIEMAP_EXTENT_DELALLOC |
4514 				  FIEMAP_EXTENT_UNKNOWN);
4515 		} else if (fieinfo->fi_extents_max) {
4516 			struct btrfs_trans_handle *trans;
4517 
4518 			u64 bytenr = em->block_start -
4519 				(em->start - em->orig_start);
4520 
4521 			disko = em->block_start + offset_in_extent;
4522 
4523 			/*
4524 			 * We need a trans handle to get delayed refs
4525 			 */
4526 			trans = btrfs_join_transaction(root);
4527 			/*
4528 			 * It's OK if we can't start a trans we can still check
4529 			 * from commit_root
4530 			 */
4531 			if (IS_ERR(trans))
4532 				trans = NULL;
4533 
4534 			/*
4535 			 * As btrfs supports shared space, this information
4536 			 * can be exported to userspace tools via
4537 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4538 			 * then we're just getting a count and we can skip the
4539 			 * lookup stuff.
4540 			 */
4541 			ret = btrfs_check_shared(trans, root->fs_info,
4542 					root->objectid,
4543 					btrfs_ino(BTRFS_I(inode)), bytenr);
4544 			if (trans)
4545 				btrfs_end_transaction(trans);
4546 			if (ret < 0)
4547 				goto out_free;
4548 			if (ret)
4549 				flags |= FIEMAP_EXTENT_SHARED;
4550 			ret = 0;
4551 		}
4552 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4553 			flags |= FIEMAP_EXTENT_ENCODED;
4554 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4555 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4556 
4557 		free_extent_map(em);
4558 		em = NULL;
4559 		if ((em_start >= last) || em_len == (u64)-1 ||
4560 		   (last == (u64)-1 && isize <= em_end)) {
4561 			flags |= FIEMAP_EXTENT_LAST;
4562 			end = 1;
4563 		}
4564 
4565 		/* now scan forward to see if this is really the last extent. */
4566 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4567 					   get_extent);
4568 		if (IS_ERR(em)) {
4569 			ret = PTR_ERR(em);
4570 			goto out;
4571 		}
4572 		if (!em) {
4573 			flags |= FIEMAP_EXTENT_LAST;
4574 			end = 1;
4575 		}
4576 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4577 					      em_len, flags);
4578 		if (ret) {
4579 			if (ret == 1)
4580 				ret = 0;
4581 			goto out_free;
4582 		}
4583 	}
4584 out_free:
4585 	free_extent_map(em);
4586 out:
4587 	btrfs_free_path(path);
4588 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4589 			     &cached_state, GFP_NOFS);
4590 	return ret;
4591 }
4592 
4593 static void __free_extent_buffer(struct extent_buffer *eb)
4594 {
4595 	btrfs_leak_debug_del(&eb->leak_list);
4596 	kmem_cache_free(extent_buffer_cache, eb);
4597 }
4598 
4599 int extent_buffer_under_io(struct extent_buffer *eb)
4600 {
4601 	return (atomic_read(&eb->io_pages) ||
4602 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4603 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4604 }
4605 
4606 /*
4607  * Helper for releasing extent buffer page.
4608  */
4609 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4610 {
4611 	unsigned long index;
4612 	struct page *page;
4613 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4614 
4615 	BUG_ON(extent_buffer_under_io(eb));
4616 
4617 	index = num_extent_pages(eb->start, eb->len);
4618 	if (index == 0)
4619 		return;
4620 
4621 	do {
4622 		index--;
4623 		page = eb->pages[index];
4624 		if (!page)
4625 			continue;
4626 		if (mapped)
4627 			spin_lock(&page->mapping->private_lock);
4628 		/*
4629 		 * We do this since we'll remove the pages after we've
4630 		 * removed the eb from the radix tree, so we could race
4631 		 * and have this page now attached to the new eb.  So
4632 		 * only clear page_private if it's still connected to
4633 		 * this eb.
4634 		 */
4635 		if (PagePrivate(page) &&
4636 		    page->private == (unsigned long)eb) {
4637 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4638 			BUG_ON(PageDirty(page));
4639 			BUG_ON(PageWriteback(page));
4640 			/*
4641 			 * We need to make sure we haven't be attached
4642 			 * to a new eb.
4643 			 */
4644 			ClearPagePrivate(page);
4645 			set_page_private(page, 0);
4646 			/* One for the page private */
4647 			put_page(page);
4648 		}
4649 
4650 		if (mapped)
4651 			spin_unlock(&page->mapping->private_lock);
4652 
4653 		/* One for when we allocated the page */
4654 		put_page(page);
4655 	} while (index != 0);
4656 }
4657 
4658 /*
4659  * Helper for releasing the extent buffer.
4660  */
4661 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4662 {
4663 	btrfs_release_extent_buffer_page(eb);
4664 	__free_extent_buffer(eb);
4665 }
4666 
4667 static struct extent_buffer *
4668 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4669 		      unsigned long len)
4670 {
4671 	struct extent_buffer *eb = NULL;
4672 
4673 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4674 	eb->start = start;
4675 	eb->len = len;
4676 	eb->fs_info = fs_info;
4677 	eb->bflags = 0;
4678 	rwlock_init(&eb->lock);
4679 	atomic_set(&eb->write_locks, 0);
4680 	atomic_set(&eb->read_locks, 0);
4681 	atomic_set(&eb->blocking_readers, 0);
4682 	atomic_set(&eb->blocking_writers, 0);
4683 	atomic_set(&eb->spinning_readers, 0);
4684 	atomic_set(&eb->spinning_writers, 0);
4685 	eb->lock_nested = 0;
4686 	init_waitqueue_head(&eb->write_lock_wq);
4687 	init_waitqueue_head(&eb->read_lock_wq);
4688 
4689 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4690 
4691 	spin_lock_init(&eb->refs_lock);
4692 	atomic_set(&eb->refs, 1);
4693 	atomic_set(&eb->io_pages, 0);
4694 
4695 	/*
4696 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4697 	 */
4698 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4699 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4700 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4701 
4702 	return eb;
4703 }
4704 
4705 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4706 {
4707 	unsigned long i;
4708 	struct page *p;
4709 	struct extent_buffer *new;
4710 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4711 
4712 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4713 	if (new == NULL)
4714 		return NULL;
4715 
4716 	for (i = 0; i < num_pages; i++) {
4717 		p = alloc_page(GFP_NOFS);
4718 		if (!p) {
4719 			btrfs_release_extent_buffer(new);
4720 			return NULL;
4721 		}
4722 		attach_extent_buffer_page(new, p);
4723 		WARN_ON(PageDirty(p));
4724 		SetPageUptodate(p);
4725 		new->pages[i] = p;
4726 		copy_page(page_address(p), page_address(src->pages[i]));
4727 	}
4728 
4729 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4730 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4731 
4732 	return new;
4733 }
4734 
4735 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4736 						  u64 start, unsigned long len)
4737 {
4738 	struct extent_buffer *eb;
4739 	unsigned long num_pages;
4740 	unsigned long i;
4741 
4742 	num_pages = num_extent_pages(start, len);
4743 
4744 	eb = __alloc_extent_buffer(fs_info, start, len);
4745 	if (!eb)
4746 		return NULL;
4747 
4748 	for (i = 0; i < num_pages; i++) {
4749 		eb->pages[i] = alloc_page(GFP_NOFS);
4750 		if (!eb->pages[i])
4751 			goto err;
4752 	}
4753 	set_extent_buffer_uptodate(eb);
4754 	btrfs_set_header_nritems(eb, 0);
4755 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4756 
4757 	return eb;
4758 err:
4759 	for (; i > 0; i--)
4760 		__free_page(eb->pages[i - 1]);
4761 	__free_extent_buffer(eb);
4762 	return NULL;
4763 }
4764 
4765 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4766 						u64 start)
4767 {
4768 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4769 }
4770 
4771 static void check_buffer_tree_ref(struct extent_buffer *eb)
4772 {
4773 	int refs;
4774 	/* the ref bit is tricky.  We have to make sure it is set
4775 	 * if we have the buffer dirty.   Otherwise the
4776 	 * code to free a buffer can end up dropping a dirty
4777 	 * page
4778 	 *
4779 	 * Once the ref bit is set, it won't go away while the
4780 	 * buffer is dirty or in writeback, and it also won't
4781 	 * go away while we have the reference count on the
4782 	 * eb bumped.
4783 	 *
4784 	 * We can't just set the ref bit without bumping the
4785 	 * ref on the eb because free_extent_buffer might
4786 	 * see the ref bit and try to clear it.  If this happens
4787 	 * free_extent_buffer might end up dropping our original
4788 	 * ref by mistake and freeing the page before we are able
4789 	 * to add one more ref.
4790 	 *
4791 	 * So bump the ref count first, then set the bit.  If someone
4792 	 * beat us to it, drop the ref we added.
4793 	 */
4794 	refs = atomic_read(&eb->refs);
4795 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4796 		return;
4797 
4798 	spin_lock(&eb->refs_lock);
4799 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4800 		atomic_inc(&eb->refs);
4801 	spin_unlock(&eb->refs_lock);
4802 }
4803 
4804 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4805 		struct page *accessed)
4806 {
4807 	unsigned long num_pages, i;
4808 
4809 	check_buffer_tree_ref(eb);
4810 
4811 	num_pages = num_extent_pages(eb->start, eb->len);
4812 	for (i = 0; i < num_pages; i++) {
4813 		struct page *p = eb->pages[i];
4814 
4815 		if (p != accessed)
4816 			mark_page_accessed(p);
4817 	}
4818 }
4819 
4820 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4821 					 u64 start)
4822 {
4823 	struct extent_buffer *eb;
4824 
4825 	rcu_read_lock();
4826 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4827 			       start >> PAGE_SHIFT);
4828 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4829 		rcu_read_unlock();
4830 		/*
4831 		 * Lock our eb's refs_lock to avoid races with
4832 		 * free_extent_buffer. When we get our eb it might be flagged
4833 		 * with EXTENT_BUFFER_STALE and another task running
4834 		 * free_extent_buffer might have seen that flag set,
4835 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4836 		 * writeback flags not set) and it's still in the tree (flag
4837 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4838 		 * of decrementing the extent buffer's reference count twice.
4839 		 * So here we could race and increment the eb's reference count,
4840 		 * clear its stale flag, mark it as dirty and drop our reference
4841 		 * before the other task finishes executing free_extent_buffer,
4842 		 * which would later result in an attempt to free an extent
4843 		 * buffer that is dirty.
4844 		 */
4845 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4846 			spin_lock(&eb->refs_lock);
4847 			spin_unlock(&eb->refs_lock);
4848 		}
4849 		mark_extent_buffer_accessed(eb, NULL);
4850 		return eb;
4851 	}
4852 	rcu_read_unlock();
4853 
4854 	return NULL;
4855 }
4856 
4857 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4858 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4859 					u64 start)
4860 {
4861 	struct extent_buffer *eb, *exists = NULL;
4862 	int ret;
4863 
4864 	eb = find_extent_buffer(fs_info, start);
4865 	if (eb)
4866 		return eb;
4867 	eb = alloc_dummy_extent_buffer(fs_info, start);
4868 	if (!eb)
4869 		return NULL;
4870 	eb->fs_info = fs_info;
4871 again:
4872 	ret = radix_tree_preload(GFP_NOFS);
4873 	if (ret)
4874 		goto free_eb;
4875 	spin_lock(&fs_info->buffer_lock);
4876 	ret = radix_tree_insert(&fs_info->buffer_radix,
4877 				start >> PAGE_SHIFT, eb);
4878 	spin_unlock(&fs_info->buffer_lock);
4879 	radix_tree_preload_end();
4880 	if (ret == -EEXIST) {
4881 		exists = find_extent_buffer(fs_info, start);
4882 		if (exists)
4883 			goto free_eb;
4884 		else
4885 			goto again;
4886 	}
4887 	check_buffer_tree_ref(eb);
4888 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4889 
4890 	/*
4891 	 * We will free dummy extent buffer's if they come into
4892 	 * free_extent_buffer with a ref count of 2, but if we are using this we
4893 	 * want the buffers to stay in memory until we're done with them, so
4894 	 * bump the ref count again.
4895 	 */
4896 	atomic_inc(&eb->refs);
4897 	return eb;
4898 free_eb:
4899 	btrfs_release_extent_buffer(eb);
4900 	return exists;
4901 }
4902 #endif
4903 
4904 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4905 					  u64 start)
4906 {
4907 	unsigned long len = fs_info->nodesize;
4908 	unsigned long num_pages = num_extent_pages(start, len);
4909 	unsigned long i;
4910 	unsigned long index = start >> PAGE_SHIFT;
4911 	struct extent_buffer *eb;
4912 	struct extent_buffer *exists = NULL;
4913 	struct page *p;
4914 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4915 	int uptodate = 1;
4916 	int ret;
4917 
4918 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4919 		btrfs_err(fs_info, "bad tree block start %llu", start);
4920 		return ERR_PTR(-EINVAL);
4921 	}
4922 
4923 	eb = find_extent_buffer(fs_info, start);
4924 	if (eb)
4925 		return eb;
4926 
4927 	eb = __alloc_extent_buffer(fs_info, start, len);
4928 	if (!eb)
4929 		return ERR_PTR(-ENOMEM);
4930 
4931 	for (i = 0; i < num_pages; i++, index++) {
4932 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4933 		if (!p) {
4934 			exists = ERR_PTR(-ENOMEM);
4935 			goto free_eb;
4936 		}
4937 
4938 		spin_lock(&mapping->private_lock);
4939 		if (PagePrivate(p)) {
4940 			/*
4941 			 * We could have already allocated an eb for this page
4942 			 * and attached one so lets see if we can get a ref on
4943 			 * the existing eb, and if we can we know it's good and
4944 			 * we can just return that one, else we know we can just
4945 			 * overwrite page->private.
4946 			 */
4947 			exists = (struct extent_buffer *)p->private;
4948 			if (atomic_inc_not_zero(&exists->refs)) {
4949 				spin_unlock(&mapping->private_lock);
4950 				unlock_page(p);
4951 				put_page(p);
4952 				mark_extent_buffer_accessed(exists, p);
4953 				goto free_eb;
4954 			}
4955 			exists = NULL;
4956 
4957 			/*
4958 			 * Do this so attach doesn't complain and we need to
4959 			 * drop the ref the old guy had.
4960 			 */
4961 			ClearPagePrivate(p);
4962 			WARN_ON(PageDirty(p));
4963 			put_page(p);
4964 		}
4965 		attach_extent_buffer_page(eb, p);
4966 		spin_unlock(&mapping->private_lock);
4967 		WARN_ON(PageDirty(p));
4968 		eb->pages[i] = p;
4969 		if (!PageUptodate(p))
4970 			uptodate = 0;
4971 
4972 		/*
4973 		 * see below about how we avoid a nasty race with release page
4974 		 * and why we unlock later
4975 		 */
4976 	}
4977 	if (uptodate)
4978 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4979 again:
4980 	ret = radix_tree_preload(GFP_NOFS);
4981 	if (ret) {
4982 		exists = ERR_PTR(ret);
4983 		goto free_eb;
4984 	}
4985 
4986 	spin_lock(&fs_info->buffer_lock);
4987 	ret = radix_tree_insert(&fs_info->buffer_radix,
4988 				start >> PAGE_SHIFT, eb);
4989 	spin_unlock(&fs_info->buffer_lock);
4990 	radix_tree_preload_end();
4991 	if (ret == -EEXIST) {
4992 		exists = find_extent_buffer(fs_info, start);
4993 		if (exists)
4994 			goto free_eb;
4995 		else
4996 			goto again;
4997 	}
4998 	/* add one reference for the tree */
4999 	check_buffer_tree_ref(eb);
5000 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5001 
5002 	/*
5003 	 * there is a race where release page may have
5004 	 * tried to find this extent buffer in the radix
5005 	 * but failed.  It will tell the VM it is safe to
5006 	 * reclaim the, and it will clear the page private bit.
5007 	 * We must make sure to set the page private bit properly
5008 	 * after the extent buffer is in the radix tree so
5009 	 * it doesn't get lost
5010 	 */
5011 	SetPageChecked(eb->pages[0]);
5012 	for (i = 1; i < num_pages; i++) {
5013 		p = eb->pages[i];
5014 		ClearPageChecked(p);
5015 		unlock_page(p);
5016 	}
5017 	unlock_page(eb->pages[0]);
5018 	return eb;
5019 
5020 free_eb:
5021 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5022 	for (i = 0; i < num_pages; i++) {
5023 		if (eb->pages[i])
5024 			unlock_page(eb->pages[i]);
5025 	}
5026 
5027 	btrfs_release_extent_buffer(eb);
5028 	return exists;
5029 }
5030 
5031 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5032 {
5033 	struct extent_buffer *eb =
5034 			container_of(head, struct extent_buffer, rcu_head);
5035 
5036 	__free_extent_buffer(eb);
5037 }
5038 
5039 /* Expects to have eb->eb_lock already held */
5040 static int release_extent_buffer(struct extent_buffer *eb)
5041 {
5042 	WARN_ON(atomic_read(&eb->refs) == 0);
5043 	if (atomic_dec_and_test(&eb->refs)) {
5044 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5045 			struct btrfs_fs_info *fs_info = eb->fs_info;
5046 
5047 			spin_unlock(&eb->refs_lock);
5048 
5049 			spin_lock(&fs_info->buffer_lock);
5050 			radix_tree_delete(&fs_info->buffer_radix,
5051 					  eb->start >> PAGE_SHIFT);
5052 			spin_unlock(&fs_info->buffer_lock);
5053 		} else {
5054 			spin_unlock(&eb->refs_lock);
5055 		}
5056 
5057 		/* Should be safe to release our pages at this point */
5058 		btrfs_release_extent_buffer_page(eb);
5059 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5060 		if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5061 			__free_extent_buffer(eb);
5062 			return 1;
5063 		}
5064 #endif
5065 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5066 		return 1;
5067 	}
5068 	spin_unlock(&eb->refs_lock);
5069 
5070 	return 0;
5071 }
5072 
5073 void free_extent_buffer(struct extent_buffer *eb)
5074 {
5075 	int refs;
5076 	int old;
5077 	if (!eb)
5078 		return;
5079 
5080 	while (1) {
5081 		refs = atomic_read(&eb->refs);
5082 		if (refs <= 3)
5083 			break;
5084 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5085 		if (old == refs)
5086 			return;
5087 	}
5088 
5089 	spin_lock(&eb->refs_lock);
5090 	if (atomic_read(&eb->refs) == 2 &&
5091 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5092 		atomic_dec(&eb->refs);
5093 
5094 	if (atomic_read(&eb->refs) == 2 &&
5095 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5096 	    !extent_buffer_under_io(eb) &&
5097 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5098 		atomic_dec(&eb->refs);
5099 
5100 	/*
5101 	 * I know this is terrible, but it's temporary until we stop tracking
5102 	 * the uptodate bits and such for the extent buffers.
5103 	 */
5104 	release_extent_buffer(eb);
5105 }
5106 
5107 void free_extent_buffer_stale(struct extent_buffer *eb)
5108 {
5109 	if (!eb)
5110 		return;
5111 
5112 	spin_lock(&eb->refs_lock);
5113 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5114 
5115 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5116 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5117 		atomic_dec(&eb->refs);
5118 	release_extent_buffer(eb);
5119 }
5120 
5121 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5122 {
5123 	unsigned long i;
5124 	unsigned long num_pages;
5125 	struct page *page;
5126 
5127 	num_pages = num_extent_pages(eb->start, eb->len);
5128 
5129 	for (i = 0; i < num_pages; i++) {
5130 		page = eb->pages[i];
5131 		if (!PageDirty(page))
5132 			continue;
5133 
5134 		lock_page(page);
5135 		WARN_ON(!PagePrivate(page));
5136 
5137 		clear_page_dirty_for_io(page);
5138 		spin_lock_irq(&page->mapping->tree_lock);
5139 		if (!PageDirty(page)) {
5140 			radix_tree_tag_clear(&page->mapping->page_tree,
5141 						page_index(page),
5142 						PAGECACHE_TAG_DIRTY);
5143 		}
5144 		spin_unlock_irq(&page->mapping->tree_lock);
5145 		ClearPageError(page);
5146 		unlock_page(page);
5147 	}
5148 	WARN_ON(atomic_read(&eb->refs) == 0);
5149 }
5150 
5151 int set_extent_buffer_dirty(struct extent_buffer *eb)
5152 {
5153 	unsigned long i;
5154 	unsigned long num_pages;
5155 	int was_dirty = 0;
5156 
5157 	check_buffer_tree_ref(eb);
5158 
5159 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5160 
5161 	num_pages = num_extent_pages(eb->start, eb->len);
5162 	WARN_ON(atomic_read(&eb->refs) == 0);
5163 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5164 
5165 	for (i = 0; i < num_pages; i++)
5166 		set_page_dirty(eb->pages[i]);
5167 	return was_dirty;
5168 }
5169 
5170 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5171 {
5172 	unsigned long i;
5173 	struct page *page;
5174 	unsigned long num_pages;
5175 
5176 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5177 	num_pages = num_extent_pages(eb->start, eb->len);
5178 	for (i = 0; i < num_pages; i++) {
5179 		page = eb->pages[i];
5180 		if (page)
5181 			ClearPageUptodate(page);
5182 	}
5183 }
5184 
5185 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5186 {
5187 	unsigned long i;
5188 	struct page *page;
5189 	unsigned long num_pages;
5190 
5191 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5192 	num_pages = num_extent_pages(eb->start, eb->len);
5193 	for (i = 0; i < num_pages; i++) {
5194 		page = eb->pages[i];
5195 		SetPageUptodate(page);
5196 	}
5197 }
5198 
5199 int extent_buffer_uptodate(struct extent_buffer *eb)
5200 {
5201 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5202 }
5203 
5204 int read_extent_buffer_pages(struct extent_io_tree *tree,
5205 			     struct extent_buffer *eb, int wait,
5206 			     get_extent_t *get_extent, int mirror_num)
5207 {
5208 	unsigned long i;
5209 	struct page *page;
5210 	int err;
5211 	int ret = 0;
5212 	int locked_pages = 0;
5213 	int all_uptodate = 1;
5214 	unsigned long num_pages;
5215 	unsigned long num_reads = 0;
5216 	struct bio *bio = NULL;
5217 	unsigned long bio_flags = 0;
5218 
5219 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5220 		return 0;
5221 
5222 	num_pages = num_extent_pages(eb->start, eb->len);
5223 	for (i = 0; i < num_pages; i++) {
5224 		page = eb->pages[i];
5225 		if (wait == WAIT_NONE) {
5226 			if (!trylock_page(page))
5227 				goto unlock_exit;
5228 		} else {
5229 			lock_page(page);
5230 		}
5231 		locked_pages++;
5232 	}
5233 	/*
5234 	 * We need to firstly lock all pages to make sure that
5235 	 * the uptodate bit of our pages won't be affected by
5236 	 * clear_extent_buffer_uptodate().
5237 	 */
5238 	for (i = 0; i < num_pages; i++) {
5239 		page = eb->pages[i];
5240 		if (!PageUptodate(page)) {
5241 			num_reads++;
5242 			all_uptodate = 0;
5243 		}
5244 	}
5245 
5246 	if (all_uptodate) {
5247 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5248 		goto unlock_exit;
5249 	}
5250 
5251 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5252 	eb->read_mirror = 0;
5253 	atomic_set(&eb->io_pages, num_reads);
5254 	for (i = 0; i < num_pages; i++) {
5255 		page = eb->pages[i];
5256 
5257 		if (!PageUptodate(page)) {
5258 			if (ret) {
5259 				atomic_dec(&eb->io_pages);
5260 				unlock_page(page);
5261 				continue;
5262 			}
5263 
5264 			ClearPageError(page);
5265 			err = __extent_read_full_page(tree, page,
5266 						      get_extent, &bio,
5267 						      mirror_num, &bio_flags,
5268 						      REQ_META);
5269 			if (err) {
5270 				ret = err;
5271 				/*
5272 				 * We use &bio in above __extent_read_full_page,
5273 				 * so we ensure that if it returns error, the
5274 				 * current page fails to add itself to bio and
5275 				 * it's been unlocked.
5276 				 *
5277 				 * We must dec io_pages by ourselves.
5278 				 */
5279 				atomic_dec(&eb->io_pages);
5280 			}
5281 		} else {
5282 			unlock_page(page);
5283 		}
5284 	}
5285 
5286 	if (bio) {
5287 		err = submit_one_bio(bio, mirror_num, bio_flags);
5288 		if (err)
5289 			return err;
5290 	}
5291 
5292 	if (ret || wait != WAIT_COMPLETE)
5293 		return ret;
5294 
5295 	for (i = 0; i < num_pages; i++) {
5296 		page = eb->pages[i];
5297 		wait_on_page_locked(page);
5298 		if (!PageUptodate(page))
5299 			ret = -EIO;
5300 	}
5301 
5302 	return ret;
5303 
5304 unlock_exit:
5305 	while (locked_pages > 0) {
5306 		locked_pages--;
5307 		page = eb->pages[locked_pages];
5308 		unlock_page(page);
5309 	}
5310 	return ret;
5311 }
5312 
5313 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5314 			unsigned long start,
5315 			unsigned long len)
5316 {
5317 	size_t cur;
5318 	size_t offset;
5319 	struct page *page;
5320 	char *kaddr;
5321 	char *dst = (char *)dstv;
5322 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5323 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5324 
5325 	WARN_ON(start > eb->len);
5326 	WARN_ON(start + len > eb->start + eb->len);
5327 
5328 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5329 
5330 	while (len > 0) {
5331 		page = eb->pages[i];
5332 
5333 		cur = min(len, (PAGE_SIZE - offset));
5334 		kaddr = page_address(page);
5335 		memcpy(dst, kaddr + offset, cur);
5336 
5337 		dst += cur;
5338 		len -= cur;
5339 		offset = 0;
5340 		i++;
5341 	}
5342 }
5343 
5344 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5345 			unsigned long start,
5346 			unsigned long len)
5347 {
5348 	size_t cur;
5349 	size_t offset;
5350 	struct page *page;
5351 	char *kaddr;
5352 	char __user *dst = (char __user *)dstv;
5353 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5354 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5355 	int ret = 0;
5356 
5357 	WARN_ON(start > eb->len);
5358 	WARN_ON(start + len > eb->start + eb->len);
5359 
5360 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5361 
5362 	while (len > 0) {
5363 		page = eb->pages[i];
5364 
5365 		cur = min(len, (PAGE_SIZE - offset));
5366 		kaddr = page_address(page);
5367 		if (copy_to_user(dst, kaddr + offset, cur)) {
5368 			ret = -EFAULT;
5369 			break;
5370 		}
5371 
5372 		dst += cur;
5373 		len -= cur;
5374 		offset = 0;
5375 		i++;
5376 	}
5377 
5378 	return ret;
5379 }
5380 
5381 /*
5382  * return 0 if the item is found within a page.
5383  * return 1 if the item spans two pages.
5384  * return -EINVAL otherwise.
5385  */
5386 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5387 			       unsigned long min_len, char **map,
5388 			       unsigned long *map_start,
5389 			       unsigned long *map_len)
5390 {
5391 	size_t offset = start & (PAGE_SIZE - 1);
5392 	char *kaddr;
5393 	struct page *p;
5394 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5395 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5396 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5397 		PAGE_SHIFT;
5398 
5399 	if (i != end_i)
5400 		return 1;
5401 
5402 	if (i == 0) {
5403 		offset = start_offset;
5404 		*map_start = 0;
5405 	} else {
5406 		offset = 0;
5407 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5408 	}
5409 
5410 	if (start + min_len > eb->len) {
5411 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5412 		       eb->start, eb->len, start, min_len);
5413 		return -EINVAL;
5414 	}
5415 
5416 	p = eb->pages[i];
5417 	kaddr = page_address(p);
5418 	*map = kaddr + offset;
5419 	*map_len = PAGE_SIZE - offset;
5420 	return 0;
5421 }
5422 
5423 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5424 			  unsigned long start,
5425 			  unsigned long len)
5426 {
5427 	size_t cur;
5428 	size_t offset;
5429 	struct page *page;
5430 	char *kaddr;
5431 	char *ptr = (char *)ptrv;
5432 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5433 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5434 	int ret = 0;
5435 
5436 	WARN_ON(start > eb->len);
5437 	WARN_ON(start + len > eb->start + eb->len);
5438 
5439 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5440 
5441 	while (len > 0) {
5442 		page = eb->pages[i];
5443 
5444 		cur = min(len, (PAGE_SIZE - offset));
5445 
5446 		kaddr = page_address(page);
5447 		ret = memcmp(ptr, kaddr + offset, cur);
5448 		if (ret)
5449 			break;
5450 
5451 		ptr += cur;
5452 		len -= cur;
5453 		offset = 0;
5454 		i++;
5455 	}
5456 	return ret;
5457 }
5458 
5459 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5460 		const void *srcv)
5461 {
5462 	char *kaddr;
5463 
5464 	WARN_ON(!PageUptodate(eb->pages[0]));
5465 	kaddr = page_address(eb->pages[0]);
5466 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5467 			BTRFS_FSID_SIZE);
5468 }
5469 
5470 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5471 {
5472 	char *kaddr;
5473 
5474 	WARN_ON(!PageUptodate(eb->pages[0]));
5475 	kaddr = page_address(eb->pages[0]);
5476 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5477 			BTRFS_FSID_SIZE);
5478 }
5479 
5480 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5481 			 unsigned long start, unsigned long len)
5482 {
5483 	size_t cur;
5484 	size_t offset;
5485 	struct page *page;
5486 	char *kaddr;
5487 	char *src = (char *)srcv;
5488 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5489 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5490 
5491 	WARN_ON(start > eb->len);
5492 	WARN_ON(start + len > eb->start + eb->len);
5493 
5494 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5495 
5496 	while (len > 0) {
5497 		page = eb->pages[i];
5498 		WARN_ON(!PageUptodate(page));
5499 
5500 		cur = min(len, PAGE_SIZE - offset);
5501 		kaddr = page_address(page);
5502 		memcpy(kaddr + offset, src, cur);
5503 
5504 		src += cur;
5505 		len -= cur;
5506 		offset = 0;
5507 		i++;
5508 	}
5509 }
5510 
5511 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5512 		unsigned long len)
5513 {
5514 	size_t cur;
5515 	size_t offset;
5516 	struct page *page;
5517 	char *kaddr;
5518 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5519 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5520 
5521 	WARN_ON(start > eb->len);
5522 	WARN_ON(start + len > eb->start + eb->len);
5523 
5524 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5525 
5526 	while (len > 0) {
5527 		page = eb->pages[i];
5528 		WARN_ON(!PageUptodate(page));
5529 
5530 		cur = min(len, PAGE_SIZE - offset);
5531 		kaddr = page_address(page);
5532 		memset(kaddr + offset, 0, cur);
5533 
5534 		len -= cur;
5535 		offset = 0;
5536 		i++;
5537 	}
5538 }
5539 
5540 void copy_extent_buffer_full(struct extent_buffer *dst,
5541 			     struct extent_buffer *src)
5542 {
5543 	int i;
5544 	unsigned num_pages;
5545 
5546 	ASSERT(dst->len == src->len);
5547 
5548 	num_pages = num_extent_pages(dst->start, dst->len);
5549 	for (i = 0; i < num_pages; i++)
5550 		copy_page(page_address(dst->pages[i]),
5551 				page_address(src->pages[i]));
5552 }
5553 
5554 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5555 			unsigned long dst_offset, unsigned long src_offset,
5556 			unsigned long len)
5557 {
5558 	u64 dst_len = dst->len;
5559 	size_t cur;
5560 	size_t offset;
5561 	struct page *page;
5562 	char *kaddr;
5563 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5564 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5565 
5566 	WARN_ON(src->len != dst_len);
5567 
5568 	offset = (start_offset + dst_offset) &
5569 		(PAGE_SIZE - 1);
5570 
5571 	while (len > 0) {
5572 		page = dst->pages[i];
5573 		WARN_ON(!PageUptodate(page));
5574 
5575 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5576 
5577 		kaddr = page_address(page);
5578 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5579 
5580 		src_offset += cur;
5581 		len -= cur;
5582 		offset = 0;
5583 		i++;
5584 	}
5585 }
5586 
5587 void le_bitmap_set(u8 *map, unsigned int start, int len)
5588 {
5589 	u8 *p = map + BIT_BYTE(start);
5590 	const unsigned int size = start + len;
5591 	int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5592 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5593 
5594 	while (len - bits_to_set >= 0) {
5595 		*p |= mask_to_set;
5596 		len -= bits_to_set;
5597 		bits_to_set = BITS_PER_BYTE;
5598 		mask_to_set = ~0;
5599 		p++;
5600 	}
5601 	if (len) {
5602 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5603 		*p |= mask_to_set;
5604 	}
5605 }
5606 
5607 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5608 {
5609 	u8 *p = map + BIT_BYTE(start);
5610 	const unsigned int size = start + len;
5611 	int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5612 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5613 
5614 	while (len - bits_to_clear >= 0) {
5615 		*p &= ~mask_to_clear;
5616 		len -= bits_to_clear;
5617 		bits_to_clear = BITS_PER_BYTE;
5618 		mask_to_clear = ~0;
5619 		p++;
5620 	}
5621 	if (len) {
5622 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5623 		*p &= ~mask_to_clear;
5624 	}
5625 }
5626 
5627 /*
5628  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5629  * given bit number
5630  * @eb: the extent buffer
5631  * @start: offset of the bitmap item in the extent buffer
5632  * @nr: bit number
5633  * @page_index: return index of the page in the extent buffer that contains the
5634  * given bit number
5635  * @page_offset: return offset into the page given by page_index
5636  *
5637  * This helper hides the ugliness of finding the byte in an extent buffer which
5638  * contains a given bit.
5639  */
5640 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5641 				    unsigned long start, unsigned long nr,
5642 				    unsigned long *page_index,
5643 				    size_t *page_offset)
5644 {
5645 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5646 	size_t byte_offset = BIT_BYTE(nr);
5647 	size_t offset;
5648 
5649 	/*
5650 	 * The byte we want is the offset of the extent buffer + the offset of
5651 	 * the bitmap item in the extent buffer + the offset of the byte in the
5652 	 * bitmap item.
5653 	 */
5654 	offset = start_offset + start + byte_offset;
5655 
5656 	*page_index = offset >> PAGE_SHIFT;
5657 	*page_offset = offset & (PAGE_SIZE - 1);
5658 }
5659 
5660 /**
5661  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5662  * @eb: the extent buffer
5663  * @start: offset of the bitmap item in the extent buffer
5664  * @nr: bit number to test
5665  */
5666 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5667 			   unsigned long nr)
5668 {
5669 	u8 *kaddr;
5670 	struct page *page;
5671 	unsigned long i;
5672 	size_t offset;
5673 
5674 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5675 	page = eb->pages[i];
5676 	WARN_ON(!PageUptodate(page));
5677 	kaddr = page_address(page);
5678 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5679 }
5680 
5681 /**
5682  * extent_buffer_bitmap_set - set an area of a bitmap
5683  * @eb: the extent buffer
5684  * @start: offset of the bitmap item in the extent buffer
5685  * @pos: bit number of the first bit
5686  * @len: number of bits to set
5687  */
5688 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5689 			      unsigned long pos, unsigned long len)
5690 {
5691 	u8 *kaddr;
5692 	struct page *page;
5693 	unsigned long i;
5694 	size_t offset;
5695 	const unsigned int size = pos + len;
5696 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5697 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5698 
5699 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5700 	page = eb->pages[i];
5701 	WARN_ON(!PageUptodate(page));
5702 	kaddr = page_address(page);
5703 
5704 	while (len >= bits_to_set) {
5705 		kaddr[offset] |= mask_to_set;
5706 		len -= bits_to_set;
5707 		bits_to_set = BITS_PER_BYTE;
5708 		mask_to_set = ~0;
5709 		if (++offset >= PAGE_SIZE && len > 0) {
5710 			offset = 0;
5711 			page = eb->pages[++i];
5712 			WARN_ON(!PageUptodate(page));
5713 			kaddr = page_address(page);
5714 		}
5715 	}
5716 	if (len) {
5717 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5718 		kaddr[offset] |= mask_to_set;
5719 	}
5720 }
5721 
5722 
5723 /**
5724  * extent_buffer_bitmap_clear - clear an area of a bitmap
5725  * @eb: the extent buffer
5726  * @start: offset of the bitmap item in the extent buffer
5727  * @pos: bit number of the first bit
5728  * @len: number of bits to clear
5729  */
5730 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5731 				unsigned long pos, unsigned long len)
5732 {
5733 	u8 *kaddr;
5734 	struct page *page;
5735 	unsigned long i;
5736 	size_t offset;
5737 	const unsigned int size = pos + len;
5738 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5739 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5740 
5741 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5742 	page = eb->pages[i];
5743 	WARN_ON(!PageUptodate(page));
5744 	kaddr = page_address(page);
5745 
5746 	while (len >= bits_to_clear) {
5747 		kaddr[offset] &= ~mask_to_clear;
5748 		len -= bits_to_clear;
5749 		bits_to_clear = BITS_PER_BYTE;
5750 		mask_to_clear = ~0;
5751 		if (++offset >= PAGE_SIZE && len > 0) {
5752 			offset = 0;
5753 			page = eb->pages[++i];
5754 			WARN_ON(!PageUptodate(page));
5755 			kaddr = page_address(page);
5756 		}
5757 	}
5758 	if (len) {
5759 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5760 		kaddr[offset] &= ~mask_to_clear;
5761 	}
5762 }
5763 
5764 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5765 {
5766 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5767 	return distance < len;
5768 }
5769 
5770 static void copy_pages(struct page *dst_page, struct page *src_page,
5771 		       unsigned long dst_off, unsigned long src_off,
5772 		       unsigned long len)
5773 {
5774 	char *dst_kaddr = page_address(dst_page);
5775 	char *src_kaddr;
5776 	int must_memmove = 0;
5777 
5778 	if (dst_page != src_page) {
5779 		src_kaddr = page_address(src_page);
5780 	} else {
5781 		src_kaddr = dst_kaddr;
5782 		if (areas_overlap(src_off, dst_off, len))
5783 			must_memmove = 1;
5784 	}
5785 
5786 	if (must_memmove)
5787 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5788 	else
5789 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5790 }
5791 
5792 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5793 			   unsigned long src_offset, unsigned long len)
5794 {
5795 	struct btrfs_fs_info *fs_info = dst->fs_info;
5796 	size_t cur;
5797 	size_t dst_off_in_page;
5798 	size_t src_off_in_page;
5799 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5800 	unsigned long dst_i;
5801 	unsigned long src_i;
5802 
5803 	if (src_offset + len > dst->len) {
5804 		btrfs_err(fs_info,
5805 			"memmove bogus src_offset %lu move len %lu dst len %lu",
5806 			 src_offset, len, dst->len);
5807 		BUG_ON(1);
5808 	}
5809 	if (dst_offset + len > dst->len) {
5810 		btrfs_err(fs_info,
5811 			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5812 			 dst_offset, len, dst->len);
5813 		BUG_ON(1);
5814 	}
5815 
5816 	while (len > 0) {
5817 		dst_off_in_page = (start_offset + dst_offset) &
5818 			(PAGE_SIZE - 1);
5819 		src_off_in_page = (start_offset + src_offset) &
5820 			(PAGE_SIZE - 1);
5821 
5822 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5823 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5824 
5825 		cur = min(len, (unsigned long)(PAGE_SIZE -
5826 					       src_off_in_page));
5827 		cur = min_t(unsigned long, cur,
5828 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5829 
5830 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5831 			   dst_off_in_page, src_off_in_page, cur);
5832 
5833 		src_offset += cur;
5834 		dst_offset += cur;
5835 		len -= cur;
5836 	}
5837 }
5838 
5839 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5840 			   unsigned long src_offset, unsigned long len)
5841 {
5842 	struct btrfs_fs_info *fs_info = dst->fs_info;
5843 	size_t cur;
5844 	size_t dst_off_in_page;
5845 	size_t src_off_in_page;
5846 	unsigned long dst_end = dst_offset + len - 1;
5847 	unsigned long src_end = src_offset + len - 1;
5848 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5849 	unsigned long dst_i;
5850 	unsigned long src_i;
5851 
5852 	if (src_offset + len > dst->len) {
5853 		btrfs_err(fs_info,
5854 			  "memmove bogus src_offset %lu move len %lu len %lu",
5855 			  src_offset, len, dst->len);
5856 		BUG_ON(1);
5857 	}
5858 	if (dst_offset + len > dst->len) {
5859 		btrfs_err(fs_info,
5860 			  "memmove bogus dst_offset %lu move len %lu len %lu",
5861 			  dst_offset, len, dst->len);
5862 		BUG_ON(1);
5863 	}
5864 	if (dst_offset < src_offset) {
5865 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5866 		return;
5867 	}
5868 	while (len > 0) {
5869 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5870 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
5871 
5872 		dst_off_in_page = (start_offset + dst_end) &
5873 			(PAGE_SIZE - 1);
5874 		src_off_in_page = (start_offset + src_end) &
5875 			(PAGE_SIZE - 1);
5876 
5877 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5878 		cur = min(cur, dst_off_in_page + 1);
5879 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5880 			   dst_off_in_page - cur + 1,
5881 			   src_off_in_page - cur + 1, cur);
5882 
5883 		dst_end -= cur;
5884 		src_end -= cur;
5885 		len -= cur;
5886 	}
5887 }
5888 
5889 int try_release_extent_buffer(struct page *page)
5890 {
5891 	struct extent_buffer *eb;
5892 
5893 	/*
5894 	 * We need to make sure nobody is attaching this page to an eb right
5895 	 * now.
5896 	 */
5897 	spin_lock(&page->mapping->private_lock);
5898 	if (!PagePrivate(page)) {
5899 		spin_unlock(&page->mapping->private_lock);
5900 		return 1;
5901 	}
5902 
5903 	eb = (struct extent_buffer *)page->private;
5904 	BUG_ON(!eb);
5905 
5906 	/*
5907 	 * This is a little awful but should be ok, we need to make sure that
5908 	 * the eb doesn't disappear out from under us while we're looking at
5909 	 * this page.
5910 	 */
5911 	spin_lock(&eb->refs_lock);
5912 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5913 		spin_unlock(&eb->refs_lock);
5914 		spin_unlock(&page->mapping->private_lock);
5915 		return 0;
5916 	}
5917 	spin_unlock(&page->mapping->private_lock);
5918 
5919 	/*
5920 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5921 	 * so just return, this page will likely be freed soon anyway.
5922 	 */
5923 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5924 		spin_unlock(&eb->refs_lock);
5925 		return 0;
5926 	}
5927 
5928 	return release_extent_buffer(eb);
5929 }
5930